This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Beamforming Design for Intelligent Reflecting Surface-Enhanced Symbiotic Radio Systems

Shaokang Hu, Chang Liu, Zhiqiang Wei§, Yuanxin Cai, Derrick Wing Kwan Ng, and Jinhong Yuan
School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia
§The Institute for Digital Communications (IDC), Friedrich-Alexander University Erlangen-Nuremberg, Germany
Abstract

This paper investigates multiuser multi-input single-output downlink symbiotic radio communication systems assisted by an intelligent reflecting surface (IRS). Different from existing methods ideally assuming the secondary user (SU) can jointly decode information symbols from both the access point (AP) and the IRS via multiuser detection, we consider a more practical SU that only non-coherent detection is available. To characterize the non-coherent decoding performance, a practical upper bound of the average symbol error rate (SER) is derived. Subsequently, we jointly optimize the beamformer at the AP and the phase shifts at the IRS to maximize the average sum-rate of the primary system taking into account the maximum tolerable SER constraint for the SU. To circumvent the couplings of variables, we exploit the Schur complement that facilitates the design of a suboptimal beamforming algorithm based on successive convex approximation. Our simulation results show that compared with various benchmark algorithms, the proposed scheme significantly improves the average sum-rate of the primary system, while guaranteeing the decoding performance of the secondary system.

I Introduction

Recently, intelligent reflecting surface (IRS)-assisted symbiotic radio (SR) systems [1] have been proposed as one of the promising technologies to achieve spectrally and energy-efficient transmission towards the sixth-generation (6G) communications. By exploiting the IRS, SR systems not only enhance the quality of the primary transmission from the access point (AP) to its primary users (PUs), but also allow the IRS to be served as a secondary transmitter to convey its information to the desired secondary users (SUs). Conventionally, an IRS consists of a large number of low-cost passive reflection elements (REs) and the phase shift of each element can reflect/redirect the incident signals to the desired users in a nearly-passive manner. Thus, the introduction of an IRS can further enhance the quality of primary transmission by providing a controllable additional signal propagation path for dedicated energy-focusing and energy-nulling [2]. On the other hand, in an SR system, an environment sensor serving as an information source can be connected to the IRS [3] for collecting the environmental information such as light intensity, temperature, and humidity. Thus, the IRS has its need to transmit the sensed information to a low data-rate SU. In these scenarios, the IRS can embed its information to the reflected radio frequency signals originating from the AP. As such, a mutualistic SR system can be established by intelligent synergistic resources exchanges. Specifically, the SU shares the same frequency spectrum, energy, and infrastructure with PUs, which results in more spectrally and energy-efficient communications compared with conventional networks [4, 5].

To realize practical IRS-assisted SR systems, various schemes have been proposed. For instance, in [6, 7], the IRS is able to transmit information to the SU by adopting binary phase shift keying modulation to modulate its information over the incident signals from the AP. Yet, having the off state of all IRS elements concurrently deflects the purpose of deploying an IRS as it leads to a low spectral efficiency in end-to-end information transmission in the primary system. To further improve the spectral efficiency of IRS-assisted systems, [3] and [8] adopted a higher order IRS modulation by exploiting spatial modulation over IRS elements. However, the problem formulations in [3] and [8] did not take into account the quality-of-service (QoS) requirement of decoding IRS symbols at the SU. As such, the performance of the SU cannot be guaranteed. Moreover, all the aforementioned papers, i.e., [6, 3, 7, 8], ideally assumed that the SU is capable to perform sophisticated multiuser detection or successive interference cancellation for decoding the information symbols of the AP and the IRS jointly, which is generally impossible for a low-cost SU. Besides, without knowing the symbols transmitted by the AP, the effective channel state information (CSI) is generally unknown at the desired SU as it is a product of instantaneous CSI and AP symbols. As a result, it is challenging, if not impossible, for the implementation of the coherent detection proposed in [6, 7]. Thus, a more practical resource allocation design for non-coherent detection in SR systems is desired.

In this paper, we consider an IRS-assisted multiuser multi-input single-output (MISO) downlink multiuser SR system, where the IRS can transmit its information to the SU while assisting the primary transmission between the AP and PUs. In particular, the IRS can modulate its information by applying an on/off multi-level amplitude modulation to the index of the IRS elements. In contrast to existing methods, e.g. [6, 3, 7, 8], we investigate a practical SR system which is able to acquire modulated IRS symbols at the SU without decoding AP symbols. In particular, non-coherent detection is adopted at the SU for decoding the IRS symbols. To quantify the decoding performance of the SU, we first derive an upper bound of the average symbol error rate (SER). Furthermore, by jointly designing the precoding vector at the AP and the phase shift matrix at the IRS, the average sum-rate of the primary system is maximized subject to an SER-based constraint for the SU. Due to the coupling among the optimization variables and the explicit expression of the derived SER upper bound, the formulated problem is non-convex such that obtaining an optimal solution in polynomial time is generally intractable. As a compromise, we exploit the Schur complement and adopt successive convex approximation (SCA) to obtain a suboptimal solution of the beamforming design problem. Simulation results show that the proposed scheme not only guarantees the decoding performance of the secondary system, but also significantly improves the average sum-rate of the primary system compared with various benchmarks.

Refer to caption
Fig. 1: An IRS-assisted SR system model.

Notations: Scalars, vectors, and matrices are represented by lowercase letter xx, boldface lowercase letter 𝐱\mathbf{x}, and boldface uppercase letter 𝐗\mathbf{X}, respectively. 𝔹N×M\mathbb{B}^{N\times M} and N×M\mathbb{C}^{N\times M} denote the spaces of N×MN\times M matrices with binary and complex entries, respectively. 𝐗(n,m)\mathbf{X}(n,m) denotes the element at the nn-th row and the mm-column of the matrix. The Euclidean norm and Frobenius norm of a vector/matrix are denoted by \|\cdot\| and F\|\cdot\|_{\mathrm{F}}, respectively. The absolute value of a complex-valued scalar is denoted by |||\cdot|. The occurrence probability of an event is denoted by Pr{}\mathrm{Pr}\{\cdot\}. The conditional probability density function of xx on event \mathcal{H} is denoted by p(x|)p(x|\mathcal{H}). The transpose, conjugate transpose, conjugate, expectation, and trace of a matrix/vector are denoted by ()T(\cdot)^{\mathrm{T}}, ()H(\cdot)^{\mathrm{H}}, ()(\cdot)^{*}, 𝔼[]\mathbb{E}[\cdot], and Tr()\mathrm{Tr(\cdot)}, respectively. 𝐗𝟎\mathbf{X}\succeq\mathbf{0} and 𝐗𝟎\mathbf{X}\preceq\mathbf{0} mean that matrix 𝐗\mathbf{X} is positive semi-definite and negative semi-definite, respectively. diag(𝐱)\mathrm{diag(\mathbf{x})} denotes a diagonal matrix with its diagonal elements given by vector 𝐱\mathbf{x}. jj denotes the imaginary unit. The distribution of a circularly symmetric complex Gaussian (CSCG) random variable with mean μ\mu and variance σ2\sigma^{2} is denoted by 𝒞𝒩(μ,σ2)\mathcal{CN}(\mu,\sigma^{2}) and \sim stands for “distributed as”. The distribution of Erlang distribution is denoted by Erlang(α,n)\mathrm{Erlang}(\alpha,n) with scale parameter α\alpha and shape parameter nn. 𝐈N\mathbf{I}_{N} denotes an N×NN\times N identity matrix.

II System Model

As shown in Fig. 1, we consider an IRS-assisted SR system, which includes an AP equipped with Nt>1N_{\mathrm{t}}>1 antennas, an IRS with M>1M>1 elements, K>1K>1 single-antenna PUs, and a single-antenna SU111The extension to the case of multiple SUs will be considered in our future work.. In particular, the AP transmits KK independent data streams to KK PUs simultaneously with the assistance from the IRS. The precoding vector for the kk-th PU (PU\mathrm{PU}k) adopted at the AP is defined as 𝐰kNt×1,k𝒦={1,,K}\mathbf{w}_{k}\in\mathbb{C}^{N_{\mathrm{t}}\times 1},\forall k\in\mathcal{K}=\{1,\ldots,K\}. Meanwhile, the IRS passively transmits the sensed environmental information of the connected sensor to the SU by altering the IRS reflection patterns via index modulation, which will be detailed in Sections II-B and II-C. The IRS reflection matrix is defined as 𝚽=diag(\mathbf{\Phi}=\mathrm{diag}(ejθ1,,ejθme^{j\theta_{1}},\ldots,e^{j\theta_{m}},,ejθM),\ldots,e^{j\theta_{M}})M×M\in\mathbb{C}^{M\times M} with θm[0,2π),m={1,,M}\theta_{m}\in[0,2\pi),\forall m\in\mathcal{M}=\{1,\ldots,M\}, denoting the phase shift at the mm-th IRS element. For the ease of practical implementation of the IRS, the amplitude coefficients of all the elements are fixed to be unity in this paper. Besides, as depicted in Fig. 1, the direct links of AP-to-PUs and AP-to-SU are blocked due to heavy shadowing. The aforementioned assumptions are commonly adopted in the literature [2, 4, 5]. On the other hand, this paper considers a quasi-static flat fading channel model. We assume that handshaking has been performed between the AP, PUs, and the SU at the beginning of transmission. As such, the channel coefficients of the AP-to-IRS link, the IRS-to-PUk link, and the IRS-to-SU link can be acquired by exploiting some existing advanced channel estimation methods, e.g. [9], which are denoted by 𝐆M×Nt\mathbf{G}\!\in\!\mathbb{C}^{M\!\times\!N_{\mathrm{t}}}, 𝐡P,kM×1\mathbf{h}_{\mathrm{P},k}\!\in\!\mathbb{C}^{M\!\times\!1}, and 𝐡SM×1\mathbf{h}_{\mathrm{S}}\!\in\!\mathbb{C}^{M\!\times\!1}, respectively.

II-A Transmission Framework

Refer to caption
Fig. 2: ​​ A transmission frame structure of the considered IRS-assisted SR network. The AP and the IRS operate concurrently such that LL AP symbols duration is equivalent to that of 11 IRS symbol.

