This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\addtotheorempostheadhook

[theorem] \addtotheorempostheadhook[assumption] \addtotheorempostheadhook[corollary] \addtotheorempostheadhook[proposition] \addtotheorempostheadhook[definition] \addtotheorempostheadhook[example] \addtotheorempostheadhook[lemma] \addtotheorempostheadhook[main] \addtotheorempostheadhook[remark]

Bieri-Neumann-Strebel-Renz invariants and tropical varieties of integral homology jump loci

Yongqiang Liu Institute of Geometry and Physics, University of Science and Technology of China, Hefei 230026, P.R. China [email protected]    Yuan Liu Institute of Geometry and Physics, University of Science and Technology of China, Hefei 230026, P.R. China [email protected]
(4 avril 2025)
Résumé

Papadima and Suciu studied the relationship between the Bieri-Neumann-Strebel-Renz (short as BNSR) invariants of spaces and the homology jump loci of rank one local systems. Recently, Suciu improved these results using the tropical variety associated to the homology jump loci of complex rank one local systems. In particular, the translated positive-dimensional component of homology jump loci can be detected by its tropical variety. In this paper, we generalize Suciu’s results to integral coefficients and give a better upper bound for the BNSR invariants. Then we provide applications mainly to Kähler groups. Specifically, we classify the Kähler group contained in a large class of groups, which we call the weighted right-angled Artin groups. This class of groups comes from the edge-weighted finite simple graphs and is a natural generalization of the right-angled Artin groups.

1 Introduction

1.1 Background

In 1987, a powerful group theoretic invariant was introduced by Bieri, Neumann and Strebel in [BNS87], now called the BNS invariant. This invariant is a generalization of a former invariant studied by Bieri and Strebel in [BS80, BS81] for metabelian groups. The BNS invariant was later generalized to higher degrees for groups by Bieri and Renz [BR88] and from groups to spaces by Farber, Geoghegan, and Schütts in [FGS10]. These invariants are called the Bieri-Neumann-Strebel-Renz (short as BNSR) invariants, which record the geometric finiteness properties of the spaces.

The computation of the BNSR invariant is extremely difficult. Even in degree 11 case, it is only known for restricted types of groups, such as metabelian groups [BS80, BS81, BG84], one relator groups [Bro87], right-angled Artin groups [MV95, MMV98], Kähler groups [Del10] and pure braid groups [KMM15], etc. Papadima and Suciu in [PS10] initiated the project of looking for approximations of the BNSR invariants, which (1) are more computable and (2) are rationally defined upper bounds for the BNSR invariants. These bounds are derived from the homology jump loci, defined using the homology of the space with field coefficients in rank one local systems. Recently, Suciu improved this bound in [Suc21] using the tropical variety associated to the homology jump loci of rank one local systems with complex coefficients. In particular, the translated positive-dimensional component of homology jump loci can be detected by its tropical variety.

In this paper, we follow Suciu’s approach in [Suc21] and study the tropical varieties of homology jump loci with integral coefficients. The complement of these tropical varieties gives better upper bounds for the BNSR invariants.

1.2 Main results

Let XX be a connected finite CW complex with π1(X)=G\pi_{1}(X)=G. Let S(G)\mathrm{S}(G) denote the unit sphere in the real vector space Hom(G;)H1(X;)\mathrm{Hom}(G;\mathbb{R})\cong H^{1}(X;\mathbb{R}). In this paper, we always assume that dimH1(X;)>0\dim H^{1}(X;\mathbb{R})>0. Set H=H1(X;)H=H_{1}(X;\mathbb{Z}), which is the abelianization of GG. Then it is clear that S(G)=S(H)\mathrm{S}(G)=\mathrm{S}(H). We say χS(G)\chi\in\mathrm{S}(G) is rational if the image of χ\chi is isomorphic to \mathbb{Z}. For any integer k0k\geqslant 0, the kk-th BNSR invariant Σk(X;)\Sigma^{k}(X;\mathbb{Z}) (see Definition 4.2) forms a decreasing sequence of open subsets of S(G)\mathrm{S}(G) as kk increases.

Let 𝕜\mathbbm{k} be a coefficient field. The homology jump ideal 𝒥k(X;)\mathcal{J}^{\leqslant k}(X;\mathbb{Z}) (resp. 𝒥k(X;𝕜)\mathcal{J}^{\leqslant k}(X;\mathbbm{k})) can be defined via the cellular chain complex of the maximal abelian cover of XX with coefficients in \mathbb{Z} (resp. 𝕜\mathbbm{k}), as a complex of H\mathbb{Z}H (resp. 𝕜H\mathbbm{k}H) modules (see Definition 4.7). In fact, 𝒥k(X;)\mathcal{J}^{\leqslant k}(X;\mathbb{Z}) (resp. 𝒥k(X;𝕜)\mathcal{J}^{\leqslant k}(X;\mathbbm{k})) is an ideal in H\mathbb{Z}H (resp. 𝕜H\mathbbm{k}H). When 𝕜\mathbbm{k} is an algebraically closed field, the variety of the ideal 𝒥k(X;𝕜)\mathcal{J}^{\leqslant k}(X;\mathbbm{k}) is exactly the homology jump loci 𝒱k(X;𝕜)\mathcal{V}^{\leqslant k}(X;\mathbbm{k}), i.e, the collection of the rank one 𝕜\mathbbm{k}-coefficient local systems on XX such that its homology is non-zero for some degree in the range [0,k][0,k] (see Definition 4.10). We refer the readers to Suciu’s survey paper [Suc11] for a comprehensive background on this topic.

For any ideal IHI\subset\mathbb{Z}H (resp. 𝕜H\mathbbm{k}H), one can define its tropicalization Trop(I){\mathrm{Trop}}_{\mathbb{Z}}(I) (resp. Trop𝕜(I){\mathrm{Trop}}_{\mathbbm{k}}(I)) in Hom(H;)\mathrm{Hom}(H;\mathbb{R}). Since tropical varieties over \mathbb{Z} are relatively uncommon, we provide a detailed study in section 3. For any subset ZHom(H;)Z\subseteq\mathrm{Hom}(H;\mathbb{R}), denote the image of Z{0}Z-\{0\} in S(H)\mathrm{S}(H) under natural projection as S(Z)\mathrm{S}(Z). Our main result reads as follows.

Theorem 1.1.

With the above notations and assumptions, we have

Σk(X;)S(Trop(𝒥k(X;)))cS(Trop𝕜(𝒥k(X;𝕜)))c\Sigma^{k}(X;\mathbb{Z})\subseteq\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{\leqslant k}(X;\mathbb{Z}))\big{)}^{c}\subseteq\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{J}^{\leqslant k}(X;\mathbbm{k}))\big{)}^{c} (1.1)

Moreover, S(Trop(𝒥k(X;)))\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{\leqslant k}(X;\mathbb{Z}))\big{)} and S(Trop𝕜(𝒥k(X;𝕜)))\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{J}^{\leqslant k}(X;\mathbbm{k}))\big{)} are both finite unions of rationally defined convex cones over polyhedrons on the sphere S(G)\mathrm{S}(G). In particular, they both have dense rational points.

Remark 1.2.

When k=1k=1, the first inclusion in eq. 1.1 is essentially due to Bieri, Groves and Stebel in [BS80, BS81, BG84]. Moreover, they showed that if GG is a finitely generated metabelian group, the first inclusion becomes an equality (for k=1k=1). For more details, see section 4.4. On the other hand, the first inclusion in eq. 1.1 could be strict, see Example 5.2.

Theorem 1.1 is inspired by Suciu’s recent work [Suc21]. In particular, Theorem 1.1 recovers [Suc21, Theorem 1.1], which asserts that

Σk(X;)S(Trop(𝒥k(X;)))c.\Sigma^{k}(X;\mathbb{Z})\subseteq\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{C}}(\mathcal{J}^{\leqslant k}(X;\mathbb{C}))\big{)}^{c}.

See Remark 4.12 for more details. One can adapt Suciu’s proof to show that

Σk(X;)S(Trop𝕜(𝒥k(X;𝕜)))c\Sigma^{k}(X;\mathbb{Z})\subseteq\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{J}^{\leqslant k}(X;\mathbbm{k}))\big{)}^{c}

for any algebraically closed field coefficients 𝕜\mathbbm{k}. In general the inclusion

char(𝕜)=p0S(Trop𝕜(𝒥k(X;𝕜))S(Trop(𝒥k(X;)))\bigcup_{\mathrm{char}(\mathbbm{k})=p\geqslant 0}\mathrm{S}({\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{J}^{\leqslant k}(X;\mathbbm{k}))\subseteq\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{\leqslant k}(X;\mathbb{Z}))\big{)}

could be strict, see Example 5.3. Following directions pointed out by Bieri and Groves in [BG84, Section 8.4], we show that the missing ingredient is the tropical variety for the pp-adic valuation over \mathbb{Q} as in Proposition 3.9 (see Remark 3.10 for more explanations).

The proof of Theorem 1.1 replies on a series of nice results due to Bieri, Groves, and Strebel [BS80, BS81, BG84]. They gave a complete description for the Sigma-invariants of finitely generated modules over finitely generated abelian groups. Applying their results and a key theorem due to Papadima and Suciu [PS10, Theorem 10.1], we obtain Theorem 1.1. Since Bieri, Groves, and Strebel’s results are one of the origins of tropical geometry (see [EKL06]), one can translate the invariant they studied into the language of tropical geometry, and this is why the tropical variety shows up in Theorem 1.1.

1.3 Applications

It is a question of Serre to characterize finitely presented groups that can serve as the fundamental group of a compact Kähler manifold, called the Kähler groups. While some obstructions are known mainly due to the Hodge theory, we still do not have a panorama of this class of groups. The readers may refer to the monographs [ABC+96, Py24] and the survey papers [Ara95, Bur11] for this interesting topic.

A relative version of Serre’s question would be to describe the intersection of Kähler groups with another class of groups. To name a few non-trivial known cases, we have the classification of Kähler groups within 33-dimensional manifold groups in [DS09, Kot12b, BMS12]; within right-angled Artin groups in [DPS09]; within one-relator groups in [BM12]; within groups of large deficiency in [Kot12a]; within cubulable groups up to finite index in [DP19], etc. Under this spirit, we classify Kähler groups among a new class of groups, which is a natural generalization of the right-angled Artin groups. We call them the weighted right-angled Artin groups. This class of groups comes from the edge-weighted finite simple graphs.

Definition 1.3 (Weighted right-angled Artin groups).

Let Γ=(V,E,)\Gamma_{\ell}=(V,E,\ell) be an edge-weighted finite simple graph, with vertex set VV, edge set EE and an edge weight function :E>0\ell\colon E\to\mathbb{Z}_{>0}. The weighted right-angled Artin group associated to Γ\Gamma_{\ell} is the group GΓG_{\Gamma_{\ell}} generated by the vertices aVa\in V, with a defining relation

[ai,aj](e)=1[a_{i},a_{j}]^{\ell(e)}=1

for each edge e={ai,aj}e=\{a_{i},a_{j}\} in EE (here [ai,aj]=aiajai1aj1[a_{i},a_{j}]=a_{i}a_{j}a_{i}^{-1}a_{j}^{-1}). If (e)=1\ell(e)=1 for all eEe\in E, then GΓG_{\Gamma_{\ell}} is the classical right-angled Artin group, denoted by GΓG_{\Gamma}.

Remark 1.4.

The weighted right-angled Artin groups are constructed in a way similar to Artin groups. Moreover, the following Coxeter group

aiV|ai2=1,(aiaj)2(e)=1 when there is an edge e={ai,aj}\langle a_{i}\in V|a_{i}^{2}=1,(a_{i}a_{j})^{2\ell(e)}=1\text{ when there is an edge }e=\{a_{i},a_{j}\}\rangle

is a quotient of the weighted right-angled Artin group GΓG_{\Gamma_{\ell}}.

The various properties of the right-angled Artin group have been thoroughly studied by Papadima and Suciu in [PS06, PS09]. Moreover, the Kähler right-angled Artin group is classified by Dimca, Papadima, and Suciu as follows (the same result is proved by Py using different methods in [Py13, Corollary 4]).

Theorem 1.5 ([DPS09], Corollary 11.14).

Let Γ\Gamma be a finite simple graph and let GΓG_{\Gamma} denote the corresponding right-angled Artin group. Then the following are equivalent.

  1. (i)

    The group GΓG_{\Gamma} is Kähler.

  2. (ii)

    The graph Γ\Gamma is a complete graph on an even number of vertices.

  3. (iii)

    The group GΓG_{\Gamma} is a free abelian group of even rank.

We classify Kähler weighted right-angled Artin group as follows.

Theorem 1.6.

For a weighted right-angled Artin group GΓG_{\Gamma_{\ell}}, the following are equivalent.

  1. (i)

    The group GΓG_{\Gamma_{\ell}} is Kähler.

  2. (ii)

    The edge weighted graph Γ\Gamma_{\ell} is a complete graph on an even number of vertices and no edges with weight 2\geqslant 2 are adjacent.

  3. (iii)

    The group GΓG_{\Gamma_{\ell}} is a finite product of groups with type a1,a2|[a1,a2]m=1\langle a_{1},a_{2}|[a_{1},a_{2}]^{m}=1\rangle for some positive integer mm.

Remark 1.7.

Professor Delzant kindly point out to us that the weighted right-angled Artin group GΓG_{\Gamma_{\ell}} is cubulable if the weights (e)2\ell(e)\geqslant 2 for all edges eEe\in E. In this case, our result is compatible (up to finite index) with his work with Py in [DP19].

Dimca, Papadima and Suciu indeed classified quasi-Kähler right-angled Artin group in [DPS09, Theorem 11.7], which leads to the following question.

Question 1.8.

Can one classify the quasi-Kähler weighted right-angled Artin group?

In general, for GG a Kähler group, Delzant gave a complete description of Σ1(G;)\Sigma^{1}(G;\mathbb{Z}) in [Del10], and Suciu further reinterpreted Delzant’s results using the tropical variety of homology jump loci in [Suc21, Theorem 12.2] (see also [PS10, Theorem 16.4]). As a continuation of these results, we prove that the first inclusion in eq. 1.1 holds as equality for Kähler groups in degree 11. Then we derived that the BNS invariant of a Kähler group is the same as that of its maximal metabelianization, i.e.

Σ1(G;)=Σ1(G/G′′;),\Sigma^{1}(G;\mathbb{Z})=\Sigma^{1}(G/G^{\prime\prime};\mathbb{Z}),

where G=[G,G]G^{\prime}=[G,G], and G′′=[G,G]G^{\prime\prime}=[G^{\prime},G^{\prime}]. For more details, see LABEL:cor:sigma_metabelian_quotient_K\"ahler. This certainly puts some restrictions on the Kähler groups. Furthermore, we summarize some properties for the Kähler group in the next proposition. Most properties listed here should be already known to the experts. For example, (viii)(ix)(viii)\iff(ix) follows from Papadima and Suciu’s work [PS10, Theorem 3.6]; (iv)(vii)(iv)\Rightarrow(vii) is proved by Beauville in [Bea92] (see also [Del10, Lemme 3.1] or [Bur11, Corollary 3.6]). (viii) is also related to Arapura’s work [Ara95, Property (K)(\mathrm{K}^{-})].

Proposition 1.9.

Let GG be a Kähler group. Then the following are equivalent.

  1. (i)

    Σ1(G;)=S(G)\Sigma^{1}(G;\mathbb{Z})=\mathrm{S}(G).

  2. (ii)

    GG^{\prime} is finitely generated.

  3. (iii)

    Σ1(G/G′′;)=S(G/G′′)\Sigma^{1}(G/G^{\prime\prime};\mathbb{Z})=\mathrm{S}(G/G^{\prime\prime}).

  4. (iv)

    G/G′′G^{\prime}/G^{\prime\prime} is finitely generated.

  5. (v)

    G/G′′G/G^{\prime\prime} is polycyclic.

  6. (vi)

    G/G′′G/G^{\prime\prime} is finitely presented.

  7. (vii)

    G/G′′G/G^{\prime\prime} is virtually nilpotent.

  8. (viii)

    G/G′′𝕜G^{\prime}/G^{\prime\prime}\otimes_{\mathbb{Z}}\mathbbm{k} is of finite dimensional 𝕜\mathbbm{k}- for any field coefficients 𝕜\mathbbm{k}.

  9. (ix)

    𝒱1(G;𝕜)\mathcal{V}^{1}(G;\mathbbm{k}) consists of only finitely many points for any algebraically closed field coefficients 𝕜\mathbbm{k}.

In addition to investigating Kähler groups, we apply Theorem 1.1 to the Dwyer-Fried set. In [DF87], Dwyer and Fried studied when a regular free abelian covering of a finite CW complex admits finite Betti numbers. Their findings were further developed in [PS10, Suc14, SYZ15] with field coefficients. By employing the tropical variety over \mathbb{Z}, we extend some of these results to the setting of integral coefficients.

1.4 Organization

This paper is organized as follows. In section 2, we recall Bieri, Groves and Strebel’s work. In section 3, we translate their results into the language of tropical geometry. In section 4, we recall the definitions and properties of the BNSR invariants and jump ideal and give the proof of Theorem 1.1. In section 5, we compute some examples and study the Dwyer-Fried set with \mathbb{Z}-coefficients. The last section 6 is devoted to applications on Kähler groups. We prove LABEL:prop_K\"ahler in LABEL:subsec_K\"ahler and Theorem 1.6 in section 6.2.

2 Bieri, Groves and Strebel’s results

In this section, we always assume that HH is a finitely generated abelian group with rankH=n1\mathrm{rank}_{\mathbb{Z}}H=n\geqslant 1. Then Hom(H;)n\mathrm{Hom}(H;\mathbb{R})\cong\mathbb{R}^{n}, and the character sphere

S(H)=(Hom(H;){0})/+\mathrm{S}(H)=(\mathrm{Hom}(H;\mathbb{R})-\{0\})/\mathbb{R}^{+}

is topologically an (n1)(n-1)-dimensional sphere. Here +\mathbb{R}^{+}, the set of positive real numbers, acts on Hom(H;){0}\mathrm{Hom}(H;\mathbb{R})-\{0\} by scalar multiplication. We will abuse the notation χ\chi for both a nonzero character and its equivalent class [χ][\chi] in S(H)\mathrm{S}(H). For any subset ZHom(H;)Z\subseteq\mathrm{Hom}(H;\mathbb{R}), denote the image of Z{0}Z-\{0\} in S(H)\mathrm{S}(H) by S(Z)\mathrm{S}(Z).

