This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bi-local fields interacting with a constant electric field and related problems including the Schwinger effect

Kenichi Aouda1,∗, Naohiro Kanda1,†, Shigefumi Naka1,‡    Haruki Toyoda2,§ 1Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan
2Junior College, Funabashi Campus, Nihon University, Chiba 274-8501, Japan
​aoda.kenichi20@nihon-u.ac.jp
​$^†$ kanda.naohiro20@nihon-u.ac.jp
​$^‡ $naka@phys.cst.nihon-u.ac.jp
​$^§$ toyoda.haruki@nihon-u.ac.jp
Abstract

The bi-local fields are the quantum fields of two-particle systems, the bi-local, systems, bounded by relativistic potentials. Since those form constrained dynamical systems, it is limited to introduce the interactions of the bi-local fields with other fields. In this paper, the interaction between the bi-local fields and a constant electric field EE is studied with consideration for the consistency of constraints. Then, we evaluate the Schwinger effect for the bi-local systems, which gives the pair production probability of the bound states as a function of the charges of respective particles and the coupling constant in the binding potential. Through this analysis, we also discuss the possibility for the dissociation of bi-local systems due to the electric field.

Bi-local fields, Constrained dynamics, Schwinger effect

I Introduction

The bi-local fields are known to be an original form of non-local fields extended in spacetime proposed by H. YukawaYukawa-1 -Yukawa-3 . In the beginning, this theory had been expected as a drastic approach to save the problems in local field theories such as the problems of divergence and those of unified description for many elementary particles, etc. According to the development of this theory, however, the bi-local fields established the standpoint as an effectiver approach to the relativistic two-body bound systemsTakabayasi such as mesons in QCD. The resultant formulation of bi-local systems, the classical counterparts of the bi-local fields, had a similar structure to the string modelsBL-Review .

The bi-local systems have a structure of constrained dynamical systems based on the reparameterization invariance of the time parameters of constituent particles. The structure of constrained dynamics is simpler than that of the string model; however, because of this reason, it was not easy to formulate the interaction of the bi-local systems with other fields. In the attempts of those interacting bi-local systems, the scattering amplitudesTanaka , the form factor by external fieldsNamiki and so on were studied. Through the study on a three vertex function of the bi-local fields, a prototype of the Witten type of vertex function in the string model was also proposedGoto-Naka . We also point out the recent viewpoint relating the bi-local fields and the collective bi-local fields out of a higher-spin gauge theory in AdS spacetimeAdS-BL .

In this paper, we study the bi-local systems of two particles carrying the charges g(1)(>0)g_{(1)}(>0) and g(2)(<0)g_{(2)}(<0) under a constant electric field. We there take notice of that this type of interaction is relevant to the problem of dissociation and pair production of the bi-local systems by the electric field. In the next section, we review the formulation of free bi-local systems bounded by a relativistic Hooke type of potential.

In Sec.3, a formulation of a bi-local system under a constant electric field is given. The gauge structure of the bi-local system is represented by two constraints: the on-mass shell condition corresponding to a master wave equation of this system and a supplementary condition eliminating redundant degrees of freedom. The consistency of those constraints are spoiled by the presence of the electric field in general; and, we try the modification of those constraints so as to recover the consistency.

In Sec.4, the structure of the physical states satisfying the mass shell condition with the supplementary condition are studied. Therein, the dynamical variables of the system are resolved into the components lie in \| and \perp planes, where the \| is the plane spanned by the direction of time (𝒆0\bm{e}^{0}) and that of electric field E𝒆1E\bm{e}^{1}, and \perp is the (𝒆2,𝒆3(\bm{e}^{2},\bm{e}^{3}) plane orthogonal to \| 111We write the basis of 4-dimensional spacetime as 𝒆μ(μ=0,1,2,3)\bm{e}^{\mu}\,(\mu=0,1,2,3), to which diag(ημν=𝒆μ𝒆ν)=(+++)(\eta^{\mu\nu}=\bm{e}^{\mu}\cdot\bm{e}^{\nu})=(-+++). . In terms of those components, we show the way to construct a set of consistent constraints under the presence of E0E\neq 0. Under those constraints, in Sec.5, the structure of the physical states are studied in view of that the \| components of modified center of mass momenta in the mass-shell condition appear in a form of Hamiltonian for a repulsive harmonic oscillatorRHO-PRD .

Within the physical states, the ground state |0g|0_{g}^{\|}\rangle for the internal variables in the \| plane is particularly interesting, since it depends on the charges of respective particles g(i)(i=1,2)g_{(i)}(i=1,2) and on EE. Furthermore, if the bi-local systems are embedded in the two-dimensional (𝒆0,𝒆1(\bm{e}^{0},\bm{e}^{1}) spacetime, the \| plane, the excited states of those systems are constructed only on the ground state |0g|0_{g}^{\|}\rangle .

In Sec.6, we study the transition amplitude between the ground state |0g|0_{g}^{\|}\rangle for E1=0E_{1}=0 and one for E20E_{2}\neq 0. The analysis on this transition gives us a knowledge on the stability of the system under the EE.

In Sec.7, the discussion on the Schwinger effect for the bi-local fields is given. The bi-local systems are neutral or charged systems according as |g(1)|=|g(2)||g_{(1)}|=|g_{(2)}| or |g(1)||g(2)||g_{(1)}|\neq|g_{(2)}| respectively. The analysis of the Schwinger effect in the case of |g(1)|=|g(2)||g_{(1)}|=|g_{(2)}| will give us the knowledge on the dissociation of bound states by the EE.

Section 8 is devoted to the summary of our results. In the Appendices, some mathematical problems used in the text are discussed: in particular in Appendix C, the transition amplitudes between the ground states of different EE’s are evaluated in detail for the analysis in Sec.6.

II Formulation of free bi-local fields

A commonly used approach to the bi-local system, the two particle system bounded by a confining potential, is to start from the action

S=𝑑τ12i=12{e(i)1x˙(i)μx˙(i)μV(i)(x)e(i)},\displaystyle S=\int d\tau\frac{1}{2}\sum_{i=1}^{2}\left\{e_{(i)}^{-1}\dot{x}_{(i)}^{\mu}\dot{x}_{(i)\mu}-V_{(i)}\!\left(x\right)e_{(i)}\right\}, (1)

where x(i)(τ)μ(i=1,2)x_{(i)}(\tau)^{\mu}~{}(i=1,2) are the coordinates of respective particles; and, the interaction terms V(i)(x)(i=1,2)V_{(i)}(x)~{}(i=1,2) are set as functions of xx(1)x(2)x\equiv x_{(1)}-x_{(2)} to ensure the translation invariance of this system. The e(i)(τ),(i=1,2)e_{(i)}(\tau),(i=1,2) are einbeins, which guaranty the invariance of SS under the τ\tau reparametrization. When this invariance is consistent with the dynamics of bi-local system, the interaction via V(i)V_{(i)}’s can be described as an action at a distance between x(i)(τ)(i=1,2)x_{(i)}(\tau)\,(i=1,2) with the same τ\tau.

Refer to caption
Figure 1: The figure shows the world lines of a two particle system, the bi-local system, interacting each other through the confining potential V(i)(x(τ))V_{(i)}(x(\tau)) at the same time parameter τ\tau. If we regard those particles as the quark and the anti-quark, though the particle’s spins are out of consideration, the bi-local system becomes a model of meson.

Then varying the action with respect to e(i)e_{(i)}, we obtain the constraints

H(i)2δSδe(i)=p(i)2+V(i)0,(i=1,2),\displaystyle H_{(i)}\equiv-2\frac{\delta S}{\delta e_{(i)}}=p_{(i)}^{2}+V_{(i)}\approx 0,~{}(i=1,2), (2)

where p(i)μ=δSδx(i)μ=1e(i)x˙(i)μ,(i=1,2)p_{(i)\mu}=\frac{\delta S}{\delta x_{(i)}^{\mu}}=\frac{1}{e_{(i)}}\dot{x}_{(i)\mu},(i=1,2) are momenta conjugate to x(i)μx_{(i)}^{\mu}’s; and we have use the symbol \approx for the constrained equations. The Eq.(2) means that m(i)c1V(i)(i=1,2)m_{(i)}\equiv c^{-1}\sqrt{V_{(i)}}~{}(i=1,2) are effective masses of respective particles under the interaction.

In what follows, we confine the discussion to the bi-local system of equal mass particles by taking the application in a latter section into account; and, we put

V(i)(x)=(mc)2+V(x)(V(x)=κ2x2),\displaystyle V_{(i)}(x)=(mc)^{2}+V(x)~{}~{}\left(~{}V(x)=\kappa^{2}x^{2}~{}\right), (3)

where cc is the speed of light. The action (1) tends to the sum of actions of free mass mm particles in the limit κ0\kappa\rightarrow 0. In this equal mass case, one can introduce the center of mass momentum P=p(1)+p(2)P=p_{(1)}+p_{(2)} and the relative momentum p=12(p(1)p(2))p=\frac{1}{2}(p_{(1)}-p_{(2)}) conjugate to X=12(x(1)+x(2))X=\frac{1}{2}\left(x_{(1)}+x_{(2)}\right) and xx, respectively. In terms of those variables, the constraints (2) can be written as

H\displaystyle H 2(H1+H2)=P2+4(p2+V(x))0,\displaystyle\equiv 2(H_{1}+H_{2})=P^{2}+4\left(p^{2}+V(x)\right)\approx 0, (4)
T\displaystyle T 12(H1H2)=Pp0.\displaystyle\equiv\frac{1}{2}(H_{1}-H_{2})=P\cdot p\approx 0. (5)

In the classical mechanics, because of {H,T}=κPx\{H,T\}=\kappa P\cdot x, the equations (4) and (5) don’t form a set of first class constraints. Even if we add Px0P\cdot x\approx 0 as a secondary constraint, the algebras {T,Px}=2κP2\{T,P\cdot x\}=-2\kappa P^{2} leads to inconsistent secondary constraint P20P^{2}\approx 0.

In the quantized theories, however, this situation is successfully changed by introducing the oscillator variables (a^μ,a^μ)(\hat{a}^{\mu},\hat{a}^{\mu{\dagger}}) defined by

xμ=2κ(a^μ+a^μ),p^μ=iκ2(a^μa^μ),\displaystyle x^{\mu}=\sqrt{\frac{\hbar}{2\kappa}}\left(\hat{a}^{\mu{\dagger}}+\hat{a}^{\mu}\right),~{}\hat{p}^{\mu}=i\sqrt{\frac{\hbar\kappa}{2}}\left(\hat{a}^{\mu{\dagger}}-\hat{a}^{\mu}\right), (6)

which satisfy the commutation relation [a^μ,a^ν]=ημν[\hat{a}_{\mu},\hat{a}_{\nu}^{\dagger}]=\eta_{\mu\nu}. In terms of those oscillator variables, Eq.(4) can be read as the wave equation

H^|Φ=(P^2+1αa^a^+(m0c)2)|Φ=0,\displaystyle\hat{H}|\Phi\rangle=\left(\hat{P}^{2}+\frac{1}{\alpha^{\prime}}\hat{a}^{\dagger}\cdot\hat{a}+(m_{0}c)^{2}\right)|\Phi\rangle=0, (7)

where α=18κ\alpha^{\prime}=\frac{1}{8\hbar\kappa} and (m0c)2=4(mc)2+16κ(m_{0}c)^{2}=4(mc)^{2}+16\hbar\kappa. Then, Eq.(5) should be regarded as a subsidiary condition on Φ\Phi in some way. To avoid the problem of secondary constraints, we treat Eq.(5) as the expectation value Φ|T^|Φ=0\langle\Phi|\hat{T}|\Phi\rangle=0 in analogy with the Gupta-Bleuler formalism in Q.E.D., which suggests to put

T^(+)|ΦP^a^|Φ=0.\displaystyle\hat{T}^{(+)}|\Phi\rangle\equiv\hat{P}\cdot\hat{a}|\Phi\rangle=0. (8)

Then, because of [H^,T^(+)]=1αT^(+)[\hat{H},\hat{T}^{(+)}]=-\frac{1}{\alpha^{\prime}}\hat{T}^{(+)}, the subsidiary condition (8) is compatible with the on-mass shell condition (7).

The states generated by {a^μ}\{\hat{a}^{\mu{\dagger}}\} with the ground state a^μ|0=0(0|0=1)\hat{a}^{\mu}|0\rangle=0\,(\langle 0|0\rangle=1) is an indefinite metric functional space due to [a^0,a^0]=1[\hat{a}^{0},\hat{a}^{0{\dagger}}]=-1. The subsidiary condition (8) can remove the excitation of a^0\hat{a}^{0{\dagger}}, since Eq.(8) implies a^0|Φ=0\hat{a}^{0}|\Phi\rangle=0 in the rest frame of the center of mass momentum P=(P0,𝟎)P=(P^{0},\bm{0}). This also means that the particles characterized by Eqs. (7) and (8) have (mass)2c2=1αi=13ni2+(m0c)2(ni=0,1,2,)(\mbox{mass})^{2}c^{2}=\frac{1}{\alpha^{\prime}}\sum_{i=1}^{3}n_{i}^{2}+(m_{0}c)^{2}~{}(\,n_{i}=0,1,2,\cdots\,) 222 We note that the functional space characterized by Eqs.(7) and (8) forms a non-unitary representation of the Lorentz group, which guarantees the manifest covariance of the formalism. In some cases, however, one may treat Φ|T|Φ=0\langle\Phi|T|\Phi\rangle=0 as T()|ΦPa|Φ=0T^{(-)}|\Phi\rangle\equiv P\cdot a^{\dagger}|\Phi\rangle=0. In this case, the operator a0a^{0{\dagger}} plays a role of annihilation operator; and, the positive definite metric functional space generated by the action of (bμ)=(a0,ai)(b^{\mu{\dagger}})=(a^{0},a^{i{\dagger}})(i=1,2,3)(i=1,2,3) on the ground state bμ|0b=0(0b|0b=1)b^{\mu{\dagger}}|0_{b}\rangle=0\,(\,\langle 0_{b}|0_{b}\rangle=1\,) gives rise to a unitary representation of the Lorentz group in a positive definite metric functional space. The difference of those two representations reflects in the phenomenological properties of the bi-local fields. In this paper, we require Eq.(8) as the subsidiary condition on the bi-local fields to maintain the the manifest covariance of the formalism. It should be noticed that the condition (8) does not exclude non-zero excitation {n1}\{n_{1}\} even when the bi-local system exists in two-dimensional (𝒆0,𝒆1)(\bm{e}^{0},\bm{e}^{1}) spaceteime; this fact is not trivial for the bi-local system interacting with a constant electric field E𝒆1E\bm{e}^{1} as will be discussed in Sec.4.

III Bi-local fields under a constant electric field

It is not difficult to extend formally the action (1) to a bi-local system interacting with external electric fields. Let g(i)(i=1,2)g_{(i)}\,(i=1,2) be the electric charges of the particle with the position variables x(i)(i=1,2)x_{(i)}\,(i=1,2) in (Fig.1); we set g(1)>0g_{(1)}\!>0 and g(2)<0g_{(2)}\!<0 for the later analysis. Then, with the gauge potential AμA^{\mu}, the extended action should be

S=𝑑τ[i=1212{e(i)1x˙(i)μx˙(i)μV(i)(x)e(i)}+g(i)cx˙(i)A(x(i))],\displaystyle\begin{split}S=\int d\tau&\left[\sum_{i=1}^{2}\frac{1}{2}\left\{e_{(i)}^{-1}\dot{x}_{(i)}^{\mu}\dot{x}_{(i)\mu}-V_{(i)}(x)e_{(i)}\right\}\right.\\ &\left.+\frac{g_{(i)}}{c}\dot{x}_{(i)}\cdot A(x_{(i)})\right],\end{split} (9)

from which the momenta conjugate to x(i)(i=1,2)x_{(i)}\,(i=1,2) are given as p(i)=1ex˙(i)+g(i)cA(x(i))(i=1,2)p_{(i)}=\frac{1}{e}\dot{x}_{(i)}+\frac{g_{(i)}}{c}A(x_{(i)})\,(i=1,2). Further, the constraint (2) in this action becomes

H(i)2δSδe(i)=π(i)2+(mc)2+V(x)0\displaystyle H_{(i)}\equiv-2\frac{\delta S}{\delta e_{(i)}}=\pi_{(i)}^{2}+(mc)^{2}+V(x)\approx 0 (10)

(i=1,2)(i=1,2), where π(i)=p(i)g(i)cA(x(i))(i=1,2)\pi_{(i)}=p_{(i)}-\frac{g_{(i)}}{c}A(x_{(i)})\,(i=1,2). From now on, we discuss the case in which a constant electric field EE is applied to the 𝒆1=(0,1,0,0)\bm{e}^{1}=(0,1,0,0) direction; and we put the gauge potentials so that

A0(x(i))=12Ex(i)1,A1(x(i))=12Ex(i)0,A2(x(i))=A3(x(i))=0.\displaystyle\begin{split}&A^{0}(x_{(i)})=-\frac{1}{2}Ex_{(i)}^{1},~{}A^{1}(x_{(i)})=-\frac{1}{2}Ex_{(i)}^{0},\\ &A^{2}(x_{(i)})=A^{3}(x_{(i)})=0.\end{split} (11)

Then one can write 333Throughout this paper, we use the notation of decomposition for any four vector (fμ)(f^{\mu}) such as f=f=(f0,f1),f~=f~=(f1,f0)f^{\|}=f_{\|}=(f^{0},f^{1}),\,\tilde{f}^{\|}=\tilde{f}_{\|}=(f^{1},f^{0}), and f=f=(f2,f3)f_{\perp}=f^{\perp}=(f^{2},f^{3}).

