This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bipartite reweight-annealing algorithm to extract large-scale data of entanglement entropy and its derivative in high precision

Zhe Wang Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China    Zhiyan Wang Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China    Yi-Ming Ding Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China    Bin-Bin Mao School of Foundational Education, University of Health and Rehabilitation Sciences, Qingdao 266000, China    Zheng Yan [email protected] Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
Abstract

We propose a quantum Monte Carlo (QMC) scheme able to extract large-scale data of entanglement entropy (EE) and its derivative with high precision and low technical barrier. We avoid directly computing the overlap of two partition functions within different spacetime manifolds and instead obtain them separately via reweight-annealing scheme. The incremental process can be designed along the path of real physical parameters in this frame, and all intermediates are EEs of corresponding parameters, so the algorithm efficiency is improved by more than 10410^{4} of times. The calculation of EE becomes much cheaper and simpler. It opens a way to numerically detect the novel phases and phase transitions by scanning EE in a wide parameter-region in two and higher dimensional systems. We then show the feasibility of using EE and its derivative to find phase transition points and to probe novel phases.

Introduction.- With the rapid development of quantum information, its intersection with condensed matter physics has been attracting more and more attention in recent decades [1, 2]. One important topic is to probe the intrinsic physics of many-body systems using the entanglement entropy (EE) [3, 4, 5, 6]. For instance, among its many intriguing features, it offers a direct connection to the conformal field theory (CFT) and a categoical description of the problem under consideration [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Using EE to identify novel phase and critical phenomena represents a cutting-edge area in the field of quantum many-body numerics. A particularly recent issue is the dispute at the deconfined quantum critical point (DQCP) [27, 28, 29]. The EE at the DQCP, e.g., in the JQ model [30, 31], exhibits totally different behaviours compared with that in normal criticality within the Landau-Ginzburg-Wilson paradigm [20, 32, 33, 34, 35, 36]. According to the prediction from the unitary CFT [37, 38], the EE with a cornered cutting at the criticality should obey the behaviours s=alblnl+cs=al-b\mathrm{ln}l+c, where ss is the EE and ll is the length of the entangled boundary, in which the coefficient bb can not be negative. However, some recent QMC studies show that bb is negative. which seemingly suggests the DQCP in the JQ model is not a unitary CFT, probably instead of a weakly first order phase transition [22, 35, 34]. In contrast, another recent work indicates that the sign of bb is dependent on the cutting form of the entangled region. For a tilted cutting, bb is positive and consistent with the emergent SO(5) symmetry at the DQCP [33]. All in all, the relationship between entanglement entropy and condensed matter physics has been growing increasingly closer recently.

How to obtain high-precision EE via quantum Monte Carlo (QMC) [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49] with less computation cost and low technical barrier is still a huge challenge in large-scale quantum many-body computation. Although many algorithms have been developed to extract the EE [50, 51, 52, 53, 54, 55, 56, 57, 58, 59], some of which can also achieve high precision, the details of the algorithm becomes more and more complex. The key point of extracting the Rényi ratio RA(2)=ZA(2)/Z2R_{A}^{(2)}=Z_{A}^{(2)}/Z^{2} (here we choose the Rényi order to be two without loss of generality) is to calculate the overlap of these two different space-time manifolds, ZA(2)Z_{A}^{(2)} and Z2Z^{2}, as shown in Fig.1 (a) and (b), and then get the ratio directly [50, 54]. Once the ratio RA(2)0R_{A}^{(2)}\rightarrow 0, the calculation becomes extremely difficult. Due to the area law of EE, the RA(2)ealR_{A}^{(2)}\propto e^{-al} decays to zero quickly in large systems, where ll is the perimeter of the entangled region. To overcome this difficulty, in the early days, the incremental method of the entangled region was involved [50, 51]. Its key point is one by one adding the lattice site into the entangled region and product the ratio of the process to obtain the final ratio. The process can be written as RA(2)=ZA(2)/Z2=i=0NA1ZAi+1(2)/ZAi(2)R_{A}^{(2)}=Z_{A}^{(2)}/Z^{2}=\prod_{i=0}^{N_{A}-1}Z_{A_{i+1}}^{(2)}/Z_{A_{i}}^{(2)}, where the ii means the number of lattice sites of the entangled region, i.e., ZA0(2)=Z2Z_{A_{0}}^{(2)}=Z^{2} and ZANA(2)=ZA(2)Z_{A_{N_{A}}}^{(2)}=Z_{A}^{(2)}. Through calculating each intermediate-process ratio ZAi+1(2)/ZAi(2)Z_{A_{i+1}}^{(2)}/Z_{A_{i}}^{(2)}, the high precision RA(2)R_{A}^{(2)} could be extracted. The shortage of this method is the number of lattice site should be integer which means the splitting of the process must be finite, thus some ratios ZAi+1(2)/ZAi(2)Z_{A_{i+1}}^{(2)}/Z_{A_{i}}^{(2)} may still be closed to zero even after splitting. We have to note that, the replica manifold are changing during the calculation due to the intermediate processes in this method. It makes the technical barrier of QMC higher.

To solve the finite splitting problem mentioned above, the continually incremental algorithm of QMC has been developed [57, 22, 53]. A virtual process described by a general function ZA2(λ)Z_{A}^{2}(\lambda) is involved, where ZA2(λ=1)=ZA2Z_{A}^{2}(\lambda=1)=Z_{A}^{2} and ZA2(λ=0)=Z2Z_{A}^{2}(\lambda=0)=Z^{2}. The problem becomes to calculate the ratio ZA2(λ=1)/ZA2(λ=0)Z_{A}^{2}(\lambda=1)/Z_{A}^{2}(\lambda=0) which is equal to i=0NA1ZA(2)(λi+1)/ZA(2)(λi)\prod_{i=0}^{N_{A}-1}Z_{A}^{(2)}(\lambda_{i+1})/Z_{A}^{(2)}(\lambda_{i}). Here the λ\lambda is continuous from 0 to 1, thus the interval [0,1][0,1] can be divided in to any pieces according to the calculation requirement. However, not only the λ\lambda needs to be changed during the sampling of ZA2(λ)Z_{A}^{2}(\lambda), but also the entangled region still has to be varied under each fixed λ\lambda, which actually strongly takes huge computational cost and highly improves the technical requirements of the method. Moreover, due to the virtually non-physical intermediate-processes, the results of these intermediate processes ZA2(λ1,0)Z_{A}^{2}(\lambda\neq 1,0) can not be effectively used which leads a lot of wastes.

In this paper, we propose a simple method without changing the space-time manifold during simulation, and the intermediate-process values are physical and valuable. The high-precision EE and its derivative can be obtained in less cost and low-technical barrier from now on.

Refer to caption

Figure 1: A geometrical presentation of the partition function (a) ZA(2)Z_{A}^{(2)} and (b) Z2Z^{2}. The entangling region AA bewteen replicas is glued together in the replica imaginary time direction and the environment region BB for each replica is independent in the imaginary time direction. While the glued region is zero, it becomes back to Z2Z^{2}. (c) Reweighting a same configuration: the sampled distribution (black, before reweighting ) is used to reweight another distribution (blue, after reweighting), which is reasonable if these two distributions are close to each other as the importance sampling can be approximately kept.

