This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Biquaternion Z Transform

Wenshan Bi Department of Mathematics, Faculty of Science and Technology, University of Macau, Macao, China Zhen-Feng Cai School of Science, Hubei University of Technology, Wuhan, Hubei 430000, P.R.China Kit Ian Kou Department of Mathematics, Faculty of Science and Technology, University of Macau, Macao, China [email protected]
Abstract

In this work, the biquaternion Z transformation method is proposed to solve a class of biquaternion recurrence relations. Biqueternion Z transform is an natural extension of the complex Z transform. In the design process, special norm presentation is employed to analyze the region of convergence of the biquaternion geometry sequence. In addition, some useful properties have been given. It is shown that the proposed properties is helpful to understand the biquaternion Z transform. Finally, several examples have been given to illustrate the effectiveness of the proposed design method.

keywords:
Quaternion algebras, recurrence relations, transfer function, Z transform
journal: Journal of  Templates

1 Introduction

During the past decades, Z transform has captured more and more attention from engineers due to its interesting properties and potential applications [1]-[13]. The Z transform was first proposed in 1947 to solve the difference equation [1]. This method was applied to the transfer function problem of the impulse filter by Hurewicz [2], and was called Z transforms by Ragazzini and Zadeh of Columbia University. The work of Ragazzini and Zadeh [3] includes an analysis of the input and output of the sampled-data systems. The Z transform of a sequence fnf_{n} is defined as F(z)=n=0fnznF(z)={\sum_{n=0}^{\infty}}f_{n}z^{-n}, which is a function of zz in complex domain. In general, both fnf_{n} and F(z)F(z) could be complex-valued. One of its applications is to establish the mathematical model of frequency-dependent finite-difference time domain method [4]. Digital compensators can be used to improve the response of the sampled data system [5]-[7]. In particular, Jury and Schroeder [5] and Jury [6, 7] proposed to use the modified Z transform to examine the behavior between sampling transients and to design a digital compensator to suppress the ”hidden” oscillations. In [8], Rabiner, Schafer and Rader together defined the chirp Z transform (CZT) based on the classical Z transform. The main idea is to use convolution to realize the fast Fourier transform of the discrete Fourier transform of any size, thus greatly reducing the computation time. In [9], Leng and Song et al. applied CZT in frequency offset estimation of digital coherent orthogonal amplitude modulation, and solved the problem of uncertain delay. On the other hand, CZT plays an important role in the effective estimation of voltage flicker component in distribution system [10, 11]. Besides, in the channel prediction process of channel compensation in fading environment, CZT enables accurate detection even at low frequencies [12, 13].

When working with sampled data the Z transform acts the role which is acted by the Laplace transform in continuous time systems. Specifically, in the continuous time domain model, the Laplace transform is usually used to transform the ordinary differential equation into the domain transfer function for theoretical analysis. When dealing with a system with discrete sampling time, the sequence model is transformed into a transfer function in the Z domain by using the Z transform. It was shown in [14] that the quaternion differential equations with a continuous domain can be solved by Laplace transform method.

The Z transform of the biquaternion domain has rarely been discussed before. Generally speaking, the norm of biquaternion is complex-valued, which is difficult to analyze its convergence domain. In this paper, motivated by the fact that better results can be obtained when a special real-valued norm of biquaternion is exploited, a biquaternion Z transform method is presented.

The contributions of this work are summarized as follows.

  1. 1.

    Although the theory of the Z transform has made rapid progress. However, this issue has not been discussed in the biquaternion domain. In this paper we give the suitable definition of biquaternion Z transform in Section 2.

  2. 2.

    From the definition, we calculate the Z transform of some special functions, get many interesting properties. The basic properties and special function’s Z transform are given in Table 1 and Table 2.

  3. 3.

    The difficulty process of solving a class of biquaternion recurrence relations is transformed into an algebraic quaternion problem. This method makes solving a class of biquaternion recurrence relations and the related initial values problem much convenient. Finally, the validity of the biquaternion Z transform is illustrated via several examples.

The rest of this paper is organized as follows. The definitions about biquaternion sequence, such as convergence of biquaternion sequence and biquaternion Z transform are given in section 2. In the following, we investigate its main properties and special biquaternion valued function’s Z transform are given in section 3. The method of using biquaternion z transform to solve biquaternion recurrence relations (60) is presented in section 4. Finally, we conclude this paper in section 5.

2 Preliminary

2.1 Biquaternions

The concept of biquaternion, a generalization of complex numbers, was first proposed by Hamilton in 1853. In general, we adopt the symbol ()\mathbb{H(C)} to denote the set of biquaternion and ()\mathbb{H(R)} to denote the set of real quaternion. For each biquaternion 𝐪\mathbf{q}, it can be written as the following form

𝐪=q0+q1𝐢+q2𝐣+q3𝐤,\mathbf{q}=q_{0}+q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k}, (1)

where qn,n=0,1,2,3q_{n}\in\mathbb{C},n=0,1,2,3. The basis elements {𝐢,𝐣,𝐤}\{\mathbf{i},\mathbf{j},\mathbf{k}\} obey the Hamilton’s multiplication rules

𝐢2\displaystyle\mathbf{i}^{2} =𝐣2=𝐤2=𝐢𝐣𝐤=1;\displaystyle=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i}\mathbf{j}\mathbf{k}=-1; (2)
𝐢𝐣\displaystyle\mathbf{i}\mathbf{j} =𝐤,𝐣𝐤=𝐢,𝐤𝐢=𝐣;\displaystyle=\mathbf{k},\mathbf{j}\mathbf{k}=\mathbf{i},\mathbf{k}\mathbf{i}=\mathbf{j};
𝐣𝐢\displaystyle\mathbf{j}\mathbf{i} =𝐤,𝐤𝐣=𝐢,𝐢𝐤=𝐣.\displaystyle=-\mathbf{k},\mathbf{k}\mathbf{j}=-\mathbf{i},\mathbf{i}\mathbf{k}=-\mathbf{j}.

For any biquaternion 𝐩,𝐪()\mathbf{p},\mathbf{q}\in\mathbb{H(C)}, we write 𝐩=p0+p1𝐢+p2𝐣+p3𝐤\mathbf{p}=p_{0}+p_{1}\mathbf{i}+p_{2}\mathbf{j}+p_{3}\mathbf{k}, 𝐪=q0+q1𝐢+q2𝐣+q3𝐤\mathbf{q}=q_{0}+q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k}, where pn,qn,n=0,1,2,3p_{n},q_{n}\in\mathbb{C},n=0,1,2,3. Let 𝐩=p0+𝐩¯\mathbf{p}=p_{0}+\underline{\mathbf{p}}, we use p0:=Sc(𝐩)p_{0}:=Sc(\mathbf{p}) be the scalar part of 𝐩\mathbf{p}, 𝐩¯=:Vec(𝐩)\underline{\mathbf{p}}=:Vec(\mathbf{p}) be the vector part of 𝐩\mathbf{p}, and 𝐩¯=:p0𝐩¯\overline{\mathbf{p}}=:p_{0}-\underline{\mathbf{p}} be the quaternion conjugate of 𝐩\mathbf{p}. Define (𝐩¯,𝐪¯):=p1q1+p2q2+p3q3(\underline{\mathbf{p}},\ \underline{\mathbf{q}}):=p_{1}q_{1}+p_{2}q_{2}+p_{3}q_{3} and 𝐩𝐪:=p0q0(𝐩¯,𝐪¯)+p0𝐪¯+q0𝐩¯+𝐩¯×𝐪¯\mathbf{p}\mathbf{q}:=p_{0}q_{0}-(\underline{\mathbf{p}},\ \underline{\mathbf{q}})+p_{0}\underline{\mathbf{q}}+q_{0}\underline{\mathbf{p}}+\underline{\mathbf{p}}\times\underline{\mathbf{q}}.

In [18], Gürlebeck give the complex-valued norm in ()\mathbb{H(C)}. Let 𝐱()\mathbf{x}\in\mathbb{H(C)}, 𝐚,𝐛()\mathbf{a},\mathbf{b}\in\mathbb{H(R)}, an,bn(n=0,1,2,3)a_{n},b_{n}\in\mathbb{R}(n=0,1,2,3), 𝐱=𝐚+I𝐛\mathbf{x}=\mathbf{a}+I\mathbf{b}, where 𝐚=a0+a1𝐢+a2𝐣+a3𝐤=a0+𝐚¯\mathbf{a}=a_{0}+a_{1}\mathbf{i}+a_{2}\mathbf{j}+a_{3}\mathbf{k}=a_{0}+\underline{\mathbf{a}}, 𝐛=b0+b1𝐢+b2𝐣+b3𝐤=b0+𝐛¯\mathbf{b}=b_{0}+b_{1}\mathbf{i}+b_{2}\mathbf{j}+b_{3}\mathbf{k}=b_{0}+\underline{\mathbf{b}}, and II be the complex unit. Then we adopt the symbol 𝐱\|\mathbf{x}\|_{\mathbb{C}} to denote the complex-valued norm of the element 𝐱\mathbf{x}, which has the following form

𝐱2:=𝐱𝐱¯=|𝐚|2|𝐛|2+2I[a0b0+(𝐚¯,𝐛¯)],\|\mathbf{x}\|_{\mathbb{C}}^{2}:=\mathbf{x}\overline{\mathbf{x}}=|\mathbf{a}|^{2}-|\mathbf{b}|^{2}+2I[a_{0}b_{0}+(\underline{\mathbf{a}},\ \underline{\mathbf{b}})], (3)

where |𝐚|2:=𝐚𝐚¯|\mathbf{a}|^{2}:=\mathbf{a}\overline{\mathbf{a}}, |𝐛|2:=𝐛𝐛¯|\mathbf{b}|^{2}:=\mathbf{b}\overline{\mathbf{b}}, 𝐚¯=:a0𝐚¯\overline{\mathbf{a}}=:a_{0}-\underline{\mathbf{a}}, 𝐛¯=:b0𝐛¯\overline{\mathbf{b}}=:b_{0}-\underline{\mathbf{b}}. In general, we use 𝐱1:=𝐱¯𝐱2{\mathbf{x}}^{-1}:=\frac{\overline{\mathbf{x}}}{\|\mathbf{x}\|^{2}_{\mathbb{C}}} to denote the inverse of 𝐱\mathbf{x}, where 𝐱0\|\mathbf{x}\|_{\mathbb{C}}\neq 0.

Besides, Gürlebeck give the real-valued norm in ()\mathbb{H(C)}. Let 𝐱(){\mathbf{x}}\in\mathbb{H(C)}, the real-valued norm 𝐱\|{\mathbf{x}}\| has the following form

𝐱4=|𝐱2|2.\|\mathbf{x}\|^{4}=|\|\mathbf{x}\|^{2}_{\mathbb{C}}|^{2}. (4)

It’s worth noting that the real-valued norm satisfies 𝐱𝐲=𝐱𝐲\|\mathbf{x}\mathbf{y}\|=\|\mathbf{x}\|\|\mathbf{y}\|. In this paper, we use \|\cdot\| to represent real-valued norm of biquaternion as above defined unless we give a special explanation.

According to [15, 16], the overall description of high-dimensional data by using biquaternion can effectively represent its inherent properties. In this paper, in order to better distinguish domains, we use plain fonts to represent real or complex numbers, and use bold to represent real quaternions or biquaternions, unless we give a special explanation. In addition, we use 𝐢,𝐣,𝐤\mathbf{i},\mathbf{j},\mathbf{k} to represent the imaginary unit of a quaternion number, noting that they are commutative with the complex unit II. For more details, please refer to [17, 18].

2.2 Biquaternion geometry sequence

Before disscussing the definition of the Z transform in the ()\mathbb{H(C)} domain, we first introduce the convergence of biquaternion sequence.

