This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Behavior of a Chiral Condensate Around Astrophysical-Mass Schwarzschild and Reissner-Nordström Black Holes

Ross DeMott, Alex Flournoy
(Department of Physics, Colorado School of Mines, Golden, CO 80401, USA.
April 2023)
Abstract

In this work, we develop a perturbative method to describe the behavior of a chiral condensate around a spherical black hole whose mass is astrophysically realistic. We use the inverse mass as the expansion parameter for our perturbative series. We test this perturbative method in the case of a Schwarzschild black hole, and we find that it agrees well with previous numerical results. For an astrophysical-mass Schwarzschild black hole, the leading order contribution to the condensate is much larger (in most of space) than the next-to-leading order contribution, providing further evidence for the validity of the perturbative approach. The size of the bubble of restored chiral symmetry is directly proportional to the size of the black hole.
Next, we apply this perturbative method to a Reissner-Nordström (RN) black hole. We find that, as the charge-to-mass ratio increases, the bubble of restored chiral symmetry becomes larger relative to the black hole. This effect is particularly pronounced for near-extremal RN black holes. The case of an extremal RN black hole provides an interesting counterexample to the standard thermal explanation for the formation of a bubble of restored chiral symmetry around a black hole.

1 Introduction

In physics, spontaneous symmetry breaking is a critical tool, used to explain how fundamentally symmetric theories can give rise to asymmetric low-energy effective theories. Most of the familiar examples of spontaneous symmetry breaking come from theories formulated in Minkowski spacetime, but it is also possible for spontaneous symmetry breaking to occur in theories on curved backgrounds [1, 2, 3, 4].
The QCD phase diagram is a matter of great interest to contemporary particle physics. At high energies and/or high temperatures, QCD exhibits chiral symmetry. At low energies and/or temperatures, QCD spontaneously breaks chiral symmetry. If gravity is included in the theory, strong space-time curvature can also cause QCD matter to transition from a phase with spontaneously broken chiral symmetry to a phase with restored chiral symmetry [5, 6, 7, 8]. Such strong curvature can be found in the vicinity of black holes.
In Ref. [8], the authors found that the chiral condensate approaches zero near the event horizon of a Schwarzschild black hole. Thus, the event horizon is surrounded by a “bubble” of approximately restored chiral symmetry. As the mass of the black hole increases, the radius of this bubble (relative to the radius of the black hole) decreases. At the boundary of the bubble, a second-order phase transition takes place, in which the chiral-symmetric phase inside the bubble meets the chiral-broken phase in the wider universe.
Throughout this article, we restrict our discussion to astrophysical-mass black holes, whose masses are much larger than the Planck scale. Because of this, we can use the inverse mass (in Planck units) as a small expansion parameter. We use this perturbative approach to greatly simplify the equations of motion for the condensate σ\sigma. We apply this method to Schwarzschild black holes, and we find that the results thereby obtained are consistent with the numerical results obtained in Ref. [8]. Having confirmed the validity of the perturbative approach for Schwarzschild black holes, we apply the method to Reissner-Nordström black holes (which possess electric charge but no angular momentum). As far as we know, this is the first time that the behavior of a chiral condensate around a charged black hole has been investigated.
In flat spacetime, there is a critical temperature TcT_{c} that marks the boundary between the phase with spontaneously broken chiral symmetry (T<TcT<T_{c}) and the phase with restored chiral symmetry (T>TcT>T_{c}) [9, 8]. At any point, the Tolman temperature gives the effective local temperature of spacetime [8]. As one approaches the event horizon of the black hole, the Tolman temperature increases without bound. Assuming that the asymptotic temperature is smaller than TcT_{c}, the Tolman temperature will cross TcT_{c} at some finite radius outside the event horizon. Thus, one intuitively expects that the chiral condensate will transition from a spontaneously broken phase far away from the horizon to a restored phase close to the horizon. This is the usual argument explaining why chiral symmetry is restored close to the horizon [8]. However, we find that this intuitive argument fails for an extremal Reissner-Nordström black hole.
Throughout this article, we use Planck units, so that c=G==4πϵ0=kB=1c=G=\hbar=4\pi\hskip 1.42262pt\epsilon_{0}=k_{B}=1.

2 Effective Action for General Black Hole Space-Time

In a Minkowski background, a general, spherically-symmetric black hole metric takes the form

ds2=f(r)dt2+f(r)1dr2+r2dΩ2,ds^{2}=-f\left(r\right)\hskip 1.42262ptdt^{2}+f\left(r\right)^{-1}\hskip 1.42262ptdr^{2}+r^{2}\hskip 1.42262ptd\Omega^{2}, (1)

where dΩ2d\Omega^{2} is the line element on the two-sphere. Every black hole has a temperature TBHT_{\textrm{BH}}. To account for thermal effects, we work in Euclidean time. The Euclidean time direction is periodic, and its period is equal to the inverse temperature β\beta. In Euclidean time, we may write the metric as

ds2=f(r)dt2+f(r)1dr2+r2dΩ2.ds^{2}=f\left(r\right)\hskip 1.42262ptdt^{2}+f\left(r\right)^{-1}\hskip 1.42262ptdr^{2}+r^{2}\hskip 1.42262ptd\Omega^{2}. (2)

We model baryonic matter by a four-fermion interaction with interaction strength λ\lambda. Let NN be the total number of different types of quarks, counting both flavors and colors. We may write the classical action as [8]

S=d4x{ψ¯iγμμψ+λ2N(ψ¯ψ)2}.S=\int\mathrm{d}^{4}x\hskip 1.42262pt\left\{\overline{\psi}\hskip 1.42262pti\gamma^{\mu}\nabla_{\mu}\psi+\frac{\lambda}{2N}\left(\overline{\psi}\psi\right)^{2}\right\}. (3)

(The astute reader may notice that there is no factor of g\sqrt{g} beside the volume element in Eqn. 3. This is because the determinant of the metric in Schwarzschild spacetime is identical to that in Minkowski spacetime.) We define the condensate σ\sigma as

σ=λNψ¯ψ.\sigma=-\frac{\lambda}{N}\hskip 1.42262pt\langle\overline{\psi}\psi\rangle. (4)

Let us introduce the new variables Σ±\Sigma_{\pm}, which are defined by

Σ±=σ2±fdσdr.\Sigma_{\pm}=\sigma^{2}\pm\sqrt{f}\frac{d\sigma}{dr}. (5)

Note that ff is short for f(r)f\left(r\right). Let us define ων(u)\omega_{\nu}\left(u\right) as

ων(u)=n=1(1)nnνKν(nβu).\omega_{\nu}\left(u\right)=\sum_{n=1}^{\infty}\left(-1\right)^{n}n^{-\nu}K_{\nu}\left(n\beta u\right). (6)

To approximate the effective action, we use a resummed heat kernel expansion. To second-order in the resummed heat kernel expansion, we may write the effective action Γ[σ]\Gamma\left[\sigma\right] as [8, 5, 6]

Γ[σ]=βd3x,\Gamma\left[\sigma\right]=\beta\int\mathrm{d}^{3}\vec{x}\hskip 2.84526pt\mathcal{L}, (7)

where x\vec{x} are the spatial coordinates. The Lagrangian density \mathcal{L} is given by [8, 5, 6]

=σ22λ+f232π2(++)+132π2δ.\mathcal{L}=-\frac{\sigma^{2}}{2\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(\mathcal{L}_{+}+\mathcal{L}_{-}\right)+\frac{1}{32\pi^{2}}\delta\mathcal{L}. (8)

The Lagrangian pieces ±\mathcal{L}_{\pm} and δ\delta\mathcal{L} are given by

±=34Σ±2(12Σ±2+a±)ln(fΣ±2)+16Σ±fβ2ω2(fΣ±)+4a±ω0(fΣ±)\mathcal{L}_{\pm}=\frac{3}{4}\Sigma_{\pm}^{2}-\left(\frac{1}{2}\Sigma_{\pm}^{2}+a_{\pm}\right)\ln\left(\frac{f\Sigma_{\pm}}{\ell^{2}}\right)+\frac{16\Sigma_{\pm}}{f\beta^{2}}\hskip 1.42262pt\omega_{2}\left(\sqrt{f\Sigma_{\pm}}\right)+4a_{\pm}\omega_{0}\left(\sqrt{f\Sigma_{\pm}}\right) (9)

and

δ=(Σ+2+Σ2)lnf2(Σ++Σ)12f{(dfdr)22fd2fdr2+4frdfdr}.\delta\mathcal{L}=\left(\Sigma_{+}^{2}+\Sigma_{-}^{2}\right)\frac{\ln f}{2}-\frac{\left(\Sigma_{+}+\Sigma_{-}\right)}{12f}\left\{\left(\frac{df}{dr}\right)^{2}-2f\frac{d^{2}f}{dr^{2}}+\frac{4f}{r}\frac{df}{dr}\right\}. (10)

With a little algebra, we may rewrite δ\delta\mathcal{L} as

δ=(σ4+f(dσdr)2)lnfσ26f{(dfdr)22fd2fdr2+4frdfdr}.\delta\mathcal{L}=\left(\sigma^{4}+f\left(\frac{d\sigma}{dr}\right)^{2}\right)\ln f-\frac{\sigma^{2}}{6f}\left\{\left(\frac{df}{dr}\right)^{2}-2f\frac{d^{2}f}{dr^{2}}+\frac{4f}{r}\frac{df}{dr}\right\}. (11)

Let ΔEucl\Delta_{\textrm{Eucl}} be the Laplacian for three-dimensional Euclidean space. We may write a±a_{\pm} as (see Appendix A for derivation)

a±=asp+f(r)26ΔEucl(fΣ±),a_{\pm}=a_{\textrm{sp}}+\frac{f\left(r\right)^{2}}{6}\Delta_{\textrm{Eucl}}\left(f\Sigma_{\pm}\right), (12)

where the pure space-time contribution aspa_{\textrm{sp}} is given by

asp=1180{2f(r)2r48f(r)3r4+6f(r)4r4+8f(r)2r3f(r)12f(r)3r3f(r)+6f(r)2r2f(r)24f(r)2r2f′′(r)+6f(r)3r2f′′(r)6f(r)2rf(r)f′′(r)+32f(r)2f′′(r)26f(r)3rf(3)(r)f(r)2f(r)f(3)(r)2f(r)3f(4)(r)}.\displaystyle\begin{split}a_{\textrm{sp}}=\hskip 2.84526pt&\frac{1}{180}\left\{\frac{2f\left(r\right)^{2}}{r^{4}}-\frac{8f\left(r\right)^{3}}{r^{4}}+\frac{6f\left(r\right)^{4}}{r^{4}}+\frac{8f\left(r\right)^{2}}{r^{3}}f^{\prime}\left(r\right)-\frac{12f\left(r\right)^{3}}{r^{3}}f^{\prime}\left(r\right)+\frac{6f\left(r\right)^{2}}{r^{2}}f^{\prime}\left(r\right)^{2}-\frac{4f\left(r\right)^{2}}{r^{2}}f^{\prime\prime}\left(r\right)\right.\\ &\left.+\frac{6f\left(r\right)^{3}}{r^{2}}f^{\prime\prime}\left(r\right)-\frac{6f\left(r\right)^{2}}{r}f^{\prime}\left(r\right)f^{\prime\prime}\left(r\right)+\frac{3}{2}f\left(r\right)^{2}f^{\prime\prime}\left(r\right)^{2}-\frac{6f\left(r\right)^{3}}{r}f^{\left(3\right)}\left(r\right)-f\left(r\right)^{2}f^{\prime}\left(r\right)f^{\left(3\right)}\left(r\right)\right.\\ &\left.-2f\left(r\right)^{3}f^{\left(4\right)}\left(r\right)\right\}.\end{split} (13)

We assume the black hole is of astrophysical size, which means that β\beta is very large. Therefore, let us make the following assumptions:

βfΣ+1,\beta\sqrt{f\Sigma_{+}}\gg 1, (14)
βfΣ1.\beta\sqrt{f\Sigma_{-}}\gg 1. (15)

