This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Baxterization for the dynamical Yang–Baxter equation

Muze Ren Section de mathématiques, University of Geneva, rue du Conseil-Général 7-9 1205 Geneva, Switzerland. [email protected]
Abstract.

The Baxterization process for the dynamical Yang–Baxter equation is studied. We introduce the local dynamical Hecke ,Temperley–Lieb and Birman–Murakami–Wenzl operators, then by inserting spectral parameters, from each representation of these operators, we get dynamical R matrix under some conditions. As applications, we reformulate trigonometric degeneration of elliptical quantum group representations and also get dynamical R matrices for critical ADE integrable lattice models. Through Baxterization, we construct some one dimensional integrable systems that are dynamical version of the Heisenberg spin chain.

1. Introduction

In 1990, Jones summarized and proposed the Baxterization procedure in [31] when he discussed the relation between Yang-Baxter equation (1.1) and the braid relation (1.2)

RiRi+1Ri′′=Ri+1′′RiRi+1,R_{i}R^{{}^{\prime}}_{i+1}R^{{}^{\prime\prime}}_{i}=R^{{}^{\prime\prime}}_{i+1}R^{{}^{\prime}}_{i}R_{i+1}, (1.1)

the idea as he wrote:”take a knot invariant, turn it into a coherent sequence of braid group representations, and then Baxterize (if possible) by inserting a spectral parameter so that YBE is satisfied ….”. Jones then gave two universal Baxterization examples, suppose that σi,i=1,,n\sigma_{i},i=1,\dots,n satisfies the braid relations,

σiσi+1σi=σi+1σiσi+1\displaystyle\sigma_{i}\sigma_{i+1}\sigma_{i}=\sigma_{i+1}\sigma_{i}\sigma_{i+1} (1.2a)
σiσj=σjσi,|ij|>1\displaystyle\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i},\quad|i-j|>1 (1.2b)
  1. (1)

    Hecke case, also see [30]. If σi+σi1=x1\sigma_{i}+\sigma^{-1}_{i}=x1 and we define Ri(λ)=eλσi+eλσi1R_{i}(\lambda)=e^{\lambda}\sigma_{i}+e^{-\lambda}\sigma_{i}^{-1}, then it satisfies the Yang–Baxter equation (1.1), with the relation λ′′=λλ\lambda^{\prime\prime}=\lambda^{\prime}-\lambda.

  2. (2)

    Birman–Murakami–Wenzl case studied in [5] and [34]. Let Ei=1x(σi+σi1)1E_{i}=\frac{1}{x}(\sigma_{i}+\sigma^{-1}_{i})-1, assume they satisfy the relations

    Ei2=(a+a1x)1Ei\displaystyle E^{2}_{i}=(a+a^{-1}-x)^{-1}E_{i}
    Eiσi1±Ei=a±1Ei,Eiσi+1±=a1Ei\displaystyle E_{i}\sigma^{\pm}_{i-1}E_{i}=a^{\pm 1}E_{i},E_{i}\sigma^{\pm}_{i+1}=a^{\mp 1}E_{i}
    Eiσi1σi=EiEi±1\displaystyle E_{i}\sigma_{i\mp 1}\sigma_{i}=E_{i}E_{i\pm 1}

    then Ri(λ)=(eλ1)kσi+x(k+k1)1+(eλ1)k1σi1R_{i}(\lambda)=(e^{\lambda}-1)k\sigma_{i}+x(k+k^{-1})1+(e^{-\lambda}-1)k^{-1}\sigma^{-1}_{i} will satisfy the (1.1) with λ′′=λλ\lambda^{\prime\prime}=\lambda^{\prime}-\lambda.

We want to apply the similar ideas to study the dynamical Yang–Baxter equation and try to have more understanding of the construction of its solutions. The dynamical Yang–Baxter equation was initially considered by Gervais and Neveu in the study of Liouville theory [28]. And later Felder in [20, 21] rediscovered this equation in the study of quantization of Knizhnik–Zamolodchikov–Bernard equation and discovered the theory of elliptic quantum group and elliptic R matrix. Later the equations were widely studied in different aspects and have many connections to other fields, see for example [25, 23, 24, 16, 15, 17, 1, 6, 7, 41], see also the standard books [13, 12, 33].

We consider the generalized Baxterization process for the dynamical Yang–Baxter equation (1.4) based on the groupoid graded vector spaces language developed in [22]. The main difference to the classical situation is the appearance of the dynamical shifts h(i)h^{(i)}.

Rˇ(23)(zw,ah(1))Rˇ(12)(z,a)Rˇ(23)(w,ah(1))=Rˇ(12)(w,a)Rˇ(23)(z,ah(1))Rˇ(12)(zw,a)\begin{split}&\check{R}^{(23)}(z-w,ah^{(1)})\check{R}^{(12)}(z,a)\check{R}^{(23)}(w,ah^{(1)})\\ &=\check{R}^{(12)}(w,a)\check{R}^{(23)}(z,ah^{(1)})\check{R}^{(12)}(z-w,a)\end{split} (1.4)

It is very natural to define the local dynamical Hecke operators, Temperley–Lieb and Birman–Murakami–Wenzl operators using dynamical notations. For example the local Temperley–Lieb operators T(a)T(a) associated to a map κ¯:Ob(Groupoid)0\bar{\kappa}:\rm{Ob}(\rm{Groupoid})\to\mathbb{C}_{\neq 0} is defined by equations on a groupoid graded vector spaces VV

T(a)T(a)=κ¯(a)T(a)\displaystyle T(a)T(a)=\bar{\kappa}(a)T(a) (1.5a)
T(12)(a)T(23)(ah(1))T(12)(a)=T(12)(a)\displaystyle T^{(12)}(a)T^{(23)}(ah^{(1)})T^{(12)}(a)=T^{(12)}(a) (1.5b)
T(23)(ah(1))T(12)(a)T(23)(ah(1))=T(23)(ah(1))\displaystyle T^{(23)}(ah^{(1)})T^{(12)}(a)T^{(23)}(ah^{(1)})=T^{(23)}(ah^{(1)}) (1.5c)

We provides four kinds of examples of representations for the local dynamical Temperley–Lieb operators

  1. (1)

    The representations 1.6 related to the classification of coxeter diagrams, see the work of Goodman–Harpe–Jones, chapter 1 of the book [29] and restricted quantum group [22]. Here Sa,Sb,Sc,SdS_{a},S_{b},S_{c},S_{d} are entries of the Perro–Frobenious eigenvector of the corresponding diagram Γ\Gamma, the groupoid structure is got from these diagrams.

    TΓ(d)=a,cTΓ(dcad)=a,cSaScSdSdT_{\Gamma}(d)=\oplus_{a,c}T_{\Gamma}\Big{(}\begin{matrix}d&c\\ a&d\\ \end{matrix}\Big{)}=\oplus_{a,c}\sqrt{\frac{S_{a}S_{c}}{S_{d}S_{d}}}ddγ\gammaccδ\deltaα\alphaaaβ\betadd (1.6)
  2. (2)

    The elliptic representation related to the theory of representaitons of elliptic quantum group [20, 25, 16, 17, 10]. In rank 2 case, with [a]:=θ(a/(L+1),τ)/(θ(0,τ)/(L+1))[a]:=\theta\big{(}a/(L+1),\tau\big{)}/\big{(}\theta^{{}^{\prime}}(0,\tau)/(L+1)\big{)}, θ\theta is the first Jacobi theta function. κ¯ell(a)=[a+1]+[a1][a]\bar{\kappa}^{\text{ell}}(a)=\frac{[a+1]+[a-1]}{[a]}, the operators are written as (1.7), the groupoid structure is the infinite type A groupoid in figure 1.

