This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Björling problem for zero mean curvature surfaces in the three-dimensional light cone

Joseph Cho Institute of Discrete Mathematics and Geometry, TU Wien, Wien, 1040, Austria [email protected] So Young Kim Department of Mathematics, Korea University, Seoul, 02841, Republic of Korea [email protected] Dami Lee Department of Mathematics, Indiana University, Bloomington, IN, 47405, USA [email protected] Wonjoo Lee Department of Mathematics, Korea University, Seoul, 02841, Republic of Korea [email protected]  and  Seong-Deog Yang Department of Mathematics, Korea University, Seoul, 02841, Republic of Korea [email protected]
Abstract.

We solve the Björling problem for zero mean curvature surfaces in the three-dimensional light cone. As an application, we construct and classify all rotational zero mean curvature surfaces.

Key words and phrases:
Zero mean curvature surfaces, Björling representation
2020 Mathematics Subject Classification:
Primary 53A10; Secondary 53B30.

1. Introduction

The classical Björling problem [bjorling_integrationem_1844] poses the following question: Suppose that a curve γ:I𝔼3\gamma\mathrel{\mathop{\ordinarycolon}}I\to\mathbb{E}^{3} and a unit vector field NN along γ\gamma in the Euclidean 3-space 𝔼3\mathbb{E}^{3} are given so that

γ˙N=0,\dot{\gamma}\cdot N=0,

where ˙\dot{\phantom{\gamma}} denotes the differentiation with respect to uIu\in I, and \cdot is the standard Euclidean inner product. The goal is to find a minimal surface XX which contains γ\gamma and whose unit normal along γ\gamma is the prescribed NN. Due to the Weierstrass representation of minimal surfaces [weierstrass_untersuchungen_1866], this problem can be solved via analytic extensions of γ\gamma and NN to the complex plane:

X(z)=u0z(γ˙(w)iN(w)×γ˙(w))dwX(z)=\int_{u_{0}}^{z}(\dot{\gamma}(w)-iN(w)\times\dot{\gamma}(w))\operatorname{d\!}{w}

where ×\times denotes the standard Euclidean cross product. The curve and the prescribed normal together are called the Björling data. Such Björling type problems are well studied across various types of surfaces in various space forms (see, for example, [alias_bjorling_2003, asperti_bjorling_2006, brander_bjorling_2010, brander_bjorling_2018, dussan_bjorling_2017, kim_spacelike_2011, kim_prescribing_2007, yang_bjorling_2017]).

The Björling data can be slightly modified by noting that :=N×γ˙\mathcal{L}\mathrel{\mathop{\ordinarycolon}}=N\times\dot{\gamma} is perpendicular to γ˙\dot{\gamma} and of the same length to γ˙\dot{\gamma}. Thus if \mathcal{L} is prescribed then one can recover NN via N=γ˙×|γ˙×|N=\frac{\dot{\gamma}\times\mathcal{L}}{|\dot{\gamma}\times\mathcal{L}|}, allowing us to adopt γ\gamma and \mathcal{L} instead of γ\gamma and NN as Björling data. Geometrically, the vector field \mathcal{L} of the Björling data is equivalent to the prescription of the tangent vector field of the surface that is perpendicular to γ˙\dot{\gamma} along γ\gamma. This change in viewpoint of the prescribed data for the Björling problem proved to be useful for obtaining the (singular) Björling representation [kim_prescribing_2007] for maxfaces [umehara_maximal_2006] and generalized timelike minimal surfaces [kim_spacelike_2011] in Lorentz 33-space, and also the Björling representation for zero mean curvature surfaces in isotropic 33-space [seo_zero_2021].

Our goal of the paper is to solve the Björling problem for zero mean curvature surfaces in the 33-dimensional light cone +3\mathbb{Q}^{3}_{+}. In the similar cases of other quadrics of Lorentz 44-space, namely, the hyperbolic 33-space 3(1)\mathbb{H}^{3}(-1) and de Sitter 33-space 𝕊13(1)\mathbb{S}^{3}_{1}(1), the tangent space is isomorphic to either the Euclidean 33-space or the Lorentz 33-space, respectively. Thus one can use the cross product in the tangent space to obtain Björling representations [yang_bjorling_2017] in an analogous manner to the Euclidean case. However, the tangent space to +3\mathbb{Q}^{3}_{+} is isomorphic to isotropic 33-space, so that it does not have a cross product structure. Therefore, for the Björling problem in +3\mathbb{Q}^{3}_{+}, we use the alternative viewpoint and assume that the given Björling data consists of a spacelike analytic curve γ\gamma, together with a spacelike vector field \mathcal{L} along the curve, and find the zero mean curvature surface which contains γ\gamma and has \mathcal{L} as a tangent vector field along γ\gamma.

The paper is structured as follows: After reviewing the basic geometry and surface theory of +3\mathbb{Q}^{3}_{+} in Section 2, we describe the process to solve the Björling problem for a given spacelike analytic curve with prescribed tangent vector field in Section 3, culminating in the Björling representation for zero mean curvature surfaces in 33-dimensional light cone (see Theorem 3.8). As an application, we construct and classify (see Theorem 4.4) rotationally invariant zero mean curvature surfaces in +3\mathbb{Q}^{3}_{+} in Section 4. Furthermore, many surfaces admitting Weierstrass representations in various space forms with indefinite metric can be extended across lightlike lines (see, for example, [akamine_reflection_2021, akamine_reflection_2022, akamine_space-like_2019, fujimori_analytic_2022, fujimori_zero_2015-1, umehara_hypersurfaces_2019]); we give an example of such surface in +3\mathbb{Q}^{3}_{+} in Section 4.5.

2. Preliminaries

We first briefly review the geometry of three-dimensional light cone, and the surface theory within. For a detailed description, see [liu_surfaces_2007, liu_hypersurfaces_2008, liu_representation_2011].

2.1. Hermitian matrix model of three-dimensional light cone

Let 𝕃4\mathbb{L}^{4} denote the Lorentz 44-space, with inner product

(t1,x1,y1,z1),(t2,x2,y2,z2)=t1t2+x1x2+y1y2+z1z2.\langle(t_{1},x_{1},y_{1},z_{1}),(t_{2},x_{2},y_{2},z_{2})\rangle=-t_{1}t_{2}+x_{1}x_{2}+y_{1}y_{2}+z_{1}z_{2}.

The Lorentz 44-space can be identified with the set of 2×22\times 2 Hermitian matrices Herm(2,)\mathrm{Herm}(2,\mathbb{C}) via

(t,x,y,z)(t+zx+iyxiytz)(t,x,y,z)\sim\begin{pmatrix}t+z&x+iy\\ x-iy&t-z\end{pmatrix}

where we will abuse notation between vectors and matrices. Then for any V,WHerm(2,)𝕃4V,W\in\mathrm{Herm}(2,\mathbb{C})\cong\mathbb{L}^{4},

V,W=12(det(V+W)detVdetW),\langle V,W\rangle=-\frac{1}{2}\left(\det{(V+W)}-\det{V}-\det{W}\right),

so that

|V|2:=V,V=detV.|V|^{2}\mathrel{\mathop{\ordinarycolon}}=\langle V,V\rangle=-\det{V}.