Let RR be a commutative Noetherian ring with unity. Then the group ring RHRH is also commutative and Noetherian. Given any nonzero χHom(H;)\chi\in\mathrm{Hom}(H;\mathbb{R}), denote

Hχ={hHχ(h)0}H_{\chi}=\{h\in H\mid\chi(h)\geqslant 0\}

the associated submonoid. Then RHχRH_{\chi} is a subring of RHRH, hence any RHRH-module can be viewed as a RHχRH_{\chi}-module.

Following Bieri, Groves and Strebel, for a finitely generated RHRH-module MM, one can attach the Sigma-invariant Σ(M)S(H)\Sigma(M)\subseteq\mathrm{S}(H) defined as

Σ(M){χS(H)M is finitely generated over RHχ}\Sigma(M)\coloneqq\{\chi\in\mathrm{S}(H)\mid M\text{ is finitely generated over }RH_{\chi}\}

and Σc(M)\Sigma^{c}(M) as its complementary in S(H)\mathrm{S}(H). The set Σ(M)\Sigma(M) plays an important role in answering many algebraic questions, see [BS80, BS81, BG84] for more details.

Set

𝒮χ{1+hHahhit is a finite sum with ahR and χ(h)>0},\mathscr{S}_{\chi}\coloneqq\{1+\sum_{h\in H}a_{h}\cdot h\mid\text{it is a finite sum with }a_{h}\in R\text{ and }\chi(h)>0\}, (2.1)

which is a multiplicative subset of RHRH. Bieri and Strebel gave a complete description of Σc(M)\Sigma^{c}(M) as follows.

Theorem 2.1 ([BS80], Proposition 2.1).

Let RR be a commutative Noetherian ring with unity and HH a finitely generated abelian group with rankH1{\mathrm{rank}}_{\mathbb{Z}}H\geqslant 1. Assume that MM is a finitely generated RHRH-module with its annihilator ideal denoted by Ann(M)\mathrm{Ann}(M). Then we have

Σc(M)={χS(H)Ann(M)𝒮χ=}.\Sigma^{c}(M)=\{\chi\in\mathrm{S}(H)\mid\mathrm{Ann}(M)\cap\mathscr{S}_{\chi}=\emptyset\}.
Remark 2.2.

Bieri and Strebel proved the above theorem for R=R=\mathbb{Z}, but the given proof remains valid if \mathbb{Z} is generalized to RR, see [BS81, section 1.2]. The precise statement as in the above theorem also appeared in the proof of [BG84, Theorem 8.1].

As an application, Bieri and Strebel gave the following computational results.

Theorem 2.3 ([BS81], Theorem 1.1).

With the same notations and assumptions as in Theorem 2.1, we further assume Ann(M)=j=1q𝔭j\sqrt{\mathrm{Ann}(M)}=\bigcap\limits_{j=1}^{q}\mathfrak{p}_{j}, where {𝔭j}j=1q\{\mathfrak{p}_{j}\}_{j=1}^{q} are all minimal prime ideals containing Ann(M){\mathrm{Ann}(M)}. Then we have

Σc(M)=Σc(RH/Ann(M))=j=1qΣc(RH/𝔭j).\Sigma^{c}(M)=\Sigma^{c}(RH/\mathrm{Ann}(M))=\bigcup_{j=1}^{q}\Sigma^{c}(RH/\mathfrak{p}_{j}).

In particular, Σc(M)\Sigma^{c}(M) only depends on the radical ideal Ann(M)\sqrt{\mathrm{Ann}(M)}.

Now the computation of Σc(M)\Sigma^{c}(M) is reduced to the case when M=RH/IM=RH/I with IRHI\subsetneq RH a proper ideal. Bieri, Groves and Strebel further reinterpreted Σc(RH/I)\Sigma^{c}(RH/I) by valuations. To explain their results, we recall the definition of valuations on rings.

Definition 2.4 ([Bou98], Chapter 4).

For a commutative ring AA with unity, a ring valuation vv on AA is a map v:A{}v\colon A\to\mathbb{R}_{\infty}\coloneqq\mathbb{R}\cup\{\infty\} such that for any a,bAa,b\in A we have that

  1. (i)

    v(ab)=v(a)+v(b)v(ab)=v(a)+v(b),

  2. (ii)

    v(a+b)min{v(a),v(b)}v(a+b)\geqslant\min\{v(a),v(b)\},

  3. (iii)

    v(0)=v(0)=\infty and v(1)=0v(1)=0.

There may be nonzero elements in v1()v^{-1}(\infty) and it is easy to see that v1()v^{-1}(\infty) is a prime ideal of AA. When AA is a field, this is the classical definition of the valuation on a field.

We summarize Bieri, Groves and Strebel’s results [BS81, Theorem 2.1] and [BG84, Theorem 8.1] as follows.

Theorem 2.5.

Let RR be a commutative Noetherian ring with unity and HH a finitely generated abelian group with rankH1{\mathrm{rank}}_{\mathbb{Z}}H\geqslant 1. For a valuation vv on RR and an ideal IRHI\subsetneq RH, let ΔIv(H)\Delta^{v}_{I}(H) denote the set of all real characters of HH induced by valuations on RH/IRH/I extending vv, i.e.

ΔIv(H)={χHom(H;)\displaystyle\Delta^{v}_{I}(H)=\{\chi\in\mathrm{Hom}(H;\mathbb{R})\mid there exists a valuation w:RH/I\displaystyle\text{ there exists a valuation }w\colon RH/I\to\mathbb{R}_{\infty} (2.2)
such that (wκ)|R=v and (wκ)|H=χ},\displaystyle\text{ such that }(w\circ\kappa)|_{R}=v\text{ and }(w\circ\kappa)|_{H}=\chi\},

where κ\kappa is the quotient map RHRH/IRH\to RH/I. Then we have

Σc(RH/I)=v(R)0S(ΔIv(H)),\Sigma^{c}(RH/I)=\bigcup\limits_{v(R)\geqslant 0}\mathrm{S}(\Delta_{I}^{v}(H)), (2.3)

where vv runs through all valuations of RR such that v(R)0v(R)\geqslant 0 (we call this a non-negative valuation for short).

Remark 2.6.

Bieri and Groves described Σc(M)\Sigma^{c}(M) without assuming that RR is Noetherian, see [BG84, Theorem 8.1] for more details.

Since we mainly focus later on the cases when RR is a field or R=R=\mathbb{Z}, the above theorem in these two cases is explained in detail as follows.

Example 2.7.
  1. (a)

    Let R=𝕜R=\mathbbm{k} be a field. For any a𝕜𝕜{0}a\in\mathbbm{k}^{*}\coloneqq\mathbbm{k}-\{0\}, we have

    0=v(1)=v(a)+v(a1).0=v(1)=v(a)+v(a^{-1}).

    If vv is a non-negative valuation, v(a)0v(a)\geqslant 0 and v(a1)0v(a^{-1})\geqslant 0. Hence the non-negative valuation vv can only be the trivial valuation v0v_{0}, i.e.

    v0(a)=0v_{0}(a)=0 for any a𝕜a\in\mathbbm{k}^{*} and v0(0)=v_{0}(0)=\infty.

    Then for any ideal I𝕜HI\subseteq\mathbbm{k}H, we have

    Σc(𝕜H/I)=S(ΔIv0(H)).\Sigma^{c}(\mathbbm{k}H/I)=\mathrm{S}(\Delta^{v_{0}}_{I}(H)).
  2. (b)

    Let R=R=\mathbb{Z}. Then v1()v^{-1}(\infty) is a prime ideal of \mathbb{Z}. All valuations on \mathbb{Z} are the following:

    • If v1()=(p)v^{-1}(\infty)=(p) for p0p\neq 0 a prime integer, then for any a(p)a\notin(p) and b(p)b\in(p), we have v(a)<=v(b)v(a)<\infty=v(b), hence v(a+b)=min{v(a),v(b)}=v(a).v(a+b)=\min\{v(a),v(b)\}=v(a). Thus the valuation vv factors through /p\mathbb{Z}/p\mathbb{Z}, which is reduced to a valuation on the residue field 𝔽p\mathbb{F}_{p}. Since for any nonzero element x𝔽px\in\mathbb{F}_{p}, xp1=1x^{p-1}=1, we have 0=v(1)=v(xp1)=(p1)v(x)0=v(1)=v(x^{p-1})=(p-1)v(x), which means v(x)=0v(x)=0 for any xx nonzero. We denote this valuation on \mathbb{Z} as v^p\hat{v}_{p}, and call it the mod pp valuation:

      v^p(n)={,if pn0,if pn.\hat{v}_{p}(n)=\begin{cases}\infty,&\text{if }p\mid n\\ 0,&\text{if }p\nmid n.\end{cases}
    • If v1()=(0)v^{-1}(\infty)=(0), vv extends to a valuation on \mathbb{Q} defined as v(ab)=v(a)v(b)v(\frac{a}{b})=v(a)-v(b). By Ostrowski’s theorem, it is equivalent to either the archimedean valuation, a pp-adic non-archimedean valuation vpv_{p} or a trivial valuation v0v_{0}. Noticing that the condition (ii) in Definition 2.4 is non-archimedean, vv has to be the pp-adic valuation vpv_{p} or the trivial valuation v0v_{0}.

    So it is direct to see that all valuations on \mathbb{Z} are nonnegative. Then for any ideal IHI\subsetneq\mathbb{Z}H, we have

    Σc(H/I)=S(ΔIv0(H))p primeS(ΔIvp(H)ΔIv^p(H)),\Sigma^{c}(\mathbb{Z}H/I)=\mathrm{S}(\Delta^{v_{0}}_{I}(H))\cup\bigcup_{p\text{\ prime}}\mathrm{S}\big{(}\Delta^{v_{p}}_{I}(H)\cup\Delta^{\hat{v}_{p}}_{I}(H)\big{)},

    where the set of primes pp in the union is finite thanks to [BG84, Theorem 8.2].

  3. (c)

    In fact, as long as RR is a discrete valuation domain, there are at most three types of non-negative valuations on RR up to multiplication by a positive real number. For more details, see [BG84, section 8.4].

The following two important theorems due to Bieri, Groves and Strebel are recorded here for later use.

Theorem 2.8 ([BG84], Corollarie 8.3 & 8.4).

Let HH be a finitely generated abelian group with rankH1\mathrm{rank}_{\mathbb{Z}}H\geqslant 1 and RR a Dedekind domain. For a finitely generated RHRH-module MM, Σc(M)\Sigma^{c}(M) is a finite union of rationally defined convex cones over polyhedrons on S(H)\mathrm{S}(H). In particular, Σc(M)\Sigma^{c}(M) has dense rational points.

Theorem 2.9 ([BS80], Theorem 2.4).

Let HH be a finitely generated abelian group with rankH1\mathrm{rank}_{\mathbb{Z}}H\geqslant 1 and MM a finitely generated H\mathbb{Z}H-module. Then the abelian group underlying MM is finitely generated over \mathbb{Z} if and only if Σc(M)=\Sigma^{c}(M)=\emptyset.

3 Connections with tropical geometry

In this section, we focus on the cases where RR is a field 𝕜\mathbbm{k} or R=R=\mathbb{Z}. We will use terminologies in tropical geometry to re-explain Theorem 2.1 and Theorem 2.5. The readers may refer to the monograph [MS15] for the required background on tropical geometry.

3.1 Tropical variety over a valued field

Let 𝕜\mathbbm{k} be a fixed field endowed with a possibly trivial valuation v:𝕜v:\mathbbm{k}\to\mathbb{R}_{\infty}. We first assume that HH is the free abelian group n\mathbb{Z}^{n}. The essential modification needed to drop the condition of freeness will be provided in Definition 3.4 later. Let 𝕜H=𝕜[x1±1,,xn±1]\mathbbm{k}H=\mathbbm{k}[x_{1}^{{\pm 1}},\ldots,x_{n}^{{\pm 1}}] be the Laurent polynomial ring.

Definition 3.1 (Tropical variety over a valued field).

For an ideal I𝕜[x1±1,,xn±1]I\subseteq\mathbbm{k}[x_{1}^{{\pm 1}},\ldots,x_{n}^{{\pm 1}}], there are three ways to define the tropical variety of II.

  1. (i)

    For any nonzero f=unauxu𝕜[x1±1,,xn±1]f=\sum\limits_{\textbf{u}\in\mathbb{Z}^{n}}a_{\textbf{u}}x^{\textbf{u}}\in\mathbbm{k}[x_{1}^{{\pm 1}},\ldots,x_{n}^{{\pm 1}}] and the valuation vv on 𝕜\mathbbm{k}, the tropical polynomial trop𝕜,v(f):n{\mathrm{trop}}_{\mathbbm{k},v}(f)\colon\mathbb{R}^{n}\to\mathbb{R} is defined by

    trop𝕜,v(f)(𝐰)=minun{v(a𝐮)+𝐮wau0},{\mathrm{trop}}_{\mathbbm{k},v}(f)({\bf{w}})=\min\limits_{{\textbf{u}}\in\mathbb{Z}^{n}}\{v(a_{{\bf{u}}})+{\bf{u}}\cdot{\textbf{w}}\mid a_{\textbf{u}}\neq 0\}, (3.1)

    which is a piecewise linear concave function. The tropical hypersurface associated to ff is defined as the set

    Trop𝕜,v(f){wn the minimal in eq. 3.1 is achieved at least twice}{\mathrm{Trop}}_{\mathbbm{k},v}(f)\coloneqq\{{\textbf{w}}\in\mathbb{R}^{n}\mid\text{ the minimal in\ }\lx@cref{creftype~refnum}{eq:trop_of_polynomial}\text{ is achieved at least twice}\}.

    The tropical variety of I𝕜[x1±1,,xn±1]I\subseteq\mathbbm{k}[x_{1}^{{\pm 1}},\ldots,x_{n}^{{\pm 1}}] is defined as

    Trop𝕜,v(I)=fITrop𝕜,v(f).{\mathrm{Trop}}_{\mathbbm{k},v}(I)=\bigcap_{f\in I}{\mathrm{Trop}}_{\mathbbm{k},v}(f). (3.2)
  2. (ii)

    Fix wn{\textbf{w}}\in\mathbb{R}^{n}. For any nonzero f=unauxu𝕜[x1±1,,xn±1]f=\sum\limits_{\textbf{u}\in\mathbb{Z}^{n}}a_{\textbf{u}}x^{\textbf{u}}\in\mathbbm{k}[x_{1}^{{\pm 1}},\ldots,x_{n}^{{\pm 1}}], the initial form inw,v(f)\mathrm{in}_{\textbf{w},v}(f) is the sum of all terms in ff where the minimal in eq. 3.1 is achieved. The initial ideal inw,v(I)\mathrm{in}_{\textbf{w},v}(I) is the ideal generated by inw,v(f)\mathrm{in}_{\textbf{w},v}(f) where ff runs over II. Set

    Trop𝕜,v(I){wninw,v(I)𝕜[x1±1,,xn±1]}.{\mathrm{Trop}}_{\mathbbm{k},v}(I)\coloneqq\{\textbf{w}\in\mathbb{R}^{n}\mid\mathrm{in}_{\textbf{w},v}(I)\neq\mathbbm{k}[x_{1}^{{\pm 1}},\cdots,x_{n}^{{\pm 1}}]\}.
  3. (iii)

    Let 𝕜¯\overline{\mathbbm{k}} be an algebraically closed field extending 𝕜\mathbbm{k} such that the extension of vv to 𝕜¯\overline{\mathbbm{k}} is nontrivial, still denoted as vv. Such field always exists. In fact, if the valuation vv on 𝕜\mathbbm{k} is nontrivial, one can take 𝕜¯\overline{\mathbbm{k}} to be the algebraic closure of 𝕜\mathbbm{k}. On the other hand, if the valuation vv on 𝕜\mathbbm{k} is trivial, one can take 𝕜¯\overline{\mathbbm{k}} to be the field of Puiseux series n1𝕂((t1/n))\bigcup_{n\geqslant 1}\mathbb{K}((t^{1/n})) if char(𝕜)=0\mathrm{char}(\mathbbm{k})=0 and 𝕂((t))\mathbb{K}((t^{\mathbb{Q}})) if char(𝕜)>0\mathrm{char}(\mathbbm{k})>0. Here 𝕂\mathbb{K} is an algebraic closure of 𝕜\mathbbm{k}. Both fields n1𝕂((t1/n))\bigcup_{n\geqslant 1}\mathbb{K}((t^{1/n})) and 𝕂((t))\mathbb{K}((t^{\mathbb{Q}})) have nontrivial \mathbb{Q}-valued valuation, see e.g. [EKL06, Example 1.2.2]. The specific choice of 𝕜¯\overline{\mathbbm{k}} is not important, as long as it is algebraically closed with a nontrivial valuation (see [MS15, Theorem 3.2.4 and Remark 3.2.5]). The tropical variety of II is then defined as the closure (under Euclidean topology) of the subset of points (v(x1),,v(xn))(v(x_{1}),\cdots,v(x_{n})) where (x1,,xn)(x_{1},\cdots,x_{n}) belongs to the variety of the ideal I𝕜𝕜¯I\otimes_{\mathbbm{k}}\overline{\mathbbm{k}} in (𝕜¯)n(\overline{\mathbbm{k}}^{*})^{n}.

The following fundamental theorem of tropical algebraic geometry in [MS15, Theorem 3.2.3] shows the equivalence of the above three definitions.

Theorem 3.2.

(The Fundamental theorem of tropical algebraic geometry) Let II be an ideal in 𝕜[x1±,,xn±]\mathbbm{k}[x_{1}^{{\pm}},\cdots,x_{n}^{{\pm}}] with a possible trivial valuation vv on 𝕜\mathbbm{k}. Let Z=Spec(𝕜[x1±,,xn±]/I)Z=\mathrm{Spec}(\mathbbm{k}[x_{1}^{{\pm}},\ldots,x_{n}^{{\pm}}]/I) denote the corresponding subscheme. Then Z(𝕜¯)Z(\overline{\mathbbm{k}}), the set of 𝕜¯\overline{\mathbbm{k}}-points of ZZ, is a subvariety in (𝕜¯)n(\overline{\mathbbm{k}}^{*})^{n}. With the above notations and assumptions, the following three subsets of n\mathbb{R}^{n} coincide:

  1. (i)

    the subset Trop𝕜,v(I){\mathrm{Trop}}_{\mathbbm{k},v}(I) as defined in eq. 3.2,

  2. (ii)

    the set {wninw,v(I)𝕜[x1±,,xn±]}\{\textbf{w}\in\mathbb{R}^{n}\mid\mathrm{in}_{\textbf{w},v}(I)\neq\mathbbm{k}[x_{1}^{{\pm}},\cdots,x_{n}^{{\pm}}]\},

  3. (iii)

    the Euclidean closure of the following set of componentwise valuations of points in Z(𝕜¯)Z(\overline{\mathbbm{k}}):

    v(Z(𝕜¯))={(v(x1),,v(xn))n(x1,,xn)Z(𝕜¯)}.v(Z(\overline{\mathbbm{k}}))=\{(v(x_{1}),\cdots,v(x_{n}))\in\mathbb{R}^{n}\mid(x_{1},\cdots,x_{n})\in Z(\overline{\mathbbm{k}})\}.