    TAell(a)=[a1][a+1][a]E21E12+[a+1][a1][a]E12E21+[a+1][a]E11E22+[a1][a]E22E11\begin{split}T^{\rm{ell}}_{A}(a)&=\frac{\sqrt{[a-1][a+1]}}{[a]}E_{21}\otimes E_{12}+\frac{\sqrt{[a+1][a-1]}}{[a]}E_{12}\otimes E_{21}\\ +&\frac{[a+1]}{[a]}E_{11}\otimes E_{22}+\frac{[a-1]}{[a]}E_{22}\otimes E_{11}\end{split} (1.7)
  3. (3)

    Let {{z}}:=sinh(πzL+1)\{\!\!\{z\}\!\!\}:=\sinh(\frac{\pi z}{L+1}), the hyperbolic representation of the dynamical Temperley-Lieb associated to κ¯hyb(a)=2cosh(πL+1)\bar{\kappa}^{\text{hyb}}(a)=2\cosh(\frac{\pi}{L+1}) is (1.8), the groupoid structure is the infinite type AA groupoid in figure 1.

    TAhyp(a)={{a1}}{{a+1}}{{a}}E21E12+{{a+1}}{{a1}}{{a}}E12E21+{{a+1}}{{a}}E11E22+{{a1}}{{a}}E22E11\begin{split}T_{A}^{\text{hyp}}(a)&=\frac{\sqrt{\{\!\!\{a-1\}\!\!\}\{\!\!\{a+1\}\!\!\}}}{\{\!\!\{a\}\!\!\}}E_{21}\otimes E_{12}+\frac{\sqrt{\{\!\!\{a+1\}\!\!\}\{\!\!\{a-1\}\!\!\}}}{\{\!\!\{a\}\!\!\}}E_{12}\otimes E_{21}\\ &+\frac{\{\!\!\{a+1\}\!\!\}}{\{\!\!\{a\}\!\!\}}E_{11}\otimes E_{22}+\frac{\{\!\!\{a-1\}\!\!\}}{\{\!\!\{a\}\!\!\}}E_{22}\otimes E_{11}\end{split} (1.8)
  4. (4)

    The trigonometric representation related to the trigometric degenerations of elliptic quantum group is (1.9), in rank 2 case, with κ¯tri=2cos(πL+1)\bar{\kappa}^{\text{tri}}=2\cos(\frac{\pi}{L+1}) and a=sin(πzL+1)\langle a\rangle=\sin(\frac{\pi z}{L+1}).

    TAtri(a)=a1a+1aE21E12+a+1a1aE12E21+a+1aE11E22+a1aE22E11\begin{split}T^{\text{tri}}_{A}(a)&=\frac{\sqrt{\langle a-1\rangle\langle a+1\rangle}}{\langle a\rangle}E_{21}\otimes E_{12}+\frac{\sqrt{\langle a+1\rangle\langle a-1\rangle}}{\langle a\rangle}E_{12}\otimes E_{21}\\ +&\frac{\langle a+1\rangle}{\langle a\rangle}E_{11}\otimes E_{22}+\frac{\langle a-1\rangle}{\langle a\rangle}E_{22}\otimes E_{11}\end{split} (1.9)

And following Jones cases, by inserting the spectral parameters, we consider three cases of Baxterization for the dynamical Yang–Baxter equation,

  1. (1)

    local dynamical Hecke case. Suppose that we have invertible operators σ(a)\sigma(a) defined on source fibers of groupoid graded vector space that satisfy

    σ(12)(a)σ(23)(ah(1))σ(12)(a)=σ(23)(ah1)σ(12)(a)σ(23)(ah(1))\displaystyle\sigma^{(12)}(a)\sigma^{(23)}(ah^{(1)})\sigma^{(12)}(a)=\sigma^{(23)}(ah^{1})\sigma^{(12)}(a)\sigma^{(23)}(ah^{(1)}) (1.10a)
    σ(a)+σ1(a)=f(a)id\displaystyle\sigma(a)+\sigma^{-1}(a)=f(a)\operatorname{id} (1.10b)
    Theorem 1.1 (same as the Theorem 2.23).

    Suppose that f(a)=f(b)f(a)=f(b) if there exists an arrow α\alpha with s(α)=a,t(α)=bs(\alpha)=a,t(\alpha)=b, then the operator defined by

    Rˇ(z,a)=ezσ(a)+ezσ1(a)\displaystyle\check{R}(z,a)=e^{z}\sigma(a)+e^{-z}\sigma^{-1}(a)

    satisfies the dynamical Yang–Baxter equation (1.4).

  2. (2)

    local dynamical Temperley–Lieb case. In this case, if we assume that

    Rˇ(x,a)=id+xT(a)\displaystyle\check{R}(x,a)=\operatorname{id}+xT(a) (1.11)

    where T(a)T(a) is local dynamical Temperley–Lieb operators associated to κ¯\bar{\kappa} on VV, then we will get

    Theorem 1.2 (also Theorem 2.24, see also [40]).

    Suppose that x=f(z),x=f(z),x′′=f(z′′),z′′=zzx=f(z),x^{\prime}=f(z^{\prime}),x^{\prime\prime}=f(z^{\prime\prime}),z^{\prime\prime}=z^{\prime}-z satisfies the following equation

    x′′=xx1+κ¯(ah1)x+xx,x′′=xx1+κ¯(a)x+xx\displaystyle x^{{}^{\prime\prime}}=\frac{x^{\prime}-x}{1+\bar{\kappa}(ah^{1})x+xx^{\prime}},\quad x^{{}^{\prime\prime}}=\frac{x^{\prime}-x}{1+\bar{\kappa}(a)x+xx^{\prime}} (1.12)

    then the operators Rˇ(x,a)=id+xT(a)\check{R}(x,a)=\operatorname{id}+xT(a) satisfies the dynamical Yang-Baxter equation (1.4).

    Cases ellpitic hyperbolic trigonometric ADE affine ADE
    Groupoid type infinite infinite infinite finite finite
    x (no) sinhzsinh(λz)\frac{\sinh z}{\sinh(\lambda-z)} sin(z)sin(λz)\frac{\sin(z)}{\sin(\lambda-z)} sin(z)sin(λz)\frac{\sin(z)}{\sin(\lambda-z)} z1z\frac{z}{1-z}
    Table 1. Baxterization table
    Remark 1.3.

    The elliptic case is not baxterizable in the sense of ansatz R=1+xTR=1+xT of the theorem 2.24.

  3. (3)

    local dynamical Birman–Murakami–Wenzl case.

    Theorem 1.4 (same as Theorem 2.25).

    Suppose that the operators U(a)U(a) are the local dynamical Birman–Murakami–Wenzl operator associated with q¯,ν¯\bar{q},\bar{\nu} on VV, and suppose that q¯(a)=q¯(b),ν¯(a)=ν¯(b),\bar{q}(a)=\bar{q}(b),\bar{\nu}(a)=\bar{\nu}(b), if there exists an arrow απ\alpha\in\pi with s(α)=a,t(α)=bs(\alpha)=a,t(\alpha)=b. Then we define

    Rˇ(u,v)[a]:=U(a)+q¯(a)q¯1(a)v/u1+q¯(a)q¯1(a)1+ν¯1(a)q¯(a)v/uK(a),\displaystyle\check{R}(u,v)[a]:=U(a)+\frac{\bar{q}(a)-\bar{q}^{-1}(a)}{v/u-1}+\frac{\bar{q}(a)-\bar{q}^{-1}(a)}{1+\bar{\nu}^{-1}(a)\bar{q}(a)v/u}K(a),

    and it satisfies the following two parameters dynamical Yang–Baxter equation

    Rˇ(12)(u2,u3)[a]Rˇ(23)(u1,u3)[ah(1)]Rˇ(12)(u1,u2)[a]\displaystyle\check{R}^{(12)}(u_{2},u_{3})[a]\check{R}^{(23)}(u_{1},u_{3})[ah^{(1)}]\check{R}^{(12)}(u_{1},u_{2})[a]
    =Rˇ(23)(u1,u2)[ah(1)]Rˇ(12)(u1,u3)[a]Rˇ(23)(u2,u3)[ah(1)]\displaystyle=\check{R}^{(23)}(u_{1},u_{2})[ah^{(1)}]\check{R}^{(12)}(u_{1},u_{3})[a]\check{R}^{(23)}(u_{2},u_{3})[ah^{(1)}]

We provide several applications of the Baxterization procedure of the dynamical Yang–Baxter equation mentioned above.