An infinite sequence

𝐟0,𝐟1,,𝐟n,\mathbf{f}_{0},\mathbf{f}_{1},\cdots,\mathbf{f}_{n},\cdots (5)

of biquaternion has a limit 𝐟\mathbf{f}, 𝐟()\mathbf{f}\in\mathbb{H(C)}, if, for each positive number ε\varepsilon, there exists a positive integer n0n_{0} such that

𝐟n𝐟<ε,\|\mathbf{f}_{n}-\mathbf{f}\|<\varepsilon, (6)

whenever n>n0n>n_{0}. The sequence (5) can have at most one limit. That is, a limit 𝐟\mathbf{f} is unique if it exists. When that limit exists, the sequence is said to converge to 𝐟\mathbf{f} ; and we write

limn𝐟n=𝐟.\lim_{n\rightarrow\infty}\mathbf{f}_{n}=\mathbf{f}. (7)

Let 𝐟n()\mathbf{f}_{n}\in\mathbb{H(C)}, (n=1,2,)(n=1,2,\ldots). If the sequence

𝐒N=n=0N𝐟n=𝐟1+𝐟2++𝐟N\mathbf{S}_{N}={\sum_{n=0}^{N}}\mathbf{f}_{n}=\mathbf{f}_{1}+\mathbf{f}_{2}+\cdots+\mathbf{f}_{N} (8)

of patital sums convergence to 𝐒\mathbf{S}, 𝐒()\mathbf{S}\in\mathbb{H(C)}. Then we say the infinite sequence

n=0𝐟n=𝐟1+𝐟2++𝐟n+{\sum_{n=0}^{\infty}}\mathbf{f}_{n}=\mathbf{f}_{1}+\mathbf{f}_{2}+\cdots+\mathbf{f}_{n}+\cdots (9)

convergence to the sum 𝐒\mathbf{S}, and we write

n=0𝐟n=𝐒.{\sum_{n=0}^{\infty}}\mathbf{f}_{n}=\mathbf{S}. (10)

When a sequence does not convergence, we say that it diverges. By direct calculate, we have the following proposition.

Proposition 2.1

Suppose 𝐟={𝐟n}n=0\mathbf{f}=\{\mathbf{f}_{n}\}_{n=0}^{\infty}, 𝐟n,𝐒()\mathbf{f}_{n},\mathbf{S}\in\mathbb{H(C)}, and 𝐟n=mn+𝐢wn+𝐣xn+𝐤yn\mathbf{f}_{n}=m_{n}+\mathbf{i}w_{n}+\mathbf{j}x_{n}+\mathbf{k}y_{n}, 𝐒=M+𝐢W+𝐣X+𝐤Y\mathbf{S}=M+\mathbf{i}W+\mathbf{j}X+\mathbf{k}Y, then

n=0𝐟n=𝐒.{\sum_{n=0}^{\infty}}\mathbf{f}_{n}=\mathbf{S}. (11)

If and only if

n=0mn=M,n=0wn=W,n=0xn=X,n=0yn=Y.{\sum_{n=0}^{\infty}}m_{n}=M,{\sum_{n=0}^{\infty}}w_{n}=W,{\sum_{n=0}^{\infty}}x_{n}=X,\ {\sum_{n=0}^{\infty}}y_{n}=Y. (12)

2.3 Biquaternion Z transform

In this section, we define the Z transform in the ()\mathbb{H(C)} domain. Firstly, we introduce the biquaternion geometric sequence as follows.

Lemma 2.1

Let 𝐲()\mathbf{y}\in\mathbb{H(C)}, we have

n=0𝐲n=(1𝐲)1,𝐲<1.{\sum_{n=0}^{\infty}}\mathbf{y}^{n}=(1-\mathbf{y})^{-1},\quad\|\mathbf{y}\|<1. (13)

Proof. Firstly, let 𝐒N()\mathbf{S}_{N}\in\mathbb{H(C)}. We use 𝐒N(𝐲)\mathbf{S}_{N}(\mathbf{y}) to denote the partial sums of n=0𝐲n{\sum_{n=0}^{\infty}}\mathbf{y}^{n}, that is

𝐒N(𝐲)=n=0N1𝐲n=1+𝐲+𝐲2++𝐲N1.\mathbf{S}_{N}(\mathbf{y})={\sum_{n=0}^{N-1}}\mathbf{y}^{n}=1+\mathbf{y}+\mathbf{y}^{2}+\cdots+\mathbf{y}^{N-1}. (14)

Then we multiply Eq. (14) by 𝐲\mathbf{y} on the left-hand side,

𝐲𝐒N(𝐲)=𝐲n=0N1𝐲n=𝐲+𝐲2++𝐲N.\mathbf{y}\mathbf{S}_{N}(\mathbf{y})=\mathbf{y}{\sum_{n=0}^{N-1}}\mathbf{y}^{n}=\mathbf{y}+\mathbf{y}^{2}+\cdots+\mathbf{y}^{N}. (15)

Using Eq. (14)-(15)

(1𝐲)𝐒N(𝐲)=1𝐲N.(1-\mathbf{y})\mathbf{S}_{N}(\mathbf{y})=1-\mathbf{y}^{N}. (16)

Thus we know

𝐒N(𝐲)=(1𝐲)1(1𝐲N).\mathbf{S}_{N}(\mathbf{y})=(1-\mathbf{y})^{-1}(1-\mathbf{y}^{N}). (17)

When 𝐲<1\|\mathbf{y}\|<1, (1𝐲)0(1-\mathbf{y})\neq 0, (1𝐲)1(1-\mathbf{y})^{-1} is well defined. Define

𝐒(𝐲):=(1𝐲)1,\mathbf{S}(\mathbf{y}):=(1-\mathbf{y})^{-1}, (18)

using Eq. (17)-(18)

ρN(𝐲):=\displaystyle\mathbf{\rho}_{N}(\mathbf{y}):= 𝐒(𝐲)𝐒N(𝐲)\displaystyle\mathbf{S}(\mathbf{y})-\mathbf{S}_{N}(\mathbf{y}) (19)
=\displaystyle= (1𝐲)1(1𝐲)1(1𝐲N)\displaystyle(1-\mathbf{y})^{-1}-(1-\mathbf{y})^{-1}(1-\mathbf{y}^{N})
=\displaystyle= (1𝐲)1𝐲N.\displaystyle(1-\mathbf{y})^{-1}\mathbf{y}^{N}.

Thus

ρN(𝐲)=(1𝐲)1𝐲N=(1𝐲)1𝐲N,\|\mathbf{\rho}_{N}(\mathbf{y})\|=\|(1-\mathbf{y})^{-1}\mathbf{y}^{N}\|=\|(1-\mathbf{y})^{-1}\|\|\mathbf{y}\|^{N}, (20)

and it is clear from this that the remainders ρN(𝐲)\rho_{N}(\mathbf{y}) tends to zero when 𝐲<1\|\mathbf{y}\|<1 but not when 𝐲1\|\mathbf{y}\|\geq 1. Therefore, the proof of equation (13) is completed.   \Box

As an immediate consequence of Proposition 2.1 and Lemma 2.1, we present the definition of biquaternion Z transform in the following.

Definition 2.1

(Biquaternion Z transform) Let 𝐟={𝐟n}n=0\mathbf{f}=\{\mathbf{f}_{n}\}_{n=0}^{\infty}, 𝐟n,𝐱()\mathbf{f}_{n},\mathbf{x}\in\mathbb{H(C)}. The Z transform 𝒳[𝐟](𝐱)\mathcal{X}[\mathbf{f}](\mathbf{x}) of 𝐟\mathbf{f} is defined by

𝒳[𝐟](𝐱):=𝐟0+𝐟1𝐱1++𝐟n𝐱n+=n=0𝐟n𝐱n.\mathcal{X}[\mathbf{f}](\mathbf{x}):=\mathbf{f}_{0}+\mathbf{f}_{1}{\mathbf{x}}^{-1}+\cdots+\mathbf{f}_{n}{\mathbf{x}}^{-n}+\cdots={\sum_{n=0}^{\infty}}\mathbf{f}_{n}{\mathbf{x}}^{-n}. (21)

The region of convergence (ROC) is the set of all 𝐱\mathbf{x} values that make the defined sequence converge, that is 𝐱>σf\|\mathbf{x}\|>\sigma_{f}. Among them, σf(0σf<)\sigma_{f}~{}(0\leq{\|\sigma_{f}\|}<\infty) is defined as the radius of convergence of the Z transform of 𝐟\mathbf{f}.

Remark 2.1
  1. (i)

    If 𝐟n=1\mathbf{f}_{n}=1 for all n0n\geq 0, the Z transform 𝒳[𝐟](𝐱)\mathcal{X}[\mathbf{f}](\mathbf{x}) of sequence {𝐟n}n=0\{\mathbf{f}_{n}\}^{\infty}_{n=0} in ()\mathbb{H(C)} is defined by

    𝒳[𝐟](𝐱):=n=0𝐱n=(1𝐱1)1,\mathcal{X}[\mathbf{f}](\mathbf{x}):={\sum_{n=0}^{\infty}}\mathbf{x}^{-n}=(1-\mathbf{x}^{-1})^{-1}, (22)

    which is convergent for all 𝐱\mathbf{x} such that 𝐱>1\|\mathbf{x}\|>1. More precise, the ROC of 𝒳[𝐟](𝐱)\mathcal{X}[\mathbf{f}](\mathbf{x}) is 𝐱>1\|\mathbf{x}\|>1.

  2. (ii)

    When 𝐟n()(n0)\mathbf{f}_{n}\in\mathbb{H(C)}(n\geq 0), x{x}\in\mathbb{C}. Let 𝐟n=𝐩n\mathbf{f}_{n}=\mathbf{p}^{n}, where 𝐩\mathbf{p} is a nonzero biquaternion number. The Z transform 𝒳[𝐟](x)\mathcal{X}[\mathbf{f}]({x}) of sequence {𝐟n}n=0\{\mathbf{f}_{n}\}^{\infty}_{n=0} is defined by

    𝒳[𝐟](x):=\displaystyle\mathcal{X}[\mathbf{f}]({x}):= n=0𝐟nxn=(1𝐩x1)1,\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n}{x}^{-n}=(1-\mathbf{p}{x}^{-1})^{-1}, (23)
    |x|>𝐩,\displaystyle|{x}|>\|\mathbf{p}\|,

    𝒳[𝐟](x)\mathcal{X}[\mathbf{f}]({x}) is convergence for all x{x} such that |x|>𝐩|{x}|>\|\mathbf{p}\|. More precise, the ROC of 𝒳[𝐟](x)\mathcal{X}[\mathbf{f}]({x}) is |x|>𝐩|{x}|>\|\mathbf{p}\|. Define σf\sigma_{f} to be the radius of convergence of the Z transform of 𝐟n\mathbf{f}_{n}. Here σf:=𝐩\sigma_{f}:=\|\mathbf{p}\|.

  3. (iii)

    When fn(n0){f}_{n}\in\mathbb{C}(n\geq 0), 𝐱()\mathbf{x}\in\mathbb{H(C)}. Let fn=pn{f}_{n}={p}^{n}, where p{p} is a nonzero complex number. The Z transform 𝒳[f](𝐱)\mathcal{X}[{f}](\mathbf{x}) of sequence {fn}n=0\{{f}_{n}\}^{\infty}_{n=0} is defined by

    𝒳[f](𝐱):=\displaystyle\mathcal{X}[{f}](\mathbf{x}):= n=0fn𝐱n=(1p𝐱1)1,\displaystyle{\sum_{n=0}^{\infty}}{f}_{n}\mathbf{x}^{-n}=(1-{p}\mathbf{x}^{-1})^{-1}, (24)
    𝐱>|p|,\displaystyle\|\mathbf{x}\|>|{p}|,

    𝒳[f](𝐱)\mathcal{X}[{f}](\mathbf{x}) is convergence for all 𝐱\mathbf{x} such that 𝐱>|p|\|\mathbf{x}\|>|{p}|. More precise, the ROC of 𝒳[f](𝐱)\mathcal{X}[{f}](\mathbf{x}) is 𝐱>|p|\|\mathbf{x}\|>|{p}|.