Later, we will verify that these assumptions are satisfied in most of space. The Bessel functions Kν(x)K_{\nu}\left(x\right) decay exponentially for large values of xx. Therefore, if Eqns. 14 and 15 are satisfied, the Lagrangian terms involving ω0(fΣ±)\omega_{0}\left(\sqrt{f\Sigma_{\pm}}\right) and ω2(fΣ±)\omega_{2}\left(\sqrt{f\Sigma_{\pm}}\right) are exponentially suppressed. Hence, we may simplify the Lagrangian pieces ±\mathcal{L}_{\pm} to

±=34Σ±2(12Σ±2+a±)ln(fΣ±2).\mathcal{L}_{\pm}=\frac{3}{4}\Sigma_{\pm}^{2}-\left(\frac{1}{2}\Sigma_{\pm}^{2}+a_{\pm}\right)\ln\left(\frac{f\Sigma_{\pm}}{\ell^{2}}\right). (16)

With some algebraic manipulation, we may write the sum ++\mathcal{L}_{+}+\mathcal{L}_{-} as

++=(32ln(f2))(σ4+f(dσdr)2)12(Σ+2lnΣ++Σ2lnΣ)f(r)23ΔEucl(fσ2)ln(f2)aspln(σ4f(dσdr)2)f(r)26ΔEucl(fΣ+)lnΣ+f(r)26ΔEucl(fΣ)lnΣ.\displaystyle\begin{split}\mathcal{L}_{+}+\mathcal{L}_{-}=&\left(\frac{3}{2}-\ln\left(\frac{f}{\ell^{2}}\right)\right)\left(\sigma^{4}+f\left(\frac{d\sigma}{dr}\right)^{2}\right)-\frac{1}{2}\left(\Sigma_{+}^{2}\ln\Sigma_{+}+\Sigma_{-}^{2}\ln\Sigma_{-}\right)-\frac{f\left(r\right)^{2}}{3}\Delta_{\textrm{Eucl}}\left(f\sigma^{2}\right)\ln\left(\frac{f}{\ell^{2}}\right)\\ &-a_{\textrm{sp}}\ln\left(\sigma^{4}-f\left(\frac{d\sigma}{dr}\right)^{2}\right)-\frac{f\left(r\right)^{2}}{6}\Delta_{\textrm{Eucl}}\left(f\Sigma_{+}\right)\ln\Sigma_{+}-\frac{f\left(r\right)^{2}}{6}\Delta_{\textrm{Eucl}}\left(f\Sigma_{-}\right)\ln\Sigma_{-}.\end{split} (17)

(Note that we have omitted a term that does not depend on σ\sigma.) Recall that the effective action Γ[σ]\Gamma\left[\sigma\right] is given by

Γ[σ]=βd3x\Gamma\left[\sigma\right]=\beta\int\mathrm{d}^{3}\vec{x}\hskip 1.42262pt\mathcal{L} (18)

and that the total Lagrangian \mathcal{L} is given by

=σ22λ+f232π2(++)+132π2δ.\mathcal{L}=-\frac{\sigma^{2}}{2\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(\mathcal{L}_{+}+\mathcal{L}_{-}\right)+\frac{1}{32\pi^{2}}\delta\mathcal{L}. (19)

For convenience, let us introduce the quantities 𝒜\mathcal{A} and \mathcal{B}, which are defined as

𝒜=(32ln(f2))(σ4+f(dσdr)2)12(Σ+2lnΣ++Σ2lnΣ)aspln(σ4f(dσdr)2),\mathcal{A}=\left(\frac{3}{2}-\ln\left(\frac{f}{\ell^{2}}\right)\right)\left(\sigma^{4}+f\left(\frac{d\sigma}{dr}\right)^{2}\right)-\frac{1}{2}\left(\Sigma_{+}^{2}\ln\Sigma_{+}+\Sigma_{-}^{2}\ln\Sigma_{-}\right)-a_{\textrm{sp}}\ln\left(\sigma^{4}-f\left(\frac{d\sigma}{dr}\right)^{2}\right), (20)
=13ΔEucl(fσ2)ln(f2)16ΔEucl(fΣ+)lnΣ+16ΔEucl(fΣ)lnΣ.\mathcal{B}=-\frac{1}{3}\Delta_{\textrm{Eucl}}\left(f\sigma^{2}\right)\ln\left(\frac{f}{\ell^{2}}\right)-\frac{1}{6}\Delta_{\textrm{Eucl}}\left(f\Sigma_{+}\right)\ln\Sigma_{+}-\frac{1}{6}\Delta_{\textrm{Eucl}}\left(f\Sigma_{-}\right)\ln\Sigma_{-}. (21)

From Eqns. 17 and 19, we see that the Lagrangian may be written as

=σ22λ+f232π2𝒜+132π2+132π2δ.\mathcal{L}=-\frac{\sigma^{2}}{2\lambda}+\frac{f^{-2}}{32\pi^{2}}\mathcal{A}+\frac{1}{32\pi^{2}}\mathcal{B}+\frac{1}{32\pi^{2}}\delta\mathcal{L}. (22)

Combining Eqns. 17, 18, and 22, we may write the effective action as

Γ[σ]=β32π2d3x(13ΔEucl(fσ2)ln(f2)16ΔEucl(fΣ+)lnΣ+16ΔEucl(fΣ)lnΣ)+,\Gamma\left[\sigma\right]=\frac{\beta}{32\pi^{2}}\int\mathrm{d}^{3}\vec{x}\left(-\frac{1}{3}\Delta_{\textrm{Eucl}}\left(f\sigma^{2}\right)\ln\left(\frac{f}{\ell^{2}}\right)-\frac{1}{6}\Delta_{\textrm{Eucl}}\left(f\Sigma_{+}\right)\ln\Sigma_{+}-\frac{1}{6}\Delta_{\textrm{Eucl}}\left(f\Sigma_{-}\right)\ln\Sigma_{-}\right)+\dots, (23)

where \dots represents terms that do not depend involve the Laplacian ΔEucl\Delta_{\textrm{Eucl}}. Using Green’s first identity, we may rewrite Eqn. 23 as

Γ[σ]=β32π2d3x(13Eucl(fσ2)Euclff+16Eucl(fΣ+)Σ+Σ++16Eucl(fΣ)ΣΣ)+.\Gamma\left[\sigma\right]=\frac{\beta}{32\pi^{2}}\int\mathrm{d}^{3}\vec{x}\left(\frac{1}{3}\nabla_{\textrm{Eucl}}\left(f\sigma^{2}\right)\cdot\frac{\nabla_{\textrm{Eucl}}f}{f}+\frac{1}{6}\nabla_{\textrm{Eucl}}\left(f\Sigma_{+}\right)\cdot\frac{\nabla\Sigma_{+}}{\Sigma_{+}}+\frac{1}{6}\nabla_{\textrm{Eucl}}\left(f\Sigma_{-}\right)\cdot\frac{\nabla\Sigma_{-}}{\Sigma_{-}}\right)+\dots. (24)

Taking advantage of spherical symmetry, we may rewrite Eqn. 24 (after some algebra) as

Γ[σ]=β32π2d3x(23dfdrd(σ2)dr+σ23f(dfdr)2+f6Σ+(dΣ+dr)2+f6Σ(dΣdr)2)+.\Gamma\left[\sigma\right]=\frac{\beta}{32\pi^{2}}\int\mathrm{d}^{3}\vec{x}\left(\frac{2}{3}\frac{df}{dr}\frac{d\left(\sigma^{2}\right)}{dr}+\frac{\sigma^{2}}{3f}\left(\frac{df}{dr}\right)^{2}+\frac{f}{6\Sigma_{+}}\left(\frac{d\Sigma_{+}}{dr}\right)^{2}+\frac{f}{6\Sigma_{-}}\left(\frac{d\Sigma_{-}}{dr}\right)^{2}\right)+\dots. (25)

Thus, we may rewrite the Lagrangian piece \mathcal{B} as

=23dfdrd(σ2)dr+σ23f(dfdr)2+f6Σ+(dΣ+dr)2+f6Σ(dΣdr)2.\mathcal{B}=\frac{2}{3}\frac{df}{dr}\frac{d\left(\sigma^{2}\right)}{dr}+\frac{\sigma^{2}}{3f}\left(\frac{df}{dr}\right)^{2}+\frac{f}{6\Sigma_{+}}\left(\frac{d\Sigma_{+}}{dr}\right)^{2}+\frac{f}{6\Sigma_{-}}\left(\frac{d\Sigma_{-}}{dr}\right)^{2}. (26)

3 Large Schwarzschild Black Hole

3.1 Expansion in Powers of M1M^{-1}

Let us consider a large Schwarzschild black hole with mass M1M\gg 1 in Planck units. The metric function f(r)f\left(r\right) is given by

f(r)=12Mr.f\left(r\right)=1-\frac{2M}{r}. (27)

With this metric function, the quantity aspa_{\textrm{sp}} takes the form [10]

asp=4M25r6(12Mr)2.a_{\textrm{sp}}=\frac{4M^{2}}{5r^{6}}\left(1-\frac{2M}{r}\right)^{2}. (28)

So far, we have been working in Planck units. However, for an astrophysical black hole, the mass MM should be at least a few solar masses. One solar mass is around 103810^{38} Planck masses. Therefore, the Schwarzschild radius of an astrophysical black hole will be at least 1038\sim 10^{38} Planck lengths. Thus, the metric tensor and its derivatives will hardly change at all if rr changes by a Planck length. Since the profile of σ\sigma as a function of rr depends on the properties of space-time, it is reasonable to expect that σ(r)\sigma^{\prime}\left(r\right) will be very small. To obtain a better description, we rescale our unit of length by a factor of MM. As a result, we have a new radial coordinate RR, which is given by

R=rM.R=\frac{r}{M}. (29)

Under this coordinate transformation, derivatives will transform as

dndrn1MndndRn.\frac{d^{n}}{dr^{n}}\longrightarrow\frac{1}{M^{n}}\frac{d^{n}}{dR^{n}}. (30)

We may write the metric function f(R)f\left(R\right) as

f(R)=12R.f\left(R\right)=1-\frac{2}{R}. (31)

Thus, in this new coordinate system, the event horizon is located at R=2R=2. Because Eqn. 31 does not contain any very large or very small coefficients, we see that the coordinate RR is well-suited to capturing the spatial variation in the properties of space-time. Therefore, it is also well-suited to capturing the spatial variation in σ\sigma. Plugging Eqn. 29 into Eqn. 28, we find that

asp=45M4R6(12R)2.a_{\textrm{sp}}=\frac{4}{5M^{4}R^{6}}\left(1-\frac{2}{R}\right)^{2}. (32)

In Ref. [8], the authors employed non-perturbative, numerical methods to solve for the condensate σ(r)\sigma\left(r\right). That work considered black holes whose mass was within a few orders of magnitude of the Planck mass. Since the black holes considered here are much larger, it is more convenient to expand the Lagrangian \mathcal{L} in powers of M1M^{-1}. Keeping terms up to M2M^{-2}, we may write the Lagrangian pieces 𝒜\mathcal{A}, \mathcal{B}, and δ\delta\mathcal{L} as [10]

𝒜=(32ln(f2))(σ4+fM2(dσdR)2)12(Σ+2lnΣ++Σ2lnΣ),\mathcal{A}=\left(\frac{3}{2}-\ln\left(\frac{f}{\ell^{2}}\right)\right)\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)-\frac{1}{2}\left(\Sigma_{+}^{2}\ln\Sigma_{+}+\Sigma_{-}^{2}\ln\Sigma_{-}\right), (33)
=8σ3M2R2dσdR+4σ23M2R4f+f6M2Σ+(dΣ+dR)2+f6M2Σ(dΣdR)2,\mathcal{B}=\frac{8\sigma}{3M^{2}R^{2}}\frac{d\sigma}{dR}+\frac{4\sigma^{2}}{3M^{2}R^{4}f}+\frac{f}{6M^{2}\Sigma_{+}}\left(\frac{d\Sigma_{+}}{dR}\right)^{2}+\frac{f}{6M^{2}\Sigma_{-}}\left(\frac{d\Sigma_{-}}{dR}\right)^{2}, (34)
δ=(σ4+fM2(dσdR)2)lnfσ23f(8M2R314M2R4).\delta\mathcal{L}=\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)\ln f-\frac{\sigma^{2}}{3f}\left(\frac{8}{M^{2}R^{3}}-\frac{14}{M^{2}R^{4}}\right). (35)