  1. (1)

    The first application is about the trigonometric dynamical Rˇ(x)\check{R}(x) in the representation theory of dynamical YBE equation [20, 25, 16, 17] and restricted quantum groups [22], we show that it can be seen as a Baxterization of representations of local dynamical Temperley–Lieb operators.

  2. (2)

    The second application is to derive some new dynamical Rˇ\check{R} matrices of two kinds of face type two dimensional integrable lattice models, critical ADE models (also called Pasquier models [37]) and Temperley–Lieb interaction models introduced by Owczarek and Baxter [35].

    Critical ADE models are a series of face type lattice models introduced and studied mainly by Pasquier ([36, 37, 38]), these models are interesting as they are related to the unitary A-series of minimal models considered by Belavin–Polyakov–Zamolodchikov [4] and Friedan– Qiu–Shenker [27]. Temperley–Lieb interaction models are also very interesting models which unifies (meaning that partition functions are the same with carefully chosen parameters and boundary conditions) a series of interesting models including critical ADE models, six-vertex model, self-dual Potts model, critical hard hexagons model, see the nice lecture note of Pearce [40].

    Interesting questions about these models are the ”quantum group” picture behind these models [9, 18, 19] and the possibility of application of algebraic Bethe ansatz [19]. With the dynamical Rˇ\check{R} matrices derived here and the algebraic Bethe ansatz of face type restricted model developed in [22], these questions can be answered.

  3. (3)

    The third application of Baxterization is to get a family of one dimensional integrable systems. For each representation of local dynamical Temperley–Lieb algebra that can be Baxterized, we can define a Hamiltonian that commute with a family of transfer matrices. They are some dynamical version of Heisenberg spin chains. For the restricted type A case, they were initial considered by Bazhanov–Reshetikhin [3], where they also calculate the eigenvalues and eigenvectors. For the unrestricted type A case, see the work of Etingof–Kirillov [11], Felder–Varchenko [26] and Etingof–Vachenko [14], where they studied the spin generalization of Ruijsenarrs models and MacDonald theory.

    And also there is a recent breakthrough in the study of long range spin chains, Klabbers and Lamers in [32] introduced two new integrable systems which unifies Inozemtsev and partially isotropic Haldane–Shastry chains. And by taking the short range limit of their new integrable systems, they got some new dynamical spin chains, which is very similar to the Hamiltonian we get (2.70), one difference is we use the periodic boundary condition, they have a twist. Another is that in (2.70), we have conjugation of M(0,α)M(0,\alpha) which is some translation operator, but the equation (18) of [32] is conjugated by some terms which contains nontrivial Rˇ\check{R} matrix.

1.1. Outline of the paper

The note is organized as follows, in the beginning of 2, we first recall the basic definition of π\pi graded vector space [22] and operators on it. Then in subsection 2.1 and 2.2, we define dynamical Hecke, Temperley–Lieb and Birman–Murakami–Wenzl operators, its local versions and the finite type representation of local Temperley–Lieb operators. In subsection 2.3, we discuss the relation between the local dynamical operators and the usual operators. In subsection 2.4, we discuss the Baxterization of the dynamical Yang–Baxter equation. In subsection 2.5, we provides the unrestricted examples of local Temperley–Lieb operators and its Baxterization. In subsection 2.6, we consider the Baxterization of restricted cases examples including ADE type and affine ADE type. Then in subsection 2.7, we discuss the transfer matrix and hamiltonian spin chains.

Acknowledgment The author would like to thank Anton Alekseev for encouragement and support, Giovanni Felder for mentioning the reference [39] and Rinat Kashaev, Rob Klabbers and Jules Lamers for interesting discussions. Research of the author is supported by the grant number 208235 of the Swiss National Science Foundation (SNSF) and by the NCCR SwissMAP of the SNSF.

2. Main constructions

A groupoid π\pi is a small category in which every morphism is invertible. We denote its object by Ob(π)\text{Ob}(\pi), for any a,bOb(π)a,b\in\text{Ob}(\pi), the set of morphisms from an object aa to bb is denoted by π(a,b)\pi(a,b), we also call the morphisms as arrows, the composition of arrows γπ(a,b)\gamma\in\pi(a,b) and ηπ(a,b)\eta\in\pi(a,b) is denoted by ηγπ(a,c)\eta\circ\gamma\in\pi(a,c). The object of π\pi is identified with the identity arrows. By abuse of notation, the set of arrows of π\pi is also denoted by π\pi, then we can denote the source and target maps by s,t:πOb(π)s,t:\pi\to\text{Ob}(\pi). The source fibers are s1(a)s^{-1}(a) and target fibers are t1(a)t^{-1}(a), for aOb(π)a\in\rm{Ob}(\pi).

Example 2.1.

For any unoriented graph 𝒢\mathcal{G}, it can be seen as a groupoid π(𝒢)\pi(\mathcal{G}) by taking the vertices as objects, for each unoriented edge e𝒢e\in\mathcal{G}, we have corresponding two inverse direction arrows αe,αe1π(𝒢)\alpha_{e},\alpha^{-1}_{e}\in\pi(\mathcal{G}) and arrows formed by their compositions.

Example 2.2 (Action groupoid).

Let AA be a set with right group action A×GAA\times G\to A, the action groupoid AGA\rtimes G has the set of objects AA and for each a=aga^{\prime}=ag, there is an arrow a𝑔aa\xrightarrow{g}a^{\prime}, thus an arrow is described by a pair (a,g)A×G(a,g)\in A\times G. The source and target are s(a,g)=a,t(a,g)=ags(a,g)=a,t(a,g)=ag and the composition is (a,g)(a,g)=(a,gg)(a^{\prime},g^{\prime})\circ(a,g)=(a,gg^{\prime}),with  a=aga^{\prime}=ag. The identity arrows are (a,e),aA(a,e),a\in A where ee is the identity element in the group and the inverse of (a,g)(a,g) is (ag,g1)(ag,g^{-1}).

Definition 2.3.

Let π\pi be a groupoid with set of objects AA, a π\pi-graded vector space of finite type over a field kk is a collection (Vα)απ(V_{\alpha})_{\alpha\in\pi} of finite dimensional vector spaces indexed by the arrows of π\pi such that for each aAa\in A, there are finitely many arrows α\alpha with source or target aa and nonzero VαV_{\alpha}.

With groupoids, we can define the groupoid graded vector spaces with certain finite conditions.

Definition 2.4.

Let π\pi be a groupoid, a π\pi-graded vector space of finite type over a field kk is a collection (Vα)απ(V_{\alpha})_{\alpha\in\pi} of finite dimensional vector spaces indexed by the arrows of π\pi, such that for each aOb(π)a\in\rm{Ob}(\pi), there are only finitely many arrows α\alpha with source or target aa and nonzero VαV_{\alpha}.

For aOb(π)a\in\rm{Ob}(\pi), the aa source fibers of the vector space VπV\in\pi is the direct sum of components with source aa, that is αs1(a)Vα\oplus_{\alpha\in s^{-1}(a)}V_{\alpha}. And similar for the target fibers.