In particular, Trop𝕜,v(I){\mathrm{Trop}}_{\mathbbm{k},v}(I) only depends on I\sqrt{I}. If I=j=1q𝔭j\sqrt{I}=\bigcap\limits_{j=1}^{q}\mathfrak{p}_{j}, where {𝔭j}j=1q\{\mathfrak{p}_{j}\}_{j=1}^{q} are all minimal prime ideals containing II, then

Trop𝕜,v(I)=Trop𝕜,v(I)=j=1qTrop𝕜,v(𝔭j).{\mathrm{Trop}}_{\mathbbm{k},v}(I)={\mathrm{Trop}}_{\mathbbm{k},v}(\sqrt{I})=\bigcup_{j=1}^{q}{\mathrm{Trop}}_{\mathbbm{k},v}(\mathfrak{p}_{j}).

We recall the structure theorem for tropical varieties in [MS15, Theorem 3.3.5] with notations and terms explained there in detail.

Theorem 3.3.

(Structure theorem for tropical variety) Let II be a prime ideal in 𝕜[x1±1,,xn±1]\mathbbm{k}[x_{1}^{{\pm 1}},\cdots,x_{n}^{{\pm 1}}] with dimZ(𝕜¯)=d\dim Z(\overline{\mathbbm{k}})=d. Then Trop𝕜,v(I){\mathrm{Trop}}_{\mathbbm{k},v}(I) is the support of a balanced weighted v(𝕜)v(\mathbbm{k}^{*})-valued rational polyhedral complex pure of dimension dd.

Next we define the tropical variety when HH is abelian but not necessarily free.

Definition 3.4.

(The modification from free abelian to abelian) Assume that HH has non-trivial torsion part and Hn/d1/dmH\cong\mathbb{Z}^{n}\oplus\mathbb{Z}/d_{1}\mathbb{Z}\oplus\cdots\oplus\mathbb{Z}/d_{m}\mathbb{Z}. Then there exists a natural abelian group epimorphism ψ:n+mH\psi\colon\mathbb{Z}^{n+m}\twoheadrightarrow H, which induces a ring epimorphism 𝕜n+m𝕜H\mathbbm{k}\mathbb{Z}^{n+m}\twoheadrightarrow\mathbbm{k}H and an embedding

ψ:Hom(H;)Hom(n+m;).\psi^{*}\colon\mathrm{Hom}(H;\mathbb{R})\hookrightarrow\mathrm{Hom}(\mathbb{Z}^{n+m};\mathbb{R}).

Identify 𝕜n+m\mathbbm{k}\mathbb{Z}^{n+m} with 𝕜[x1±1,,xn±1;y1±1,,ym±1]\mathbbm{k}[x_{1}^{\pm 1},\cdots,x_{n}^{\pm 1};y_{1}^{\pm 1},\cdots,y_{m}^{\pm 1}]. Consider K=(y1d11,,ymdm1)K=(y_{1}^{d_{1}}-1,\cdots,y_{m}^{d_{m}}-1) an ideal in 𝕜n+m\mathbbm{k}\mathbb{Z}^{n+m}. Then 𝕜H𝕜n+m/K\mathbbm{k}H\cong\mathbbm{k}\mathbb{Z}^{n+m}/K is a quotient ring. For any ideal I𝕜HI\subseteq\mathbbm{k}H, there exists a unique ideal I~𝕜n+m\tilde{I}\subseteq\mathbbm{k}\mathbb{Z}^{n+m} containing KK such that 𝕜n+m/I~𝕜H/I.\mathbbm{k}\mathbb{Z}^{n+m}/\tilde{I}\cong\mathbbm{k}H/I. For any valuation vv on 𝕜n+m/I~\mathbbm{k}\mathbb{Z}^{n+m}/\tilde{I}, the relation yidi1y_{i}^{d_{i}}-1 in the ideal KK gives

v(yidi)=div(yi)=v(1)=0,v(y_{i}^{d_{i}})=d_{i}\cdot v(y_{i})=v(1)=0,

which implies that v(yi)=0v(y_{i})=0 for any 1im1\leqslant i\leqslant m. Since I~K\tilde{I}\supseteq K,

Trop𝕜,v(I~)Trop𝕜,v(K)=ψ(Hom(H;)).{\mathrm{Trop}}_{\mathbbm{k},v}(\tilde{I})\subseteq{\mathrm{Trop}}_{\mathbbm{k},v}(K)=\psi^{*}(\mathrm{Hom}(H;\mathbb{R})).

Then we can define

Trop𝕜,v(I)(ψ)1Trop𝕜,v(I~).{\mathrm{Trop}}_{\mathbbm{k},v}(I)\coloneqq(\psi^{*})^{-1}{\mathrm{Trop}}_{\mathbbm{k},v}(\tilde{I}).
Remark 3.5.

One can also understand Trop𝕜,v(I){\mathrm{Trop}}_{\mathbbm{k},v}(I) as follows. Consider an algebraically closed field 𝕜¯\overline{\mathbbm{k}} containing 𝕜\mathbbm{k} with nontrivial valuation as in Definition 3.1(iii). The variety associated with the coordinate ring 𝕜¯H\overline{\mathbbm{k}}H is (𝕜¯)n\coprod(\overline{\mathbbm{k}}^{*})^{n}, a finite disjoint union of (𝕜¯)n(\overline{\mathbbm{k}}^{*})^{n}, with identity 11 corresponding to the trivial representation H𝕜¯H\to\overline{\mathbbm{k}}^{*}. The connected component containing 11 is an affine torus (𝕜¯)n(\overline{\mathbbm{k}}^{*})^{n} and any other connected component is a translation of this one, by characters of finite order induced by the torsion part of HH. Note that for any character of finite order, its valuation has to be 0. Let Z(𝕜¯)Z(\overline{\mathbbm{k}}) be the 𝕜¯\overline{\mathbbm{k}}-points of II and denote its connected components as {Zj(𝕜¯)}1jq\{Z_{j}(\overline{\mathbbm{k}})\}_{1\leqslant j\leqslant q}. Each connected component is contained in one of the connected components of (𝕜¯)n\coprod(\overline{\mathbbm{k}}^{*})^{n}. Up to translation via a torsion element, all the connected components can be considered as a subset in (𝕜¯)n.(\overline{\mathbbm{k}}^{*})^{n}. Then the tropical variety Trop𝕜,v(I){\mathrm{Trop}}_{\mathbbm{k},v}(I) is indeed the set

1jq{(v(x1),,v(xn))(x1,,xn)Zj(𝕜¯)(𝕜¯)n}¯.\bigcup\limits_{1\leqslant j\leqslant q}\overline{\{(v(x_{1}),\cdots,v(x_{n}))\mid(x_{1},\cdots,x_{n})\in Z_{j}(\overline{\mathbbm{k}})\subset(\overline{\mathbbm{k}}^{*})^{n}\}}. (3.3)

Einsiedler, Kapranov, and Lind first proved in [EKL06, Corollary 2.2.6] that the tropical variety is indeed the set defined by Bieri and Groves using valuations. We slightly generalize their results as follows.

Proposition 3.6.

Consider a valuation vv on 𝕜\mathbbm{k} and a finitely generated abelian group HH with rank(H)1{\mathrm{rank}}_{\mathbb{Z}}(H)\geqslant 1. For an ideal I𝕜HI\subsetneq\mathbbm{k}H, let ΔIv(H)\Delta^{v}_{I}(H) denote the set considered in Theorem 2.5. Then we have

ΔIv(H)=Trop𝕜,v(I).\Delta^{v}_{I}(H)={\mathrm{Trop}}_{\mathbbm{k},v}(I).
Démonstration.

If HH is free abelian, the claim is proved in [EKL06, Corollary 2.2.6]. Now we assume that HH has a non-trivial torsion part and we use the notations as in Definition 3.4. Then the claim holds if we have the following equalities:

ΔIv(H)=(ψ)1ΔI~v(n+m)=(ψ)1Trop𝕜,v(I~)=Trop𝕜,v(I).\Delta^{v}_{I}(H)=(\psi^{*})^{-1}\Delta^{v}_{\tilde{I}}(\mathbb{Z}^{n+m})=(\psi^{*})^{-1}{\mathrm{Trop}}_{\mathbbm{k},v}(\tilde{I})={\mathrm{Trop}}_{\mathbbm{k},v}(I).

The second equality follows from the free abelian case, and the last one follows from Definition 3.4. So we are left to prove the first equality. Since 𝕜n+m/I~𝕜H/I,\mathbbm{k}\mathbb{Z}^{n+m}/\tilde{I}\cong\mathbbm{k}H/I, for any valuation w:𝕜H/Iw\colon\mathbbm{k}H/I\to\mathbb{R}_{\infty} with w|𝕜=vw|_{\mathbbm{k}}=v and w|H=χw|_{H}=\chi, it is also a valuation on 𝕜n+m/I~\mathbbm{k}\mathbb{Z}^{n+m}/\tilde{I} such that w|𝕜=vw|_{\mathbbm{k}}=v. Since I~K\tilde{I}\supseteq K, it is easy to see that w|n+mψ(Hom(H;))w|_{\mathbb{Z}^{n+m}}\in\psi^{*}(\mathrm{Hom}(H;\mathbb{R})). In particular, w|n+m=ψχw|_{\mathbb{Z}^{n+m}}=\psi^{*}\chi. This gives a one to one correspondence between ΔIv(H)\Delta^{v}_{I}(H) and (ψ)1ΔI~v(n+m)(\psi^{*})^{-1}\Delta^{v}_{\tilde{I}}(\mathbb{Z}^{n+m}), which implies the first equality. ∎

3.2 Tropical variety over rings

In this subsection, we follow [MS15, Section 1.6] to define the tropical variety over a commutative Noetherian ring RR. Now HH is a finitely generated abelian group, not necessarily free.

Fix a character χHom(H;)\chi\in\mathrm{Hom}(H;\mathbb{R}). For any nonzero f=ahhRHf=\sum a_{h}h\in RH, we denote by degχ(f)\deg_{\chi}(f) the minimal value of χ(h)\chi(h) with ah0a_{h}\neq 0, and call it the χ\chi-degree of ff. The initial form inχ(f)\mathrm{in}_{\chi}(f) is the sum of all terms ahha_{h}h in ff such that χ(h)=degχ(f)\chi(h)=\deg_{\chi}(f). For an ideal IRHI\subseteq RH, its initial ideal is defined as

inχ(I)inχ(f)fI.\mathrm{in}_{\chi}(I)\coloneqq\langle\mathrm{in}_{\chi}(f)\mid f\in I\rangle.

Following [MS15, Section 1.6], we define the tropical variety over RR below.

Definition 3.7 (Tropical variety over a ring).

The tropical variety over RR of an ideal IRHI\subseteq RH is the following set

TropR(I){χHom(H;)inχ(I)RH}.{\mathrm{Trop}}_{R}(I)\coloneqq\{\chi\in\mathrm{Hom}(H;\mathbb{R})\mid\mathrm{in}_{\chi}(I)\neq RH\}.

Note that for the zero character in0I=I\mathrm{in}_{0}I=I. Hence 0TropR(I)0\in{\mathrm{Trop}}_{R}(I) if and only if II is a proper ideal in RHRH, which implies that TropR(I)={\mathrm{Trop}}_{R}(I)=\emptyset if and only if I=RHI=RH. From now on we always assume that II is a proper ideal. Moreover, by definition if χTropR(I)\chi\in{\mathrm{Trop}}_{R}(I), then rχTropR(I)r\cdot\chi\in{\mathrm{Trop}}_{R}(I) for any positive real number rr. Therefore, S(TropR(I))\mathrm{S}({\mathrm{Trop}}_{R}(I)) shares the same information as TropR(I){\mathrm{Trop}}_{R}(I). The following result shows that the work of Bieri, Groves and Strebel can be reinterpreted by the tropical variety.

Proposition 3.8.

With the above assumptions and notations, we have

S(TropR(I))=Σc(RH/I).\mathrm{S}\big{(}{\mathrm{Trop}}_{R}(I)\big{)}=\Sigma^{c}(RH/I).

Moreover, if I=j=1q𝔭j\sqrt{I}=\bigcap\limits_{j=1}^{q}\mathfrak{p}_{j}, where {𝔭j}j=1q\{\mathfrak{p}_{j}\}_{j=1}^{q} are all minimal prime ideals containing II, then

TropR(I)=j=1qTropR(𝔭j).{\mathrm{Trop}}_{R}(I)=\bigcup_{j=1}^{q}{\mathrm{Trop}}_{R}(\mathfrak{p}_{j}).

In particular, TropR(I){\mathrm{Trop}}_{R}(I) only depends on the radical ideal I\sqrt{I}.

Démonstration.

By Theorem 2.1, χΣc(RH/I)\chi\in\Sigma^{c}(RH/I) if and only if 𝒮χI=\mathscr{S}_{\chi}\cap I=\emptyset with notation in eq. 2.1. By Definition 3.7, it is clear that χS(TropR(I))\chi\in\mathrm{S}({\mathrm{Trop}}_{R}(I)) if and only if inχ(I)RH\mathrm{in}_{\chi}(I)\neq RH. Thus we only need to show that 𝒮χI\mathscr{S}_{\chi}\cap I\neq\emptyset if and only if inχ(I)=RH\mathrm{in}_{\chi}(I)=RH.

One direction is clear. If f𝒮χIf\in\mathscr{S}_{\chi}\cap I, then inχ(f)=1\mathrm{in}_{\chi}(f)=1 and inχ(I)=RH\mathrm{in}_{\chi}(I)=RH. Conversely, if inχ(I)=RH\mathrm{in}_{\chi}(I)=RH, then there exist f1,,fkIf_{1},\cdots,f_{k}\in I and g1,,gkRHg_{1},\cdots,g_{k}\in RH such that

1=j=1kinχ(fj)gj.1=\sum_{j=1}^{k}\mathrm{in}_{\chi}(f_{j})\cdot g_{j}.

Let gjg^{\prime}_{j} denote the χ\chi-homogeneous terms of gjg_{j} with χ\chi-degree being degχ(fj).-\deg_{\chi}(f_{j}). Then we have

1=j=1kinχ(fj)gj1=\sum_{j=1}^{k}\mathrm{in}_{\chi}(f_{j})\cdot g^{\prime}_{j}

Set f=j=1kfjgjf=\sum_{j=1}^{k}f_{j}\cdot g^{\prime}_{j}. It is clear that fIf\in I and inχ(f)=1\mathrm{in}_{\chi}(f)=1, hence f𝒮χIf\in\mathscr{S}_{\chi}\cap I. Then the first claim follows. The moreover part is a direct consequence of Theorem 2.3. ∎

When RR is a field 𝕜\mathbbm{k}, the tropical variety Trop𝕜(I){\mathrm{Trop}}_{\mathbbm{k}}(I) defined in Definition 3.7 is indeed Trop𝕜,v0(I){\mathrm{Trop}}_{\mathbbm{k},v_{0}}(I) with the trivial valuation v0v_{0} on 𝕜\mathbbm{k} defined in Definition 3.1. The claim follows from Example 2.7(a) and Proposition 3.6.

When R=R=\mathbb{Z}, the tropical variety over \mathbb{Z} can be understood using the tropical varieties over various fields with valuations in Example 2.7(b). We summarize this in the next proposition and its proof follows the idea in [BG84, section 2.1 & 2.2]

Proposition 3.9.

Let II be an ideal in H\mathbb{Z}H. Then we have

S(Trop(I))=S(Trop,v0(I)p primefinitely many(Trop,vp(I)Trop𝔽p,v^p(I𝔽p))),\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(I)\big{)}=\mathrm{S}\Big{(}{\mathrm{Trop}}_{\mathbb{Q},v_{0}}(I\otimes_{\mathbb{Z}}\mathbb{Q})\cup\bigcup\limits_{\begin{subarray}{c}p\text{ prime}\\ \text{finitely many}\end{subarray}}\big{(}\mathrm{Trop}_{\mathbb{Q},v_{p}}(I\otimes_{\mathbb{Z}}\mathbb{Q})\cup\mathrm{Trop}_{\mathbb{F}_{p},\hat{v}_{p}}(I\otimes_{\mathbb{Z}}\mathbb{F}_{p})\big{)}\Big{)},

where in the union we are taking the trivial valuation v0v_{0} on \mathbb{Q}, the pp-adic valuation vpv_{p} on \mathbb{Q} and the trivial valuation v^p\hat{v}_{p} on 𝔽p\mathbb{F}_{p}, respectively.

Démonstration.

By Theorem 2.5, Example 2.7(b) and Proposition 3.8, we need to show that if vv is one of the valuations vpv_{p} with p0p\geqslant 0 or v^p\hat{v}_{p} with p>0p>0, then

ΔIv(H)=Trop𝕜,v(I𝕜)\Delta^{v}_{I}(H)={\mathrm{Trop}}_{\mathbbm{k},v}(I\otimes_{\mathbb{Z}}\mathbbm{k}) (3.4)

for a proper field 𝕜\mathbbm{k}.

We first study the trivial and pp-adic valuations vpv_{p} over \mathbb{Q} with p0p\geqslant 0. If I(0)I\cap\mathbb{Z}\neq(0), write I=(m)I\cap\mathbb{Z}=(m) with m0m\neq 0. Then any valuation ww on H/I\mathbb{Z}H/I gives w(m)=w(m)=\infty, while w|=vpw|_{\mathbb{Z}}=v_{p} can not happen since vp(m)v_{p}(m)\neq\infty. Hence ΔIvp(H)=\Delta^{v_{p}}_{I}(H)=\emptyset. Meanwhile, mIm\in I implies I=HI\otimes_{\mathbb{Z}}\mathbb{Q}=\mathbb{Q}H, hence Trop,vp(I)=\mathrm{Trop}_{\mathbb{Q},v_{p}}(I\otimes_{\mathbb{Z}}\mathbb{Q})=\emptyset. So eq. 3.4 holds under this assumption.