To further simplify Eqns. 33 and 34, we must expand lnΣ±\ln\Sigma_{\pm} and Σ±1\Sigma_{\pm}^{-1} in powers of M1M^{-1}. We may write Σ±\Sigma_{\pm} as

Σ±=σ2(1±fMσ2dσdR).\Sigma_{\pm}=\sigma^{2}\left(1\pm\frac{\sqrt{f}}{M\sigma^{2}}\frac{d\sigma}{dR}\right). (36)

Thus, we may write lnΣ±\ln\Sigma_{\pm} and Σ±1\Sigma_{\pm}^{-1} as

lnΣ±=ln(σ2)+ln(1±fMσ2dσdR),\ln\Sigma_{\pm}=\ln\left(\sigma^{2}\right)+\ln\left(1\pm\frac{\sqrt{f}}{M\sigma^{2}}\frac{d\sigma}{dR}\right), (37)
Σ±1=1σ2(1±fMσ2dσdR)1.\Sigma_{\pm}^{-1}=\frac{1}{\sigma^{2}}\left(1\pm\frac{\sqrt{f}}{M\sigma^{2}}\frac{d\sigma}{dR}\right)^{-1}. (38)

Using Taylor series (up to second order in M1M^{-1}), we may re-express lnΣ±\ln\Sigma_{\pm} and Σ±1\Sigma_{\pm}^{-1} as

lnΣ±=ln(σ2)±fMσ2dσdRf2M2σ4(dσdR)2,\ln\Sigma_{\pm}=\ln\left(\sigma^{2}\right)\pm\frac{\sqrt{f}}{M\sigma^{2}}\frac{d\sigma}{dR}-\frac{f}{2M^{2}\sigma^{4}}\left(\frac{d\sigma}{dR}\right)^{2}, (39)
Σ±1=1σ2(1fMσ2dσdR+fM2σ4(dσdR)2).\Sigma_{\pm}^{-1}=\frac{1}{\sigma^{2}}\left(1\mp\frac{\sqrt{f}}{M\sigma^{2}}\frac{d\sigma}{dR}+\frac{f}{M^{2}\sigma^{4}}\left(\frac{d\sigma}{dR}\right)^{2}\right). (40)

Next, we plug Eqns. 39 and 40 into Eqns. 33 and 34 (again keeping terms only up to M2M^{-2}) to obtain

𝒜=ln(fσ22)(σ4+fM2(dσdR)2)+32σ4,\mathcal{A}=-\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)+\frac{3}{2}\sigma^{4}, (41)
=8σ3M2R2dσdR+4σ23M2R4f+4f3M2(dσdR)2.\mathcal{B}=\frac{8\sigma}{3M^{2}R^{2}}\frac{d\sigma}{dR}+\frac{4\sigma^{2}}{3M^{2}R^{4}f}+\frac{4f}{3M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}. (42)

Thus, we may write the total Lagrangian as

=σ22λ+f232π2(ln(fσ22)(σ4+fM2(dσdR)2)+32σ4)+132π2(8σ3M2R2dσdR8σ23M2R3f+6σ2M2R4f+4f3M2(dσdR)2+(σ4+fM2(dσdR)2)lnf)\displaystyle\begin{split}\mathcal{L}=\hskip 2.84526pt&-\frac{\sigma^{2}}{2\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)+\frac{3}{2}\sigma^{4}\right)\\ &+\frac{1}{32\pi^{2}}\left(\frac{8\sigma}{3M^{2}R^{2}}\frac{d\sigma}{dR}-\frac{8\sigma^{2}}{3M^{2}R^{3}f}+\frac{6\sigma^{2}}{M^{2}R^{4}f}+\frac{4f}{3M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}+\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)\ln f\right)\end{split} (43)

Since \mathcal{L} is spherically symmetric, we may write the effective action as

Γ[σ]=βdRR2.\Gamma\left[\sigma\right]=\beta\int\mathrm{d}R\hskip 1.42262ptR^{2}\mathcal{L}. (44)

Thus, we may write the Euler-Lagrange equation as

σddR(σ)2Rσ=0.\frac{\partial\mathcal{L}}{\partial\sigma}-\frac{d}{dR}\left(\frac{\partial\mathcal{L}}{\partial\sigma^{\prime}}\right)-\frac{2}{R}\frac{\partial\mathcal{L}}{\partial\sigma^{\prime}}=0. (45)

Plugging Eqn. 43 into Eqn. 45, we find that

σλ+f232π2(4ln(fσ22)σ3+4σ32fM2σ(dσdR)2)+132π2(83M2R2dσdR16σ3M2R3f+12σM2R4f+4σ3lnf)132π2ddR(ln(fσ22)2f1M2dσdR+8σ3M2R2+8f3M2dσdR+2fM2dσdRlnf)116π2R(ln(fσ22)2f1M2dσdR+8σ3M2R2+8f3M2dσdR+2fM2dσdRlnf)=0.\displaystyle\begin{split}&-\frac{\sigma}{\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-4\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)\sigma^{3}+4\sigma^{3}-\frac{2f}{M^{2}\sigma}\left(\frac{d\sigma}{dR}\right)^{2}\right)\\ &+\frac{1}{32\pi^{2}}\left(\frac{8}{3M^{2}R^{2}}\frac{d\sigma}{dR}-\frac{16\sigma}{3M^{2}R^{3}f}+\frac{12\sigma}{M^{2}R^{4}f}+4\sigma^{3}\ln f\right)\\ &-\frac{1}{32\pi^{2}}\frac{d}{dR}\left(-\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)\frac{2f^{-1}}{M^{2}}\frac{d\sigma}{dR}+\frac{8\sigma}{3M^{2}R^{2}}+\frac{8f}{3M^{2}}\frac{d\sigma}{dR}+\frac{2f}{M^{2}}\frac{d\sigma}{dR}\ln f\right)\\ &-\frac{1}{16\pi^{2}R}\left(-\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)\frac{2f^{-1}}{M^{2}}\frac{d\sigma}{dR}+\frac{8\sigma}{3M^{2}R^{2}}+\frac{8f}{3M^{2}}\frac{d\sigma}{dR}+\frac{2f}{M^{2}}\frac{d\sigma}{dR}\ln f\right)=0.\end{split} (46)

3.2 Leading Order Condensate Profile

Let us expand the condensate σ\sigma in powers of M2M^{-2} as

σ(R)=σ0(R)+σ2(R)M2+\sigma\left(R\right)=\sigma_{0}\left(R\right)+\frac{\sigma_{2}\left(R\right)}{M^{2}}+\dots (47)

At leading order (meaning without any MM dependence), we may write the equation of motion (Eqn. 46) as

σ0λ+f232π2(4ln(fσ022)σ03+4σ03)+132π2(4σ03lnf)=0.-\frac{\sigma_{0}}{\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-4\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\sigma_{0}^{3}+4\sigma_{0}^{3}\right)+\frac{1}{32\pi^{2}}\left(4\sigma_{0}^{3}\ln f\right)=0. (48)

Clearly, there is trivial solution σ0=0\sigma_{0}=0 to Eqn. 48. However, we expect σ0\sigma_{0} to be generally non-zero. Therefore, with some simple algebra, we may rewrite Eqn. 48 as

12λ+f216π2(σ02σ02ln(fσ022)+f2ln(f)σ02)=0.-\frac{1}{2\lambda}+\frac{f^{-2}}{16\pi^{2}}\left(\sigma_{0}^{2}-\sigma_{0}^{2}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)+f^{2}\ln\left(f\right)\sigma_{0}^{2}\right)=0. (49)

We may solve this equation to obtain (see Appendix B)

σ02=8π2f2λ[W1(8π2eλ2f3f2)]1.\sigma_{0}^{2}=-\frac{8\pi^{2}f^{2}}{\lambda}\left[W_{-1}\left(-\frac{8\pi^{2}}{e\lambda\ell^{2}}f^{3-f^{2}}\right)\right]^{-1}. (50)

Eqn. 50 provides an expression for σ02\sigma_{0}^{2}. Therefore, there are two possible expressions for σ0\sigma_{0}, which differ from each other by a sign. Note that the Lagrangian \mathcal{L} (Eqn. 43) and the equation of motion (Eqn. 46) are both symmetric under the transformation σσ\sigma\to-\sigma. Therefore, it does not matter which expression for σ0\sigma_{0} we choose. For simplicity, we will choose the positive sign. Thus, we may write σ0\sigma_{0} as

σ0=8π2f2λ[W1(8π2eλ2f3f2)]1.\sigma_{0}=\sqrt{-\frac{8\pi^{2}f^{2}}{\lambda}\left[W_{-1}\left(-\frac{8\pi^{2}}{e\lambda\ell^{2}}f^{3-f^{2}}\right)\right]^{-1}}. (51)

Below, we have graphed σ0(r)\sigma_{0}\left(r\right) for several different combinations of λ\lambda and \ell [10].

Refer to caption
Figure 1: Graph of σ0(R)\sigma_{0}\left(R\right) with respect to RR. Note that the event horizon is at R=2R=2.

As we will demonstrate in the next subsection, σ0\sigma_{0} provides a very close approximation to σ\sigma almost everywhere outside the event horizon. Therefore, we would like to compare the results obtained in Figure 1 to the results obtained in Ref. [8]. As in Ref. [8], the condensate σ\sigma asymptotically approaches a constant, non-zero value far from the event horizon, indicating a phase of spontaneously broken chiral symmetry. Close to the event horizon, σ\sigma approaches zero, illustrating a phase of restored chiral symmetry.
In Ref. [8], the authors work with black holes far smaller than the astrophysical-mass black holes considered here. They found that, as the mass of the black hole increases, the size of the bubble of restored chiral symmetry decreases (relative to the Schwarzschild radius of the black hole). For their black holes, the bubbles expanded out to 1030\sim 10-30 Schwarzschild radii. In Fig. 1, the bubble extends out to 23\sim 2-3 Schwarzschild radii. Hence, we see that our results are consistent with the results of Ref. [8], in that larger black holes create smaller bubbles of restored chiral symmetry (relative to their Schwarzschild radii). However, for very large black holes (like the astrophysical-mass black holes considered here), the size of the bubble scales almost linearly with the mass of the black hole.