Method.- The EE of a subsystem AA coupled with an environment BB is defined by the reduced density matrix (RDM). Specifically, The nnth order Rényi entropy is defined as S(n)=11nln[Tr(ρAn)]=11nlnRA(n)S^{(n)}=\frac{1}{1-n}\ln[\mathrm{Tr}(\rho_{A}^{n})]=\frac{1}{1-n}\ln R_{A}^{(n)}, where RA(n)=ZA(n)/ZnR_{A}^{(n)}=Z_{A}^{(n)}/Z^{n} and ρA=TrBρ\rho_{A}=\mathrm{Tr}_{B}\rho. From the above equations, we know that ZA(n)Tr(ρAn)Z_{A}^{(n)}\propto\mathrm{Tr}(\rho_{A}^{n}) while ZnZ^{n} is the proportional factor.

The normalization factor ZnZ^{n} sometimes is not important, for example, when we only concern the dynamical information of the entanglement Hamiltonian (e.g., entanglement spectrum) [26, 60, 61, 62, 63, 64]. In these cases, only the manifold of ZA(n)Z_{A}^{(n)} needs be simulated. However, when we consider the EE calculation, the factor becomes very important for the detailed value. In fact, the hardest difficulty of the calculation of EE comes from simulating the ratio RA(n)=ZA(n)/ZnR_{A}^{(n)}=Z_{A}^{(n)}/Z^{n}. That’s the reason why the EE algorithms always have to change the simulating manifold between ZA(n)Z_{A}^{(n)} and ZnZ^{n}.

Different from the traditional method calculating the ratio RA(n)R_{A}^{(n)} directly, we start the calculation of ZA(n)Z_{A}^{(n)} and ZnZ^{n} respectively. Here you may feel the sense why we do not need to change the manifold during the simulation. Given a certain distributional function, such as ZA(n)(J)Z_{A}^{(n)}(J), where JJ is a general parameter (e.g., temperature, the parameter of Hamiltonian, …). For convenience, we define ZA(1)ZZ_{A}^{(1)}\equiv Z without losing generality. For two parameter points JJ^{\prime} and JJ, the ratio can be simulated via QMC sampling:

ZA(n)(J)ZA(n)(J)=W(J)W(J)ZA(n)(J)\frac{Z_{A}^{(n)}(J^{\prime})}{Z_{A}^{(n)}(J)}=\bigg{\langle}\frac{W(J^{\prime})}{W(J)}\bigg{\rangle}_{Z_{A}^{(n)}(J)} (1)

where the ZA(n)(J)\langle...\rangle_{Z_{A}^{(n)}(J)} means the QMC samplings have been done under the manifold ZA(n)Z_{A}^{(n)} at parameter JJ. W(J)W(J^{\prime}) and W(J)W(J) denote the corresponding weights with different parameters JJ^{\prime} and JJ for the same configuration sampled by QMC. It means that we simulate the system at parameter JJ, and then obtain a amount of configurations with weight W(J)W(J), at the same time, we can calculate the related weight W(J)W(J^{\prime}) by treating the parameter as JJ^{\prime} for the same configuration. The ratio of W(J)/W(J){W(J^{\prime})}/{W(J)} can be calculated in each sampling to gain the final average as Eq.(1).

In principle, the ratio ZA(n)(J)/ZA(n)(J){Z_{A}^{(n)}(J^{\prime})}/{Z_{A}^{(n)}(J)} of any JJ^{\prime} and JJ can be solved in the way above. However, we still need to consider how to keep the importance sampling in our QMC simulation. Obviously, if the JJ^{\prime} and JJ are close enough, the ratio is close to 1 and is easy for calculation. Otherwise, the ratio would be close to zero or infinite which can not be well-sampled by QMC. It can be easily understood in the reweighting frame as shown in Fig.1 (c), if we want to use a well-known distribution ZA(n)(J)=W(J)Z_{A}^{(n)}(J)=\sum W(J) to calculate another distribution ZA(n)(J)=W(J)Z_{A}^{(n)}(J^{\prime})=\sum W(J^{\prime}) via resetting the weight of samplings, the weight before/after resetting of the same configuration should be close to each other. Then, it is still an importance sampling in this sense when the JJ^{\prime} and JJ are close enough [65, 66, 67, 68]. In fact, this spirit is also the key point of the incremental trick in previous EE algorithms. Therefore, we introduce the continuously incremental trick here to fix the problem:

ZA(n)(J)ZA(n)(J)=i=0N1ZA(n)(Ji+1)ZA(n)(Ji)\frac{Z_{A}^{(n)}(J^{\prime})}{Z_{A}^{(n)}(J)}=\prod_{i=0}^{N-1}\frac{Z_{A}^{(n)}(J_{i+1})}{Z_{A}^{(n)}(J_{i})} (2)

where J0=JJ_{0}=J and JN=JJ_{N}=J^{\prime}, other JiJ_{i} is between the two in turn. Thus the QMC can be kept in importance sampling through this reweight-annealing spirit [66, 68].

In this way, we are able to obtain any ratio ZA(n)(J)/ZA(n)(J){Z_{A}^{(n)}(J^{\prime})}/{Z_{A}^{(n)}(J)} in realistic simulation. But it still can not give out the target solution of ZA(n)(J)/Zn(J)Z_{A}^{(n)}(J^{\prime})/Z^{n}(J^{\prime}). The antidote comes from some well-known point. Considering we have calculated the values of ZA(n)(J)/ZA(n)(J){Z_{A}^{(n)}(J^{\prime})}/{Z_{A}^{(n)}(J)} and Z(J)/Z(J){Z(J^{\prime})}/{Z(J)} from the method above, the problem ZA(n)(J)/Zn(J)=?Z_{A}^{(n)}(J^{\prime})/Z^{n}(J^{\prime})=? will be solved if we know a reference point ZA(n)(J)/Zn(J)Z_{A}^{(n)}(J)/Z^{n}(J). A simplest reference point is that the ZA(n)(J)/Zn(J)=1Z_{A}^{(n)}(J)/Z^{n}(J)=1 when the ground state is a product state |A|B|A\rangle\otimes|B\rangle. A product state is easy to be gained, for example, we can add an external field in a spin Hamiltonian to polarize all the spins, or a simplest way is decreasing the coupling between AA and BB to 0. Of course, other known reference points are also allowed, e.g., the status at infinite temperature or obtaining one known point through other numerical method. In fact, a lot of many-body Hamiltonians have a known ground state at the limit of parameter.

Now the whole scheme for extracting the Rényi EE is complete and realizable, it is not limited to the detailed QMC methods and many-body models. To further understand it and test its performance, we will show a J1J2J_{1}-J_{2} spin model [69, 70] via using the stochastic series expansion (SSE) QMC [39, 40, 41, 42, 43, 71] as the example in the followings.