Now we assume that I=(0)I\cap\mathbb{Z}=(0). In this case, the ring H/(I)\mathbb{Q}H/(I\otimes_{\mathbb{Z}}\mathbb{Q}) is non-trivial. Set S=\{0}S=\mathbb{Z}\backslash\{0\}, which is a multiplicative subset of \mathbb{Z}. Since vp1()=(0)v_{p}^{-1}(\infty)=(0) in \mathbb{Z}, we have S(0)=S\cap(0)=\emptyset. Then there exists a unique valuation, still denoted as vp:S1=v_{p}:S^{-1}\mathbb{Z}=\mathbb{Q}\to\mathbb{R}_{\infty}, given by vp(ab)=vp(a)vp(b){v_{p}}(\frac{a}{b})=v_{p}(a)-v_{p}(b), a,bSa\in\mathbb{Z},b\in S, i.e. the pp-adic valuation on \mathbb{Q}. Hence any valuation ww on H/I\mathbb{Z}H/I with w|=vpw|_{\mathbb{Z}}=v_{p} and w|H=χw|_{H}=\chi gives a unique valuation ww^{\prime} on H/(I)\mathbb{Q}H/(I\otimes_{\mathbb{Z}}\mathbb{Q}) with w|=vpw^{\prime}|_{\mathbb{Q}}=v_{p} and w|H=χw^{\prime}|_{H}=\chi. Therefore, one obtains readily from Proposition 3.6 that

ΔIvp(H)=ΔIvp(H)=Trop,vp(I).\Delta_{I}^{v_{p}}(H)=\Delta^{{v_{p}}}_{I\otimes_{\mathbb{Z}}\mathbb{Q}}(H)={\mathrm{Trop}}_{\mathbb{Q},v_{p}}(I\otimes_{\mathbb{Z}}\mathbb{Q}).

This is the first reduction step considered by Bieri and Groves in [BG84, section 2.2].

Next we study the mod pp-valuation v^p\hat{v}_{p} with p>0p>0. If I𝔽p=𝔽pHI\otimes_{\mathbb{Z}}\mathbb{F}_{p}=\mathbb{F}_{p}H, then there exists fIf\in I such that f=1+pff=1+pf^{\prime}. Since fIf\in I, any valuation ww on H/I\mathbb{Z}H/I gives w(f)=w(f)=\infty. On the other hand, v^p(p)=\hat{v}_{p}(p)=\infty implies that w(f)=w(1+pf)=w(1)=0w(f)=w(1+pf^{\prime})=w(1)=0, a contradiction. Hence ΔIv^p(H)=\Delta^{\hat{v}_{p}}_{I}(H)=\emptyset. Meanwhile, I𝔽p=𝔽pHI\otimes_{\mathbb{Z}}\mathbb{F}_{p}=\mathbb{F}_{p}H implies Trop𝔽p,v^p(I𝔽p)=\mathrm{Trop}_{\mathbb{F}_{p},\hat{v}_{p}}(I\otimes_{\mathbb{Z}}\mathbb{F}_{p})=\emptyset. So eq. 3.4 holds under this assumption.

If I𝔽p𝔽pHI\otimes_{\mathbb{Z}}\mathbb{F}_{p}\neq\mathbb{F}_{p}H, then the ring 𝔽pH/(I𝔽p)\mathbb{F}_{p}H/(I\otimes_{\mathbb{Z}}\mathbb{F}_{p}) is non-trivial. Fix a valuation ww on H/I\mathbb{Z}H/I with w|=v^pw|_{\mathbb{Z}}=\hat{v}_{p} and w|H=χw|_{H}=\chi. Since v^p(p)=\hat{v}_{p}(p)=\infty, ww can also be viewed as a valuation on H/p,I\mathbb{Z}H/\langle p,I\rangle, where p,I\langle p,I\rangle is the ideal generated by pp and II. Note that H/p,I𝔽pH/(I𝔽p)\mathbb{Z}H/\langle p,I\rangle\cong\mathbb{F}_{p}H/(I\otimes_{\mathbb{Z}}\mathbb{F}_{p}). Then ww can also be viewed as a valuation on 𝔽pH/(I𝔽p)\mathbb{F}_{p}H/(I\otimes_{\mathbb{Z}}\mathbb{F}_{p}). Clearly w|𝔽pw|_{\mathbb{F}_{p}} is the trivial valuation and w|H=χw|_{H}=\chi. From Proposition 3.6, we have

ΔIv^p(H)=ΔI𝔽pv^p(H)=Trop𝔽p,v^p(I𝔽p).\Delta_{I}^{\hat{v}_{p}}(H)=\Delta^{\hat{v}_{p}}_{I\otimes_{\mathbb{Z}}\mathbb{F}_{p}}(H)={\mathrm{Trop}}_{\mathbb{F}_{p},\hat{v}_{p}}(I\otimes_{\mathbb{Z}}\mathbb{F}_{p}).

This is the third reduction step considered by Bieri and Groves in [BG84, section 2.2]. ∎

Remark 3.10.

In general, we have

Trop(I)Trop,v0(I)p primefinitely many(Trop,vp(I)Trop𝔽p,v^p(I𝔽p)),{\mathrm{Trop}}_{\mathbb{Z}}(I)\neq{\mathrm{Trop}}_{\mathbb{Q},v_{0}}(I\otimes_{\mathbb{Z}}\mathbb{Q})\cup\bigcup\limits_{\begin{subarray}{c}p\text{ prime}\\ \text{finitely many}\end{subarray}}\big{(}\mathrm{Trop}_{\mathbb{Q},v_{p}}(I\otimes_{\mathbb{Z}}\mathbb{Q})\cup\mathrm{Trop}_{\mathbb{F}_{p},\hat{v}_{p}}(I\otimes_{\mathbb{Z}}\mathbb{F}_{p})\big{)},

as shown by Example 3.11 and Figure 1 below. But Proposition 3.9 shows that they coincide after projection onto the unit sphere. This shows the central role of the pp-adic tropicalization (if it is distinct from the trivial one). Its asymptotic behavior gives the trivial tropicalization and its local behavior near the origin gives the mod pp tropicalization. See [BG84, Theorem C1, C2] for more details.

Example 3.11.

Consider the ideal I=(x1+x22)[x1±1,x2±1]I=(x_{1}+x_{2}-2)\subseteq\mathbb{Z}[x_{1}^{\pm 1},x_{2}^{\pm 1}]. See Figure 1 below for its various tropicalizations, where Figure 1(d) is Trop(I){\mathrm{Trop}}_{\mathbb{Z}}(I) and Figure 1(a), Figure 1(b) and Figure 1(c) are the tropical varieties of II considered in ([x1±1,x2±1],v0)(\mathbb{Q}[x_{1}^{\pm 1},x_{2}^{\pm 1}],v_{0}), (𝔽2[x1±1,x2±1],v^2)(\mathbb{F}_{2}[x_{1}^{\pm 1},x_{2}^{\pm 1}],\hat{v}_{2}) and ([x1±1,x2±1],v2)(\mathbb{Q}[x_{1}^{\pm 1},x_{2}^{\pm 1}],v_{2}), respectively. Note that the union of Figures 1(a), 1(b) and 1(c) is different from Figure 1(d), while the projections onto the unit sphere are the same (see Figure 1(f)).

(a) The trivial Trop.
(b) The mod 22 Trop.
(c) The 22-adic Trop.
(d) The \mathbb{Z}-Trop.
(e) Projection of 1(a) and 1(b).
(f) Projection of 1(d) or the union of 1(a), 1(b), and 1(c).
Figure 1: Comparison of several tropicalizations.

We end this section with a property for tropical varieties. Let ψ:HH\psi\colon H\twoheadrightarrow H^{\prime} be an epimorphism of abelian groups with kernel NN. It induces an embedding

ψ:Hom(H;)Hom(H;)\psi^{*}\colon\mathrm{Hom}(H^{\prime};\mathbb{R})\hookrightarrow\mathrm{Hom}({H};\mathbb{R})

and a ring epimorphism ψ:RHRH\psi_{*}\colon R{H}\twoheadrightarrow RH^{\prime}. It is easy to see that the kernel KK of ψ\psi_{*} is the ideal generated by {n1nN}\{n-1\mid n\in N\} in RHR{H}. For an ideal IRHI^{\prime}\subsetneq RH^{\prime}, we have RH/ψ1(I)RH/IR{H}/{\psi_{*}^{-1}(I^{\prime})}\cong RH^{\prime}/I^{\prime}.

Proposition 3.12.

With the above notations and assumptions, we have

TropR(ψ1(I))=ψ(TropR(I)).{\mathrm{Trop}}_{R}({\psi_{*}^{-1}(I^{\prime})})=\psi^{*}({\mathrm{Trop}}_{R}(I^{\prime})).
Démonstration.

By Proposition 3.8 and Theorem 2.5, we have

TropR(I)=v(R)0ΔIv(H){\mathrm{Trop}}_{R}(I^{\prime})=\bigcup\limits_{v(R)\geqslant 0}\Delta_{I^{\prime}}^{v}(H^{\prime}) and TropR(ψ1(I))=v(R)0Δψ1(I)v(H){\mathrm{Trop}}_{R}(\psi_{*}^{-1}(I^{\prime}))=\bigcup\limits_{v(R)\geqslant 0}\Delta_{\psi_{*}^{-1}(I^{\prime})}^{v}(H).

Note the two facts TropR(K)=ψ(Hom(H;)){\mathrm{Trop}}_{R}(K)=\psi^{*}(\mathrm{Hom}(H^{\prime};\mathbb{R})) and Kψ1(I)K\subseteq\psi_{*}^{-1}(I^{\prime}). By the ring isomorphism RH/ψ1(I)RH/IR{H}/{\psi_{*}^{-1}(I^{\prime})}\cong RH^{\prime}/I^{\prime}, one readily sees that TropR(ψ1(I))=ψ(TropR(I)).{\mathrm{Trop}}_{R}({\psi_{*}^{-1}(I^{\prime})})=\psi^{*}({\mathrm{Trop}}_{R}(I^{\prime})).

4 Proof of Theorem 1.1

In this section, we apply the results in sections 2 and 3 to prove Theorem 1.1.

4.1 The BNSR invariants revisited

We start with a finiteness condition for chain complexes, following the approach of Farber, Geoghegan, and Schütts in [FGS10].

Definition 4.1.

Let C=(Ci,i)i0C=(C_{i},\partial_{i})_{i\geqslant 0} be a non-negatively graded chain complex over a ring AA. For each integer k0k\geqslant 0, we say CC is of finite kk-type if there is a chain complex CC^{\prime} of finitely generated projective (left) AA-modules and a chain map CCC^{\prime}\to C inducing isomorphisms Hi(C)Hi(C)H_{i}(C^{\prime})\to H_{i}(C) for i<ki<k and an epimorphism Hk(C)Hk(C).H_{k}(C^{\prime})\to H_{k}(C).

Let XX be a connected finite CW-complex with the fundamental group GG. Denote X~\widetilde{X} the universal covering of XX. The cell structure of XX lifts to cell structures on the universal cover X~\widetilde{X} with GG-action via deck transformations. Thus, the cellular chain complex C(X~;)C_{*}(\widetilde{X};\mathbb{Z}) is a complex of finitely generated free G\mathbb{Z}G-modules. Given any nonzero χHom(G;)\chi\in\mathrm{Hom}(G;\mathbb{R}), the set Gχ={gGχ(g)0}G_{\chi}=\{g\in G\mid\chi(g)\geqslant 0\} is a submonoid of GG, which depends only on [χ]S(G)[\chi]\in\mathrm{S}(G). Then C(X~;)C_{*}(\widetilde{X};\mathbb{Z}) can also be viewed as a complex of Gχ\mathbb{Z}G_{\chi}-modules. The following definition of the BNSR invariant of XX can be found in [FGS10].

Definition 4.2.

For each integer k0k\geqslant 0, the kk-th BNSR invariant of XX is given by

Σk(X;){χS(G)C(X~;) is of finite k-type over Gχ}.\Sigma^{k}(X;\mathbb{Z})\coloneqq\{\chi\in\mathrm{S}(G)\mid C_{*}(\widetilde{X};\mathbb{Z})\text{ is of finite $k$-type over }\mathbb{Z}G_{\chi}\}.

We denote by Σk(X;)c\Sigma^{k}(X;\mathbb{Z})^{c} the complement of Σk(X;)\Sigma^{k}(X;\mathbb{Z}) in S(G)\mathrm{S}(G). It is shown in [FGS10] that Σk(X;)\Sigma^{k}(X;\mathbb{Z}) is an open subset of S(G)\mathrm{S}(G) and depends only on the homotopy type of XX. In particular, Σ1(X;)\Sigma^{1}(X;\mathbb{Z}) depends only on GG, hence one can also denote it by Σ1(G;)\Sigma^{1}(G;\mathbb{Z}). This is (almost) the BNS invariant of GG, which can be defined via the Cayley graph as follows. One picks a finite generating set of GG and let Γ(G)\Gamma(G) be the corresponding Cayley graph of GG. For any χS(G)\chi\in\mathrm{S}(G), let Γχ(G)\Gamma_{\chi}(G) be the full subgraph on the vertex set GχG_{\chi}.

Definition 4.3 ([BNS87]).

Let GG be a finitely generated group. The BNS invariant Σ1(G)\Sigma^{1}(G) consists of χS(G)\chi\in\mathrm{S}(G) for which the graph Γχ(G)\Gamma_{\chi}(G) is connected.

As noted by Bieri and Renz in [BR88, Section 1.3], Σ1(G)=Σ1(G;)\Sigma^{1}(G)=-\Sigma^{1}(G;\mathbb{Z}). In particular, Σ1(G)\Sigma^{1}(G) does not depend on the choice of finite generating set for GG. To make the notations consistent, we always use Σ1(G;)\Sigma^{1}(G;\mathbb{Z}) instead of Σ1(G)\Sigma^{1}(G), and all the conclusions originally about Σ1(G)\Sigma^{1}(G) will be rewritten with respect to Σ1(G;)\Sigma^{1}(G;\mathbb{Z}). The complements of the BNS invariants enjoy the following naturality property.

Proposition 4.4 (Proposition 3.3, [BNS87]).

Let ψ:GQ\psi\colon G\twoheadrightarrow Q be a surjective group homomorphism between finitely generated groups. Then the induced embedding ψ:S(Q)S(G)\psi^{*}\colon S(Q)\hookrightarrow\mathrm{S}(G), restricts to an injective map ψ:Σ1(Q;)cΣ1(G;)c\psi^{*}\colon\Sigma^{1}(Q;\mathbb{Z})^{c}\hookrightarrow\Sigma^{1}(G;\mathbb{Z})^{c}.

Bieri, Neumann, and Strebel showed that the BNS invariants are important in controlling the finiteness properties of kernels of abelian quotients.

Theorem 4.5 (Theorem B1,[BNS87]).

Let GG be a finitely generated group and let NN be a normal subgroup of GG with an abelian quotient. Denote

S(G,N)={χS(G)χ(N)=0}.{\mathrm{S}(G,N)=\{\chi\in\mathrm{S}(G)\mid\chi(N)=0\}}.

Then NN is finitely generated if and only if S(G,N)Σ1(G;)S(G,N)\subseteq-\Sigma^{1}(G;\mathbb{Z}). In particular, GG^{\prime} is finitely generated if and only if S(G)=Σ1(G;)\mathrm{S}(G)=\Sigma^{1}(G;\mathbb{Z}).

4.2 Jump loci ideal and Alexander ideal

Let H=H1(X;)H=H_{1}(X;\mathbb{Z}), the abelianization of GG. Denote XHX^{H} the maximal abelian covering of XX. Let RR be \mathbb{Z} or a field 𝕜\mathbbm{k}. Similarly. the cellular chain complex XHX^{H} with RR-coefficients, C(XH;R)C_{*}(X^{H};R), is a bounded complex of finitely generated free RHRH-modules:

Ci+1(XH;R)iCi(XH;R)i1Ci1(XH;R)0C0(XH;R)0.\cdots\to C_{i+1}(X^{H};R)\xrightarrow{\partial_{i}}C_{i}(X^{H};R)\xrightarrow{\partial_{i-1}}C_{i-1}(X^{H};R)\to\cdots\xrightarrow{\partial_{0}}C_{0}(X^{H};R)\to 0. (4.1)
Definition 4.6.

The ii-th Alexander invariant Hi(XH;R)H_{i}(X^{H};R) is the ii-th homology of C(XH;R)C_{*}(X^{H};R) as chain complex of RHRH-modules. The ii-th Alexander ideal Ann(Hi(XH;R))\mathrm{Ann}(H_{i}(X^{H};R)) is the annihilator ideal of Hi(XH;R)H_{i}(X^{H};R) as finitely generated RHRH-modules.

Definition 4.7.

The ii-th jump ideal of XX is defined as

𝒥i(X;R)=Ici(ii1)\mathcal{J}^{i}(X;R)=I_{c_{i}}(\partial_{i}\oplus\partial_{i-1})

where ci=rank(Ci(XH;R))c_{i}=\mathrm{rank}(C_{i}(X^{H};R)) as free RHRH-modules and Ici()I_{c_{i}}(-) denotes the ideal generated by size ci×cic_{i}\times c_{i} minors of the matrix and is commonly referred to as the Fitting ideal.

When R=𝕜R=\mathbbm{k}, the maximal spectrum of these two types of ideals are under the more well-known names: Alexander varieties and homology jump loci, see e.g. [PS10, PS14]. Moreover, Papadima and Suciu established a comparison between these two types of ideals.

Theorem 4.8 ([PS10] Theorem 3.6, or [PS14] Theorem 2.5).

With the above notations, assumptions and R=R=\mathbb{Z} or a field 𝕜\mathbbm{k}, for any k0k\geqslant 0 we have

𝒥k(X;R)=Ann(Hk(XH;R)),\sqrt{\mathcal{J}^{\leqslant k}(X;R)}=\sqrt{\mathrm{Ann}(H_{\leqslant k}(X^{H};R))},

where 𝒥k(X;R)=0jk𝒥j(X;R)\mathcal{J}^{\leqslant k}(X;R)=\bigcap\limits_{0\leqslant j\leqslant k}\mathcal{J}^{j}(X;R) and Ann(Hk(XH;R))=0jkAnn(Hj(XH;R))\mathrm{Ann}(H_{\leqslant k}(X^{H};R))=\bigcap\limits_{0\leqslant j\leqslant k}\mathrm{Ann}(H_{j}(X^{H};R)).

Remark 4.9.

Papadima and Suciu proved the above results for R=𝕜R=\mathbbm{k}, while their argument goes without any difficulty to R=R=\mathbb{Z}, see the proof of [PS14, Theorem 2.5].

In homological degree one, both 𝒥1(X;R)\mathcal{J}^{1}(X;R) and Ann(H1(XH;R))\mathrm{Ann}(H_{1}(X^{H};R)) depend only on the fundamental group GG (in fact only on G/G′′G/G^{\prime\prime}, see e.g. [Suc14, Section 2.5]). One can thus denote 𝒥1(X;R)\mathcal{J}^{1}(X;R) by 𝒥1(G;R)\mathcal{J}^{1}(G;R). Moreover, one may compute them by abelianizing the matrix of Fox derivatives of GG, see e.g. [Fox53].