π(i)=(p(i)+g(i)E2cx~(i)),π(i)=p(i).\displaystyle\pi_{(i)\|}=\left(p_{(i)}+\frac{g_{(i)}E}{2c}\tilde{x}_{(i)}\right)_{\|},~{}~{}\pi_{(i)\perp}=p_{(i)\perp}. (12)

Those π(i)s\pi_{(i)}^{\prime}s can be decomposed into the center of mass and the relative components by some ways such as

π(1)=(12Π+π)=1|g~(2)|(12Πg+πg),\displaystyle\pi_{(1)}=\left(\frac{1}{2}\Pi+\pi\right)=\frac{1}{\sqrt{|\tilde{g}_{(2)}|}}\left(\frac{1}{2}\Pi_{g}+\pi_{g}\right), (13)
π(2)=(12Ππ)=1|g~(1)|(12Πgπg),\displaystyle\pi_{(2)}=\left(\frac{1}{2}\Pi-\pi\right)=\frac{1}{\sqrt{|\tilde{g}_{(1)}|}}\left(\frac{1}{2}\Pi_{g}-\pi_{g}\right), (14)

where g~(i)=g(i)/g(i=1,2)\tilde{g}_{(i)}=g_{(i)}/g\,(i=1,2) and g=12(g(1)g(2))g=\frac{1}{2}\left(g_{(1)}-g_{(2)}\right). In the case of g(1)=g(2)=g(>0)g_{(1)}=-g_{(2)}=g(>0), those definitions give rise to (g~(1),g~(2))=(1,1)(\tilde{g}_{(1)},\tilde{g}_{(2)})=(1,-1) and (Πg,πg)=(Π,π)(\Pi_{g},\pi_{g})=(\Pi,\pi). We note that the (Πg,πg)(\Pi_{g},\pi_{g}) have the meaning of the center of mass and the relative components of π(i)\pi_{(i)}’s related to the charge distributions in the bi-local system. As needed, one can also use the relations

Π\displaystyle\Pi =π(1)+π(2)=1g~(wgΠg+Δgπg),\displaystyle=\pi_{(1)}+\pi_{(2)}=\frac{1}{\tilde{g}_{*}}\left(w_{g}\Pi_{g}+\Delta_{g}\pi_{g}\right), (15)
π\displaystyle\pi =12(π(1)π(2))=1g~(Δg4Πg+wgπg),\displaystyle=\frac{1}{2}\left(\pi_{(1)}-\pi_{(2)}\right)=\frac{1}{\tilde{g}_{*}}\left(\frac{\Delta_{g}}{4}\Pi_{g}+w_{g}\pi_{g}\right), (16)

where wg=12(|g~(1)|+|g~(2)|)w_{g}=\frac{1}{2}\left(\sqrt{|\tilde{g}_{(1)}|}+\sqrt{|\tilde{g}_{(2)}|}\right), Δg=|g~(1)||g~(2)|\Delta_{g}=\sqrt{|\tilde{g}_{(1)}|}-\sqrt{|\tilde{g}_{(2)}|}, and g~=|g~(1)g~(2)|)\tilde{g}_{*}=\sqrt{|\tilde{g}_{(1)}\tilde{g}_{(2)}|}), which tend (wg,Δg,g~)(1,0,1)(w_{g},\Delta_{g},\tilde{g}_{*})\rightarrow(1,0,1) according as |g(i)|g|g_{(i)}|\rightarrow g.

Now, for E0E\neq 0, the primary constraints (4) and (5) are modified so that

HE\displaystyle H_{E} =2(H(1)+H(2))=HE+HE0,\displaystyle=2\left(H_{(1)}+H_{(2)}\right)=H_{E\|}+H_{E\perp}\approx 0, (17)
TE\displaystyle T_{E} =12(H(1)H(2))=TE+TE0.\displaystyle=\frac{1}{2}\left(H_{(1)}-H_{(2)}\right)=T_{E\|}+T_{E\perp}\approx 0. (18)

Here, the (HE,TEH_{E\perp},T_{E\perp}) are the parts of the primary constraints consisting of \perp components of four vectors. Those are independent of EE; and so,

HE\displaystyle H_{E\perp} =P2+4p2+4{κ2x2+(mc)2},\displaystyle=P_{\perp}^{2}+4p_{\perp}^{2}+4\left\{\kappa^{2}{x}_{\perp}^{2}+(mc)^{2}\right\}, (19)
TE\displaystyle T_{E\perp} =Pp.\displaystyle=P_{\perp}\cdot p_{\perp}. (20)

Meanwhile, the (HE,TEH_{E\|},T_{E\|}) are EE dependent parts of the constraints; that is,

HE\displaystyle H_{E\|} =Π2+4(π2+κ2x2),\displaystyle=\Pi_{\|}^{2}+4\left(\pi_{\|}^{2}+\kappa^{2}x_{\|}^{2}\right), (21)
TE\displaystyle T_{E\|} =Ππ.\displaystyle=\Pi_{\|}\cdot\pi_{\|}. (22)

It is obvious that the presence of E0E\neq 0 does not alter the \perp components of the canonical variables, though the \| components of the canonical variables are affected by the electric field. As a result, the Poisson brackets of those variables become, for μ,ν=0,1\mu,\nu=0,1,

{Πμ,Πν}\displaystyle\{\Pi_{\|}^{\mu},\Pi_{\|}^{\nu}\} =gEcΔg~ϵμν,\displaystyle=\frac{gE}{c}\Delta\tilde{g}\epsilon^{\mu\nu}, (23)
{πμ,πν}\displaystyle\{\pi_{\|}^{\mu},\pi_{\|}^{\nu}\} =gEcΔg~4ϵμν,\displaystyle=\frac{gE}{c}\frac{\Delta\tilde{g}}{4}\epsilon^{\mu\nu}, (24)
{Πμ,πν}\displaystyle\{\Pi_{\|}^{\mu},\pi_{\|}^{\nu}\} =gEcϵμν,\displaystyle=\frac{gE}{c}\epsilon^{\mu\nu}, (25)

with {Πμ,xν}=0,{πμ,xν}=ημν\{\Pi_{\|}^{\mu},x_{\|}^{\nu}\}=0,~{}\{\pi_{\|}^{\mu},x_{\|}^{\nu}\}=-\eta_{\|}^{\mu\nu}. Here, Δg~=g~(1)+g~(2)\Delta\tilde{g}=\tilde{g}_{(1)}+\tilde{g}_{(2)} and ϵμν=ϵνμ(μ,ν=0,1;ϵ01=1)\epsilon^{\mu\nu}=-\epsilon^{\nu\mu}\,(\mu,\nu=0,1;\,\epsilon^{01}=1).

Because of those non-vanishing structures of the right-hand sides of equations (23)-(25), it is not easy to construct a set of first class constraints such as the (H,T(+))(H,T^{(+)}) in the case of E=0E=0. Further, the on-mass-shell structure of the bi-local system described by HE=0H_{E}=0 is hard to understand in terms of (Π,π)(\Pi_{\|},\pi_{\|}). To overcome this situation, let us introduce a new set of momenta (Π[g],πg)(\Pi_{[g]\|},\pi_{g\|}) with

Π[g]\displaystyle{\Pi}_{[g]\|} =Πgg~gEcg~wgx~+Δgwgπg,\displaystyle={\Pi}_{g\|}-\frac{\tilde{g}_{*}gE}{c}\frac{\tilde{g}_{*}}{w_{g}}\tilde{x}_{\|}+\frac{\Delta_{g}}{w_{g}}{\pi}_{g\|}, (26)

to which one can verify

{Π[g]μ,πgν}\displaystyle\{\Pi_{[g]\|}^{\mu},\pi_{g\|}^{\nu}\} ={Π[g]μ,xν}=0,\displaystyle=\{\Pi_{[g]\|}^{\mu},x_{\|}^{\nu}\}=0, (27)
{Π[g]μ,Π[g]ν}\displaystyle\{\Pi_{[g]\|}^{\mu},\Pi_{[g]\|}^{\nu}\} =2g~gEcg~Δgwgϵμν,\displaystyle=2\frac{\tilde{g}_{*}gE}{c}\frac{\tilde{g}_{*}\Delta_{g}}{w_{g}}\epsilon^{\mu\nu}, (28)

in addition to {πgμ,πgν}=0\{\pi_{g\|}^{\mu},\pi_{g\|}^{\nu}\}=0 and {πgμ,xν}=wgημν\{\pi_{g\|}^{\mu},x_{\|}^{\nu}\}=-w_{g}\eta_{\|}^{\mu\nu}. The equations (27)-(28) mean that the Π[g]\Pi_{[g]\|} is independent of the relative variables, though there remains the effect of E0E\neq 0 for Δg0\Delta_{g}\neq 0

Next, rewriting (HE,TE)(H_{E\|},T_{E\|}) in terms of (Π[g],πg)(\Pi_{[g]\|},\pi_{g\|}), we obtain

HE\displaystyle H_{E\|} =1g~Π[g]2+4wg2πg2+{4κ2g~wg2(gEcg~)2}x2\displaystyle=\frac{1}{\tilde{g}_{*}}{\Pi}_{[g]\|}^{2}+\frac{4}{w_{g}^{2}}{\pi}_{g\|}^{2}+\left\{4\kappa^{2}-\frac{\tilde{g}_{*}}{w_{g}^{2}}\left(\frac{gE}{c}\tilde{g}_{*}\right)^{2}\right\}{x}_{\|}^{2}
+2ΔgwgTE+2g~wg(gEc)Π[g]x~,\displaystyle~{}~{}~{}+\frac{2\Delta_{g}}{w_{g}}{T}_{E\|}+\frac{2\tilde{g}_{*}}{w_{g}}\left(\frac{gE}{c}\right){\Pi}_{[g]\|}\cdot\tilde{x}_{\|}, (29)
TE\displaystyle T_{E\|} =(wgg~Π[g]+gEcg~x~)\displaystyle=\left(\frac{w_{g}}{\tilde{g}_{*}}\Pi_{[g]\|}+\frac{gE}{c}\tilde{g}_{*}\tilde{x}_{\|}\right)
{1wgπg+Δg4wg(wgg~Π[g]+gEcg~x~)}.\displaystyle~{}~{}~{}~{}\cdot\left\{\frac{1}{w_{g}}\pi_{g\|}+\frac{\Delta_{g}}{4w_{g}}\left(\frac{w_{g}}{\tilde{g}_{*}}\Pi_{[g]\|}+\frac{gE}{c}\tilde{g}_{*}\tilde{x}_{\|}\right)\right\}. (30)

Using these expressions to the functions of primary constraints (HE,HE;TE,TE)(H_{E\|},H_{E\perp};T_{E\|},T_{E\perp}), one can verify the following algebras:

{TE,HE}\displaystyle\{T_{E\|},H_{E}\} =8κ2wgg~Π[g]x,\displaystyle=-8\kappa^{2}\frac{w_{g}}{\tilde{g}_{*}}\Pi_{[g]\|}\cdot x_{\|}, (31)
{TE,HE}\displaystyle\{T_{E\perp},H_{E}\} =8κ2Px,\displaystyle=-8\kappa^{2}P_{\perp}\cdot x_{\perp}, (32)

from which follows

{TE,HE}=8κ2Tx,\displaystyle\{T_{E},H_{E}\}=-8\kappa^{2}T_{x}, (33)

where

Tx=wgg~Π[g]x+Px.\displaystyle T_{x}=\frac{w_{g}}{\tilde{g}_{*}}\Pi_{[g]\|}\cdot x_{\|}+P_{\perp}\cdot x_{\perp}. (34)

The Eq.(33) says that the time development of TET_{E} by the Hamiltonian HEH_{E} produces secondarily the constraint Tx0T_{x}\approx 0, which does not form a set of the first class constraints with TE0T_{E}\approx 0. To handle this problem, we deal with these constraints so that we first eliminate TET_{E} in HEH_{E} by replacing TE=TETETET_{E\|}=T_{E}-T_{E\perp}\rightarrow-T_{E\perp}, and next require an additional constraint Π[g]x~0\Pi_{[g]\|}\cdot\tilde{x}_{\|}\approx 0. In other words, we use HEH_{E\|} in the modified form

E\displaystyle\mathcal{H}_{E\|} =1g~Π[g]2+4wg2πg2+{4κ2g~wg2(gEcg~)2}x2\displaystyle=\frac{1}{\tilde{g}_{*}}{\Pi}_{[g]\|}^{2}+\frac{4}{w_{g}^{2}}{\pi}_{g\|}^{2}+\left\{4\kappa^{2}-\frac{\tilde{g}_{*}}{w_{g}^{2}}\left(\frac{gE}{c}\tilde{g}_{*}\right)^{2}\right\}{x}_{\|}^{2}
2ΔgwgTE\displaystyle~{}~{}~{}-\frac{2\Delta_{g}}{w_{g}}{T}_{E\perp} (35)

; then, a little calculation leads to

E\displaystyle\mathcal{H}_{E} =E+E(EHE)\displaystyle=\mathcal{H}_{E\|}+\mathcal{H}_{E\perp}~{}~{}(\mathcal{H}_{E\perp}\equiv H_{E\perp})
=1g~Π[g]2+4wg2πg2+{4κ2g~wg2(gEcg~)2}x2\displaystyle=\frac{1}{\tilde{g}_{*}}\Pi_{[g]\|}^{2}+\frac{4}{w_{g}^{2}}\pi_{g\|}^{2}+\left\{4\kappa^{2}-\frac{\tilde{g}_{*}}{w_{g}^{2}}\left(\frac{gE}{c}\tilde{g}_{*}\right)^{2}\right\}{x}_{\|}^{2}
+g~wg2P2+4{pΔ2+κ2x2+(mc)2},\displaystyle+\frac{\tilde{g}_{*}}{w_{g}^{2}}P_{\perp}^{2}+4\left\{p_{\Delta\perp}^{2}+\kappa^{2}{x}_{\perp}^{2}+(mc)^{2}\right\}, (36)

where

pΔ=pΔg4wgP.\displaystyle p_{\Delta\perp}=p_{\perp}-\frac{\Delta_{g}}{4w_{g}}P_{\perp}. (37)

Using this expression of E\mathcal{H}_{E}, the time development of Π[g]x~\Pi_{[g]\|}\cdot\tilde{x}_{\|} generates the constraints (Π[g]x,Π[g]π,Π[g]π~)0\big{(}{\Pi}_{[g]\|}\cdot{x}_{\|},\,{\Pi}_{[g]\|}\cdot{\pi}_{\|},\,{\Pi}_{[g]\|}\cdot\tilde{\pi}_{\|}\big{)}\approx 0 secondarily according to the algebras

{Π[g]x~,E}\displaystyle\{{\Pi}_{[g]\|}\cdot\tilde{x}_{\|},\mathcal{H}_{E}\} =4gEcΔgwgg~Π[g]x\displaystyle=-4\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}{\Pi}_{[g]\|}\cdot{x}_{\|}
+81wgΠ[g]π~g,\displaystyle~{}~{}~{}~{}+8\frac{1}{w_{g}}\Pi_{[g]\|}\cdot\tilde{\pi}_{g\|}, (38)
{Π[g]x,E}\displaystyle\{{\Pi}_{[g]\|}\cdot{x}_{\|},\mathcal{H}_{E}\} =4gEcΔgwgg~Π[g]x~\displaystyle=-4\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}{\Pi}_{[g]\|}\cdot\tilde{x}_{\|}
+81wgΠ[g]πg,\displaystyle~{}~{}~{}~{}+8\frac{1}{w_{g}}{\Pi}_{[g]\|}\cdot{\pi}_{g\|}, (39)
{Π[g]\displaystyle\{{\Pi}_{[g]\|} π~g,E}=4gEcΔgwgg~Π[g]πg\displaystyle\cdot\tilde{\pi}_{g\|},\mathcal{H}_{E}\}=-4\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}{\Pi}_{[g]\|}\cdot{\pi}_{g\|}
2wg{4κ2g~wg2(gEcg~)2}Π[g]x~,\displaystyle-2w_{g}\left\{4\kappa^{2}-\frac{\tilde{g}_{*}}{w_{g}^{2}}\left(\frac{gE}{c}\tilde{g}_{*}\right)^{2}\right\}{\Pi}_{[g]\|}\cdot\tilde{x}_{\|}, (40)
{Π[g]\displaystyle\{{\Pi}_{[g]\|} πg,E}=4gEcΔgwgg~Π[g]π~g\displaystyle\cdot{\pi}_{g\|},\mathcal{H}_{E}\}=-4\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}{\Pi}_{[g]\|}\cdot\tilde{\pi}_{g\|}
2wg{4κ2g~wg2(gEcg~)2}Π[g]x.\displaystyle-2w_{g}\left\{4\kappa^{2}-\frac{\tilde{g}_{*}}{w_{g}^{2}}\left(\frac{gE}{c}\tilde{g}_{*}\right)^{2}\right\}{\Pi}_{[g]\|}\cdot{x}_{\|}. (41)

It should be noticed that Tx=wgg~Π[g]x0T_{x\|}=\frac{w_{g}}{\tilde{g}_{*}}{\Pi}_{[g]\|}\cdot{x}_{\|}\approx 0 arises as a crew of those secondary constraints; and so, we need to require Tx=Px0T_{x\perp}=P_{\perp}\cdot x_{\perp}\approx 0 separately.

The equations (38)-(41) also mean that a linear combination of Π[g]x~Π[g]x{\Pi}_{[g]\|}\cdot\tilde{x}_{\|}\sim{\Pi}_{[g]\|}\cdot{x}_{\|} is able to form a set of first class constraint with E\mathcal{H}_{E}. That is, under an appropriate choice of ai(i=14)a_{i}\,(i=1\sim 4), the combination

Λ\displaystyle\Lambda_{\|} =a1Π[g]x~+a2Π[g]x\displaystyle=a_{1}{\Pi}_{[g]\|}\cdot\tilde{x}_{\|}+a_{2}{\Pi}_{[g]\|}\cdot{x}_{\|}
+a3Π[g]π~g+a4Π[g]πg\displaystyle~{}~{}~{}+a_{3}{\Pi}_{[g]\|}\cdot\tilde{\pi}_{g\|}+a_{4}{\Pi}_{[g]\|}\cdot{\pi}_{g\|} (42)

will satisfy the closed algebra {Λ,E}=k¯Λ\{\Lambda_{\|},\mathcal{H}_{E}\}=\bar{k}\Lambda_{\|}. Then the Λ0\Lambda_{\|}\approx 0 will play a role of the physical state condition which should be compared with T^(±)|Φ=0\hat{T}^{(\pm)}|\Phi\rangle=0 in the free bi-local fields; we must discuss these points in detail.