We note here that the symmetric bilinear form ,\langle\cdot,\cdot\rangle is well-defined for all AM(2,)A\in\mathrm{M}(2,\mathbb{C}).

Defining

f0:=(0002),f1:=(0110),f2:=(0ii0),f3:=(1000),f_{0}\mathrel{\mathop{\ordinarycolon}}=\begin{pmatrix}0&0\\ 0&-2\end{pmatrix},\quad f_{1}\mathrel{\mathop{\ordinarycolon}}=\begin{pmatrix}0&1\\ 1&0\end{pmatrix},\quad f_{2}\mathrel{\mathop{\ordinarycolon}}=\begin{pmatrix}0&i\\ -i&0\end{pmatrix},\quad f_{3}\mathrel{\mathop{\ordinarycolon}}=\begin{pmatrix}1&0\\ 0&0\end{pmatrix},

we see that {f0,f1,f2,f3}\{f_{0},f_{1},f_{2},f_{3}\} form an asymptotically orthonormal basis of 𝕃4Herm(2,)\mathbb{L}^{4}\cong\mathrm{Herm}(2,\mathbb{C}).

In the Hermitian model, hyperbolic 33-space 3(1)\mathbb{H}^{3}(-1), 33-dimensional light cone +3\mathbb{Q}^{3}_{+}, and de Sitter 33-space 𝕊13(1)\mathbb{S}^{3}_{1}(1) can be defined as quadrics in 𝕃4\mathbb{L}^{4} via

3(1)\displaystyle\mathbb{H}^{3}(-1) :={XHerm(2,):X,X=1,trX>0},\displaystyle\mathrel{\mathop{\ordinarycolon}}=\{X\in\mathrm{Herm}(2,\mathbb{C})\mathrel{\mathop{\ordinarycolon}}\langle X,X\rangle=-1,\operatorname{tr}{X}>0\},
+3\displaystyle\mathbb{Q}^{3}_{+} :={XHerm(2,):X,X=0,trX>0},\displaystyle\mathrel{\mathop{\ordinarycolon}}=\{X\in\mathrm{Herm}(2,\mathbb{C})\mathrel{\mathop{\ordinarycolon}}\langle X,X\rangle=0,\operatorname{tr}{X}>0\},
𝕊13(1)\displaystyle\mathbb{S}^{3}_{1}(1) :={XHerm(2,):X,X=1},\displaystyle\mathrel{\mathop{\ordinarycolon}}=\{X\in\mathrm{Herm}(2,\mathbb{C})\mathrel{\mathop{\ordinarycolon}}\langle X,X\rangle=1\},

respectively. Note that for any X+3X\in\mathbb{Q}^{3}_{+}, there is some FSL(2,)F\in\mathrm{SL}(2,\mathbb{C}) such that

X=F(1000)F=Ff3FX=F\begin{pmatrix}1&0\\ 0&0\end{pmatrix}F^{\star}=Ff_{3}F^{\star}

where FF^{\star} denotes the conjugate transpose of FF.

When we visualize surfaces in +3\mathbb{Q}^{3}_{+}, we will use the following stereographic projection

+3(t,x,y,z)(x1+t,y1+t,z1+t).\mathbb{Q}^{3}_{+}\ni(t,x,y,z)\mapsto\left(\frac{x}{1+t},\frac{y}{1+t},\frac{z}{1+t}\right).

Then +3\mathbb{Q}^{3}_{+} is identified with {(a,b,c)3:0<a2+b2+c2<1}\{(a,b,c)\in\mathbb{R}^{3}\mathrel{\mathop{\ordinarycolon}}0<a^{2}+b^{2}+c^{2}<1\}.

2.2. Surface theory and Weierstrass-type representation

Let DD be a two-dimensional simply-connected domain, and suppose X:D+3X\mathrel{\mathop{\ordinarycolon}}D\to\mathbb{Q}^{3}_{+} is a spacelike immersion, that is, the induced metric on the tangent plane of XX at every point pDp\in D is Riemannian. Then for conformal coordinates (u,v)D(u,v)\in D with complex structure given via z=u+ivz=u+iv, suppose that the first fundamental form is given by

ds2=ϕ2(du2+dv2)=ϕ2dzdz¯\operatorname{d\!}{s}^{2}=\phi^{2}(\operatorname{d\!}{u}^{2}+\operatorname{d\!}{v}^{2})=\phi^{2}\operatorname{d\!}{z}\operatorname{d\!}{\bar{z}}

for some ϕ:D×\phi\mathrel{\mathop{\ordinarycolon}}D\to\mathbb{R}^{\times}. Furthermore, we have X,Xu=X,Xv=0\langle X,X_{u}\rangle=\langle X,X_{v}\rangle=0 so that there exists a unique lightlike n:D𝕃4n\mathrel{\mathop{\ordinarycolon}}D\to\mathbb{L}^{4} such that

(2.1) n,n=n,Xu=n,Xv=0,n,X=1.\langle n,n\rangle=\langle n,X_{u}\rangle=\langle n,X_{v}\rangle=0,\quad\langle n,X\rangle=1.

Such nn is called the Gauss map of XX, and the coefficients of the second fundamental form is then computed in terms of nn via

L:=Xu,nu,M:=Xu,nv=Xv,nu,N:=Xv,nv.L\mathrel{\mathop{\ordinarycolon}}=-\langle X_{u},n_{u}\rangle,\quad M\mathrel{\mathop{\ordinarycolon}}=-\langle X_{u},n_{v}\rangle=-\langle X_{v},n_{u}\rangle,\quad N\mathrel{\mathop{\ordinarycolon}}=-\langle X_{v},n_{v}\rangle.

Hence, the shape operator SS is

S=ϕ2(LMMN)S=\phi^{-2}\begin{pmatrix}L&M\\ M&N\end{pmatrix}

with the (extrinsic) Gaussian curvature KK and mean curvature HH given by

K=detS,H=12trS.K=\det{S},\quad H=\frac{1}{2}\operatorname{tr}S.

Those surfaces XX with H0H\equiv 0 will be referred to as zero mean curvature surfaces.

We recall the Weierstrass-type representation for zero mean curvature surfaces in the three-dimensional light cone [liu_representation_2011, Theorem 3.2] (see also [pember_weierstrass-type_2020, § 4.2] and [seo_zero_2021, Theorem 39]):

Fact 2.1.

Any zero mean curvature surface X:D+3X\mathrel{\mathop{\ordinarycolon}}D\to\mathbb{Q}^{3}_{+} can locally be represented as

X=Ff3F=F(1000)FX=Ff_{3}F^{\star}=F\begin{pmatrix}1&0\\ 0&0\end{pmatrix}F^{\star}

where F:DSL(2,)F\mathrel{\mathop{\ordinarycolon}}D\to\mathrm{SL}(2,\mathbb{C}) satisfies

dFF1=(GG21G)Ω\operatorname{d\!}{F}F^{-1}=\begin{pmatrix}G&-G^{2}\\ 1&-G\end{pmatrix}\Omega

for some meromorphic function G:DG\mathrel{\mathop{\ordinarycolon}}D\to\mathbb{C} and holomorphic 11-form Ω:D\Omega\mathrel{\mathop{\ordinarycolon}}D\to\mathbb{C} such that G2ΩG^{2}\Omega is holomorphic. The pair (G,Ω)(G,\Omega) is called the Weierstrass data.