  4. (iv)

    When x,p{x},p\in\mathbb{C}, and p0p\neq 0. The Z transform 𝒳[f](x)\mathcal{X}[{f}]({x}) of the sequence fn=pn(n0){f}_{n}=p^{n}~{}(n\geq 0) is defined by

    𝒳[f](x):=\displaystyle\mathcal{X}[{f}]({x}):= n=0fnxn=(1px1)1,\displaystyle{\sum_{n=0}^{\infty}}{f}_{n}{x}^{-n}=(1-{p}{x}^{-1})^{-1}, (25)
    |x|>|p|,\displaystyle|{x}|>|{p}|,

    where |x||x| denote the absolute value of xx.

3 Properties

Similar to complex Z transform, the biquaternion Z transform has many useful properties. First of all, the following theorem gives some calculation rules for Z transformation. For the sake of simplicity, we have introduced some symbols for numerical sequence operations. Here, σf\sigma_{f} represents the radius of convergence of the Z transform of 𝐟n\mathbf{f}_{n}, which indicates that the sequence is convergent for 𝐱>σf\|\mathbf{x}\|>\sigma_{f} and divergent for 𝐱<σf\|\mathbf{x}\|<\sigma_{f}.

Theorem 3.1

Let 𝐟={𝐟n}n=0\mathbf{f}=\{\mathbf{f}_{n}\}_{n=0}^{\infty}, 𝐠={𝐠n}n=0\mathbf{g}=\{\mathbf{g}_{n}\}_{n=0}^{\infty}, 𝐟n,𝐠n()\mathbf{f}_{n},\mathbf{g}_{n}\in\mathbb{H(C)}. 𝒳[𝐟]\mathcal{X}[\mathbf{f}] and 𝒳[𝐠]\mathcal{X}[\mathbf{g}] denote the biquaternion Z transform of 𝐟\mathbf{f} and 𝐠\mathbf{g}, respectively.

  1. (I)

    For all constants 𝐜1,𝐜2()\mathbf{c}_{1},\mathbf{c}_{2}\in\mathbb{H(C)}, we have

    𝒳[𝐜1𝐟+𝐜2𝐠](𝐱)=\displaystyle\mathcal{X}[\mathbf{c}_{1}\mathbf{f}+\mathbf{c}_{2}\mathbf{g}](\mathbf{x})= 𝐜1𝒳[𝐟](𝐱)+𝐜2𝒳[𝐠](𝐱),\displaystyle\mathbf{c}_{1}\mathcal{X}[\mathbf{f}](\mathbf{x})+\mathbf{c}_{2}\mathcal{X}[\mathbf{g}](\mathbf{x}), (26)
    𝐱>max(σf,σg).\displaystyle\|\mathbf{x}\|>\max(\sigma_{f},\sigma_{g}).
    𝒳[𝐟𝐜1+𝐠𝐜2](𝐱)=\displaystyle\mathcal{X}[\mathbf{f}\mathbf{c}_{1}+\mathbf{g}\mathbf{c}_{2}](\mathbf{x})= 𝒳[𝐟](𝐱)𝐜1+𝒳[𝐠](𝐱)𝐜2,\displaystyle\mathcal{X}[\mathbf{f}](\mathbf{x})\mathbf{c}_{1}+\mathcal{X}[\mathbf{g}](\mathbf{x})\mathbf{c}_{2}, (27)
    𝐱>max(σf,σg).\displaystyle\|\mathbf{x}\|>\max(\sigma_{f},\sigma_{g}).
    𝒳[𝐜1𝐟+𝐠𝐜2](𝐱)=\displaystyle\mathcal{X}[\mathbf{c}_{1}\mathbf{f}+\mathbf{g}\mathbf{c}_{2}](\mathbf{x})= 𝐜1𝒳[𝐟](𝐱)+𝒳[𝐠]𝐜2(𝐱),\displaystyle\mathbf{c}_{1}\mathcal{X}[\mathbf{f}](\mathbf{x})+\mathcal{X}[\mathbf{g}]\mathbf{c}_{2}(\mathbf{x}), (28)
    𝐱>max(σf,σg).\displaystyle\|\mathbf{x}\|>\max(\sigma_{f},\sigma_{g}).
  2. (II)

    Let 𝐪\mathbf{q} be a nonzero biquaternion number and 𝐠n=𝐟n𝐪n\mathbf{g}_{n}=\mathbf{f}_{n}\mathbf{q}^{n}, n=0,1,2,n=0,1,2,\cdots. If 𝐪𝐱=𝐱𝐪\mathbf{q}\mathbf{x}=\mathbf{x}\mathbf{q}, then

    𝒳[𝐠](𝐱)=𝒳[𝐟](𝐪1𝐱),𝐱>σf𝐪.\mathcal{X}[\mathbf{g}](\mathbf{x})=\mathcal{X}[\mathbf{f}](\mathbf{q}^{-1}\mathbf{x}),\quad\|\mathbf{x}\|>{\sigma_{f}}{\|\mathbf{q}\|}. (29)
  3. (III)

    Let k>0k>0 be a fixed integer and 𝐠n=𝐟n+k\mathbf{g}_{n}=\mathbf{f}_{n+k}, n=0,1,2,n=0,1,2,\cdots, then

    𝒳[𝐠](𝐱)=\displaystyle\mathcal{X}[\mathbf{g}](\mathbf{x})= (𝒳[𝐟](𝐱)𝐟0𝐟1𝐱1\displaystyle(\mathcal{X}[\mathbf{f}](\mathbf{x})-\mathbf{f}_{0}-\mathbf{f}_{1}\mathbf{x}^{-1} (30)
    𝐟2𝐱2𝐟k1𝐱(k1))𝐱k\displaystyle-\mathbf{f}_{2}\mathbf{x}^{-2}-\cdots-\mathbf{f}_{k-1}\mathbf{x}^{-(k-1)})\mathbf{x}^{k}
    =\displaystyle= 𝒳[𝐟](𝐱)𝐱k𝐟0𝐱k\displaystyle\mathcal{X}[\mathbf{f}](\mathbf{x})\mathbf{x}^{k}-\mathbf{f}_{0}\mathbf{x}^{k}
    𝐟1𝐱k1𝐟k1𝐱,\displaystyle-\mathbf{f}_{1}\mathbf{x}^{k-1}-\cdots-\mathbf{f}_{k-1}\mathbf{x},
    𝐱>σf.\displaystyle\|\mathbf{x}\|>\sigma_{f}.
  4. (IV)

    Conversely, if kk is a positive integer and 𝐠n=𝐟nk\mathbf{g}_{n}=\mathbf{f}_{n-k} for nkn\geq k and 𝐠n=0\mathbf{g}_{n}=0 for n<kn<k, then 𝒳[𝐠](𝐱)=𝒳[𝐟](𝐱)𝐱k\mathcal{X}[\mathbf{g}](\mathbf{x})=\mathcal{X}[\mathbf{f}](\mathbf{x})\mathbf{x}^{-k}.

  5. (V)

    Let xx be a complex-valued number and 𝐠n=n𝐟n\mathbf{g}_{n}=n\mathbf{f}_{n},n=0,1,2,n=0,1,2,\cdots,then

    𝒳[𝐠](x)=xddx[𝒳[𝐟](x)],|x|>σf.\mathcal{X}[\mathbf{g}](x)=-x\frac{d}{dx}[\mathcal{X}[\mathbf{f}](x)],\quad|x|>\sigma_{f}. (31)

Proof. For (I), we only give the proof of Eq.(26). Eq.(27) and Eq.(28) can be derived by the similar manner. Since 𝒳[𝐟](𝐱)=n=0𝐟n𝐱n\mathcal{X}[\mathbf{f}](\mathbf{x})={\sum_{n=0}^{\infty}}\mathbf{f}_{n}\mathbf{x}^{-n} and 𝒳[𝐠](𝐱)=n=0𝐠n𝐱n\mathcal{X}[\mathbf{g}](\mathbf{x})={\sum_{n=0}^{\infty}}\mathbf{g}_{n}\mathbf{x}^{-n}, we have

𝒳[𝐜1𝐟+𝐜2𝐠](𝐱)=\displaystyle\mathcal{X}[\mathbf{c}_{1}\mathbf{f}+\mathbf{c}_{2}\mathbf{g}](\mathbf{x})= n=0𝐜1𝐟n𝐱n+n=0𝐜2𝐠n𝐱n\displaystyle{\sum_{n=0}^{\infty}}\mathbf{c}_{1}\mathbf{f}_{n}\mathbf{x}^{-n}+{\sum_{n=0}^{\infty}}\mathbf{c}_{2}\mathbf{g}_{n}\mathbf{x}^{-n} (32)
=\displaystyle= 𝐜1n=0𝐟n𝐱n+𝐜2n=0𝐠n𝐱n\displaystyle\mathbf{c}_{1}{\sum_{n=0}^{\infty}}\mathbf{f}_{n}\mathbf{x}^{-n}+\mathbf{c}_{2}{\sum_{n=0}^{\infty}}\mathbf{g}_{n}\mathbf{x}^{-n}
=\displaystyle= 𝐜1𝒳[𝐟](𝐱)+𝐜2𝒳[𝐠](𝐱),\displaystyle\mathbf{c}_{1}\mathcal{X}[\mathbf{f}](\mathbf{x})+\mathbf{c}_{2}\mathcal{X}[\mathbf{g}](\mathbf{x}),
𝐱>max(σf,σg).\displaystyle\|\mathbf{x}\|>\max(\sigma_{f},\sigma_{g}).

For (II) we find

𝒳[𝐠](𝐱)=\displaystyle\mathcal{X}[\mathbf{g}](\mathbf{x})= n=0𝐠n𝐱n\displaystyle{\sum_{n=0}^{\infty}}\mathbf{g}_{n}\mathbf{x}^{-n} (33)
=\displaystyle= n=0𝐟n𝐪n𝐱n\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n}\mathbf{q}^{n}\mathbf{x}^{-n}
=\displaystyle= n=0𝐟n(𝐪1𝐱)n\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n}(\mathbf{q}^{-1}\mathbf{x})^{-n}
=\displaystyle= 𝒳[𝐟](𝐪1𝐱).\displaystyle\mathcal{X}[\mathbf{f}](\mathbf{q}^{-1}\mathbf{x}).

Since 𝐪1𝐱>σf\|\mathbf{q}^{-1}\mathbf{x}\|>{\sigma_{f}}, therefore 𝐱>σf𝐪\|\mathbf{x}\|>{\sigma_{f}}{\|\mathbf{q}\|}.
For (III),

𝒳[𝐠](𝐱)=\displaystyle\mathcal{X}[\mathbf{g}](\mathbf{x})= n=0𝐠n𝐱n\displaystyle{\sum_{n=0}^{\infty}}\mathbf{g}_{n}\mathbf{x}^{-n} (34)
=\displaystyle= n=0𝐟n+k𝐱n\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n+k}\mathbf{x}^{-n}
=\displaystyle= n=0𝐟n+k𝐱(n+k)𝐱k\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n+k}\mathbf{x}^{-(n+k)}\mathbf{x}^{k}
=\displaystyle= (𝒳[𝐟](𝐱)𝐟0𝐟1𝐱1\displaystyle(\mathcal{X}[\mathbf{f}](\mathbf{x})-\mathbf{f}_{0}-\mathbf{f}_{1}\mathbf{x}^{-1}
𝐟2𝐱2𝐟k1𝐱(k1))𝐱k\displaystyle-\mathbf{f}_{2}\mathbf{x}^{-2}-\cdots-\mathbf{f}_{k-1}\mathbf{x}^{-(k-1)})\mathbf{x}^{k}
=\displaystyle= 𝒳[𝐟](𝐱)𝐱kn=0k1𝐟n𝐱kn,𝐱>σf.\displaystyle\mathcal{X}[\mathbf{f}](\mathbf{x})\mathbf{x}^{k}-{\sum_{n=0}^{k-1}}\mathbf{f}_{n}\mathbf{x}^{k-n},\quad\|\mathbf{x}\|>\sigma_{f}.