The kk vector space Hom(V,W)\operatorname{Hom}(V,W) of two π\pi graded vector spaces consists of families (fα)απ(f_{\alpha})_{\alpha\in\pi} of linear maps fα:VαWαf_{\alpha}:V_{\alpha}\to W_{\alpha}, that is fαHomk(V,W)f_{\alpha}\in\operatorname{Hom}_{k}(V,W), the compositions of maps are also defined component-wise. The category of π\pi groupoid graded vector spaces is a monoidal category, we denote by Vectk(π)\text{Vect}_{k}(\pi), with the tensor product defined

(VW)γ=βα=γVαWβ,V,WVectk(π)\displaystyle(V\otimes W)_{\gamma}=\oplus_{\beta\circ\alpha=\gamma}V_{\alpha}\otimes W_{\beta},\quad V,W\in\text{Vect}_{k}(\pi)

In the following example, we introduce a family of automorphism induced by the maps from Ob(π)\rm{Ob}(\pi) to nonzero complex numbers.

Example 2.5.

Let q¯:Ob(π)0\bar{q}:\rm{Ob}(\pi)\to\mathbb{C}_{\neq 0} be a map from the objects of the groupoid to the nonzero complex numbers. For any V1,,VNVectk(π)V_{1},\dots,V_{N}\in\rm{Vect}_{k}(\pi), the map q¯\bar{q} induces endormorphisms q(i)End(l=1NVl),i=0,,Nq^{(i)}\in\operatorname{End}(\otimes_{l=1}^{N}V_{l}),i=0,\dots,N. For convenience q(0)q^{(0)} is also simply denoted by qq.

For any α1,,αN\alpha_{1},\dots,\alpha_{N} such that α=αNα1\alpha=\alpha_{N}\circ\dots\alpha_{1}, the α\alpha component of q(i)q^{(i)} restricted to l=1NVαl\otimes^{N}_{l=1}V_{\alpha_{l}} is defined by

qα(0)|Vα1Vα2VαN:=q¯(s(α1))id,\displaystyle q^{(0)}_{\alpha}|_{V_{\alpha_{1}}\otimes V_{\alpha_{2}}\dots V_{\alpha_{N}}}:=\bar{q}(s(\alpha_{1}))\operatorname{id}, (2.1a)
qα(i)|Vα1Vα2VαN:=q¯(t(αi))id,1iN\displaystyle q^{(i)}_{\alpha}|_{V_{\alpha_{1}}\otimes V_{\alpha_{2}}\dots V_{\alpha_{N}}}:=\bar{q}(t(\alpha_{i}))\operatorname{id},\quad 1\leq i\leq N (2.1b)

where id\operatorname{id} is the identity operator in Endk(l=1NVαl)\operatorname{End}_{k}(\otimes^{N}_{l=1}V_{\alpha_{l}}). It is easily seen that q(i)q^{(i)} are invertible, its inverse are the endormoprhisms (qi)1(q^{i}){-1} induced by q¯1\bar{q}^{-1} which are defined by

q¯1(a):=1q¯(a)\bar{q}^{-1}(a):=\frac{1}{\bar{q}}(a) (2.2)

On the aa source fibers of vector space End(l=1NVl)\operatorname{End}(\otimes^{N}_{l=1}V_{l}), the operators q(i)q^{(i)} can also be denoted by

q¯(a),i=0;q¯(ah(i)),i1\displaystyle\bar{q}(a),\quad i=0;\quad\bar{q}(ah^{(i)}),\quad i\geq 1 (2.3)

here h(i)h^{(i)} are the ”dynamical” notations, intuitively ah(i)ah^{(i)} means the target vertices of iith edge of a chain of arrows that starts at aa.

For the kk additive category Vectk(π)\rm{Vect}_{k}(\pi), we can also define the dual groupoid graded vector space and the resulting category is an abelian pivotal monoidal category, see section 2 of [22].

2.1. Yang-Baxter operator and other local operators

Let k=k=\mathbb{C}, a Yang-Baxter operator on VVectk(π)V\in\text{Vect}_{k}(\pi) is a meromorphic function zRˇ(z)End(VV)z\to\check{R}(z)\in\operatorname{End}(V\otimes V) of the spectral parameter zz\in\mathbb{C} with values in the endormorphisms of VVV\otimes V, obeying the Yang-Baxter equation

Rˇ(zw)(23)Rˇ(z)(12)Rˇ(w)(23)=Rˇ(w)(12)Rˇ(z)(23)Rˇ(zw)(12)\displaystyle\check{R}(z-w)^{(23)}\check{R}(z)^{(12)}\check{R}(w)^{(23)}=\check{R}(w)^{(12)}\check{R}(z)^{(23)}\check{R}(z-w)^{(12)} (2.4)

more generally, we can write the equation as:

Rˇ(x)(23)Rˇ(x)(12)Rˇ(x′′)(23)=Rˇ(x′′)(12)Rˇ(x)(23)Rˇ(x)(12)\displaystyle\check{R}(x)^{(23)}\check{R}(x^{\prime})^{(12)}\check{R}(x^{\prime\prime})^{(23)}=\check{R}(x^{\prime\prime})^{(12)}\check{R}(x^{\prime})^{(23)}\check{R}(x)^{(12)} (2.5)

in End(VVV)\operatorname{End}(V\otimes V\otimes V) for all generic values of the spectral parameters x,x,x′′x,x^{\prime},x^{\prime\prime} and certain inversion (also called unitary) relation. And here x,x,x′′x,x^{\prime},x^{\prime\prime} are certain functions of the z,z,z′′z,z^{\prime},z^{\prime\prime} and satisfies the conditions z′′=zzz^{\prime\prime}=z^{\prime}-z.

The restriction of Rˇ(x)\check{R}(x) to VαVβV_{\alpha}\otimes V_{\beta} for composable arrows α,β\alpha,\beta has components in each direct summand of the decomposition

Rˇ(x)|VαVβ=γ,δ𝒲(x;α,β,γ,δ)\displaystyle\check{R}(x)|_{V_{\alpha}\otimes V_{\beta}}=\oplus_{\gamma,\delta}\mathcal{W}(x;\alpha,\beta,\gamma,\delta)

The sum is over γ,δ\gamma,\delta such that βα=δγ\beta\circ\alpha=\delta\circ\gamma and 𝒲\mathcal{W} is the component

𝒲(x;α,β,γ,δ)Homk(VαVβ,VγVδ)\displaystyle\mathcal{W}(x;\alpha,\beta,\gamma,\delta)\in\operatorname{Hom}_{k}(V_{\alpha}\otimes V_{\beta},V_{\gamma}\otimes V_{\delta})

Similarly we can define the local Hecke operator, local Temperley–Lieb operator and local Birman–Murakami–Wenzl operator which are without the spectral parameter.

Definition 2.6.

For a map q¯:Ob(π)0\bar{q}:\rm{Ob}(\pi)\to\mathbb{C}_{\neq 0}, it induces a map qEnd(VV)q\in\operatorname{End}(V\otimes V) as in 2.5. The local Hecke operator SEnd(VV)S\in\operatorname{End}(V\otimes V) associated to qq is defined by the following equations

(Sq)(S+q1)=0\displaystyle(S-q)(S+q^{-1})=0 (2.6a)
S(12)S(23)S(12)=S(12)S(23)S(12)\displaystyle S^{(12)}S^{(23)}S^{(12)}=S^{(12)}S^{(23)}S^{(12)} (2.6b)
Definition 2.7.