3. Solution of the Björling problem

Using the Weierstrass-type representation in Fact 2.1, we will now solve the Björling problem for zero mean curvature surfaces in +3\mathbb{Q}^{3}_{+}. Unlike the cases of hyperbolic 33-space 3(1)\mathbb{H}^{3}(-1) and de Sitter 33-space 𝕊13(1)\mathbb{S}^{3}_{1}(1), the Björling data we consider will be an analytic curve together with a tangent vector field due to the lack of cross product structure in the tangent space of +3\mathbb{Q}^{3}_{+}.

3.1. The conformality condition for the Björling data

For an interval II with parameter uIu\in I, let γ:I+3\gamma\mathrel{\mathop{\ordinarycolon}}I\to\mathbb{Q}^{3}_{+} be a spacelike analytic curve and \mathcal{L} be an analytic spacelike vector field along γ\gamma such that

(3.1) γ˙,γ˙=,,γ˙,=0,γ,=0.\langle\dot{\gamma},\dot{\gamma}\rangle=\langle\mathcal{L},\mathcal{L}\rangle,\quad\langle\dot{\gamma},\mathcal{L}\rangle=0,\quad\langle\gamma,\mathcal{L}\rangle=0.

Geometrically, the conditions (3.1) ensure that \mathcal{L} will be a tangent vector field; thus, we refer to (3.1) as the conformality condition. Our goal is to find a zero mean curvature surface X:D+3X\mathrel{\mathop{\ordinarycolon}}D\to\mathbb{Q}^{3}_{+} which contains γ\gamma and which has \mathcal{L} as a tangent vector field along γ\gamma.

Note that if there is a such a zero mean curvature surface XX, then

(3.2) dX=dFf3F=dFF1Ff3F=(GG21G)ΩX=:𝛀X.\operatorname{d\!}{X}=\operatorname{d\!}{F}f_{3}F^{\star}=\operatorname{d\!}{F}F^{-1}Ff_{3}F^{\star}=\begin{pmatrix}G&-G^{2}\\ 1&-G\end{pmatrix}\Omega X=\mathrel{\mathop{\ordinarycolon}}\mathbf{\Omega}X.

Thus, from γ\gamma and \mathcal{L}, we will construct such 11-form 𝛀\mathbf{\Omega}.

Remark 3.1.

An important distinction from the cases of 3(1)\mathbb{H}^{3}(-1) and 𝕊13(1)\mathbb{S}^{3}_{1}(1) is that X+3X\in\mathbb{Q}^{3}_{+} is not invertible since detX=0\det X=0. Thus, instead of considering dXX1\operatorname{d\!}{X}X^{-1} as in the cases of 3(1)\mathbb{H}^{3}(-1) and 𝕊13(1)\mathbb{S}^{3}_{1}(1), we consider the equation as in (3.2).

For Björling data γ\gamma and \mathcal{L} satisfying conformality condition (3.1), let γ(u)=X(u,0)\gamma(u)=X(u,0) and (u):=Xv(u,0)\mathcal{L}(u)\mathrel{\mathop{\ordinarycolon}}=X_{v}(u,0). Then on one dimensional domain II, (3.2) implies that we must solve for 𝛀=:Ω~du\mathbf{\Omega}=\mathrel{\mathop{\ordinarycolon}}\tilde{\Omega}\operatorname{d\!}{u} satisfying

(3.3) Λ(u):=12(γ˙(u)i(u))=Xz(u,0)=Ω~(u)X(u,0)=Ω~(u)γ(u).\Lambda(u)\mathrel{\mathop{\ordinarycolon}}=\frac{1}{2}(\dot{\gamma}(u)-i\mathcal{L}(u))=X_{z}(u,0)=\tilde{\Omega}(u)X(u,0)=\tilde{\Omega}(u)\gamma(u).

We claim that there is a unique Ω~\tilde{\Omega} which solves (3.3).

Note that detΛ=0\det{\Lambda}=0 because of (3.1), and that detγ=0\det{\gamma}=0 since it is a curve in +3\mathbb{Q}^{3}_{+}. By standard theory we know that

detΩ~=trΩ~=0.\det{\tilde{\Omega}}=\operatorname{tr}{\tilde{\Omega}}=0.

Therefore

𝛀=(GG21G)Ω\mathbf{\Omega}=\begin{pmatrix}G&-G^{2}\\ 1&-G\end{pmatrix}\Omega

for some functions GG and 11-form Ω\Omega. We rewrite (3.3) as

(3.4) (Λ11Λ12Λ21Λ22)=(GΩ~G2Ω~Ω~GΩ~)(γ11γ12γ21γ22).\begin{pmatrix}\Lambda_{11}&\Lambda_{12}\\ \Lambda_{21}&\Lambda_{22}\end{pmatrix}=\begin{pmatrix}G\tilde{\Omega}&-G^{2}\tilde{\Omega}\\ \tilde{\Omega}&-G\tilde{\Omega}\end{pmatrix}\begin{pmatrix}\gamma_{11}&\gamma_{12}\\ \gamma_{21}&\gamma_{22}\end{pmatrix}.

By examining (1,1)(1,1) and (2,1)(2,1) components of (3.4), we see that G=G1G=G_{1} and Ω~=Ω~1\tilde{\Omega}=\tilde{\Omega}_{1} where

(3.5) G1=Λ11Λ21,Ω~1=Λ212Λ21γ11Λ11γ21.G_{1}=\frac{\Lambda_{11}}{\Lambda_{21}},\quad\tilde{\Omega}_{1}=\frac{\Lambda_{21}^{2}}{\Lambda_{21}\gamma_{11}-\Lambda_{11}\gamma_{21}}.

On the other hand, by examining (1,2)(1,2) and (2,2)(2,2) components of (3.4), we see that G=G2G=G_{2} and Ω~=Ω~2\tilde{\Omega}=\tilde{\Omega}_{2} where

(3.6) G2=Λ12Λ22,Ω~2=Λ222Λ22γ12Λ12γ22.G_{2}=\frac{\Lambda_{12}}{\Lambda_{22}},\quad\tilde{\Omega}_{2}=\frac{\Lambda_{22}^{2}}{\Lambda_{22}\gamma_{12}-\Lambda_{12}\gamma_{22}}.