Fig. 2 shows the transmission frame structure of the considered IRS-assisted SR network, where the AP and the IRS simultaneously transmit their information symbols. In particular, 𝐬q𝔹M×1\mathbf{s}_{q}\in\mathbb{B}^{M\!\times\!1} denotes the IRS symbol to be transmited in each IRS transmission frame, which spans over a pilot sequence and LL AP symbols, ck(l)𝒞𝒩(0,1),k,l={1,,L}c_{k}(l)\sim\mathcal{CN}(0,1),\forall k,l\!\in\!\mathcal{L}\!=\!\{1,...,L\}.

Although 𝐬q\mathbf{s}_{q} is unknown at the PUs, at the beginning of each IRS transmission frame, the AP emits some pilot symbols that allows the PUs to obtain the effective CSI at the receiver (CSIR) of the cascaded AP-to-IRS-to-PUk link with existing techniques, e.g. [9]. As such, the PUs are able to apply coherent detection to decode their information symbols. On the other hand, in contrast to the existing works, e.g.[6, 3, 7, 8], the SU is assumed to be a practical receiver which does not equip with powerful computational capability to perform joint decoding of ck(l)c_{k}(l) and 𝐬q{\mathbf{s}_{q}}. Without knowing AP symbols ck(l)c_{k}(l), the phase of the instantaneous CSI of the cascaded AP-to-IRS-to-SU link cannot be obtained for performing conventional coherent detection. In this case, a non-coherent detection [10] is adopted at the SU for decoding 𝐬q{\mathbf{s}_{q}}.

II-B Signal Model

II-B1 Transmitted Signal at the AP

For each AP transmission frame, the transmitted signal at the AP is given by

𝐜(l)=k𝒦𝐰kck(l),l.\displaystyle\mathbf{c}(l)=\sum_{k\in\mathcal{K}}\mathbf{w}_{k}c_{k}(l),\forall l\in\mathcal{L}. (1)

II-B2 Reflected Signal at the IRS

As only non-coherent detection can be performed at the SU, we introduce a multi-level amplitude modulation. In particular, the IRS consists of Q>1Q>1 information-carrying elements (ICEs) and MQM-Q REs. With the similar idea as in [11], switching on/off among the ICEs can modulate the information into the signal swing of reflected signals from the IRS, by creating the required multiple power level signals. The remaining REs is in the “on” state at each IRS symbol duration to reflect the impinging signals. Note that ICEs in the “on” state reflect impinging signals as well but with its index modulated. Based on this, the transmitted IRS symbol is denoted by 𝐬q=[s1,q,,sm,q,,sM,q]T,q𝒬={1,,Q+1}\mathbf{s}_{q}=[s_{1,q},...,s_{m,q},...,s_{M,q}]^{\mathrm{T}},\forall q\in\mathcal{Q}=\{1,\ldots,Q+1\}. sm,q{0,1}s_{m,q}\in\{0,1\} denotes the on/off state of the mm-th IRS element when IRS transmitting symbol 𝐬q\mathbf{s}_{q}, i.e., sm,q=0s_{m,q}=0 and sm,q=1s_{m,q}=1 denote that the mm-th IRS elements is turned “off” and “on”, respectively. The truth table in Table I shows an example of the proposed modulation scheme.

Table I: ​A truth table of the proposed multilevel amplitude modulation scheme at the IRS with Q=3Q\!=\!3 ICEs and MQM-Q REs.
ICE 1 ICE 2 ICE 3 All REs
Level 1 0 0 0 X
Level 2 0 0 1 X
Level 3 0 1 1 X
Level 4 1 1 1 X
X = Don’t care

In this case, there are Q+1Q+1 possible on/off patterns. Without loss of generality, we assume that (Q+1)(Q+1) is a power of 22. Hence, each IRS symbol contains log2(Q+1)\log_{2}(Q+1) IRS information bits. Since all IRS reflection patterns are assumed to be transmitted equiprobably. We have Pr{q}=1Q+1\mathrm{Pr}\{\mathcal{H}_{q}\}=\frac{1}{Q+1}, where q\mathcal{H}_{q} is the hypothesis of the IRS sending symbol 𝐬q\mathbf{s}_{q}.

II-B3 Received Signal at PUs

For each AP transmission frame, the received signal at PU\mathrm{PU}k is given by

yP,k(l)=𝐡P,kH𝐒q𝚽𝐆k𝒦𝐰kck(l)+nk(l),k,l,\displaystyle y_{\mathrm{P},k}(l)=\mathbf{h}_{\mathrm{P},k}^{\mathrm{H}}\mathbf{S}_{q}\mathbf{\Phi}\mathbf{G}\sum_{k\in\mathcal{K}}\mathbf{w}_{k}c_{k}(l)+n_{k}(l),\forall k,l, (2)

where 𝐒q=diag(𝐬q)\mathbf{S}_{q}=\mathrm{diag}(\mathbf{s}_{q}) and nk(l)𝒞𝒩(0,σk2)n_{k}(l)\sim\mathcal{CN}(0,\sigma_{k}^{2}) denotes the background noise at PU\mathrm{PU}k with power σk2\sigma_{k}^{2}. Since 𝐬q\mathbf{s}_{q} remains unchanged during the LL AP symbol durations, the achievable rate for PU\mathrm{PU}k to decode ck(l)c_{k}(l) is given by

Rq,kPU=log2(1+|𝐡P,kH𝐒q𝚽𝐆𝐰k|2jkK|𝐡P,kH𝐒q𝚽𝐆𝐰j|2+σk2),k,q,\displaystyle R_{q,k}^{\mathrm{PU}}=\log_{2}\Bigg{(}1+\frac{|\mathbf{h}_{\mathrm{P},k}^{\mathrm{H}}\mathbf{S}_{q}\mathbf{\Phi}\mathbf{G}\mathbf{w}_{k}|^{2}}{\sum_{\begin{subarray}{c}j\neq k\end{subarray}}^{K}|\mathbf{h}_{\mathrm{P},k}^{\mathrm{H}}\mathbf{S}_{q}\mathbf{\Phi}\mathbf{G}\mathbf{w}_{j}|^{2}\!+\!\sigma_{k}^{2}}\Bigg{)},\forall k,q, (3)

where 𝐇P,k=diag(𝐡P,kH)\mathbf{H}_{\mathrm{P},k}=\mathrm{diag}(\mathbf{h}_{\mathrm{P},k}^{\mathrm{H}}). Although the CSIR of the cascaded AP-IRS-PUk link, i.e., 𝐡P,kH𝐒q𝚽𝐆\mathbf{h}_{\mathrm{P},k}^{\mathrm{H}}\mathbf{S}_{q}\mathbf{\Phi}\mathbf{G}, is known at the PUk, the AP has no prior knowledge of 𝐬q\mathbf{s}_{q} while optimizing 𝐰k\mathbf{w}_{k} and 𝚽\bm{\Phi}. Hence, to facilitate the precoding and IRS reflection coefficients design, the average achievable rate of PU\mathrm{PU}k is adopted. To this end, the expectation of Rq,kPUR_{q,k}^{\mathrm{PU}} is taken over 𝐬q\mathbf{s}_{q} as

R¯kPU=𝔼𝐬q[Rq,kPU],k.\displaystyle\overline{R}_{k}^{\mathrm{PU}}=\mathbb{E}_{\mathbf{s}_{q}}\Big{[}R_{q,k}^{\mathrm{PU}}\Big{]},\forall k. (4)

II-B4 Received Signal at SU

Since each IRS transmission frame spans LL AP symbol durations, the received signal at the SU for each IRS transmission frame is given by

𝐲S=\displaystyle\mathbf{y}_{\mathrm{S}}= [yS(1),,yS(l),,yS(L)]T, with\displaystyle[y_{\mathrm{S}}(1),\ldots,y_{\mathrm{S}}(l),\ldots,y_{\mathrm{S}}(L)]^{\mathrm{T}}\text{, with} (5)
yS(l)=\displaystyle y_{\mathrm{S}}(l)= 𝐡SH𝐒q𝚽𝐆𝐜(l)+nS(l)=𝐬qT𝚽𝐇S𝐆𝐜(l)+nS(l),l,\displaystyle\mathbf{h}_{\mathrm{S}}^{\mathrm{H}}\mathbf{S}_{q}\mathbf{\Phi}\mathbf{G}\mathbf{c}(l)+n_{\mathrm{S}}(l)=\mathbf{s}_{q}^{\mathrm{T}}\mathbf{\Phi}\mathbf{H}_{\mathrm{S}}\mathbf{G}\mathbf{c}(l)+n_{\mathrm{S}}(l),\forall l,

being the received signal of the SU at the ll-th observation, where 𝐇S=diag(𝐡SH)\mathbf{H}_{\mathrm{S}}=\mathrm{diag}(\mathbf{h}_{\mathrm{S}}^{\mathrm{H}}) and nS(l)𝒞𝒩(0,σS2)n_{\mathrm{S}}(l)\sim\mathcal{CN}(0,\sigma_{\mathrm{S}}^{2}) denotes the noise at the SU with power σS2\sigma_{\mathrm{S}}^{2}.