For (IV),

𝒳[𝐠](𝐱)=\displaystyle\mathcal{X}[\mathbf{g}](\mathbf{x})= n=0𝐠n𝐱n\displaystyle{\sum_{n=0}^{\infty}}\mathbf{g}_{n}\mathbf{x}^{-n} (35)
=\displaystyle= n=0𝐟nk𝐱n\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n-k}\mathbf{x}^{-n}
=\displaystyle= n=0𝐟nk𝐱(nk)𝐱k\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n-k}\mathbf{x}^{-(n-k)}\mathbf{x}^{-k}
=\displaystyle= n=k𝐟nk𝐱(nk)𝐱k\displaystyle{\sum_{n=k}^{\infty}}\mathbf{f}_{n-k}\mathbf{x}^{-(n-k)}\mathbf{x}^{-k}
=\displaystyle= 𝒳[𝐟](𝐱)𝐱k,𝐱>σf.\displaystyle\mathcal{X}[\mathbf{f}](\mathbf{x})\mathbf{x}^{-k},\quad\|\mathbf{x}\|>\sigma_{f}.

For (V), the right-hand side of equation (31) can write

xddx[𝒳[𝐟](x)]=\displaystyle-x\frac{d}{dx}[\mathcal{X}[\mathbf{f}](x)]= xddx(n=0𝐟nxn)\displaystyle-x\frac{d}{dx}({\sum_{n=0}^{\infty}}\mathbf{f}_{n}x^{-n}) (36)
=\displaystyle= xn=0𝐟n(n)xn1\displaystyle-x{\sum_{n=0}^{\infty}}\mathbf{f}_{n}(-n)x^{-n-1}
=\displaystyle= n=0(n𝐟n)xn\displaystyle{\sum_{n=0}^{\infty}}(n\mathbf{f}_{n})x^{-n}
=\displaystyle= 𝒳[𝐠](x).\displaystyle\mathcal{X}[\mathbf{g}](x).

where |x|>σf\quad|x|>\sigma_{f}.   \Box

Theorem 3.2

Let x{x}\in\mathbb{C}. If 𝐟\mathbf{f} and 𝐠\mathbf{g} are two biquaternion-valued number sequence, 𝐰\mathbf{w}, called the convolution of 𝐟\mathbf{f} and gg, by writing

𝐰n=\displaystyle\mathbf{w}_{n}= (𝐟𝐠)n\displaystyle(\mathbf{f}*\mathbf{g})_{n} (37)
=\displaystyle= k=0n𝐟nk𝐠k\displaystyle{\sum_{k=0}^{n}}\mathbf{f}_{n-k}\mathbf{g}_{k}
=\displaystyle= k=0n𝐟k𝐠nk,n=0,1,2,.\displaystyle{\sum_{k=0}^{n}}\mathbf{f}_{k}\mathbf{g}_{n-k},\ n=0,1,2,\cdots.

The z transform 𝒳[𝐟](x)\mathcal{X}[\mathbf{f}](x) is convergence in |x|>σf|x|>\sigma_{f} and 𝒳[g](x)\mathcal{X}[g](x) is convergence in |x|>σg|x|>\sigma_{g}, where xx is complex valued. Then the convolution of 𝐟\mathbf{f} and gg has Z transform in |x|>max(σf,σg)|x|>\max(\sigma_{f},\sigma_{g}) and

𝒳[𝐰](x)=𝒳[𝐟](x)𝒳[𝐠](x).\mathcal{X}[\mathbf{w}](x)=\mathcal{X}[\mathbf{f}](x)\mathcal{X}[\mathbf{g}](x). (38)

Proof. From the definition, we have

𝒳[𝐰](x)=\displaystyle\mathcal{X}[\mathbf{w}](x)= n=0(k=0n𝐟nk𝐠k)xn\displaystyle{\sum_{n=0}^{\infty}}\left({\sum_{k=0}^{n}}\mathbf{f}_{n-k}\mathbf{g}_{k}\right)x^{-n} (39)
=\displaystyle= k=0n=k𝐟nk𝐠kxn.\displaystyle{\sum_{k=0}^{\infty}}{\sum_{n=k}^{\infty}}\mathbf{f}_{n-k}\mathbf{g}_{k}x^{-n}.

Let m=nkm=n-k, we can rewrite

𝒳[𝐰](x)=\displaystyle\mathcal{X}[\mathbf{w}](x)= k=0n=k𝐟nk𝐠kx(nk)xk\displaystyle{\sum_{k=0}^{\infty}}{\sum_{n=k}^{\infty}}\mathbf{f}_{n-k}\mathbf{g}_{k}x^{-(n-k)}x^{-k} (40)
=\displaystyle= k=0(m=0𝐟mxm)𝐠kxk.\displaystyle{\sum_{k=0}^{\infty}}\left({\sum_{m=0}^{\infty}}\mathbf{f}_{m}x^{-m}\right)\mathbf{g}_{k}x^{-k}.

Because 𝐟m\mathbf{f}_{m} and gk{g}_{k} both have z transform, then we get

𝒳[𝐰](x)=m=0𝐟mxmk=0𝐠kxk=𝒳[𝐟](x)𝒳[𝐠](x).\mathcal{X}[\mathbf{w}](x)={\sum_{m=0}^{\infty}}\mathbf{f}_{m}x^{-m}{\sum_{k=0}^{\infty}}\mathbf{g}_{k}x^{-k}=\mathcal{X}[\mathbf{f}](x)\mathcal{X}[\mathbf{g}](x). (41)

It is clear that since both sequences needs to converge in this domain, the final ROC is |x|>max(σf,σg)|x|>\max(\sigma_{f},\sigma_{g}).   \Box

Table 1: Properties of z transform
Property Function Z transform ROC
Left linearity 𝐜1𝐟+𝐜2𝐠\mathbf{c}_{1}\mathbf{f}+\mathbf{c}_{2}\mathbf{g} 𝐜1𝒳[𝐟](𝐱)+𝐜2𝒳[𝐠](𝐱)\mathbf{c}_{1}\mathcal{X}[\mathbf{f}](\mathbf{x})+\mathbf{c}_{2}\mathcal{X}[\mathbf{g}](\mathbf{x}) 𝐱>max(σf,σg)\|\mathbf{x}\|>\max(\sigma_{f},\sigma_{g})
Right linearity 𝐟𝐜1+𝐠𝐜2\mathbf{f}\mathbf{c}_{1}+\mathbf{g}\mathbf{c}_{2} 𝒳[𝐟](𝐱)𝐜1+𝒳[𝐠](𝐱)𝐜2\mathcal{X}[\mathbf{f}](\mathbf{x})\mathbf{c}_{1}+\mathcal{X}[\mathbf{g}](\mathbf{x})\mathbf{c}_{2} 𝐱>max(σf,σg)\|\mathbf{x}\|>\max(\sigma_{f},\sigma_{g})
Two-side linearity 𝐜1𝐟+𝐠𝐜2\mathbf{c}_{1}\mathbf{f}+\mathbf{g}\mathbf{c}_{2} 𝐜1𝒳[𝐟](𝐱)+𝒳[𝐠](𝐱)𝐜2\mathbf{c}_{1}\mathcal{X}[\mathbf{f}](\mathbf{x})+\mathcal{X}[\mathbf{g}](\mathbf{x})\mathbf{c}_{2} 𝐱>max(σf,σg)\|\mathbf{x}\|>\max(\sigma_{f},\sigma_{g})
𝐪n\mathbf{q}^{n}-scaling 𝐟n𝐪n\mathbf{f}_{n}\mathbf{q}^{n} 𝒳[𝐟](𝐪1𝐱)\mathcal{X}[\mathbf{f}](\mathbf{q}^{-1}\mathbf{x}) 𝐱>σf𝐪\|\mathbf{x}\|>{\sigma_{f}}{\|\mathbf{q}\|}
n-scaling n𝐟nn\mathbf{f}_{n} x𝒳[𝐟](x)-x\mathcal{X}[\mathbf{f}]^{\prime}(x) |x|>σf,x|x|>\sigma_{f},~{}{x}\in\mathbb{C}
Shifting I 𝐟n+k\mathbf{f}_{n+k} 𝒳[𝐟](𝐱)𝐱kn=0k1𝐟n𝐱kn\mathcal{X}[\mathbf{f}](\mathbf{x})\mathbf{x}^{k}-{\sum_{n=0}^{k-1}}\mathbf{f}_{n}\mathbf{x}^{k-n} 𝐱>σf\|\mathbf{x}\|>\sigma_{f}
Shifting II 𝐟nk\mathbf{f}_{n-k} 𝒳[𝐟](𝐱)𝐱k\mathcal{X}[\mathbf{f}](\mathbf{x})\mathbf{x}^{-k} 𝐱>σf\|\mathbf{x}\|>\sigma_{f}
Convolution k=0n𝐟nkgk{\sum_{k=0}^{n}}\mathbf{f}_{n-k}g_{k} 𝒳[𝐟](x)𝒳[g](x)\mathcal{X}[\mathbf{f}](x)\mathcal{X}[g](x) |x|>max(σf,σg),x|x|>\max(\sigma_{f},\sigma_{g}),~{}{x}\in\mathbb{C}

The properties of z transform are summarized in Table 1. In the following, we give the z transformation of several special functions.