If R=𝕜R=\mathbbm{k} is an algebraically closed field, the group of 𝕜\mathbbm{k}-valued characters, Hom(G;𝕜)\mathrm{Hom}(G;\mathbbm{k}^{*}), is a commutative affine algebraic group. Each character ρ\rho in Hom(G;𝕜)\mathrm{Hom}(G;\mathbbm{k}^{*}) defines a rank one local system on XX, denoted by LρL_{\rho}. Since 𝕜\mathbbm{k}^{*} is abelian, we have Hom(G;𝕜)=Hom(H;𝕜)\mathrm{Hom}(G;\mathbbm{k}^{*})=\mathrm{Hom}(H;\mathbbm{k}^{*}).

Definition 4.10.

The ii-th homology jump loci of XX (over 𝕜\mathbbm{k}) are defined as

𝒱i(X;𝕜){ρHom(G;𝕜)Hi(X;Lρ)0}.\mathcal{V}^{i}(X;\mathbbm{k})\coloneqq\{\rho\in\mathrm{Hom}(G;\mathbbm{k}^{*})\mid H_{i}(X;L_{\rho})\neq 0\}.

By definition 𝒱i(X;𝕜)\mathcal{V}^{i}(X;\mathbbm{k}) is the variety of the ideal 𝒥i(X;𝕜)\mathcal{J}^{i}(X;\mathbbm{k}). Hence 𝒱1(X;𝕜)\mathcal{V}^{1}(X;\mathbbm{k}) depends only on the fundamental group GG and one can denote it by 𝒱1(G;𝕜)\mathcal{V}^{1}(G;\mathbbm{k}).


In his thesis, Sikorav reinterpreted the BNS invariant of a finitely generated group in terms of the Novikov homology in degree 11 (see [Sik87] or [Sik17]). It was later generalized to higher degrees by Bieri and Renz in [BR88] and from groups to spaces by Farber, Geoghegan and Schütts in [FGS10]. As an application of this interpretation, Papadima and Suciu proved the following theorem, which connects the BNSR invariants with the homology jump loci of XX. The degree 11 case originates in the work of Delzant [Del08, Proposition 1].

Theorem 4.11 (Theorem 10.1, [PS10]).

Let XX be a connected finite CW complex and let 𝕜\mathbbm{k} be a field. Suppose ρ:G𝕜\rho\colon G\to\mathbbm{k}^{*} is a multiplicative character such that Hi(X;Lρ)0H_{i}(X;L_{\rho})\neq 0 for some 0ik0\leqslant i\leqslant k. Let v:𝕜v\colon\mathbbm{k}^{*}\to\mathbb{R} be a valuation on 𝕜\mathbbm{k} such that χ=vρ\chi=v\circ\rho is non-zero. Then we have χΣk(X;)\chi\notin\Sigma^{k}(X;\mathbb{Z}).

4.3 Proof of Theorem 1.1

For a field 𝕜\mathbbm{k}, note that 𝒥k(X;𝕜)=𝒥k(X;)𝕜\mathcal{J}^{\leqslant k}(X;\mathbbm{k})=\mathcal{J}^{\leqslant k}(X;\mathbb{Z})\otimes\mathbbm{k}. Then the second inclusion in eq. 1.1 follows directly from Definition 3.7. So we only need to prove the first inclusion in eq. 1.1.

We assume that 𝒥k(X;)\mathcal{J}^{\leqslant k}(X;\mathbb{Z}) is a proper ideal in H\mathbb{Z}H, otherwise the claim is vacuous. Let 𝔭\mathfrak{p} be a minimal prime ideal containing 𝒥k(X;)\sqrt{\mathcal{J}^{\leqslant k}(X;\mathbb{Z})}. Fix a valuation vv on \mathbb{Z} as studied in Example 2.7(b), which is automatically non-negative. Consider a nonzero χΔ𝔭v(H)\chi\in\Delta^{v}_{\mathfrak{p}}(H) with notations as in Theorem 2.5. Then there exists a valuation w:H/𝔭w\colon\mathbb{Z}H/\mathfrak{p}\to\mathbb{R}_{\infty} such that w|=vw|_{\mathbb{Z}}=v and w|H=χw|_{H}=\chi. Note that w1()w^{-1}(\infty) is a prime ideal of H/𝔭\mathbb{Z}H/\mathfrak{p}. Let 𝕂\mathbb{K} be the fractional field of the quotient domain (H/𝔭)/w1()(\mathbb{Z}H/\mathfrak{p})/w^{-1}(\infty). Then ww can be viewed as a valuation on 𝕂\mathbb{K} such that w|H=χw|_{H}=\chi.

Consider the following composition of maps

GHHH/𝔭𝕂,G\twoheadrightarrow H\hookrightarrow\mathbb{Z}H\twoheadrightarrow\mathbb{Z}H/\mathfrak{p}\to\mathbb{K},

which gives a multiplicative character ρ:G𝕂\rho\colon G\to\mathbb{K}^{*}. Let LρL_{\rho} be the corresponding rank one local system on XX with coefficient 𝕂\mathbb{K}. We claim that

Hi(X;Lρ)0H_{i}(X;L_{\rho})\neq 0 for some 0ik0\leqslant i\leqslant k.

In fact, H(X;Lρ)H_{*}(X;L_{\rho}) can be computed by the chain complex C(XH;)H𝕂,C_{*}(X^{H};\mathbb{Z})\otimes_{\mathbb{Z}H}\mathbb{K}, where 𝕂\mathbb{K} is viewed as a H\mathbb{Z}H-module associated to the representation ρ\rho. Note that

0jk𝒥j(X;)=𝒥k(X;)𝒥k(X;)𝔭.\bigcap\limits_{0\leqslant j\leqslant k}\mathcal{J}^{j}(X;\mathbb{Z})=\mathcal{J}^{\leqslant k}(X;\mathbb{Z})\subseteq\sqrt{\mathcal{J}^{\leqslant k}(X;\mathbb{Z})}\subseteq\mathfrak{p}.

Then there exists some 0ik0\leqslant i\leqslant k such that 𝒥i(X;)𝔭\mathcal{J}^{i}(X;\mathbb{Z})\subseteq\mathfrak{p}. By the construction of the field 𝕂\mathbb{K}, we have that 𝒥i(X;)H𝕂=0,\mathcal{J}^{i}(X;\mathbb{Z})\otimes_{\mathbb{Z}H}\mathbb{K}=0, hence Hi(X;Lρ)0H_{i}(X;L_{\rho})\neq 0.

Since χ=wρ\chi=w\circ\rho is non-zero, Theorem 4.11 shows that χΣk(X;)\chi\notin\Sigma^{k}(X;\mathbb{Z}), hence

S(Δ𝔭v(H))Σk(X;)c\mathrm{S}(\Delta^{v}_{\mathfrak{p}}(H))\subseteq\Sigma^{k}(X;\mathbb{Z})^{c}

for any non-negative valuation vv on \mathbb{Z} and any minimal prime ideal 𝔭\mathfrak{p} containing 𝒥k(X;)\sqrt{\mathcal{J}^{\leqslant k}(X;\mathbb{Z})}. Therefore, the first inclusion in eq. 1.1 follows from Theorems 2.5 and 3.8. The remaining properties are a direct consequence of Theorem 2.8. ∎

Remark 4.12.

Let us explain Suciu’s work [Suc21, Theorem 1.1] in our notations. Assume that 𝕜\mathbbm{k} is algebraically closed. Since Trop𝕜(𝒥k(X;𝕜)){\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{J}^{\leqslant k}(X;\mathbbm{k})) depends only on 𝒥k(X;𝕜)\sqrt{\mathcal{J}^{\leqslant k}(X;\mathbbm{k})} and 𝒱k(X;𝕜)\mathcal{V}^{\leqslant k}(X;\mathbbm{k}) is the variety of the ideal 𝒥k(X;𝕜)\mathcal{J}^{\leqslant k}(X;\mathbbm{k}), one can also denote Trop𝕜(𝒥k(X;𝕜)){\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{J}^{\leqslant k}(X;\mathbbm{k})) by Trop𝕜(𝒱k(X;𝕜)){\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{V}^{\leqslant k}(X;\mathbbm{k})). When 𝕜=\mathbbm{k}=\mathbb{C}, due to Remark 3.5 and [Suc21, Section 4], Trop(𝒱k(X;)){\mathrm{Trop}}_{\mathbb{C}}(\mathcal{V}^{\leqslant k}(X;\mathbb{C})) is exactly the tropical variety considered in [Suc21, Theorem 1.1]. On the other hand, if 𝕜\mathbbm{k} has positive characteristic, using the valued field 𝕜((t))\mathbbm{k}((t^{\mathbb{Q}})) one can use Suciu’s proof to show that Σk(X;)S(Trop𝕜(𝒱k(X;𝕜)))c.\Sigma^{k}(X;\mathbb{Z})\subseteq\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{V}^{\leqslant k}(X;\mathbbm{k}))\big{)}^{c}.

4.4 Comparing with Bieri, Groves and Strebel’s results

When k=1k=1, Theorem 1.1 is essentially due to Bieri, Groves, and Strebel’s work [BS80, BS81, BG84]. We explain it in detail in this subsection.

Let GG be a finitely presented group. Set G=[G,G]G^{\prime}=[G,G], and G′′=[G,G]G^{\prime\prime}=[G^{\prime},G^{\prime}]. Then G/G′′G/G^{\prime\prime} is the maximal metabelian quotient group of GG, and S(G)=S(G/G′′)\mathrm{S}(G)=\mathrm{S}(G/G^{\prime\prime}). By Proposition 4.4, we have

Σ1(G;)Σ1(G/G′′;).\Sigma^{1}(G;\mathbb{Z})\subseteq\Sigma^{1}(G/G^{\prime\prime};\mathbb{Z}).

Consider the short exact sequence

1G/G′′G/G′′H1,1\to G^{\prime}/G^{\prime\prime}\to G/G^{\prime\prime}\to H\to 1,

with HH acting on G/G′′G^{\prime}/G^{\prime\prime} by conjugation. Since GG is finitely presented, G/G′′G^{\prime}/G^{\prime\prime} is finitely generated as a H\mathbb{Z}H-module. In fact, if XX is a connected CW complex such that π1(X)=G\pi_{1}(X)=G, then G/G′′G^{\prime}/G^{\prime\prime} is the first Alexander invariant H1(XH;)H_{1}(X^{H};\mathbb{Z}). For the metabelian group G/G′′G/G^{\prime\prime}, Bieri and Strebel showed in [BS80] (see also [BNS87]) that

Σ1(G/G′′;)=Σ(H1(XH;)),\Sigma^{1}(G/G^{\prime\prime};\mathbb{Z})=\Sigma(H_{1}(X^{H};\mathbb{Z})),

where Σ(H1(XH;))\Sigma(H_{1}(X^{H};\mathbb{Z})) is the Sigma invariant defined in section 2. By Proposition 3.8, we have

Σ(H1(XH;))=S(Trop(Ann(H1(XH;))))c.\Sigma(H_{1}(X^{H};\mathbb{Z}))=\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathrm{Ann}(H_{1}(X^{H};\mathbb{Z})))\big{)}^{c}.

Let II be the augmentation ideal of the group ring H\mathbb{Z}H, i.e. I=h1hHI=\langle h-1\mid h\in H\rangle. We have S(Trop(I))=\mathrm{S}({\mathrm{Trop}}_{\mathbb{Z}}(I))=\emptyset and I=Ann(H0(XH;))I=\sqrt{\mathrm{Ann}(H_{0}(X^{H};\mathbb{Z}))}. It follows from Theorem 4.8 that

S(Trop(Ann(H1(XH;))))=S(Trop(Ann(H1(XH;))))=S(Trop(𝒥1(X;))).\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathrm{Ann}(H_{1}(X^{H};\mathbb{Z})))\big{)}=\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathrm{Ann}(H_{\leqslant 1}(X^{H};\mathbb{Z})))\big{)}=\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{\leqslant 1}(X;\mathbb{Z}))\big{)}.

Putting all together, we get that

Σ1(G;)Σ1(G/G′′;)=S(Trop(𝒥1(X;)))c,\Sigma^{1}(G;\mathbb{Z})\subseteq\Sigma^{1}(G/G^{\prime\prime};\mathbb{Z})=\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{\leqslant 1}(X;\mathbb{Z}))\big{)}^{c},

which is exactly the first inclusion in eq. 1.1 for k=1k=1. In particular, if GG itself is metabelian, then the inclusion becomes an equality (for k=1k=1).

5 Examples and application to Dwyer-Fried sets

5.1 Examples

In this subsection, we compute various examples. In the first three examples, we compare Theorem 1.1 with [Suc21, Theorem 1.1]. These three examples are all one-relator groups with two generators, whose BNS-invariants can be calculated according to Brown’s algorithm [Bro87, Section 4]. Notice here we use the invariant Σ1(G;)\Sigma^{1}(G;\mathbb{Z}), which is Σ1(G)-\Sigma^{1}(G).

Example 5.1.

Let G=a,baba1b2G=\langle a,b\mid aba^{-1}b^{-2}\rangle be the Baumslag–Solitar group BS(1,2)\mathrm{BS}(1,2). This is the example considered in [Suc21, Example 8.2]. Let χ:G\chi\colon G\to\mathbb{R} be the non-zero homomorphism such that χ(a)=1\chi(a)=1 and χ(b)=0\chi(b)=0. Then S(G)={±χ}\mathrm{S}(G)=\{\pm\chi\}. The abelianization of the Fox derivative gives x2x-2. Then one gets 𝒥1(G;)=(x1)(x2)\sqrt{\mathcal{J}^{\leqslant 1}(G;\mathbb{Z})}=(x-1)\cap(x-2) and 𝒱1(G;)={1,2}\mathcal{V}^{\leqslant 1}(G;\mathbb{C})=\{1,2\}. Hence

S(Trop(𝒥1(G;)))={χ}\mathrm{S}({\mathrm{Trop}}_{\mathbb{Z}}(\sqrt{\mathcal{J}^{\leqslant 1}(G;\mathbb{Z})}))=\{\chi\} and S(Trop(𝒱1(G;))=\mathrm{S}({\mathrm{Trop}}_{\mathbb{C}}(\mathcal{V}^{\leqslant 1}(G;\mathbb{C}))=\emptyset.

Calculation directly gives that Σ1(G;)={χ}.\Sigma^{1}(G;\mathbb{Z})=\{-\chi\}.

Example 5.2.

Let G=a,ba1b1ab2a1b1a2b1a1ba1bab1G=\langle a,b\mid a^{-1}b^{-1}ab^{2}a^{-1}b^{-1}a^{2}b^{-1}a^{-1}ba^{-1}bab^{-1}\rangle. This is the example in [Bro87, Page 492] and in [Suc21, Example 8.5]. The abelianization of the Fox derivative gives

((x211)(x111)x11x21(x11)2).\begin{pmatrix}(x^{-1}_{2}-1)(x^{-1}_{1}-1)&-x_{1}^{-1}x_{2}^{-1}(x_{1}-1)^{2}\end{pmatrix}.

Then one gets 𝒥1(G;)=(x11)\sqrt{\mathcal{J}^{\leqslant 1}(G;\mathbb{Z})}=(x_{1}-1) and 𝒱1(G;)={x1=1}\mathcal{V}^{\leqslant 1}(G;\mathbb{C})=\{x_{1}=1\}. Hence

S(Trop(𝒥1(G;)))={(0,1),(0,1)}=S(Trop(𝒱1(G;))\mathrm{S}({\mathrm{Trop}}_{\mathbb{Z}}(\sqrt{\mathcal{J}^{\leqslant 1}(G;\mathbb{Z})}))=\{(0,1),(0,-1)\}=\mathrm{S}({\mathrm{Trop}}_{\mathbb{C}}(\mathcal{V}^{\leqslant 1}(G;\mathbb{C})).

Calculation via Brown’s algorithm gives that Σ1(G;)\Sigma^{1}(G;\mathbb{Z}) consists of two open arcs on the unit circle, joining the points (1,0)(1,0) to (0,1)(0,1) and (0,1)(0,1) to (22,22)(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}). So the first inclusion in eq. 1.1 is strict in this case, as shown below in Figure 2.

(a) Σ1(G;)\Sigma^{1}(G;\mathbb{Z}).
(b) (or )\mathbb{Z}(\text{or\ }\mathbb{C})-Tropical upper bound.
Figure 2: Example 5.2.
Example 5.3.

As in [PS10, Example 3.5] and [SYZ15, Lemma 10.3], given a Laurent polynomial f(x1,x2)[x1±1,x2±1]f(x_{1},x_{2})\in\mathbb{Z}[x_{1}^{\pm 1},x_{2}^{\pm 1}], there exists a group GG with two generators and one relation such that its abelianization is 2\mathbb{Z}^{2} and the abelianization of the Fox derivative is

(f(x21)f(x11)).\begin{pmatrix}f\cdot(x_{2}-1)&-f\cdot(x_{1}-1)\end{pmatrix}.

It implies that 𝒥1(G,)=(f)(x11,x21)\sqrt{\mathcal{J}^{\leqslant 1}(G,\mathbb{Z})}=(f)\cap(x_{1}-1,x_{2}-1). Set f(x1,x2)=x1+x22f(x_{1},x_{2})=x_{1}+x_{2}-2. Then Theorem 1.1 gives

Σ1(G;)S(Trop(x1+x22))c.\Sigma^{1}(G;\mathbb{Z})\subseteq\mathrm{S}({\mathrm{Trop}}_{\mathbb{Z}}(x_{1}+x_{2}-2))^{c}.

Suciu showed that [Suc21, Theorem 1.1]

Σ1(G;)S(Trop,v0(x1+x22))c.\Sigma^{1}(G;\mathbb{Z})\subseteq\mathrm{S}({\mathrm{Trop}}_{\mathbb{C},v_{0}}(x_{1}+x_{2}-2))^{c}.

The same proof is indeed valid for any field coefficients, hence one also gets

Σ1(G;)S(Trop𝔽2,v^2(x1+x22))c.\Sigma^{1}(G;\mathbb{Z})\subseteq\mathrm{S}({\mathrm{Trop}}_{\mathbb{F}_{2},\hat{v}_{2}}(x_{1}+x_{2}-2))^{c}.