It is immediate to see G1=G2G_{1}=G_{2} from the fact that detΛ=0\det{\Lambda}=0. Then

Ω~1\displaystyle\tilde{\Omega}_{1} =Λ212Λ21γ11Λ12Λ21Λ22γ21=Λ21Λ22Λ22γ11Λ12γ21,\displaystyle=\frac{\Lambda_{21}^{2}}{\Lambda_{21}\gamma_{11}-\frac{\Lambda_{12}\Lambda_{21}}{\Lambda_{22}}\gamma_{21}}=\frac{\Lambda_{21}\Lambda_{22}}{\Lambda_{22}\gamma_{11}-\Lambda_{12}\gamma_{21}},
Ω~2\displaystyle\tilde{\Omega}_{2} =Λ222Λ22γ12Λ11Λ22Λ21γ22=Λ21Λ22Λ21γ12Λ11γ22.\displaystyle=\frac{\Lambda_{22}^{2}}{\Lambda_{22}\gamma_{12}-\frac{\Lambda_{11}\Lambda_{22}}{\Lambda_{21}}\gamma_{22}}=\frac{\Lambda_{21}\Lambda_{22}}{\Lambda_{21}\gamma_{12}-\Lambda_{11}\gamma_{22}}.

Hence, it is enough to show that the denominators are the same.

For this matter, we multiply (3.4) with the adjunct of γ\gamma from the right to obtain

(Λ11Λ12Λ21Λ22)(γ22γ12γ21γ11)=(GΩ~G2Ω~Ω~GΩ~)(detγ00detγ).\begin{pmatrix}\Lambda_{11}&\Lambda_{12}\\ \Lambda_{21}&\Lambda_{22}\end{pmatrix}\begin{pmatrix}\gamma_{22}&-\gamma_{12}\\ -\gamma_{21}&\gamma_{11}\end{pmatrix}=\begin{pmatrix}G\tilde{\Omega}&-G^{2}\tilde{\Omega}\\ \tilde{\Omega}&-G\tilde{\Omega}\end{pmatrix}\begin{pmatrix}\det{\gamma}&0\\ 0&\det{\gamma}\end{pmatrix}.

However, we have that detγ=0\det{\gamma}=0 since it is a curve in +3\mathbb{Q}^{3}_{+}. Therefore, the left hand side is a zero matrix. In particular, its trace is 0; hence

Λ11γ22Λ12γ21Λ21γ12+Λ22γ11=0,\Lambda_{11}\gamma_{22}-\Lambda_{12}\gamma_{21}-\Lambda_{21}\gamma_{12}+\Lambda_{22}\gamma_{11}=0,

implying that Ω~1=Ω~2\tilde{\Omega}_{1}=\tilde{\Omega}_{2}.

Now, the expressions for Ω~1\tilde{\Omega}_{1} and Ω~2\tilde{\Omega}_{2} in (3.5) and (3.6) implies that the Björling data γ\gamma and \mathcal{L} satisfying (3.1) must additionally satisfy

(3.7) γ11Λ21γ21Λ110.\gamma_{11}\Lambda_{21}-\gamma_{21}\Lambda_{11}\neq 0.

Unfortunately, the conformality conditions (3.1) alone does not guarantee this; one can even construct explicit examples where the expression (3.7) vanishes for some Björling data satisfying the conformality conditions.

3.2. The orientability condition for the Björling data

To give a geometric interpretation of the condition (3.7), we define the following notion.

Definition 3.2.

For two linearly independent spacelike vectors U,V𝕃4U,V\in\mathbb{L}^{4} spanning a Riemannian subspace WW of 𝕃4\mathbb{L}^{4}, let {e1,e2}\{e_{1},e_{2}\} be an orthonormal basis of WW such that there is some FSL(2,)F\in\mathrm{SL}(2,\mathbb{C}) with FfiF=eiFf_{i}F^{\star}=e_{i} for i=1,2i=1,2. The signed area of UU and VV, denoted by SA(U,V)\mathrm{SA}(U,V), is defined via

UV=:SA(U,V)e1e2.U\wedge V=\mathrel{\mathop{\ordinarycolon}}\mathrm{SA}(U,V)e_{1}\wedge e_{2}.

An important feature of the signed area is the fact that it is invariant under orientation-preserving isometries of +3\mathbb{Q}^{3}_{+}. On the other hand, the square of the signed area (or the squared area) can be calculated using the inner product of the ambient Lorentz 44-space:

Lemma 3.3.

For linearly independent spacelike vectors U,VU,V spanning a Riemannian subspace WW, we have

SA(U,V)2=U,UV,VU,V2.\mathrm{SA}(U,V)^{2}=\langle U,U\rangle\langle V,V\rangle-\langle U,V\rangle^{2}.
Proof.

Let {e1,e2}\{e_{1},e_{2}\} be an orthonormal basis WW such that FfiF=eiFf_{i}F^{\star}=e_{i} for i=1,2i=1,2 with FSL(2,)F\in\mathrm{SL}(2,\mathbb{C}). Writing

U=ae1+be2,V=ce1+de2U=ae_{1}+be_{2},\quad V=ce_{1}+de_{2}

for some constants a,b,c,da,b,c,d\in\mathbb{R}, we calculate that

SA(U,V)e1e2=(ae1+be2)(ce1+de2)=(adbc)e1e2.\mathrm{SA}(U,V)e_{1}\wedge e_{2}=(ae_{1}+be_{2})\wedge(ce_{1}+de_{2})=(ad-bc)e_{1}\wedge e_{2}.

On the other hand, we have

U,UV,VU,V2=(a2+b2)(c2+d2)(ac+bd)2=(adbc)2,\langle U,U\rangle\langle V,V\rangle-\langle U,V\rangle^{2}=(a^{2}+b^{2})(c^{2}+d^{2})-(ac+bd)^{2}=(ad-bc)^{2},

giving us the desired conclusion. ∎

The next lemmata give additional geometric criteria for the Björling data to satisfy (3.7) in terms of the signed area.

Lemma 3.4.

Given Björling data γ\gamma and \mathcal{L} satisfying the conformality condition, the signed area of γ˙\dot{\gamma} and \mathcal{L} does not vanish.

Proof.

Suppose for contradiction that SA(γ˙,)=0\mathrm{SA}(\dot{\gamma},\mathcal{L})=0. Then direct calculations show that =αγ±γ˙\mathcal{\mathcal{L}}=\alpha\gamma\pm\dot{\gamma} for some α\alpha. Thus

±γ˙,γ˙=γ˙,αγ±γ˙=γ˙,=0,\pm\langle\dot{\gamma},\dot{\gamma}\rangle=\langle\dot{\gamma},\alpha\gamma\pm\dot{\gamma}\rangle=\langle\dot{\gamma},\mathcal{L}\rangle=0,

which is a contradiction since γ˙\dot{\gamma} is spacelike. ∎

Lemma 3.5.

Given Björling data γ\gamma and \mathcal{L} satisfying the conformality condition, GG and Ω\Omega are well-defined if and only if the signed area of γ˙\dot{\gamma} and \mathcal{L} is negative.

Proof.

Fix any u0Iu_{0}\in I throughout the proof. Since signed area is invariant under orientation-preserving isometries, we may assume without loss of generality that γ=2f3\gamma=2f_{3}, so that any vector in Tγ+3T_{\gamma}\mathbb{Q}^{3}_{+} takes the form

γ+xf1+yf2\ell\gamma+xf_{1}+yf_{2}

for some ,x,y\ell,x,y\in\mathbb{R}. By the conformality conditions (3.1) on the Björling data, we have that γ˙,Tγ+3\dot{\gamma},\mathcal{L}\in T_{\gamma}\mathbb{Q}^{3}_{+}; therefore, there are some constants a,b,c,d,e,fa,b,c,d,e,f\in\mathbb{R} such that

γ˙=aγ+bf1+cf2,and=dγ+ef1+ff2.\dot{\gamma}=a\gamma+bf_{1}+cf_{2},\quad\text{and}\quad\mathcal{L}=d\gamma+ef_{1}+ff_{2}.