IV Physical state conditions

In the quantized theories, the Poisson brackets must be replaced by the commutation relations according to [f^,g^]=i{f,g}[\hat{f},\hat{g}]=i\hbar\{f,g\}. Then, according to Eqs.(38)-(41), the algebra [Λ^,^E]=kΛ^[\hat{\Lambda}_{\|},\hat{\mathcal{H}}_{E}]=k\hat{\Lambda}_{\|} gives rise to the following system of simultaneous equations:

ka1\displaystyle ka_{1} =i[4gEcΔgwgg~×a2\displaystyle=i\hbar\left[-4\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}\times a_{2}\right.
2wg{4κ2g~wg2(gEcg~)2}×a3],\displaystyle~{}~{}\left.-2w_{g}\left\{4\kappa^{2}-\frac{\tilde{g}_{*}}{w_{g}^{2}}\left(\frac{gE}{c}\tilde{g}_{*}\right)^{2}\right\}\times a_{3}\right], (43)
ka2\displaystyle ka_{2} =i[4gEcΔgwgg~×a1\displaystyle=i\hbar\left[-4\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}\times a_{1}\right.
2wg{4κ2g~wg2(gEcg~)2}×a4],\displaystyle\left.-2w_{g}\left\{4\kappa^{2}-\frac{\tilde{g}_{*}}{w_{g}^{2}}\left(\frac{gE}{c}\tilde{g}_{*}\right)^{2}\right\}\times a_{4}\right], (44)
ka3\displaystyle ka_{3} =i[81wg×a14gEcΔgwgg~×a4],\displaystyle=i\hbar\left[8\frac{1}{w_{g}}\times a_{1}-4\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}\times a_{4}\right], (45)
ka4\displaystyle ka_{4} =i[81wg×a24gEcΔgwgg~×a3].\displaystyle=i\hbar\left[8\frac{1}{w_{g}}\times a_{2}-4\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}\times a_{3}\right]. (46)

To write down the solutions for (ai)(a_{i}), it is convenient to use the notations

𝒖=[a1a2],𝒗=[a3a4],𝒏±=[1±1],\displaystyle\bm{u}=\begin{bmatrix}a_{1}\\ a_{2}\end{bmatrix},~{}~{}\bm{v}=\begin{bmatrix}a_{3}\\ a_{4}\end{bmatrix},~{}~{}\bm{n}_{\pm}=\begin{bmatrix}1\\ \pm 1\end{bmatrix}, (47)

in terms of which one can write

Λ^\displaystyle\hat{\Lambda}_{\|} =(Π^[g]x~,Π^[g]x)𝒖\displaystyle=\left(\hat{\Pi}_{[g]\|}\cdot\tilde{x}_{\|},\hat{\Pi}_{[g]\|}\cdot{x}_{\|}\right)\bm{u}
+(Π^[g]π^~[g],Π^[g]π^)𝒗.\displaystyle~{}~{}+\left(\hat{\Pi}_{[g]\|}\cdot\tilde{\hat{\pi}}_{[g]\|},\hat{\Pi}_{[g]\|}\cdot{\hat{\pi}}_{\|}\right)\bm{v}. (48)

Then the solutions can be represented as (Appendix B)

𝒖(±)=N𝒏±,𝒗ϵ(±)=ϵNiwgKg𝒏±(ϵ=±),\displaystyle\bm{u}^{(\pm)}=N\bm{n}_{\pm},~{}~{}\bm{v}^{(\pm)}_{\epsilon}=\epsilon N\frac{i}{w_{g}K_{g}}\bm{n}_{\pm}~{}~{}(\,\epsilon=\pm\,), (49)

where NN is a normalization constant. The KgK_{g} is the following function of EE, which has a meaning of an effective coupling constant for \| components of the bi-local systems, with the step limits:

Kg\displaystyle K_{g} =κ2g~wg2(g~gE2c)2\displaystyle=\sqrt{\kappa^{2}-\frac{\tilde{g}_{*}}{w_{g}^{2}}\left(\frac{\tilde{g}_{*}gE}{2c}\right)^{2}} (50)
|g(i)|=gκg=κ2(gE2c)2g=0κ.\displaystyle\stackrel{{\scriptstyle|g_{(i)}|=g}}{{\longrightarrow}}\kappa_{g}=\sqrt{\kappa^{2}-\left(\frac{gE}{2c}\right)^{2}}~{}\stackrel{{\scriptstyle g=0}}{{\rightarrow}}~{}\kappa\,. (51)

Substituting (𝒖(±),𝒗ϵ(±))(\bm{u}^{(\pm)},\bm{v}^{(\pm)}_{\epsilon}) for Eq.(48), we obtain

Λ^ϵ(±)\displaystyle\hat{\Lambda}^{(\pm)}_{\epsilon\|} =N{(Π^[g]x~±Π^[g]x)\displaystyle=N\left\{\left(\hat{\Pi}_{[g]\|}\cdot\tilde{x}_{\|}\pm\hat{\Pi}_{[g]\|}\cdot{x}_{\|}\right)\right.
+ϵiwgKg(Π^[g]π^~[g]±Π^[g]π^)}\displaystyle~{}~{}~{}\left.+\epsilon\frac{i}{w_{g}K_{g}}\left(\hat{\Pi}_{[g]\|}\cdot\tilde{\hat{\pi}}_{[g]\|}\pm\hat{\Pi}_{[g]\|}\cdot{\hat{\pi}}_{\|}\right)\right\}
=N{Π^[g](x~+ϵiwgKgπ^~)\displaystyle=N\left\{\hat{\Pi}_{[g]\|}\cdot\left(\tilde{x}_{\|}+\epsilon\frac{i}{w_{g}K_{g}}\tilde{\hat{\pi}}_{\|}\right)\right.
±Π^[g](x+ϵiwgKgπ^)},\displaystyle~{}~{}~{}~{}~{}~{}~{}\left.\pm\hat{\Pi}_{[g]\|}\cdot\left({x}_{\|}+\epsilon\frac{i}{w_{g}K_{g}}{\hat{\pi}}_{\|}\right)\right\}, (52)

where the double sign ±\pm corresponds to that of 𝒏±\bm{n}_{\pm}. For reference, the kk associated with Λ^ϵ(±)\hat{\Lambda}^{(\pm)}_{\epsilon\|} is given in Eq.(147).

The next step is to introduce the ladder operators (a^gμ,a^gν),(μ=0,1)(\hat{a}^{\mu}_{g\|},\hat{a}^{{\dagger}\nu}_{g\|}),\,(\mu=0,1) which play the role of the oscillator variables for the E\mathcal{H}_{E\|} and the Λ^ϵ(±)\hat{\Lambda}^{(\pm)}_{\epsilon\|}. Remembering [π^gμ,xν]=iwgημν[\hat{\pi}_{g\|}^{\mu},x_{\|}^{\nu}]=-i\hbar w_{g}\eta^{\mu\nu}_{\|} and [π^gμ,π^gν]=0[\hat{\pi}_{g\|}^{\mu},\hat{\pi}_{g\|}^{\nu}]=0, this can be done straightforward; and, we obtain

a^gμ\displaystyle\hat{a}_{g\|}^{\mu} =Kgwg2(xμ+iwgKgπ^gμ),\displaystyle=\sqrt{\frac{K_{g}w_{g}}{2\hbar}}\left(x_{\|}^{\mu}+\frac{i}{w_{g}K_{g}}\hat{\pi}_{g\|}^{\mu}\right), (53)
a^gμ\displaystyle\hat{a}_{g\|}^{{\dagger}\mu} =Kgwg2(xμiwgKgπ^gμ).\displaystyle=\sqrt{\frac{K_{g}w_{g}}{2\hbar}}\left(x_{\|}^{\mu}-\frac{i}{w_{g}K_{g}}\hat{\pi}_{g\|}^{\mu}\right). (54)

Then one can verify [a^gμ,a^gν]=ημν=ημν,(μ,ν=0,1)[\hat{a}^{\mu}_{g\|},\hat{a}^{{\dagger}^{\nu}}_{g\|}]=\eta_{\|}^{\mu\nu}=\eta^{\mu\nu},\,(\mu,\nu=0,1) in addition to the step limits

a^gμ\displaystyle\hat{a}_{g\|}^{\mu} |g(i)|ga^μ=κg21(xμ+iκgπ^gμ)\displaystyle\stackrel{{\scriptstyle|g_{(i)}|\rightarrow g}}{{\longrightarrow}}~{}\hat{a}^{\mu}_{*\|}=\frac{\kappa_{g}}{2\hbar}\sqrt{\frac{1}{\hbar}}\left(x_{\|}^{\mu}+\frac{i}{\kappa_{g}}\hat{\pi}_{g\|}^{\mu}\right) (55)
g0a^μ=κ2xμ+i2κp^μ.\displaystyle~{}~{}\stackrel{{\scriptstyle g\rightarrow 0~{}}}{{\longrightarrow}}~{}~{}~{}\hat{a}^{\mu}_{\|}=\sqrt{\frac{\kappa}{2\hbar}}x_{\|}^{\mu}+\frac{i}{\sqrt{2\hbar\kappa}}\hat{p}^{\mu}_{\|}. (56)

In terms of those ladder operators, with the setting N=Kgwg2N=\sqrt{\frac{K_{g}w_{g}}{2\hbar}}, we obtain the expressions

Λ^+(+)=Π^[g]a^~g+Π^[g]a^g=2Π^[g]a^g+,Λ^(+)=(Λ^+(+))=2Π^[g]a^g+.\displaystyle\begin{split}\hat{\Lambda}^{(+)}_{+\|}&=\hat{\Pi}_{[g]\|}\cdot\tilde{\hat{a}}_{g\|}+\hat{\Pi}_{[g]\|}\cdot\hat{a}_{g\|}=2\hat{\Pi}_{[g]\|}^{-}\hat{a}^{+}_{g},\\ \hat{\Lambda}^{(+)}_{-\|}&=\left(\hat{\Lambda}^{(+)}_{+\|}\right)^{\dagger}=2\hat{\Pi}_{[g]\|}^{-}\hat{a}^{+{\dagger}}_{g}.\end{split} (57)

Here,

Π^[g]±\displaystyle\hat{\Pi}_{[g]\|}^{\pm} =12(±Π^[g]0+Π^[g]1),\displaystyle=\frac{1}{\sqrt{2}}\left(\pm\hat{\Pi}_{[g]}^{0}+\hat{\Pi}_{[g]}^{1}\right), (58)
a^g±\displaystyle\hat{a}_{g}^{\pm} =12(±a^g0+a^g1),\displaystyle=\frac{1}{\sqrt{2}}\left(\pm\hat{a}_{g}^{0}+\hat{a}_{g}^{1}\right), (59)

and (a^g±,a^g±)(\hat{a}^{\pm}_{g},\hat{a}^{\pm{\dagger}}_{g}) are the ladder operators characterized by the lightlike commutation relations

[a^g+,a^g]=[a^g,a^g+]=1,[a^g+,a^g+]=[a^g,a^g]=0.\displaystyle\begin{split}[\hat{a}_{g}^{+},\hat{a}_{g}^{-{\dagger}}]&=[\hat{a}_{g}^{-},\hat{a}_{g}^{+{\dagger}}]=1,\\ [\hat{a}_{g}^{+},\hat{a}_{g}^{+{\dagger}}]&=[\hat{a}_{g}^{-},\hat{a}_{g}^{-{\dagger}}]=0.\end{split} (60)

Similarly we get the expressions

Λ^+()=Π^[g]a^~gΠ^[g]a^g=2Π^[g]+a^g,Λ^()=(Λ^+())=2Π^[g]+a^g.\displaystyle\begin{split}\hat{\Lambda}^{(-)}_{+\|}&=\hat{\Pi}_{[g]\|}\cdot\tilde{\hat{a}}_{g\|}-\hat{\Pi}_{[g]\|}\cdot\hat{a}_{g\|}=-2\hat{\Pi}^{+}_{[g]\|}\hat{a}^{-}_{g},\\ \hat{\Lambda}^{(-)}_{-\|}&=\left(\hat{\Lambda}^{(-)}_{+\|}\right)^{\dagger}=-2\hat{\Pi}^{+}_{[g]\|}\hat{a}^{-{\dagger}}_{g}.\end{split} (61)

The equations (57) and (61) imply that Λ^+()\hat{\Lambda}^{(*)}_{+\|} and Λ^()\hat{\Lambda}^{(*)}_{-\|} are respectively the counterparts of T^(+)\hat{T}^{(+)} and T^()\hat{T}^{(-)} in the free bi-local fields. Therefore, as for the \| components of dynamical variables, the physical state conditions in the presence of a constant electric field should be

Π^[g]+a^g|Φphy=0orΠ^[g]a^g+|Φphy=0.\displaystyle\hat{\Pi}^{+}_{[g]\|}\hat{a}_{g}^{-}|\Phi_{\rm phy}\rangle=0~{}~{}\mbox{or}~{}\hat{\Pi}^{-}_{[g]\|}\hat{a}_{g}^{+}|\Phi_{\rm phy}\rangle=0\,. (62)

These two kinds of supplementary conditions are standing on the same footing as the physical state conditions. Thus, the physical states are characterized by the on-mass shell equation ^E|Φphy=0(^E=^E+^E)\hat{\mathcal{H}}_{E}|\Phi_{\rm phy}\rangle=0\,(\hat{\mathcal{H}}_{E}=\hat{\mathcal{H}}_{E\|}+\hat{\mathcal{H}}_{E\perp}) in addition to one of supplementary conditions in Eq.(62).

To write down the operators (^E,^E)(\hat{\mathcal{H}}_{E\|},\hat{\mathcal{H}}_{E\perp}) explicitly, it is useful to introduce the ladder operators for \perp variables in addition to those of Eqs.(53) and (54) so that

a^gi\displaystyle\hat{a}_{g\perp}^{i} =12κ(κxi+ip^Δi),\displaystyle=\frac{1}{\sqrt{2\hbar\kappa}}\left(\kappa{x}_{\perp}^{i}+i\hat{p}_{\Delta\perp}^{i}\right), (63)
a^gi\displaystyle\hat{a}_{g\perp}^{i{\dagger}} =12κ(κxiip^Δi),\displaystyle=\frac{1}{\sqrt{2\hbar\kappa}}\left(\kappa{x}_{\perp}^{i}-i\hat{p}_{\Delta\perp}^{i}\right), (64)

(i=2,3)(i=2,3), to which one can verify [a^gi,a^gj]=ηij=δij\left[\hat{a}_{g\perp}^{i},\hat{a}_{g\perp}^{j{\dagger}}\right]=\eta_{\perp}^{ij}=\delta^{ij} and such a limit as a^gia^i=12κ(κxi+ip^i)\hat{a}_{g\perp}^{i}\rightarrow\hat{a}_{\perp}^{i}=\frac{1}{\sqrt{2\hbar\kappa}}(\kappa x_{\perp}^{i}+i\hat{p}_{\perp}^{i}) according as Δg0\Delta_{g}\rightarrow 0; here, (a^,a^)(\hat{a}_{\perp},\hat{a}_{\perp}^{\dagger}) are the ladder operators for a free bi-local field. In terms of those ladder operators, we can write

^E\displaystyle\hat{\mathcal{H}}_{E\|} =1g~Π^[g]2+12(8Kgwg){a^gμ,a^gμ}\displaystyle=\frac{1}{\tilde{g}_{*}}\hat{\Pi}_{[g]\|}^{2}+\frac{1}{2}\left(8\hbar\frac{K_{g}}{w_{g}}\right)\left\{\hat{a}_{g\|}^{{\dagger}\mu},\hat{a}_{g\|\mu}\right\}
=1g~Π^[g]2+(8Kgwg){±a^g±a^g+1},\displaystyle=\frac{1}{\tilde{g}_{*}}\hat{\Pi}_{[g]\|}^{2}+\left(8\hbar\frac{K_{g}}{w_{g}}\right)\left\{\sum_{\pm}\hat{a}_{g}^{\pm{\dagger}}\hat{a}_{g}^{\mp}+1\right\}, (65)
^E\displaystyle\hat{\mathcal{H}}_{E\perp} =g~wg2P^2+4κ{a^gμ,a^gμ}+4(mc)2\displaystyle=\frac{\tilde{g}_{*}}{w_{g}^{2}}\hat{P}_{\perp}^{2}+4\hbar\kappa\left\{\hat{a}_{g\perp}^{{\dagger}\mu},\hat{a}_{g\perp\mu}\right\}+4(mc)^{2}
=g~wg2P^2+8κ(a^ga^g+1)+4(mc)2,\displaystyle=\frac{\tilde{g}_{*}}{w_{g}^{2}}\hat{P}_{\perp}^{2}+8\hbar\kappa\left(\hat{a}_{g\perp}^{{\dagger}}\cdot\hat{a}_{g\perp}+1\right)+4(mc)^{2}, (66)

where we have used a^ga^g=a^g+a^g+a^ga^g+\hat{a}^{\dagger}_{g\|}\cdot\hat{a}_{g\|}=\hat{a}_{g}^{+{\dagger}}\hat{a}_{g}^{-}+\hat{a}_{g}^{-{\dagger}}\hat{a}_{g}^{+}.

V Structure of the physical states

In what follows, without loss of generality, we adopt the a^\hat{a}^{-} type of condition in Eq.(62) to characterize the physical states. Then, the master wave equation for the bi-local fields should be set

^E\displaystyle\hat{\mathcal{H}}_{E} |Φphy=0,\displaystyle|\Phi_{\rm phy}\rangle=0, (67)
where
^E=(1g~Π^[g]2\displaystyle\hat{\mathcal{H}}_{E}=\Bigg{(}\frac{1}{\tilde{g}_{*}}\hat{\Pi}_{[g]\|}^{2} +g~wg2P^2)+(8Kgwg)a^ga^g+\displaystyle+\frac{\tilde{g}_{*}}{w_{g}^{2}}\hat{P}_{\perp}^{2}\Bigg{)}+\left(8\hbar\frac{K_{g}}{w_{g}}\right)\hat{a}_{g}^{-{\dagger}}\hat{a}_{g}^{+}
+8κa^ga^g+(mgc)2,\displaystyle+8\hbar\kappa\hat{a}_{g\perp}^{{\dagger}}\cdot\hat{a}_{g\perp}+(m_{g}c)^{2}, (68)

and the effective rest mass mgm_{g} is given by

(mgc)2=4(2Kgwg+2κ+(mc)2).\displaystyle(m_{g}c)^{2}=4\left(2\hbar\frac{K_{g}}{w_{g}}+2\hbar\kappa+(mc)^{2}\right). (69)

In addition to Eq.(67), the state |Φphy|\Phi_{\rm phy}\rangle must satisfy

Π^[g]+a^g|Φphy=0.\displaystyle\hat{\Pi}_{[g]\|}^{+}\hat{a}^{-}_{g}|\Phi_{\rm phy}\rangle=0. (70)

Since each terms of Π^[g]2\hat{\Pi}_{[g]\|}^{2}, P^2\hat{P}^{2}_{\perp}, a^a^+\hat{a}^{-{\dagger}}\hat{a}^{+} and a^ga^g\hat{a}^{{\dagger}}_{g\perp}\cdot\hat{a}_{g\perp} in ^E\hat{\mathcal{H}}_{E} are commutable with others, those terms have simultaneous eigenstates. In the beginning, as for the operators N^g±=a^g±a^g\hat{N}^{\pm}_{g}=\hat{a}_{g}^{\pm{\dagger}}\hat{a}_{g}^{\mp}, the eigenvalue equation N^g±|(n)±=n|(n)±\hat{N}_{g}^{\pm}|(n)_{\pm}\rangle=n|(n)_{\pm}\rangle can be solved in the form

|(n)±\displaystyle|(n)_{\pm}\rangle =1n!(a^g±)n|0g(n=0,1,2,),\displaystyle=\frac{1}{\sqrt{n!}}\left(\hat{a}_{g}^{\pm{\dagger}}\right)^{n}|0_{g}^{\|}\rangle~{}\,(n=0,1,2,\cdots), (71)

where a^g±|0g=0\hat{a}^{\pm}_{g}|0_{g}^{\|}\rangle=0 with 0g|0g=1.\langle 0_{g}^{\|}|0_{g}^{\|}\rangle=1. The inner product between those states can be found as (n)±|(n)±=0(n,n>0)\langle(n)_{\pm}|(n^{\prime})_{\pm}\rangle=0\,\,(n,n^{\prime}>0) and (n)±|(n)=δn,n\langle(n)_{\pm}|(n^{\prime})_{\mp}\rangle=\delta_{n,n^{\prime}}; and so, {|(n)±(n0)}\{|(n)_{\pm}\rangle\,(n\neq 0)\} are zero norm states. Further, the supplementary condition (70) removes one of those bases444 The pair states {|(n)+,|(n)}\{|(n)_{+}\rangle,|(n)_{-}\rangle\} produce the negative norm state 12(|(n)+|(n))\frac{1}{\sqrt{2}}\left(|(n)_{+}\rangle-|(n)_{-}\rangle\right) unless one of pair states is removed by Eq.(70). , the {|(n)}\{|(n)_{-}\rangle\} in this case. Thus, only the state |(0)+=|0g|(0)_{+}\rangle=|0_{g}^{\|}\rangle is relevant to physical observation.