Refer to caption
Figure 2: Square lattice J1J_{1}-J2J_{2} AFM Heisenberg model. The strong bonds J2>0J_{2}>0 are indicated by thick lines. The weak bonds J1>0J_{1}>0 are indicated by thin lines. (a) The entanglement region AA is considered as a L×LL\times L cylinder on the 2L×L2L\times L torus with smooth boundaries and with the length of the entangling region l=2Ll=2L.(b)The entanglement region AA is chosen to be a L2\frac{L}{2} ×\times L2\frac{L}{2} square with four corners and boundary length is l=2Ll=2L. (c) The diagram of the model setting strong bonds J2=1J_{2}=1 in which quantum critical point (QCP) is J1=Jc=0.52337(3)J_{1}=J_{c}=0.52337(3) [69].

J1J2J_{1}-J_{2} model.- We simulate a 2D spin-1/2 antiferromagnetic (AFM) Heisenberg J1J2J_{1}-J_{2} model as an example to obtain its EE. The Hamiltonian is

H=J1ijSiSj+J2ijSiSjH=J_{1}\sum_{\langle ij\rangle}S_{i}S_{j}+J_{2}\sum_{\langle ij\rangle}S_{i}S_{j} (3)

where ij\langle ij\rangle means the nearest neighbor bond, and J1J_{1} and J2J_{2} are the coupling strengths of thin and thick bonds as shown in Fig.2 and it’s ground-state phase diagram (see Fig.2 (c)) has been determined accurately by the quantum Monte Carlo method [69]. The inverse temperature β=2L\beta=2L suffices to successfully achieve the desired data quality with high efficiency. In the following simulation, we fix the J2=1J_{2}=1 and tune the J1J_{1} from 0+0_{+} to 11. It’s worth noting that the ground state is a dimer product state when J10J_{1}\rightarrow 0, where the ZA(n)/Zn=1Z_{A}^{(n)}/Z^{n}=1 once the dimers are not cut by the entangled edge.

In the SSE frame, the Eq.(1) is equal to

ZA(n)(J1)ZA(n)(J1)=(J1J1)nJ1ZA(n)(J1)\frac{Z_{A}^{(n)}(J_{1}^{\prime})}{Z_{A}^{(n)}(J_{1})}=\bigg{\langle}\bigg{(}\frac{J_{1}^{\prime}}{J_{1}}\bigg{)}^{n_{J_{1}}}\bigg{\rangle}_{Z_{A}^{(n)}(J_{1})} (4)

where the nJ1n_{J_{1}} is the number of J1J_{1} operators in the SSE sampling, no matter which space-time manifold ZA(n)Z_{A}^{(n)} is simulated. The details of this equation can be found in the Supplementary Materials (SM).

In the realistic simulation, we need to calculate ZA(2)(J1)/ZA(2)(J1=0+){Z_{A}^{(2)}(J_{1}^{\prime})}/{Z_{A}^{(2)}(J_{1}=0_{+})} and Z(J1)/Z(J1=0+){Z(J_{1}^{\prime})}/{Z(J_{1}=0_{+})} respectively. And then obtain the final ratio [ZA(2)/Z2]|J1{[Z_{A}^{(2)}}/Z^{2}]|_{J_{1}^{\prime}} based on [ZA(2)/Z2]|J1=0+=1[{Z_{A}^{(2)}}/Z^{2}]|_{J_{1}=0_{+}}=1. Although the parameter is continuously tunable which is same as the non-equilibrium method  [57, 22, 53], the incremental path of our method is physical and meaningful. It is a real parameter path of the cencerned Hamiltonian. In another word, under similar computational cost, the previous method obtains a point while ours gains a curve of EE data. Even ignoring the low-technical-barrier advantage of our method, the efficiency of our calculation is also much higher in this sense.

Refer to caption
Figure 3: Second Rényi entanglement entropy S(2)S^{(2)} of the J1J2J_{1}-J_{2} Heisenberg model with the entanglement region AA cornerless [(a1)(a_{1}),(a2)(a_{2}) and (a3)(a_{3})] or cornered [(b1)(b_{1}),(b2)(b_{2}) and (b3)(b_{3})]. Cornerless see Fig.2 (a) and cornered see Fig.2 (b). (a1a_{1}) S(2)S^{(2)} versus ll for different couplings J1J_{1}. The fitting results are listed in Table 1. (b1b_{1}) S(2)S^{(2)} versus ll at the QCP J1=Jc=0.52337J_{1}=J_{c}=0.52337. The fitting result is S(2)(l)=0.083(1)l0.08(1)lnl+0.19(2)S^{(2)}(l)=0.083(1)l-0.08(1)\mathrm{ln}l+0.19(2) with R/P-χ2\chi^{2} are 0.85/0.56. [(a2a_{2}) and (b2b_{2}) ] S(2)S^{(2)} versus couplings J1J_{1} for different ll to identify the critical point. [(a3a_{3}) and (b3b_{3}) ] The derivative of S(2)S^{(2)}, dS(2)/dJ1dS^{(2)}/dJ_{1}, versus couplings J1J_{1} for different ll. The peaks of dS(2)/dJ1dS^{(2)}/dJ_{1} appear at the QCP JcJ_{c}.
Table 1: Fitting results for the data in Fig.3 (a1\mathrm{a}_{1}) with S(2)(l)=al+blnlcS^{(2)}(l)=al+b\mathrm{ln}l-c. Reduced and p-value of χ2\chi^{2} (R/P-χ2\chi^{2}) are also listed.
J1J_{1} aa bb cc R/P-χ2\chi^{2}
1.01.0 0.089(2) 1.05(4) 1.61(9) 1.00/0.40
0.90.9 0.085(2) 1.02(3) 1.54(7) 0.54/0.71
0.80.8 0.079(2) 1.06(5) 1.6(1) 1.55/0.19
0.60.6 0.072(2) 1.06(5) 2.0(2) 1.93/0.10
0.550.55 0.078(3) 0.8(1) 1.6(2) 3.16/0.02
0.540.54 0.08(1) 0.6(1) 1.2(2) 2.49/0.04
Jc=0.52337J_{c}=0.52337 0.08(1) 0.15(17) 0.1(5) 2.02/0.1

Cornerless cutting.- Firstly, we try to calculate the EE with cornerless cutting as shown in Fig.2 (a). According to the previous works [20, 22, 23], only the entangled edge without dimers gives the correct results consistent with CFT prediction. In the Fig. 3 (a1\mathrm{a}_{1}), we shows several curves of EE data with different J1J_{1}. The area law fitting data are shown in Table. 1. According to the theoretical prediction [72], b=NG/2=1b=N_{G}/2=1 in the Néel phase of the AFM J1J2J_{1}-J_{2} Heisenberg model, where NGN_{G} means the number of the Goldstone modes. The Table. 1 shows consistent results that the b1b\sim 1 at J1=1.0,0.9,0.8,0.6J_{1}=1.0,0.9,0.8,0.6 and bb becomes smaller while J1J_{1} gets closer to the O(3)O(3) critical point JcJ_{c}. The theoretical calculation [73] pointed out that the b=0b=0 at a Wilson-Fisher O(N)O(N) quantum criticality of d2d\geq 2 systems. Our result at JcJ_{c} in the Table also supports this prediction. We note that the recent work [74] found the finite size effect in the spin-1/2 AFM Heisenberg model is strong which obviously affects the fitting of b=1b=1, and a good fitting needs some more corrections considering the finite size effect. However, we find the simple fitting is not bad in our results. The reason may be the total system we chose is a rectangle and the region AA is a square, while they chose a square total system and rectangle AA. Other QMC works with similar cutting choice as ours also obtains the b1b\sim 1 through the non-equilibrium algorithm [57, 22]. Actually, the finite size effect is more serious in a square total system than a rectangle one, which can also be reflected in Fig.  3 (a3a_{3}) and (b3b_{3}). In the figures we found the derivative of EE obviously converges to the critical point faster in a rectangle case than a square one. We will discuss these data more in the following section.