Since Λ:=12(γ˙i)\Lambda\mathrel{\mathop{\ordinarycolon}}=\frac{1}{2}\left(\dot{\gamma}-i\mathcal{L}\right), we calculate that

γ11Λ21γ21Λ11=(bf)i(c+e),\displaystyle\gamma_{11}\Lambda_{21}-\gamma_{21}\Lambda_{11}=(b-f)-i(c+e),

so that

(3.8) |γ11Λ21γ21Λ11|2\displaystyle|\gamma_{11}\Lambda_{21}-\gamma_{21}\Lambda_{11}|^{2} =b2+c2+e2+f2+2(cebf)\displaystyle=b^{2}+c^{2}+e^{2}+f^{2}+2(ce-bf)
=|γ˙|2+||2+2(cebf)\displaystyle=|\dot{\gamma}|^{2}+|\mathcal{L}|^{2}+2(ce-bf)
=2(|γ˙|2(bfce)).\displaystyle=2(|\dot{\gamma}|^{2}-(bf-ce)).

Now since γ\gamma-component does not affect the signed area, we note that

SA(γ˙,)=SA(bf1+cf2,ef1+ff2).\mathrm{SA}(\dot{\gamma},\mathcal{L})=\mathrm{SA}(bf_{1}+cf_{2},ef_{1}+ff_{2}).

However, we can also calculate that

SA(bf1+cf2,ef1+ff2)f1f2=(bf1+cf2)(ef1+ff2)=(bfce)f1f2,\mathrm{SA}(bf_{1}+cf_{2},ef_{1}+ff_{2})f_{1}\wedge f_{2}=(bf_{1}+cf_{2})\wedge(ef_{1}+ff_{2})=(bf-ce)f_{1}\wedge f_{2},

allowing us to deduce that

SA(γ˙,)=bfce.\mathrm{SA}(\dot{\gamma},\mathcal{L})=bf-ce.

On the other hand, Lemma 3.3 and the conformality conditions (3.1) imply that

SA(γ˙,)2=|γ˙|2||2γ˙,2=|γ˙|4\mathrm{SA}(\dot{\gamma},\mathcal{L})^{2}=|\dot{\gamma}|^{2}|\mathcal{L}|^{2}-\langle\dot{\gamma},\mathcal{L}\rangle^{2}=|\dot{\gamma}|^{4}

so that

bfce=SA(γ˙,)={|γ˙|2,if SA(γ˙,)>0,|γ˙|2,if SA(γ˙,)<0.bf-ce=\mathrm{SA}(\dot{\gamma},\mathcal{L})=\begin{cases}|\dot{\gamma}|^{2},&\text{if }\mathrm{SA}(\dot{\gamma},\mathcal{L})>0,\\ -|\dot{\gamma}|^{2},&\text{if }\mathrm{SA}(\dot{\gamma},\mathcal{L})<0.\end{cases}

Thus, using (3.8) allows us to conclude that

|γ11Λ21γ21Λ11|2={0,if SA(γ˙,)>0,4|γ˙|2,if SA(γ˙,)<0.|\gamma_{11}\Lambda_{21}-\gamma_{21}\Lambda_{11}|^{2}=\begin{cases}0,&\text{if }\mathrm{SA}(\dot{\gamma},\mathcal{L})>0,\\ 4|\dot{\gamma}|^{2},&\text{if }\mathrm{SA}(\dot{\gamma},\mathcal{L})<0.\end{cases}

Therefore, GG and Ω\Omega are well-defined if and only if SA(γ˙,)<0SA(\dot{\gamma},\mathcal{L})<0. ∎

Remark 3.6.

The signed area condition of Lemma 3.5 encodes the fact that the orientation of γ˙\dot{\gamma} and \mathcal{L} must be correct. For this reason, we call the signed area condition, the orientability condition.

Remark 3.7.

The orientability condition is unnecessary for the Björling data in other quadrics such as 3(1)\mathbb{H}^{3}(-1) and 𝕊13(1)\mathbb{S}^{3}_{1}(1); the crucial difference arises in the definition of the (lightlike) Gauss map used to define the second fundamental form. In the case of 3(1)\mathbb{H}^{3}(-1) and 𝕊13(1)\mathbb{S}^{3}_{1}(1), the Gauss map nn and the position vector XX must satisfy n,X=0\langle n,X\rangle=0; however, in the case +3\mathbb{Q}^{3}_{+}, we have that n,X=1\langle n,X\rangle=1, so that one cannot switch the signs on the Gauss map freely.

We summarize our results in the next main theorem of our paper, the Björling representation for zero mean curvature surfaces in the 33-dimensional light cone:

Theorem 3.8.

Consider +3\mathbb{Q}^{3}_{+} as a subset of Herm(2,)\mathrm{Herm}(2,\mathbb{C}) identified with 𝕃4\mathbb{L}^{4}. Given a spacelike analytic curve γ:I+3\gamma\mathrel{\mathop{\ordinarycolon}}I\to\mathbb{Q}^{3}_{+} and an analytic vector field \mathcal{L} satisfying the conformality condition

γ˙,γ˙=,,γ˙,=0,γ,=0,\langle\dot{\gamma},\dot{\gamma}\rangle=\langle\mathcal{L},\mathcal{L}\rangle,\quad\langle\dot{\gamma},\mathcal{L}\rangle=0,\quad\langle\gamma,\mathcal{L}\rangle=0,

and the orientability condition

SA(γ˙(u),(u))<0for all uI,\mathrm{SA}(\dot{\gamma}(u),\mathcal{L}(u))<0\qquad\text{for all }u\in I,

there exists a unique zero mean curvature surface XX such that

X(u,0)=γ(u),Xv(u,0)=(u)X(u,0)=\gamma(u),\qquad X_{v}(u,0)=\mathcal{L}(u)

for all uIu\in I. It is given by X=Ff3FX=Ff_{3}F^{\star} where FCω(𝒰,SL(2,))F\in C^{\omega}(\mathcal{U}\subset\mathbb{C},\mathrm{SL}(2,\mathbb{C})) is a solution to

dFF1= the analytic extension of 𝛀,F(u0)f3F(u0)=γ(u0)\operatorname{d\!}{F}F^{-1}=\text{ the analytic extension of }\mathbf{\Omega},\qquad F(u_{0})f_{3}F(u_{0})^{\star}=\gamma(u_{0})

where u0u_{0} is an element of the domain of γ\gamma and 𝛀=:Ω~du\mathbf{\Omega}=\mathrel{\mathop{\ordinarycolon}}\tilde{\Omega}\operatorname{d\!}{u} is the solution of

Λ=Ω~γ,whereΛ(u):=12(γ˙(u)i(u))M(2,).\Lambda=\tilde{\Omega}\gamma,\qquad\text{where}\quad\Lambda(u)\mathrel{\mathop{\ordinarycolon}}=\frac{1}{2}(\dot{\gamma}(u)-i\mathcal{L}(u))\in M(2,\mathbb{C}).