Example 3.1
𝒳[1](𝐱)=\displaystyle\mathcal{X}[1](\mathbf{x})= (1𝐱1)1,𝐱>1,𝐱(),\displaystyle(1-\mathbf{x}^{-1})^{-1},\quad\|\mathbf{x}\|>1,\mathbf{x}\in\mathbb{H(C)}, (42)
𝒳[n](𝐱)=\displaystyle\mathcal{X}[n](\mathbf{x})= 𝐱(𝐱1)2,𝐱>1,𝐱(),\displaystyle\mathbf{x}(\mathbf{x}-1)^{-2},\quad\|\mathbf{x}\|>1,\mathbf{x}\in\mathbb{H(C)},
𝒳[n2](𝐱)=\displaystyle\mathcal{X}[n^{2}](\mathbf{x})= (𝐱2+𝐱)(𝐱1)3,𝐱>1,𝐱(),\displaystyle(\mathbf{x}^{2}+\mathbf{x})(\mathbf{x}-1)^{-3},\quad\|\mathbf{x}\|>1,\mathbf{x}\in\mathbb{H(C)},
𝒳[𝐩n](x)=\displaystyle\mathcal{X}[\mathbf{p}^{n}]({x})= (1𝐩x1)1,|x|>𝐩,x,𝐩(),\displaystyle(1-\mathbf{p}{x}^{-1})^{-1},\quad|{x}|>\|\mathbf{p}\|,{x}\in\mathbb{C},\mathbf{p}\in\mathbb{H(C)},
𝒳[n𝐩n](x)=\displaystyle\mathcal{X}[n\mathbf{p}^{n}](x)= 𝐩(1𝐩x1)1,|x|>𝐩,x,𝐩().\displaystyle\mathbf{p}(1-\mathbf{p}x^{-1})^{-1},\quad|x|>\|\mathbf{p}\|,{x}\in\mathbb{C},\mathbf{p}\in\mathbb{H(C)}.
Example 3.2

Let 𝐪()\mathbf{q}\in\mathbb{H(C)}, and 𝐪=q0+𝐪¯=q0+q1𝐢+q2𝐣+q3𝐤\mathbf{q}=q_{0}+\underline{\mathbf{q}}=q_{0}+q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k}. According to [14], we know

cos(𝐪n)={12(e𝐪¯|𝐪¯|𝐪n+e𝐪¯|𝐪¯|𝐪n),|𝐪¯|0cos(q0n)𝐪¯nsin(q0n),|𝐪¯|=0,\cos(\mathbf{q}n)=\begin{cases}\frac{1}{2}\left(e^{{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}n}}+e^{-{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}n}}\right),&|\underline{\mathbf{q}}|\neq 0\\ \cos({q_{0}n})-\underline{\mathbf{q}}n\sin({q_{0}n}),&|\underline{\mathbf{q}}|=0,\end{cases} (43)
sin(𝐪n)={12𝐪¯|𝐪¯|(e𝐪¯|𝐪¯|𝐪ne𝐪¯|𝐪¯|𝐪n),|𝐪¯|0sin(q0n)+𝐪¯ncos(q0n),|𝐪¯|=0,\sin(\mathbf{q}n)=\begin{cases}-\frac{1}{2}\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\left(e^{{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}n}}-e^{-{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}n}}\right),&|\underline{\mathbf{q}}|\neq 0\\ \sin({q_{0}n})+\underline{\mathbf{q}}n\cos({q_{0}n}),&|\underline{\mathbf{q}}|=0,\end{cases} (44)

and

e𝐪={eq0(cos(|𝐪¯|)+sgn(𝐪¯)sin(|𝐪¯|)),|𝐪¯|0eq0(1+𝐪¯),|𝐪¯|=0.e^{\mathbf{q}}=\begin{cases}e^{{q}_{0}}(\cos(|\underline{\mathbf{q}}|)+sgn(\underline{\mathbf{q}})\sin(|\underline{\mathbf{q}}|)),&|\underline{\mathbf{q}}|\neq 0\\ e^{{q}_{0}}(1+\underline{\mathbf{q}}),&|\underline{\mathbf{q}}|=0.\end{cases} (45)

Then, we have

𝒳[cos(𝐪n)](𝐱)\displaystyle\mathcal{X}[\cos(\mathbf{q}n)](\mathbf{x}) (46)
=\displaystyle= {12(1e𝐪¯|𝐪¯|𝐪𝐱1)1+12(1e𝐪¯|𝐪¯|𝐪𝐱1)1,|𝐪¯|0𝐱2𝐱cos(𝐪)𝐱22𝐱cos(𝐪)+1,|𝐪¯|=0.\displaystyle\begin{cases}\frac{1}{2}(1-e^{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}\mathbf{x}^{-1})^{-1}\\ +\frac{1}{2}(1-e^{-\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}\mathbf{x}^{-1})^{-1},&|\underline{\mathbf{q}}|\neq 0\\ \frac{\mathbf{x}^{2}-\mathbf{x}\cos(\mathbf{q})}{\mathbf{x}^{2}-2\mathbf{x}\cos(\mathbf{q})+1},&|\underline{\mathbf{q}}|=0.\end{cases}
𝒳[sin(𝐪n)](𝐱)\displaystyle\mathcal{X}[\sin(\mathbf{q}n)](\mathbf{x}) (47)
=\displaystyle= {12𝐪¯|𝐪¯|(1e𝐪¯|𝐪¯|𝐪𝐱1)1+12𝐪¯|𝐪¯|(1e𝐪¯|𝐪¯|𝐪𝐱1)1,|𝐪¯|0𝐱sin(𝐪)𝐱22𝐱cos(𝐪)+1,|𝐪¯|=0.\displaystyle\begin{cases}-\frac{1}{2}\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}(1-e^{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}\mathbf{x}^{-1})^{-1}\\ +\frac{1}{2}\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}(1-e^{-\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}\mathbf{x}^{-1})^{-1},&|\underline{\mathbf{q}}|\neq 0\\ \frac{\mathbf{x}\sin(\mathbf{q})}{\mathbf{x}^{2}-2\mathbf{x}\cos(\mathbf{q})+1},&|\underline{\mathbf{q}}|=0.\end{cases}

Proof. Without loss of generality, we only give the proof of the 𝒳[cos𝐪n](𝐱)\mathcal{X}[\cos\mathbf{q}n](\mathbf{x}) here. Now we see that, when |𝐪¯|=0|\underline{\mathbf{q}}|=0, 𝒳[cos𝐪n](𝐱)\mathcal{X}[\cos\mathbf{q}n](\mathbf{x}) is actually doing the classical Z transformation. As for |𝐪¯|0|\underline{\mathbf{q}}|\neq 0, taking Z transform on both sides of the Eq. (43), we have

𝒳[cos(𝐪n)](𝐱)=\displaystyle\mathcal{X}[\cos(\mathbf{q}n)](\mathbf{x})= m=012(e𝐪¯|𝐪¯|𝐪n+e𝐪¯|𝐪¯|𝐪n)𝐱n\displaystyle\sum_{m=0}^{\infty}\frac{1}{2}\left(e^{{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}n}}+e^{-{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}n}}\right)\mathbf{x}^{-n} (48)
=\displaystyle= 12m=0e𝐪¯|𝐪¯|𝐪n𝐱n\displaystyle\frac{1}{2}\sum_{m=0}^{\infty}e^{{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}n}}\mathbf{x}^{-n}
+12m=0e𝐪¯|𝐪¯|𝐪n𝐱n,\displaystyle+\frac{1}{2}\sum_{m=0}^{\infty}e^{-{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}n}}\mathbf{x}^{-n},

and since 𝒳[𝐩n](𝐱)=(1𝐩𝐱1)1\mathcal{X}[\mathbf{p}^{n}](\mathbf{x})=(1-\mathbf{p}\mathbf{x}^{-1})^{-1}, let 𝐩=e𝐪¯|𝐪¯|𝐪\mathbf{p}=e^{{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}}, therefore,

𝒳[cos(𝐪n)](𝐱)=12(1e𝐪¯|𝐪¯|𝐪𝐱1)1\displaystyle\mathcal{X}[\cos(\mathbf{q}n)](\mathbf{x})=\frac{1}{2}(1-e^{{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}}\mathbf{x}^{-1})^{-1} (49)
+12(1e𝐪¯|𝐪¯|𝐪𝐱1)1,𝐱>𝐩.\displaystyle+\frac{1}{2}(1-e^{{-\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}}\mathbf{x}^{-1})^{-1},\quad\|\mathbf{x}\|>\|\mathbf{p}\|.

\Box

Example 3.3

Let 𝐚n=Cn+mm𝐪n\mathbf{a}_{n}=C^{m}_{n+m}\mathbf{q}^{n}, 𝐛n=Cnm𝐪n\mathbf{b}_{n}=C^{m}_{n}\mathbf{q}^{n}, and 𝐜n=𝐪nn!\mathbf{c}_{n}=\frac{\mathbf{q}^{n}}{n!}. Z transform of the sequences 𝐚={𝐚n}n=0\mathbf{a}=\{\mathbf{a}_{n}\}_{n=0}^{\infty}, 𝐛={𝐛n}n=0\mathbf{b}=\{\mathbf{b}_{n}\}_{n=0}^{\infty}, 𝐜={𝐜n}n=0\mathbf{c}=\{\mathbf{c}_{n}\}_{n=0}^{\infty} are the following:

𝒳[𝐚](𝐱)=\displaystyle\mathcal{X}[\mathbf{a}](\mathbf{x})= (1𝐱1𝐪)m(1𝐪𝐱1)1,𝐱>𝐪,\displaystyle(1-\mathbf{x}^{-1}\mathbf{q})^{-m}(1-\mathbf{q}\mathbf{x}^{-1})^{-1},\quad\|\mathbf{x}\|>\|\mathbf{q}\|, (50)
𝒳[𝐛](𝐱)=\displaystyle\mathcal{X}[\mathbf{b}](\mathbf{x})= (𝐱𝐪11)m(1𝐪𝐱1)1,𝐱>𝐪,\displaystyle(\mathbf{x}\mathbf{q}^{-1}-1)^{-m}(1-\mathbf{q}\mathbf{x}^{-1})^{-1},\quad\|\mathbf{x}\|>\|\mathbf{q}\|,
𝒳[𝐜](𝐱)=\displaystyle\mathcal{X}[\mathbf{c}](\mathbf{x})= e𝐪𝐱1,𝐱>𝐪,\displaystyle e^{\mathbf{q}\mathbf{x}^{-1}},\quad\|\mathbf{x}\|>\|\mathbf{q}\|,

Proof.

  1. (I)

    Let 𝐒m=n=0Cn+mm𝐪n𝐱n\mathbf{S}_{m}=\sum_{n=0}^{\infty}C^{m}_{n+m}\mathbf{q}^{n}\mathbf{x}^{-n}, then

    (1𝐱1𝐪)𝐒m=\displaystyle(1-\mathbf{x}^{-1}\mathbf{q})\mathbf{S}_{m}= (1𝐱1𝐪)n=0Cn+mm𝐪n𝐱n\displaystyle(1-\mathbf{x}^{-1}\mathbf{q})\sum_{n=0}^{\infty}C^{m}_{n+m}\mathbf{q}^{n}\mathbf{x}^{-n} (51)
    =\displaystyle= n=0Cn+mm𝐪n𝐱n\displaystyle\sum_{n=0}^{\infty}C^{m}_{n+m}\mathbf{q}^{n}\mathbf{x}^{-n}
    n=1Cn+m1m𝐪n𝐱n,\displaystyle-\sum_{n=1}^{\infty}C^{m}_{n+m-1}\mathbf{q}^{n}\mathbf{x}^{-n},

    since the first part of the aforementioned equation is equal to 1+n=1Cn+mm𝐪n𝐱n1+\sum_{n=1}^{\infty}C^{m}_{n+m}\mathbf{q}^{n}\mathbf{x}^{-n}, then we have

    (1𝐱1𝐪)𝐒m=\displaystyle(1-\mathbf{x}^{-1}\mathbf{q})\mathbf{S}_{m}= 1+n=1(Cn+mmCn+m1m)𝐪n𝐱n\displaystyle 1+\sum_{n=1}^{\infty}(C^{m}_{n+m}-C^{m}_{n+m-1})\mathbf{q}^{n}\mathbf{x}^{-n} (52)
    =\displaystyle= 1+n=1Cn+m1m1𝐪n𝐱n\displaystyle 1+\sum_{n=1}^{\infty}C^{m-1}_{n+m-1}\mathbf{q}^{n}\mathbf{x}^{-n}
    =\displaystyle= 𝐒m1.\displaystyle\mathbf{S}_{m-1}.