Secondaly, the operator N^g=a^ga^g\hat{N}_{g}^{\perp}=\hat{a}^{\dagger}_{g\perp}\cdot\hat{a}_{g\perp} has the eigenstates belonging to an eigenvalue J(=0,1,2,)J\,(=0,1,2,\cdots) such that

|(J,M)\displaystyle|(J,M)_{\perp}\rangle =1n2!n3!(a^g2)J+M(a^g3)JM|0g,\displaystyle=\frac{1}{\sqrt{n_{2}!n_{3}!}}\left(\hat{a}_{g}^{2{\dagger}}\right)^{J+M}\left(\hat{a}_{g}^{3{\dagger}}\right)^{J-M}|0_{g}^{\perp}\rangle, (72)

where a^gi|0g=0(i=2,3;0g|0g=1)\hat{a}_{g}^{i}|0_{g}^{\perp}\rangle=0\,(i=2,3;\langle 0_{g}^{\perp}|0_{g}^{\perp}\rangle=1). The normalization J,M|J,M=δJ,JδM,M\langle J,M|J^{\prime},M^{\prime}\rangle=\delta_{J,J^{\prime}}\delta_{M,M^{\prime}} is obvious; and, as the eigenstates of N^g\hat{N}_{g}^{\perp}, |J,M|J,M\rangle with M=J,,JM=J,\cdots,-J, are degenerate for each JJ. Since the JJ has the meaning of spin eigenvalue of the bi-local system generated by the rotation around the 𝒆1\bm{e}^{1} axis, the result is in the right.

Thirdly, let us consider the eigenvalues of Π^[g]2\hat{\Pi}^{2}_{[g]\|}, which reveal different phases depending on Δg=0\Delta_{g}=0 or Δg0\Delta_{g}\neq 0. In the case of Δg=0\Delta_{g}=0, the Π^[g]μ(μ=0,1)\hat{\Pi}^{\mu}_{[g]\|}\,(\mu=0,1) become commutable operators, which are canonically equivalent to P^μ(μ=0,1)\hat{P}^{\mu}\,(\mu=0,1) (Appendix A). Thus, the Π^[g]2\hat{\Pi}^{2}_{[g]\|} has continuous eigenvalues P2=(P0)2+(P1)2(Pμ)P^{\|2}=-(P^{0})^{2}+(P^{1})^{2}\,(P^{\mu}\in\mathbb{R}).

On the other hand for Δg0\Delta_{g}\neq 0, one can introduce a canonical pair (Π^[g]1,c2gEwgΔgg~2Π^[g]0)=(𝒫^,𝒳^)\left(\hat{\Pi}^{1}_{[g]\|},\frac{c}{2gE}\frac{w_{g}}{\Delta_{g}\tilde{g}_{*}^{2}}\hat{\Pi}^{0}_{[g]\|}\right)=(\hat{\mathcal{P}},\hat{\mathcal{X}}) satisfying [𝒳^,𝒫^]=i[\hat{\mathcal{X}},\hat{\mathcal{P}}]=i\hbar. Then one can write

1g~Π^[g]2=1g~{𝒫^2(2gEcΔgg~2wg)2𝒳^2}.\displaystyle\frac{1}{\tilde{g}_{*}}\hat{\Pi}^{2}_{[g]\|}=\frac{1}{\tilde{g}_{*}}\left\{\hat{\mathcal{P}}^{2}-\left(\frac{2gE}{c}\frac{\Delta_{g}\tilde{g}_{*}^{2}}{w_{g}}\right)^{2}\hat{\mathcal{X}}^{2}\right\}. (73)

The right-hand side of Eq.(73) is the Hamiltonian of a repulsive harmonic oscillator555The inverted harmonic oscillator in other words.. A convenient way to handle this Hamiltonian is to introduce the ladder operators defined by

A\displaystyle A =A=μω2𝒳^12μω𝒫^,\displaystyle=A^{\dagger}=\sqrt{\frac{\mu\omega}{2\hbar}}\hat{\mathcal{X}}-\frac{1}{\sqrt{2\mu\hbar\omega}}\hat{\mathcal{P}}, (74)
A¯\displaystyle\bar{A} =A¯=μω2𝒳^+12μω𝒫^,\displaystyle=\bar{A}^{\dagger}=\sqrt{\frac{\mu\omega}{2\hbar}}\hat{\mathcal{X}}+\frac{1}{\sqrt{2\mu\hbar\omega}}\hat{\mathcal{P}}, (75)
ω\displaystyle\omega =2gEμcΔgg~2wg,\displaystyle=\frac{2gE}{\mu c}\frac{\Delta_{g}\tilde{g}_{*}^{2}}{w_{g}}, (76)

where μ\mu is a parameter with the dimension of mass. Then by taking [A,A¯]=i[A,\bar{A}]=i into account, one can factorize the right-hand side of Eq.(73) so that

H^Π1g~Π^[g]2=2μωg~{i(Λ+12)}\displaystyle\hat{H}_{\Pi\|}\equiv\frac{1}{\tilde{g}_{*}}\hat{\Pi}^{2}_{[g]\|}=\frac{2\mu\omega}{\tilde{g}_{*}}\left\{-i\hbar\left(\Lambda+\frac{1}{2}\right)\right\} (77)

where Λ=iA¯A\Lambda=-i\bar{A}A and Λ¯=iAA¯(=Λ+1)\bar{\Lambda}=-iA\bar{A}\,(=\Lambda+1).

With the aid of the algebra of those ladder operators, one can showRHO-PRD that the states of pairs

|ϕ(n)\displaystyle|\phi_{(n)}\rangle =A¯n|ϕ(0)(A|ϕ(0)=0),\displaystyle=\bar{A}^{n}|\phi_{(0)}\rangle~{}~{}(A|\phi_{(0)}\rangle=0), (78)
|ϕ¯(n)\displaystyle|\bar{\phi}_{(n)}\rangle =An|ϕ(0)(A¯|ϕ¯(0)=0)\displaystyle=A^{n}|\phi_{(0)}\rangle~{}~{}(\bar{A}|\bar{\phi}_{(0)}\rangle=0)\ (79)

(n=0,1,2,)(n=0,1,2,\cdots) are solutions of eigenvalue equations Λ|ϕ(n)=n|ϕ(n)\Lambda|\phi_{(n)}\rangle=n|\phi_{(n)}\rangle and Λ¯|ϕ¯(n)=n|ϕ¯(n)\bar{\Lambda}|\bar{\phi}_{(n)}\rangle=-n|\bar{\phi}_{(n)}\rangle. Further, those states satisfy the normalization

ϕ¯(m)|ϕ(n)=δm,nNn(Nn=inn!i2π)\displaystyle\langle\bar{\phi}_{(m)}|\phi_{(n)}\rangle=\delta_{m,n}N_{n}~{}~{}\left(N_{n}=i^{n}n!\sqrt{\frac{i}{2\pi}}\right) (80)

in addition to the completeness

1=n=01Nn|ϕ(n)ϕ¯(n)|.\displaystyle 1=\sum_{n=0}^{\infty}\frac{1}{N_{n}}|\phi_{(n)}\rangle\langle\bar{\phi}_{(n)}|. (81)

Therefore, the independent basis of physical states fall into two classes: in the first for Δg=0\Delta_{g}=0, the independent bases take the forms

(U^EeiPX)\displaystyle\left(\hat{U}_{E}e^{\frac{i}{\hbar}P_{\|}\cdot X_{\|}}\right) |(0)+|(J,M)eiPX,\displaystyle\otimes|(0)_{+}\rangle\otimes|(J,M)_{\perp}\rangle\otimes e^{\frac{i}{\hbar}P_{\perp}\cdot X_{\perp}}, (82)

where U^E=eigE2cx~X\hat{U}_{E}=e^{\frac{i}{\hbar}\frac{gE}{2c}\tilde{x}^{\|}\cdot X^{\|}}. Then, Eq.(67) requires the mass-shell condition

P2+P2+8κJ+(mgc)2=0.\displaystyle P_{\|}^{2}+P_{\perp}^{2}+8\hbar\kappa J+(m_{g}c)^{2}=0. (83)

Secondly, for Δg0\Delta_{g}\neq 0, the independent bases become

|ϕ(n)|(0)+|(J,M)eiPX,\displaystyle|\phi_{(n)}\rangle\otimes|(0)_{+}\rangle\otimes|(J,M)_{\perp}\rangle\otimes e^{\frac{i}{\hbar}P_{\perp}\cdot X_{\perp}}, (84)

to which Eq.(67) requires

2μωi(n+12)g~+g~wg2P2+8κJ+(mgc)2=0.\displaystyle\frac{-2\mu\omega i\hbar\left(n+\frac{1}{2}\right)}{\tilde{g}_{*}}+\frac{\tilde{g}_{*}}{w_{g}^{2}}P_{\perp}^{2}+8\hbar\kappa J+(m_{g}c)^{2}=0. (85)

In the first class with Δg=0\Delta_{g}=0, the mass-shell condition (83) is almost the same as one of free bi-local fields except the EE dependent mass term (mgc)2(m_{g}c)^{2}. On the other hand, for Δg0\Delta_{g}\neq 0, the mass-shell condition (85) requires a complex P2P_{\perp}^{2}. This implies that in this case, there are no stable free bi-local fields as a nature of accelerated bi-local systems with net nonzero charges. Furthermore, the dimensionality of spacetime also adds a crucial aspect to those charged bi-local systems. If the bi-local systems exist in two-dimensional \| plane, then there are no \perp degrees of freedoms (P,J)(P_{\perp},J) originally in Eq.(85); and so, Eq.(85) leads to ω=mg=0\omega=m_{g}=0, which is impossible for gE0gE\neq 0.

VI Ground state structure of bi-local fields under a constant electric field

The ladder operators (a^g±,a^g±)(\hat{a}_{g}^{\pm},\hat{a}_{g}^{\pm{\dagger}}) and (a^g,a^g)(\hat{a}_{g}^{\perp},\hat{a}_{g}^{\perp{\dagger}}) have been defined with the coupling constants KgK_{g} and κ\kappa respectively. Here, the KgK_{g} tends to 0 according as EEc=2cwgκg~gg~E\rightarrow E_{c}=\frac{2cw_{g}\kappa}{\tilde{g}_{*}g\sqrt{\tilde{g}_{*}}}. Since the \perp degrees of freedoms disappear for the bi-local systems in the \| plane, we may regard EcE_{c} as the critical electric field, which is related to the dissociation of two constituent particles.

By Eq.(63), the ground state |0g|0_{g}^{\perp}\rangle can be solved as |0g=eiΔg4wgxP^|0|0_{g}^{\perp}\rangle=e^{\frac{i}{\hbar}\frac{\Delta_{g}}{4w_{g}}x_{\perp}\cdot\hat{P}_{\perp}}|0^{\perp}\rangle with the ground state for free bi-local fields defined by a^|0=0(0|0=1)\hat{a}_{\perp}|0^{\perp}\rangle=0\,(\langle 0^{\perp}|0^{\perp}\rangle=1); and, the |0g|0_{g}^{\perp}\rangle does not depend on EE any more. Contrarily, the ground state |0g|0_{g}^{\|}\rangle is determined including EE explicitly as a parameter; and so, the |0g|0_{g}^{\|}\rangle is a function of KgK_{g} too. Then it becomes important to evaluate the transition amplitude between the ground states with different KgK_{g}’s in order to study the possibility of the dissociation.

To study the ground state |0g|0_{g}^{\|}\rangle in detail, we take notice of the representation of π^g\hat{\pi}_{g\|} written by (P^,p^,X~,x~)(\hat{P},\hat{p},\tilde{X},\tilde{x}) in such a way that

π^g\displaystyle\hat{\pi}_{g\|} =12(|g~(2)|π^(1)|g~(1)|π^(2))\displaystyle=\frac{1}{2}\left(\sqrt{|\tilde{g}_{(2)}|}\hat{\pi}_{(1)}-\sqrt{|\tilde{g}_{(1)}|}\hat{\pi}_{(2)}\right)_{\|}
=Δg4P^+wgp^+g~gE2c(wgX~+Δg4x~).\displaystyle=-\frac{\Delta_{g}}{4}\hat{P}_{\|}+w_{g}\hat{p}_{\|}+\frac{\tilde{g}_{*}gE}{2c}\left(w_{g}\tilde{X}+\frac{\Delta_{g}}{4}\tilde{x}\right)_{\|}. (86)

Substituting (86) for (53), we obtain

a^g\displaystyle\hat{a}_{g\|} =wgKg2[x+iwgKg{Δg4P^+wgp^\displaystyle=\sqrt{\frac{w_{g}K_{g}}{2\hbar}}\left[x_{\|}+\frac{i}{w_{g}K_{g}}\left\{-\frac{\Delta_{g}}{4}\hat{P}_{\|}+w_{g}\hat{p}_{\|}\right.\right.
+g~gE2c(wgX~+Δg4x~)}],\displaystyle\left.\left.+\frac{\tilde{g}_{*}gE}{2c}\left(w_{g}\tilde{X}+\frac{\Delta_{g}}{4}\tilde{x}\right)_{\|}\right\}\right], (87)

from which follows

a^g±\displaystyle\hat{a}_{g}^{\pm} =wgKg2{2κ(B±a^±+B˘±a^±)+iv^±},\displaystyle=\sqrt{\frac{w_{g}K_{g}}{2\hbar}}\Bigg{\{}\sqrt{\frac{\hbar}{2\kappa}}\Big{(}B_{\pm}\hat{a}^{\pm{\dagger}}+\breve{B}_{\pm}\hat{a}^{\pm}\Big{)}+i\hat{v}^{\pm}\Bigg{\}}, (88)

where

B±\displaystyle B_{\pm} =(1κKg±iwgKgg~gE2cΔg4)\displaystyle=\Big{(}1-\frac{\kappa}{K_{g}}\pm\frac{i}{w_{g}K_{g}}\frac{\tilde{g}_{*}gE}{2c}\frac{\Delta_{g}}{4}\Big{)}
=(1a)±ib,\displaystyle=(1-a)\pm ib, (89)
B˘±\displaystyle\breve{B}_{\pm} =(1+κKg±iwgKgg~gE2cΔg4)\displaystyle=\Big{(}1+\frac{\kappa}{K_{g}}\pm\frac{i}{w_{g}K_{g}}\frac{\tilde{g}_{*}gE}{2c}\frac{\Delta_{g}}{4}\Big{)}
=(1+a)±ib.\displaystyle=(1+a)\pm ib. (90)

Here we have used the notations such that

a\displaystyle a =κKg(1a),\displaystyle=\frac{\kappa}{K_{g}}~{}~{}(1\leq a\leq\infty), (91)
b\displaystyle b =Δg4wgKgg~gE2c=Δg4g~a21\displaystyle=\frac{\Delta_{g}}{4w_{g}K_{g}}\frac{\tilde{g}_{*}gE}{2c}=\frac{\Delta_{g}}{4\sqrt{\tilde{g}_{*}}}\sqrt{a^{2}-1} (92)

and

v^±\displaystyle\hat{v}^{\pm} =1wgKg(Δg4P^±±g~gE2cwgX±).\displaystyle=\frac{1}{w_{g}K_{g}}\left(-\frac{\Delta_{g}}{4}\hat{P}^{\pm}\pm\frac{\tilde{g}_{*}gE}{2c}w_{g}X^{\pm}\right). (93)

One can verify that v^±\hat{v}^{\pm} and (a^g±,a^g±)(\hat{a}_{g}^{\pm},\hat{a}_{g}^{\pm{\dagger}}) are commutable with each other due to

[v^,v^+]=2κB˘[B+]=i2abκ.\displaystyle[\hat{v}^{-},\hat{v}^{+}]=\frac{\hbar}{2\kappa}\breve{B}_{[-}B_{+]}=i\hbar\frac{2ab}{\kappa}. (94)

Eq.(94) means that for b0b\neq 0, the eigenstates v^±|v±=v±|v±\hat{v}^{\pm}|v^{\pm}\rangle=v^{\pm}|v^{\pm}\rangle can be normalized so that

v1±|v2±\displaystyle\langle v_{1}^{\pm}|v_{2}^{\pm}\rangle =δ(v1±v2±),\displaystyle=\delta(v_{1}^{\pm}-v_{2}^{\pm}), (95)
v±|v\displaystyle\langle v^{\pm}|v^{\mp}\rangle =12π2κabe±i2κabvv+.\displaystyle=\sqrt{\frac{1}{2\pi\hbar}\frac{2\kappa}{ab}}e^{\pm\frac{i}{\hbar}\frac{2\kappa}{ab}v^{-}v^{+}}. (96)