4. Rotational zero mean curvature surfaces in +3\mathbb{Q}^{3}_{+}

In this section we construct and classify rotationally invariant zero mean curvature surfaces, which we call catenoids of the 33-dimensional light cone. The Björling problem is especially apt for the construction of such surface as the initial curve can be selected as the orbit of a single point under rotations of +3\mathbb{Q}^{3}_{+}.

First, we define rotational surfaces in +3\mathbb{Q}^{3}_{+} analogously to the definition given in hyperbolic spaces [do_carmo_rotation_1983, Definition 2.2] (see also [abe_constant_2018, Definition 3.1]):

Definition 4.1.

Let PkP^{k} denote a kk-dimensional subspace of 𝕃4\mathbb{L}^{4}. Choosing some P2P^{2} and P3P2P^{3}\supset P^{2} such that P3+3P^{3}\cap\mathbb{Q}^{3}_{+}\neq\varnothing, let O(P2)\mathrm{O}(P^{2}) denote the set of orthogonal transformations that leave P2P^{2} fixed. For a regular curve γ\gamma in P3+3P^{3}\cap\mathbb{Q}^{3}_{+} that does not meet P2P^{2}, we call the orbit of γ\gamma under the action of O(P2)\mathrm{O}(P^{2}) a rotational surface generated by γ\gamma. Furthermore, we say that the rotational surface is

  • an elliptic rotational surface if the induced metric on P2P^{2} is Lorentzian,

  • a parabolic rotational surface if the induced metric on P2P^{2} is degenerate, and

  • a hyperbolic rotational surface if the induced metric on P2P^{2} is Riemannian.

The following facts will be useful in recovering the explicit parametrizations of the catenoids from the rotationally invariant Björling data:

Fact 4.2 ([yang_bjorling_2017, Lemma 4.2]).

For ν{0}\nu\in\mathbb{C}\setminus\{0\},

F0(z):=12(z1/200z1/2)(ν+ν1νν1νν1ν+ν1)(zν/200zν/2)F_{0}(z)\mathrel{\mathop{\ordinarycolon}}=\frac{1}{2}\begin{pmatrix}z^{1/2}&0\\ 0&z^{-1/2}\end{pmatrix}\begin{pmatrix}\sqrt{\nu}+\sqrt{\nu}^{-1}&\sqrt{\nu}-\sqrt{\nu}^{-1}\\ \sqrt{\nu}-\sqrt{\nu}^{-1}&\sqrt{\nu}+\sqrt{\nu}^{-1}\end{pmatrix}\begin{pmatrix}z^{-\nu/2}&0\\ 0&z^{\nu/2}\end{pmatrix}

is a solution to

(4.1) dFF1=(GG21G)ΩwithG:=z,Ω:=λdzz2,λ:=1ν24.\operatorname{d\!}{F}F^{-1}=\begin{pmatrix}G&-G^{2}\\ 1&-G\end{pmatrix}\Omega\quad\text{with}\quad G\mathrel{\mathop{\ordinarycolon}}=z,\quad\Omega\mathrel{\mathop{\ordinarycolon}}=\lambda\frac{\operatorname{d\!}{z}}{z^{2}},\quad\lambda\mathrel{\mathop{\ordinarycolon}}=\frac{1-\nu^{2}}{4}.

where λ{14}\lambda\in\mathbb{C}\setminus\{\frac{1}{4}\}. Furthermore, F~:=F0R\tilde{F}\mathrel{\mathop{\ordinarycolon}}=F_{0}R also solves (4.1) where RSL(2,)R\in\mathrm{SL}(2,\mathbb{C}) controls the initial condition.

Fact 4.3 ([yang_bjorling_2017, Lemma 4.2]).

For β{0}\beta\in\mathbb{C}\setminus\{0\}, let

F1(z):=(1z01)(β1/200β1/2)(cosβzsinβzsinβzcosβz)(β1/200β1/2)F_{1}(z)\mathrel{\mathop{\ordinarycolon}}=\begin{pmatrix}1&z\\ 0&1\end{pmatrix}\begin{pmatrix}\beta^{-1/2}&0\\ 0&\beta^{1/2}\end{pmatrix}\begin{pmatrix}\cos{\beta z}&-\sin{\beta z}\\ \sin{\beta z}&\cos{\beta z}\end{pmatrix}\begin{pmatrix}\beta^{1/2}&0\\ 0&\beta^{-1/2}\end{pmatrix}

is a solution to

(4.2) dFF1=(GG21G)ΩwithG:=z,Ω:=β2dz.\operatorname{d\!}{F}F^{-1}=\begin{pmatrix}G&-G^{2}\\ 1&-G\end{pmatrix}\Omega\quad\text{with}\quad G\mathrel{\mathop{\ordinarycolon}}=z,\quad\Omega\mathrel{\mathop{\ordinarycolon}}=\beta^{2}\operatorname{d\!}{z}.

Furthermore, F~:=F1R\tilde{F}\mathrel{\mathop{\ordinarycolon}}=F_{1}R also solves (4.2) where RSL(2,)R\in\mathrm{SL}(2,\mathbb{C}) controls the initial condition.

4.1. Elliptic catenoids

Consider an elliptic rotation

RE(u)=(eiu00eiu)R^{\mathrm{E}}(u)=\begin{pmatrix}e^{iu}&0\\ 0&e^{-iu}\end{pmatrix}

applied to the point (1111)+3\begin{pmatrix}1&1\\ 1&1\end{pmatrix}\in\mathbb{Q}^{3}_{+} to obtain an elliptic circle

γ(u)=RE(u)(1111)RE(u)=(1e2iue2iu1).\gamma(u)=R^{\mathrm{E}}(u)\begin{pmatrix}1&1\\ 1&1\end{pmatrix}R^{\mathrm{E}}(u)^{\star}=\begin{pmatrix}1&e^{2iu}\\ e^{-2iu}&1\end{pmatrix}.

Note that γ˙,γ˙=4\langle\dot{\gamma},\dot{\gamma}\rangle=4 and that γ(0)=(1011)f3(1011)\gamma(0)=\begin{pmatrix}1&0\\ 1&1\end{pmatrix}f_{3}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}^{\star}.

To complete the Björling data, we first note that any \mathcal{L} satisfying the conformality condition must be of the form

±(u)=f(u)γ(u)±2e3\mathcal{L}_{\pm}(u)=f(u)\gamma(u)\pm 2e_{3}

for any function ff. Now, we can check that +=fγ+2e3\mathcal{L}_{+}=f\gamma+2e_{3} fails the orientability condition, that is,

Λ21γ11Λ11γ21=0,\Lambda_{21}\gamma_{11}-\Lambda_{11}\gamma_{21}=0,

while =fγ2e3\mathcal{L}_{-}=f\gamma-2e_{3} satisfies the orientability condition.

Thus we take =\mathcal{L}=\mathcal{L}_{-}, and note that for rotationally invariant surfaces, we must have that \mathcal{L} is generated by the elliptic rotation under consideration, i.e.