    Therefore,

    𝐒m=\displaystyle\mathbf{S}_{m}= (1𝐱1𝐪)1𝐒m1\displaystyle(1-\mathbf{x}^{-1}\mathbf{q})^{-1}\mathbf{S}_{m-1} (53)
    =\displaystyle= (1𝐱1𝐪)2𝐒m2,\displaystyle(1-\mathbf{x}^{-1}\mathbf{q})^{-2}\mathbf{S}_{m-2},

    and 𝐒0=(1𝐪𝐱1)1\mathbf{S}_{0}=(1-\mathbf{q}\mathbf{x}^{-1})^{-1}, then

    𝒳[Cn+mm𝐪n](𝐱)\displaystyle\mathcal{X}[C^{m}_{n+m}\mathbf{q}^{n}](\mathbf{x}) (54)
    =\displaystyle= (1𝐱1𝐪)m(1𝐪𝐱1)1,\displaystyle(1-\mathbf{x}^{-1}\mathbf{q})^{-m}(1-\mathbf{q}\mathbf{x}^{-1})^{-1},
    𝐱>𝐪.\displaystyle\|\mathbf{x}\|>\|\mathbf{q}\|.
  2. (II)

    Let 𝐒m=n=mCnm𝐪n𝐱n\mathbf{S}_{m}=\sum_{n=m}^{\infty}C^{m}_{n}\mathbf{q}^{n}\mathbf{x}^{-n}, then

    (𝐱𝐪11)𝐒m\displaystyle(\mathbf{x}\mathbf{q}^{-1}-1)\mathbf{S}_{m} (55)
    =\displaystyle= n=mCnm𝐪n1𝐱n+1n=mCnm𝐪n𝐱n,\displaystyle\sum_{n=m}^{\infty}C^{m}_{n}\mathbf{q}^{n-1}\mathbf{x}^{-n+1}-\sum_{n=m}^{\infty}C^{m}_{n}\mathbf{q}^{n}\mathbf{x}^{-n},

    since the first part of the above formula is equal to
    𝐪m1𝐱m+1+n=m+1Cnm𝐪n1𝐱n+1\mathbf{q}^{m-1}\mathbf{x}^{-m+1}+\sum_{n=m+1}^{\infty}C^{m}_{n}\mathbf{q}^{n-1}\mathbf{x}^{-n+1}, then

    (𝐱𝐪11)𝐒m=\displaystyle(\mathbf{x}\mathbf{q}^{-1}-1)\mathbf{S}_{m}= 𝐪m1𝐱m+1\displaystyle\mathbf{q}^{m-1}\mathbf{x}^{-m+1} (56)
    +n=m(Cn+1mCnm)𝐪n𝐱n\displaystyle+\sum_{n=m}^{\infty}(C^{m}_{n+1}-C^{m}_{n})\mathbf{q}^{n}\mathbf{x}^{-n}
    =\displaystyle= n=m1Cnm1𝐪n𝐱n\displaystyle\sum_{n=m-1}^{\infty}C^{m-1}_{n}\mathbf{q}^{n}\mathbf{x}^{-n}
    =\displaystyle= 𝐒m1.\displaystyle\mathbf{S}_{m-1}.

    Then, 𝐒m=(𝐱𝐪11)1𝐒m1=(𝐱𝐪11)2𝐒m2\mathbf{S}_{m}=(\mathbf{x}\mathbf{q}^{-1}-1)^{-1}\mathbf{S}_{m-1}=(\mathbf{x}\mathbf{q}^{-1}-1)^{-2}\mathbf{S}_{m-2}, and 𝐒0=(1𝐪𝐱1)1\mathbf{S}_{0}=(1-\mathbf{q}\mathbf{x}^{-1})^{-1}. Therefore,

    𝒳[Cnm𝐪n](𝐱)=\displaystyle\mathcal{X}[C^{m}_{n}\mathbf{q}^{n}](\mathbf{x})= (𝐱𝐪11)m(1𝐪𝐱1)1,\displaystyle(\mathbf{x}\mathbf{q}^{-1}-1)^{-m}(1-\mathbf{q}\mathbf{x}^{-1})^{-1}, (57)
    𝐱>\displaystyle\|\mathbf{x}\|> 𝐪.\displaystyle\|\mathbf{q}\|.
  3. (III)

    First, let dn=1n!d_{n}=\frac{1}{n!}, then

    𝒳[dn](𝐱)=n=01n!𝐱n=e𝐱1,𝐱>0.\mathcal{X}[d_{n}](\mathbf{x})=\sum_{n=0}^{\infty}\frac{1}{n!}\mathbf{x}^{-n}=e^{\mathbf{x}^{-1}},\quad\|\mathbf{x}\|>0. (58)

    By rule (ii) of Theorem 3.1,

    𝒳[𝐪nn!](𝐱)=𝒳[1n!](𝐪1𝐱)=e𝐪𝐱1.\mathcal{X}[\frac{\mathbf{q}^{n}}{n!}](\mathbf{x})=\mathcal{X}[\frac{1}{n!}](\mathbf{q}^{-1}\mathbf{x})=e^{\mathbf{q}\mathbf{x}^{-1}}. (59)

\Box

Table 2: Some sequence 𝐠n\mathbf{g}_{n} and their biquaternion z transform 𝒳[𝐠](x)\mathcal{X}[\mathbf{g}](x)
𝐠n\mathbf{g}_{n} 𝒳[𝐠]\mathcal{X}[\mathbf{g}]
1 1 (1𝐱1)1(1-\mathbf{x}^{-1})^{-1}
2 nn 𝐱(𝐱1)2\mathbf{x}(\mathbf{x}-1)^{-2}
3 n2n^{2} (𝐱2+𝐱)(𝐱1)3(\mathbf{x}^{2}+\mathbf{x})(\mathbf{x}-1)^{-3}
4 𝐩n\mathbf{p}^{n} (1𝐩x1)1(1-\mathbf{p}{x}^{-1})^{-1}
5 n𝐩nn\mathbf{p}^{n} 𝐩(1𝐩x1)1\mathbf{p}(1-\mathbf{p}x^{-1})^{-1}
6 cos𝐪n\cos\mathbf{q}n 12(1e𝐪¯|𝐪¯|𝐪𝐱1)1+12(1e𝐪¯|𝐪¯|𝐪𝐱1)1\frac{1}{2}(1-e^{{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}}\mathbf{x}^{-1})^{-1}+\frac{1}{2}(1-e^{{-\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}}\mathbf{x}^{-1})^{-1}
7 sin𝐪n\sin\mathbf{q}n 12𝐪¯|𝐪¯|(1e𝐪¯|𝐪¯|𝐪𝐱1)1+12𝐪¯|𝐪¯|(1e𝐪¯|𝐪¯|𝐪𝐱1)1-\frac{1}{2}\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}(1-e^{\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}\mathbf{x}^{-1})^{-1}+\frac{1}{2}\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}(1-e^{-\frac{\underline{\mathbf{q}}}{|\underline{\mathbf{q}}|}\mathbf{q}}\mathbf{x}^{-1})^{-1}
8 Cn+mm𝐪nC^{m}_{n+m}\mathbf{q}^{n} (1𝐱1𝐪)m(1𝐪𝐱1)1(1-\mathbf{x}^{-1}\mathbf{q})^{-m}(1-\mathbf{q}\mathbf{x}^{-1})^{-1}
9 Cnm𝐪nC^{m}_{n}\mathbf{q}^{n} (𝐱𝐪11)m(1𝐪𝐱1)1(\mathbf{x}\mathbf{q}^{-1}-1)^{-m}(1-\mathbf{q}\mathbf{x}^{-1})^{-1}
10 𝐪nn!\frac{\mathbf{q}^{n}}{n!} e𝐪𝐱1e^{\mathbf{q}\mathbf{x}^{-1}}

4 Examples

Suppose sequence 𝐟n\mathbf{f}_{n} is unknown and some initial values of 𝐟n\mathbf{f}_{n} are given. Consider a class of biquaternion recurrence relations as follows

m=0M𝐟n+m𝐩m\displaystyle{\sum_{m=0}^{M}}\mathbf{f}_{n+m}\mathbf{p}_{m} (60)
=\displaystyle= k=0M𝐠n+k𝐪k+t=0T𝐡n+t𝐮t++l=0L𝐲n+l𝐝l,\displaystyle{\sum_{k=0}^{M}}\mathbf{g}_{n+k}\mathbf{q}_{k}+{\sum_{t=0}^{T}}\mathbf{h}_{n+t}\mathbf{u}_{t}+\cdots+{\sum_{l=0}^{L}}\mathbf{y}_{n+l}\mathbf{d}_{l},

where sequence 𝐟n\mathbf{f}_{n}, 𝐠n\mathbf{g}_{n}, 𝐡n\mathbf{h}_{n},\cdots, 𝐲n\mathbf{y}_{n}, and coefficients 𝐩n\mathbf{p}_{n}, 𝐪n\mathbf{q}_{n}, 𝐮n\mathbf{u}_{n}, \cdots, 𝐝n\mathbf{d}_{n} are all known. If 𝐠n=𝐡n==𝐲n=0\mathbf{g}_{n}=\mathbf{h}_{n}=\cdots=\mathbf{y}_{n}=0 or 𝐪n=𝐮n==𝐝n=0\mathbf{q}_{n}=\mathbf{u}_{n}=\cdots=\mathbf{d}_{n}=0, then we call the equation (60) homogeneous, otherwise it becomes inhomogeneous. Next, we will give several examples of the right-side coefficients homogeneous linear biquaternion equation and the right-side coefficients inhomogeneous linear biquaternion equation, respectively, to further explain how to solve the equations with the biquaternion z transform.

Example 4.1

If we know that 𝐟0=1\mathbf{f}_{0}=1, 𝐟1=𝐢+𝐣\mathbf{f}_{1}=\mathbf{i}+\mathbf{j} and

𝐟n+2=𝐟n+1(𝐢+𝐣1)+𝐟n(𝐢+𝐣),n=0,1,2,,\mathbf{f}_{n+2}=\mathbf{f}_{n+1}(\mathbf{i}+\mathbf{j}-1)+\mathbf{f}_{n}(\mathbf{i}+\mathbf{j}),\ n=0,1,2,\cdots, (61)

find a formular for 𝐟n\mathbf{f}_{n}.

Let 𝒳[𝐟](x)=n=0𝐟nxn\mathcal{X}[\mathbf{f}](x)={\sum_{n=0}^{\infty}}\mathbf{f}_{n}x^{-n}. It is clear that z transformation on both sides of the aforementioned equation yields an algebraic equation of 𝒳[𝐟](x)\mathcal{X}[\mathbf{f}](x), which is

n=0𝐟n+2xn=\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n+2}x^{-n}= n=0𝐟n+1xn(𝐢+𝐣1)\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n+1}x^{-n}(\mathbf{i}+\mathbf{j}-1) (62)
+n=0𝐟nxn(𝐢+𝐣).\displaystyle+{\sum_{n=0}^{\infty}}\mathbf{f}_{n}x^{-n}(\mathbf{i}+\mathbf{j}).

We notice that, firstly,

n=0𝐟n+1xn=\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n+1}x^{-n}= (k=1𝐟kxk)x\displaystyle\left({\sum_{k=1}^{\infty}}\mathbf{f}_{k}x^{-k}\right)x (63)
=\displaystyle= (k=0𝐟kxk𝐟0)x\displaystyle\left({\sum_{k=0}^{\infty}}\mathbf{f}_{k}x^{-k}-\mathbf{f}_{0}\right)x
=\displaystyle= (𝒳[𝐟](x)1)x,\displaystyle\left(\mathcal{X}[\mathbf{f}](x)-1\right)x,

and

n=0𝐟n+2xn=\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n+2}x^{-n}= (k=2𝐟kxk)x2\displaystyle\left({\sum_{k=2}^{\infty}}\mathbf{f}_{k}x^{-k}\right)x^{2} (64)
=\displaystyle= (k=0𝐟kxk𝐟0𝐟1x1)x2\displaystyle\left({\sum_{k=0}^{\infty}}\mathbf{f}_{k}x^{-k}-\mathbf{f}_{0}-\mathbf{f}_{1}x^{-1}\right)x^{2}
=\displaystyle= (𝒳[𝐟](x)1(𝐢+𝐣)x1)x2.\displaystyle\left(\mathcal{X}[\mathbf{f}](x)-1-(\mathbf{i}+\mathbf{j})x^{-1}\right)x^{2}.