Another advantage of our method is naturally obtaining the EE of different parameter values, as shown in Fig. 3 (a2\mathrm{a}_{2}). It makes QMC possible to probe the phase transition via EE in 2D and higher dimensional systems as same as the density matrix renormalization group (DMRG) usually does in 1D [75, 76, 77, 78, 79]. In the Fig. 3 (a2\mathrm{a}_{2}), the convexity of the function changes at the critical point, which can also be seen in the derivative of EE more obviously. In the following section, we will introduce a much simpler way to calculate the derivative of EE without incremental process and show the peak of the derivative locates at the phase transition point. It’s worth noting that sometimes the original function of EE directly probe the phase transition while sometimes the derivative does. This issue will be carefully discussed in our coming work 111Zhe Wang, Zheng Yan, et al. In preparation..

Cornered cutting.- For the cornered cutting case, the b0.08b\sim 0.08 at the 2+1d O(3) quantum criticality is also known according to previous theoretical and numerical works [81, 82, 83, 20, 22]. In the Fig. 3 (b1b_{1}), the fitting obtains the consistent result b=0.08(1)b=0.08(1) at JcJ_{c}. Similar to the cornerless case, the function EE of J1J_{1} also displays a change of the convexity at the quantum criticality as shown in Fig. 3 (b2b_{2}).

EE derivative.- It can be proved in the SM that the derivative of the nnth Rényi EE can be measured in the form:

dS(n)dJ=11n[nβdHdJZA(n)+nβdHdJZ]\frac{dS^{(n)}}{dJ}=\frac{1}{1-n}\bigg{[}-n\beta\bigg{\langle}\frac{dH}{dJ}\bigg{\rangle}_{Z_{A}^{(n)}}+n\beta\bigg{\langle}\frac{dH}{dJ}\bigg{\rangle}_{Z}\bigg{]} (5)

where the JJ is a general parameter and nn is the Rényi index, the first average is based on the distribution of ZA(n)Z_{A}^{(n)} and the second is ZZ. Taking the J1J2J_{1}-J_{2} model as an example with fixed J2=1J_{2}=1 and n=2n=2, set J1J_{1} as the tunable parameter here and note HH is a linear function of J1J_{1}, the Eq.(5) becomes dS(2)/dJ1=2βHJ1/J1ZA(2)2βHJ1/J1Z{dS^{(2)}}/{dJ_{1}}=2\beta\langle{H_{J_{1}}}/{J_{1}}\rangle_{Z_{A}^{(2)}}-2\beta\langle{H_{J_{1}}}/{J_{1}}\rangle_{Z}, where the HJ1{H_{J_{1}}} means the J1J_{1} term of the HH. In the SSE frame, it is similar as measuring energy value, which is very simple. The details can be found in the SM.

This conclusion inspires us that we do not need calculating dense data of EE to obtain the derivative. Instead, simulate the average, 2βHJ1/J1ZA(2)2βHJ1/J1Z2\beta\langle{H_{J_{1}}}/{J_{1}}\rangle_{Z_{A}^{(2)}}-2\beta\langle{H_{J_{1}}}/{J_{1}}\rangle_{Z}, at the J1J_{1} we concern directly is enough. We found a similar spirit has been used in calculating the derivative of the Rényi negativity versus the inverse temperature [84]. Through this method, we calculate the derivative of EE curves in the Fig. 3 (a2\mathrm{a}_{2}) and Fig. 3 (b2b_{2}). As shown in Fig. 3 (a3\mathrm{a}_{3}) and Fig. 3 (b3b_{3}), the peaks of the EE derivative really locate at the phase transition point.

Refer to caption
Figure 4: Second Rényi entanglement entropy S(2)S^{(2)} of the J1J2J_{1}-J_{2} Heisenberg model as a function of the coupling J1J_{1} are calculated by Reweight method (Re) and integral method (Int) either in cornerless or cornered entanglement region AA with l=16l=16. With or without corners, the results are consistent within errorbar for two methods.

In fact, this measurement of the EE derivative also points out another way for calculating the EE value through an integral

S(n)(J)=J0JdS(n)dJ𝑑J+S(n)(J0)S^{(n)}(J^{\prime})=\int_{J_{0}}^{J^{\prime}}\frac{dS^{(n)}}{dJ}dJ+S^{(n)}(J_{0}) (6)

where the dS(n)/dJ{dS^{(n)}}/{dJ} can be gained through Eq. (5) and the EE S(n)(J0)S^{(n)}(J_{0}) at the reference point should be known, such as a product state. We demonstrate the equivalence of the two ways (Eq. (4) and Eq. 6) by taking the J1J2J_{1}-J_{2} model as an example, as shown in the Fig. 4, either in cornerless or cornered case.

We note Jarzynski’s equality [85] can also be used in our methods, similar to the previous non-equilibrium algorithms [53, 57]. But we found that there is almost no acceleration effect for the non-equilibrium version compared with the equilibrium QMC, the details in which will be discussed in our coming work 222Zhe Wang, Zhiyan Wang, Yi-Ming Ding, Zheng Yan, et al. In preparation..

Conclusion.- Overall, we develop a practical and unbiased scheme with low-technical barrier to extract the high-precision EE and its derivative from QMC simulation. The space-time manifold needn’t be changed during the simulation and the measurement is an easy diagonal observable. All the intermediate-process measurement-quantities are meaningful and physical, which is unwasteful and useful. It makes QMC possible to probe the novel phases and phase transition by scanning EE in a large parameter region in 2D and higher dimensional systems as same as the DMRG usually does in 1D.

We display a simulating-path from a dimer product state to a Néel phase by taking the J1J2J_{1}-J_{2} AFM Heisenberg model as an example. A diverging peak of EE derivative arises at the phase transition point. The universal coefficient of the sub-leading term of the EE has been successfully extracted in high precision, either at O(3) criticality or continuous-symmetry-breaking phase. Our method is not only limited to boson QMC, but can also be used to other QMC approaches, such as the fermion QMC 333Weilun Jiang, Zheng Yan, et al. In preparation., for highly entangled quantum matter.

Acknowledgement We thank the helpful discussions with Jiarui Zhao, Dong-Xu Liu, Yin Tang, Zehui Deng, Bin-Bin Chen, Yuan Da Liao, and Wei Zhu. ZY acknowledges the collaborations with Yan-Cheng Wang, Z. Y. Meng and Meng Cheng in other related works. The work is supported by the start-up funding of Westlake University. The authors thank the high-performance computing center of Westlake University and the Beijng PARATERA Tech Co.,Ltd. for providing HPC resources.