(u)=RE(u)(0)RE(u).\mathcal{L}(u)=R^{\mathrm{E}}(u)\mathcal{L}(0)R^{\mathrm{E}}(u)^{\star}.

Thus, we find that

f(u)γ(u)2e3=(u)=RE(u)(0)RE(u)=f(0)γ(u)2e3,f(u)\gamma(u)-2e_{3}=\mathcal{L}(u)=R^{\mathrm{E}}(u)\mathcal{L}(0)R^{\mathrm{E}}(u)^{\star}=f(0)\gamma(u)-2e_{3},

and we have f(u)=f(0)=:af(u)=f(0)=\mathrel{\mathop{\ordinarycolon}}a is a constant function so that

(u)=aγ(u)2e3.\mathcal{L}(u)=a\gamma(u)-2e_{3}.

Considering γ\gamma and \mathcal{L} as the Björling data, we use the Björling representation in Theorem 3.8 to calculate that

G=a2a+2e2iu,andΩ=i(a+2)28e2iudu.G=\frac{a-2}{a+2}e^{2iu},\quad\text{and}\quad\Omega=\frac{-i(a+2)^{2}}{8}e^{-2iu}\operatorname{d\!}{u}.

To obtain explicit parametrizations, we analytically extend GG and Ω\Omega and change the variables via

a2a+2e2iw=:z.\frac{a-2}{a+2}e^{2iw}=\mathrel{\mathop{\ordinarycolon}}z.

Then

G=z,Ω=λdzz2,λ:=4a216,G=z,\quad\Omega=\lambda\frac{\operatorname{d\!}{z}}{z^{2}},\quad\lambda\mathrel{\mathop{\ordinarycolon}}=\frac{4-a^{2}}{16},

allowing us to use Fact 4.2 to compute the explicit parametrizations for the elliptic catenoid:

XE=(e(a2)ve2iu+ave2iu+ave(a+2)v)=RE(u)eav(e2v11e2v)RE(u)X^{\mathrm{E}}=\begin{pmatrix}e^{(a-2)v}&e^{2iu+av}\\ e^{-2iu+av}&e^{(a+2)v}\end{pmatrix}=R^{\mathrm{E}}(u)e^{av}\begin{pmatrix}e^{-2v}&1\\ 1&e^{2v}\end{pmatrix}R^{\mathrm{E}}(u)^{\star}

where w=u+ivw=u+iv (see also Figure 1).

Refer to caption
Refer to caption
Figure 1. Elliptic catenoids in 33-dimensional light cone with a=32a=\frac{3}{2} on the left, and a=4a=4 on the right, where the initial given curve is highlighted.

4.2. Hyperbolic catenoids

Given a one parameter group of hyperbolic rotations

RH(u)=(eu00eu),R^{\mathrm{H}}(u)=\begin{pmatrix}e^{u}&0\\ 0&e^{-u}\end{pmatrix},

the curve

γ(u):=RH(u)(1111)RH(u)=(e2u11e2u)\gamma(u)\mathrel{\mathop{\ordinarycolon}}=R^{\mathrm{H}}(u)\begin{pmatrix}1&1\\ 1&1\end{pmatrix}R^{\mathrm{H}}(u)^{\star}=\begin{pmatrix}e^{2u}&1\\ 1&e^{-2u}\end{pmatrix}

is a hyperbolic circle. Note that γ˙,γ˙=4\langle\dot{\gamma},\dot{\gamma}\rangle=4 and that γ(0)=(1011)f3(1011)\gamma(0)=\begin{pmatrix}1&0\\ 1&1\end{pmatrix}f_{3}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}^{\star}.

To find the Björling data, we find that any \mathcal{L} satisfying the conformality condition must take the form

±(u)=f(u)γ(u)±f2,\mathcal{L}_{\pm}(u)=f(u)\gamma(u)\pm f_{2},

for any function ff. Since +\mathcal{L}_{+} fails the orientability condition, we set =\mathcal{L}=\mathcal{L}_{-}. We also have that \mathcal{L} is generated by the rotation under consideration; thus,

(u)=bγ(u)±f2,\mathcal{L}(u)=b\gamma(u)\pm f_{2},

for some constant bb.

Now, we calculate the Björling data as

G=b+2ib2ie2u,andΩ=18(b2i)2e2udu.G=\frac{b+2i}{b-2i}e^{2u},\quad\text{and}\quad\Omega=\frac{1}{8}(b-2i)^{2}e^{-2u}\operatorname{d\!}{u}.

Analytically extending GG and Ω\Omega and letting

b+2ib2ie2w=z,\frac{b+2i}{b-2i}e^{2w}=z,

so that

G=z,Ω=λdzz2,λ=4+b216,G=z,\qquad\Omega=\lambda\frac{\operatorname{d\!}{z}}{z^{2}},\qquad\lambda=\frac{4+b^{2}}{16},

we can use Fact 4.2 to compute the explicit parametrizations for hyperbolic catenoid:

XH=(e2u+bve(b+2i)ve(b2i)ve2u+bv)=RH(u)ebv(1e2ive2iv1)RH(u)X^{\mathrm{H}}=\begin{pmatrix}e^{2u+bv}&e^{(b+2i)v}\\ e^{(b-2i)v}&e^{-2u+bv}\end{pmatrix}=R^{\mathrm{H}}(u)e^{bv}\begin{pmatrix}1&e^{2iv}\\ e^{-2iv}&1\end{pmatrix}R^{\mathrm{H}}(u)^{\star}

where w=u+ivw=u+iv (see Figure 2).

Refer to caption
Figure 2. Hyperbolic catenoid in the 33-dimensional light cone with parameter b=32b=\frac{3}{2}, where the initial given curve is highlighted.

4.3. Parabolic catenoids

Finally, we consider the parabolic rotation

RP(u)=(1u101)R^{\mathrm{P}}(u)=\begin{pmatrix}1&u-1\\ 0&1\end{pmatrix}

applied to the point (1111)\begin{pmatrix}1&1\\ 1&1\end{pmatrix} to obtain a parabolic circle

γ(u)=RP(u)(1111)RP(u)=(u2uu1).\gamma(u)=R^{\mathrm{P}}(u)\begin{pmatrix}1&1\\ 1&1\end{pmatrix}R^{\mathrm{P}}(u)^{\star}=\begin{pmatrix}u^{2}&u\\ u&1\end{pmatrix}.

Note that γ˙,γ˙=1\langle\dot{\gamma},\dot{\gamma}\rangle=1 and that γ(1)=(1011)f3(1011)\gamma(1)=\begin{pmatrix}1&0\\ 1&1\end{pmatrix}f_{3}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}^{\star}.

We note that any \mathcal{L} satisfying the conformality condition must satisfy

±(u):=f(u)γ(u)±f2\mathcal{L}_{\pm}(u)\mathrel{\mathop{\ordinarycolon}}=f(u)\gamma(u)\pm f_{2}

for some function ff, and direct calculation tells us that \mathcal{L}_{-} fails the orientability condition. Thus, we choose =+\mathcal{L}=\mathcal{L}_{+}, and the fact that \mathcal{L} must generated by the rotation under consideration allows us to deduce that

(u)=cγ(u)+f2.\mathcal{L}(u)=c\gamma(u)+f_{2}.

for some constant cc.