By Example 3.11 and Figures 1(e) and 1(f), we have

S(Trop𝔽2,v^2(x1+x22))S(Trop,v0(x1+x22))S(Trop(x1+x22)).\mathrm{S}({\mathrm{Trop}}_{\mathbb{F}_{2},\hat{v}_{2}}(x_{1}+x_{2}-2))\bigcup\mathrm{S}({\mathrm{Trop}}_{\mathbb{C},v_{0}}(x_{1}+x_{2}-2))\subsetneq\mathrm{S}({\mathrm{Trop}}_{\mathbb{Z}}(x_{1}+x_{2}-2)).

We end this subsection with the computations for compact Riemann orbifold groups.

Definition 5.4.

Let CgC_{g} be a compact Riemann surface of genus g1g\geqslant 1 and let s0s\geqslant 0 be an integer. If s>0s>0, fix points {q1,,qs}\{q_{1},\ldots,q_{s}\} in CgC_{g} and assign to these points an integer weight vector 𝝁=(μ1,,μs){\bm{\mu}}=(\mu_{1},\cdots,\mu_{s}) with μi2\mu_{i}\geqslant 2. The orbifold Euler characteristic of the surface with marked points is defined as

χorb(Cg,𝝁)=22gj=1s(11μj).\chi^{\mathrm{orb}}(C_{g},{\bm{\mu}})=2-2g-\sum_{j=1}^{s}(1-\dfrac{1}{\mu_{j}}).

The orbifold group π1orb(Cg,𝝁)\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}}) associated to these data has presentation as follows:

x1,,xg,y1,,yg,z1,,zs|i=1g[xi,yi]j=1szj=1,zjμj=1 for all 1js.\langle x_{1},\ldots,x_{g},y_{1},\ldots,y_{g},z_{1},\ldots,z_{s}|\prod_{i=1}^{g}[x_{i},y_{i}]\cdot\prod_{j=1}^{s}z_{j}=1,z_{j}^{\mu_{j}}=1\text{ for all }1\leqslant j\leqslant s\rangle.

If χorb(Cg,𝝁)=0\chi^{\mathrm{orb}}(C_{g},{\bm{\mu}})=0, i.e. g=1g=1 and s=0s=0, then π1(Cg)2\pi_{1}(C_{g})\cong\mathbb{Z}^{2}. Hence 𝒱1(2;𝕜)={1}\mathcal{V}^{1}(\mathbb{Z}^{2};\mathbbm{k})=\{1\} for any algebraically closed field 𝕜\mathbbm{k} and Σ1(π1(Cg);)=S1\Sigma^{1}(\pi_{1}(C_{g});\mathbb{Z})=S^{1}. So we focus on the case χorb(Cg,𝝁)<0\chi^{\mathrm{orb}}(C_{g},{\bm{\mu}})<0, i.e. either g>1g>1 or g=1g=1 and s>0s>0. Set θ(𝝁)=j=1sμjlcm(μ1,,μs)\theta({\bm{\mu}})=\frac{\prod_{j=1}^{s}\mu_{j}}{{\mathrm{lcm}}(\mu_{1},\cdots,\mu_{s})}. Then H=H1(π1orb(Cg,𝝁);)H=H_{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbb{Z}) has free abelian part 2g\mathbb{Z}^{2g} and its torsion part has order θ(𝝁)\theta({\bm{\mu}}). Next we compute the BNS invariant and homology jump loci of π1orb(Cg,𝝁)\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}}).

Proposition 5.5.

Let 𝕜\mathbbm{k} be an algebraically closed field with char(𝕜)=p0\mathrm{char}(\mathbbm{k})=p\geqslant 0. With the above assumptions and notations, if χorb(Cg,𝛍)<0\chi^{\mathrm{orb}}(C_{g},{\bm{\mu}})<0, we have

𝒱1(π1orb(Cg,𝝁);𝕜)={Hom(H;𝕜),if g>1, or g=1 and pdivides some μj,Hom(H;𝕜){1},if g=1,θ(𝝁)>1,and p does not divide any μj,{1},if g=1,θ(𝝁)=1,and p does not divide any μj,\mathcal{V}^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbbm{k})=\begin{cases}{\mathrm{Hom}}(H;\mathbbm{k}^{*}),&\text{if }g>1,\text{ or }g=1\text{ and }p\\ &\text{divides some }\mu_{j},\\[5.0pt] {\mathrm{Hom}}(H;\mathbbm{k}^{*})^{\prime}\cup\{1\},&\text{if }g=1,\theta({\bm{\mu}})>1,\\ &\text{and }p\text{ does not divide any }\mu_{j},\\[5.0pt] \{1\},&\text{if }g=1,\theta({\bm{\mu}})=1,\\ &\text{and }p\text{ does not divide any }\mu_{j},\end{cases}

where Hom(H;𝕜){\mathrm{Hom}}(H;\mathbbm{k}^{*})^{\prime} is Hom(H;𝕜){\mathrm{Hom}}(H;\mathbbm{k}^{*}) taking out the connected component containing 11, and we use the convention that 0 does not divide any nonzero integer. Then

Trop𝕜(𝒱1(π1orb(Cg,𝝁);𝕜))={{0}, if g=1,θ(𝝁)=1, and p does not divide any μj,2g, otherwise.{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{V}^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbbm{k}))=\begin{cases}\{0\},&\text{ if }g=1,\theta({\bm{\mu}})=1,\text{ and }p\text{ does not divide any }\mu_{j},\\ \mathbb{R}^{2g},&\text{ otherwise.}\end{cases}

Hence Σ1(π1orb(Cg,𝛍);)=.\Sigma^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbb{Z})=\emptyset.

Démonstration.

When char(𝕜)=0\mathrm{char}(\mathbbm{k})=0, the computations for 𝒱1(π1orb(Cg,𝝁);𝕜)\mathcal{V}^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbbm{k}) can be found in [ABCAM13, Section 2] or [Suc21, Section 10]. When char(𝕜)=p>0\mathrm{char}(\mathbbm{k})=p>0, by the Fox calculus presented in [ABCAM13, Proof of Proposition 2.11], one can compute 𝒱1(π1orb(Cg,𝝁);𝕜)\mathcal{V}^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbbm{k}) as in [LL23, Section 3.2]. Then the computations for tropical variety follow easily. Hence Σ1(π1orb(Cg,𝝁);)=\Sigma^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbb{Z})=\emptyset by Theorem 1.1. ∎

Remark 5.6.

In the above proof, if χorb(Cg,𝝁)<0\chi^{\mathrm{orb}}(C_{g},{\bm{\mu}})<0, we have

Σ1(π1orb(Cg,𝝁);)={S(Trop𝕜(𝒱1(π1orb(Cg,𝝁);𝕜)))c,if g=1,θ(𝝁)=1,and p divides some μjS(Trop(𝒱1(π1orb(Cg,𝝁);)))c, otherwise.\Sigma^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbb{Z})=\begin{cases}\mathrm{S}({\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{V}^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbbm{k})))^{c},&\text{if }g=1,\theta({\bm{\mu}})=1,\\ &\text{and }p\text{ divides some }\mu_{j}\\[5.0pt] \mathrm{S}({\mathrm{Trop}}_{\mathbb{C}}(\mathcal{V}^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbb{C})))^{c},&\text{ otherwise.}\end{cases}

This shows that the pp-adic tropicalization considered in Proposition 3.9 is not needed for Trop(𝒥1(π1orb(Cg,𝝁);)){\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbb{Z})).

5.2 Dwyer-Fried sets

Consider an epimorphism ν:π1(X)=GH\nu:\pi_{1}(X)=G\twoheadrightarrow H^{\prime} with HH^{\prime} abelian. Let XνXX^{\nu}\to X be the corresponding abelian covering. Consider 𝕜\mathbbm{k} an algebraically closed field and denote by ν#:Hom(H;𝕜)Hom(G;𝕜)\nu^{\#}\colon\mathrm{Hom}(H^{\prime};\mathbbm{k}^{*})\to\mathrm{Hom}(G;\mathbbm{k}^{*}) the induced morphism. Suciu, Yang, and Zhao generalized Dwyer and Fried’s results (from a free abelian quotient to an abelian quotient) in [SYZ15, Theorem B] as follows:

dim𝕜Hk(Xν;𝕜)<im(ν#)𝒱k(X;𝕜) is finite,\mathrm{dim}_{\mathbbm{k}}H_{\leqslant k}(X^{\nu};\mathbbm{k})<\infty\Longleftrightarrow\mathrm{im}(\nu^{\#})\cap\mathcal{V}^{\leqslant k}(X;\mathbbm{k})\text{\ is finite},

where Hk(Xν;𝕜)=i=0kHi(Xν;𝕜)H_{\leqslant k}(X^{\nu};\mathbbm{k})=\bigoplus_{i=0}^{k}H_{i}(X^{\nu};\mathbbm{k}). With our notations, this conclusion can be partially generalized to the integer coefficients as follows.

Proposition 5.7.

Let ν:GH\nu:G\twoheadrightarrow H^{\prime} be the quotient from GG to an abelian group HH^{\prime} with rankH1{\mathrm{rank}}_{\mathbb{Z}}H^{\prime}\geqslant 1. Consider Hi(Xν;)H_{i}(X^{\nu};\mathbb{Z}) as a finitely generated H\mathbb{Z}H^{\prime}-module induced by the deck transformation. Then Hi(Xν;)H_{i}(X^{\nu};\mathbb{Z}) is finitely generated over \mathbb{Z} if and only if Trop(Ann(Hi(Xν;))){0}{\mathrm{Trop}}_{\mathbb{Z}}(\mathrm{Ann}(H_{i}(X^{\nu};\mathbb{Z})))\subseteq\{0\}. Moreover, if Trop(𝒥k(X;)){0}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{\leqslant k}(X;\mathbb{Z}))\subseteq\{0\}, then Hi(Xν;)H_{i}(X^{\nu};\mathbb{Z}) is finitely generated over \mathbb{Z} for any such abelian cover ν\nu and all 0ik0\leqslant i\leqslant k.

Démonstration.

The first claim follows directly from Theorem 2.9 and Proposition 3.8. For the second claim, since HH^{\prime} is abelian, the map ν\nu factors through the abelianization map GHG\twoheadrightarrow H with an epimorphism ψ:HH\psi\colon H\twoheadrightarrow H^{\prime}. Then ψ\psi induces an embedding

ψ:Hom(H;)Hom(H;)\psi^{*}\colon\mathrm{Hom}(H^{\prime};\mathbb{R})\hookrightarrow\mathrm{Hom}(H;\mathbb{R})

and a ring epimorphism HH\mathbb{Z}H\twoheadrightarrow\mathbb{Z}H^{\prime}. Similar to the discussion at the end of section 3, there exists an ideal KHK\subseteq\mathbb{Z}H such that H/KH.\mathbb{Z}H/K\cong\mathbb{Z}H^{\prime}. Set I=𝒥k(X;)HI=\sqrt{\mathcal{J}^{\leqslant k}(X;\mathbb{Z})}\subseteq\mathbb{Z}H and I=Ann(Hk(Xν;))H.I^{\prime}=\sqrt{\mathrm{Ann}(H_{\leqslant k}(X^{\nu};\mathbb{Z}))}\subseteq\mathbb{Z}H^{\prime}. Then we claim that I=IHHI^{\prime}=I\otimes_{\mathbb{Z}H}\mathbb{Z}H^{\prime}, which is the image of II in the quotient ring H\mathbb{Z}H^{\prime}. In fact, one can also define the jump ideal 𝒥k(X,ν;)\mathcal{J}^{\leqslant k}(X,\nu;\mathbb{Z}) for the cellular chain complex C(Xν;)C_{*}(X^{\nu};\mathbb{Z}) as a complex of H\mathbb{Z}H^{\prime}-modules as in Definition 4.7. Then by Theorem 4.8 we have 𝒥k(X,ν;)=I\sqrt{\mathcal{J}^{\leqslant k}(X,\nu;\mathbb{Z})}=I^{\prime}. On the other hand, by definition we have 𝒥k(X,ν;)=𝒥k(X;)HH\mathcal{J}^{\leqslant k}(X,\nu;\mathbb{Z})=\mathcal{J}^{\leqslant k}(X;\mathbb{Z})\otimes_{\mathbb{Z}H}\mathbb{Z}H^{\prime}, hence I=IHHI^{\prime}=I\otimes_{\mathbb{Z}H}\mathbb{Z}H^{\prime}. Note that I+KI+K is the unique ideal in H\mathbb{Z}H such that H/(I+K)H/I\mathbb{Z}H/(I+K)\cong\mathbb{Z}H^{\prime}/I^{\prime}. Then we have

ψ(Trop(I))=Trop(I+K)Trop(I),\psi^{*}({\mathrm{Trop}}_{\mathbb{Z}}(I^{\prime}))={\mathrm{Trop}}_{\mathbb{Z}}(I+K)\subseteq{\mathrm{Trop}}_{\mathbb{Z}}(I),

where the first equality follows from Proposition 3.12. Hence Trop(I){0}{\mathrm{Trop}}_{\mathbb{Z}}(I)\subseteq\{0\} implies Trop(I){0}{\mathrm{Trop}}_{\mathbb{Z}}(I^{\prime})\subseteq\{0\}. Then the second claim follows from Theorem 2.9 and Proposition 3.8. ∎

Remark 5.8.

Since Trop(K)=ψ(Hom(H,)){\mathrm{Trop}}_{\mathbb{Z}}(K)=\psi^{*}(\mathrm{Hom}(H^{\prime},\mathbb{R})), we have the inclusion

ψ(Trop(I))=Trop(I+K)Trop(I)Trop(K),\psi^{*}({\mathrm{Trop}}_{\mathbb{Z}}(I^{\prime}))={\mathrm{Trop}}_{\mathbb{Z}}(I+K)\subseteq{\mathrm{Trop}}_{\mathbb{Z}}(I)\cap{\mathrm{Trop}}_{\mathbb{Z}}(K),

which could be strict. For example, if II is a proper ideal in H\mathbb{Z}H and I=HI^{\prime}=\mathbb{Z}H^{\prime}, then 0Trop(I)0\in{\mathrm{Trop}}_{\mathbb{Z}}(I) and Trop(I)={\mathrm{Trop}}_{\mathbb{Z}}(I^{\prime})=\emptyset. This happens since tropicalization does not always respect intersections even over field coefficients: if VV and WW are subvarieties of (𝕜)n(\mathbbm{k}^{*})^{n}, then Trop𝕜(VW)Trop𝕜(V)Trop𝕜(W){\mathrm{Trop}}_{\mathbbm{k}}(V\cap W)\subseteq{\mathrm{Trop}}_{\mathbbm{k}}(V)\cap{\mathrm{Trop}}_{\mathbbm{k}}(W), but the inclusion may be strict.

Example 5.9.

Consider the group GG as in Example 5.1. By the Fox calculus there, we have the following isomorphisms

G/G′′[x±1]/(x2)[12].G^{\prime}/G^{\prime\prime}\cong\mathbb{Z}[x^{\pm 1}]/(x-2)\cong\mathbb{Z}[\frac{1}{2}].

In particular, [12]\mathbb{Z}[\frac{1}{2}] is not finitely generated as \mathbb{Z}-module, which correspondences to Trop(Ann(G/G′′))={λχλ0}{\mathrm{Trop}}_{\mathbb{Z}}(\mathrm{Ann}(G^{\prime}/G^{\prime\prime}))=\{\lambda\cdot\chi\mid\lambda\in\mathbb{R}_{\geqslant 0}\}. On the other hand, for any field 𝕜\mathbbm{k}, G/G′′𝕜G^{\prime}/G^{\prime\prime}\otimes_{\mathbb{Z}}\mathbbm{k} is finite dimensional, which correspondences to Trop𝕜(Ann(G/G′′𝕜))={0}{\mathrm{Trop}}_{\mathbbm{k}}(\mathrm{Ann}(G^{\prime}/G^{\prime\prime}\otimes_{\mathbb{Z}}\mathbbm{k}))=\{0\}.

6 Kähler groups

6.1 General results on Kähler groups

Recall that a group GG is called a Kähler group if it can be realized as the fundamental group of a compact Kähler manifold. Using Simpson’s Lefschetz theorem [Sim93, Theorem 1], Delzant gave a complete description of Σ1(G)\Sigma^{1}(G) for GG a Kähler group in [Del10, Theorem 1.1]. To explain Delzant’s results, we first recall the definition of orbifold fibrations.

Definition 6.1.

Let XX be a compact Kähler manifold with π1(X)=G\pi_{1}(X)=G. A holomorphic map f:XCgf\colon X\to C_{g} is called an orbifold fibration if ff is surjective with connected fibers onto a Riemann surface CgC_{g} with genus g1g\geqslant 1. Assume that ff has multiple fibers over the points {q1,,qs}\{q_{1},\ldots,q_{s}\} in CgC_{g} and let μj\mu_{j} denote the multiplicity of the multiple fiber f(qj)f^{*}(q_{j}) (the gcd\gcd of the coefficients of the divisor fqjf^{*}q_{j}). Such an orbifold fibration is denoted as f:X(Cg,𝝁)f\colon X\to(C_{g},{\bm{\mu}}) and is called hyperbolic if χorb(Cg,𝝁)<0\chi^{\mathrm{orb}}(C_{g},{\bm{\mu}})<0.

Two orbifold fibrations f:X(Cg,𝝁)f\colon X\to(C_{g},{\bm{\mu}}) and f:X(Cg,𝝁)f^{\prime}\colon X\to(C_{g^{\prime}},{\bm{\mu}}^{\prime}) are equivalent if there is a biholomorphic map h:CgCgh\colon C_{g}\to C_{g^{\prime}} which sends marked points to marked points while preserving multiplicities. A compact Kähler manifold XX admits only finitely many equivalence classes of hyperbolic orbifold fibrations, see e.g. [Del08, Theorem 2],.

Theorem 6.2 (Theorem 1.1, [Del10]).

Let XX be a compact Kähler manifold with π1(X)=G\pi_{1}(X)=G. Then we have

Σ1(G;)=S(fim(f:H1(Cg;)H1(X;)))c,\Sigma^{1}(G;\mathbb{Z})=\mathrm{S}\big{(}\bigcup_{f}\mathrm{im}(f^{*}\colon H^{1}(C_{g};\mathbb{R})\to H^{1}(X;\mathbb{R}))\big{)}^{c},

where the union runs over all hyperbolic orbifold fibrations of XX. In particular, it is a finite union. Moreover, Σ1(G;)=\Sigma^{1}(G;\mathbb{Z})=\emptyset if and only if there exists a hyperbolic orbifold fibration f:XCgf\colon X\to C_{g} such that f:H1(Cg;)H1(X;)f^{*}\colon H^{1}(C_{g};\mathbb{R})\to H^{1}(X;\mathbb{R}) is an isomorphism.