For a map κ¯:Ob(π)0\bar{\kappa}:\rm{Ob}(\pi)\to\mathbb{C}_{\neq 0}, it induces a map κEnd(VV)\kappa\in\operatorname{End}(V\otimes V). The local Temperley–Lieb operator TT in End(VV)\operatorname{End}(V\otimes V) associated to κ\kappa is defined by the equations

T2=κT\displaystyle T^{2}=\kappa T (2.7a)
T(12)T(23)T(12)=T(12)\displaystyle T^{(12)}T^{(23)}T^{(12)}=T^{(12)} (2.7b)
T(23)T(12)T(23)=T(23)\displaystyle T^{(23)}T^{(12)}T^{(23)}=T^{(23)} (2.7c)
Definition 2.8.

For two maps q¯,ν¯:Ob(π)0\bar{q},\bar{\nu}:\rm{Ob}(\pi)\to\mathbb{C}_{\neq 0}, let VVectk(π)V\in\text{Vect}_{k}(\pi) and UU be an invertible operator in End(VV)\operatorname{End}(V\otimes V) and

K:=id(qq1)1(UU1),K:=\operatorname{id}-(q-q^{-1})^{-1}(U-U^{-1}), (2.8)

UU is called local Birman–Murakami–Wenzl operator if it satisfies the following equations

U(12)U(23)U(12)=U(23)U(12)U(23)\displaystyle U^{(12)}U^{(23)}U^{(12)}=U^{(23)}U^{(12)}U^{(23)} (2.9a)
KT=TK=νK\displaystyle KT=TK=\nu K (2.9b)
K(23)(Tϵ)(12)K(23)=(νϵ)(1)K(23),ϵ=±1\displaystyle K^{(23)}(T^{\epsilon})^{(12)}K^{(23)}=(\nu^{-\epsilon})^{(1)}K^{(23)},\quad\epsilon=\pm 1 (2.9c)
K(12)(Tϵ)(23)K(12)=(νϵ)K(12),ϵ=±1\displaystyle K^{(12)}(T^{\epsilon})^{(23)}K^{(12)}=(\nu^{-\epsilon})K^{(12)},\quad\epsilon=\pm 1 (2.9d)

2.2. Local dynamical operators

Let VVectk(π)V\in\text{Vect}_{k}(\pi), the dynamical Yang-Baxter operator Rˇ(z,a)\check{R}(z,a) is defined on the source fibers s1(a)s^{-1}(a) of VV, aOb(π)a\in\text{Ob}(\pi),

Rˇ(z,a)αs1(a)Endk((VV)α),\check{R}(z,a)\in\oplus_{\alpha\in s^{-1}(a)}\operatorname{End}_{k}\big{(}(V\otimes V)_{\alpha}\big{)},

which satisfies the dynamical Yang-Baxter equation

Rˇ(23)(zw,ah(1))Rˇ(12)(z,a)Rˇ(23)(w,ah(1))=Rˇ(12)(w,a)Rˇ(23)(z,ah(1))Rˇ(12)(zw,a)\begin{split}&\check{R}^{(23)}(z-w,ah^{(1)})\check{R}^{(12)}(z,a)\check{R}^{(23)}(w,ah^{(1)})\\ &=\check{R}^{(12)}(w,a)\check{R}^{(23)}(z,ah^{(1)})\check{R}^{(12)}(z-w,a)\end{split} (2.10)

here we use the ”dynamical” notation with the placeholder h(i)h^{(i)}:

Rˇ(23)(ah(1))(uvw)=uRˇ(t(α1))(vw),ifuVα1,s(α1)=a\displaystyle\check{R}^{(23)}(ah^{(1)})(u\otimes v\otimes w)=u\otimes\check{R}(t(\alpha_{1}))(v\otimes w),\quad\text{if}\quad u\in V_{\alpha_{1}},s(\alpha_{1})=a

And more generally, we write the dynamical Yang–Baxter equation as

Rˇ(23)(x,ah(1))Rˇ(12)(x,a)Rˇ(23)(x′′,ah(1))=Rˇ(12)(x′′,a)Rˇ(23)(x,ah(1))Rˇ(12)(x,a)\begin{split}&\check{R}^{(23)}(x,ah^{(1)})\check{R}^{(12)}(x^{\prime},a)\check{R}^{(23)}(x^{\prime\prime},ah^{(1)})\\ &=\check{R}^{(12)}(x^{\prime\prime},a)\check{R}^{(23)}(x^{\prime},ah^{(1)})\check{R}^{(12)}(x,a)\end{split} (2.11)

and here x,x,x′′x,x^{\prime},x^{\prime\prime} are functions of the z,z,z′′z,z^{\prime},z^{\prime\prime} and satisfies the conditions z′′=zzz^{\prime\prime}=z^{\prime}-z.

In the case of an action groupoid π=AG\pi=A\rtimes G and its subgroupoids, the operator can be written explicitly as

Rˇ(x,d)gGEndk((VV)(d,g))\displaystyle\check{R}(x,d)\in\oplus_{g\in G}\operatorname{End}_{k}((V\otimes V)_{(d,g)}) (2.12a)
(VV)(d,g)=hGV(d,h)V(dh,h1g),\displaystyle(V\otimes V)_{(d,g)}=\sum_{h\in G}V_{(d,h)}\otimes V_{(dh,h^{-1}g)}, (2.12b)

for any composable edges, we have

Rˇ(x,d)|V(d,g1)V(a,g2)=(d,g3),(c,g4)𝒲(x;(d,g1),(a,g2),(d,g3),(c,g4)),\check{R}(x,d)|_{V_{(d,g_{1})}\otimes V_{(a,g_{2})}}=\oplus_{(d,g_{3}),(c,g_{4})}\mathcal{W}\big{(}x;(d,g_{1}),(a,g_{2}),(d,g_{3}),(c,g_{4})\big{)}, (2.13)

where 𝒲(x;(d,g1),(a,g2),(d,g3),(c,g4))Homk(V(d,g1)V(a,g2),V(d,g3)V(c,g3))\mathcal{W}\big{(}x;(d,g_{1}),(a,g_{2}),(d,g_{3}),(c,g_{4})\big{)}\in\operatorname{Hom}_{k}(V_{(d,g_{1})}\otimes V_{(a,g_{2})},V_{(d,g_{3})}\otimes V_{(c,g_{3})}), graphically it is

𝒲(x;(d,g1),(a,g2),(d,g3),(c,g4))=\mathcal{W}\big{(}x;(d,g_{1}),(a,g_{2}),(d,g_{3}),(c,g_{4})\big{)}=ddg3g_{3}ccg4g_{4}g1g_{1}aag2g_{2}bb (2.14)

In the same spirit, when we look at the source fibers, we can define the various dynamical local operators.

Definition 2.9.

For a map q¯:Ob(π)0\bar{q}:\rm{Ob}(\pi)\to\mathbb{C}_{\neq 0}, the local dynamical Hecke operator S(a)S(a) is defined on the source fibers s1(a)s^{-1}(a) of VV, aOb(π)a\in\rm{Ob}(\pi),

S(a)αs1(a)Endk((VV)α),S(a)\in\oplus_{\alpha\in s^{-1}(a)}\operatorname{End}_{k}\big{(}(V\otimes V)_{\alpha}\big{)}, (2.15)

and satisfy the relations

(S(a)q¯(a))(S(a)+q¯1(a))=0,\displaystyle\big{(}S(a)-\bar{q}(a)\big{)}\big{(}S(a)+\bar{q}^{-1}(a)\big{)}=0, (2.16a)
S(12)(a)S(23)(ah(1))S(12)(a)=S(23)(ah(1))S(12)(a)S(23)(ah(1))\displaystyle S^{(12)}(a)S^{(23)}(ah^{(1)})S^{(12)}(a)=S^{(23)}(ah^{(1)})S^{(12)}(a)S^{(23)}(ah^{(1)}) (2.16b)
Definition 2.10.