We also note that the unitary transformation:
v^±=Δg4wgKgU^±1P^±U^1\hat{v}^{\pm}=-\frac{\Delta_{g}}{4w_{g}K_{g}}\hat{U}^{\pm 1}\hat{P}^{\pm}\hat{U}^{\mp 1} with U^=ei4Δgg~gEwg2cX+X\hat{U}=e^{\frac{i}{\hbar}\frac{4}{\Delta_{g}}\frac{\tilde{g}_{*}gEw_{g}}{2c}X^{+}X^{-}} relates the eigenvalues of v^±\hat{v}^{\pm} to those of P^±\hat{P}^{\pm} 666 The v^±\hat{v}^{\pm} are devided into two algebraic classes according as ΔgE0\Delta_{g}E\neq 0 or ΔgE=0\Delta_{g}E=0. In the case of Δg0\Delta_{g}\neq 0 with E0E\neq 0, the v^±\hat{v}^{\pm} and the P^±\hat{P}^{\pm} are not unitarily equivalent because of Eq.(93) with non-vanishing right-hande side; and, the successive unitary transformations of U^\hat{U} and V^=exp{i4Δgcg~gEwgP^+P^}\hat{V}=\exp\left\{\frac{i}{\hbar}\frac{4\Delta_{g}c}{\tilde{g}_{*}gEw_{g}}\hat{P}^{+}\hat{P}^{-}\right\} which is singular at E=0E=0, lead to (U^V^)(v^+,v^)(U^V^)=(Δg4wgKgP^+,g~gEKgX)(\hat{U}\hat{V})^{\dagger}(\hat{v}^{+},\hat{v}^{-})(\hat{U}\hat{V})=\left(-\frac{\Delta_{g}}{4w_{g}K_{g}}\hat{P}^{+},-\frac{\tilde{g}_{*}gE}{K_{g}}X^{-}\right). In other words, v^+\hat{v}^{+} and v^\hat{v}^{-} are unitarily equivalent respectively to P^+\hat{P}^{+} and XX^{-} apart from coefficients. On the other side, in the case of Δg0\Delta_{g}\neq 0 with E=0E=0, the Eq.(93) is simply reduced to v±=Δg4κP±v^{\pm}=-\frac{\Delta_{g}}{4\kappa}P^{\pm}. The same discussion is available by interchanging the role between Δg\Delta_{g} and EE. These properties of v^±\hat{v}^{\pm} imply that the ΔgE\Delta_{g}E plays a role of order parameter characterizing equivalent classes of v^±\hat{v}^{\pm}. . In this case, since U^\hat{U} is an operator acting on ±\pm spaces, it is convenient to realize the eigenstates of v^±\hat{v}^{\pm} on the product bases |P=|P+|P|P^{\|}\rangle\!\rangle=|P^{+}\rangle\otimes|P^{-}\rangle, where P^±|P±=P±|P±\hat{P}^{\pm}|P^{\pm}\rangle=P^{\pm}|P^{\pm}\rangle (P1±|P2±=δ(4)(P1±P2±))(\,\langle P_{1}^{\pm}|P_{2}^{\pm}\rangle=\delta^{(4)}(P_{1}^{\pm}-P_{2}^{\pm})\,). Then we can define

|(v)±=U^±1|P,\displaystyle|(v)^{\pm}\rangle\!\rangle=\hat{U}^{\pm 1}|P^{\|}\rangle\!\rangle, (97)

with

v±=Δg4wgKgP±=aΔg4wgκP±,\displaystyle v^{\pm}=-\frac{\Delta_{g}}{4w_{g}K_{g}}P^{\pm}=-\frac{a\Delta_{g}}{4w_{g}\kappa}P^{\pm},~{}~{}~{}~{}~{}~{} (98)

which satisfy v^±|(v)±=v±|(v)±\hat{v}^{\pm}|(v)^{\pm}\rangle\!\rangle=v^{\pm}|(v)^{\pm}\rangle\!\rangle and (v1)±|(v2)±=δ(2)(P1P2)\langle\!\langle(v_{1})^{\pm}|(v_{2})^{\pm}\rangle\!\rangle=\delta^{(2)}(P_{1}^{\|}-P_{2}^{\|}); further, the both bases tend to |P|P^{\|}\rangle\!\rangle according as E0E\rightarrow 0. In terms of |(v)±|(v)^{\pm}\rangle\!\rangle, we can write the ground states annihilated by a^g±\hat{a}_{g}^{\pm} so that (Appendix C)

G^(v^,v^+)|0|(v)+,\displaystyle\hat{G}(\hat{v}^{-},\hat{v}^{+})|0^{\|}\rangle\otimes|(v)^{+}\rangle\!\rangle, (99)

where |0|0^{\|}\rangle is the ground state for free bi-local systems defined by a^±|0=0(0|0=1)\hat{a}^{\pm}|0^{\|}\rangle=0~{}(\,\langle 0^{\|}|0^{\|}\rangle=1\,), and

G^(v^,v^+)\displaystyle\hat{G}(\hat{v}^{-},\hat{v}^{+}) =eαa^+a^iβ^(v^)a^+eiγ^(v^+)a^\displaystyle=e^{-\alpha\hat{a}^{+{\dagger}}\hat{a}^{-{\dagger}}-i\hat{\beta}(\hat{v}^{-})\hat{a}^{+{\dagger}}}e^{-i\hat{\gamma}(\hat{v}^{+})\hat{a}^{-{\dagger}}} (100)

with

α\displaystyle\alpha =BB˘,β^(v^)=1B˘2κv^,γ^(v^+)=1B˘+2κv^+.\displaystyle=\frac{B_{-}}{\breve{B}_{-}},~{}\hat{\beta}(\hat{v}^{-})=\frac{1}{\breve{B}_{-}}\sqrt{\frac{2\kappa}{\hbar}}\hat{v}^{-},~{}\hat{\gamma}(\hat{v}^{+})=\frac{1}{\breve{B}_{+}}\sqrt{\frac{2\kappa}{\hbar}}\hat{v}^{+}. (101)

Since it holds that a^g±G^|0=0\hat{a}_{g}^{\pm}\hat{G}|0^{\|}\rangle=0, the ground state equation for |0g|0_{g}^{\|}\rangle is satisfied by G^|0\hat{G}|0^{\|}\rangle only; however, the |(v)+|(v)^{+}\rangle\!\rangle in (99) allows us to replace v^+\hat{v}^{+} in G^\hat{G} simply with the eigenvalue v+v^{+}.

Now, a simple norm of the state (99) is divergent, since |(v)+|(v)^{+}\rangle\!\rangle takes continuous spectrum; however, we can construct the following ground state having a similar normalization to |P=|P+|P|P^{\|}\rangle\!\rangle=|P^{+}\rangle\otimes|P^{-}\rangle:

|0gE,(v)+N^[G^(v^,v^+)]|0|(v)+.\displaystyle|0^{E}_{g},(v)^{+}\rangle\!\rangle\equiv\hat{N}\big{[}\hat{G}(\hat{v}^{-},\hat{v}^{+})\big{]}|0^{\|}\rangle\otimes|(v)^{+}\rangle\!\rangle. (102)

Here, the N^[G^]\hat{N}[\hat{G}] is the mapping of G^\hat{G} defined by the weighted the matrix elements 777 One can also define this mapping operationally so that N^[G^]=𝑑v𝑑v+Nv,v+I^vG^I^v+(I^v±=|v±v±|).\displaystyle\hat{N}\big{[}\hat{G}\big{]}=\int dv^{-}\int dv^{+}N_{v^{-},v^{+}}\hat{I}_{v}^{-}\hat{G}\hat{I}_{v}^{+}~{}~{}\left(\,\hat{I}_{v}^{\pm}=|v^{\pm}\rangle\langle v^{\pm}|\,\right).

v|N^[G^]|v+Nv,v+v|G^|v+\displaystyle\langle v^{-}|\hat{N}\big{[}\hat{G}\big{]}|v^{+}\rangle\equiv N_{v^{-},v^{+}}\langle v^{-}|\hat{G}|v^{+}\rangle (103)

with

Nv,v+\displaystyle N_{v^{-},v^{+}} =N0eκa(1+a)(1+a)2+b2vv+,\displaystyle=N_{0}e^{-\frac{\kappa}{a\hbar}\frac{(1+a)}{(1+a)^{2}+b^{2}}v^{-}v^{+}}, (104)
N0\displaystyle N_{0} =4a(1+a)2+b2|(1+a)2b2(1+a)2+b2|.\displaystyle=\sqrt{\frac{4a}{(1+a)^{2}+b^{2}}\left|\frac{(1+a)^{2}-b^{2}}{(1+a)^{2}+b^{2}}\right|}. (105)

Then, as shown in Appendix C, it can be verified that

0gE,(v1)+|0gE,(v2)+=δ(2)(P1P2).\displaystyle\langle\!\langle 0^{E}_{g},(v_{1})^{+}|0^{E}_{g},(v_{2})^{+}\rangle\!\rangle=\delta^{(2)}(P_{1}^{\|}-P_{2}^{\|}). (106)

Further, by taking the vv^{-} representation characterized by v|a^g±=(a^g±)vv|\langle v^{-}|\hat{a}_{g}^{\pm}=(\hat{a}_{g}^{\pm})_{v^{-}}\langle v^{-}|, one can find

(a^g±)v\displaystyle(\hat{a}_{g}^{\pm})_{v^{-}} v|Nv,v+[G^]|0|v+\displaystyle\langle v^{-}|N_{v^{-},v^{+}}[\hat{G}]|0^{\|}\rangle|v^{+}\rangle
=Nv,v+v|a^g±G^|0|v+=0.\displaystyle=N_{v^{-},v^{+}}\langle v^{-}|\hat{a}_{g}^{\pm}\hat{G}|0^{\|}\rangle|v^{+}\rangle=0. (107)

In this sense, the ground state equation is satisfied by N^[G^]|0\hat{N}\big{[}\hat{G}\big{]}|0^{\|}\rangle too.

Now, by taking (α,B˘±,a,b)(0,2,1,0)(E0)(\alpha,\breve{B}_{\pm},a,b)\rightarrow(0,2,1,0)~{}(E\rightarrow 0) into account, the ground state (102) has the limit

|,v\displaystyle|\emptyset,{\rm v}\rangle\!\rangle =limE0|0gE,(v)+=eκ2v^v^+\displaystyle=\lim_{E\rightarrow 0}|0_{g}^{E},(v)^{+}\rangle\!\rangle=e^{-\frac{\kappa}{2\hbar}\hat{\rm v}^{-}\hat{\rm v}^{+}}
×ei22κv^a^+ei22κv^+a^|0|P.\displaystyle\times e^{-\frac{i}{2}\sqrt{\frac{2\kappa}{\hbar}}\hat{\rm v}^{-}\hat{a}^{+{\dagger}}}e^{-\frac{i}{2}\sqrt{\frac{2\kappa}{\hbar}}\hat{\rm v}^{+}\hat{a}^{-{\dagger}}}|0^{\|}\rangle\otimes|P^{\|}\rangle\!\rangle. (108)

Here, v^±Δg4wgκP^±\hat{\rm v}^{\pm}\equiv-\frac{\Delta_{g}}{4w_{g}\kappa}\hat{P}^{\pm}, to which one can verify [v^,v^+]=0[\hat{\rm v}^{-},\hat{\rm v}^{+}]=0. Further, in the limit E0E\rightarrow 0, this ground state satisfies

v^±|,v\displaystyle\hat{\rm v}^{\pm}|\emptyset,{\rm v}\rangle\!\rangle =v±|,v,\displaystyle={\rm v}^{\pm}|\emptyset,{\rm v}\rangle\!\rangle, (109)
,v1|,v2\displaystyle\langle\!\langle\emptyset,{\rm v}_{1}|\emptyset,{\rm v}_{2}\rangle\!\rangle =δ(2)(P1P2).\displaystyle=\delta^{(2)}(P_{1}^{\|}-P_{2}^{\|}).\hskip 28.45274pt (110)

The Eqs.(102) and (108) allow us to evaluate the transition between |,v|\emptyset,v\rangle\!\rangle, the ground state of free bi-local fields, and |0gE,(v)+|0_{g}^{E},(v)^{+}\rangle\!\rangle, a ground state of the bi-local fields under E0E\neq 0. The transition amplitude becomes

,v1|0gE,(v)2+\displaystyle\langle\!\langle\emptyset,{\rm v}_{1}|0_{g}^{E},(v)_{2}^{+}\rangle\!\rangle =N0eθ12D12,\displaystyle=N_{0}e^{\theta_{12}}D_{12}, (111)

where

D12\displaystyle D_{12} =(Δg4wgKg)2(12πκab)eiκabv12v12+,\displaystyle=\left(\frac{\Delta_{g}}{4w_{g}K_{g}}\right)^{2}\left(\frac{1}{2\pi\hbar}\frac{\kappa}{ab}\right)e^{-\frac{i}{\hbar}\frac{\kappa}{ab}v_{12}^{-}v_{12}^{+}}, (112)
Re(θ12)\displaystyle\mbox{Re}(\theta_{12}) =κ(1+a)(1+a)2+b2[(a1)2av1v1+\displaystyle=\frac{\kappa}{\hbar}\frac{(1+a)}{(1+a)^{2}+b^{2}}\Bigg{[}-\frac{(a-1)^{2}}{a}{\rm v}_{1}^{-}{\rm v}_{1}^{+}
+a1a(v1v21+v21v1+)+1av21v21+],\displaystyle+\frac{a-1}{a}({\rm v}_{1}^{-}v_{21}^{+}-v_{21}^{-}{\rm v}_{1}^{+})+\frac{1}{a}v_{21}^{-}v_{21}^{+}\Bigg{]}, (113)
Im(θ12)\displaystyle\mbox{Im}(\theta_{12}) =κb(1+a)2+b2[av1v1+v1v2+\displaystyle=\frac{\kappa}{\hbar}\frac{b}{(1+a)^{2}+b^{2}}\left[-a{\rm v}_{1}^{-}{\rm v}_{1}^{+}-{\rm v}_{1}^{-}v_{2}^{+}\right.
+(2v1v2)v1+],\displaystyle\left.+(2{\rm v}_{1}^{-}-v_{2}^{-}){\rm v}_{1}^{+}\right], (114)

and we have used the notation fij=fifjf_{ij}=f_{i}-f_{j}.

The amplitude (111) is consisting of two factors; N0eθ12N_{0}e^{\theta_{12}} and D12D_{12}. Here, the D12D_{12} has the origin in the background momentum eigenstate |P|P^{\|}\rangle\!\rangle in Eq.(99); and it has the limit

limE0D12=(Δg4wgKg)2δ(2)(v12±)|a=1=δ(2)(P12±).\displaystyle\lim_{E\rightarrow 0}D_{12}=\left(\frac{\Delta_{g}}{4w_{g}K_{g}}\right)^{2}\delta^{(2)}(v_{12}^{\pm})\Bigg{|}_{a=1}=\delta^{(2)}(P_{12}^{\pm}). (115)

In this limit, in which a=1a=1 and P1±=P2±P_{1}^{\pm}=P_{2}^{\pm}, one can easily find |N0eθ12|2=1\big{|}N_{0}e^{\theta_{12}}\big{|}^{2}=1; this implies that the factor N0eθ12N_{0}e^{\theta_{12}} is essential to study the transition amplitude under background momenta Pi±(i=1,2)P_{i}^{\pm}\,(i=1,2) .

Now, the |N0eθ12|2\big{|}N_{0}e^{\theta_{12}}\big{|}^{2}, the probability density under some normalization, is a function of aa, which runs from 11 to \infty according as EE increases from 0 to Ec=2cwgκg~gg~E_{c}=\frac{2cw_{g}\kappa}{\tilde{g}_{*}g\sqrt{\tilde{g}_{*}}}. To see the explicit form of such a density, let us consider a simple case with v1=0{\rm v}_{1}^{-}=0. Then by taking into account v1+=(Δg4wgκ)P1+{\rm v}_{1}^{+}=-\left(\frac{\Delta_{g}}{4w_{g}\kappa}\right)P_{1}^{+} and v2±=(aΔg4wgκ)P2±v_{2}^{\pm}=-\left(\frac{a\Delta_{g}}{4w_{g}\kappa}\right)P_{2}^{\pm}, one can verify from Eqs.(105) and (113) that

|N0eθ12|2\displaystyle\big{|}N_{0}e^{\theta_{12}}\big{|}^{2} =4a(1+a)2+b2|(1+a)2b2(1+a)2+b2|\displaystyle=\frac{4a}{(1+a)^{2}+b^{2}}\left|\frac{(1+a)^{2}-b^{2}}{(1+a)^{2}+b^{2}}\right|
×e2κ(1+a)a(1+a)2+b2(Δg4wgκ)2P2P21+.\displaystyle\times e^{\frac{2\kappa}{\hbar}\frac{(1+a)a}{(1+a)^{2}+b^{2}}\left(\frac{\Delta_{g}}{4w_{g}\kappa}\right)^{2}P_{2}^{-}P_{21}^{+}}. (116)

The structure of |N0eθ12|2\big{|}N_{0}e^{\theta_{12}}\big{|}^{2} as a function of aa is dependent on the sign of P2P21+P_{2}^{-}P_{21}^{+}; however, roughly speaking, the function decreases gradually from 11 at a=1a=1 to 0 at a=a=\infty (FIG.2). The result says that the transition amplitude ,v1|0gE,(v2)+\langle\!\langle\emptyset,{\rm v}_{1}|0_{g}^{E},(v_{2})^{+}\rangle\!\rangle comes to be zero at E=EcE=E_{c}, which is equivalent to Kg=0K_{g}=0. The binding force between the constituent particles of the bi-local system embedded in (𝒆0,𝒆1)(\bm{e}^{0},\bm{e}^{1}) spacetime vanishes at E=EcE=E_{c}; and, the bi-local system becomes classically dissociated one at E=EcE=E_{c}. However, the vanishing amplitude |N0eθ12|2\big{|}N_{0}e^{\theta_{12}}\big{|}^{2} at E=EcE=E_{c} implies that the dissociation will not arise in quantized theories.

Refer to caption
Figure 2: The horizontal and the vertical axises designate a=κKga=\frac{\kappa}{K_{g}} and |N0eθ12|2|N_{0}e^{\theta_{12}}|^{2} respectively. The gray line is the case of P2P21>0P_{2}^{-}P_{21}^{-}>0, and black line is that of P2P21<0P_{2}^{-}P_{21}^{-}<0.

VII The Schwinger effect

The action of the bi-local field under a constant electric field is

SBL[Φphy]\displaystyle S_{BL}[\Phi_{\rm phy}] =Φphy|^E|Φphy\displaystyle=\langle\Phi_{\rm phy}|\hat{\mathcal{H}}_{E}|\Phi_{\rm phy}\rangle
+λΦphy|Λ^+()Λ^()|Φphy,\displaystyle+\lambda\langle\Phi_{\rm phy}|\hat{\Lambda}_{+\|}^{(-)}\hat{\Lambda}_{-\|}^{(-)}|\Phi_{\rm phy}\rangle, (117)

where λ\lambda is a Lagrange multiplier deriving the physical state condition in Eq.(70). Now, the classical action of gauge field under consideration is S[Ac]=d4x(E22)S[A_{c}]=\int d^{4}x\left(\frac{E^{2}}{2}\right); and, the one loop correction due to the scalar field Φphy\Phi_{\rm phy} adds the quantum effect

SQ[Ac]=iln[{det(^E)phy}1]\displaystyle S_{Q}[A_{c}]=-i\hbar\ln\left[\left\{\det{}_{\rm phy}\big{(}\hat{\mathcal{H}}_{E}\big{)}\right\}^{-1}\right] (118)

to S[Ac]S[A_{c}]; by taking detphy(^E)=eTrphyln(^E)\det_{\rm phy}(\hat{\mathcal{H}}_{E})=e^{{\rm Tr}_{\rm phy}\ln(\hat{\mathcal{H}}_{E})} into account, the resultant effective action of gauge field Seff[Ac]=S[Ac]+SQ[Ac]S_{\rm eff}[A_{c}]=S[A_{c}]+S_{Q}[A_{c}] becomesRHO-PRD

Seff[Ac]=S[Ac]i0dττeτϵTrphy(eiτ^E)\displaystyle S_{\rm eff}[A_{c}]=S[A_{c}]-i\hbar\int_{0}^{\infty}\frac{d\tau}{\tau}e^{-\tau\epsilon}\mbox{Tr}_{\rm phy}\left(e^{-i\tau\hat{\mathcal{H}}_{E}}\right) (119)

disregarding an unimportant addition constant. Here, Trphy{\rm Tr}_{\rm phy} is the trace over the physical states, the contents of which are depending on Δg0\Delta_{g}\neq 0 or Δg=0\Delta_{g}=0.