3.3 Next-to-Leading Order Condensate Profile

From Eqn. 43, we see that \mathcal{L} contains terms proportional to lnσ\ln\sigma. We wish to expand this term in powers of M2M^{-2}. To do this, we must first rewrite Eqn. 47 as

σ(r)=σ0(R)(1+σ2(R)M2σ0(R)+).\sigma\left(r\right)=\sigma_{0}\left(R\right)\left(1+\frac{\sigma_{2}\left(R\right)}{M^{2}\hskip 1.42262pt\sigma_{0}\left(R\right)}+\dots\right). (52)

Using the Mercator series for the natural logarithm, we may write lnσ\ln\sigma as

lnσ=lnσ0+σ2M2σ012(σ2M2σ0)2+\ln\sigma=\ln\sigma_{0}+\frac{\sigma_{2}}{M^{2}\hskip 1.42262pt\sigma_{0}}-\frac{1}{2}\left(\frac{\sigma_{2}}{M^{2}\hskip 1.42262pt\sigma_{0}}\right)^{2}+\dots (53)

At next-to-leading order (terms proportional to M2M^{-2}), we may write the equation of motion (Eqn. 46) as

σ2λ+f232π2(12ln(fσ022)σ02σ2+4σ02σ22fσ0(dσ0dR)2)+132π2(83R2dσ0dR16σ03R3f+12σ0R4f+12σ02σ2lnf)132π2ddR(2f1ln(fσ022)dσ0dR+8σ03R2+8f3dσ0dR+2fln(f)dσ0dR)116π2R(2f1ln(fσ022)dσ0dR+8σ03R2+8f3dσ0dR+2fln(f)dσ0dR)=0.\displaystyle\begin{split}&-\frac{\sigma_{2}}{\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-12\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\sigma_{0}^{2}\sigma_{2}+4\sigma_{0}^{2}\sigma_{2}-\frac{2f}{\sigma_{0}}\left(\frac{d\sigma_{0}}{dR}\right)^{2}\right)\\ &+\frac{1}{32\pi^{2}}\left(\frac{8}{3R^{2}}\frac{d\sigma_{0}}{dR}-\frac{16\sigma_{0}}{3R^{3}f}+\frac{12\sigma_{0}}{R^{4}f}+12\sigma_{0}^{2}\sigma_{2}\ln f\right)\\ &-\frac{1}{32\pi^{2}}\frac{d}{dR}\left(-2f^{-1}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right)\\ &-\frac{1}{16\pi^{2}R}\left(-2f^{-1}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right)=0.\end{split} (54)

Solving Eqn. 54 for σ2\sigma_{2}, we obtain

σ2=132π2{83R2dσ0dR+16σ03R3f12σ0R4f+2f1σ0(dσ0dR)2+ddR(2f1ln(fσ022)dσ0dR+8σ03R2+8f3dσ0dR+2fln(f)dσ0dR)+2R(2f1ln(fσ022)dσ0dR+8σ03R2+8f3dσ0dR+2fln(f)dσ0dR)}×{1λ+f232π2(12ln(fσ022)σ02+4σ02+12σ02f2lnf)}1\displaystyle\begin{split}\sigma_{2}=&\frac{1}{32\pi^{2}}\left\{-\frac{8}{3R^{2}}\frac{d\sigma_{0}}{dR}+\frac{16\sigma_{0}}{3R^{3}f}-\frac{12\sigma_{0}}{R^{4}f}+\frac{2f^{-1}}{\sigma_{0}}\left(\frac{d\sigma_{0}}{dR}\right)^{2}\right.\\ &\left.+\frac{d}{dR}\left(-2f^{-1}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right)\right.\\ &\left.+\frac{2}{R}\left(-2f^{-1}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right)\right\}\\ &\times\left\{-\frac{1}{\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-12\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\sigma_{0}^{2}+4\sigma_{0}^{2}+12\sigma_{0}^{2}\hskip 1.42262ptf^{2}\ln f\right)\right\}^{-1}\end{split} (55)

Because the explicit expression for σ2(R)\sigma_{2}\left(R\right) is extremely complicated, we will not write it down here. Below, we have graphed σ2(R)\sigma_{2}\left(R\right) for several different combinations of λ\lambda and \ell [10].

Refer to caption
Figure 2: Graph of σ2(R)\sigma_{2}\left(R\right) with respect to RR.

In the perturbative expansion for σ\sigma, σ2\sigma_{2} has a coefficient of M2M^{-2}. Since σ2\sigma_{2} is smaller than σ0\sigma_{0} almost everywhere outside the event horizon, the profile of σ\sigma outside the horizon is dominated by the contribution from σ0\sigma_{0}.

3.4 Verification of the Perturbative Approach

To obtain the above results for σ0\sigma_{0} and σ2\sigma_{2}, we had to make three assumptions. First, we assumed that βfΣ±1\beta\sqrt{f\Sigma_{\pm}}\gg 1 for both Σ+\Sigma_{+} and Σ\Sigma_{-}. Second, we assumed that σ\sigma varies on scales far larger than the Planck scale. Lastly, we assumed that σ\sigma can be expanded perturbatively in powers of M2M^{-2}. We wish to verify that these assumptions hold almost everywhere outside the event horizon.
We start by verifying the assumption βfΣ±1\beta\sqrt{f\Sigma_{\pm}}\gg 1. As discussed earlier, an astrophysical black hole should have a mass of at least 1038\sim 10^{38} Planck masses. The inverse temperature β\beta is given by [11, 12]

β=8πM.\beta=8\pi M. (56)

Therefore, β\beta should be at least 1039\sim 10^{39}. Hence, we see that the assumption is satisfied if fΣ±1078f\Sigma_{\pm}\gg 10^{-78}. We may write Σ±\Sigma_{\pm} as

Σ±=σ2±fMdσdR.\Sigma_{\pm}=\sigma^{2}\pm\frac{\sqrt{f}}{M}\frac{d\sigma}{dR}. (57)

Next, we use Eqn. 47 to expand Σ±\Sigma_{\pm} in powers of M1M^{-1}. Keeping terms up to M2M^{-2}, we find that

Σ±=σ02+2M2σ0σ2±fMdσ0dR.\Sigma_{\pm}=\sigma_{0}^{2}+\frac{2}{M^{2}}\sigma_{0}\sigma_{2}\pm\frac{\sqrt{f}}{M}\frac{d\sigma_{0}}{dR}. (58)

Fortunately, we already have expressions for σ0\sigma_{0} and σ2\sigma_{2}. Below, we graph the functions f(R)Σ+(R)f\left(R\right)\Sigma_{+}\left(R\right) and f(R)Σ(R)f\left(R\right)\Sigma_{-}\left(R\right) for M=1039M=10^{39} Planck masses (a stellar-mass black hole) and M=1048M=10^{48} Planck masses (a very large supermassive black hole) [10].

Refer to caption
Figure 3: Graph of f(R)Σ+(R)f\left(R\right)\Sigma_{+}\left(R\right) with respect to (R2)\left(R-2\right), with λ=102\lambda=10^{-2} and =103\ell=10^{3}. The curves for M=1039M=10^{39} Planck masses and M=1048M=10^{48} Planck masses are indistinguishable on the graph.
Refer to caption
Figure 4: Graph of f(R)Σ(R)f\left(R\right)\Sigma_{-}\left(R\right) with respect to (R2)\left(R-2\right), with λ=102\lambda=10^{-2} and =103\ell=10^{3}. The curves for M=1039M=10^{39} Planck masses and M=1048M=10^{48} Planck masses are indistinguishable on the graph.

From Figures 3 and 4, we see that the assumption βfΣ±1\beta\sqrt{f\Sigma_{\pm}}\gg 1 may be violated very close to the event horizon. However, the region where this occurs only extends out to (R2)<103\left(R-2\right)<10^{-3}, or less than one thousandth of a Schwarzschild radius outside the event horizon. Thus, the assumption βfΣ±1\beta\sqrt{f\Sigma_{\pm}}\gg 1 holds almost everywhere outside the event horizon.
Next, we verify the assumption that σ\sigma varies on scales far larger than the Planck scale. In terms of the original Planck-scale coordinate rr, we may write this condition as

dσdr1.\frac{d\sigma}{dr}\ll 1. (59)

Rewriting Eqn. 59 in terms of the rescaled coordinate RR, we obtain

dσdRM.\frac{d\sigma}{dR}\ll M. (60)

Up to second-order in M1M^{-1}, we may write σ\sigma as

σ(R)=σ0(R)+σ2(R)M2.\sigma\left(R\right)=\sigma_{0}\left(R\right)+\frac{\sigma_{2}\left(R\right)}{M^{2}}. (61)

Fortunately, we already have expressions for σ0\sigma_{0} and σ2\sigma_{2}. Below, we graph the derivative of σ(R)\sigma\left(R\right) for M=1039M=10^{39} Planck masses and M=1048M=10^{48} Planck masses [10]. We see that Eqn. 60 is satisfied everywhere outside the event horizon.

Refer to caption
Figure 5: Graph of σ(R)\sigma^{\prime}\left(R\right) with respect to (R2)\left(R-2\right), with λ=102\lambda=10^{-2} and =103\ell=10^{3}. The curves for M=1039M=10^{39} Planck masses and M=1048M=10^{48} Planck masses are indistinguishable on the graph.

Finally, we verify the assumption that σ\sigma can be expanded perturbatively in powers of M2M^{-2}, as in Eqn. 47. This assumption holds if and only if |σ2/M2|σ0\lvert\sigma_{2}/M^{2}\rvert\ll\sigma_{0}, or equivalently, |σ2|/σ0M2\lvert\sigma_{2}\rvert/\sigma_{0}\ll M^{2}. From Figures 1 and 2, it is easy to see that |σ2|<σ0\lvert\sigma_{2}\rvert<\sigma_{0} in most of the space outside the event horizon. Thus, |σ2|/σ0M2\lvert\sigma_{2}\rvert/\sigma_{0}\ll M^{2} almost everywhere outside the event horizon. Having verified all three assumptions, we conclude that the perturbative analysis is valid almost everywhere outside the event horizon.

4 Large Reissner-Nordström Black Hole

Let us consider a large Reissner-Nordström (RN) black hole with mass M1M\gg 1 in Planck units. We denote the charge of this black hole by QQ. The event horizon radius r+r_{+} is given by [13, 12]

r+=M+M2Q2.r_{+}=M+\sqrt{M^{2}-Q^{2}}. (62)

The metric function f(r)f\left(r\right) is given by [13]

f(r)=12Mr+Q2r2.f\left(r\right)=1-\frac{2M}{r}+\frac{Q^{2}}{r^{2}}. (63)

We assume that the black hole is sub-extremal or extremal, so that |Q|M\lvert Q\rvert\leq M [13]. As in the Schwarzschild case, we assume that the event horizon radius sets the natural scale of variation for the condensate σ\sigma. Thus, we define a new radial coordinate RR, which is given by

R=rM.R=\frac{r}{M}. (64)

In this new coordinate system, we may write the metric function f(R)f\left(R\right) as

f(R)=12R+Q2M2R2.f\left(R\right)=1-\frac{2}{R}+\frac{Q^{2}}{M^{2}R^{2}}. (65)

Let us expand the condensate σ\sigma in powers of M2M^{-2} as

σ(R)=σ0(R)+σ2(R)M2+\sigma\left(R\right)=\sigma_{0}\left(R\right)+\frac{\sigma_{2}\left(R\right)}{M^{2}}+\dots (66)

We may write σ0\sigma_{0} and σ2\sigma_{2} as (see Appendix C)

σ0=8π2f2λ[W1(8π2eλ2f3f2)]1,\sigma_{0}=\sqrt{-\frac{8\pi^{2}f^{2}}{\lambda}\left[W_{-1}\left(-\frac{8\pi^{2}}{e\lambda\ell^{2}}f^{3-f^{2}}\right)\right]^{-1}}, (67)
σ2=132π2{2f1σ0(dσ0dR)283R2(1Q2M2R)dσ0dR8σ03R4f(1Q2M2R)2+2σ03f(8R314R4+24Q2M2R510Q2M2R48Q4M4R6)+ddR[2f1ln(fσ022)dσ0dR+8σ03R2(1Q2M2R)+8f3dσ0dR+2fln(f)dσ0dR]+2R[2f1ln(fσ022)dσ0dR+8σ03R2(1Q2M2R)+8f3dσ0dR+2fln(f)dσ0dR]}×{1λ+f232π2(12σ02ln(fσ022)+4σ02+12σ02f2lnf)}1.\displaystyle\begin{split}\sigma_{2}=&\frac{1}{32\pi^{2}}\left\{\frac{2f^{-1}}{\sigma_{0}}\left(\frac{d\sigma_{0}}{dR}\right)^{2}-\frac{8}{3R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)\frac{d\sigma_{0}}{dR}\right.\\ &\left.-\frac{8\sigma_{0}}{3R^{4}f}\left(1-\frac{Q^{2}}{M^{2}R}\right)^{2}+\frac{2\sigma_{0}}{3f}\left(\frac{8}{R^{3}}-\frac{14}{R^{4}}+\frac{24Q^{2}}{M^{2}R^{5}}-\frac{10Q^{2}}{M^{2}R^{4}}-\frac{8Q^{4}}{M^{4}R^{6}}\right)\right.\\ &\left.+\frac{d}{dR}\left[-2f^{-1}\hskip 1.42262pt\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right]\right.\\ &\left.+\frac{2}{R}\left[-2f^{-1}\hskip 1.42262pt\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right]\right\}\\ &\times\left\{-\frac{1}{\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-12\sigma_{0}^{2}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)+4\sigma_{0}^{2}+12\sigma_{0}^{2}\hskip 1.42262ptf^{2}\ln f\right)\right\}^{-1}.\end{split} (68)

Below, we graph σ0\sigma_{0} and σ2\sigma_{2} for several different values of the charge-to-mass ratio Q/MQ/M [10]. (In all the graphs, we set λ=102\lambda=10^{-2} and =103\ell=10^{3}.) Unlike the Schwarzschild case, the event horizon for a Reissner-Nordstöm black hole will be located at different values of RR depending on the charge-to-mass ratio Q/MQ/M. Therefore, the horizontal axis will be in units of the dimensionless ratio r/r+r/r_{+}.