As the SU does not have the prior knowledge of ck(l)c_{k}(l), the effective CSIR of the cascaded AP-IRS-SU link, 𝚽𝐇S𝐆𝐜(l)\mathbf{\Phi}\mathbf{H}_{\mathrm{S}}\mathbf{G}\mathbf{c}(l), is not available at the SU. Fortunately, the distribution of the AP symbols is ck(l)𝒞𝒩(0,1)c_{k}(l)\sim\mathcal{CN}(0,1) such that the distribution of yS(l)y_{\mathrm{S}}(l) is available at the SU, i.e., yS(l)𝒞𝒩(0,P𝐬q+σs2)y_{\mathrm{S}}(l)\sim\mathcal{CN}(0,P_{\mathbf{s}_{q}}+\sigma^{2}_{\mathrm{s}}), where P𝐬q=k=1KTr(𝐬qT𝚽𝐇S𝐆𝐰k𝐰kH𝐆H𝐇SH𝚽H𝐬q)P_{\mathbf{s}_{q}}=\sum_{k=1}^{K}\mathrm{Tr}\Big{(}\mathbf{s}_{q}^{\mathrm{T}}\mathbf{\Phi}\mathbf{H}_{\mathrm{S}}\mathbf{G}\mathbf{w}_{k}\mathbf{w}_{k}^{\mathrm{H}}\mathbf{G}^{\mathrm{H}}\mathbf{H}_{\mathrm{S}}^{\mathrm{H}}\mathbf{\Phi}^{\mathrm{H}}\mathbf{s}_{q}\Big{)}. As a result, the distribution of the received signal power at the SU is l=1LyS2(l)Erlang(1λq,L)\sum_{l=1}^{L}y_{\mathrm{S}}^{2}(l)\sim\mathrm{Erlang}(\frac{1}{\lambda}_{q},L) with λq=(P𝐬q+σs2)1,q𝒬\lambda_{q}=(P_{\mathbf{s}_{q}}+\sigma^{2}_{\mathrm{s}})^{-1},\forall q\in\mathcal{Q}. Therefore, we adopt the non-coherent detection method[10] to detect the modulated IRS symbols at the SU via

[i]=argmaxq𝒬p(lyS2(l)|q)Pr{q}, where\displaystyle[i]=\underset{q\in\mathcal{Q}}{\arg\max}\,\,p\Big{(}\sum_{l\in\mathcal{L}}y_{\mathrm{S}}^{2}(l)|\mathcal{H}_{q}\Big{)}\mathrm{Pr}\{\mathcal{H}_{q}\},\text{ where} (6)
p(lyS2(l)|q)=λqL(lyS2(l))L1eλqlyS2(l)(L1)!.\displaystyle p\Big{(}\sum_{l\in\mathcal{L}}y_{\mathrm{S}}^{2}(l)|\mathcal{H}_{q}\Big{)}\!\!=\!\!\frac{\lambda_{q}^{L}\big{(}\sum_{l\in\mathcal{L}}y_{\mathrm{S}}^{2}(l)\big{)}^{L-1}e^{-\lambda_{q}\sum_{l\in\mathcal{L}}y_{\mathrm{S}}^{2}(l)}}{(L-1)!}. (7)

It can be observed from (6) that the non-coherent detection performance can be improved by exploiting λq\lambda_{q} and ySy_{\mathrm{S}} in (7), which can be achieved by optimizing the precoder at the AP and IRS phase shifts.

To characterize the detection performance of the SU, we first derive an SER upper bound PeUpperP_{\mathrm{e}}^{\mathrm{Upper}}, by adopting the well-known union bounding technique, whose tightness has been verified in [12], that yields

PeUpper=q=1Q+1i=1,iqQ+1Pr{𝐬q𝐬i|q}Pr{q},\displaystyle P_{\mathrm{e}}^{\mathrm{Upper}}=\sum_{\begin{subarray}{c}q=1\end{subarray}}^{Q+1}\sum_{\begin{subarray}{c}i=1,i\neq q\end{subarray}}^{Q+1}\mathrm{Pr}\Big{\{}\mathbf{s}_{q}\rightarrow\mathbf{s}_{i}|\mathcal{H}_{q}\Big{\}}\mathrm{Pr}\{\mathcal{H}_{q}\}, (8)

where Pr{𝐬q𝐬i|q}\mathrm{Pr}\big{\{}\mathbf{s}_{q}\rightarrow\mathbf{s}_{i}|\mathcal{H}_{q}\big{\}} is the pairwise error probability in deciding 𝐬q\mathbf{s}_{q} to 𝐬i,iq,\mathbf{s}_{i},\forall i\!\neq\!q, under the hypothesis q\mathcal{H}_{q}. According (6), the total error probability of the hypothesis q\mathcal{H}_{q} is

i=1,iqQ+1Pr{𝐬q𝐬i|q}\displaystyle\sum_{\begin{subarray}{c}i=1,i\neq q\end{subarray}}^{Q+1}\mathrm{Pr}\Big{\{}\mathbf{s}_{q}\rightarrow\mathbf{s}_{i}|\mathcal{H}_{q}\Big{\}} (9)
=\displaystyle= {1(L1)!Γ(L,Lλqdq),q=1,1(L1)!(γ(L,Lλqdq1)+Γ(L,Lλqdq)),1<qQ,1(L1)!γ(L,Lλqdq1),q=Q+1.\displaystyle\begin{cases}\frac{1}{(L-1)!}\Gamma(L,L\lambda_{q}d_{q}),&q=1,\\[-2.84526pt] \frac{1}{(L-1)!}\Big{(}\gamma(L,L\lambda_{q}d_{q-1})+\Gamma(L,L\lambda_{q}d_{q})\Big{)},&1<q\leq Q,\\[-2.84526pt] \frac{1}{(L-1)!}\gamma(L,L\lambda_{q}d_{q-1}),&q=Q+1.\end{cases}

Here, γ(s,x)=0xts1et𝑑t\gamma(s,x)=\int^{x}_{0}t^{s-1}e^{-t}dt and Γ(s,x)=xts1et𝑑t\Gamma(s,x)=\int^{\infty}_{x}t^{s-1}e^{-t}dt are the lower incomplete Gamma function and the upper incomplete Gamma function, respectively. dq=12(P𝐬q+1P𝐬q)d_{q}=\frac{1}{2}(P_{\mathbf{s}_{q+1}}-P_{\mathbf{s}_{q}}) is the detection threshold between q\mathcal{H}_{q} and q+1\mathcal{H}_{q+1}. Therefore, we have

PeUpper=q^=2Q+1γ(L,Lλq^dq^1)+q~=1QΓ(L,Lλq~dq~)(Q+1)(L1)!.\displaystyle P_{\mathrm{e}}^{\mathrm{Upper}}\!\!=\!\!\frac{\sum_{\begin{subarray}{c}\hat{q}=2\end{subarray}}^{Q+1}\gamma(L,L\lambda_{\hat{q}}d_{\hat{q}-1})+\sum_{\begin{subarray}{c}\tilde{q}=1\end{subarray}}^{Q}\Gamma(L,L\lambda_{\tilde{q}}d_{\tilde{q}})}{(Q+1)(L-1)!}. (10)

Since LL is an integer, we have γ(L,Lλq^dq^1)=(L1)!(1eLλq^dq^1l=0L1(Lλq^dq^1)ll!)\gamma(L,L\lambda_{\hat{q}}d_{\hat{q}-1})=(L-1)!\Big{(}1-e^{-L\lambda_{\hat{q}}d_{{\hat{q}}-1}}\sum_{l=0}^{L-1}\frac{(L\lambda_{\hat{q}}d_{{\hat{q}}-1})^{l}}{l!}\Big{)} and Γ(L,Lλq~dq~)=(L1)!eLλq~dq~l=0L1(Lλq~dq~)ll!,q^={2,,Q+1},q~={1,,Q}\Gamma(L,L\lambda_{\tilde{q}}d_{\tilde{q}})=(L-1)!e^{-L\lambda_{\tilde{q}}d_{{\tilde{q}}}}\sum_{l=0}^{L-1}\frac{(L\lambda_{\tilde{q}}d_{{\tilde{q}}})^{l}}{l!},\forall\hat{q}=\{2,\ldots,Q+1\},\tilde{q}=\{1,\ldots,Q\}, respectively[13, Th. 3, Th. 4].

III Problem Formulation

We aim to maximize the average achievable sum-rate of the primary system while guaranteeing the power budget at the AP and the QoS requirements of the SU by jointly designing the precoding vectors 𝐰k,k,\mathbf{w}_{k},\forall k, and the phase shifts θm,m\theta_{m},\forall m. The joint design can be formulated as the following:

maximize𝐰k,θm\displaystyle\underset{\mathbf{w}_{k},\,\theta_{m}\,}{\mathrm{maximize}}\,\, k𝒦R¯kPU\displaystyle\sum_{k\in\mathcal{K}}\overline{R}_{k}^{\mathrm{PU}} (11)
s.t.\displaystyle\mathrm{s.t.}\,\, C1:k𝒦𝐰k2Pmax,k𝒦,\displaystyle\mathrm{C1}:\sum_{k\in\mathcal{K}}\|\mathbf{w}_{k}\|^{2}\leq P_{\max},\forall k\in\mathcal{K},
C2:PeUpperPemax,C3:0<θm2π,m.\displaystyle\mathrm{C2}:P_{\mathrm{e}}^{\mathrm{Upper}}\leq P_{\mathrm{e}}^{\max},\mathrm{C3}:0<\theta_{m}\leq 2\pi,\forall m\in\mathcal{M}.

Constraint C1 ensures that the transmit power consumption of the precoder at the AP is less than the maximum available power budget PmaxP_{\max}. Constraint C2 is imposed to restrict the upper bound of the SER for decoding the modulated IRS symbols at the SU to be less than a constant PemaxP_{\mathrm{e}}^{\max} defined by the target application. Constraint C3 specifies that θm\theta_{m} can only vary from 0 to 2π2\pi. The formulated problem is non-convex due to the non-convexities in both the upper and lower incomplete Gamma functions in constraint C2 and the couplings among optimization variables 𝐰k\mathbf{w}_{k} and θm\theta_{m} in both the objective function and constraint C2. In general, the application of a brute-force search is required for obtaining the globally optimal solution of (11), which is computationally prohibited even for a moderate system size. As an alternative, a computationally efficient suboptimal algorithm is proposed in the next section.

IV Solution of the Optimization Problem

To address the proposed optimization problem in (11), we first transform the objective function and constraint C2 into their equivalent forms, such that they are convex with respect to (w.r.t.) 𝚽𝐇P,k𝐆𝐰j,k,j,\mathbf{\Phi}\mathbf{H}_{\mathrm{P},k}\mathbf{G}\mathbf{w}_{j},\forall k,j, and 𝚽𝐇S𝐆𝐰k,k\mathbf{\Phi}\mathbf{H}_{\mathrm{S}}\mathbf{G}\mathbf{w}_{k},\forall k, respectively. Then, we decouple the coupling between optimization variables 𝐰k\mathbf{w}_{k} and θm\theta_{m} by utilizing the Schur complement. Finally, SCA is applied to address the non-convex constraints in the transformed optimization problem.