To begin with, we consider the case Δg0\Delta_{g}\neq 0, for which |0g,{|(J,M)}|0_{g}^{\|}\rangle,\,\{|(J,M)_{\perp}\rangle\} and {|ϕ(n)}\{|\phi_{(n)}\rangle\} play the role of physical state basis. The background gauge field AcμA_{c}^{\mu}, the scalar QED gives rise to the scattering matrix elements 0in|0outeiSeff[Ac]\langle 0_{\rm in}|0_{\rm out}\rangle\sim e^{\frac{i}{\hbar}S_{\rm eff}[A_{c}]} within the one-loop approximation of scalar field Φ\Phi; in terms of Seff[Ac]S_{\rm eff}[A_{c}], the transition amplitude is written as

|0in|0out|2e2ImSeff[Ac]\displaystyle\big{|}\langle 0_{\rm in}|0_{\rm out}\rangle\big{|}^{2}\sim e^{-\frac{2}{\hbar}{\rm Im}S_{\rm eff}[A_{c}]} (120)

Now, on the basis of Eq.(119), one can evaluate the Im part of the transition amplitude (120) so that

1ImSeff[Ac]\displaystyle\frac{1}{\hbar}{\rm Im}S_{\rm eff}[A_{c}] =Re0dττeϵτTrphy(eiτ^E)\displaystyle=-{\rm Re}\int_{0}^{\infty}\frac{d\tau}{\tau}e^{-\epsilon\tau}{\rm Tr}_{\rm phy}\left(e^{-i\tau\hat{\mathcal{H}}_{E}}\right) (121)
=Re0dττei{(mgc)2iϵ}τ\displaystyle=-{\rm Re}\int_{0}^{\infty}\frac{d\tau}{\tau}e^{-i\left\{(m_{g}c)^{2}-i\epsilon\right\}\tau}
×TrΠeiτH^Π×TrPeiτg~wg2P^2\displaystyle\times{\rm{Tr}}_{\Pi}e^{-i\tau\hat{H}_{\Pi\|}}\times{\rm Tr}_{P_{\perp}}e^{-i\tau\frac{\tilde{g}_{*}}{w_{g}^{2}}\hat{P}_{\perp}^{2}}
×TraeiτH^a×TraeiτH^a,\displaystyle\times{\rm Tr}_{a\|}e^{-i\tau\hat{H}_{a\|}}\times{\rm Tr}_{a_{\perp}}e^{-i\tau\hat{H}_{a\perp}}, (122)

where H^Π\hat{H}_{\Pi\|} is the Hamiltonian given in Eq.(77), and

H^a\displaystyle\hat{H}_{a\|} =(8Kgwg)a^ga^g+,\displaystyle=\left(\frac{8\hbar K_{g}}{w_{g}}\right)\hat{a}_{g}^{-{\dagger}}\cdot\hat{a}_{g}^{+}, (123)
H^a\displaystyle\hat{H}_{a\perp} =8κa^ga^g.\displaystyle=8\hbar\kappa\hat{a}_{g\perp}^{\dagger}\cdot\hat{a}_{g\perp}~{}. (124)

The physical base relevant to the trace for H^a\hat{H}_{a\|} is |(0)+=|0g|(0)_{+}\rangle=|0_{g}^{\|}\rangle only as discussed in Eq.(71), and we may put TraeiτH^a{\rm Tr}_{a\|}e^{-i\tau\hat{H}_{a\|}} =1=1. Remembering, further, the eigenvalues of a^ga^g\hat{a}_{g\perp}^{\dagger}\cdot\hat{a}_{g\perp} written in Eq.(85), we obtain

TrΠeiτH^Π\displaystyle{\rm{Tr}}_{\Pi}e^{-i\tau\hat{H}_{\Pi\|}} =12sinh(τμωg~),\displaystyle=\frac{1}{2\sinh\left(\tau\frac{\hbar\mu\omega}{\tilde{g}_{*}}\right)}, (125)
TraeiτH^a\displaystyle{\rm Tr}_{a_{\perp}}e^{-i\tau\hat{H}_{a\perp}} ={eiτ(4κ)2isin{τ(4κ)}}2,\displaystyle=\left\{\frac{e^{i\tau(4\hbar\kappa)}}{2i\sin\left\{\tau(4\hbar\kappa)\right\}}\right\}^{2}, (126)
TrPeiτg~wg2P^2\displaystyle{\rm Tr}_{P_{\perp}}e^{-i\tau\frac{\tilde{g}_{*}}{w_{g}^{2}}\hat{P}_{\perp}^{2}} =V(2π)2(πiτ)wg2g~,\displaystyle=\frac{V_{\perp}}{(2\pi\hbar)^{2}}\left(\frac{\pi}{i\tau}\right)\frac{w_{g}^{2}}{\tilde{g}_{*}}, (127)

where V=(2π)2δ(2)(P=0)V_{\perp}=(2\pi\hbar)^{2}\delta^{(2)}(P_{\perp}=0) is a cutoff volume of XX_{\perp} space. Substituting these results for Eq.(122), we have

1\displaystyle\frac{1}{\hbar} ImSeff[Ac]=wg2g~×Re0dττei{(mgc)2iϵ}τ\displaystyle{\rm Im}S_{\rm eff}[A_{c}]=-\frac{w_{g}^{2}}{\tilde{g}_{*}\times}{\rm Re}\int_{0}^{\infty}\frac{d\tau}{\tau}e^{-i\left\{(m_{g}c)^{2}-i\epsilon\right\}\tau}
×V(2π)2(πiτ)×12sinh(τμωg~)×{eiτ(4κ)2isin{τ(4κ)}}2.\displaystyle\times\frac{V_{\perp}}{(2\pi\hbar)^{2}}\left(\frac{\pi}{i\tau}\right)\times\frac{1}{2\sinh\left(\tau\frac{\hbar\mu\omega}{\tilde{g}_{*}}\right)}\times\left\{\frac{e^{i\tau(4\hbar\kappa)}}{2i\sin\left\{\tau(4\hbar\kappa)\right\}}\right\}^{2}. (128)

Since (mgc)2(8κ)>0(m_{g}c)^{2}-(8\hbar\kappa)>0 by virtue of Eq.(69), the exponential of this integral converges in the direction Imτ{\rm Im}\tau\rightarrow-\infty; and, we regularize the right-hand side of Eq.(128) by regarding the integration range as the ϵ0\epsilon\rightarrow 0 limit of the contour Cϵ+={z=τeiϵiϵ; 0τ<}C^{+}_{\epsilon}=\{z=\tau e^{-i\epsilon}-i\epsilon;\,0\leq\tau<\infty\} in the complex plane. That is, we put

1Im\displaystyle\frac{1}{\hbar}{\rm Im} Seff[Ac]:=wg2g~×πV23(2π)2Re1iCϵ+dzz2\displaystyle S_{\rm eff}[A_{c}]:=\frac{w_{g}^{2}}{\tilde{g}_{*}}\times\frac{\pi V_{\perp}}{2^{3}(2\pi\hbar)^{2}}{\rm Re}\frac{1}{i}\int_{C_{\epsilon}^{+}}\frac{dz}{z^{2}}
×eiz{(mgc)2(8κ)}sinh(zμωg~)sin2{z(4κ)}\displaystyle\times\frac{e^{-iz\left\{(m_{g}c)^{2}-(8\hbar\kappa)\right\}}}{\sinh\left(z\frac{\hbar\mu\omega}{\tilde{g}_{*}}\right)\sin^{2}\left\{z(4\hbar\kappa)\right\}}
=πV23(2π)212iCϵ+Cϵdzz2\displaystyle=\frac{\pi V_{\perp}}{2^{3}(2\pi\hbar)^{2}}\frac{1}{2i}\int_{C_{\epsilon}^{+}-C_{\epsilon}^{-}}\frac{dz}{z^{2}}
×eiz((mgc)2(8κ))sinh(zμωg~)sin2{z(4κ)}.\displaystyle\times\frac{e^{-iz\left((m_{g}c)^{2}-(8\hbar\kappa)\right)}}{\sinh\left(z\frac{\hbar\mu\omega}{\tilde{g}_{*}}\right)\sin^{2}\left\{z(4\hbar\kappa)\right\}}. (129)
Refer to caption
Figure 3: The integral in the range 0τ<0\leq\tau<\infty is dealt as the ϵ0\epsilon\rightarrow 0 limit of the contour integral along Cϵ+C^{+}_{\epsilon}.

Here the CϵC_{\epsilon}^{-} is the mirror image of Cϵ+C_{\epsilon}^{+} on the imaginary axis (FIG.3). The integration in Eq.(129) can be done by the standard way, and the result is

1ImSeff[Ac]\displaystyle\frac{1}{\hbar}{\rm Im}S_{\rm eff}[A_{c}] =wg2g~×πV23(2π)212in=1(2πi){(μωg~)}\displaystyle=\frac{w_{g}^{2}}{\tilde{g}_{*}}\times\frac{\pi V_{\perp}}{2^{3}(2\pi\hbar)^{2}}\frac{1}{2i}\sum_{n=1}^{\infty}(-2\pi i)\left\{-\left(\frac{\hbar\mu\omega}{\tilde{g}_{*}}\right)\right\}
×(1)n(πn)2enπ(g~μω)((mgc)2(8κ))sinh2{nπ(g~μω)(4κ)}.\displaystyle\times\frac{(-1)^{n}}{(\pi n)^{2}}\frac{e^{-n\pi\left(\frac{\tilde{g}_{*}}{\hbar\mu\omega}\right)\left((m_{g}c)^{2}-(8\hbar\kappa)\right)}}{-\sinh^{2}\left\{n\pi\left(\frac{\tilde{g}_{*}}{\hbar\mu\omega}\right)(4\hbar\kappa)\right\}}. (130)

We may rewrite this formula using the cutoff volume of XX_{\|} space given by V{μω(2π)}21V_{\|}\left\{\frac{\sqrt{\hbar\mu\omega}}{(2\pi\hbar)}\right\}^{2}\sim 1; then with μω=2g~Δgwgg~gEc\hbar\mu\omega=\frac{2\hbar\tilde{g}_{*}\Delta_{g}}{w_{g}}\frac{\tilde{g}_{*}gE}{c}, we finally arrive at the expression

1ImSeff[Ac]=wg2g~×V(4)23(2π)4(2Δgwgg~gEc)2\displaystyle\frac{1}{\hbar}{\rm Im}S_{\rm eff}[A_{c}]=\frac{w_{g}^{2}}{\tilde{g}_{*}}\times\frac{V_{(4)}}{2^{3}(2\pi\hbar)^{4}}\left(\frac{2\hbar\Delta_{g}}{w_{g}}\frac{\tilde{g}_{*}gE}{c}\right)^{2}
×n=1(1)n+1n2enπ(wg2Δgcg~gE){(mgc)2(8κ)}sinh2{nπ(wg2Δgcg~gE)(4κ)},\displaystyle\times\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^{2}}\frac{e^{-n\pi\left(\frac{w_{g}}{2\hbar\Delta_{g}}\frac{c}{\tilde{g}_{*}gE}\right)\left\{(m_{g}c)^{2}-(8\hbar\kappa)\right\}}}{\sinh^{2}\left\{n\pi\left(\frac{w_{g}}{2\hbar\Delta_{g}}\frac{c}{\tilde{g}_{*}gE}\right)(4\hbar\kappa)\right\}}, (131)

where V(4)=VVV_{(4)}=V_{\|}V_{\perp}. This result for Δg0\Delta_{g}\neq 0 differs from the Schwinger effect for a local scalar field by the factor sinh2()\sinh^{-2}(\cdots)Schwinger ; Berizin-Itykson . However, if we consider the bi-local fields in the two-dimensional \| plane, the systems do not contain \perp degrees of freedoms. Then the factor sinh2()\sinh^{-2}(\cdots) in Eq.(131) disappear; and, the resultant Schwinger effect has a similar form as one in the scalar QED.

Next, let us consider the case of Δg=0\Delta_{g}=0 from the beginning, then as discussed in Eq.(83), the mass-shell operator (68) is reduced to

^E\displaystyle\hat{\mathcal{H}}_{E} |Δg=0=(Π^[g]2+P^2)\displaystyle\big{|}_{\Delta_{g}=0}=\Big{(}\hat{\Pi}_{[g]\|}^{2}+\hat{P}_{\perp}^{2}\Big{)}
+(8κ)(a^ga^g++a^ga^g)+(mgc)2\displaystyle+(8\hbar\kappa)\Big{(}\hat{a}_{g}^{-{\dagger}}\hat{a}_{g}^{+}+\hat{a}_{g\perp}^{{\dagger}}\cdot\hat{a}_{g\perp}\Big{)}+(m_{g}c)^{2} (132)

((mgc)2=4(4κ+(mc)2))\big{(}(m_{g}c)^{2}=4(4\hbar\kappa+(mc)^{2}\big{)}); and, the supplementary condition (70) still survive to define physical states . As shown in Eq.(141), the Π^[g]2\hat{\Pi}_{[g]\|}^{2} in this case has the same eigenvalues as P^2\hat{P}_{\|}^{2}. Then the Eq.(125) is modified so that TrΠeiτH^Π=V(2π)2(πτ){\rm Tr}_{\Pi}e^{-i\tau\hat{H}_{\Pi\|}}=\frac{V_{\|}}{(2\pi\hbar)^{2}}\left(\frac{\pi}{\tau}\right). If we replace the sinh\sinh term in Eq.(128) by V(2π)2(πτ)\frac{V_{\|}}{(2\pi\hbar)^{2}}\left(\frac{\pi}{\tau}\right), then the poles in the lower half plane in the integral in Eq.(129) will vanish under the same regularization of τ\tau integration as that in Eq.(129). This implies that the 1ImSeff\frac{1}{\hbar}{\rm Im}S_{\rm eff} comes to be zero; that is, there arise no pair productions of the bi-local fields in this case. Since Δg=0\Delta_{g}=0 corresponds to neutral bound states, the result is not surprising unless the dissociation of bound sates arises by the electric field.

VIII SUMMARY

In this paper, we have discussed the formulation of bi-local systems, the classical counterparts of the bi-local fields, under a constant electric field E𝒆1E\bm{e}^{1} and their physical properties.

The bi-local systems are two particle systems bounded via a relativistic Hooke type of potential; we assign the charges g(1)(>0)g_{(1)}\,(>0) and g(2)(<0)g_{(2)}\,(<0) to respective particles. By ordinary, the bi-local systems are formulated as constrained dynamical systems characterized by two first-class constraints: a master wave equation, the mass-shell condition, for the bi-local system and a supplementary condition which can freeze the ghost states caused by relative-time excitation. In many cases, however, the consistency of those constraints is broken by introducing the interaction of the bi-local fields with other fields. In Sec.2 and 3, we have developed a way constructing a set of first class constraints for the bi-local system under a constant electric field. The key was to modify the mass-shell condition by regarding one of secondary constraints as a strong equation.

On this way, in Sec.4 and 5, we have studied the physical states which can diagonalize the mass-shell condition of the modified bi-local systems. Then, we had taken notice of that one part of the mass-shell equation is reduced to a Hamiltonian of repulsive harmonic oscillator for |g(1)||g(2)||g_{(1)}|\neq|g_{(2)}|. The repulsive harmonic oscillator is known to take complex eigenvalues on some basis of eigenstatesRHO-PRD . So, we had discussed the stability of physical states in the case of |g(1)|=|g(2)||g_{(1)}|=|g_{(2)}| and |g(1)||g(2)||g_{(1)}|\neq|g_{(2)}|.

Further, in Sec.6, we focused our attention on the properties of ground states, on which the physical states are constructed. In quantum mechanics, the excited states of the bi-local fields are represented by the action of ladder operators [a^g±,a^g]=1[\hat{a}_{g}^{\pm},\hat{a}_{g}^{\mp{\dagger}}]=1 and [a^i,a^j]=1[\hat{a}^{i},\hat{a}^{j{\dagger}}]=1 ,(i,j=2,3),(i,j=2,3) on the ground states satisfying a^g±|0g=a^i|0g=0\hat{a}_{g}^{\pm}|0_{g}^{\|}\rangle=\hat{a}^{i}|0_{g}^{\perp}\rangle=0. In those ground sates, the effect of EE appears in |0g|0_{g}^{\|}\rangle only. In view of this fact, we studied the transition amplitude between the ground states {|0g}\{|0_{g}^{\|}\rangle\} corresponding to E1=0E_{1}=0 and E20E_{2}\neq 0.

There, it was shown that the amplitude decreases gradually according as E2E_{2} increases from 0 to a critical value EcE_{c}, at which Kg=0K_{g}=0; and, the amplitude vanishes only at E2=EcE_{2}=E_{c}. Since the KgK_{g} is an effective coupling constant for the \| degrees of freedoms in the bi-local systems, the \| coordinates of respective particles of the bi-local systems are classically free for Kg=0K_{g}=0. If the bi-local systems is embedded in two-dimensional (𝒆0,𝒆1)(\bm{e}^{0},\bm{e}^{1}) spacetime, the Kg=0K_{g}=0 will imply the dissociation of the bi-local systems. As shown in the quantized theories, however, there arises no transition between the ground state of a free bi-local system (E1=0,Kg=κ)(E_{1}=0,K_{g}=\kappa) and that of a critical bi-local system with (E2=Ec,Kg=0)(E_{2}=E_{c},K_{g}=0). Thus, the result implies that there arise no dissociation of the bi-local systems by the electric field even in such a two dimensional spacetime.

Finally in Sec.7, the discussion has been made on the Schwinger effect of the bi-local fields corresponding to charged two particle systems. Then for |g(1)||g(2)||g_{(1)}|\neq|g_{(2)}|, we obtained a Schwinger effect similar to that of local scalar fields , with some modifications due to κ0\kappa\neq 0 effect. In this case, the bi-local system describes a charged particle in totality, and the pair creations of such bound systems are available. On the contrary, for the case of neutral bi-local systems with |g(1)|=|g(2)||g_{(1)}|=|g_{(2)}|, the Schwinger effect does not arise, not surprisingly (FIG.4). The result means that the parameter Δg(|g(1)||g(2)|)\Delta_{g}\,(\propto\sqrt{|g_{(1)}|}-\sqrt{|g_{(2)}|}) plays a role analogous to the order parameter in this effect under E0E\neq 0.

Refer to caption
Refer to caption
Figure 4: The left side illustrates the pair creation of point like particles with charges ±Q\pm Q by an electric field EE. The right side is the case of bi-local systems consisting of charge g(i),(i=1,2)g_{(i)},(i=1,2) particles; the pair creation arises unless the total charge g(1)+g(2)=0g_{(1)}+g_{(2)}=0.