Using γ\gamma and \mathcal{L} as the Björling data, we calculate that

G=u+2ic,andΩ=c24du.G=u+\frac{2i}{c},\quad\text{and}\quad\Omega=\frac{c^{2}}{4}\operatorname{d\!}{u}.

Analytically extending GG and Ω\Omega and making change of coordinates so that

w+2ic=z,w+\frac{2i}{c}=z,

we have

G=z,Ω=c24dz.G=z,\qquad\Omega=\frac{c^{2}}{4}\operatorname{d\!}{z}.

This allows us to use Fact 4.3 to obtain explicit parametrizations for the parabolic catenoids:

XP=(ecv(u2+v2)ecv(u+iv)ecv(uiv)ecv)=RP(u+1)ecv(v2iviv1)RP(u+1)X^{\mathrm{P}}=\begin{pmatrix}e^{cv}(u^{2}+v^{2})&e^{cv}(u+iv)\\ e^{cv}(u-iv)&e^{cv}\end{pmatrix}=R^{\mathrm{P}}(u+1)e^{cv}\begin{pmatrix}v^{2}&iv\\ -iv&1\end{pmatrix}R^{\mathrm{P}}(u+1)^{\star}

where w=u+ivw=u+iv (see Figure 3).

Refer to caption
Figure 3. Parabolic catenoid in 33-dimensional light cone with parameter b=12b=\frac{1}{2}, where the initial given curve is highlighted.

4.4. Classification of rotationally invariant zero mean curvature surfaces

Any circle in +3\mathbb{Q}^{3}_{+} is congruent to one of the circles we constructed as orbits of points under rotations up to homotheties and isometries. Thus we conclude:

Theorem 4.4.

Any rotationally invariant zero mean curvature surfaces in +3\mathbb{Q}^{3}_{+} must be a piece of one of the following surfaces (given with its respective Weierstrass data):

  • elliptic catenoid (G=a2a+2e2iw,Ω=i(a+2)28e2iwdw)(G=\frac{a-2}{a+2}e^{2iw},\Omega=\frac{-i(a+2)^{2}}{8}e^{-2iw}\operatorname{d\!}{w})

  • hyperbolic catenoid (G=b+2ib2ie2w,Ω=(b2i)28e2wdw)(G=\frac{b+2i}{b-2i}e^{2w},\Omega=\frac{(b-2i)^{2}}{8}e^{-2w}\operatorname{d\!}{w}), or

  • parabolic catenoid (G=w+2ic,Ω=c24dw)(G=w+\frac{2i}{c},\Omega=\frac{c^{2}}{4}\operatorname{d\!}{w})

up to homotheties and isometries of +3\mathbb{Q}^{3}_{+}.

4.5. Additional example with analytic extensions

As in the parabolic catenoid case, let us take the parabolic circle as the initial curve, i.e.

γ(u)=RP(u)(1111)RP(u)=(u2uu1).\gamma(u)=R^{\mathrm{P}}(u)\begin{pmatrix}1&1\\ 1&1\end{pmatrix}R^{\mathrm{P}}(u)^{\star}=\begin{pmatrix}u^{2}&u\\ u&1\end{pmatrix}.

We have seen that =fγ+f2\mathcal{L}=f\gamma+f_{2} for any function ff satisfies both the conformality condition and the orientability condition.

Now, if we take

f(u)=cuf(u)=\frac{c}{u}

for u(0,)u\in(0,\infty), then we have =cuγ+f2\mathcal{L}=\frac{c}{u}\gamma+f_{2} is not generated by the rotation under consideration; thus, the resulting surface will not be rotationally invariant. We can still calculate that

G=c+2icu,Ω=c24u2du.G=\frac{c+2i}{c}u,\qquad\Omega=\frac{c^{2}}{4u^{2}}\operatorname{d\!}{u}.

Analytically extending GG and Ω\Omega and letting

c+2icw=:z,\frac{c+2i}{c}w=\mathrel{\mathop{\ordinarycolon}}z,

so that

G=z,Ω=λdzz2,λ=c(c+2i)4,G=z,\qquad\Omega=\lambda\frac{\operatorname{d\!}{z}}{z^{2}},\qquad\lambda=\frac{c(c+2i)}{4},

we can use Fact 4.2 to compute the explicit parametrizations:

X=ecv(e2ueu+iveuiv1),X=e^{cv}\begin{pmatrix}e^{2u}&e^{u+iv}\\ e^{u-iv}&1\end{pmatrix},

where w=eu+ivw=e^{u+iv} (see Figure 4).

Refer to caption
Refer to caption
Figure 4. A parabolic catenoid and a non-rotational zero mean curvature surface sharing the same initial curve, where the initial given curve is highlighted (on the left); the non-rotational zero mean curvature surface drawn over bigger domain (on the right).

If we change parameters so that u~=eu\tilde{u}=e^{u}, then we obtain

X~=ecv(u~2eivu~eivu~1)\tilde{X}=e^{cv}\begin{pmatrix}\tilde{u}^{2}&e^{iv}\tilde{u}\\ e^{-iv}\tilde{u}&1\end{pmatrix}

so that

X~v,X~v=e2bvu~2.\langle\tilde{X}_{v},\tilde{X}_{v}\rangle=e^{2bv}\tilde{u}^{2}.

This implies L(v):=X~(0,v)L(v)\mathrel{\mathop{\ordinarycolon}}=\tilde{X}(0,v) is a lightlike curve in +3\mathbb{Q}^{3}_{+}. In fact,

L(v)\displaystyle L(v) =X~(0,v)=(000ecv)\displaystyle=\tilde{X}(0,v)=\begin{pmatrix}0&0\\ 0&e^{cv}\end{pmatrix}
=(ecv200ecv2)(0001)(ecv200ecv2)\displaystyle=\begin{pmatrix}e^{\frac{-cv}{2}}&0\\ 0&e^{\frac{cv}{2}}\end{pmatrix}\begin{pmatrix}0&0\\ 0&1\end{pmatrix}\begin{pmatrix}e^{\frac{-cv}{2}}&0\\ 0&e^{\frac{cv}{2}}\end{pmatrix}^{\star}
=RH(cv2)(0001)RH(cv2),\displaystyle=R^{\mathrm{H}}(\tfrac{-cv}{2})\begin{pmatrix}0&0\\ 0&1\end{pmatrix}R^{\mathrm{H}}(\tfrac{-cv}{2})^{\star},

and thus LL is a lightlike circle. Therefore, we have that X~\tilde{X} is an analytic extension of XX across the lightlike circle LL (see Figure 5).

Refer to caption
Refer to caption
Refer to caption
Figure 5. Analytic extension of the non-rotational zero mean curvature surface across a lightlike circle (on the top); closer look at the analytic extension near the lightlike circle (on the bottom). On all figures, the lightlike circle is highlighted.

Acknowledgements. The last author gratefully acknowledges the support from NRF of Korea (2017R1E1A1A03070929 and NRF 2020R1F1A1A01074585).

References