Thus the equation (62) can be written as

(𝒳[𝐟](x)1(𝐢+𝐣)x1)x2\displaystyle\left(\mathcal{X}[\mathbf{f}](x)-1-(\mathbf{i}+\mathbf{j})x^{-1}\right)x^{2} (65)
=\displaystyle= (𝒳[𝐟](x)1)x(𝐢+𝐣1)𝒳[𝐟](x)(𝐢+𝐣),\displaystyle\left(\mathcal{X}[\mathbf{f}](x)-1\right)x(\mathbf{i}+\mathbf{j}-1)-\mathcal{X}[\mathbf{f}](x)(\mathbf{i}+\mathbf{j}),

from which 𝒳[𝐚](x)\mathcal{X}[\mathbf{a}](x) can be solved. After simplification we have

𝒳[𝐟](x)=(1(𝐢+𝐣)x1)1.\mathcal{X}[\mathbf{f}](x)=(1-(\mathbf{i}+\mathbf{j})x^{-1})^{-1}. (66)

We found in the preceding Table 2 that this is the z transformation of the sequence

𝐟n=(𝐢+𝐣)n,n=0,1,2,.\mathbf{f}_{n}=(\mathbf{i}+\mathbf{j})^{n},\ n=0,1,2,\cdots. (67)

Next, we can check the result by returning to the initial conditions of the problem: 𝐟0=1\mathbf{f}_{0}=1, 𝐟1=𝐢+𝐣\mathbf{f}_{1}=\mathbf{i}+\mathbf{j} are all right; and if 𝐟n=(𝐢+𝐣)n\mathbf{f}_{n}=(\mathbf{i}+\mathbf{j})^{n} and 𝐟n+1=(𝐢+𝐣)n+1\mathbf{f}_{n+1}=(\mathbf{i}+\mathbf{j})^{n+1}, then

𝐟n+1(𝐢+𝐣1)+𝐟n(𝐢+𝐣)\displaystyle\mathbf{f}_{n+1}(\mathbf{i}+\mathbf{j}-1)+\mathbf{f}_{n}(\mathbf{i}+\mathbf{j}) (68)
=\displaystyle= (𝐢+𝐣)n+1(𝐢+𝐣1)+(𝐢+𝐣)n(𝐢+𝐣)\displaystyle(\mathbf{i}+\mathbf{j})^{n+1}(\mathbf{i}+\mathbf{j}-1)+(\mathbf{i}+\mathbf{j})^{n}(\mathbf{i}+\mathbf{j})
=\displaystyle= (𝐢+𝐣)n+2,\displaystyle(\mathbf{i}+\mathbf{j})^{n+2},

which is also right.

Example 4.2

Determine the numbers 𝐟n\mathbf{f}_{n}, n=0,1,2,n=0,1,2,\cdots, if  𝐟0=1\mathbf{f}_{0}=1, 𝐟1=I𝐣\mathbf{f}_{1}=I\mathbf{j}, and for n=0,1,2,n=0,1,2,\cdots

𝐟n+2=2𝐟n+𝐟n+1(I𝐣).\mathbf{f}_{n+2}=2\mathbf{f}_{n}+\mathbf{f}_{n+1}(I\mathbf{j}). (69)

Let 𝐅(x)=n=0𝐟nxn\mathbf{F}(x)={\sum_{n=0}^{\infty}}\mathbf{f}_{n}x^{-n}. It is clear that z transformation on both sides of equation (69) yields an algebraic equation of 𝐅(x)\mathbf{F}(x), which is

n=0𝐟n+2xn=2n=0𝐟nxn+n=0𝐟n+1xn(I𝐣).{\sum_{n=0}^{\infty}}\mathbf{f}_{n+2}x^{-n}=2{\sum_{n=0}^{\infty}}\mathbf{f}_{n}x^{-n}+{\sum_{n=0}^{\infty}}\mathbf{f}_{n+1}x^{-n}(I\mathbf{j}). (70)

Using (30) form the Theorem 3.1, we get

[𝐅(x)𝐟0𝐟1x1]x2=2𝐅(x)+[𝐅(x)𝐟0]x,[\mathbf{F}(x)-\mathbf{f}_{0}-\mathbf{f}_{1}x^{-1}]x^{2}=2\mathbf{F}(x)+[\mathbf{F}(x)-\mathbf{f}_{0}]x, (71)

where 𝐟0=1\mathbf{f}_{0}=1, 𝐟1=I𝐣\mathbf{f}_{1}=I\mathbf{j} and after computation we have

𝐅(x)=[1(I𝐣)x1]1.\mathbf{F}(x)=[1-(I\mathbf{j})x^{-1}]^{-1}. (72)

Then we get the expression of 𝐟n\mathbf{f}_{n}, that is

𝐟n=(I𝐣)n.\mathbf{f}_{n}=(I\mathbf{j})^{n}. (73)

When we check the result, we find that it satisfies the initial conditions and equation (69).

Example 4.3

Find the numbers 𝐟n\mathbf{f}_{n}, n=0,1,2,n=0,1,2,\cdots, such that 𝐟0=1\mathbf{f}_{0}=1, 𝐟1=I𝐢+I\mathbf{f}_{1}=I\mathbf{i}+I and 𝐟n+2=𝐟n+1(2I1)+2𝐟n\mathbf{f}_{n+2}=\mathbf{f}_{n+1}(-2I^{-1})+2\mathbf{f}_{n}.

Let 𝐅(x)=n=0𝐟nxn\mathbf{F}(x)={\sum_{n=0}^{\infty}}\mathbf{f}_{n}x^{-n}. It is clear that z transformation on both sides of the aforementioned equation yields an algebraic equation of 𝐅(x)\mathbf{F}(x), which is

n=0𝐟n+2xn=n=0𝐟n+1xn(2I1)+2n=0𝐟nxn.{\sum_{n=0}^{\infty}}\mathbf{f}_{n+2}x^{-n}={\sum_{n=0}^{\infty}}\mathbf{f}_{n+1}x^{-n}(-2I^{-1})+2{\sum_{n=0}^{\infty}}\mathbf{f}_{n}x^{-n}. (74)

Using (30) from the Theorem 3.1, we get

[𝐅(x)𝐟0𝐟1x1]x2=[𝐅(x)𝐟0]x(2I1)+2𝐅(x),[\mathbf{F}(x)-\mathbf{f}_{0}-\mathbf{f}_{1}x^{-1}]x^{2}=[\mathbf{F}(x)-\mathbf{f}_{0}]x(-2I^{-1})+2\mathbf{F}(x), (75)

where 𝐟0=1\mathbf{f}_{0}=1, 𝐟1=I𝐢+I\mathbf{f}_{1}=I\mathbf{i}+I. Then

𝐅(x)(x2+2I1x2)=x(x+I𝐢+I+2I1).\mathbf{F}(x)(x^{2}+2I^{-1}x-2)=x(x+I\mathbf{i}+I+2I^{-1}). (76)

That is

𝐅(x)=[1(I𝐢+I)x1]1.\mathbf{F}(x)=[1-(I\mathbf{i}+I)x^{-1}]^{-1}. (77)

Using the equation (24) from definition 2.1, the final expression can be rewritten as

𝐟n=(I𝐢+I)n.\mathbf{f}_{n}=(I\mathbf{i}+I)^{n}. (78)

Obviously, it satisfies the initial conditions.

Remark 4.1

The solving process of the right-side coefficient linear homogeneous biquaternion recurrence relations is as follows:

  • Step 1. Apply the biquaternion z transform (24) on both sides of the given equation.

  • Step 2. Use the basic properties in Theorem 3.1 to simplify the result of step 1.

  • Step 3. Using quaternion algebra, the result of step 2 is reduced to a monadic equation about the z transformation of the sequence.

  • Step 4. The biquaternion sequence is obtained by comparing Table 2 and step 3.

The three homogeneous biquaternion recurrence relations with right-side coefficients have been solved by the biquaternion z transformation method. In the following, let’s focus on the inhomogeneous biquaternion recurrence relations with the right-side coefficients.

Example 4.4

Find 𝐟n\mathbf{f}_{n}, n=0,1,2,n=0,1,2,\cdots, such that 𝐟0=𝐟1=0\mathbf{f}_{0}=\mathbf{f}_{1}=0 and 𝐟n+22𝐟n+1+𝐟n=2+(22I𝐤)(I𝐤)n(I𝐤+1)n\mathbf{f}_{n+2}-2\mathbf{f}_{n+1}+\mathbf{f}_{n}=2+(2-2I\mathbf{k})(I\mathbf{k})^{n}-(I\mathbf{k}+1)^{n}.

It is clear that if we taking z transforms for both sides of above equation, it will gives

n=0𝐟n+2xn2n=0𝐟n+1xn+n=0𝐟nxn\displaystyle{\sum_{n=0}^{\infty}}\mathbf{f}_{n+2}x^{-n}-2{\sum_{n=0}^{\infty}}\mathbf{f}_{n+1}x^{-n}+{\sum_{n=0}^{\infty}}\mathbf{f}_{n}x^{-n} (79)
=\displaystyle= 2x(x1)1+2(1I𝐤)[1(I𝐤)x1]1\displaystyle 2x(x-1)^{-1}+2(1-I\mathbf{k})[1-(I\mathbf{k})x^{-1}]^{-1}
[1(I𝐤+1)x1]1.\displaystyle-[1-(I\mathbf{k}+1)x^{-1}]^{-1}.

Let 𝐅(x)=n=0𝐟nxn\mathbf{F}(x)={\sum_{n=0}^{\infty}}\mathbf{f}_{n}x^{-n}. Using (30) from the Theorem 3.1, we get

x2𝐅(x)2x𝐅(x)+𝐅(x)\displaystyle x^{2}\mathbf{F}(x)-2x\mathbf{F}(x)+\mathbf{F}(x) (80)
=\displaystyle= 2x(x1)1+2(1I𝐤)[1(I𝐤)x1]1\displaystyle 2x(x-1)^{-1}+2(1-I\mathbf{k})[1-(I\mathbf{k})x^{-1}]^{-1}
[1(I𝐤+1)x1]1.\displaystyle-[1-(I\mathbf{k}+1)x^{-1}]^{-1}.

That is

𝐅(x)=\displaystyle\mathbf{F}(x)= 2(1I𝐤)(x1)2[1(I𝐤)x1]1\displaystyle 2(1-I\mathbf{k})(x-1)^{-2}[1-(I\mathbf{k})x^{-1}]^{-1} (81)
2x(x1)3(x1)2[1(I𝐤+1)x1]1.\displaystyle 2x(x-1)^{-3}-(x-1)^{-2}[1-(I\mathbf{k}+1)x^{-1}]^{-1}.