As shown in (8) and (11), constraint C2 in (11) is non-convex due to the highly coupled variables. We first introducing auxiliary optimization variables γq^\gamma_{\hat{q}}, Γq~,ξq^γ,ϵq^γ1,ϵq^γ2\Gamma_{\tilde{q}},\xi_{\hat{q}}^{\gamma},\epsilon_{\hat{q}}^{\gamma 1},\epsilon_{\hat{q}}^{\gamma 2} ξq~Γ,ϵq~Γ1\xi_{\tilde{q}}^{\Gamma},\epsilon_{\tilde{q}}^{\Gamma 1}, and ϵq~Γ2,q^,q~,\epsilon_{\tilde{q}}^{\Gamma 2},\forall\hat{q},\tilde{q}, for decoupling. Then, by exploiting the properties of logarithm and quadratic equation, constraint C2 can be equivalently transformed as:

C2a:\displaystyle\mathrm{C2a}: q^=2Q+1γq^+q~=1QΓq~(Q+1)Pemax,\displaystyle\sum_{\hat{q}=2}^{Q+1}\gamma_{\hat{q}}+\sum_{\tilde{q}=1}^{Q}\Gamma_{\tilde{q}}\leq(Q+1)P_{\mathrm{e}}^{\max}, (12)
C2b1:\displaystyle\mathrm{C2b1}: Lϵq^γ1+lnξq^γln(1γq^),C2b2:ξq^γl=0L1(Lϵq^γ2)ll!,q^,\displaystyle\!-\!L\epsilon_{\hat{q}}^{\gamma 1}\!\!+\!\ln\xi_{\hat{q}}^{\gamma}\!\geq\!\ln(1\!-\!\gamma_{\hat{q}}),\mathrm{C2b2}:\xi_{\hat{q}}^{\gamma}\!\leq\!\!\sum_{l=0}^{L\!-\!1}\!\frac{(L\epsilon_{\hat{q}}^{\gamma 2})^{l}}{l!},\!\forall{\hat{q}},
C2b3:\displaystyle\mathrm{C2b3}: P𝐬q^P𝐬q^1+(ϵq^γ1P𝐬q^σs2)2(ϵq^γ1)2(P𝐬q^+σs2)20,q^,\displaystyle P_{\mathbf{s}_{\hat{q}}}\!\!-\!\!P_{\mathbf{s}_{{\hat{q}}-1}}\!\!+\!\!\Big{(}\!\epsilon_{\hat{q}}^{\gamma 1}\!\!-\!\!P_{\mathbf{s}_{\hat{q}}}\!\!-\!\!\sigma^{2}_{\mathrm{s}}\Big{)}^{2}\!\!\!-\!\!(\epsilon_{\hat{q}}^{\gamma 1})^{2}\!\!-\!\!(P_{\mathbf{s}_{\hat{q}}}\!\!+\!\sigma^{2}_{\mathrm{s}}\!)^{2}\!\!\leq\!\!0,\forall{\hat{q}},
C2b4:\displaystyle\mathrm{C2b4}: P𝐬q^P𝐬q^1(ϵq^γ2+P𝐬q^+σs2)2+(ϵq^γ2)2+(P𝐬q^+σs2)20,q^,\displaystyle P_{\mathbf{s}_{\hat{q}}}\!\!-\!\!P_{\mathbf{s}_{{\hat{q}}-1}}\!\!\!-\!\!\Big{(}\epsilon_{\hat{q}}^{\gamma 2}\!\!+\!\!P_{\mathbf{s}_{\hat{q}}}\!\!+\!\sigma^{2}_{\mathrm{s}}\Big{)}^{2}\!\!\!+\!(\epsilon_{\hat{q}}^{\gamma 2})^{2}\!\!\!+\!\!(P_{\mathbf{s}_{\hat{q}}}\!\!\!+\!\sigma^{2}_{\mathrm{s}})^{2}\!\!\geq\!\!0,\forall{\hat{q}},
C2c1:\displaystyle\mathrm{C2c1}: Lϵq~Γ1+lnξq~ΓlnΓq~,C2c2:l=0L1(Lϵq~Γ2)ll!ξq~Γ,q~,\displaystyle-\!L\epsilon_{\tilde{q}}^{\Gamma 1}\!+\!\ln\xi_{\tilde{q}}^{\Gamma}\leq\ln\Gamma_{\tilde{q}},\mathrm{C2c2}:\sum_{l=0}^{L-1}\frac{(L\epsilon_{\tilde{q}}^{\Gamma 2})^{l}}{l!}\leq\xi_{\tilde{q}}^{\Gamma},\forall{\tilde{q}},
C2c3:\displaystyle\mathrm{C2c3}: P𝐬q~+1P𝐬q~(ϵq~Γ1+P𝐬q~+σs2)2+(ϵq~Γ1)2+(P𝐬q~+σs2)20,q~\displaystyle P_{\mathbf{s}_{{\tilde{q}}+1}}\!\!-\!\!P_{\mathbf{s}_{{\tilde{q}}}}\!\!\!-\!\!\Big{(}\!\epsilon_{\tilde{q}}^{\Gamma 1}\!\!+\!\!P_{\mathbf{s}_{\tilde{q}}}\!+\!\sigma^{2}_{\mathrm{s}}\Big{)}^{2}\!\!\!+\!\!(\epsilon_{\tilde{q}}^{\Gamma 1})^{2}\!\!\!+\!\!(P_{\mathbf{s}_{\tilde{q}}}\!\!+\!\!\sigma^{2}_{\mathrm{s}})^{2}\!\!\geq\!\!0,\forall{\tilde{q}}
C2c4:\displaystyle\mathrm{C2c4}: P𝐬q~+1P𝐬q~+(ϵq~Γ2P𝐬q~σs2)2(ϵq~Γ2)2(P𝐬q~+σs2)20,q~.\displaystyle P_{\mathbf{s}_{{\tilde{q}}+1}}\!\!-\!\!P_{\mathbf{s}_{{\tilde{q}}}}\!\!+\!\!\Big{(}\epsilon_{\tilde{q}}^{\Gamma 2}\!\!\!-\!\!P_{\mathbf{s}_{\tilde{q}}}\!-\!\sigma^{2}_{\mathrm{s}}\Big{)}^{2}\!\!\!-\!\!(\epsilon_{\tilde{q}}^{\Gamma 2})^{2}\!\!\!-\!\!(P_{\mathbf{s}_{\tilde{q}}}\!\!+\!\!\sigma^{2}_{\mathrm{s}})^{2}\!\!\!\leq\!\!0,\forall{\tilde{q}}.

In particular, γq^\gamma_{\hat{q}}, Γq~,ξq^γ\Gamma_{\tilde{q}},\xi_{\hat{q}}^{\gamma}, and ξq~Γ\xi_{\tilde{q}}^{\Gamma} replace γ(L,Lλq^dq^1)\gamma(L,L\lambda_{\hat{q}}d_{\hat{q}-1}), Γ(L,Lλq~dq~)\Gamma(L,L\lambda_{\tilde{q}}d_{\tilde{q}}), l=0L1(Lλq^dq^1)ll!\sum_{l=0}^{L-1}\frac{(L\lambda_{\hat{q}}d_{{\hat{q}}-1})^{l}}{l!}, and l=0L1(Lλq~dq~)ll!\sum_{l=0}^{L-1}\frac{(L\lambda_{\tilde{q}}d_{{\tilde{q}}})^{l}}{l!} in constraint C2, respectively. Besides, ϵq^γ1\epsilon_{\hat{q}}^{\gamma 1} and ϵq~Γ1\epsilon_{\tilde{q}}^{\Gamma 1} replace λq^dq^1\lambda_{\hat{q}}d_{{\hat{q}}-1} and λq~dq~\lambda_{\tilde{q}}d_{{\tilde{q}}} in eLλq^dq^1e^{-L\lambda_{\hat{q}}d_{{\hat{q}}-1}} and eLλq~dq~e^{-L\lambda_{\tilde{q}}d_{{\tilde{q}}}} of constraint C2, respectively. Also, ϵq^γ2\epsilon_{\hat{q}}^{\gamma 2} and ϵq~Γ2\epsilon_{\tilde{q}}^{\Gamma 2} replace λq^dq^1\lambda_{\hat{q}}d_{{\hat{q}}-1} and λq~dq~\lambda_{\tilde{q}}d_{{\tilde{q}}} in l=0L1(Lλq^dq^1)ll!\sum_{l=0}^{L-1}\frac{(L\lambda_{\hat{q}}d_{{\hat{q}}-1})^{l}}{l!} and l=0L1(Lλq~dq~)ll!\sum_{l=0}^{L-1}\frac{(L\lambda_{\tilde{q}}d_{{\tilde{q}}})^{l}}{l!} of constraint C2, respectively. It can be verified that constraints C2b3, C2b4, C2c3, and C2c4 are convex w.r.t. 𝚽𝐇S𝐆𝐰k\mathbf{\Phi}\mathbf{H}_{\mathrm{S}}\mathbf{G}\mathbf{w}_{k} that paves the way for further simplification in the sequel.

On the other hand, since 𝐬q\mathbf{s}_{q} has a finite number of choices, i.e., Q+1Q+1, the average achievable capacity in (4) can be directly expressed as R¯kPU=q=1Q+1Rq,kPUPr{q}\overline{R}_{k}^{\mathrm{PU}}=\sum_{q=1}^{Q+1}R_{q,k}^{\mathrm{PU}}\mathrm{Pr}\{\mathcal{H}_{q}\}. Thus, the objective function in (11) can be equivalently transformed to a new objective function as

fo=1Q+1q=1Q+1k=1K(log2(j=1KPq,k,jPU+σk2)log2(j1KPq,k,jPU+σk2)),\displaystyle f_{\mathrm{o}}\!\!=\!\!\frac{1}{Q\!\!+\!\!1}\!\!\!\sum_{q=1}^{Q+1}\!\!\sum_{k=1}^{K}\!\!\Bigg{(}\!\!\!\log_{2}\Big{(}\sum_{j=1}^{K}P_{q,k,j}^{\mathrm{PU}}+\sigma_{k}^{2}\!\Big{)}\!-\log_{2}\!\!\Big{(}\sum_{j\neq 1}^{K}P_{q,k,j}^{\mathrm{PU}}+\sigma_{k}^{2}\!\Big{)}\!\!\!\Bigg{)}\!,\!\!\! (13)

where Pq,k,jPU=Tr(𝐬qT𝚽𝐇P,k𝐆𝐰j𝐰jH𝐆H𝐇P,kH𝚽H𝐬q),k,j,qP_{q,k,j}^{\mathrm{PU}}=\mathrm{Tr}(\mathbf{s}_{q}^{\mathrm{T}}\mathbf{\Phi}\mathbf{H}_{\mathrm{P},k}\mathbf{G}\mathbf{w}_{j}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{G}^{\mathrm{H}}\mathbf{H}_{\mathrm{P},k}^{\mathrm{H}}\mathbf{\Phi}^{\mathrm{H}}\mathbf{s}_{q}),\forall k,j,q.