A hyperbolic orbifold fibration f:X(Cg,𝝁)f\colon X\to(C_{g},{\bm{\mu}}) induces an epimorphism from GG to the orbifold group

f:Gπ1orb(Cg,𝝁).f_{*}\colon G\twoheadrightarrow\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}}).

Hence it induces an embedding (see e.g. [Suc14, Lemma 2.13])

𝒱1(π1orb(Cg,𝝁);𝕜)𝒱1(G;𝕜).\mathcal{V}^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbbm{k})\hookrightarrow\mathcal{V}^{1}(G;\mathbbm{k}).

for any algebraically closed field coefficient 𝕜\mathbbm{k}. Then we have

Trop𝕜(𝒱1(π1orb(Cg,𝝁);𝕜))Trop𝕜(𝒱1(G;𝕜)).{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{V}^{1}(\pi_{1}^{\mathrm{orb}}(C_{g},{\bm{\mu}});\mathbbm{k}))\subseteq{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{V}^{1}(G;\mathbbm{k})).

Hence Theorem 1.1, Theorem 6.2 and Remark 5.6 give the following observation.

Proposition 6.3.

Let GG be a Kähler group. Then we have

Σ1(G;)=S(Trop(𝒥1(G;)))c=S(char(𝕜)=p0Trop𝕜(𝒱1(G;𝕜)))c,\Sigma^{1}(G;\mathbb{Z})=\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G;\mathbb{Z}))\big{)}^{c}=\mathrm{S}\big{(}\bigcup_{\mathrm{char}(\mathbbm{k})=p\geqslant 0}{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{V}^{1}(G;\mathbbm{k}))\big{)}^{c},

where the last union runs over algebraically closed coefficient field 𝕜\mathbbm{k} with char(𝕜)=p0\mathrm{char}(\mathbbm{k})=p\geqslant 0.

Related results of this proposition are first observed by Papadima and Suciu in [PS10, Theorem 16.4], later improved by Suciu in [Suc21, Theorem 12.2].

Denote the derived series of GG as G=𝒟1G=[G,G]G^{\prime}=\mathcal{D}^{1}G=[G,G], and 𝒟m+1G=[𝒟mG,𝒟mG]\mathcal{D}^{m+1}G=[\mathcal{D}^{m}G,\mathcal{D}^{m}G] for m1m\geqslant 1, and the solvable quotient as mG=G/𝒟mG\mathcal{R}^{m}G=G/\mathcal{D}^{m}G. By LABEL:prop:abelian_bnsr_K\"ahler, we have the following observation, which may give new restrictions for the Kähler group.

Corollary 6.4.

Let GG be a Kähler group and G/G′′G/G^{\prime\prime} be its maximal metabelianization. Let NN be a normal subgroup of GG with NG′′=𝒟2GN\leqslant G^{\prime\prime}=\mathcal{D}^{2}G. Then we have

Σ1(G;)=Σ1(G/N;)=Σ1(G/G′′;).\Sigma^{1}(G;\mathbb{Z})=\Sigma^{1}(G/N;\mathbb{Z})=\Sigma^{1}(G/G^{\prime\prime};\mathbb{Z}).

In particular, Σ1(G;)=Σ1(mG;)\Sigma^{1}(G;\mathbb{Z})=\Sigma^{1}(\mathcal{R}^{m}G;\mathbb{Z}) for any m2m\geqslant 2.

Démonstration.

Since S(G/G′′)=S(G)\mathrm{S}(G/G^{\prime\prime})=\mathrm{S}(G), the naruality property in Proposition 4.4 gives us

Σ1(G;)Σ1(G/G′′;).\Sigma^{1}(G;\mathbb{Z})\subseteq\Sigma^{1}(G/G^{\prime\prime};\mathbb{Z}).

Since Trop(𝒥1(G;)){\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G;\mathbb{Z})) depends only on 𝒥1(G;)\sqrt{\mathcal{J}^{1}(G;\mathbb{Z})} and 𝒥1(G;)\sqrt{\mathcal{J}^{1}(G;\mathbb{Z})} depends only on G/G′′G/G^{\prime\prime} (see e.g. [Suc14, Section 2]), we have

Trop(𝒥1(G;))=Trop(𝒥1(G/G′′;)).{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G;\mathbb{Z}))={\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G/G^{\prime\prime};\mathbb{Z})).

On the other hand, for metabelian group G/G′′G/G^{\prime\prime}, by Theorem 1.1 we have

Σ1(G/G′′;)S(Trop(𝒥1(G/G′′;)))c.\Sigma^{1}(G/G^{\prime\prime};\mathbb{Z})\subseteq\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G/G^{\prime\prime};\mathbb{Z}))\big{)}^{c}.

Putting all together, we get that

Σ1(G;)Σ1(G/G′′;)S(Trop(𝒥1(G/G′′;)))c=S(Trop(𝒥1(G;)))c.\Sigma^{1}(G;\mathbb{Z})\subseteq\Sigma^{1}(G/G^{\prime\prime};\mathbb{Z})\subseteq\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G/G^{\prime\prime};\mathbb{Z}))\big{)}^{c}=\mathrm{S}\big{(}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G;\mathbb{Z}))\big{)}^{c}.

Then the claim follows from LABEL:prop:abelian_bnsr_K\"ahler and Proposition 4.4. ∎

Proof of LABEL:prop_K\"ahler.

To simplify the notations, set Q=G/G′′Q=G/G^{\prime\prime} and Q=G/G′′Q^{\prime}=G^{\prime}/G^{\prime\prime}. We prove the proposition by four steps.

Step 1: We first prove the equivalence of (i)(iv)(i)-(iv).

(i)(ii)(i)\iff(ii) and (iii)(iv)(iii)\iff(iv): Both follow from Theorem 4.5.

(i)(iii)(i)\iff(iii): It follows from LABEL:cor:sigma_metabelian_quotient_K\"ahler and S(G)=S(Q)\mathrm{S}(G)=\mathrm{S}(Q).

Step 2: We prove (iv)(v)(vi)(iii)(iv)\Rightarrow(v)\Rightarrow(vi)\Rightarrow(iii).

(iv)(v)(iv)\Rightarrow(v): QQ is an extension of QQ^{\prime} by G/GG/G^{\prime}. By the assumption, both QQ^{\prime} and G/GG/G^{\prime} are finitely generated abelian groups, particularly polycyclic. Then by [DK18, Proposition 13.73(5)], QQ is polycyclic.

(v)(vi)(v)\Rightarrow(vi): By [DK18, Proposition 13.84], every finitely generated polycyclic group is finitely presented.

(vi)(iii)(vi)\Rightarrow(iii): Note that QQ is a finitely generated metabelian group. By a nice theorem due to Birei and Strebel [BS80, Theorem A], we have that

QQ is finitely presented if and only if Σ1(Q;)Σ1(Q;)=S(Q).\Sigma^{1}(Q;\mathbb{Z})\cup-\Sigma^{1}(Q;\mathbb{Z})=S(Q).

Note that by LABEL:cor:sigma_metabelian_quotient_K\"ahler and Theorem 6.2, we have Σ1(Q;)=Σ1(Q;)\Sigma^{1}(Q;\mathbb{Z})=-\Sigma^{1}(Q;\mathbb{Z}). Then the claim follows.

Step 3: We prove (iv)(vii)(vi)(iv)\Rightarrow(vii)\Rightarrow(vi).

(iv)(vii)(iv)\Rightarrow(vii): If QQ^{\prime} is finitely generated, it follows from [Del10, Lemme 3.1] or [Bur11, Corollary 3.6] that QQ is virtually nilpotent.

(vii)(vi)(vii)\Rightarrow(vi): By assumption, there exists a normal subgroup NN of QQ with a short exact sequence

1N𝑞QQ/N1,1\to N\overset{q}{\to}Q\to Q/N\to 1,

where NN is nilpotent and Q/NQ/N is finite. Since QQ is finitely generated, so is NN by [DK18, Lemma 7.85]. Note that finitely generated nilpotent groups and finite groups are both finitely presented, hence QQ is also finitely presented by [DK18, Proposition 7.30].

Step 4: Finally we show that (iv)(viii)(ix)(iii)(iv)\Rightarrow(viii)\Rightarrow(ix)\Rightarrow(iii).

(iv)(viii)(iv)\Rightarrow(viii): It is obvious.

(viii)(ix)(viii)\Rightarrow(ix): Let 𝕜\mathbbm{k} an algebraically closed field. By a fact in commutative algebra (see e.g. [SYZ15, Proposition 9.3]), Q𝕜Q^{\prime}\otimes_{\mathbb{Z}}\mathbbm{k} being finite-dimensional implies that the variety of the ideal Ann(Q𝕜)\mathrm{Ann}(Q^{\prime}\otimes_{\mathbb{Z}}\mathbbm{k}) consists of at most finitely many points. Note that Q𝕜Q^{\prime}\otimes_{\mathbb{Z}}\mathbbm{k} is the first Alexander invariant of GG with 𝕜\mathbbm{k}-coefficient. Then by Theorem 4.8, 𝒱1(G;𝕜)\mathcal{V}^{1}(G;\mathbbm{k}) consists of finitely many points.

(ix)(iii)(ix)\Rightarrow(iii): Note that Theorem 3.3 shows that taking tropicalization preserves dimension over field coefficients and Trop𝕂(𝒱1(G;𝕜)){\mathrm{Trop}}_{\mathbb{K}}(\mathcal{V}^{1}(G;\mathbbm{k})) is homogeneous with respect to scalar multiplication by a positive real number. If 𝒱1(G;𝕜)\mathcal{V}^{1}(G;\mathbbm{k}) consists of finitely many points, we have Trop𝕜(𝒱1(G;𝕜)){0}{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{V}^{1}(G;\mathbbm{k}))\subseteq\{0\}, hence Trop(𝒥1(Q,)){0}{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(Q,\mathbb{Z}))\subseteq\{0\} due to LABEL:prop:abelian_bnsr_K\"ahler. Therefore, by the discussion in section 4.4, we have S(Q)=Σ1(Q;)\mathrm{S}(Q)=\Sigma^{1}(Q;\mathbb{Z}). ∎

6.2 Weighted right-angled Artin group

In this subsection, we classify the Kähler weighted right-angled Artin groups.

Example 6.5.

Let Γ=(V,E,)\Gamma_{\ell}=(V,E,\ell) and Γ=(V,E,)\Gamma^{\prime}_{\ell^{\prime}}=(V^{\prime},E^{\prime},\ell^{\prime}) be two labeled graphs. Denote by ΓΓ\Gamma_{\ell}\sqcup\Gamma^{\prime}_{\ell^{\prime}} their disjoint union. Denote by ΓΓ\Gamma_{\ell}*\Gamma^{\prime}_{\ell^{\prime}} their join, with vertex set VVV\sqcup V^{\prime}, edge set EE{{a,a}|aV,aV}E\sqcup E^{\prime}\sqcup\{\{a,a^{\prime}\}|a\in V,a^{\prime}\in V^{\prime}\} and weight 1 on all the joining edges {a,a}\{a,a^{\prime}\}. Then we have

GΓΓ=GΓGΓG_{\Gamma_{\ell}\sqcup\Gamma^{\prime}_{\ell^{\prime}}}=G_{\Gamma_{\ell}}*G_{\Gamma^{\prime}_{\ell^{\prime}}} and GΓΓ=GΓ×GΓ.G_{\Gamma_{\ell}*\Gamma^{\prime}_{\ell^{\prime}}}=G_{\Gamma_{\ell}}\times G_{\Gamma^{\prime}_{\ell^{\prime}}}.

For the edge weighted graph Γ\Gamma_{\ell}, if we forget the weight on the edges, we get the finite simple graph Γ\Gamma. Let GΓG_{\Gamma} denote the corresponding right-angled Artin group. The jump loci of GΓG_{\Gamma} are completely characterized by Dimca, Papadima, and Suciu as follows (see also [PS06, Theorem 5.5, Corollary 5.6] for the corresponding results about resonance varieties).

Theorem 6.6 ([DPS09], Proposition 11.5).

Let Γ\Gamma be a finite simple graph and let GΓG_{\Gamma} denote the corresponding right-angled Artin group. Then we have

𝒱1(GΓ;)=WVΓW is maximally disconnected𝕋W,\mathcal{V}^{1}(G_{\Gamma};\mathbb{C})=\bigcup_{\begin{subarray}{c}W\subseteq V\\ \Gamma_{W}\text{ is maximally disconnected}\end{subarray}}\mathbb{T}_{W},

where the union is taken over all subsets WVW\subseteq V such that the subgraph ΓW\Gamma_{W} is maximally disconnected, i.e. ΓW\Gamma_{W} is disconnected and there is no disconnected subgraph of Γ\Gamma strictly containing ΓW\Gamma_{W}. Here for WVW\subseteq V, 𝕋W𝕋V=()|V|\mathbb{T}_{W}\subseteq\mathbb{T}_{V}=(\mathbb{C}^{*})^{|V|} is given by

𝕋W={(xa)aV()|V|xa=1 for aW}.\mathbb{T}_{W}=\{(x_{a})_{a\in V}\in(\mathbb{C}^{*})^{|V|}\mid x_{a}=1\text{ for }a\notin W\}.

In particular, 𝒱1(GΓ;)=()|V|\mathcal{V}^{1}(G_{\Gamma};\mathbb{C})=(\mathbb{C}^{*})^{|V|} if and only if Γ\Gamma is disconnected.

By an observation, we show that 𝒱1(GΓ;)\mathcal{V}^{1}(G_{\Gamma_{\ell}};\mathbb{C}) is same as 𝒱1(GΓ;)\mathcal{V}^{1}(G_{\Gamma};\mathbb{C}).

Corollary 6.7.

Let GΓG_{\Gamma_{\ell}} denote the weighted right-angled Artin group associated to an edge weighted graph Γ\Gamma_{\ell}. Let GΓG_{\Gamma} denote the right-angled Artin group associated to the corresponding simple graph Γ\Gamma by forgetting the weights on edges. There is a natural isomorphism H1(GΓ;)H1(GΓ;)H_{1}(G_{\Gamma_{\ell}};\mathbb{Z})\cong H_{1}(G_{\Gamma};\mathbb{Z}), which induces an isomorphism Hom(GΓ,)Hom(GΓ,)\mathrm{Hom}(G_{\Gamma_{\ell}},\mathbb{C}^{*})\cong\mathrm{Hom}(G_{\Gamma},\mathbb{C}^{*}). Under this isomorphism, we have

𝒱1(GΓ;)𝒱1(GΓ;).\mathcal{V}^{1}(G_{\Gamma_{\ell}};\mathbb{C})\cong\mathcal{V}^{1}(G_{\Gamma};\mathbb{C}).

In particular, 𝒱1(GΓ;)=()|V|\mathcal{V}^{1}(G_{\Gamma_{\ell}};\mathbb{C})=(\mathbb{C}^{*})^{|V|} if and only if Γ\Gamma_{\ell} is disconnected.

Démonstration.

The degree one jump loci can be computed by the Alexander matrix given by the Fox calculus. For an edge with weight mm in GΓG_{\Gamma_{\ell}} connecting vertices aa and bb, we have the relation [a,b]m=1[a,b]^{m}=1 in GΓG_{\Gamma_{\ell}}. The abelianization of the Fox derivative of this relation gives

(m(1b)m(a1)00)T,\begin{pmatrix}m(1-b)&m(a-1)&0&\cdots&0\end{pmatrix}^{T},

which is a column in the Alexander matrix. Comparing with the one given by the relation [a,b]=1[a,b]=1 in GΓG_{\Gamma}, they only differs by a multiplication by the nonzero integer mm. So the Alexander matrix for GΓG_{\Gamma_{\ell}} can be obtained from the one for GΓG_{\Gamma} by multiplying the proper (nonzero) weight for the corresponding column. Since we are computing 𝒱1(GΓ;)\mathcal{V}^{1}(G_{\Gamma_{\ell}};\mathbb{C}) and any nonzero integer is a unit in \mathbb{C}, we get the same fitting ideals for GΓG_{\Gamma_{\ell}} and GΓG_{\Gamma}, hence the claim follows. ∎

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6.

By Example 6.5, (ii)(iii)(ii)\Rightarrow(iii) is easy. Note that a1,a2|[a1,a2]m=1\langle a_{1},a_{2}|[a_{1},a_{2}]^{m}=1\rangle is a Kähler group, see e.g. [Ue86]. Hence so is a finite product of such groups. Then (iii)(i)(iii)\Rightarrow(i) follows. We are left to prove (i)(ii)(i)\Rightarrow(ii) by two steps. From now on, we assume that GΓG_{\Gamma_{\ell}} is a Kähler group.

Step 1: We first show that Γ\Gamma_{\ell} has to be a complete graph on an even number of vertices by mimicking the proof presented by Dimca, Papadima and Suciu in [DPS09, Theorem 11.7].

Assume that Γ\Gamma_{\ell} is not a complete graph. Then there exists WVW\subseteq V such that the subgraph ΓW,\Gamma_{W,\ell} is maximally disconnected. Write W=W1W2W=W_{1}\sqcup W_{2} with both W1W_{1} and W2W_{2} nonempty and no edge connecting W1W_{1} and W2W_{2}. Then ΓW,=ΓW1,ΓW2,\Gamma_{W,\ell}=\Gamma_{W_{1},\ell}\sqcup\Gamma_{W_{2},\ell} and so GΓW,=GΓW1,GΓW2,.G_{\Gamma_{W,\ell}}=G_{\Gamma_{W_{1},\ell}}*G_{\Gamma_{W_{2},\ell}}. By [PS10, Proposition 13.3] we have 𝒱1(GΓW,;)=()|W|\mathcal{V}^{1}(G_{\Gamma_{W,\ell}};\mathbb{C})=(\mathbb{C}^{*})^{|W|}. Moreover, the natural group epimorphism

GΓGΓW,G_{\Gamma_{\ell}}\twoheadrightarrow G_{\Gamma_{W,\ell}}

gives two embeddings

𝒱1(GΓW,;)𝒱1(GΓ;)\mathcal{V}^{1}(G_{\Gamma_{W,\ell}};\mathbb{C})\hookrightarrow\mathcal{V}^{1}(G_{\Gamma_{\ell}};\mathbb{C}) and H1(GΓW,;)H1(GΓ;).H^{1}(G_{\Gamma_{W,\ell}};\mathbb{C})\hookrightarrow H^{1}(G_{\Gamma_{\ell}};\mathbb{C}).