Noting that

(x1)1\displaystyle(x-1)^{-1} =n=0xn1,\displaystyle={\sum_{n=0}^{\infty}}x^{-n-1}, (82)
(x1)2\displaystyle(x-1)^{-2} =n=0(n+1)xn2,\displaystyle={\sum_{n=0}^{\infty}}(n+1)x^{-n-2},
(x1)3\displaystyle(x-1)^{-3} =n=0(n+1)(n+2)2xn3,\displaystyle={\sum_{n=0}^{\infty}}\frac{(n+1)(n+2)}{2}x^{-n-3},

and

[1(I𝐤)x1]1=\displaystyle[1-(I\mathbf{k})x^{-1}]^{-1}= n=0(I𝐤)nxn,\displaystyle{\sum_{n=0}^{\infty}}(I\mathbf{k})^{n}x^{-n}, (83)
[1(I𝐤+1)x1]1=\displaystyle[1-(I\mathbf{k}+1)x^{-1}]^{-1}= n=0(I𝐤+1)nxn\displaystyle{\sum_{n=0}^{\infty}}(I\mathbf{k}+1)^{n}x^{-n}
=\displaystyle= n=02n1(I𝐤+1)xn,\displaystyle{\sum_{n=0}^{\infty}}2^{n-1}(I\mathbf{k}+1)x^{-n},

which provide that

2x(x1)3=\displaystyle 2x(x-1)^{-3}= 2xn=0(n+1)(n+2)2xn3\displaystyle 2x{\sum_{n=0}^{\infty}}\frac{(n+1)(n+2)}{2}x^{-n-3} (84)
=\displaystyle= n=0(n2n)xn,\displaystyle{\sum_{n=0}^{\infty}}(n^{2}-n)x^{-n},
2(1I𝐤)(x1)2[1(I𝐤)x1]1\displaystyle 2(1-I\mathbf{k})(x-1)^{-2}[1-(I\mathbf{k})x^{-1}]^{-1} (85)
=\displaystyle= 2(1I𝐤)n=0(n+1)xn2n=0(I𝐤)nxn\displaystyle 2(1-I\mathbf{k}){\sum_{n=0}^{\infty}}(n+1)x^{-n-2}{\sum_{n=0}^{\infty}}(I\mathbf{k})^{n}x^{-n}
=\displaystyle= n=0{2n22[(I𝐤)+(I𝐤)2++(I𝐤)n1]}\displaystyle{\sum_{n=0}^{\infty}}\{2n-2-2[(I\mathbf{k})+(I\mathbf{k})^{2}+\cdots+(I\mathbf{k})^{n-1}]\}
=\displaystyle= {n=0{2n2(n1)(1+I𝐤)}xn,when n is odd;n=0{2n2(n2)(1+I𝐤)I𝐤}xn,when n is even,\displaystyle\left\{\begin{array}[]{ll}{\sum_{n=0}^{\infty}}\{2n-2-(n-1)(1+I\mathbf{k})\}x^{-n},\hbox{when n is odd;}\\ {\sum_{n=0}^{\infty}}\{2n-2-(n-2)(1+I\mathbf{k})-I\mathbf{k}\}x^{-n},\hbox{when n is even,}\end{array}\right.

and

(x1)2[1(I𝐤+1)x1]1\displaystyle(x-1)^{-2}[1-(I\mathbf{k}+1)x^{-1}]^{-1} (86)
=\displaystyle= n=0(n+1)xn2n=02n1(I𝐤+1)xn\displaystyle{\sum_{n=0}^{\infty}}(n+1)x^{-n-2}{\sum_{n=0}^{\infty}}2^{n-1}(I\mathbf{k}+1)x^{-n}
=\displaystyle= n=0{n1+(2n1n)(I𝐤+1)}xn.\displaystyle{\sum_{n=0}^{\infty}}\{n-1+(2^{n-1}-n)(I\mathbf{k}+1)\}x^{-n}.

Thus, when nn is odd, the equation (81) can be rewritten as

𝐅(x)=\displaystyle\mathbf{F}(x)= n=0{n2n+2n2(n1)(1+I𝐤)\displaystyle{\sum_{n=0}^{\infty}}\{n^{2}-n+2n-2-(n-1)(1+I\mathbf{k}) (87)
+n1+(2n1n)(I𝐤+1)}xn\displaystyle+n-1+(2^{n-1}-n)(I\mathbf{k}+1)\}x^{-n}
=\displaystyle= n=0{n2(I𝐤+1)n+I𝐤}xn,\displaystyle{\sum_{n=0}^{\infty}}\{n^{2}-(I\mathbf{k}+1)^{n}+I\mathbf{k}\}x^{-n},

and when nn is even, the equation (81) can be rewritten as

𝐅(x)=\displaystyle\mathbf{F}(x)= n=0{n2n+2n2(n2)(1+I𝐤)\displaystyle{\sum_{n=0}^{\infty}}\{n^{2}-n+2n-2-(n-2)(1+I\mathbf{k}) (88)
I𝐤+n1+(2n1n)(I𝐤+1)}xn\displaystyle-I\mathbf{k}+n-1+(2^{n-1}-n)(I\mathbf{k}+1)\}x^{-n}
=\displaystyle= n=0{n2(I𝐤+1)n+1}xn.\displaystyle{\sum_{n=0}^{\infty}}\{n^{2}-(I\mathbf{k}+1)^{n}+1\}x^{-n}.

From the above equations (87) and (88), the final expression can be rewritten as

fn=n2(I𝐤+1)n+(I𝐤)n.f_{n}=n^{2}-(I\mathbf{k}+1)^{n}+(I\mathbf{k})^{n}. (89)

We can also check the result by returning to the statement of the question: 𝐟0=0\mathbf{f}_{0}=0 and 𝐟1=0\mathbf{f}_{1}=0 are all right; and if 𝐟n=n2(I𝐤+1)n+(I𝐤)n\mathbf{f}_{n}=n^{2}-(I\mathbf{k}+1)^{n}+(I\mathbf{k})^{n}, 𝐟n+1=(n+1)2(I𝐤+1)n+1+(I𝐤)n+1\mathbf{f}_{n+1}=(n+1)^{2}-(I\mathbf{k}+1)^{n+1}+(I\mathbf{k})^{n+1}, and 𝐟n+2=(n+2)2(I𝐤+1)n+2+(I𝐤)n+2\mathbf{f}_{n+2}=(n+2)^{2}-(I\mathbf{k}+1)^{n+2}+(I\mathbf{k})^{n+2}, then

𝐟n+22𝐟n+1+𝐟n\displaystyle\mathbf{f}_{n+2}-2\mathbf{f}_{n+1}+\mathbf{f}_{n} (90)
=\displaystyle= (n+2)2(I𝐤+1)n+2+(I𝐤)n+2\displaystyle(n+2)^{2}-(I\mathbf{k}+1)^{n+2}+(I\mathbf{k})^{n+2}
2(n+1)2+2(I𝐤+1)n+1+n2\displaystyle-2(n+1)^{2}+2(I\mathbf{k}+1)^{n+1}+n^{2}
2(I𝐤)n+1(I𝐤+1)n+(I𝐤)n\displaystyle-2(I\mathbf{k})^{n+1}-(I\mathbf{k}+1)^{n}+(I\mathbf{k})^{n}
=\displaystyle= 2+(22I𝐤)(I𝐤)n(I𝐤+1)n,\displaystyle 2+(2-2I\mathbf{k})(I\mathbf{k})^{n}-(I\mathbf{k}+1)^{n},

which is also right.

Remark 4.2

Different from solving the right-side coefficient linear inhomogeneous biquaternion recurrence relations, the inhomogeneous cases are often more complicated, which increases the difficulty of calculation of quaternion algebras. In this case, we can consider using the Taylor expansion in the third step, and finally find the sequence by referring to the definition (24) and properties of the z transformation of the biquaternion.

Example 4.5

Find 𝐟(t)\mathbf{f}(t), t=0,1,2,t=0,1,2,\cdots, from the equation

n=0t(3𝐣)n𝐟(tn)=(2𝐢)n,t=0,1,2,.{\sum_{n=0}^{t}}(3\mathbf{j})^{n}\mathbf{f}{(t-n)}=(2\mathbf{i})^{n},t=0,1,2,\cdots. (91)

It is clear that the left hand side is the convolution of xx and the function t(3j)tt\rightarrow(3j)^{t}, so that taking z transform of both members gives

(13𝐣x1)1𝒳[𝐟](x)=(12𝐢x1)1.({1-3\mathbf{j}x^{-1}})^{-1}\mathcal{X}[\mathbf{f}](x)=({1-2\mathbf{i}x^{-1}})^{-1}. (92)

Use the result of Eq. (24). We get

𝒳[𝐟](x)\displaystyle\mathcal{X}[\mathbf{f}](x) (93)
=\displaystyle= (13𝐣x1)(12𝐢x1)1\displaystyle({1-3\mathbf{j}x^{-1}})({1-2\mathbf{i}x^{-1}})^{-1}
=\displaystyle= (12𝐢x1)13𝐣x1(12𝐢x1)1,\displaystyle({1-2\mathbf{i}x^{-1}})^{-1}-3\mathbf{j}x^{-1}({1-2\mathbf{i}x^{-1}})^{-1},

and using Eq. (24) and rule (iv) of Theorem 3.1, we see that

𝐟(t)=(2𝐢)t3𝐣(2𝐢)t1,t=0,1,2,.\mathbf{f}(t)=(2\mathbf{i})^{t}-3\mathbf{j}(2\mathbf{i})^{t-1},t=0,1,2,\cdots. (94)

5 Conclusion

The solution of a class of biquaternion recurrence relations has been solved in this paper. After introducing the z transformation of the biquaternion sequence, we give its basic properties. Besides, we discussed the relationship between a biquaternion-valued number sequence and a complex-valued number sequence: the convolution theorem. Moreover, applying the biquaternion z transform to the class of biquaternion recurrence relations can indicate the capability and efficiency of the method.

References

References

  • [1] E. R. Kanasewich, Time sequence analysis in geophysics. University of Alberta, 1981.
  • [2] H. M. James, W. B. Nichols, R. S. Phillips. Theory of Esrvomechanisms. McGraw- Hill Book Company, Inc., New York, N. Y., chapter 5, 1947.
  • [3] J. R. Ragazzini, L. A. Zadeh. The analysis of sampled-data systems. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 1952, 71(5): 225-234.
  • [4] D. M. Sullivan. Frequency-dependent FDTD methods using Z transforms. IEEE Transactions on Antennas and Propagation, 1992, 40(10): 1223-1230.
  • [5] I. E. Jury, W. Schroeder. Discrete compensation of sampled-data and continuous control systems. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 1957, 75(6): 317-325.
  • [6] H. Freeman, O. Lowenschuss. Bibliography of sampled-data control systems and Z-transform applications. IRE Transactions on Automatic Control, 1958, 4(1): 28-30.
  • [7] I. E. Jury. Synthesis and critical study of sampled-data control systems. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 1956, 75(3): 141-151.
  • [8] L. Rabiner, R. W. Schafer, C. Rader. The chirp z-transform algorithm. IEEE transactions on audio and electroacoustics, 1969, 17(2): 86-92.
  • [9] H. Leng, S. Yu, X. Li, et al. Frequency offset estimation for optical coherent M-QAM detection using chirp z-transform. IEEE Photonics Technology Letters, 2012, 24(9): 787-789.
  • [10] F. Li, Y. Gao, Y. Cao, et al. Improved teager energy operator and improved chirp-Z transform for parameter estimation of voltage flicker. IEEE Transactions on Power Delivery, 2015, 31(1): 245-253.
  • [11] W. Kang, J. Guo, H. Li, et al. Voltage flicker detection based on Chirp-z transform. 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010: 1-4.
  • [12] T. Ding, A. Hirose. Fading channel prediction based on combination of complex-valued neural networks and chirp Z-transform. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(9): 1686-1695.
  • [13] S. Tan, A. Hirose. Low-calculation-cost fading channel prediction using chirp z-transform. Electronics letters, 2009, 45(8): 418-420.
  • [14] Z. F. Cai, K. I. Kou. Laplace transform: a new approach in solving linear quaternion differential equations. Mathematical Methods in the Applied Sciences, 2018, 41(11): 4033-4048.
  • [15] T. Bülow, G. Sommer, ”Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case,” IEEE Trans. Signal Process., 2001, 49(11): 2844-2852.
  • [16] J. P. Ward. Quaternions and Cayley numbers: Algebra and applications. Springer Science and Business Media, 2012.
  • [17] S. J. Sangwine, T. A. Ell, N. Le Bihan. Fundamental representations and algebraic properties of biquaternions or complexified quaternions. Advances in Applied Clifford Algebras, 2011, 21(3): 607-636.
  • [18] K. Gürlebeck, W. Sprössig. Quaternionic and Clifford calculus for physicists and engineers. Wiley, 1997.