Refer to caption
Figure 6: Graph of σ0\sigma_{0} with respect to rr+\frac{r}{r_{+}}.
Refer to caption
Figure 7: Graph of σ2\sigma_{2} with respect to rr+\frac{r}{r_{+}}.

In the perturbative expansion for σ\sigma, σ2\sigma_{2} has a coefficient of M2M^{-2}. Since σ2\sigma_{2} is smaller than σ0\sigma_{0} almost everywhere outside the event horizon, the profile of σ\sigma outside the horizon is dominated by the contribution from σ0\sigma_{0}. (In Appendix D, we demonstrate that the perturbative approach is valid almost everywhere outside the event horizon. Thus, higher-order effects should not significantly change the condensate profile displayed in Figure 6.)
From Figure 6, we see that the bubble of restored chiral symmetry becomes larger as Q/MQ/M increases. This effect is particularly pronounced for near-extremal black holes (Q/M1Q/M\approx 1), as there is a much greater difference between the Q2/M2=0.9Q^{2}/M^{2}=0.9 and Q2/M2=1.0Q^{2}/M^{2}=1.0 curves than between Q2/M2=0.75Q^{2}/M^{2}=0.75 and Q2/M2=0.9Q^{2}/M^{2}=0.9 curves.
For an extremal black hole, the asymptotic temperature is zero [11, 12]. Therefore, the local Tolman temperature is zero everywhere (see Ref. [8] for the definition of the Tolman temperature). However, from Figure 6, we see that a bubble of restored chiral symmetry still forms, surrounded by a region of spontaneously broken chiral symmetry that fills the rest of spacetime. This contradicts the usual explanation for the formation of bubbles of restored symmetry around black holes, which attributes this phenomenon to the increased local (Tolman) temperature near the event horizon.

5 Conclusion

In this article, we have examined the behavior of a chiral condensate outside a spherically symmetric, astrophysical-mass black hole. For a Schwarzschild black hole, the behavior of the chiral condensate is consistent with the results from Ref. [8]. Encouraged by this, we proceeded to analyze the behavior of a chiral condensate in the presence of a charged (Reissner-Nordström) black hole. Here, we find that radius of the bubble of restored chiral symmetry increases as the charge-to-mass ratio increases. However, the radius of the bubble never reaches infinity, even for an extremal Reissner-Nordström black hole. Thus, the chiral condensate always exhibits a phase of restored chiral symmetry close to the event horizon and a phase of spontaneously broken chiral symmetry far away from the horizon.
Unfortunately, it may prove difficult to test any of the predictions made in this article, since the bubble of restored chiral symmetry around an astrophysical black hole would only extend out to a few Schwarzschild radii. Therefore, in the future, we would like to investigate possible empirical signatures of chiral symmetry restoration that could be detected from Earth. For example, the restoration of chiral symmetry close to the black hole could alter the behavior of matter swirling into it, which might produce detectable radiation signatures.
In theory, the effect of curved spacetime on a chiral condensate would not be confined to black holes. Much subtler effects could occur due to the curvature of spacetime around the Earth. This could cause a very small difference in the proton mass (or the mass of some other hadron) depending on altitude. With sufficiently sensitive equipment, such a difference might be observable. Although these possibilities for experimental verification remain highly speculative, there is a tantalizing chance that gravity could provide an entirely new experimental window on the QCD phase diagram.

6 Acknowledgements

We would like to thank Dr. Laith Haddad for many interesting conversations and invaluable pieces of advice, as well as for his kind encouragement.

References

  • [1] Stephen William Hawking “Interacting quantum fields around a black hole” In Communications in Mathematical Physics 80 Springer, 1981, pp. 421–442
  • [2] I.. Moss “Black-hole bubbles” In Phys. Rev. D 32 American Physical Society, 1985, pp. 1333–1344 DOI: 10.1103/PhysRevD.32.1333
  • [3] Sidney Coleman, John Preskill and Frank Wilczek “Growing hair on black holes” In Phys. Rev. Lett. 67 American Physical Society, 1991, pp. 1975–1978 DOI: 10.1103/PhysRevLett.67.1975
  • [4] Sidney Coleman, John Preskill and Frank Wilczek “Quantum hair on black holes” In Nuclear Physics B 378.1, 1992, pp. 175–246 DOI: https://doi.org/10.1016/0550-3213(92)90008-Y
  • [5] Antonino Flachi and Takahiro Tanaka “Chiral modulations in curved space I: formalism” In JHEP, 2011 DOI: 10.1007/JHEP02(2011)026
  • [6] Antonino Flachi “Chiral modulations in curved space II: conifold geometries” In Journal of High Energy Physics 2012.1 Springer, 2012, pp. 1–18
  • [7] Antonino Flachi “Dual fermion condensates in curved space” In Phys. Rev. D 88 American Physical Society, 2013, pp. 085011 DOI: 10.1103/PhysRevD.88.085011
  • [8] Antonino Flachi and Takahiro Tanaka “Chiral phase transitions around black holes” In Phys. Rev. D 84 American Physical Society, 2011, pp. 061503 DOI: 10.1103/PhysRevD.84.061503
  • [9] Kenji Fukushima and Tetsuo Hatsuda “The phase diagram of dense QCD” In Reports on Progress in Physics 74.1, 2010, pp. 014001 DOI: 10.1088/0034-4885/74/1/014001
  • [10] Wolfram Research Inc. “Mathematica, Version 13.0.1.0” Champaign, IL, 2022 URL: https://www.wolfram.com/mathematica
  • [11] Stephen W Hawking “Particle creation by black holes” In Communications in mathematical physics 43.3 Springer, 1975, pp. 199–220
  • [12] Harry W. Braden, J. Brown, Bernard F. Whiting and James W. York “Charged black hole in a grand canonical ensemble” In Phys. Rev. D 42 American Physical Society, 1990, pp. 3376–3385 DOI: 10.1103/PhysRevD.42.3376
  • [13] Charles W. Misner, K.. Thorne and J.. Wheeler “Gravitation” San Francisco: W. H. Freeman, 1973
  • [14] Robert M Corless et al. “On the LambertW function” In Advances in Computational mathematics 5.1 Springer, 1996, pp. 329–359

Appendix A: Derivation of Eqn. 13

The conformally rescaled metric is given by [8]

ds^2=dt2+f(r)2dr2+f(r)1r2dΩ2.d\hat{s}^{2}=dt^{2}+f\left(r\right)^{-2}dr^{2}+f\left(r\right)^{-1}\hskip 1.42262ptr^{2}d\Omega^{2}. (69)

All quantities associated with this metric will have hats. The quantity a±a_{\pm} is defined by [8]

a±=1180(R^μντρ2R^μν2Δ^R^)+16Δ^(fΣ±).a_{\pm}=\frac{1}{180}\left(\hat{R}_{\mu\nu\tau\rho}^{2}-\hat{R}_{\mu\nu}^{2}-\hat{\Delta}\hat{R}\right)+\frac{1}{6}\hat{\Delta}\left(f\Sigma_{\pm}\right). (70)

The Christoffel symbols are defined as (Wolfram)

Γ^ijm=12g^mk(g^ikxj+g^jkxig^ijxk).\hat{\Gamma}^{m}_{ij}=\frac{1}{2}\hat{g}^{mk}\left(\frac{\partial\hat{g}_{ik}}{\partial x^{j}}+\frac{\partial\hat{g}_{jk}}{\partial x^{i}}-\frac{\partial\hat{g}_{ij}}{\partial x^{k}}\right). (71)

Explicitly, the non-zero Christoffel symbols are given by

Γ^rrr=f(r)f(r),\hat{\Gamma}^{r}_{rr}=-\frac{f^{\prime}\left(r\right)}{f\left(r\right)}, (72)
Γ^θθr=12r2f(r)rf(r),\hat{\Gamma}^{r}_{\theta\theta}=\frac{1}{2}r^{2}\hskip 1.42262ptf^{\prime}\left(r\right)-r\hskip 1.42262ptf\left(r\right), (73)
Γ^ϕϕr=sin2(θ)(12r2f(r)rf(r)),\hat{\Gamma}^{r}_{\phi\phi}=\sin^{2}\left(\theta\right)\left(\frac{1}{2}r^{2}\hskip 1.42262ptf^{\prime}\left(r\right)-rf\left(r\right)\right), (74)
Γ^rθθ=Γθrθ=1rf(r)2f(r),\hat{\Gamma}^{\theta}_{r\theta}=\Gamma^{\theta}_{\theta r}=\frac{1}{r}-\frac{f^{\prime}\left(r\right)}{2f\left(r\right)}, (75)
Γ^ϕϕθ=sin(θ)cos(θ),\hat{\Gamma}^{\theta}_{\phi\phi}=-\sin\left(\theta\right)\cos\left(\theta\right), (76)
Γ^rϕϕ=Γϕrϕ=1rf(r)2f(r),\hat{\Gamma}^{\phi}_{r\phi}=\Gamma^{\phi}_{\phi r}=\frac{1}{r}-\frac{f^{\prime}\left(r\right)}{2f\left(r\right)}, (77)
Γ^θϕϕ=Γϕθϕ=cot(θ).\hat{\Gamma}^{\phi}_{\theta\phi}=\Gamma^{\phi}_{\phi\theta}=\cot\left(\theta\right). (78)

The Riemann curvature tensor is defined by (Wolfram)

R^βγδα=γΓβδαδΓβγα+ΓβδμΓμγαΓβγμΓμδα.\hat{R}^{\alpha}_{\beta\gamma\delta}=\partial_{\gamma}\Gamma^{\alpha}_{\beta\delta}-\partial_{\delta}\Gamma^{\alpha}_{\beta\gamma}+\Gamma^{\mu}_{\beta\delta}\Gamma^{\alpha}_{\mu\gamma}-\Gamma^{\mu}_{\beta\gamma}\Gamma^{\alpha}_{\mu\delta}. (79)

The non-zero components of the Riemann curvature tensor are given by

R^θrθr=Rθθrr=12r2f′′(r)r2f(r)24f(r),\hat{R}^{r}_{\theta r\theta}=-R^{r}_{\theta\theta r}=\frac{1}{2}r^{2}f^{\prime\prime}\left(r\right)-\frac{r^{2}f^{\prime}\left(r\right)^{2}}{4f\left(r\right)}, (80)
R^ϕrϕr=R^ϕϕrr=sin2(θ)(12r2f′′(r)r2f(r)24f(r)),\hat{R}^{r}_{\phi r\phi}=-\hat{R}^{r}_{\phi\phi r}=\sin^{2}\left(\theta\right)\left(\frac{1}{2}r^{2}f^{\prime\prime}\left(r\right)-\frac{r^{2}f^{\prime}\left(r\right)^{2}}{4f\left(r\right)}\right), (81)
R^rrθθ=R^rθrθ=f(r)24f(r)2f′′(r)2f(r),\hat{R}^{\theta}_{rr\theta}=-\hat{R}^{\theta}_{r\theta r}=\frac{f^{\prime}\left(r\right)^{2}}{4f\left(r\right)^{2}}-\frac{f^{\prime\prime}\left(r\right)}{2f\left(r\right)}, (82)
R^ϕθϕθ=R^ϕϕθθ=sin2(θ)(1+rf(r)r2f(r)24f(r)f(r)),\hat{R}^{\theta}_{\phi\theta\phi}=-\hat{R}^{\theta}_{\phi\phi\theta}=\sin^{2}\left(\theta\right)\left(1+rf^{\prime}\left(r\right)-\frac{r^{2}f^{\prime}\left(r\right)^{2}}{4f\left(r\right)}-f\left(r\right)\right), (83)
R^rrϕϕ=R^rϕrϕ=f(r)24f(r)2f′′(r)2f(r),\hat{R}^{\phi}_{rr\phi}=-\hat{R}^{\phi}_{r\phi r}=\frac{f^{\prime}\left(r\right)^{2}}{4f\left(r\right)^{2}}-\frac{f^{\prime\prime}\left(r\right)}{2f\left(r\right)}, (84)
R^θθϕϕ=R^θϕθϕ=1rf(r)+r2f(r)24f(r)+f(r).\hat{R}^{\phi}_{\theta\theta\phi}=-\hat{R}^{\phi}_{\theta\phi\theta}=-1-rf^{\prime}\left(r\right)+\frac{r^{2}f^{\prime}\left(r\right)^{2}}{4f\left(r\right)}+f\left(r\right). (85)