For a map κ¯:Ob(π)0\bar{\kappa}:\rm{Ob}(\pi)\to\mathbb{C}_{\neq 0}, an operator T(a)T(a) defined on the source fibers s1(a),aOb(π)s^{-1}(a),a\in\rm{Ob}(\pi)

T(a)αs1(a)Endk((VV)α),T(a)\in\oplus_{\alpha\in s^{-1}(a)}\operatorname{End}_{k}\big{(}(V\otimes V)_{\alpha}\big{)}, (2.17)

is called a local dynamical Temperley–Lieb operator if it satisfies the following dynamical Temperley–Lieb equations:

T(a)T(a)=κ¯(a)T(a)\displaystyle T(a)T(a)=\bar{\kappa}(a)T(a) (2.18a)
T(12)(a)T(23)(ah(1))T(12)(a)=T(12)(a)\displaystyle T^{(12)}(a)T^{(23)}(ah^{(1)})T^{(12)}(a)=T^{(12)}(a) (2.18b)
T(23)(ah(1))T(12)(a)T(23)(ah(1))=T(23)(ah(1))\displaystyle T^{(23)}(ah^{(1)})T^{(12)}(a)T^{(23)}(ah^{(1)})=T^{(23)}(ah^{(1)}) (2.18c)
Lemma 2.11.

Suppose that we have dynamical Hecke operator S(a)S(a) with parameter qq, if q¯(a)+q¯1(a)0\bar{q}(a)+\bar{q}^{-1}(a)\neq 0 for any aa in Ob(π)\rm{Ob}(\pi), then we can define T(a):=q¯(a)S(a)T(a):=\bar{q}(a)-S(a), which forms the local dynamical Temperley–Lieb operator with parameter κ¯=q¯+q¯1\bar{\kappa}=\bar{q}+\bar{q}^{-1}.

For any finite connected unoriented graph Γ\Gamma with nn vertices and that has at most one edge between different vertices, let YMatn({0,1})Y\in\text{Mat}_{n}(\{0,1\}) be its adjacency matrix, by the Perron–Frobenius theorem, see appendix A, it has a Perron–Frobenius vector ξ\xi with eigenvalue ϕ(Y)\phi(Y) for Γ\Gamma, and satisfies the eigenvalue equation

Yξ=ϕ(Y)ξ\displaystyle Y\xi=\phi(Y)\xi

For each un-oriented edge in Γ\Gamma, we have two specific inverse direction edges corresponding to it in the associated groupoid π(Γ)\pi(\Gamma), for those specific directed edges corresponding to unoriented edges, we associate a one dimensional vector space for each of them, then we have a VVectπ(Γ)V\in\text{Vect}_{\pi(\Gamma)}.

Proposition 2.12.

Suppose that ξ=(Si),iOb(π)\xi=(S_{i}),i\in\rm{Ob}(\pi), then we can construct a representation of the local dynamical Temperley–Lieb operator TΓT_{\Gamma} associated to constant function κ¯Γ(a):=ϕ(Y)\bar{\kappa}_{\Gamma}(a):=\phi(Y) by

TΓ(d)=a,cTΓ(dcad)=a,cSaScSdSdT_{\Gamma}(d)=\oplus_{a,c}T_{\Gamma}\Big{(}\begin{matrix}d&c\\ a&d\\ \end{matrix}\Big{)}=\oplus_{a,c}\sqrt{\frac{S_{a}S_{c}}{S_{d}S_{d}}}ddγ\gammaccδ\deltaα\alphaaaβ\betadd (2.19)
Proof.

It is easy to see that the ”dynamical Temperlay–Lieb” relations are equivalent to the following graphical relations on aa source fibers, these graph of relations of blocks of Temperley-Lieb was already observed by the Pasquier [37], with the above parametrization, these relations are easily verified.

β,γ,d1\sum_{\beta,\gamma,d_{1}}=ϕ(Y)=\phi(Y)aaα2\alpha_{2}a¯\bar{a}β2\beta_{2}α1\alpha_{1}β1\beta_{1}aaa1a_{1}aaβ\beta^{{}^{\prime}}d1d_{1}γ\gammaα1\alpha_{1}a1a_{1}β1\beta_{1}aaaaα2\alpha_{2}a¯\bar{a}β2\beta_{2}β\betaγ\gammaaa
==aaα3\alpha_{3}a¯\bar{a}β4\beta_{4}α1\alpha_{1}β1\beta_{1}aaγ1\gamma_{1}a2a_{2}a1a_{1}aaα2\alpha_{2}a2a_{2}β2\beta_{2}α1\alpha_{1}a1a_{1}β1\beta_{1}aaγ1\gamma_{1}a2a_{2}γ2\gamma_{2}aaα3\alpha_{3}a¯\bar{a}β4\beta_{4}α2\alpha_{2}β3\beta_{3}aa

From the duality between the square lattice model and the loop model, see [35] section 4, we can have the following diagram interpretaion of this Temperley–Lieb operator

da,c\oplus_{a,c}\quadadcTΓ(d)T_{\Gamma}(d)\mapsto (2.20)

And then we can form the loop model or diagram algebra definition of the operator in Proposition 2.1 related to unoriented graphs. Later in subsection 2.3, we will see that the following example is a specific case of the relation between dynamical Temperley–Lieb and the usual Temperley–Lieb algebra in proposition 2.20.

Definition 2.13.

Given any connected non-oriented graph (V,E)(V,E) with at most single edge between two different vertices, for N,N>0N\in\mathbb{Z},N>0 and ϕ\phi\in\mathbb{C}, the diagram algebra dTL(N,ϕ)\rm{dTL}(N,\phi) is defined as the follows.

For any aVa\in V, if there exists b,cb,c which is connected to aa by an edge, a generator ei(a)[b,c]e_{i}(a)[b,c] is defined and the generators satisfy the following three equation

cei(a)[c,d]ei(a)[b,c]=ϕei[b,d]\displaystyle\sum_{c}e_{i}(a)[c,d]e_{i}(a)[b,c]=\phi e_{i}[b,d] (2.21a)
ei(a)[c,d]ei+1(c)[a,a]ei(a)[b,c]=ei(a)[b,d]\displaystyle e_{i}(a)[c,d]e_{i+1}(c)[a,a]e_{i}(a)[b,c]=e_{i}(a)[b,d] (2.21b)
ei+1(b)[a,d]ei(a)[b,b]ei+1(b)[c,a]=ei(b)[c,d]\displaystyle e_{i+1}(b)[a,d]e_{i}(a)[b,b]e_{i+1}(b)[c,a]=e_{i}(b)[c,d] (2.21c)

And graphically the generators ei(a)[b,c]e_{i}(a)[b,c] are presented as the following:

iii+1i+1iii+1i+1aaaabbccei(a)[b,c]=e_{i}(a)[b,c]= (2.22)

The equations (2.21a),(2.21b) and (2.21c) are graphically described by the (2.23),(2.24) and (2.25) respectively.

iii+1i+1aaaabbcciii+1i+1aaaaccdd=ϕ=\phiiii+1i+1iii+1i+1aaaabbdd (2.23)
iii+1i+1aaaabbccccccaaaaiii+1i+1aaaaccdd==iii+1i+1iii+1i+1aaaabbddcc (2.24)
i+1i+1i+2i+2bbbbccaaaaaabbcci+1i+1i+2i+2bbbbaadd==i+1i+1i+2i+2i+1i+1i+2i+2bbbbccddaa (2.25)
Definition 2.14.