References

  • Amico et al. [2008] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80, 517 (2008).
  • Laflorencie [2016] N. Laflorencie, Quantum entanglement in condensed matter systems, Physics Reports 646, 1 (2016), quantum entanglement in condensed matter systems.
  • Vidal et al. [2003] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90, 227902 (2003).
  • Korepin [2004] V. E. Korepin, Universality of entropy scaling in one dimensional gapless models, Phys. Rev. Lett. 92, 096402 (2004).
  • Kitaev and Preskill [2006] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).
  • Levin and Wen [2006] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).
  • Calabrese and Lefevre [2008] P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev. A 78, 032329 (2008).
  • Fradkin and Moore [2006] E. Fradkin and J. E. Moore, Entanglement entropy of 2d conformal quantum critical points: Hearing the shape of a quantum drum, Phys. Rev. Lett. 97, 050404 (2006).
  • Nussinov and Ortiz [2009a] Z. Nussinov and G. Ortiz, Sufficient symmetry conditions for Topological Quantum Order, Proc. Nat. Acad. Sci. 106, 16944 (2009a).
  • Nussinov and Ortiz [2009b] Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Annals Phys. 324, 977 (2009b).
  • Casini and Huerta [2007a] H. Casini and M. Huerta, Universal terms for the entanglement entropy in 2+1 dimensions, Nuclear Physics B 764, 183 (2007a).
  • Ji and Wen [2019] W. Ji and X.-G. Wen, Noninvertible anomalies and mapping-class-group transformation of anomalous partition functions, Phys. Rev. Research 1, 033054 (2019).
  • Ji and Wen [2020] W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Research 2, 033417 (2020).
  • Kong et al. [2020] L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng, Algebraic higher symmetry and categorical symmetry: A holographic and entanglement view of symmetry, Phys. Rev. Research 2, 043086 (2020).
  • Wu et al. [2021a] X.-C. Wu, W. Ji, and C. Xu, Categorical symmetries at criticality, Journal of Statistical Mechanics: Theory and Experiment 2021, 073101 (2021a).
  • Ding et al. [2008] W. Ding, N. E. Bonesteel, and K. Yang, Block entanglement entropy of ground states with long-range magnetic order, Physical Review A 77, 052109 (2008).
  • Tang and Zhu [2020] Q.-C. Tang and W. Zhu, Critical scaling behaviors of entanglement spectra, Chinese Physics Letters 37, 010301 (2020).
  • Zhao et al. [2021] J. Zhao, Z. Yan, M. Cheng, and Z. Y. Meng, Higher-form symmetry breaking at ising transitions, Phys. Rev. Research 3, 033024 (2021).
  • Wu et al. [2021b] X.-C. Wu, C.-M. Jian, and C. Xu, Universal Features of Higher-Form Symmetries at Phase Transitions, SciPost Phys. 11, 33 (2021b).
  • Zhao et al. [2022a] J. Zhao, Y.-C. Wang, Z. Yan, M. Cheng, and Z. Y. Meng, Scaling of entanglement entropy at deconfined quantum criticality, Physical Review Letters 128, 010601 (2022a).
  • Chen et al. [2022] B.-B. Chen, H.-H. Tu, Z. Y. Meng, and M. Cheng, Topological disorder parameter: A many-body invariant to characterize gapped quantum phases, Phys. Rev. B 106, 094415 (2022).
  • Zhao et al. [2022b] J. Zhao, B.-B. Chen, Y.-C. Wang, Z. Yan, M. Cheng, and Z. Y. Meng, Measuring rényi entanglement entropy with high efficiency and precision in quantum monte carlo simulations, npj Quantum Materials 7, 69 (2022b).
  • Wang et al. [2022] Y.-C. Wang, N. Ma, M. Cheng, and Z. Y. Meng, Scaling of the disorder operator at deconfined quantum criticality, SciPost Physics 13, 123 (2022).
  • Wang et al. [2021] Y.-C. Wang, M. Cheng, and Z. Y. Meng, Scaling of the disorder operator at (2+1)d(2+1)d u(1) quantum criticality, Phys. Rev. B 104, L081109 (2021).
  • Jiang et al. [2023] W. Jiang, B.-B. Chen, Z. H. Liu, J. Rong, F. F. Assaad, M. Cheng, K. Sun, and Z. Y. Meng, Many versus one: The disorder operator and entanglement entropy in fermionic quantum matter, SciPost Phys. 15, 082 (2023).
  • Yan and Meng [2023] Z. Yan and Z. Y. Meng, Unlocking the general relationship between energy and entanglement spectra via the wormhole effect, Nature Communications 14, 2360 (2023).
  • Senthil et al. [2004a] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. Fisher, Deconfined quantum critical points, Science 303, 1490 (2004a).
  • Senthil et al. [2004b] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. Fisher, Quantum criticality beyond the landau-ginzburg-wilson paradigm, Physical Review B 70, 144407 (2004b).
  • Shao et al. [2016] H. Shao, W. Guo, and A. W. Sandvik, Quantum criticality with two length scales, Science 352, 213 (2016).
  • Sandvik [2007] A. W. Sandvik, Evidence for deconfined quantum criticality in a two-dimensional heisenberg model with four-spin interactions, Physical review letters 98, 227202 (2007).
  • Lou et al. [2009] J. Lou, A. W. Sandvik, and N. Kawashima, Antiferromagnetic to valence-bond-solid transitions in two-dimensional su (n) heisenberg models with multispin interactions, Physical Review B 80, 180414 (2009).
  • Deng et al. [2024] Z. Deng, L. Liu, W. Guo, and H.-q. Lin, Diagnosing so(5)so(5) symmetry and first-order transition in the jq_3j-q\_3 model via entanglement entropy, arXiv preprint arXiv:2401.12838  (2024).
  • D’Emidio and Sandvik [2024] J. D’Emidio and A. W. Sandvik, Entanglement entropy and deconfined criticality: emergent so (5) symmetry and proper lattice bipartition, arXiv preprint arXiv:2401.14396  (2024).
  • Song et al. [2023a] M. Song, J. Zhao, L. Janssen, M. M. Scherer, and Z. Y. Meng, Deconfined quantum criticality lost, arXiv preprint arXiv:2307.02547  (2023a).
  • Song et al. [2023b] M. Song, J. Zhao, Z. Y. Meng, C. Xu, and M. Cheng, Extracting subleading corrections in entanglement entropy at quantum phase transitions, arXiv preprint arXiv:2312.13498  (2023b).
  • Torlai and Melko [2024] G. Torlai and R. G. Melko, Corner entanglement of a resonating valence bond wavefunction (2024), arXiv:2402.17211 [cond-mat.str-el] .
  • Casini and Huerta [2007b] H. Casini and M. Huerta, Universal terms for the entanglement entropy in 2+ 1 dimensions, Nuclear Physics B 764, 183 (2007b).
  • Casini and Huerta [2012] H. Casini and M. Huerta, Positivity, entanglement entropy, and minimal surfaces, Journal of High Energy Physics 2012, 1 (2012).
  • Sandvik [1999] A. W. Sandvik, Stochastic series expansion method with operator-loop update, Phys. Rev. B 59, R14157 (1999).
  • Sandvik [2010] A. W. Sandvik, Computational Studies of Quantum Spin Systems, AIP Conference Proceedings 1297, 135 (2010).
  • [41] A. W. Sandvik, Stochastic series expansion methods, arXiv:1909.10591 .
  • Syljuåsen and Sandvik [2002] O. F. Syljuåsen and A. W. Sandvik, Quantum monte carlo with directed loops, Phys. Rev. E 66, 046701 (2002).
  • Yan [2022] Z. Yan, Global scheme of sweeping cluster algorithm to sample among topological sectors, Phys. Rev. B 105, 184432 (2022).
  • Suzuki et al. [1977] M. Suzuki, S. Miyashita, and A. Kuroda, Monte carlo simulation of quantum spin systems. i, Progress of Theoretical Physics 58, 1377 (1977).
  • Hirsch et al. [1982] J. E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler, Monte carlo simulations of one-dimensional fermion systems, Phys. Rev. B 26, 5033 (1982).
  • Suzuki [1976] M. Suzuki, Relationship between d-dimensional quantal spin systems and (d+ 1)-dimensional ising systems: Equivalence, critical exponents and systematic approximants of the partition function and spin correlations, Progress of theoretical physics 56, 1454 (1976).