The Ricci curvature tensor is defined by (Wolfram)

R^μν=R^μλνλ.\hat{R}_{\mu\nu}=\hat{R}^{\lambda}_{\mu\lambda\nu}. (86)

The non-zero components of the Ricci curvature tensor are given by

R^rr=f(r)22f(r)2+f′′(r)f(r),\hat{R}_{rr}=-\frac{f^{\prime}\left(r\right)^{2}}{2f\left(r\right)^{2}}+\frac{f^{\prime\prime}\left(r\right)}{f\left(r\right)}, (87)
R^θθ=12r2f′′(r)r2f(r)22f(r)+rf(r)f(r)+1,\hat{R}_{\theta\theta}=\frac{1}{2}r^{2}f^{\prime\prime}\left(r\right)-\frac{r^{2}f^{\prime}\left(r\right)^{2}}{2f\left(r\right)}+rf^{\prime}\left(r\right)-f\left(r\right)+1, (88)
R^ϕϕ=sin2(θ)(12r2f′′(r)r2f(r)22f(r)+rf(r)f(r)+1).\hat{R}_{\phi\phi}=\sin^{2}\left(\theta\right)\left(\frac{1}{2}r^{2}f^{\prime\prime}\left(r\right)-\frac{r^{2}f^{\prime}\left(r\right)^{2}}{2f\left(r\right)}+rf^{\prime}\left(r\right)-f\left(r\right)+1\right). (89)

The Ricci scalar R^\hat{R} is defined by (Wolfram)

R^=g^μνR^μν.\hat{R}=\hat{g}^{\mu\nu}\hat{R}_{\mu\nu}. (90)

Explicitly, we may write R^\hat{R} as

R^=32f(r)2+2f(r)f′′(r)+2rf(r)f(r)2r2f(r)2+2r2f(r).\hat{R}=-\frac{3}{2}f^{\prime}\left(r\right)^{2}+2f\left(r\right)f^{\prime\prime}\left(r\right)+\frac{2}{r}f\left(r\right)f^{\prime}\left(r\right)-\frac{2}{r^{2}}f\left(r\right)^{2}+\frac{2}{r^{2}}f\left(r\right). (91)

The scalars R^μνρτ2\hat{R}^{2}_{\mu\nu\rho\tau} and R^μν2\hat{R}^{2}_{\mu\nu} are given by [10]

R^μνρτ2=4f(r)4r4+34f(r)48f(r)3r48f(r)3r3f(r)+4f(r)2r4+8f(r)2r3f(r)+6f(r)2r2f(r)2+2f(r)2f′′(r)22f(r)r2f(r)22f(r)rf(r)32f(r)f(r)2f′′(r),\displaystyle\begin{split}\hat{R}^{2}_{\mu\nu\rho\tau}=\hskip 1.42262pt&\frac{4f\left(r\right)^{4}}{r^{4}}+\frac{3}{4}f^{\prime}\left(r\right)^{4}-\frac{8f\left(r\right)^{3}}{r^{4}}-\frac{8f\left(r\right)^{3}}{r^{3}}f^{\prime}\left(r\right)+\frac{4f\left(r\right)^{2}}{r^{4}}+\frac{8f\left(r\right)^{2}}{r^{3}}f^{\prime}\left(r\right)+\frac{6f\left(r\right)^{2}}{r^{2}}f^{\prime}\left(r\right)^{2}\\ &+2f\left(r\right)^{2}f^{\prime\prime}\left(r\right)^{2}-\frac{2f\left(r\right)}{r^{2}}f^{\prime}\left(r\right)^{2}-\frac{2f\left(r\right)}{r}f^{\prime}\left(r\right)^{3}-2f\left(r\right)f^{\prime}\left(r\right)^{2}f^{\prime\prime}\left(r\right),\end{split} (92)
R^μν2=2f(r)4r4+34f(r)44f(r)3r44f(r)3r3f(r)2f(r)3r2f′′(r)+2f(r)2r4+4f(r)2r3f(r)2f(r)r2f(r)2+4f(r)2r2f(r)22f(r)rf(r)3+2f(r)2r2f′′(r)+2f(r)2rf(r)f′′(r)2f(r)f(r)2f′′(r)+32f(r)2f′′(r)2\displaystyle\begin{split}\hat{R}^{2}_{\mu\nu}=\hskip 2.84526pt&\frac{2f\left(r\right)^{4}}{r^{4}}+\frac{3}{4}f^{\prime}\left(r\right)^{4}-\frac{4f\left(r\right)^{3}}{r^{4}}-\frac{4f\left(r\right)^{3}}{r^{3}}f^{\prime}\left(r\right)-\frac{2f\left(r\right)^{3}}{r^{2}}f^{\prime\prime}\left(r\right)+\frac{2f\left(r\right)^{2}}{r^{4}}+\frac{4f\left(r\right)^{2}}{r^{3}}f^{\prime}\left(r\right)\\ &-\frac{2f\left(r\right)}{r^{2}}f^{\prime}\left(r\right)^{2}+\frac{4f\left(r\right)^{2}}{r^{2}}f^{\prime}\left(r\right)^{2}-\frac{2f\left(r\right)}{r}f^{\prime}\left(r\right)^{3}+\frac{2f\left(r\right)^{2}}{r^{2}}f^{\prime\prime}\left(r\right)+\frac{2f\left(r\right)^{2}}{r}f^{\prime}\left(r\right)f^{\prime\prime}\left(r\right)\\ &-2f\left(r\right)f^{\prime}\left(r\right)^{2}f^{\prime\prime}\left(r\right)+\frac{3}{2}f\left(r\right)^{2}f^{\prime\prime}\left(r\right)^{2}\end{split} (93)

The operator Δ^\hat{\Delta} represents the spatial Laplace-Beltrami operator associated with the conformally rescaled metric. We only need to consider expressions in which the operator Δ^\hat{\Delta} acts on scalar quantities. Thus, we may write Δ^\hat{\Delta} as

Δ^=ii+(ig^ij)j+g^ij2detg^(idetg^)j,\hat{\Delta}=\partial_{i}\partial^{i}+\left(\partial_{i}\hat{g}^{ij}\right)\partial_{j}+\frac{\hat{g}^{ij}}{2\det\hat{g}}\left(\partial_{i}\det\hat{g}\right)\partial_{j}, (94)

where ii and jj are spatial indices in the conformally rescaled space-time. We only need to consider expressions in which the operator Δ^\hat{\Delta} acts on scalar functions that depend only on rr. Thus, we may rewrite Eqn. 94 as

Δ^=grrr2+(ig^ir)r+g^ir2detg^(idetg^)r.\hat{\Delta}=g^{rr}\partial^{2}_{r}+\left(\partial_{i}\hat{g}^{ir}\right)\partial_{r}+\frac{\hat{g}^{ir}}{2\det\hat{g}}\left(\partial_{i}\det\hat{g}\right)\partial_{r}. (95)

Plugging Eqn. 69 into Eqn. 95, we find that

Δ^=f(r)2d2dr2+2f(r)2rddr=f(r)2ΔEucl,\hat{\Delta}=f\left(r\right)^{2}\frac{d^{2}}{dr^{2}}+\frac{2f\left(r\right)^{2}}{r}\frac{d}{dr}=f\left(r\right)^{2}\Delta_{\textrm{Eucl}}, (96)

where ΔEucl\Delta_{\textrm{Eucl}} is the Laplacian for three-dimensional Euclidean space. Finally, we may write a±a_{\pm} as

a±=1180{2f(r)2r48f(r)3r4+6f(r)4r4+8f(r)2r3f(r)12f(r)3r3f(r)+6f(r)2r2f(r)24f(r)2r2f′′(r)+6f(r)3r2f′′(r)6f(r)2rf(r)f′′(r)+32f(r)2f′′(r)26f(r)3rf(3)(r)f(r)2f(r)f(3)(r)2f(r)3f(4)(r)}+f(r)26ΔEucl(fΣ±).\displaystyle\begin{split}a_{\pm}=\hskip 2.84526pt&\frac{1}{180}\left\{\frac{2f\left(r\right)^{2}}{r^{4}}-\frac{8f\left(r\right)^{3}}{r^{4}}+\frac{6f\left(r\right)^{4}}{r^{4}}+\frac{8f\left(r\right)^{2}}{r^{3}}f^{\prime}\left(r\right)-\frac{12f\left(r\right)^{3}}{r^{3}}f^{\prime}\left(r\right)+\frac{6f\left(r\right)^{2}}{r^{2}}f^{\prime}\left(r\right)^{2}-\frac{4f\left(r\right)^{2}}{r^{2}}f^{\prime\prime}\left(r\right)\right.\\ &\left.+\frac{6f\left(r\right)^{3}}{r^{2}}f^{\prime\prime}\left(r\right)-\frac{6f\left(r\right)^{2}}{r}f^{\prime}\left(r\right)f^{\prime\prime}\left(r\right)+\frac{3}{2}f\left(r\right)^{2}f^{\prime\prime}\left(r\right)^{2}-\frac{6f\left(r\right)^{3}}{r}f^{\left(3\right)}\left(r\right)-f\left(r\right)^{2}f^{\prime}\left(r\right)f^{\left(3\right)}\left(r\right)\right.\\ &\left.-2f\left(r\right)^{3}f^{\left(4\right)}\left(r\right)\right\}+\frac{f\left(r\right)^{2}}{6}\Delta_{\textrm{Eucl}}\left(f\Sigma_{\pm}\right).\end{split} (97)

Appendix B: Computation of σ0(r)\sigma_{0}\left(r\right)

At zeroth order in M2M^{-2}, we may write the Euler-Lagrange equations as

12λ+f216π2(σ02σ02ln(fσ022)+f2ln(f)σ02)=0.-\frac{1}{2\lambda}+\frac{f^{-2}}{16\pi^{2}}\left(\sigma_{0}^{2}-\sigma_{0}^{2}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)+f^{2}\ln\left(f\right)\sigma_{0}^{2}\right)=0. (98)

Through simple algebra, we may rewrite Eqn. 98 as

8π2f2λσ02+ln(σ02)=1ln(f2)+f2ln(f).\frac{8\pi^{2}f^{2}}{\lambda\sigma_{0}^{2}}+\ln\left(\sigma_{0}^{2}\right)=1-\ln\left(\frac{f}{\ell^{2}}\right)+f^{2}\ln\left(f\right). (99)

In Eqn. 99, we would like the argument of the logarithm on the LHS to be equal to the first term on the LHS. With a bit more algebra, we may rewrite Eqn. 99 as

8π2f2λσ02+ln(8π2f2λσ02)=1+ln(f2)f2ln(f)+ln(8π2f2λ).-\frac{8\pi^{2}f^{2}}{\lambda\sigma_{0}^{2}}+\ln\left(-\frac{8\pi^{2}f^{2}}{\lambda\sigma_{0}^{2}}\right)=-1+\ln\left(\frac{f}{\ell^{2}}\right)-f^{2}\ln\left(f\right)+\ln\left(-\frac{8\pi^{2}f^{2}}{\lambda}\right). (100)

Next, we take the exponential of both sides of Eqn. 100 to obtain

8π2f2λσ02exp(8π2f2λσ02)=8π2eλ2f3f2.-\frac{8\pi^{2}f^{2}}{\lambda\sigma_{0}^{2}}\exp\left(-\frac{8\pi^{2}f^{2}}{\lambda\sigma_{0}^{2}}\right)=-\frac{8\pi^{2}}{e\hskip 1.42262pt\lambda\hskip 1.42262pt\ell^{2}}f^{3-f^{2}}. (101)

The Lambert W function is defined by [14]

w(x)exp(w(x))=x.w\left(x\right)\exp\left(w\left(x\right)\right)=x. (102)

Thus, we may rewrite Eqn. 101 as

8π2f2λσ02=w(8π2eλ2f3f2),-\frac{8\pi^{2}f^{2}}{\lambda\sigma_{0}^{2}}=w\left(-\frac{8\pi^{2}}{e\lambda\ell^{2}}f^{3-f^{2}}\right), (103)

or equivalently,

σ02=8π2f2λ[w(8π2eλ2f3f2)]1.\sigma_{0}^{2}=-\frac{8\pi^{2}f^{2}}{\lambda}\left[w\left(-\frac{8\pi^{2}}{e\lambda\ell^{2}}f^{3-f^{2}}\right)\right]^{-1}. (104)

Because we are working in Euclideanized space-time, ff is positive everywhere. Therefore, the argument of w(x)w\left(x\right) in Eqn. 104 will be negative everywhere. For negative arguments, the Lambert W function has two branches: W0(x)W_{0}\left(x\right) and W1(x)W_{-1}\left(x\right). From previous numerical results, we expect that there exists a region of restored chiral symmetry close to the event horizon [8]. Below, we graph both solutions for σ02(R)\sigma_{0}^{2}\left(R\right) (corresponding to both branches of the Lambert W function) [10].