In this paper, we have not fixed the order of κ\kappa. If we apply κ\kappa, for example, to the orders cκc\sqrt{\hbar\kappa}\gtrsim GeV, TeV,\cdots, the present model will describe the mesons, the bound states of elementary particles, and so on. Conversely, if we consider the cκc\sqrt{\hbar\kappa} as a lower atomic energy scale, then the present model will be applicable to the problem of tunneling ionization of atoms by electric fieldTunneling ionization ; Dissociative tunneling . In such a case, we have to deal with a non-uniform electric field in some way instead of a constant electric field. In this paper, we have discussed the bi-local systems with spinless particles; the extension of the bi-local systems to those with spinning particles is not difficultCasalbuoni ; Crater . Those extended applications are interesting next problems.

Acknowledgments

The authors wish to thank the the College of Science and Technology, Nihon University where the paper was written, for the research support.

Appendix A The Π^[g]\hat{\Pi}_{[g]\|} in terms of the canonical variables (X,P^;x,p^)(X,\hat{P};x,\hat{p})

In Sec.3, the canonical variables {Π^[g]}\{\hat{\Pi}_{[g]\|}\} have been introduced by an algebraic way. It will be useful to represent those variables by means of the usual center of mass and the relative canonical variables for clear understanding.

Now, with (ϵ1,ϵ2)=(1,1)(\epsilon_{1},\epsilon_{2})=(1,-1), we can write π^(i)\hat{\pi}_{(i)} as

π^(i)={(12P^+ϵip^)+g(i)E2c(12X+ϵix)}\displaystyle\hat{\pi}_{(i)}=\left\{\left(\frac{1}{2}\hat{P}+\epsilon_{i}\hat{p}\right)+\frac{g_{(i)}E}{2c}\left(\frac{1}{2}X+\epsilon_{i}x\right)\right\} (133)

remembering (p^(i),x(i))=(i2P^+ϵip^,X+ϵi12x)(\hat{p}_{(i)},x_{(i)})=\left(\frac{i}{2}\hat{P}+\epsilon_{i}\hat{p},X+\epsilon_{i}\frac{1}{2}x\right). Then Eq.(12) yields

Π^g\displaystyle\hat{\Pi}_{g\|} =(|g~(2)|π^(1)+|g~(1)|π^(2))\displaystyle=\left(\sqrt{|\tilde{g}_{(2)}|}\hat{\pi}_{(1)}+\sqrt{|\tilde{g}_{(1)}|}\hat{\pi}_{(2)}\right)_{\|}
=wgP^Δgp^+g~gE2c(ΔgX~+wgx~),\displaystyle=w_{g}\hat{P}_{\|}-\Delta_{g}\hat{p}_{\|}+\frac{\tilde{g}_{*}gE}{2c}\left(\Delta_{g}\tilde{X}+w_{g}\tilde{x}\right)_{\|}, (134)
π^g\displaystyle\hat{\pi}_{g\|} =12(|g~(2)|π^(1)|g~(1)|π^(2))\displaystyle=\frac{1}{2}\left(\sqrt{|\tilde{g}_{(2)}|}\hat{\pi}_{(1)}-\sqrt{|\tilde{g}_{(1)}|}\hat{\pi}_{(2)}\right)_{\|}
=Δg4P^+wgp^+g~gE2c(wgX~+Δg4x~).\displaystyle=-\frac{\Delta_{g}}{4}\hat{P}_{\|}+w_{g}\hat{p}_{\|}+\frac{\tilde{g}_{*}gE}{2c}\left(w_{g}\tilde{X}+\frac{\Delta_{g}}{4}\tilde{x}\right)_{\|}. (135)

With the aid of these equations, one can write the right-hand side of Eq.(26) as

Π^[g]\displaystyle\hat{\Pi}_{[g]\|} =Π^gg~gEcg~wgx~+Δgwgπ^g\displaystyle=\hat{\Pi}_{g\|}-\frac{\tilde{g}_{*}gE}{c}\frac{\tilde{g}_{*}}{w_{g}}\tilde{x}_{\|}+\frac{\Delta_{g}}{w_{g}}\hat{\pi}_{g\|}
=g~wgP^+g~gE2c(2ΔgX~+12g~wgx~).\displaystyle=\frac{\tilde{g}_{*}}{w_{g}}\hat{P}_{\|}+\frac{\tilde{g}_{*}gE}{2c}\left(2\Delta_{g}\tilde{X}_{\|}+\frac{1-2\tilde{g}_{*}}{w_{g}}\tilde{x}_{\|}\right). (136)

The commutation relation (28) is a direct result of the rightest side of this representation provided Δg0\Delta_{g}\neq 0. In this case, there exits unitary transformation U^Δ=U^2U^1\hat{U}_{\Delta}=\hat{U}_{2}\hat{U}_{1} with

U^1\displaystyle\hat{U}_{1} =eiwgg~(X1g~gE2c)(2ΔgX0+12g~wgx0),\displaystyle=e^{\frac{i}{\hbar}\frac{w_{g}}{\tilde{g}_{*}}\left(X^{1}\frac{\tilde{g}_{*}gE}{2c}\right)\left(2\Delta_{g}X^{0}+\frac{1-2\tilde{g}_{*}}{w_{g}}x^{0}\right)}, (137)
U^2\displaystyle\hat{U}_{2} =eiwgg~P^1(c2g~gEΔgP^1),\displaystyle=e^{-\frac{i}{\hbar}\frac{w_{g}}{\tilde{g}_{*}}\hat{P}^{1}\left(\frac{c}{2\tilde{g}_{*}gE\Delta_{g}}\hat{P}^{1}\right)}, (138)

which leads to

U^Δ𝒫U^Δ=g~wgP^1andU^Δ𝒳U^Δ=wgg~X^1.\displaystyle\hat{U}_{\Delta}\mathcal{P}\hat{U}_{\Delta}^{\dagger}=\frac{\tilde{g}_{*}}{w_{g}}\hat{P}^{1}~{}~{}~{}\mbox{and}~{}~{}~{}\hat{U}_{\Delta}\mathcal{X}\hat{U}_{\Delta}^{\dagger}=\frac{w_{g}}{\tilde{g}_{*}}\hat{X}^{1}. (139)

The result allows us to write the bases (78) in 𝒳\mathcal{X} representation so that

ϕ(n)(𝒳)=ϕ[n](wgg~X1)(|ϕ[n]=U^Δ|ϕ(n)).\displaystyle\phi_{(n)}(\mathcal{X})=\phi_{[n]}\left(\frac{w_{g}}{\tilde{g}_{*}}X^{1}\right)~{}\left(\,|\phi_{[n]}\rangle=\hat{U}_{\Delta}|\phi_{(n)}\rangle\,\right). (140)

If necessary, one can write the ϕ(n)(𝒳)\phi_{(n)}(\mathcal{X}) explicitly using Weber’s D function (Parabolic cylinder function)RHO-PRD .

On the other hand, in the case of Δg=0\Delta_{g}=0, (g~,wg)=(1,1)(\tilde{g}_{*},w_{g})=(1,1), the right-hand side of Eq.(136) becomes particularly simple; and we can find

Π^[g]=P^gE2cx~=U^EP^U^E1,U^E=eigE2cx~X.\displaystyle\begin{split}\hat{\Pi}_{[g]\|}&=\hat{P}_{\|}-\frac{gE}{2c}\tilde{x}_{\|}=\hat{U}_{E}\hat{P}_{\|}\hat{U}_{E}^{-1},\\ \hat{U}_{E}&=e^{\frac{i}{\hbar}\frac{gE}{2c}\tilde{x}^{\|}\cdot X^{\|}}.\end{split} (141)

The result says that the {Π^[g]μ(μ=0,1)}\{\hat{\Pi}_{[g]\|}^{\mu}\,(\mu=0,1)\} in this case are commutable operators, the eigenvalues of which are the same as {P^μ}\{\hat{P}^{\mu}\}.

Appendix B SOLUTIONS FOR Λ^\hat{\Lambda}_{\|}

To solve the system of equations (43)-(46), let us put

A\displaystyle A =gEcΔgwgg~,\displaystyle=\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}, (142)
B\displaystyle B ={4κ2g~wg2(gEcg~)2}=4Kg2(Kg>0),\displaystyle=\left\{4\kappa^{2}-\frac{\tilde{g}_{*}}{w_{g}^{2}}\left(\frac{gE}{c}\tilde{g}_{*}\right)^{2}\right\}=4K_{g}^{2}~{}(K_{g}>0), (143)

then using the Pauli matrix σ1=(0110)\sigma_{1}=\begin{pmatrix}0&1\\ 1&0\end{pmatrix}, the equations for (ai)(a_{i}) can be written as

k𝒖\displaystyle k\bm{u} =4iAσ1𝒖2iwgB𝒗,\displaystyle=-4i\hbar A\sigma_{1}\bm{u}-2i\hbar w_{g}B\bm{v}, (144)
k𝒗\displaystyle k\bm{v} =8iwg1𝒖4iAσ1𝒗.\displaystyle=8i\hbar w_{g}^{-1}\bm{u}-4i\hbar A\sigma_{1}\bm{v}. (145)

The first equation gives 𝒗=i2wgB(k+4iAσ1)𝒖\bm{v}=\frac{i}{2\hbar w_{g}B}(k+4i\hbar A\sigma_{1})\bm{u}, and substituting this 𝒗\bm{v} for the second equation, we obtain

[8iwg1i2wgB(k+4iAσ1)2]𝒖=0.\displaystyle\left[8i\hbar w_{g}^{-1}-\frac{i}{2\hbar w_{g}B}(k+4i\hbar A\sigma_{1})^{2}\right]\bm{u}=0. (146)

Putting, here, 𝒖±=N(1±1)\bm{u}^{\pm}=N\begin{pmatrix}1\\ \pm 1\end{pmatrix}, the σ1\sigma_{1} is replaced by σ1𝒖(±)=±𝒖(±)\sigma_{1}\bm{u}^{(\pm)}=\pm\bm{u}^{(\pm)}; and so, the Eq.(146) is reduced to a quadratic equation of kk for 𝒖=𝒖(±)\bm{u}=\bm{u}^{(\pm)}, which can be solved easily so that

kϵ(±)\displaystyle k^{(\pm)}_{\epsilon} =ϵ4B(±)4iA\displaystyle=\epsilon 4\hbar\sqrt{B}-(\pm)4i\hbar A
=4[ϵ2Kg(±)igEcΔgwgg~],\displaystyle=4\hbar\left[\epsilon 2K_{g}-(\pm)i\frac{gE}{c}\frac{\Delta_{g}}{w_{g}}\tilde{g}_{*}\right], (147)

where the double sign in kϵ(±)k^{(\pm)}_{\epsilon} corresponds to that of 𝒖(±)\bm{u}^{(\pm)}, and the ϵ(=±)\epsilon(=\pm) is the sign coming from the square root of (k+(±)4i)2(k+(\pm)4i\hbar)^{2}. Then reading 𝒗ϵ(±)=i2wgB(kϵ(±)+(±)4iA)𝒖(±)\bm{v}^{(\pm)}_{\epsilon}=\frac{i}{2\hbar w_{g}B}(k^{(\pm)}_{\epsilon}+(\pm)4i\hbar A)\bm{u}^{(\pm)}, the set of solutions for (ai)(a_{i}) can be represented as in Eq.(49).

Appendix C On the ground states |0gE,(v)±|0^{E}_{g},(v)^{\pm}\rangle\!\rangle

Since [a^g+,a^g]=0[\hat{a}_{g}^{+},\hat{a}_{g}^{-}]=0, the ground state for ±\pm oscillator variables must be characterized by two equations

a^g|0g\displaystyle\hat{a}_{g}^{-}|0_{g}^{\|}\rangle =0,\displaystyle=0, (148)
a^g+|0g\displaystyle\hat{a}_{g}^{+}|0_{g}^{\|}\rangle =0.\displaystyle=0. (149)

The explicit form of a^g±\hat{a}_{g}^{\pm} given in Eq.(88) enable us to write the solution of Eq.(148) in the following form:

|0g=eBB˘a^+a^iB˘a^+v^|Φ0,\displaystyle|0_{g}^{\|}\rangle=e^{-\frac{B_{-}}{\breve{B}_{-}}\hat{a}^{+{\dagger}}\hat{a}^{-{\dagger}}-\frac{i}{\breve{B}_{-}}\hat{a}^{+{\dagger}}\hat{v}^{-}}|\Phi^{-}_{0}\rangle, (150)

where |Φ0|\Phi^{-}_{0}\rangle is a state satisfying a^|Φ0=0\hat{a}^{-}|\Phi^{-}_{0}\rangle=0. Then, applying Eq.(149) to the state (150), one can find

|Φ0=eiB˘2κv^+a^|Φ0,\displaystyle|\Phi^{-}_{0}\rangle=e^{-\frac{i}{\breve{B}_{-}}\sqrt{\frac{2\kappa}{\hbar}}\hat{v}^{+}\hat{a}^{-{\dagger}}}|\Phi_{0}\rangle, (151)

where |Φ0|\Phi_{0}\rangle is a state satisfying a^±|Φ0=0\hat{a}^{\pm}|\Phi_{0}\rangle=0. The state |Φ0|\Phi_{0}\rangle has a structure such as |0|Φv|0_{\|}\rangle\otimes|\Phi_{v}\rangle, where a^±|0=0(0|0=1)\hat{a}^{\pm}|0_{\|}\rangle=0\,(\langle 0_{\|}|0_{\|}\rangle=1), and |Φv|\Phi_{v}\rangle is a state, to which v^±\hat{v}^{\pm} act. Since v^±\hat{v}^{\pm} are related to P^±\hat{P}^{\pm} by unitary transformations, we can construct the eigenstates of v^±\hat{v}^{\pm}, the |(v)±|(v)^{\pm}\rangle\!\rangle in Eq.(97), on |P+|P|P^{+}\rangle\otimes|P^{-}\rangle. Then choosing |Φv=|(v)+|\Phi_{v}\rangle=|(v)^{+}\rangle\!\rangle, we can replace the v^+\hat{v}^{+} in Eq.(150) by the eigenvalue v+v^{+}. The resultant ground state becomes the G^|0|(v)+\hat{G}|0_{\|}\rangle\otimes|(v)^{+}\rangle\!\rangle in Eq.(99).

The next task is to study the way of normalization of those ground states for a given PP^{\|} under a common EE. A key to this end can be found in the inner products of the states:

|α,β.γ=eαa^a^+iβa^iγa^+|0.\displaystyle|\alpha,\beta.\gamma\rangle=e^{-\alpha\hat{a}^{-{\dagger}}\hat{a}^{+{\dagger}}-i\beta\hat{a}^{-{\dagger}}-i\gamma\hat{a}^{+{\dagger}}}|0_{\|}\rangle. (152)

With the aid of the formula

d2zπeD|z|2+Az+Bz=1De1DAB\displaystyle\int\frac{d^{2}z}{\pi}e^{-D|z|^{2}+Az+Bz^{*}}=\frac{1}{D}e^{\frac{1}{D}AB} (153)
(Re(D)>0,[A,B]=0),\displaystyle\left(~{}{\rm Re}(D)>0,~{}[A,B]=0~{}\right),

one can verify that

\displaystyle\langle α1,β1,γ1|α2,β2,γ2\displaystyle\alpha_{1},\beta_{1},\gamma_{1}|\alpha_{2},\beta_{2},\gamma_{2}\rangle
=d2zπe|z|20|e(izα1+iβ1)a^+(izα1+iγ1)a^+\displaystyle=\int\frac{d^{2}z}{\pi}e^{-|z|^{2}}\langle 0_{\|}|e^{(iz\sqrt{\alpha_{1}^{*}}+i\beta_{1}^{*})\hat{a}^{-}+(iz^{*}\sqrt{\alpha_{1}^{*}}+i{\gamma}_{1}^{*})\hat{a}^{+}}
×eα2a^a^+iβ2a^iγ2a^+|0|v+\displaystyle\times e^{-\alpha_{2}\hat{a}^{-{\dagger}}\hat{a}^{+{\dagger}}-i\beta_{2}\hat{a}^{-{\dagger}}-i\gamma_{2}\hat{a}^{+{\dagger}}}|0_{\|}\rangle\otimes|v^{+}\rangle
=d2zπe(1α1α2)|z|2ez{α2α1(γ1)+γ2α1}\displaystyle=\int\frac{d^{2}z}{\pi}e^{-\left(1-\alpha_{1}^{*}\alpha_{2}\right)|z|^{2}}e^{z\left\{\alpha_{2}\sqrt{\alpha_{1}^{*}}(\gamma_{1}^{\dagger})+\gamma_{2}\sqrt{\alpha_{1}^{*}}\right\}}
×ez{α2α1(β1)+β2α1}eα2β1γ1+β2γ1+γ2β1\displaystyle\times e^{z^{*}\left\{\alpha_{2}\sqrt{\alpha_{1}^{*}}(\beta_{1}^{*})+\beta_{2}\sqrt{\alpha_{1}^{*}}\right\}}e^{\alpha_{2}\beta_{1}^{*}\gamma_{1}^{*}+\beta_{2}\gamma_{1}^{*}+\gamma_{2}\beta_{1}^{*}}
=11α1α2e11α1α2(1α1α2)(α2β1γ1+β2γ1+γ2β1)\displaystyle=\frac{1}{1-\alpha_{1}^{*}\alpha_{2}}e^{\frac{1}{1-\alpha_{1}^{*}\alpha_{2}}(1-\alpha_{1}^{*}\alpha_{2})(\alpha_{2}\beta_{1}^{*}\gamma_{1}^{*}+\beta_{2}\gamma_{1}^{*}+\gamma_{2}\beta_{1}^{*})}
×e11α1α2{α22α1(γ1β1)+α2α1(γ1β2)+α2α1(γ2β1)+α1(γ2β2)}\displaystyle\times e^{\frac{1}{1-\alpha_{1}^{*}\alpha_{2}}\left\{\alpha_{2}^{2}\alpha_{1}^{*}(\gamma_{1}^{*}\beta_{1}^{*})+\alpha_{2}\alpha_{1}^{*}(\gamma_{1}^{*}\beta_{2})+\alpha_{2}\alpha_{1}^{*}(\gamma_{2}\beta_{1}^{*})+\alpha_{1}^{*}(\gamma_{2}\beta_{2})\right\}}
=11α1α2e11α1α2{(α2β1+β2)γ1+(α1β2+β1)γ2}.\displaystyle=\frac{1}{1-\alpha_{1}^{*}\alpha_{2}}e^{\frac{1}{1-\alpha_{1}^{*}\alpha_{2}}\left\{(\alpha_{2}\beta_{1}^{*}+\beta_{2})\gamma_{1}^{*}+(\alpha_{1}^{*}\beta_{2}+\beta_{1}^{*})\gamma_{2}\right\}}. (154)

Substituting αi=α=BB˘\alpha_{i}=\alpha=\frac{B_{-}}{\breve{B}_{-}}, βi=β=1B˘2κv\beta_{i}=\beta=\frac{1}{\breve{B}_{-}}\sqrt{\frac{2\kappa}{\hbar}}v^{-} and γi=1B˘+2κvi+(i=1,2)\gamma_{i}=\frac{1}{\breve{B}_{+}}\sqrt{\frac{2\kappa}{\hbar}}v_{i}^{+}~{}\,(i=1,2) for Eq.(154), we obtain

α,β,γ1|α,β,γ2\displaystyle\langle\alpha,\beta,\gamma_{1}|\alpha,\beta,\gamma_{2}\rangle =11|α|2e11|α|2{(αβ+β)γ1+(αβ+β)γ2}\displaystyle=\frac{1}{1-|\alpha|^{2}}e^{\frac{1}{1-|\alpha|^{2}}\left\{(\alpha\beta^{*}+\beta)\gamma_{1}^{*}+(\alpha^{*}\beta+\beta^{*})\gamma_{2}\right\}}
=(1+a)2+b24aeκa(1+a)(1+a)2+b2v(v1++v2+)\displaystyle=\frac{(1+a)^{2}+b^{2}}{4a}e^{\frac{\kappa}{\hbar a}\frac{(1+a)}{(1+a)^{2}+b^{2}}v^{-}(v_{1}^{+}+v_{2}^{+})}
×eiκab(1+a)2+b2v(v1+v2+).\displaystyle\times e^{i\frac{\kappa}{\hbar a}\frac{b}{(1+a)^{2}+b^{2}}v^{-}(v_{1}^{+}-v_{2}^{+})}. (155)

The α,β,γ1|α,β,γ2\langle\alpha,\beta,\gamma_{1}|\alpha,\beta,\gamma_{2}\rangle plays the essential role in the inner product of G^|0|(vi)+(i=1,2)\hat{G}|0_{\|}\rangle\otimes|(v_{i})^{+}\rangle\!\rangle\,(i=1,2); and, the real exponent in Eq.(155) brings harm for the normalization of those states with a finite norm.