Next, we decouple the coupled variables {𝐰k,𝚽}\{\mathbf{w}_{k},\bm{\Phi}\} in the objective function in (13) via utilizing the Schur complement. We first introduce auxiliary optimization variables 𝐟k,jPUM×1\mathbf{f}_{k,j}^{\mathrm{PU}}\!\in\!\mathbb{C}^{M\!\times\!1}, 𝐔k,jPUM×M\!\mathbf{U}_{k,j}^{\mathrm{PU}}\!\in\!\mathbb{C}^{M\!\times\!M}\!, ck,jPU,k,j\!{c}_{k,j}^{\mathrm{PU}},\forall k,j, and 𝐀M×M\mathbf{A}\!\in\!\mathbb{C}^{M\!\times\!M}. Then, by substituting 𝚽𝐇P,k𝐆𝐰j𝐰jH𝐆H𝐇P,kH𝚽H=𝐔k,jPU\mathbf{\Phi}\mathbf{H}_{\mathrm{P},k}\mathbf{G}\mathbf{w}_{j}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{G}^{\mathrm{H}}\mathbf{H}_{\mathrm{P},k}^{\mathrm{H}}\mathbf{\Phi}^{\mathrm{H}}=\mathbf{U}_{k,j}^{\mathrm{PU}} into (13), the objective function in (13) and constraint C3 in (11) can be equivalently transformed as

fo¯=fo|𝚽𝐇P,k𝐆𝐰j𝐰jH𝐆H𝐇P,kH𝚽H=𝐔k,jPU,\displaystyle\overline{f_{\mathrm{o}}}=f_{\mathrm{o}}\Big{|}_{\mathbf{\Phi}\mathbf{H}_{\mathrm{P},k}\mathbf{G}\mathbf{w}_{j}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{G}^{\mathrm{H}}\mathbf{H}_{\mathrm{P},k}^{\mathrm{H}}\mathbf{\Phi}^{\mathrm{H}}=\mathbf{U}_{k,j}^{\mathrm{PU}}}, (14)
C4a:[𝐔k,jPU𝐟k,jPU(𝐟k,jPU)H1]𝟎,k,j,\displaystyle\mathrm{C4a}:\begin{bmatrix}\mathbf{U}_{k,j}^{\mathrm{PU}}&\mathbf{f}_{k,j}^{\mathrm{PU}}\\ (\mathbf{f}_{k,j}^{\mathrm{PU}})^{\mathrm{H}}&1\end{bmatrix}\succeq\mathbf{0},\forall k,j,
C4b:Tr(𝐔k,jPU)Tr(𝐟k,jPU(𝐟k,jPU)H)0,k,j,\displaystyle\mathrm{C4b}:\mathrm{Tr}(\mathbf{U}_{k,j}^{\mathrm{PU}})-\mathrm{Tr}\Big{(}\mathbf{f}_{k,j}^{\mathrm{PU}}(\mathbf{f}_{k,j}^{\mathrm{PU}})^{\mathrm{H}}\Big{)}\leq 0,\forall k,j,
C4c:[𝐃k,jPU𝐄k,jPU(𝐄k,jPU)H𝐈M]𝟎,k,j,\displaystyle\mathrm{C4c}:\begin{bmatrix}\mathbf{D}_{k,j}^{\mathrm{PU}}&\mathbf{E}_{k,j}^{\mathrm{PU}}\\[1.42262pt] (\mathbf{E}_{k,j}^{\mathrm{PU}})^{\mathrm{H}}&\mathbf{I}_{M}\end{bmatrix}\succeq\mathbf{0},\forall k,j,
C4d:Tr(𝐃k,jPU)Tr(𝐄k,jPU(𝐄k,jPU)H)0,k,j,\displaystyle\mathrm{C4d}:\mathrm{Tr}(\mathbf{D}_{k,j}^{\mathrm{PU}})-\mathrm{Tr}\Big{(}\mathbf{E}_{k,j}^{\mathrm{PU}}(\mathbf{E}_{k,j}^{\mathrm{PU}})^{\mathrm{H}}\Big{)}\leq 0,\forall k,j,
C3a:|𝚽(m,m)|1,m, and C3b:𝐀(m,m)1,m,\displaystyle\mathrm{C3a}:|\mathbf{\Phi}(m,m)|\leq 1,\forall m\text{, and }\mathrm{C3b}:\mathbf{A}(m,m)\geq 1,\forall m,

respectively, where 𝐃k,jPU=[𝐀𝐟k,jPU(𝐟k,jPU)Hck,jPU]\mathbf{D}_{k,j}^{\mathrm{PU}}=\begin{bmatrix}\mathbf{A}&\mathbf{f}_{k,j}^{\mathrm{PU}}\\[1.42262pt] (\mathbf{f}_{k,j}^{\mathrm{PU}})^{\mathrm{H}}&{c}_{k,j}^{\mathrm{PU}}\end{bmatrix} and 𝐄k,jPU=[𝚽(𝐇P,k𝐆𝐰k)H]\mathbf{E}_{k,j}^{\mathrm{PU}}=\begin{bmatrix}\bm{\Phi}\\ (\mathbf{H}_{\mathrm{P},k}\mathbf{G}\mathbf{w}_{k})^{\mathrm{H}}\end{bmatrix}.

According to the Schur complement[14, Th. 1.12], constraints C4a and C4b ensure that 𝐔k,j=𝐟k,jPU(𝐟k,jPU)H\mathbf{U}_{k,j}=\mathbf{f}_{k,j}^{\mathrm{PU}}(\mathbf{f}_{k,j}^{\mathrm{PU}})^{\mathrm{H}} holds. Similarly, by combining constraints C3b, C4c, and C4d, we have 𝐟k,j=𝚽𝐇P,k𝐆𝐰j\mathbf{f}_{k,j}=\mathbf{\Phi}\mathbf{H}_{\mathrm{P},k}\mathbf{G}\mathbf{w}_{j} and 𝐀=𝚽𝚽H\mathbf{A}=\mathbf{\Phi}\mathbf{\Phi}^{\mathrm{H}}, such that 𝐔k,jPU\mathbf{U}_{k,j}^{\mathrm{PU}} is equivalent to 𝚽𝐇P,k𝐆𝐰j𝐰jH𝐆H𝐇P,kH𝚽H\mathbf{\Phi}\mathbf{H}_{\mathrm{P},k}\mathbf{G}\mathbf{w}_{j}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{G}^{\mathrm{H}}\mathbf{H}_{\mathrm{P},k}^{\mathrm{H}}\mathbf{\Phi}^{\mathrm{H}} in (13).

Likewise, by introducing auxiliary optimization variables 𝐟kSUM×1\mathbf{f}_{k}^{\mathrm{SU}}\in\mathbb{C}^{M\times 1}, 𝐔kSUM×M\mathbf{U}_{k}^{\mathrm{SU}}\in\mathbb{C}^{M\times M}, and ckSU{c}_{k}^{\mathrm{SU}}, constraints C2b3, C2b4, C2c3, and C2c4 can be equivalently transformed as (15) via substituting P𝐬p=P~𝐬p{P}_{\mathbf{s}_{p}}=\widetilde{P}_{\mathbf{s}_{p}} into (12):

C2b3¯:\displaystyle\overline{\mathrm{C2b3}}: C2b3|P𝐬q^=P~𝐬q^,P𝐬q^1=P~𝐬q^1,C2b4¯:C2b4|P𝐬q^=P~𝐬q^,P𝐬q^1=P~𝐬q^1,\displaystyle\mathrm{C2b3}\Big{|}\!_{{P}_{\mathbf{s}_{\hat{q}}}\!=\!\widetilde{P}_{\mathbf{s}_{\hat{q}}},{P}_{\mathbf{s}_{\hat{q}\!-\!1}}\!=\!\widetilde{P}_{\mathbf{s}_{\hat{q}\!-\!1}}}\!\!,\overline{\mathrm{C2b4}}:\!\mathrm{C2b4}\Big{|}\!_{{P}_{\mathbf{s}_{\hat{q}}}\!=\!\widetilde{P}_{\mathbf{s}_{\hat{q}}},{P}_{\mathbf{s}_{\hat{q}\!-\!1}}\!=\!\widetilde{P}_{\mathbf{s}_{\hat{q}\!-\!1}}},
C2c3¯:\displaystyle\overline{\mathrm{C2c3}}: C2b3|P𝐬q~=P~𝐬q~,P𝐬q~+1=P~𝐬q~+1,C2c4¯:C2b4|P𝐬q~=P~𝐬q~,P𝐬q~+1=P~𝐬q~+1,\displaystyle\mathrm{C2b3}\Big{|}\!_{{P}_{\mathbf{s}_{\tilde{q}}}\!=\!\widetilde{P}_{\mathbf{s}_{\tilde{q}}},{P}_{\mathbf{s}_{\tilde{q}\!+1\!}}\!=\!\widetilde{P}_{\mathbf{s}_{\tilde{q}\!+\!1}}},\overline{\mathrm{C2c4}}:\!\mathrm{C2b4}\Big{|}\!_{{P}_{\mathbf{s}_{\tilde{q}}}\!=\!\widetilde{P}_{\mathbf{s}_{\tilde{q}}},{P}_{\mathbf{s}_{\tilde{q}\!+\!1}}\!=\!\widetilde{P}_{\mathbf{s}_{\tilde{q}\!+\!1}}},
C2d1:\displaystyle\mathrm{C2d1}: [𝐔kSU𝐟kSU(𝐟kSU)H1]𝟎,C2d2:Tr(𝐔kSU)Tr(𝐟kSU(𝐟kSU)H)0,k,\displaystyle\begin{bmatrix}\mathbf{U}_{k}^{\mathrm{SU}}&\mathbf{f}_{k}^{\mathrm{SU}}\\ (\mathbf{f}_{k}^{\mathrm{SU}})^{\mathrm{H}}&1\end{bmatrix}\succeq\mathbf{0},\mathrm{C2d2}:\mathrm{Tr}(\mathbf{U}_{k}^{\mathrm{SU}}\!)-\mathrm{Tr}\Big{(}\mathbf{f}_{k}^{\mathrm{SU}}\!(\mathbf{f}_{k}^{\mathrm{SU}}\!)^{\mathrm{H}}\Big{)}\leq 0,\forall k,
C2d3:\displaystyle\mathrm{C2d3}: [𝐃kSU𝐄kSU(𝐄kSU)H𝐈M]𝟎,k, and\displaystyle\begin{bmatrix}\mathbf{D}_{k}^{\mathrm{SU}}&\mathbf{E}_{k}^{\mathrm{SU}}\\ (\mathbf{E}_{k}^{\mathrm{SU}})^{\mathrm{H}}&\mathbf{I}_{M}\end{bmatrix}\succeq\mathbf{0},\forall k\text{, and }
C2d4:\displaystyle\mathrm{C2d4}: Tr(𝐃kSU)Tr(𝐄kSU(𝐄kSU)H)0,k,\displaystyle\mathrm{Tr}(\mathbf{D}_{k}^{\mathrm{SU}})-\mathrm{Tr}\Big{(}\mathbf{E}_{k}^{\mathrm{SU}}(\mathbf{E}_{k}^{\mathrm{SU}})^{\mathrm{H}}\Big{)}\leq 0,\forall k, (15)