  • Blöte and Deng [2002] H. W. J. Blöte and Y. Deng, Cluster monte carlo simulation of the transverse ising model, Phys. Rev. E 66, 066110 (2002).
  • Huang et al. [2020] C.-J. Huang, L. Liu, Y. Jiang, and Y. Deng, Worm-algorithm-type simulation of the quantum transverse-field ising model, Physical Review B 102, 094101 (2020).
  • Fan et al. [2023] Z. Fan, C. Zhang, and Y. Deng, Clock factorized quantum monte carlo method for long-range interacting systems (2023), arXiv:2305.14082 [physics.comp-ph] .
  • Hastings et al. [2010] M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko, Measuring renyi entanglement entropy in quantum monte carlo simulations, Phys. Rev. Lett. 104, 157201 (2010).
  • Humeniuk and Roscilde [2012] S. Humeniuk and T. Roscilde, Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems, Phys. Rev. B 86, 235116 (2012).
  • Grover [2013] T. Grover, Entanglement of interacting fermions in quantum monte carlo calculations, Phys. Rev. Lett. 111, 130402 (2013).
  • Alba [2017] V. Alba, Out-of-equilibrium protocol for rényi entropies via the jarzynski equality, Physical Review E 95, 062132 (2017).
  • Luitz et al. [2014] D. J. Luitz, X. Plat, N. Laflorencie, and F. Alet, Improving entanglement and thermodynamic rényi entropy measurements in quantum monte carlo, Phys. Rev. B 90, 125105 (2014).
  • Wang and Troyer [2014] L. Wang and M. Troyer, Renyi entanglement entropy of interacting fermions calculated using the continuous-time quantum monte carlo method, Phys. Rev. Lett. 113, 110401 (2014).
  • Herdman et al. [2014] C. M. Herdman, S. Inglis, P.-N. Roy, R. G. Melko, and A. Del Maestro, Path-integral monte carlo method for rényi entanglement entropies, Phys. Rev. E 90, 013308 (2014).
  • D’Emidio [2020] J. D’Emidio, Entanglement entropy from nonequilibrium work, Phys. Rev. Lett. 124, 110602 (2020).
  • Song et al. [2023c] M. Song, T.-T. Wang, and Z. Y. Meng, Resummation-based quantum monte carlo for entanglement entropy computation (2023c), arXiv:2310.01490 [cond-mat.str-el] .
  • Zhou et al. [2024] X. Zhou, Z. Y. Meng, Y. Qi, and Y. Da Liao, Incremental swap operator for entanglement entropy: Application for exponential observables in quantum monte carlo simulation, Phys. Rev. B 109, 165106 (2024).
  • Li et al. [2024] C. Li, R.-Z. Huang, Y.-M. Ding, Z. Y. Meng, Y.-C. Wang, and Z. Yan, Relevant long-range interaction of the entanglement hamiltonian emerges from a short-range gapped system, Phys. Rev. B 109, 195169 (2024).
  • Wu et al. [2023] S. Wu, X. Ran, B. Yin, Q.-F. Li, B.-B. Mao, Y.-C. Wang, and Z. Yan, Classical model emerges in quantum entanglement: Quantum monte carlo study for an ising-heisenberg bilayer, Phys. Rev. B 107, 155121 (2023).
  • Song et al. [2023d] M. Song, J. Zhao, Z. Yan, and Z. Y. Meng, Different temperature dependence for the edge and bulk of the entanglement hamiltonian, Phys. Rev. B 108, 075114 (2023d).
  • Liu et al. [2024] Z. Liu, R.-Z. Huang, Z. Yan, and D.-X. Yao, Demonstrating the wormhole mechanism of the entanglement spectrum via a perturbed boundary, Phys. Rev. B 109, 094416 (2024).
  • Mao et al. [2023] B.-B. Mao, Y.-M. Ding, and Z. Yan, Sampling reduced density matrix to extract fine levels of entanglement spectrum, arXiv preprint arXiv:2310.16709  (2023).
  • Troyer et al. [2004] M. Troyer, F. Alet, and S. Wessel, Histogram methods for quantum systems: from reweighting to wang-landau sampling, Brazilian journal of physics 34, 377 (2004).
  • Ding et al. [2024] Y.-M. Ding, J.-S. Sun, N. Ma, G. Pan, C. Cheng, and Z. Yan, Reweight-annealing method for calculating the value of partition function via quantum monte carlo (2024), arXiv:2403.08642 [cond-mat.stat-mech] .
  • Dai and Xu [2024] Z. Dai and X. Y. Xu, Residual entropy from temperature incremental monte carlo method (2024), arXiv:2402.17827 [cond-mat.stat-mech] .
  • Neal [2001] R. M. Neal, Annealed importance sampling, Statistics and computing 11, 125 (2001).
  • Matsumoto et al. [2001] M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Ground-state phase diagram of quantum heisenberg antiferromagnets on the anisotropic dimerized square lattice, Phys. Rev. B 65, 014407 (2001).
  • Ding et al. [2018] C. Ding, L. Zhang, and W. Guo, Engineering surface critical behavior of (2+ 1)-dimensional o (3) quantum critical points, Physical Review Letters 120, 235701 (2018).
  • Yan et al. [2019] Z. Yan, Y. Wu, C. Liu, O. F. Syljuåsen, J. Lou, and Y. Chen, Sweeping cluster algorithm for quantum spin systems with strong geometric restrictions, Physical Review B 99, 165135 (2019).
  • Metlitski and Grover [2011] M. A. Metlitski and T. Grover, Entanglement entropy of systems with spontaneously broken continuous symmetry, arXiv preprint arXiv:1112.5166  (2011).
  • Metlitski et al. [2009] M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Entanglement entropy in the o (n) model, Physical Review B 80, 115122 (2009).
  • Deng et al. [2023] Z. Deng, L. Liu, W. Guo, and H. Lin, Improved scaling of the entanglement entropy of quantum antiferromagnetic heisenberg systems, Physical Review B 108, 125144 (2023).
  • Latorre et al. [2004] J. I. Latorre, E. Rico, and G. Vidal, Ground state entanglement in quantum spin chains (2004), arXiv:quant-ph/0304098 [quant-ph] .
  • Legeza and Sólyom [2006] O. Legeza and J. Sólyom, Two-site entropy and quantum phase transitions in low-dimensional models, Phys. Rev. Lett. 96, 116401 (2006).
  • Chan and Gu [2008] W.-L. Chan and S.-J. Gu, Entanglement and quantum phase transition in the asymmetric hubbard chain: Density-matrix renormalization group calculations, Journal of Physics Condensed Matter 20 (2008).
  • Ren et al. [2012] J. Ren, X. Xu, L. Gu, and J. Li, Quantum information analysis of quantum phase transitions in a one-dimensional V1{V}_{1}-V2{V}_{2} hard-core-boson model, Phys. Rev. A 86, 064301 (2012).
  • Laurell et al. [2021] P. Laurell, A. Scheie, C. J. Mukherjee, M. M. Koza, M. Enderle, Z. Tylczynski, S. Okamoto, R. Coldea, D. A. Tennant, and G. Alvarez, Quantifying and controlling entanglement in the quantum magnet cs2cocl4{\mathrm{cs}}_{2}{\mathrm{cocl}}_{4}Phys. Rev. Lett. 127, 037201 (2021).
  • Note [1] Zhe Wang, Zheng Yan, et al. In preparation.
  • Inglis and Melko [2013] S. Inglis and R. G. Melko, Wang-landau method for calculating rényi entropies in finite-temperature quantum monte carlo simulations, Phys. Rev. E 87, 013306 (2013).
  • Kallin et al. [2014] A. B. Kallin, E. M. Stoudenmire, P. Fendley, R. R. P. Singh, and R. G. Melko, Corner contribution to the entanglement entropy of an O(3) quantum critical point in 2 + 1 dimensions, J. Stat. Mech. 2014, 06009 (2014)arXiv:1401.3504 .
  • Helmes and Wessel [2014] J. Helmes and S. Wessel, Entanglement entropy scaling in the bilayer heisenberg spin system, Phys. Rev. B 89, 245120 (2014).
  • Wu et al. [2020] K.-H. Wu, T.-C. Lu, C.-M. Chung, Y.-J. Kao, and T. Grover, Entanglement renyi negativity across a finite temperature transition: a monte carlo study, Physical Review Letters 125, 140603 (2020).
  • Jarzynski [1997] C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78, 2690 (1997).
  • Note [2] Zhe Wang, Zhiyan Wang, Yi-Ming Ding, Zheng Yan, et al. In preparation.
  • Note [3] Weilun Jiang, Zheng Yan, et al. In preparation.
  • Note [4] How to measure the energy in SSE has been carefully explained in Prof. Sandvik’s tutorial http://physics.bu.edu/~sandvik/programs/ssebasic/ssebasic.html.
  • Sandvik and Kurkijärvi [1991] A. W. Sandvik and J. Kurkijärvi, Quantum Monte Carlo simulation method for spin systems, Phys. Rev. B 43, 5950 (1991).