By Corollary 6.7, the image of the first embedding gives an irreducible component of 𝒱1(GΓ;)\mathcal{V}^{1}(G_{\Gamma_{\ell}};\mathbb{C}). Meanwhile, the image of the second embedding is the tangent space of this irreducible component. As shown by Dimca, Papadima and Suciu in [DPS09, Theorem C], such tangent space for Kähler group is a 1-isotropic space, i.e.,

H1(GΓW,;)H1(GΓW,;)H2(GΓ;)H^{1}(G_{\Gamma_{W,\ell}};\mathbb{C})\wedge H^{1}(G_{\Gamma_{W,\ell}};\mathbb{C})\to H^{2}(G_{\Gamma_{\ell}};\mathbb{C})

has a 1-dimensional image and it is a non-degenerate skew-symmetric bilinear form. Since GΓW,=GΓW1,GΓW2,G_{\Gamma_{W,\ell}}=G_{\Gamma_{W_{1},\ell}}*G_{\Gamma_{W_{2},\ell}}, [DPS09, Lemma 9.4] gives that H1(GΓW,;)H1(GΓW,;)=0H^{1}(G_{\Gamma_{W,\ell}};\mathbb{C})\wedge H^{1}(G_{\Gamma_{W,\ell}};\mathbb{C})=0. Hence we get a contradiction.

Step 2: Since Γ\Gamma_{\ell} is a complete graph, by Corollary 6.7 we get that 𝒱1(GΓ;)={1}\mathcal{V}^{1}(G_{\Gamma_{\ell}};\mathbb{C})=\{1\}. Let XX be a compact Kähler manifold with π1(X)=GΓ\pi_{1}(X)=G_{\Gamma_{\ell}}. By Theorem 6.2 and Proposition 5.5, there is no orbifold fibration f:XCgf\colon X\to C_{g} with g>1g>1. By LABEL:prop:abelian_bnsr_K\"ahler and Theorem 6.2, we have

Trop(𝒥1(GΓ;))=fimf(H1(C1;)H1(X;)),{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G_{\Gamma_{\ell}};\mathbb{Z}))=\bigcup_{f}\mathrm{im}f^{*}(H^{1}(C_{1};\mathbb{R})\hookrightarrow H^{1}(X;\mathbb{R})),

where the union runs over all hyperbolic orbifold fibrations f:XC1f\colon X\to C_{1} with C1C_{1} a compact Riemann surface of genus 1. Hence it is a finite union of two dimensional real vector spaces.

For two orbifold fibrations f:XC1f\colon X\to C_{1} and g:XC1g\colon X\to C^{\prime}_{1}, we claim that either imf=img\mathrm{im}f^{*}=\mathrm{im}g^{*} or imfimg={0}\mathrm{im}f^{*}\cap\mathrm{im}g^{*}=\{0\}. In fact, since ff and gg are both holomorphic maps between compact Kähler manifolds, both H1(C1;)H^{1}(C_{1};\mathbb{R}) and H1(C1;)H^{1}(C^{\prime}_{1};\mathbb{R}) carry sub-Hodge structure of H1(X;)H^{1}(X;\mathbb{R}). Then so is H1(C1;)H1(C1;)H^{1}(C_{1};\mathbb{R})\cap H^{1}(C^{\prime}_{1};\mathbb{R}). Hence H1(C1;)H1(C1;)H^{1}(C_{1};\mathbb{R})\cap H^{1}(C^{\prime}_{1};\mathbb{R}) has dimension either 0 or 2.

Assume that Γ\Gamma_{\ell} has two adjacent edges {a1,a2}\{a_{1},a_{2}\} and {a2,a3}\{a_{2},a_{3}\} with weights m>1m>1 and m>1m^{\prime}>1, respectively. Pick a primes pp such that pp divides mm. Fix an algebraically closed field 𝕜\mathbbm{k} with char(𝕜)=p\mathrm{char}(\mathbbm{k})=p. Let Γ1,2\Gamma_{1,2} denote the subgraph of GΓ,G_{\Gamma,\ell} with only two vertices a1a_{1} and a2a_{2} and the edge connecting them of weight mm. Note that GΓ1,2G_{\Gamma_{1,2}} is a compact orbifold group with only one marked point. Then Proposition 5.5 gives us that 𝒱1(GΓ1,2;𝕜)=(𝕜)2\mathcal{V}^{1}(G_{\Gamma_{1,2}};\mathbbm{k})=(\mathbbm{k}^{*})^{2}. The natural group epimorphism GΓGΓ1,2G_{\Gamma_{\ell}}\twoheadrightarrow G_{\Gamma_{1,2}} induces an embedding

𝒱1(GΓ1,2;𝕜)𝒱1(GΓ;𝕜).\mathcal{V}^{1}(G_{\Gamma_{1,2}};\mathbbm{k})\hookrightarrow\mathcal{V}^{1}(G_{\Gamma_{\ell}};\mathbbm{k}).

Set 1,2={(x1,x2,0,,0)|V|x1,x2}.\mathbb{R}_{1,2}=\{(x_{1},x_{2},0,\cdots,0)\in\mathbb{R}^{|V|}\mid x_{1},x_{2}\in\mathbb{R}\}. Then we have

1,2Trop𝕜(𝒱1(GΓ;𝕜))Trop(𝒥1(GΓ;)).\mathbb{R}_{1,2}\subseteq{\mathrm{Trop}}_{\mathbbm{k}}(\mathcal{V}^{1}(G_{\Gamma_{\ell}};\mathbbm{k}))\subseteq{\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G_{\Gamma_{\ell}};\mathbb{Z})).

Since we already knew that Trop(𝒥1(GΓ;)){\mathrm{Trop}}_{\mathbb{Z}}(\mathcal{J}^{1}(G_{\Gamma_{\ell}};\mathbb{Z})) is a finite union of two-dimensional real vector spaces, 1,2\mathbb{R}_{1,2} has to be one of them. Hence there exists an orbifold fibration f:XC1f\colon X\to C_{1} such that 1,2=im(f:H1(C1;)H1(X;)).\mathbb{R}_{1,2}=\mathrm{im}(f^{*}\colon H^{1}(C_{1};\mathbb{R})\hookrightarrow H^{1}(X;\mathbb{R})). Similarly, there exists another orbifold fibration g:XC1g\colon X\to C^{\prime}_{1} such that 2,3=img(H1(C1;)H1(X;))\mathbb{R}_{2,3}=\mathrm{im}g^{*}(H^{1}(C^{\prime}_{1};\mathbb{R})\hookrightarrow H^{1}(X;\mathbb{R})) with 2,3={(0,x2,x3,0,,0)|V|x2,x3}.\mathbb{R}_{2,3}=\{(0,x_{2},x_{3},0,\cdots,0)\in\mathbb{R}^{|V|}\mid x_{2},x_{3}\in\mathbb{R}\}. But dim(1,22,3)=1\dim(\mathbb{R}_{1,2}\cap\mathbb{R}_{2,3})=1 contradicts the previous claim. ∎

Remark 6.8.

For a right-angled Artin group GΓG_{\Gamma}, Σ1(GΓ)\Sigma^{1}(G_{\Gamma}) is computed in [MV95]. In particular, the first inclusion in (1.1) holds as equality for k=1k=1 (see [PS06, Prposition 5.8] for a proof). It would be interesting to compute Σ1(GΓ)\Sigma^{1}(G_{\Gamma_{\ell}}) for any weighted right-angled Artin group and check if the first inclusion in (1.1) holds as equality (for k=1k=1).

Remark 6.9.

Let ν:GΓ\nu\colon G_{\Gamma_{\ell}}\to\mathbb{Z} be the homomorphism which sends each generator aVa\in V to 1. When (e)=1\ell(e)=1 for all eEe\in E, the kernel of ν\nu is the Bestvina-Brady group. Dimca, Papadima and Suciu classified the quasi-Kähler Bestvina-Brady groups in [DPS08]. It would be interesting to know which kernel of ν\nu for GΓG_{\Gamma_{\ell}} is quasi-Kähler.

Acknowledgments

The authors would like to thank Ziyun He, Laurentiu Maxim, Alexandru I. Suciu and Botong Wang for useful discussions, and thank Thomas Delzant for Remark 1.7. Yongqiang Liu is supported by National Key Research and Development Project SQ2020YFA070080, the Project of Stable Support for Youth Team in Basic Research Field, CAS (YSBR-001), the project “Analysis and Geometry on Bundles” of Ministry of Science and Technology of the People’s Republic of China and Fundamental Research Funds for the Central Universities. Yuan Liu is partially supported by the China Postdoctoral Science Foundation (No. 2023M744396) and the China Scholarship Council (No. 202406340174).

Références

  • [ABC+96] J. Amorós, M. Burger, K. Corlette, D. Kotschick & D. Toledo. Fundamental groups of compact Kähler manifolds, vol. 44 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1996). URL http://dx.doi.org/10.1090/surv/044.
  • [ABCAM13] E. Artal Bartolo, J. I. Cogolludo-Agustín & D. Matei. “Characteristic varieties of quasi-projective manifolds and orbifolds”. Geom. Topol., 17(2013)(1):273–309. URL http://dx.doi.org/10.2140/gt.2013.17.273.
  • [Ara95] D. Arapura. “Fundamental groups of smooth projective varieties”. “Current topics in complex algebraic geometry (Berkeley, CA, 1992/93)”, vol. 28 of Math. Sci. Res. Inst. Publ., 1–16. Cambridge Univ. Press, Cambridge (1995):URL http://dx.doi.org/10.2977/prims/1195168852.
  • [Bea92] A. Beauville. “Annulation du H1H^{1} pour les fibrés en droites plats”. “Complex algebraic varieties (Bayreuth, 1990)”, vol. 1507 of Lecture Notes in Math., 1–15. Springer, Berlin (1992):URL http://dx.doi.org/10.1007/BFb0094507.
  • [BG84] R. Bieri & J. R. J. Groves. “The geometry of the set of characters induced by valuations”. J. Reine Angew. Math., 347(1984):168–195.
  • [BM12] I. Biswas & M. Mj. “One-relator Kähler groups”. Geom. Topol., 16(2012)(4):2171–2186. URL http://dx.doi.org/10.2140/gt.2012.16.2171.
  • [BMS12] I. Biswas, M. Mj & H. Seshadri. “3-manifold groups, Kähler groups and complex surfaces”. Commun. Contemp. Math., 14(2012)(6):1250038, 24. URL http://dx.doi.org/10.1142/S0219199712500381.
  • [BNS87] R. Bieri, W. D. Neumann & R. Strebel. “A geometric invariant of discrete groups”. Invent. Math., 90(1987)(3):451–477. URL http://dx.doi.org/10.1007/BF01389175.
  • [Bou98] N. Bourbaki. Commutative algebra: chapters 1-7, vol. 1. Springer Science & Business Media (1998).
  • [BR88] R. Bieri & B. Renz. “Valuations on free resolutions and higher geometric invariants of groups”. Comment. Math. Helv., 63(1988)(3):464–497. URL http://dx.doi.org/10.1007/BF02566775.
  • [Bro87] K. S. Brown. “Trees, valuations, and the Bieri-Neumann-Strebel invariant”. Invent. Math., 90(1987)(3):479–504. URL http://dx.doi.org/10.1007/BF01389176.
  • [BS80] R. Bieri & R. Strebel. “Valuations and finitely presented metabelian groups”. Proc. London Math. Soc. (3), 41(1980)(3):439–464. URL http://dx.doi.org/10.1112/plms/s3-41.3.439.
  • [BS81] ———. “A geometric invariant for modules over an abelian group”. J. Reine Angew. Math., 322(1981):170–189.
  • [Bur11] M. Burger. “Fundamental groups of Kähler manifolds and geometric group theory”. Astérisque, (2011)(339):Exp. No. 1022, ix, 305–321. Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026.
  • [Del08] T. Delzant. “Trees, valuations and the Green-Lazarsfeld set”. Geom. Funct. Anal., 18(2008)(4):1236–1250. URL http://dx.doi.org/10.1007/s00039-008-0679-2.
  • [Del10] ———. “L’invariant de Bieri-Neumann-Strebel des groupes fondamentaux des variétés kählériennes”. Math. Ann., 348(2010)(1):119–125. URL http://dx.doi.org/10.1007/s00208-009-0468-8.
  • [DF87] W. G. Dwyer & D. Fried. “Homology of free abelian covers. I”. Bull. London Math. Soc., 19(1987)(4):350–352. URL http://dx.doi.org/10.1112/blms/19.4.350.
  • [DK18] C. Druţu & M. Kapovich. Geometric group theory, vol. 63 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2018). With an appendix by Bogdan Nica, URL http://dx.doi.org/10.1090/coll/063.
  • [DP19] T. Delzant & P. Py. “Cubulable Kähler groups”. Geom. Topol., 23(2019)(4):2125–2164. URL http://dx.doi.org/10.2140/gt.2019.23.2125.
  • [DPS08] A. Dimca, S. Papadima & A. I. Suciu. “Quasi-Kähler Bestvina-Brady groups”. J. Algebraic Geom., 17(2008)(1):185–197. URL http://dx.doi.org/10.1090/S1056-3911-07-00463-8.
  • [DPS09] A. Dimca, c. S. Papadima & A. I. Suciu. “Topology and geometry of cohomology jump loci”. Duke Math. J., 148(2009)(3):405–457. URL http://dx.doi.org/10.1215/00127094-2009-030.
  • [DS09] A. Dimca & A. I. Suciu. “Which 3-manifold groups are Kähler groups?” J. Eur. Math. Soc. (JEMS), 11(2009)(3):521–528. URL http://dx.doi.org/10.4171/JEMS/158.
  • [EKL06] M. Einsiedler, M. Kapranov & D. Lind. “Non-Archimedean amoebas and tropical varieties”. J. Reine Angew. Math., 601(2006):139–157. URL http://dx.doi.org/10.1515/CRELLE.2006.097.
  • [FGS10] M. Farber, R. Geĭgan & D. Shyutts. “Closed 1-forms in topology and geometric group theory”. Uspekhi Mat. Nauk, 65(2010)(1(391)):145–176. URL http://dx.doi.org/10.1070/RM2010v065n01ABEH004663.
  • [Fox53] R. H. Fox. “Free differential calculus. I. Derivation in the free group ring”. Ann. of Math. (2), 57(1953):547–560. URL http://dx.doi.org/10.2307/1969736.
  • [KMM15] N. Koban, J. McCammond & J. Meier. “The BNS-invariant for the pure braid groups”. Groups Geom. Dyn., 9(2015)(3):665–682. URL http://dx.doi.org/10.4171/GGD/323.
  • [Kot12a] D. Kotschick. “The deficiencies of Kähler groups”. J. Topol., 5(2012)(3):639–650. URL http://dx.doi.org/10.1112/jtopol/jts017.
  • [Kot12b] ———. “Three-manifolds and Kähler groups”. Ann. Inst. Fourier (Grenoble), 62(2012)(3):1081–1090. URL http://dx.doi.org/10.5802/aif.2717.
  • [LL23] F. Li & Y. Liu. “The homology growth for finite abelian covers of smooth quasi-projective varieties”. arXiv e-prints, (2023):arXiv:2311.11593. 2311.11593, URL http://dx.doi.org/10.48550/arXiv.2311.11593.
  • [MMV98] J. Meier, H. Meinert & L. VanWyk. “Higher generation subgroup sets and the Σ\Sigma-invariants of graph groups”. Comment. Math. Helv., 73(1998)(1):22–44. URL http://dx.doi.org/10.1007/s000140050044.
  • [MS15] D. Maclagan & B. Sturmfels. Introduction to tropical geometry, vol. 161 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2015). URL http://dx.doi.org/10.1090/gsm/161.
  • [MV95] J. Meier & L. VanWyk. “The Bieri-Neumann-Strebel invariants for graph groups”. Proc. London Math. Soc. (3), 71(1995)(2):263–280. URL http://dx.doi.org/10.1112/plms/s3-71.2.263.
  • [PS06] S. Papadima & A. I. Suciu. “Algebraic invariants for right-angled Artin groups”. Math. Ann., 334(2006)(3):533–555. URL http://dx.doi.org/10.1007/s00208-005-0704-9.
  • [PS09] ———. “Toric complexes and Artin kernels”. Adv. Math., 220(2009)(2):441–477. URL http://dx.doi.org/10.1016/j.aim.2008.09.008.
  • [PS10] ———. “Bieri-Neumann-Strebel-Renz invariants and homology jumping loci”. Proc. Lond. Math. Soc. (3), 100(2010)(3):795–834. URL http://dx.doi.org/10.1112/plms/pdp045.
  • [PS14] ———. “Jump loci in the equivariant spectral sequence”. Math. Res. Lett., 21(2014)(4):863–883. URL http://dx.doi.org/10.4310/MRL.2014.v21.n4.a13.
  • [Py13] P. Py. “Coxeter groups and Kähler groups”. Math. Proc. Cambridge Philos. Soc., 155(2013)(3):557–566. URL http://dx.doi.org/10.1017/S0305004113000534.
  • [Py24] ———. “Lectures on kähler groups” (2024). Manuscript in preparation, URL https://www-fourier.ujf-grenoble.fr/~py/Documents/Livre-Kahler/lectures.pdf.
  • [Sik87] J.-C. Sikorav. “Homologie de novikov associéea une classe de cohomologie réelle de degré un”. Thèse d’Etat, Université Paris-Sud,, 6(1987):70–93.
  • [Sik17] ———. “On Novikov homology” (2017). Unpublished Survey paper, URL https://perso.ens-lyon.fr/jean-claude.sikorav/textes/Novikov.December2017.pdf.
  • [Sim93] C. Simpson. “Lefschetz theorems for the integral leaves of a holomorphic one-form”. Compositio Math., 87(1993)(1):99–113. URL http://www.numdam.org/item?id=CM_1993__87_1_99_0.
  • [Suc11] A. I. Suciu. “Fundamental groups, Alexander invariants, and cohomology jumping loci”. “Topology of algebraic varieties and singularities”, vol. 538 of Contemp. Math., 179–223. Amer. Math. Soc., Providence, RI (2011):URL http://dx.doi.org/10.1090/conm/538/10600.
  • [Suc14] ———. “Characteristic varieties and Betti numbers of free abelian covers”. Int. Math. Res. Not. IMRN, (2014)(4):1063–1124. URL http://dx.doi.org/10.1093/imrn/rns246.
  • [Suc21] ———. “Sigma-invariants and tropical varieties”. Math. Ann., 380(2021)(3-4):1427–1463. URL http://dx.doi.org/10.1007/s00208-021-02172-z.
  • [SYZ15] A. Suciu, Y. Yang & G. Zhao. “Homological finiteness of Abelian covers”. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14(2015)(1):101–153.
  • [Ue86] M. Ue. “On the diffeomorphism types of elliptic surfaces with multiple fibers”. Invent. Math., 84(1986)(3):633–643. URL http://dx.doi.org/10.1007/BF01388750.