where 𝐃kSU=[𝐀𝐟kSU(𝐟kSU)HckSU]\mathbf{D}_{k}^{\mathrm{SU}}=\begin{bmatrix}\mathbf{A}&\mathbf{f}_{k}^{\mathrm{SU}}\\ (\mathbf{f}_{k}^{\mathrm{SU}})^{\mathrm{H}}&{c}_{k}^{\mathrm{SU}}\end{bmatrix}, 𝐄kSU=[𝚽(𝐇S𝐆𝐰k)H]\mathbf{E}_{k}^{\mathrm{SU}}=\begin{bmatrix}\bm{\Phi}\\ (\mathbf{H}_{\mathrm{S}}\mathbf{G}\mathbf{w}_{k})^{\mathrm{H}}\end{bmatrix}, and P~𝐬p=k=1KTr(𝐬pT𝐔kSU𝐬p),p={q^,q~}\widetilde{P}_{\mathbf{s}_{p}}=\sum_{k=1}^{K}\mathrm{Tr}\Big{(}\mathbf{s}_{p}^{\mathrm{T}}\mathbf{U}^{\mathrm{SU}}_{k}\mathbf{s}_{p}\Big{)},p=\{\hat{q},\tilde{q}\}.

maximize𝐰k,θm,𝒜1Q+1q=1Q+1k=1K(log2(j=1KPq,k,jPU+σk2)log2(j1KPq,k,jPU(τ)+σk2)jkK(Pq,k,jPUPq,k,jPU(τ))/(ln(2)(ijKPq,j,iPU(τ)+σk2)))\displaystyle\underset{\begin{subarray}{c}\mathbf{w}_{k},\,\mathbf{\theta}_{m}\,,\mathcal{A}\end{subarray}}{\mathrm{maximize}}\,\,\frac{1}{Q\!\!+\!\!1}\sum_{q=1}^{Q+1}\!\sum_{k=1}^{K}\!\Bigg{(}\!\log_{2}\Big{(}\sum_{j=1}^{K}P_{q,k,j}^{\mathrm{PU}}+\sigma_{k}^{2}\Big{)}-\log_{2}\Big{(}\sum_{j\neq 1}^{K}P_{q,k,j}^{\mathrm{PU}(\tau)}+\sigma_{k}^{2}\Big{)}-\sum_{j\neq k}^{K}(P_{q,k,j}^{\mathrm{PU}}-P_{q,k,j}^{\mathrm{PU}(\tau)})/\Big{(}\ln(2)(\sum_{i\neq j}^{K}P_{q,j,i}^{\mathrm{PU}(\tau)}+\sigma_{k}^{2})\Big{)}\Bigg{)}
s.t.C1,C2a,C2b1¯,C2c2,C2d1,C2d3,C3a,C3b,C4a,C4c,\displaystyle\mathrm{s.t.}\,\,\mathrm{C1},\mathrm{C2a},\overline{\mathrm{C2b1}},\mathrm{C2c2},\mathrm{C2d1},\mathrm{C2d3},\mathrm{C3a},\mathrm{C3b},\mathrm{C4a},\mathrm{C4c}, (19)
C2b2¯:ξq^γl=0L1(Lϵq^γ2(τ))ll!+l=0L1l(Lϵq^γ2(τ))(l1)Ll!(ϵq^γ2ϵq^γ2(τ)),q^,\displaystyle\overline{\mathrm{C2b2}}:\xi_{\hat{q}}^{\gamma}\!\leq\!\sum_{l=0}^{L-1}\frac{(L\epsilon_{\hat{q}}^{\gamma 2(\tau)})^{l}}{l!}+\sum_{l=0}^{L-1}\frac{l(L\epsilon_{\hat{q}}^{\gamma 2(\tau)})^{(l-1)}L}{l!}\Big{(}\epsilon_{\hat{q}}^{\gamma 2}-\epsilon_{\hat{q}}^{\gamma 2(\tau)}\Big{)},\forall{\hat{q}},
C2b3¯¯:P~𝐬q^P~𝐬q^1+(ϵq^γ1P~𝐬q^σs2)2(ϵq^γ1(τ))2+2ϵq^γ1(τ)(ϵq^γ1ϵq^γ1(τ))(P~𝐬q^(τ)+σs2)22(P~𝐬q^(τ)+σs2)(P~𝐬q^P~𝐬q^(τ))0,q^,\displaystyle\overline{\overline{\mathrm{C2b3}}}:\widetilde{P}_{\mathbf{s}_{\hat{q}}}\!-\!\widetilde{P}_{\mathbf{s}_{{\hat{q}}-1}}\!+\!\Big{(}\epsilon_{\hat{q}}^{\gamma 1}\!-\!\widetilde{P}_{\mathbf{s}_{\hat{q}}}\!-\!\sigma^{2}_{\mathrm{s}}\Big{)}^{2}\!-\!(\epsilon_{\hat{q}}^{\gamma 1(\tau)})^{2}+2\epsilon_{\hat{q}}^{\gamma 1(\tau)}(\epsilon_{\hat{q}}^{\gamma 1}-\epsilon_{\hat{q}}^{\gamma 1(\tau)})-(\widetilde{P}_{\mathbf{s}_{\hat{q}}}^{(\tau)}+\sigma^{2}_{\mathrm{s}})^{2}-2(\widetilde{P}_{\mathbf{s}_{\hat{q}}}^{(\tau)}+\sigma^{2}_{\mathrm{s}})(\widetilde{P}_{\mathbf{s}_{\hat{q}}}-\widetilde{P}_{\mathbf{s}_{\hat{q}}}^{(\tau)})\!\leq\!0,\forall{\hat{q}},
C2b4¯¯:P~𝐬q^P~𝐬q^1(ϵq^γ2+P~𝐬q^+σs2)2+(ϵq^γ2(τ))2+2ϵq^γ2(τ)(ϵq^γ2ϵq^γ2(τ))+(P~𝐬q^(τ)+σs2)2+2(P~𝐬q^(τ)+σs2)(P~𝐬q^P~𝐬q^(τ))0,q^,\displaystyle\overline{\overline{\mathrm{C2b4}}}:\widetilde{P}_{\mathbf{s}_{\hat{q}}}\!-\!\widetilde{P}_{\mathbf{s}_{{\hat{q}}-1}}\!-\!\Big{(}\epsilon_{\hat{q}}^{\gamma 2}\!+\!\widetilde{P}_{\mathbf{s}_{\hat{q}}}\!+\!\sigma^{2}_{\mathrm{s}}\Big{)}^{2}\!+\!(\epsilon_{\hat{q}}^{\gamma 2(\tau)})^{2}+2\epsilon_{\hat{q}}^{\gamma 2(\tau)}(\epsilon_{\hat{q}}^{\gamma 2}-\epsilon_{\hat{q}}^{\gamma 2(\tau)})\!+\!(\widetilde{P}_{\mathbf{s}_{\hat{q}}}^{(\tau)}+\sigma^{2}_{\mathrm{s}})^{2}+2(\widetilde{P}_{\mathbf{s}_{\hat{q}}}^{(\tau)}+\sigma^{2}_{\mathrm{s}})(\widetilde{P}_{\mathbf{s}_{\hat{q}}}-\widetilde{P}_{\mathbf{s}_{\hat{q}}}^{(\tau)})\!\geq\!0,\forall{\hat{q}},
C2c1¯:Lϵq~Γ1+ln(ξq~Γ(τ))+(ξq~Γξq~Γ(τ))/ξq~Γ(τ)lnΓq~0,q~,\displaystyle\overline{\mathrm{C2c1}}:-\!L\epsilon_{\tilde{q}}^{\Gamma 1}\!+\!\ln(\xi_{\tilde{q}}^{\Gamma(\tau)})+(\xi_{\tilde{q}}^{\Gamma}-\xi_{\tilde{q}}^{\Gamma(\tau)})/\xi_{\tilde{q}}^{\Gamma(\tau)}\!-\!\ln\Gamma_{\tilde{q}}\!\leq\!0,\forall{\tilde{q}},
C2c3¯¯:P~𝐬q~+1P~𝐬q~(ϵq~Γ1+P~𝐬q~+σs2)2+(ϵq~Γ1(τ))2+2ϵq~Γ1(τ)(ϵq~Γ1ϵq~Γ1(τ))+(P~𝐬q~(τ)+σs2)2+2(P~𝐬q~(τ)+σs2)(P~𝐬q~P~𝐬q~(τ))0,q~,\displaystyle\overline{\overline{\mathrm{C2c3}}}:\widetilde{P}_{\mathbf{s}_{\tilde{q}+1}}\!-\!\widetilde{P}_{\mathbf{s}_{\tilde{q}}}\!-\!\Big{(}\epsilon_{\tilde{q}}^{\Gamma 1}\!+\!\widetilde{P}_{\mathbf{s}_{\tilde{q}}}\!+\!\sigma^{2}_{\mathrm{s}}\Big{)}^{2}+(\epsilon_{\tilde{q}}^{\Gamma 1(\tau)})^{2}+2\epsilon_{\tilde{q}}^{\Gamma 1(\tau)}(\epsilon_{\tilde{q}}^{\Gamma 1}-\epsilon_{\tilde{q}}^{\Gamma 1(\tau)})+(\widetilde{P}_{\mathbf{s}_{\tilde{q}}}^{(\tau)}+\sigma^{2}_{\mathrm{s}})^{2}+2(\widetilde{P}_{\mathbf{s}_{\tilde{q}}}^{(\tau)}+\sigma^{2}_{\mathrm{s}})(\widetilde{P}_{\mathbf{s}_{\tilde{q}}}-\widetilde{P}_{\mathbf{s}_{\tilde{q}}}^{(\tau)})\!\geq\!0,\forall{\tilde{q}},
C2c4¯¯:P~𝐬q~+1P~𝐬q~+(ϵq~Γ2P~𝐬q~σs2)2(ϵq~Γ2(τ))22ϵq~Γ2(τ)(ϵq~Γ2ϵq~Γ2(τ))(P~𝐬q~(τ)+σs2)22(P~𝐬q~(τ)+σs2)(P~𝐬q~P~𝐬q~(τ))0,q~,\displaystyle\overline{\overline{\mathrm{C2c4}}}:\widetilde{P}_{\mathbf{s}_{{\tilde{q}}+1}}\!-\!\widetilde{P}_{\mathbf{s}_{\tilde{q}}}\!+\!\Big{(}\epsilon_{\tilde{q}}^{\Gamma 2}\!-\!\widetilde{P}_{\mathbf{s}_{\tilde{q}}}\!-\!\sigma^{2}_{\mathrm{s}}\Big{)}^{2}\!-\!(\epsilon_{\tilde{q}}^{\Gamma 2(\tau)})^{2}-2\epsilon_{\tilde{q}}^{\Gamma 2(\tau)}(\epsilon_{\tilde{q}}^{\Gamma 2}-\epsilon_{\tilde{q}}^{\Gamma 2(\tau)})\!-\!(\widetilde{P}_{\mathbf{s}_{\tilde{q}}}^{(\tau)}+\sigma^{2}_{\mathrm{s}})^{2}-2(\widetilde{P}_{\mathbf{s}_{\tilde{q}}}^{(\tau)}+\sigma^{2}_{\mathrm{s}})(\widetilde{P}_{\mathbf{s}_{\tilde{q}}}-\widetilde{P}_{\mathbf{s}_{\tilde{q}}}^{(\tau)})\!\leq\!0,\forall{\tilde{q}},
C2d2¯:Tr(𝐔kSU)𝐟kSU(τ)2+2Tr((𝐟kSU(τ))H𝐟kPU),C2d4¯:Tr(𝐃kSU)𝐄kSU(τ)F2+2Tr((𝐄kSU(τ))H𝐄kPU),k,\displaystyle\overline{\mathrm{C2d2}}:\mathrm{Tr}(\mathbf{U}_{k}^{\mathrm{SU}})\!\leq\!-\|\mathbf{f}^{\mathrm{SU}(\tau)}_{k}\|^{2}+2\mathrm{Tr}\Big{(}(\mathbf{f}^{\mathrm{SU}(\tau)}_{k})^{\mathrm{H}}\mathbf{f}^{\mathrm{PU}}_{k}\Big{)},\overline{\mathrm{C2d4}}:\mathrm{Tr}(\mathbf{D}_{k}^{\mathrm{SU}})\!\leq\!-\|\mathbf{E}^{\mathrm{SU}(\tau)}_{k}\|^{2}_{\mathrm{F}}+2\mathrm{Tr}\Big{(}(\mathbf{E}^{\mathrm{SU}(\tau)}_{k})^{\mathrm{H}}\mathbf{E}^{\mathrm{PU}}_{k}\Big{)},\forall k,
C4b¯:Tr(𝐔k,jPU)𝐟k,jPU(τ)2+2Tr((𝐟k,jPU(τ))H𝐟k,jPU),C4d¯:Tr(𝐃k,jPU)𝐄k,jPU(τ)F2+2Tr((𝐄k,jPU(τ))H𝐄k,jPU),k,j.\displaystyle\overline{\mathrm{C4b}}:\mathrm{Tr}(\mathbf{U}_{k,j}^{\mathrm{PU}}\!)\!\leq\!-\|\mathbf{f}^{\mathrm{PU}(\tau)}_{k,j}\|^{2}+2\mathrm{Tr}\Big{(}(\mathbf{f}^{\mathrm{PU}(\tau)}_{k,j})^{\mathrm{H}}\mathbf{f}^{\mathrm{PU}}_{k,j}\Big{)},\overline{\mathrm{C4d}}:\!\mathrm{Tr}(\mathbf{D}_{k,j}^{\mathrm{PU}})\!\leq\!-\|\mathbf{E}^{\mathrm{PU}(\tau)}_{k,j}\|^{2}_{\mathrm{F}}+2\mathrm{Tr}\Big{(}(\mathbf{E}^{\mathrm{PU}(\tau)}_{k,j})^{\mathrm{H}}\mathbf{E}^{\mathrm{PU}}_{k,j}\Big{)},\forall k,j.