Hence, we modify the ground states so that this real exponent factor is removed as in Eq.(102). We also note that the definition |(v)±=U^±1|P|(v)^{\pm}\rangle\!\rangle=\hat{U}^{\pm 1}|P^{\|}\rangle\!\rangle (v±=Δg4wgKgP±)\left(v^{\pm}=-\frac{\Delta_{g}}{4w_{g}K_{g}}P^{\pm}\right) with U^(X)=ei4Δgg~gEwg2cXX+\hat{U}(X^{\|})=e^{\frac{i}{\hbar}\frac{4}{\Delta_{g}}\frac{\tilde{g}_{*}gEw_{g}}{2c}X^{-}X^{+}}in XX representation leads to the completeness

d2P|(v)±(v)±|=d2P|PP|=1.\displaystyle\int d^{2}P^{\|}|(v)^{\pm}\rangle\!\rangle\langle\!\langle(v)^{\pm}|=\int d^{2}P^{\|}|P^{\|}\rangle\!\rangle\langle\!\langle P^{\|}|=1. (156)

Then with the help of Eq.(156), we obtain

I12\displaystyle I_{12} 0gE,(v1)+|0gE,(v2)+\displaystyle\equiv\langle\!\langle 0^{E}_{g},(v_{1})^{+}|0^{E}_{g},(v_{2})^{+}\rangle\!\rangle
=d2P0gE,(v1)+|(v)(v)|0gE,(v2)+\displaystyle=\int d^{2}P^{\|}\langle\!\langle 0^{E}_{g},(v_{1})^{+}|(v)^{-}\rangle\!\rangle\langle\!\langle(v)^{-}|0^{E}_{g},(v_{2})^{+}\rangle\!\rangle
=d2PNv,v1+Nv,v2+α,β,γ1|α,β,γ2\displaystyle=\int d^{2}P^{\|}N_{v^{-},v_{1}^{+}}N_{v^{-},v_{2}^{+}}\langle\alpha,\beta,\gamma_{1}|\alpha,\beta,\gamma_{2}\rangle
×(v1)+|(v)(v)|(v2)+\displaystyle\times\langle\!\langle(v_{1})^{+}|(v)^{-}\rangle\!\rangle\langle\!\langle(v)^{-}|(v_{2})^{+}\rangle\!\rangle
=|(1+a)2b2(1+a)2+b2|d2Peiκab(1+a)2+b2vv12+\displaystyle=\left|\frac{(1+a)^{2}-b^{2}}{(1+a)^{2}+b^{2}}\right|\int d^{2}P^{\|}e^{i\frac{\kappa}{\hbar a}\frac{b}{(1+a)^{2}+b^{2}}v^{-}v_{12}^{+}}
×(v1)+|(v)(v)|(v2)+.\displaystyle\times\langle\!\langle(v_{1})^{+}|(v)^{-}\rangle\!\rangle\langle\!\langle(v)^{-}|(v_{2})^{+}\rangle\!\rangle. (157)

where β=β(v),γi=γ(vi+)\beta=\beta(v^{-}),\gamma_{i}=\gamma(v_{i}^{+}) and vij±=vi±vj±v_{ij}^{\pm}=v_{i}^{\pm}-v_{j}^{\pm}. Here, the inner products (vi)|(vj)±=Pi|U^±2|Pj\langle\!\langle(v_{i})^{\mp}|(v_{j})^{\pm}\rangle\!\rangle=\langle\!\langle P_{i}^{\|}|\hat{U}^{\pm 2}|P_{j}^{\|}\rangle\!\rangle are specific cases (n=±2n=\pm 2) of

Pi|\displaystyle\langle\!\langle P_{i}^{\|}| U^n|Pj=d2XPi|XU^n(X)X|Pj\displaystyle\hat{U}^{n}|P_{j}^{\|}\rangle\!\rangle=\int d^{2}X^{\|}\langle\!\langle P_{i}^{\|}|X^{\|}\rangle\!\rangle\hat{U}^{n}(X^{\|})\langle\!\langle X^{\|}|P_{j}^{\|}\rangle\!\rangle
=1n(Δg4wg2cg~gE)12πei1n(Δg4wg2cg~gE)PijPij+.\displaystyle=\frac{1}{n}\left(\frac{\Delta_{g}}{4w_{g}}\frac{2c}{\tilde{g}_{*}gE}\right)\frac{1}{2\pi\hbar}e^{-\frac{i}{\hbar}\frac{1}{n}\left(\frac{\Delta_{g}}{4w_{g}}\frac{2c}{\tilde{g}_{*}gE}\right)P_{ij}^{-}P_{ij}^{+}}. (158)

Applying this formula to Eq.(157), and remembering κ2abvv+=(Δg4wg2cg~gE)PP+\frac{\kappa}{2ab}v^{-}v^{+}=\left(\frac{\Delta_{g}}{4w_{g}}\frac{2c}{\tilde{g}_{*}gE}\right)P^{-}P^{+}, we have

I12\displaystyle I_{12} =|(1+a)2b2(1+a)2+b2|d2Pi{12(Δg4wg2cg~gE)12π}2\displaystyle=\left|\frac{(1+a)^{2}-b^{2}}{(1+a)^{2}+b^{2}}\right|\int d^{2}P_{i}^{\|}\left\{\frac{1}{2}\left(\frac{\Delta_{g}}{4w_{g}}\frac{2c}{\tilde{g}_{*}gE}\right)\frac{1}{2\pi\hbar}\right\}^{2}
×eiκa2b2(1+a)2+b2(Δg4wg2cg~gE)PiP12+\displaystyle\times e^{i\frac{\kappa}{\hbar a}\frac{2b^{2}}{(1+a)^{2}+b^{2}}\left(\frac{\Delta_{g}}{4w_{g}}\frac{2c}{\tilde{g}_{*}gE}\right)P_{i}^{-}P_{12}^{+}}
×ei12(Δg4wg2cg~gE)(Pi1Pi1+Pi2Pi2+).\displaystyle\times e^{\frac{i}{\hbar}\frac{1}{2}\left(\frac{\Delta_{g}}{4w_{g}}\frac{2c}{\tilde{g}_{*}gE}\right)\left(P_{i1}^{-}P_{i1}^{+}-P_{i2}^{-}P_{i2}^{+}\right)}. (159)

Thus, because of (Pi1Pi1+Pi2Pi2+)=(P1P1+P2P2+){\small(P_{i1}^{-}P_{i1}^{+}-P_{i2}^{-}P_{i2}^{+})=(P_{1}^{-}P_{1}^{+}-P_{2}^{-}P_{2}^{+})} PiP12+Pi+P12{\small-P_{i}^{-}P_{12}^{+}-P_{i}^{+}P_{12}^{-}}, we finally arrive at

0gE\displaystyle\langle\!\langle 0^{E}_{g} ,(v1)+|0gE,(v2)+=δ(2)(P1P2).\displaystyle,(v_{1})^{+}|0^{E}_{g},(v_{2})^{+}\rangle\!\rangle=\delta^{(2)}\left(P_{1}^{\|}-P_{2}^{\|}\right). (160)

Next, we examine the inner products between the state |,v1|\emptyset,{\rm v}_{1}\rangle\!\rangle, the ground state for E=0E=0, and the state |0gE,(v2)+|0^{E}_{g},(v_{2})^{+}\rangle\!\rangle, the ground state for E0E\neq 0. In this case, since |,(v)+|\emptyset,(v)^{+}\rangle\!\rangle does not contain a^a^+\hat{a}^{-{\dagger}}\hat{a}^{+{\dagger}}, we can evaluate the inner product in such a way that

I12\displaystyle I_{12}^{\emptyset} ,v1|0g,(v2)+\displaystyle\equiv\langle\!\langle\emptyset,{\rm v}_{1}|0_{g},(v_{2})^{+}\rangle\!\rangle
=eκ2v1v1+0|ei22κv1+a^ei22κv1a^+\displaystyle=e^{-\frac{\kappa}{2\hbar}{\rm v}_{1}^{-}{\rm v}_{1}^{+}}\langle 0^{\|}|e^{\frac{i}{2}\sqrt{\frac{2\kappa}{\hbar}}{\rm v}_{1}^{+}\hat{a}^{-}}e^{\frac{i}{2}\sqrt{\frac{2\kappa}{\hbar}}{\rm v}_{1}^{-}\hat{a}^{+}}
×d2Pieαa^+a^iβ(vi)a^+eiγ(v2+)a^|0\displaystyle\times\int d^{2}P_{i}^{\|}e^{-\alpha\hat{a}^{+{\dagger}}\hat{a}^{-{\dagger}}-i{\beta}(v_{i}^{-})\hat{a}^{+{\dagger}}}e^{-i{\gamma}({v}_{2}^{+})\hat{a}^{-{\dagger}}}|0^{\|}\rangle
×Nv,v2+P1|(vi)(vi)|(v2)+\displaystyle\times N_{{v}^{-},v_{2}^{+}}\langle\!\langle P_{1}^{\|}|(v_{i})^{-}\rangle\!\rangle\langle\!\langle(v_{i})^{-}|(v_{2})^{+}\rangle\!\rangle
=eκ2v1v1++α(κ2)v1v1+e1B˘+κv2+v1d2Pie1B˘κviv1+\displaystyle=e^{-\frac{\kappa}{2\hbar}{\rm v}_{1}^{-}{\rm v}_{1}^{+}+\alpha\left(\frac{\kappa}{2\hbar}\right){\rm v}_{1}^{-}{\rm v}_{1}^{+}}e^{\frac{1}{\breve{B}_{+}}\frac{\kappa}{\hbar}{v}_{2}^{+}{\rm v}_{1}^{-}}\!\int d^{2}P_{i}^{\|}e^{\frac{1}{\breve{B}_{-}}\frac{\kappa}{\hbar}v_{i}^{-}{\rm v}_{1}^{+}}
×Nv,v2+P1|(vi)(vi)|(v)2+.\displaystyle\times N_{v^{-},v_{2}^{+}}\langle\!\langle P_{1}^{\|}|(v_{i})^{-}\rangle\!\rangle\langle\!\langle(v_{i})^{-}|(v)_{2}^{+}\rangle\!\rangle. (161)

Here, P1|(v)\langle\!\langle P_{1}^{\|}|(v)^{-}\rangle\!\rangle and (v)|(v)2+\langle\!\langle(v)^{-}|(v)_{2}^{+}\rangle\!\rangle are specific cases of Eq.(159) corresponding to n=1n=-1 and n=2n=2 respectively, and Nv,v2+=N0eκa(1+a)(1+a)2+b2vv2+N_{v^{-},v_{2}^{+}}=N_{0}e^{-\frac{\kappa}{\hbar a}\frac{(1+a)}{(1+a)^{2}+b^{2}}v^{-}v_{2}^{+}}. Thus,

I12\displaystyle I_{12}^{\emptyset} =N0eκ2v1v1++α(κ2)v1v1+e1B˘+κv2+v1\displaystyle=N_{0}e^{-\frac{\kappa}{2\hbar}{\rm v}_{1}^{-}{\rm v}_{1}^{+}+\alpha\left(\frac{\kappa}{2\hbar}\right){\rm v}_{1}^{-}{\rm v}_{1}^{+}}e^{\frac{1}{\breve{B}_{+}}\frac{\kappa}{\hbar}{v}_{2}^{+}{\rm v}_{1}^{-}}
×d2Pie1B˘κviv1+eκ(1+a)a{(1+a)2+b2}viv2+\displaystyle\times\int d^{2}P_{i}^{\|}e^{\frac{1}{\breve{B}_{-}}\frac{\kappa}{\hbar}{v}_{i}^{-}{\rm v}_{1}^{+}}e^{-\frac{\kappa}{\hbar}\frac{(1+a)}{a\{(1+a)^{2}+b^{2}\}}v_{i}^{-}v_{2}^{+}}
×2{(Δg4wgKg)212πκ2ab}2eiκ2ab(2v1iv1i+vi2vi2+).\displaystyle\times 2\left\{\left(\frac{\Delta_{g}}{4w_{g}K_{g}}\right)^{2}\frac{1}{2\pi\hbar}\frac{\kappa}{2ab}\right\}^{2}e^{\frac{i}{\hbar}\frac{\kappa}{2ab}\left(2v_{1i}^{-}v_{1i}^{+}-v_{i2}^{-}v_{i2}^{+}\right)}. (162)

Remembering further (Δg4wgKg)2d2P=d2v±\left(\frac{\Delta_{g}}{4w_{g}K_{g}}\right)^{2}d^{2}P^{\|}=d^{2}v^{\pm}, the integration can be carried out; and, we arrive at the representation of I12I_{12}^{\emptyset} in Eq.(2):

I12\displaystyle I_{12}^{\emptyset} =N0eκ2v1v1++α(κ2)v1v1+e1B˘+κv2+v1\displaystyle=N_{0}e^{-\frac{\kappa}{2\hbar}{\rm v}_{1}^{-}{\rm v}_{1}^{+}+\alpha\left(\frac{\kappa}{2\hbar}\right){\rm v}_{1}^{-}{\rm v}_{1}^{+}}e^{\frac{1}{\breve{B}_{+}}\frac{\kappa}{\hbar}{v}_{2}^{+}{\rm v}_{1}^{-}}
×eκ(2v1v2)(1B˘v1+(1+a)a{(1+a)2+b2}v2+)\displaystyle\times e^{\frac{\kappa}{\hbar}(2v_{1}^{-}-v_{2}^{-})\left(\frac{1}{\breve{B}_{-}}v_{1}^{+}-\frac{(1+a)}{a\{(1+a)^{2}+b^{2}\}}v_{2}^{+}\right)}
×(Δg4wgKg)2(12πκab)eiκabv12v12+.\displaystyle\times\left(\frac{\Delta_{g}}{4w_{g}K_{g}}\right)^{2}\left(\frac{1}{2\pi\hbar}\frac{\kappa}{ab}\right)e^{-\frac{i}{\hbar}\frac{\kappa}{ab}v_{12}^{-}v_{12}^{+}}. (163)

It should be noticed that by virtue of

limb0(12πκab)eiκabv12v12+=δ(v12)δ(v12+),\displaystyle\lim_{b\rightarrow 0}\left(\frac{1}{2\pi\hbar}\frac{\kappa}{ab}\right)e^{-\frac{i}{\hbar}\frac{\kappa}{ab}v_{12}^{-}v_{12}^{+}}=\delta(v_{12}^{-})\delta(v_{12}^{+}), (164)

one can find the limit I12δ(2)(P)(E0)I_{12}^{\emptyset}\rightarrow\delta^{(2)}(P^{\|})\,(E\rightarrow 0).

References

  • (1) H. Yukawa, Reciprocity in Generalized Field Theory, Prog. Theor. Phys. 3, 205 (1948).
  • (2) H. Yukawa, Quantum theory of non-local fields. Part I. Free fields, Phys. Rev. 77, 219 (1950).
  • (3) H. Yukawa, Quantum theory of non-local fields. Part II. Irreducible fields and their interaction, Phys. Rev. 80, 1047 (1950).
  • (4) T. Takabayasi, Oscillator model for particles underlying unitary symmetry, Nuovo Cimento 33, 668 (1964).
  • (5) T. Gotō, S. Naka  and  K. Kamimura, On the bi-local model and string model, Supple. Prog. Theor. Phys. 67, 69 (1979).
  • (6) S. Tanaka, The Regge pole behaviour of extended particles, Supple. Prog. Theor. Phys., 41, 194 (1968).
  • (7) Y. Kizukuri,  M. Namiki and K. Okano, Deuteron elastic electromagnetic form factor in relativistic harmonic oscillator model,  Prog. Theor. Phys. 61, 559 (1979).
  • (8) T. Gotō and S. Naka,  On the vertex function in the bi-local field, Prog. Theor. Phys.  51, 299 (1974).
  • (9) K. Aouda, S. Naka and H. Toyoda, Bi-local fields in AdS5 spacetime, JHEP 10, 090 (2016).
  • (10) K. Aouda, N. Kanda, S. Naka and H. Toyoda, Ladder operators in repulsive harmonic oscillator with application to the Schwinger effect, Phys. Rev. D102, 025002 (2020).
  • (11) J. Schwinger, On Gauge Invariance and Vacuum Polarization, Phys. Rev. 82, 664 (1951).
  • (12) E. Berizin and C. Itykson,  Pair production in vacuum by an alternating Field,  Phys. Rev. D2, 1191 (1970).
  • (13) L.D. Landau and E.M. Lifshitz,  Quantum Mechanics, 2nd ed.,(Pergamon, New York, 1965).
  • (14) J. Svensmark, O. I. Tolstikhin, and L. B. Madsen, Theory of dissociative tunneling ionization, Phys. Rev. A  93.053426 (2016).
  • (15) R. Casalbuoni, Relatively and Supersymmetries, 
    Phys. Lett. B62, 49 (1976).
  • (16) H. W. Crater, and P. V. Alstine, Two-body Dirac equations,  Ann. Phys. 148, 57 (1983).