For two maps q¯,ν¯:Ob(π)×\bar{q},\bar{\nu}:\rm{Ob}(\pi)\to\mathbb{C}^{\times} and an invertible operator U(a)U(a) defined on the source fiber s1(a)s^{-1}(a) of VV where aOb(π)a\in\rm{Ob}(\pi). That is

U(a)αs1(a)Endk((VV)α)U(a)\in\oplus_{\alpha\in s^{-1}(a)}\operatorname{End}_{k}\big{(}(V\otimes V)_{\alpha}\big{)} (2.26)

and we denote

K(a)=idU(a)U1(a)q¯(a)q¯1(a),K(a)=\operatorname{id}-\frac{U(a)-U^{-1}(a)}{\bar{q}(a)-\bar{q}^{-1}(a)}, (2.27)

U(a)U(a) is called the local dynamical Birman-Murakami-Wenzl operator associated to q¯,ν¯\bar{q},\bar{\nu}, if they satisfies the following relations

U(12)(a)U(23)(ah(1))U(12)(a)=U(23)(ah(1))U(12)(a)U(23)(ah(1))\displaystyle U^{(12)}(a)U^{(23)}(ah^{(1)})U^{(12)}(a)=U^{(23)}(ah^{(1)})U^{(12)}(a)U^{(23)}(ah^{(1)}) (2.28a)
K(a)U(a)=U(a)K(a)=ν¯(a)K(a)\displaystyle K(a)U(a)=U(a)K(a)=\bar{\nu}(a)K(a) (2.28b)
K(23)(ah(1))(Uϵ)(12)(a)K(23)(ah(1))=ν¯ϵ(ah(1))K(23)(ah(1)),ϵ=±1\displaystyle K^{(23)}(ah^{(1)})(U^{\epsilon})^{(12)}(a)K^{(23)}(ah^{(1)})=\bar{\nu}^{-\epsilon}(ah^{(1)})K^{(23)}(ah^{(1)}),\quad\epsilon=\pm 1 (2.28c)
K(12)(a)(Uϵ)(23)(ah(1))K(12)(a)=ν¯ϵ(a)K(a),ϵ=±1\displaystyle K^{(12)}(a)(U^{\epsilon})^{(23)}(ah^{(1)})K^{(12)}(a)=\bar{\nu}^{-\epsilon}(a)K(a),\quad\epsilon=\pm 1 (2.28d)

2.3. Relation between the usual and dynamical operators

There are three types of relations that relate the non-dynamical and dynamical operators.

The first type of relation is about the groupoid structure, suppose that the groupoid π\pi is trivial that has only one vertex and one identity arrow, then the category of π\pi graded vector space becomes just the usual category of kk vector space

Vectk(π)Vectk,\rm{Vect}_{k}(\pi)\simeq\rm{Vect}_{k},

the local dynamical operators does not depend on the dynamical shift and becomes the usual operators, for example the dynamical Yang-Baxter equation (2.10) becomes the usual quantum Yang-Baxter equation

Rˇ(zw)(23)Rˇ(z)(12)Rˇ(w)(23)=Rˇ(w)(12)Rˇ(z)(23)Rˇ(zw)(12),\check{R}(z-w)^{(23)}\check{R}(z)^{(12)}\check{R}(w)^{(23)}=\check{R}(w)^{(12)}\check{R}(z)^{(23)}\check{R}(z-w)^{(12)},

and similarly other local dynamical operators will become the local non dynamical operators.

The second type relation is about the relations between usual operators on groupoid graded representation and dynamical operators on the source fibers. We can simply restrict the operators to the source fibers to get the dynamical operators.

For example, if π=AG\pi=A\rtimes G is an action groupoid with an Yang-Baxter operator Rˇ(x)\check{R}(x) defined on VVectk(π)V\in\text{Vect}_{k}(\pi), we can restrict the Rˇ(x)\check{R}(x) to a graded component of the vector space with fixed aAa\in A

Rˇ(x,a):=Rˇ(x)|gGEndk((VV)(a,g)),\displaystyle\check{R}(x,a):=\check{R}(x)|_{\oplus_{g\in G}\operatorname{End}_{k}((V\otimes V)_{(a,g)})},

the restriction of the Yang-Baxter equation to the graded component will be the corresponding dynamical Yang-Baxter equation.

The third type of relation is the globalization which goes from dynamical to non-dynamical, for example we can first define the following global dynamical operators.

Definition 2.15.

Let ViVectk(π)V_{i}\in\text{Vect}_{k}(\pi), q¯i:Ob(π)0\bar{q}_{i}:\rm{Ob}(\pi)\to\mathbb{C}_{\neq 0}, i=1,,Ni=1,\dots,N, for operators Si(a)S_{i}(a) defined on the source fibers s1(a),aOb(π)s^{-1}(a),a\in\text{Ob}(\pi),

Si(a)αs1(a)Endk((t=1NVi)α),S_{i}(a)\in\oplus_{\alpha\in s^{-1}(a)}\operatorname{End}_{k}\big{(}(\otimes^{N}_{t=1}V_{i})_{\alpha}\big{)}, (2.29)

they forms a dynamical Hecke operator associated to q¯i\bar{q}_{i}, if it satisfies the following dynamical Hecke relations:

[Si(a),q¯i(ahi1)]=0\displaystyle[S_{i}(a),\bar{q}_{i}(ah^{i-1})]=0 (2.30a)
(Si(a)q¯i(ahi1))(Si(a)+q¯i1(ahi1))=0,1iN1\displaystyle\big{(}S_{i}(a)-\bar{q}_{i}(ah^{i-1})\big{)}\big{(}S_{i}(a)+\bar{q}_{i}^{-1}(ah^{i-1})\big{)}=0,\quad 1\leq i\leq N-1 (2.30b)
Si(a)Si+1(a)Si(a)=Si+1(a)Si(a)Si+1(a),1iN2\displaystyle S_{i}(a)S_{i+1}(a)S_{i}(a)=S_{i+1}(a)S_{i}(a)S_{i+1}(a),\quad 1\leq i\leq N-2 (2.30c)
Si(a)Sj(a)=Sj(a)Si(a),|ij|>1\displaystyle S_{i}(a)S_{j}(a)=S_{j}(a)S_{i}(a),\quad|i-j|>1 (2.30d)

Many classical arguments naturally extend to the dynamical case, for example, we can also define the Murphy element of type AA, the type here is actually refer to both the boundary type and the Lie algebra type. Here is the definition,

J1(A)(a):=S12(a);\displaystyle J_{1}^{(A)}(a):=S^{2}_{1}(a); (2.31)
Ji(A)(a):=Si(a)Ji1(A)(a)Si(a),2iN1\displaystyle J_{i}^{(A)}(a):=S_{i}(a)J^{(A)}_{i-1}(a)S_{i}(a),\quad 2\leq i\leq N-1 (2.32)
Proposition 2.16.

Suppose that q¯1=q¯2==q¯N\bar{q}_{1}=\bar{q}_{2}=\dots=\bar{q}_{N} is constant, the Murphy elements satisfies the relations:

[Ji(A)(a),Jj(A)(a)]=0\displaystyle[J^{(A)}_{i}(a),J^{(A)}_{j}(a)]=0 (2.33)
[S1(a),Jj(A)(a)]=0,j1\displaystyle[S_{1}(a),J^{(A)}_{j}(a)]=0,\quad j\geq 1 (2.34)
[Si(a),Jj(A)(a)]=0,j>i,i2,ji1,i\displaystyle[S_{i}(a),J^{(A)}_{j}(a)]=0,\quad j>i,i\geq 2,j\neq i-1,i (2.35)
[Si(a),Ji1(A)(a)Ji(A)(a)]=0,i2\displaystyle[S_{i}(a),J^{(A)}_{i-1}(a)J^{(A)}_{i}(a)]=0,\quad i\geq 2 (2.36)
[Si(a),Ji(A)(a)+Ji1(A)(a)]i2\displaystyle[S_{i}(a),J^{(A)}_{i}(a)+J^{(A)}_{i-1}(a)]\quad i\geq 2 (2.37)
Remark 2.17.