Appendix A Details about the derivative of entanglement entropy

The Rényi entanglement entropy (EE) is defined as

S(n)=11nlnZA(n)ZnS^{(n)}=\frac{1}{1-n}\mathrm{ln}\frac{Z_{A}^{(n)}}{Z^{n}} (S1)

where

Z=TreβHZ=\mathrm{Tr}e^{-\beta H} (S2)

and

ZA(n)=Tr[(TrBeβH)n]Z_{A}^{(n)}=\mathrm{Tr}[(\mathrm{Tr}_{B}e^{-\beta H})^{n}] (S3)

Thus the EE derivative of JJ is

dS(n)dJ=11n[dZA(n)/dJZA(n)ndZ/dJZ]\frac{dS^{(n)}}{dJ}=\frac{1}{1-n}\bigg{[}\frac{dZ_{A}^{(n)}/dJ}{Z_{A}^{(n)}}-n\frac{dZ/dJ}{Z}\bigg{]} (S4)

According to the Eq.(S2), we have

dZdJ=Tr[βdHdJeβH]\frac{dZ}{dJ}=\mathrm{Tr}[-\beta\frac{dH}{dJ}e^{-\beta H}] (S5)

Thus

dZ/dJZ=βdHdJZ\frac{dZ/dJ}{Z}=-\beta\bigg{\langle}\frac{dH}{dJ}\bigg{\rangle}_{Z} (S6)

Similarly, because partial trace is a linear operator which is commutative with the derivative operator, we have

dZA(n)/dJZA(n)=Tr[nβ(TrBeβH)n1(TrBeβHdHdJ)]Tr[(TrBeβH)n]=nβdHdJZA(n)\begin{split}\frac{dZ_{A}^{(n)}/dJ}{Z_{A}^{(n)}}&=\frac{\mathrm{Tr}[-n\beta(\mathrm{Tr}_{B}e^{-\beta H})^{n-1}(\mathrm{Tr}_{B}e^{-\beta H}\frac{dH}{dJ})]}{\mathrm{Tr}[(\mathrm{Tr}_{B}e^{-\beta H})^{n}]}\\ &=-n\beta\bigg{\langle}\frac{dH}{dJ}\bigg{\rangle}_{Z_{A}^{(n)}}\end{split} (S7)

Therefore, the EE derivative can be rewritten as

dS(n)dJ=11n[nβdHdJZA(n)+nβdHdJZ]\frac{dS^{(n)}}{dJ}=\frac{1}{1-n}\bigg{[}-n\beta\bigg{\langle}\frac{dH}{dJ}\bigg{\rangle}_{Z_{A}^{(n)}}+n\beta\bigg{\langle}\frac{dH}{dJ}\bigg{\rangle}_{Z}\bigg{]} (S8)

The equations above is very general and doesn’t depend on detailed QMC methods. Then let us see how to calculate them in SSE simulation. For convenience, we fix the Rényi index n=2n=2 and choose J1J2J_{1}-J_{2} model of the main text as the example for explaining technical details. The Hamiltonian is

H=J1ijSiSj+J2ijSiSjH=J_{1}\sum_{\langle ij\rangle}S_{i}S_{j}+J_{2}\sum_{\langle ij\rangle}S_{i}S_{j} (S9)

In the followings, we fix the J2=1J_{2}=1 and leave the J1J_{1} as the tunable parameter. Note the Hamiltonian is a linear function of J1J_{1}, that means dH/dJ1=HJ1/J1dH/dJ_{1}=H_{J_{1}}/J_{1} in which HJ1H_{J_{1}} is partial Hamiltonian H(J2=0,J1)H(J_{2}=0,J_{1}). Then the EE derivative is simplified as

dS(2)dJ1=[2βHJ1J1ZA(2)2βHJ1J1Z]\frac{dS^{(2)}}{dJ_{1}}=\bigg{[}2\beta\bigg{\langle}\frac{H_{J_{1}}}{J_{1}}\bigg{\rangle}_{Z_{A}^{(2)}}-2\beta\bigg{\langle}\frac{H_{J_{1}}}{J_{1}}\bigg{\rangle}_{Z}\bigg{]} (S10)