Refer to caption
Figure 8: Comparison of the two possible solutions for σ02(R)\sigma_{0}^{2}\left(R\right)

From Figure 8, we see that only the W1W_{-1} solution restores chiral symmetry close to the event horizon. Thus, we may rewrite Eqn. 104 as

σ02=8π2f2λ[W1(8π2eλ2f3f2)]1.\sigma_{0}^{2}=-\frac{8\pi^{2}f^{2}}{\lambda}\left[W_{-1}\left(-\frac{8\pi^{2}}{e\lambda\ell^{2}}f^{3-f^{2}}\right)\right]^{-1}. (105)

Appendix C: Derivation of Eqns. 67 and 68

In the original coordinate system (with the original radial coordinate rr), the quantity aspa_{\textrm{sp}} takes the form [10]

asp=2f(r)25r8[(2M2Q2)r22MQ2r+Q4].a_{\textrm{sp}}=\frac{2f\left(r\right)^{2}}{5r^{8}}\left[\left(2M^{2}-Q^{2}\right)r^{2}-2MQ^{2}r+Q^{4}\right]. (106)

In the new coordinate system (with the rescaled radial coordinate RR), the quantity aspa_{\textrm{sp}} takes the form

asp=2f(r)25M8R8[(2M2Q2)M2R22M2Q2R+Q4].a_{\textrm{sp}}=\frac{2f\left(r\right)^{2}}{5M^{8}R^{8}}\left[\left(2M^{2}-Q^{2}\right)M^{2}R^{2}-2M^{2}Q^{2}R+Q^{4}\right]. (107)

Since QQ can be no larger than MM, aspa_{\textrm{sp}} must be of order M4M^{-4} or smaller. We will approximate the Lagrangian to order M2M^{-2}. Therefore, we will neglect the contribution of aspa_{\textrm{sp}} to the Lagrangian. Keeping terms up to M2M^{-2}, we may write the Lagrangian pieces 𝒜\mathcal{A}, \mathcal{B}, and δ\delta\mathcal{L} as [10]

𝒜=(32ln(f2))(σ4+fM2(dσdR)2)12(Σ+2lnΣ++Σ2lnΣ),\mathcal{A}=\left(\frac{3}{2}-\ln\left(\frac{f}{\ell^{2}}\right)\right)\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)-\frac{1}{2}\left(\Sigma_{+}^{2}\ln\Sigma_{+}+\Sigma_{-}^{2}\ln\Sigma_{-}\right), (108)
=8σ3M2R2(1Q2M2R)dσdR+4σ23M2R4f(1Q2M2R)2+f6M2Σ+(dΣ+dR)2+f6M2Σ(dΣdR)2,\mathcal{B}=\frac{8\sigma}{3M^{2}R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)\frac{d\sigma}{dR}+\frac{4\sigma^{2}}{3M^{2}\hskip 1.42262ptR^{4}f}\left(1-\frac{Q^{2}}{M^{2}R}\right)^{2}+\frac{f}{6M^{2}\hskip 1.42262pt\Sigma_{+}}\left(\frac{d\Sigma_{+}}{dR}\right)^{2}+\frac{f}{6M^{2}\hskip 1.42262pt\Sigma_{-}}\left(\frac{d\Sigma_{-}}{dR}\right)^{2}, (109)
δ=(σ4+fM2(dσdR)2)lnfσ23M2f(8R314R4+24Q2M2R510Q2M2R48Q4M4R6).\delta\mathcal{L}=\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)\ln f-\frac{\sigma^{2}}{3M^{2}\hskip 1.42262ptf}\left(\frac{8}{R^{3}}-\frac{14}{R^{4}}+\frac{24Q^{2}}{M^{2}R^{5}}-\frac{10Q^{2}}{M^{2}R^{4}}-\frac{8Q^{4}}{M^{4}R^{6}}\right). (110)

In Eqns. 108-110, we have accounted for the fact that QQ and MM are at similar scales for a near-extremal RN black hole. Even though we have approximated the Lagrangian to the order of M2M^{-2}, some terms contain factors of M4M^{-4} or M6M^{-6}. This occurs because of the possibility that factors of QQ could “raise” these terms up to order M2M^{-2} or higher. As in the Schwarzschild case, we may write Σ±\Sigma_{\pm} as

Σ±=σ2(1±fMσ2dσdR).\Sigma_{\pm}=\sigma^{2}\left(1\pm\frac{\sqrt{f}}{M\sigma^{2}}\frac{d\sigma}{dR}\right). (111)

In Eqns. 39 and 40, we derived Taylor series approximations for lnΣ±\ln\Sigma_{\pm} and Σ±1\Sigma_{\pm}^{-1}. Fortunately, these approximations are still valid in RN spacetime. Explicitly,

lnΣ±=ln(σ2)±fMσ2dσdRf2M2σ4(dσdR)2,\ln\Sigma_{\pm}=\ln\left(\sigma^{2}\right)\pm\frac{\sqrt{f}}{M\sigma^{2}}\frac{d\sigma}{dR}-\frac{f}{2M^{2}\sigma^{4}}\left(\frac{d\sigma}{dR}\right)^{2}, (112)
Σ±1=1σ2(1fMσ2dσdR+fM2σ4(dσdR)2).\Sigma_{\pm}^{-1}=\frac{1}{\sigma^{2}}\left(1\mp\frac{\sqrt{f}}{M\sigma^{2}}\frac{d\sigma}{dR}+\frac{f}{M^{2}\sigma^{4}}\left(\frac{d\sigma}{dR}\right)^{2}\right). (113)

Thus, we may rewrite Eqns. 108-110 as

𝒜=ln(fσ22)(σ4+fM2(dσdR)2)+32σ4,\mathcal{A}=-\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)+\frac{3}{2}\sigma^{4}, (114)
=8σ3M2R2(1Q2M2R)dσdR+4σ23M2R4f(1Q2M2R)2+4f3M2(dσdR)2,\mathcal{B}=\frac{8\sigma}{3M^{2}R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)\frac{d\sigma}{dR}+\frac{4\sigma^{2}}{3M^{2}\hskip 1.42262ptR^{4}f}\left(1-\frac{Q^{2}}{M^{2}R}\right)^{2}+\frac{4f}{3M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}, (115)
δ=(σ4+fM2(dσdR)2)lnfσ23M2f(8R314R4+24Q2M2R510Q2M2R48Q4M4R6).\delta\mathcal{L}=\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)\ln f-\frac{\sigma^{2}}{3M^{2}\hskip 1.42262ptf}\left(\frac{8}{R^{3}}-\frac{14}{R^{4}}+\frac{24Q^{2}}{M^{2}R^{5}}-\frac{10Q^{2}}{M^{2}R^{4}}-\frac{8Q^{4}}{M^{4}R^{6}}\right). (116)

Using Eqn. 22, we may write the Lagrangian as

=σ22λ+f232π2(ln(fσ22)(σ4+fM2(dσdR)2)+32σ4)+132π2(8σ3M2R2(1Q2M2R)dσdR+4σ23M2R4f(1Q2M2R)2+4f3M2(dσdR)2)+132π2((σ4+fM2(dσdR)2)lnfσ23M2f(8R314R4+24Q2M2R510Q2M2R48Q4M4R6)).\displaystyle\begin{split}\mathcal{L}=&-\frac{\sigma^{2}}{2\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)+\frac{3}{2}\sigma^{4}\right)\\ &+\frac{1}{32\pi^{2}}\left(\frac{8\sigma}{3M^{2}R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)\frac{d\sigma}{dR}+\frac{4\sigma^{2}}{3M^{2}\hskip 1.42262ptR^{4}f}\left(1-\frac{Q^{2}}{M^{2}R}\right)^{2}+\frac{4f}{3M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)\\ &+\frac{1}{32\pi^{2}}\left(\left(\sigma^{4}+\frac{f}{M^{2}}\left(\frac{d\sigma}{dR}\right)^{2}\right)\ln f-\frac{\sigma^{2}}{3M^{2}\hskip 1.42262ptf}\left(\frac{8}{R^{3}}-\frac{14}{R^{4}}+\frac{24Q^{2}}{M^{2}R^{5}}-\frac{10Q^{2}}{M^{2}R^{4}}-\frac{8Q^{4}}{M^{4}R^{6}}\right)\right).\end{split} (117)

As in the Schwarzschild case, the Euler-Lagrange equation of motion is given by

σddR(σ)2Rσ=0.\frac{\partial\mathcal{L}}{\partial\sigma}-\frac{d}{dR}\left(\frac{\partial\mathcal{L}}{\partial\sigma^{\prime}}\right)-\frac{2}{R}\frac{\partial\mathcal{L}}{\partial\sigma^{\prime}}=0. (118)

Plugging Eqn. 117 into Eqn. 118, we find that

σλ+f232π2(4σ3ln(fσ22)+4σ32fM2σ(dσdR)2+8f23M2R2(1Q2M2R)dσdR)+132π2(8σ3M2R4f(1Q2M2R)2+4σ3lnf2σ3M2f(8R314R4+24Q2M2R510Q2M2R48Q4M4R6))132π2ddR{ln(fσ22)2f1M2dσdR+8σ3M2R2(1Q2M2R)+8f3M2dσdR+2flnfM2dσdR}116π2R{ln(fσ22)2f1M2dσdR+8σ3M2R2(1Q2M2R)+8f3M2dσdR+2flnfM2dσdR}=0.\displaystyle\begin{split}&-\frac{\sigma}{\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-4\sigma^{3}\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)+4\sigma^{3}-\frac{2f}{M^{2}\hskip 1.42262pt\sigma}\left(\frac{d\sigma}{dR}\right)^{2}+\frac{8f^{2}}{3M^{2}R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)\frac{d\sigma}{dR}\right)\\ &+\frac{1}{32\pi^{2}}\left(\frac{8\sigma}{3M^{2}\hskip 1.42262ptR^{4}f}\left(1-\frac{Q^{2}}{M^{2}R}\right)^{2}+4\sigma^{3}\ln f-\frac{2\sigma}{3M^{2}\hskip 1.42262ptf}\left(\frac{8}{R^{3}}-\frac{14}{R^{4}}+\frac{24Q^{2}}{M^{2}R^{5}}-\frac{10Q^{2}}{M^{2}R^{4}}-\frac{8Q^{4}}{M^{4}R^{6}}\right)\right)\\ &-\frac{1}{32\pi^{2}}\frac{d}{dR}\left\{-\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)\frac{2f^{-1}}{M^{2}}\frac{d\sigma}{dR}+\frac{8\sigma}{3M^{2}R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)+\frac{8f}{3M^{2}}\frac{d\sigma}{dR}+\frac{2f\ln f}{M^{2}}\frac{d\sigma}{dR}\right\}\\ &-\frac{1}{16\pi^{2}R}\left\{-\ln\left(\frac{f\sigma^{2}}{\ell^{2}}\right)\frac{2f^{-1}}{M^{2}}\frac{d\sigma}{dR}+\frac{8\sigma}{3M^{2}R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)+\frac{8f}{3M^{2}}\frac{d\sigma}{dR}+\frac{2f\ln f}{M^{2}}\frac{d\sigma}{dR}\right\}=0.\end{split} (119)