For ease of presentation, we define a set 𝒜={𝐟kSU,𝐔kSU,ckSU,𝐟k,jPU,𝐔k,jPU,ck,jPU,𝐀,γq^,Γq~,ξq^γ,ξq~Γ,ϵq^γ1,ϵq~Γ1,ϵq^γ2,\mathcal{A}=\Big{\{}\mathbf{f}_{k}^{\mathrm{SU}},\mathbf{U}_{k}^{\mathrm{SU}},{c}_{k}^{\mathrm{SU}},\mathbf{f}_{k,j}^{\mathrm{PU}},\mathbf{U}_{k,j}^{\mathrm{PU}},{c}_{k,j}^{\mathrm{PU}},\mathbf{A},\gamma_{\hat{q}},\Gamma_{\tilde{q}},\xi_{\hat{q}}^{\gamma},\xi_{\tilde{q}}^{\Gamma},\epsilon_{\hat{q}}^{\gamma 1},\epsilon_{\tilde{q}}^{\Gamma 1},\epsilon_{\hat{q}}^{\gamma 2}, ϵq~Γ2}\epsilon_{\tilde{q}}^{\Gamma 2}\Big{\}}, which includes all introduced auxiliary optimization variables. Now, the optimization problem in (11) can be equivalently transformed to the following

maximize𝐰k,θm,𝒜fo¯\displaystyle\underset{\begin{subarray}{c}\mathbf{w}_{k},\mathbf{\theta}_{m},\mathcal{A}\end{subarray}}{\mathrm{maximize}}\,\,\,\,\,\,\overline{f_{\mathrm{o}}}
s.t.C1,C2a,C2b1,C2b2,C2b3¯,C2b4¯,C2c1,C2c2,C2c3¯,\displaystyle\mathrm{s.t.}\,\,\,\,\mathrm{C1},\mathrm{C2a},\mathrm{C2b1},\mathrm{C2b2},\overline{\mathrm{C2b3}},\overline{\mathrm{C2b4}},\mathrm{C2c1},\mathrm{C2c2},\overline{\mathrm{C2c3}},
C2c4¯,C2d1C2d4,C3a,C3b,C4aC4d.\displaystyle\overline{\mathrm{C2c4}},\mathrm{C2d1}-\mathrm{C2d4},\mathrm{C3a},\mathrm{C3b},\mathrm{C4a}-\mathrm{C4d}. (16)

Since constraints C2b1, C2b2, C2b3¯\overline{\mathrm{C2b3}}, C2b4¯\overline{\mathrm{C2b4}}, C2c1, C2c3¯\overline{\mathrm{C2c3}}, C2c4¯\overline{\mathrm{C2c4}}, C2d2, C2d4, C4b, C4d and the objective function in problem (16) are in the difference of convex (D.C.) functions form and differentiable, we apply an iterative method based on SCA to obtain a suboptimal solution. Taking constraint C2b1 as an example, for any feasible point γq^(τ)\gamma_{\hat{q}}^{(\tau)}, an upper bound of ln(1γq^)\ln(1-\gamma_{\hat{q}}) can be construct by deriving its first-order Taylor expansions:

ln(1γq^)\displaystyle\ln(1-\gamma_{\hat{q}})\leq Υq^1=ln(1γq^(τ))+(γq^γq^(τ))/(γq^(τ)1),\displaystyle\Upsilon^{1}_{\hat{q}}\!=\!\ln(1-\gamma_{\hat{q}}^{(\tau)})\!+\!(\gamma_{\hat{q}}\!-\!\gamma_{\hat{q}}^{(\tau)})/(\gamma_{\hat{q}}^{(\tau)}\!-\!1), (17)

where (τ)(\tau) denotes the iteration index for the proposed algorithm summarized in Algorithm 1 (to be discussed in detail later). By applying SCA, a subset of constraint C2b1 can be obtained, which is given by

C2b1¯:Lϵq^γ1+lnξq^γΥq^10,q^.\displaystyle\overline{\mathrm{C2b1}}:-L\epsilon_{\hat{q}}^{\gamma 1}\!+\!\ln\xi_{\hat{q}}^{\gamma}\!-\!\Upsilon^{1}_{\hat{q}}\!\geq\!0,\forall{\hat{q}}. (18)

As C2b1¯\overline{\mathrm{C2b1}} implies C2b1{\mathrm{C2b1}}, replacing C2b1{\mathrm{C2b1}} with C2b1¯\overline{\mathrm{C2b1}} can ensure that the former is satisfied when the proposed algorithm converges. Similarly, by applying SCA to the rest of D.C. functions in problem (16), a lower bound of (16) can be obtained via solving the optimization problem in (19) at the top of this page.