In the SSE frame, it is easy to obtain H=nop/β\langle H\rangle=\langle-n_{op}/\beta\rangle 444How to measure the energy in SSE has been carefully explained in Prof. Sandvik’s tutorial http://physics.bu.edu/~sandvik/programs/ssebasic/ssebasic.html, where nopn_{op} is the number of the concerned Hamiltonian operators. Thus the Eq. (S10) can be further simplified to

dS(2)dJ1=[nJ1J1ZA(2)+2nJ1J1Z]\frac{dS^{(2)}}{dJ_{1}}=\bigg{[}-\bigg{\langle}\frac{n_{J_{1}}}{J_{1}}\bigg{\rangle}_{Z_{A}^{(2)}}+2\bigg{\langle}\frac{n_{J_{1}}}{J_{1}}\bigg{\rangle}_{Z}\bigg{]} (S11)

where nJ1n_{J_{1}} means the number of J1J_{1} operators including both diagonal and off-diagonal ones. It’s worth noting that there is no “22” anymore in the ZA(2)\langle...\rangle_{Z_{A}^{(2)}} term, because nJ1n_{J_{1}} here contains two replicas’ operators which has already been doubled actually.

So far, we have explained how to define the EE derivative in general QMC methods and measure it in detailed SSE algorithm. As shown in the main text, the integral of the EE derivative is highly consistent with the EE original function, which provides another way to obtain EE. The EE derivative also successfully help us to probe quantum phase transition through either conered or cornerless cutting.

Appendix B The weight ratio in SSE

In the SSE, the partition function can be expanded as [89, 39],

Z={αi}βn(Mn)!M!α1|H12|α2×α2|H23|α3αM|HM1|α1={αi}W({αi})\begin{split}Z=&\sum\limits_{\{\alpha_{i}\}}{\beta^{n}(M-n)!\over M!}\langle\alpha_{1}|H_{12}|\alpha_{2}\rangle\times\\ &\langle\alpha_{2}|H_{23}|\alpha_{3}\rangle...\langle\alpha_{M}|H_{M1}|\alpha_{1}\rangle\\ =&\sum\limits_{\{\alpha_{i}\}}W(\{\alpha_{i}\})\end{split} (S12)

where nn is the number of non-identity operators and MM is the total number of all the operators. HijH_{ij} means the operator connects two closest states αi\alpha_{i} and αj\alpha_{j}.

In the reweighting process, for example, if we only tune the parameter J1J_{1}, the weight ratio under a fixed {αi}\{\alpha_{i}\} will becomes

W(J1)W(J1)=(J1J1)nJ1\frac{W(J_{1}^{\prime})}{W(J_{1})}=\bigg{(}\frac{J_{1}^{\prime}}{J_{1}}\bigg{)}^{n_{J_{1}}} (S13)

where the nJ1n_{J_{1}} is the number of J1J_{1} operators. The Eq. (S13) comes from the Eq. (S12), because only the elements αi|Hij|αj\langle\alpha_{i}|H_{ij}|\alpha_{j}\rangle in which the HijH_{ij} is J1J_{1} term will affect the ratio.

Similarly, we can get the weight ratio in a general partition function ZA(n)Z_{A}^{(n)}. In fact, its result is also the Eq. (S13).

Appendix C Details about calculating RA(n)R_{A}^{(n)}

As mentioned in the main text, in principle, if ZA(n)(J1(i+1))/ZA(n)(J1(i))Z_{A}^{(n)}(J_{1(i+1)})/Z_{A}^{(n)}(J_{1(i)}) tends to 1, the calculation results will be more accurate according to the importance sampling, but it requires more segmentation. Moderately, we can choose a value which is not too small or large, near 1. In this paper, we set the smallest value of ZA(n)(J1(i+1))/ZA(n)(J1(i))Z_{A}^{(n)}(J_{1(i+1)})/Z_{A}^{(n)}(J_{1(i)}) 0.2\sim 0.2. For the model we studied, the nJ1n_{J_{1}} will increase with J1J_{1} and βL2\sim\beta L^{2} at J1=J2=1J_{1}=J_{2}=1. Based on this, we can estimate the value of Jratio=J1(i+1)/J1(i)J_{ratio}=J_{1(i+1)}/J_{1(i)} as Jratioeln[0.2]/(βL2)J_{ratio}\sim e^{\mathrm{ln}[0.2]/(\beta L^{2})}.

The next question is how to determine the value of the NN in

ZA(n)(J1)ZA(n)(J1)=i=0N1ZA(n)(J1(i+1))ZA(n)(J1(i))=i=0N1W(J1(i+1))W(J1(i))ZA(n)=i=0N1(J1(i+1)J1(i))nJ1ZA(n)\begin{split}\frac{Z_{A}^{(n)}(J_{1}^{\prime})}{Z_{A}^{(n)}(J_{1})}&=\prod_{i=0}^{N-1}\frac{Z_{A}^{(n)}(J_{1(i+1)})}{Z_{A}^{(n)}(J_{1(i)})}=\prod_{i=0}^{N-1}\bigg{\langle}\frac{W(J_{1(i+1)})}{W(J_{1(i)})}\bigg{\rangle}_{Z_{A}^{(n)}}\\ &=\prod_{i=0}^{N-1}\bigg{\langle}\bigg{(}\frac{J_{1(i+1)}}{J_{1(i)}}\bigg{)}^{n_{J_{1}}}\bigg{\rangle}_{Z_{A}^{(n)}}\end{split} (S14)

In principle, J1(0)J_{1(0)} should be zero since we choose the product state |A|B|A\rangle\otimes|B\rangle as reference point to calculate Rényi entropy at J1(N)J_{1(N)}. However we cannot and do not need to reach J1(0)=0J_{1(0)}=0 in the actual simulation. We only need to ensure that ZA(n)(J1(1))/ZA(n)(J1(0))=1Z_{A}^{(n)}(J_{1(1)})/Z_{A}^{(n)}(J_{1(0)})=1 in the sampling time. To do this, we divide NN into N=N1+N2N=N_{1}+N_{2}. The first step is to reach J1(N)(Jratio)N1=0.001J_{1(N)}(J_{ratio})^{N_{1}}=0.001, i.e. N1=ln[0.001/J1(N)]/ln[Jratio]N_{1}={\mathrm{ln}[0.001/J_{1(N)}]/\mathrm{ln}[J_{ratio}]}. The second step is to reach J1(N)(Jratio)N1+N2=J1(0)=0+J_{1(N)}(J_{ratio})^{N_{1}+N_{2}}=J_{1(0)}=0_{+}, at which ZA(n)(J1(1))/ZA(n)(J1(0))=1Z_{A}^{(n)}(J_{1(1)})/Z_{A}^{(n)}(J_{1(0)})=1 in the sampling and the N2N_{2} is determined by the computer.