At zeroth order in M1M^{-1}, we may write the equation of motion as

σ0λ+f232π2(4σ03ln(fσ022)+4σ03)+132π2(4σ03lnf)=0.-\frac{\sigma_{0}}{\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-4\sigma_{0}^{3}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)+4\sigma_{0}^{3}\right)+\frac{1}{32\pi^{2}}\left(4\sigma_{0}^{3}\ln f\right)=0. (120)

We look for non-trival solutions, where σ\sigma is not constant and approaches a non-zero value at spatial infinity. Therefore, we may rewrite Eqn. 120 as

12λ+f216π2(σ02σ02ln(fσ022)+f2ln(f)σ02)=0.-\frac{1}{2\lambda}+\frac{f^{-2}}{16\pi^{2}}\left(\sigma_{0}^{2}-\sigma_{0}^{2}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)+f^{2}\ln\left(f\right)\sigma_{0}^{2}\right)=0. (121)

It is easy to see that Eqn. 121 is equivalent to Eqn. 49, except that f(r)f\left(r\right) is now given by the Reissner-Nordström metric instead of the Schwarzschild metric. Therefore, we may write σ0\sigma_{0} as

σ0=8π2f2λ[W1(8π2eλ2f3f2)]1.\sigma_{0}=\sqrt{-\frac{8\pi^{2}f^{2}}{\lambda}\left[W_{-1}\left(-\frac{8\pi^{2}}{e\lambda\ell^{2}}f^{3-f^{2}}\right)\right]^{-1}}. (122)

Using the Mercator series, we may write lnσ\ln\sigma as

lnσ=lnσ0+σ2(r)M2σ0(r)12(σ2(r)M2σ0(r))2+\ln\sigma=\ln\sigma_{0}+\frac{\sigma_{2}\left(r\right)}{M^{2}\hskip 1.42262pt\sigma_{0}\left(r\right)}-\frac{1}{2}\left(\frac{\sigma_{2}\left(r\right)}{M^{2}\hskip 1.42262pt\sigma_{0}\left(r\right)}\right)^{2}+\dots (123)

At second order in M1M^{-1}, we may write the equation of motion as

σ2λ+f232π2(12σ02σ2ln(fσ022)+4σ02σ22fσ0(dσ0dR)2+8f23R2(1Q2M2R)dσ0dR)+132π2(8σ03R4f(1Q2M2R)2+12σ02σ2lnf2σ03f(8R314R4+24Q2M2R510Q2M2R48Q4M4R6))132π2ddR{2f1ln(fσ022)dσ0dR+8σ03R2(1Q2M2R)+8f3dσ0dR+2fln(f)dσ0dR}116π2R{2f1ln(fσ022)dσ0dR+8σ03R2(1Q2M2R)+8f3dσ0dR+2fln(f)dσ0dR}=0.\displaystyle\begin{split}&-\frac{\sigma_{2}}{\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-12\sigma_{0}^{2}\sigma_{2}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)+4\sigma_{0}^{2}\sigma_{2}-\frac{2f}{\sigma_{0}}\left(\frac{d\sigma_{0}}{dR}\right)^{2}+\frac{8f^{2}}{3R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)\frac{d\sigma_{0}}{dR}\right)\\ &+\frac{1}{32\pi^{2}}\left(\frac{8\sigma_{0}}{3R^{4}f}\left(1-\frac{Q^{2}}{M^{2}R}\right)^{2}+12\sigma_{0}^{2}\sigma_{2}\ln f-\frac{2\sigma_{0}}{3f}\left(\frac{8}{R^{3}}-\frac{14}{R^{4}}+\frac{24Q^{2}}{M^{2}R^{5}}-\frac{10Q^{2}}{M^{2}R^{4}}-\frac{8Q^{4}}{M^{4}R^{6}}\right)\right)\\ &-\frac{1}{32\pi^{2}}\frac{d}{dR}\left\{-2f^{-1}\hskip 1.42262pt\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right\}\\ &-\frac{1}{16\pi^{2}R}\left\{-2f^{-1}\hskip 1.42262pt\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right\}=0.\end{split} (124)

Using simple algebra, we may write the solution σ2\sigma_{2} as

σ2=132π2{2f1σ0(dσ0dR)283R2(1Q2M2R)dσ0dR8σ03R4f(1Q2M2R)2+2σ03f(8R314R4+24Q2M2R510Q2M2R48Q4M4R6)+ddR[2f1ln(fσ022)dσ0dR+8σ03R2(1Q2M2R)+8f3dσ0dR+2fln(f)dσ0dR]+2R[2f1ln(fσ022)dσ0dR+8σ03R2(1Q2M2R)+8f3dσ0dR+2fln(f)dσ0dR]}×{1λ+f232π2(12σ02ln(fσ022)+4σ02+12σ02f2lnf)}1.\displaystyle\begin{split}\sigma_{2}=&\frac{1}{32\pi^{2}}\left\{\frac{2f^{-1}}{\sigma_{0}}\left(\frac{d\sigma_{0}}{dR}\right)^{2}-\frac{8}{3R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)\frac{d\sigma_{0}}{dR}\right.\\ &\left.-\frac{8\sigma_{0}}{3R^{4}f}\left(1-\frac{Q^{2}}{M^{2}R}\right)^{2}+\frac{2\sigma_{0}}{3f}\left(\frac{8}{R^{3}}-\frac{14}{R^{4}}+\frac{24Q^{2}}{M^{2}R^{5}}-\frac{10Q^{2}}{M^{2}R^{4}}-\frac{8Q^{4}}{M^{4}R^{6}}\right)\right.\\ &\left.+\frac{d}{dR}\left[-2f^{-1}\hskip 1.42262pt\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right]\right.\\ &\left.+\frac{2}{R}\left[-2f^{-1}\hskip 1.42262pt\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)\frac{d\sigma_{0}}{dR}+\frac{8\sigma_{0}}{3R^{2}}\left(1-\frac{Q^{2}}{M^{2}R}\right)+\frac{8f}{3}\frac{d\sigma_{0}}{dR}+2f\ln\left(f\right)\frac{d\sigma_{0}}{dR}\right]\right\}\\ &\times\left\{-\frac{1}{\lambda}+\frac{f^{-2}}{32\pi^{2}}\left(-12\sigma_{0}^{2}\ln\left(\frac{f\sigma_{0}^{2}}{\ell^{2}}\right)+4\sigma_{0}^{2}+12\sigma_{0}^{2}\hskip 1.42262ptf^{2}\ln f\right)\right\}^{-1}.\end{split} (125)

Appendix D: Verification of the Perturbative Approach for a Large Reissner-Nordström Black Hole

To obtain the results of Appendix C, we had to make three assumptions. First, we assumed that βfΣ±1\beta\sqrt{f\Sigma_{\pm}}\gg 1 for both Σ+\Sigma_{+} and Σ\Sigma_{-}. Second, we assumed that σ\sigma varies on scales far larger than the Planck scale. Lastly, we assumed that σ\sigma can be expanded perturbatively in powers of M2M^{-2}. We wish to verify that these assumptions hold almost everywhere outside the event horizon.
Let us first verify the assumption βfΣ±1\beta\sqrt{f\Sigma_{\pm}}\gg 1. As discussed earlier, an astrophysical black hole should have a mass of at least 1038\sim 10^{38} Planck masses. The inverse temperature β\beta is given by [11, 12]

β=4πr+(1Q2r+2)1.\beta=4\pi r_{+}\hskip 1.42262pt\left(1-\frac{Q^{2}}{r_{+}^{2}}\right)^{-1}. (126)

From Eqns. 126 and 62, we see that β4πM\beta\geq 4\pi M. Therefore, β\beta should be at least 1039\sim 10^{39}. Hence, we see that the assumption βfΣ±1\beta\sqrt{f\Sigma_{\pm}}\gg 1 is satisfied if fΣ±1078f\Sigma_{\pm}\gg 10^{-78}. We may write Σ±\Sigma_{\pm} as

Σ±=σ2±fMdσdR.\Sigma_{\pm}=\sigma^{2}\pm\frac{\sqrt{f}}{M}\frac{d\sigma}{dR}. (127)

Next, we use Eqn. 47 to expand Σ±\Sigma_{\pm} in powers of M1M^{-1}. Keeping terms up to M2M^{-2}, we find that

Σ±=σ02+2M2σ0σ2±fMdσ0dR.\Sigma_{\pm}=\sigma_{0}^{2}+\frac{2}{M^{2}}\sigma_{0}\sigma_{2}\pm\frac{\sqrt{f}}{M}\frac{d\sigma_{0}}{dR}. (128)

Fortunately, we already have expressions for σ0\sigma_{0} and σ2\sigma_{2}. Below, we graph the functions f(R)Σ+(R)f\left(R\right)\Sigma_{+}\left(R\right) and f(R)Σ(R)f\left(R\right)\Sigma_{-}\left(R\right) for M=1039M=10^{39} Planck masses and several different values of the charge ratio Q/MQ/M [10].

Refer to caption
Figure 9: Graph of fΣ+f*\Sigma_{+} with respect to r/r+r/r_{+}, with λ=102\lambda=10^{-2} and =103\ell=10^{3}.
Refer to caption
Figure 10: Graph of fΣf*\Sigma_{-} with respect to r/r+r/r_{+}, with λ=102\lambda=10^{-2} and =103\ell=10^{3}.

From Figures 3 and 4, we see that the assumption βfΣ±1\beta\sqrt{f\Sigma_{\pm}}\gg 1 may be violated very close to the event horizon. Nevertheless, it is also clear from these graphs that the assumption βfΣ±1\beta\sqrt{f\Sigma_{\pm}}\gg 1 holds almost everywhere outside the event horizon.
Next, let us verify the assumption that σ\sigma varies on scales far larger than the Planck scale. In terms of the original Planck-scale coordinate rr, we may write this condition as

dσdr1.\frac{d\sigma}{dr}\ll 1. (129)

Rewriting Eqn. 129 in terms of the rescaled coordinate RR, we obtain

dσdRM.\frac{d\sigma}{dR}\ll M. (130)

Up to second-order in M1M^{-1}, we may write σ\sigma as

σ(R)=σ0(R)+σ2(R)M2.\sigma\left(R\right)=\sigma_{0}\left(R\right)+\frac{\sigma_{2}\left(R\right)}{M^{2}}. (131)

Fortunately, we already have expressions for σ0\sigma_{0} and σ2\sigma_{2}. Below, we graph σ(R)\sigma^{\prime}\left(R\right) for M=1039M=10^{39} Planck masses and several different values of Q/MQ/M [10]. From this graph, we see that Eqn. 130 is satisfied everywhere outside the event horizon. (To account for the different event horizon radii for different values of Q/MQ/M, we will plot all the curves with respect to r/r+r/r_{+}. However, the curves will still represent the derivative of σ(R)\sigma\left(R\right) with respect to RR.)

Refer to caption
Figure 11: Graph of σ(R)\sigma^{\prime}\left(R\right) (the derivative of σ(R)\sigma\left(R\right) with respect to RR) as a function of r/r+r/r_{+}, with λ=102\lambda=10^{-2} and =103\ell=10^{3}.

Finally, we verify the assumption that σ\sigma can be expanded perturbatively in powers of M2M^{-2}, as in Eqn. 47. This means that |σ2/M2|σ0\lvert\sigma_{2}/M^{2}\rvert\ll\sigma_{0}, or equivalently, |σ2|/σ0M2\lvert\sigma_{2}\rvert/\sigma_{0}\ll M^{2}. From Figures 6 and 7, it is easy to see that σ2<σ0\sigma_{2}<\sigma_{0} in most of the space outside the event horizon. Thus, σ2/σ0M2\sigma_{2}/\sigma_{0}\ll M^{2} almost everywhere outside the event horizon. Having verified all three assumptions, we conclude that the perturbative analysis is valid almost everywhere outside the event horizon.