Algorithm 1 Proposed Suboptimal Resource Allocation Scheme
1: Initialize the maximum number of iteration (τ)max(\tau)_{\max}, the initial iteration index τ=0\tau=0, and optimization variables in 𝒟(τ)={Pq,k,jPU(τ)\mathcal{D}^{(\tau)}\!\!\!=\!\!\!\Big{\{}P_{q,k,j}^{\mathrm{PU}(\tau)},​​​ ϵq^γ2(τ)\epsilon_{\hat{q}}^{\gamma 2(\tau)}, P~𝐬p(τ)\widetilde{P}_{\mathbf{s}_{p}}^{(\tau)}, ϵpi(τ)\epsilon_{p}^{i(\tau)}, γq^(τ)\gamma_{\hat{q}}^{(\tau)}, ξq~Γ(τ)\xi_{\tilde{q}}^{\Gamma(\tau)}, 𝐟k,jPU(τ),𝐄k,jPU(τ),𝐟kSU(τ),𝐄kSU(τ),q,p,k,j,i,q^,q~}\mathbf{f}^{\mathrm{PU}(\tau)}_{k,j},\mathbf{E}^{\mathrm{PU}(\tau)}_{k,j},\mathbf{f}^{\mathrm{SU}(\tau)}_{k},\mathbf{E}^{\mathrm{SU}(\tau)}_{k},\forall q,p,k,j,i,\hat{q},\tilde{q}\Big{\}}.
2:repeat {Main Loop: SCA}
3:    Solve problem (19) with given optimization variables in 𝒟(τ)\mathcal{D}^{(\tau)}, to obtain the variables for 𝒟(τ+1)\mathcal{D}^{(\tau+1)};
4:    Set τ=τ+1\tau=\tau+1 and update the optimization variables;
5:until convergence or τ=τmax\tau=\tau_{\max}.

To tighten the obtained performance lower bound, we iteratively update the feasible solution by solving the optimization problem in (19) in the (τ)(\tau)-th iteration. The proposed SCA-based algorithm is shown in Algorithm 1 and the proof of its convergence to a suboptimal solution can be found in [15] which is omitted here for brevity. Note that the proposed algorithm has a polynomial time complexity.

V Numerical Results

This section evaluates the system performance of the proposed scheme via simulation. We set K=2K=2, Q=3Q=3, Nt=4N_{\mathrm{t}}=4, M=30M=30, and L=30L=30. The location of AP, IRS, SU, and PUs are set in a Cartesian coordinate system, i.e., (0,0)(0,0), (15,10)(15,10), (20,2)(20,2), and {(65,2),(65,2)}\{(65,2),(65,-2)\} in meters (m), respectively. The distance-dependent path loss model in [2] is adopted with a reference distance of 11 m. Other important parameters are summarized as follows unless specified otherwise. The centre carrier frequency is set as 2.42.4 GHz. The path loss exponents of AP-IRS, IRS-SU, and IRS-PUk links are identical for simplicity, i.e., αAI=αIS=αIP,k=2.2\alpha_{\mathrm{AI}}=\alpha_{\mathrm{IS}}=\alpha_{\mathrm{IP},k}=2.2. Rician factors of AP-IRS, IRS-SU, and IRS-PUk links are βAI=βIS=βIP,k=3\beta_{\mathrm{AI}}=\beta_{\mathrm{IS}}=\beta_{\mathrm{IP},k}=3. The maximum power budget at the AP is Pmax=30P_{\max}=30 dBm. Noise power at the SU and PUs are σk2=σs2=100\sigma^{2}_{k}=\sigma^{2}_{\mathrm{s}}=-100 dBm.

For comparison, we also evaluate the system performance of three other schemes: 1) Baseline scheme 1 is identical to the proposed scheme except that the QoS of the SU constraints is not considered; 2) Baseline scheme 2 is the same as the proposed scheme except that the phase shifts of the reflect elements are randomly set; 3) A performance upper bound is achieved by an conventional IRS-assisted system with all elements being “on” state, while the SU does not exist. Note that except the upper bound scheme, for all the schemes, if the joint designed precoder and IRS phase shifts are unable to meet QoS requirements of constraint C2 in (11), we set the system sum-rate for that channel realization as zero to account the penalty for the corresponding failure.

Fig. 3 depicts the average system sum-rate of primary system versus the maximum tolerable SER, PemaxP^{\max}_{\mathrm{e}}, for the SU to decode the modulated IRS symbols. It can be observed that when PemaxP^{\max}_{\mathrm{e}} is small, except the upper bound scheme, the average system sum-rates of all the considered schemes are zeros. In fact, with limited transmit power, a stringent QoS requirement PemaxP^{\max}_{\mathrm{e}} in constraint C2 is more difficult to satisfy leading to an infeasibility of the optimization problem in (11). With the increase of PemaxP^{\max}_{\mathrm{e}}, the proposed scheme is the first one that admits feasible solutions showing its superiority over other baseline schemes. In particular, due to the joint optimization of the precoder and IRS phase shifts, the proposed scheme can exploit the spatial degrees of freedom more efficiently than that of baseline scheme 2 to fulfill the SER constraint C2. Furthermore, since baseline scheme 1 does not consider constraint C2, the SER of decoding IRS information approaches 0.50.5 which is not suitable for most practical applications. Additionally, by comparing the average sum-rate of the proposed scheme and the upper bound, it can be observed that there is a performance gap between the proposed scheme and the upper bound when PemaxP^{\max}_{\mathrm{e}} is small. This is mainly because the IRS phase shifts are forced to align to the channels of the SU for satisfying the more stringent SER constraint. This leads to a weakened signal received at the PU. However, unlike the proposed scheme, the upper bound cannot serve the primary and secondary system concurrently to realize a mutualistic SR system. Once constraint C2 becomes less stringent, the performance degradation of the proposed scheme is negligible compared with the upper bound, even though the proposed scheme turns off some of the IRS elements to convey IRS modulated information.

Refer to caption
Fig. 3: Average system achievable sum-rate of the primary system versus the upper bound of the SER at the SU side, PemaxP^{\max}_{\mathrm{e}}.

On the other hand, as PemaxP^{\max}_{\mathrm{e}} further increases, the performance of all the schemes approaches a constant. This is because the limited transmit power budget PmaxP_{\max} becomes the bottleneck of system performance, instead of PemaxP_{e}^{\max}. In Fig. 4, by further increasing the maximum transmit power budget at the AP, the system sum-rate increases monotonically. Indeed, by applying the proposed scheme, the AP and the IRS can effectively exploit the additional transmit power to create more powerful beamforming for improving the system sum-rate of the primary system. Moreover, the average sum-rates for both the proposed scheme and baseline scheme 2 grow as the number of the antennas at the AP increases due to an increasing beamforming gain. However, diminishing return appears when NtN_{\mathrm{t}} is large as the result of channel hardening.

VI Conclusion

In this paper, we proposed a MISO downlink SR communication system assisted by an IRS, which facilitates the primary transmission and mutualistic information transmission to the SU simultaneously. Different from existing works, we considered a more practical secondary system adopted a non-coherent detection at the SU. We derived an SER upper bound to characterize the non-coherent decoding performance. The joint design of the beamformer at the AP and the phase shifts at the IRS was formulated as a non-convex optimization problem to maximize the average system sum-rate taking into account the QoS requirement of decoding IRS symbols at the SU. Simulation results showed that the proposed scheme greatly enhances the performance of both the primary system and the secondary system significantly compared with some existing schemes.

Refer to caption
Fig. 4: Average system achievable sum-rate of the primary system versus power budget, PmaxP_{\max}, with Pemax=0.01P_{\mathrm{e}}^{\max}=0.01.

References

  • [1] R. Long, Y.-C. Liang, H. Guo, G. Yang, and R. Zhang, “Symbiotic radio: A new communication paradigm for passive Internet of Things,” IEEE Internet Things J., vol. 7, no. 2, pp. 1350–1363, Nov. 2019.
  • [2] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Aug. 2019.
  • [3] W. Yan, X. Yuan, and X. Kuai, “Passive beamforming and information transfer via large intelligent surface,” IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 533–537, Apr. 2020.
  • [4] A. Kammoun, A. Chaaban, M. Debbah, M.-S. Alouini et al., “Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 7748–7764, Apr. 2020.
  • [5] L. Dong and H.-M. Wang, “Secure MIMO transmission via intelligent reflecting surface,” IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 787–790, Jan. 2020.
  • [6] M. Hua, Q. Wu, L. Yang, R. Schober, and H. V. Poor, “A novel wireless communication paradigm for intelligent reflecting surface based symbiotic radio systems,” arXiv preprint arXiv:2104.09161, 2021.
  • [7] Q. Zhang, Y.-C. Liang, and H. V. Poor, “Reconfigurable intelligent surface assisted MIMO symbiotic radio networks,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4832–4846, Mar. 2021.
  • [8] S. Lin, B. Zheng, G. C. Alexandropoulos, M. Wen, M. D. Renzo, and F. Chen, “Reconfigurable intelligent surfaces with reflection pattern modulation: Beamforming design and performance analysis,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 741–754, Feb. 2021.
  • [9] C. Liu, X. Liu, D. W. K. Ng, and J. Yuan, “Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications,” IEEE Trans. Wireless Commun., Aug. 2021 [Early Access], doi: 10.1109/TWC.2021.3100148.
  • [10] D. Tse and P. Viswanath, Fundamentals of wireless communication.   Cambridge university press, May 2005.
  • [11] H.-T. Wu, R. Han, W. Lerdsitsomboon, C. Cao, and K. K. O, “Multi-level amplitude modulation of a 16.8-GHz class-E power amplifier with negative resistance enhanced power gain for 400-Mbps data transmission,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1072–1079, Apr. 2010.
  • [12] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12, no. 8, pp. 545–547, Aug. 2008.
  • [13] G. Jameson, “The incomplete Gamma functions,” The Mathematical Gazette, vol. 100, no. 548, pp. 298–306, Jul. 2016.
  • [14] F. Zhang, The Schur complement and its applications.   New York: Springer, 2005.
  • [15] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Am. Math. Soc., vol. 73, no. 4, pp. 591–597, 1967.