For different boundary conditions, there may be other different generalizations of Temperley–Lieb and Hecke algebra as in the classical case, for example as in [8].

Definition 2.18.

Let ViVectk(π)V_{i}\in\text{Vect}_{k}(\pi), κ¯i:Ob(π)0\bar{\kappa}_{i}:\rm{Ob}(\pi)\to\mathbb{C}_{\neq 0}, i=1,,Ni=1,\dots,N, the operators Ti(a)T_{i}(a) are defined on the source fibers s1(a),aOb(π)s^{-1}(a),a\in\text{Ob}(\pi),

Ti(a)αs1(a)Endk((t=1NVi)α),T_{i}(a)\in\oplus_{\alpha\in s^{-1}(a)}\operatorname{End}_{k}\big{(}(\otimes^{N}_{t=1}V_{i})_{\alpha}\big{)}, (2.39)

they forms a dynamical Temperley–Lieb algebra if it satisfies the following dynamical Hecke relations:

Ti(a)Ti(a)=κ¯i(ahi1)Ti(a),i=1,,N1\displaystyle T_{i}(a)T_{i}(a)=\bar{\kappa}_{i}(ah^{i-1})T_{i}(a),\quad i=1,\dots,N-1 (2.40a)
Ti(a)Ti+1(a)Ti(a)=Ti(a),1iN2\displaystyle T_{i}(a)T_{i+1}(a)T_{i}(a)=T_{i}(a),\quad 1\leq i\leq N-2 (2.40b)
Ti+1(a)Ti(a)Ti+1(a)=Ti+1(a),1iN2\displaystyle T_{i+1}(a)T_{i}(a)T_{i+1}(a)=T_{i+1}(a),\quad 1\leq i\leq N-2 (2.40c)
Ti(a)Tj(a)=Tj(a)Ti(a),|ij|>1\displaystyle T_{i}(a)T_{j}(a)=T_{j}(a)T_{i}(a),\quad|i-j|>1 (2.40d)
Lemma 2.19.

Suppose that we have dynamical Hecke operators Si(a)S_{i}(a) associated to q¯i\bar{q}_{i}, if q¯i(ahi1)+q¯i1(ahi1)\bar{q}_{i}(ah^{i-1})+\bar{q}_{i}^{-1}(ah^{i-1}) is not equal to zero for any aOb(π)a\in\rm{Ob}(\pi) and i=1,,Ni=1,\dots,N, then we can define Ti(a):=q¯i(ah(i))Si(a)T_{i}(a):=\bar{q}_{i}(ah^{(i)})-S_{i}(a), which forms the dynamical Temerpey-Lieb operator associated to κ¯i=q¯i+q¯i1\bar{\kappa}_{i}=\bar{q}_{i}+\bar{q}_{i}^{-1}.

The following proposition describes the relation between the local dynamical operators and global dynamical operators.

Proposition 2.20.

Let T(a)T(a) be a local dynamical operator defined on source fibers of VV in definition 2.10 associated to κ¯\bar{\kappa}, then

Ti(a):=T(i,i+1)(ahi1)T_{i}(a):=T^{(i,i+1)}(ah^{i-1}) (2.41)

is a representation of dynamical Temperley-Lieb operator on the source fiber space of VNV^{\otimes N} associated with κ¯i=κ¯,i=1,,N\bar{\kappa}_{i}=\bar{\kappa},i=1,\dots,N.

The following proposition describes the relation between the ”global” dynamical algebra and the usual algebra.

Proposition 2.21.

Suppose that κ¯1=κ¯2==κ¯N\bar{\kappa}_{1}=\bar{\kappa}_{2}=\dots=\bar{\kappa}_{N} is a constant function for all aa in the Definition 2.18 , then collecting all the fiber space, we get the operator Ti:=Ti(a)T_{i}:=\oplus T_{i}(a), which forms a representation on groupoid graded vector space of usual Temperley-Lieb algebras associated with the constant κ¯(ah(i1))\bar{\kappa}(ah^{(i-1)}).

And similarly for the Birman-Wenzl-Mirakami case, we give the following definitions of the global version.

Definition 2.22.

Let ViVectk(π),q¯i,ν¯i:Ob0V_{i}\in\text{Vect}_{k}(\pi),\bar{q}_{i},\bar{\nu}_{i}:\rm{Ob}\to\mathbb{C}_{\neq 0},i=1,,Ni=1,\dots,N, the invertible operators Ui(a),i=1,,N1U_{i}(a),i=1,\dots,N-1 are defined on source fibers s1(a),aOb(π)s^{-1}(a),a\in\text{Ob}(\pi),

Ui(a)αs1(a)Endk((t=1NVi)α).U_{i}(a)\in\oplus_{\alpha\in s^{-1}(a)}\operatorname{End}_{k}\big{(}(\otimes^{N}_{t=1}V_{i})_{\alpha}\big{)}. (2.42)

The Ki(a)K_{i}(a) are defined by

Ki(a)=id(q(ahi1)q1(ahi1))1(Ui(a)Ui1(a)).\displaystyle K_{i}(a)=\operatorname{id}-\big{(}q(ah^{i-1})-q^{-1}(ah^{i-1}))^{-1}\big{(}U_{i}(a)-U^{-1}_{i}(a)\big{)}. (2.43)

Ui(a)U_{i}(a) are called dynamical Birman-Murakami-Wenzl operator if they satisfies the relation

Ui(a)Ui+1(a)Ui(a)=Ui+1(a)Ui(a)Ui+1(a)\displaystyle U_{i}(a)U_{i+1}(a)U_{i}(a)=U_{i+1}(a)U_{i}(a)U_{i+1}(a) (2.44a)
Ki(a)Ui(a)=Ui(a)Ki(a)=νi(ahi1)Ki(a)\displaystyle K_{i}(a)U_{i}(a)=U_{i}(a)K_{i}(a)=\nu_{i}(ah^{i-1})K_{i}(a) (2.44b)
Ki(a)Ui1ϵ(a)Ki(a)=νϵ(ahi1)Ki(a),ϵ=±1\displaystyle K_{i}(a)U^{\epsilon}_{i-1}(a)K_{i}(a)=\nu^{-\epsilon}(ah^{i-1})K_{i}(a),\quad\epsilon=\pm 1 (2.44c)
Ki(a)Ti+1ϵ(a)Ki(a)=νϵ(ahi1)Ki(a),ϵ=±1\displaystyle K_{i}(a)T^{\epsilon}_{i+1}(a)K_{i}(a)=\nu^{-\epsilon}(ah^{i-1})K_{i}(a),\quad\epsilon=\pm 1 (2.44d)

2.4. Baxterization

In this section, we consider the Baxterization process of the local dynamical operators.

In the first case, let VVectk(π)V\in\text{Vect}_{k}(\pi), suppose that we have invertible operators σ(a)αs1(a)Endk((VV)α)\sigma(a)\in\oplus_{\alpha\in s^{-1}(a)}\operatorname{End}_{k}\big{(}(V\otimes V)_{\alpha}\big{)} that satisfy the relations

σ(12)(a)σ(23)(ah1)σ(12)(a)=σ(23)(ah1)σ(12)(a)σ(23)(ah1)\displaystyle\sigma^{(12)}(a)\sigma^{(23)}(ah^{1})\sigma^{(12)}(a)=\sigma^{(23)}(ah^{1})\sigma^{(12)}(a)\sigma^{(23)}(ah^{1}) (2.45a)
σ(a)+σ1(a)=f(a)id\displaystyle\sigma(a)+\sigma^{-1}(a)=f(a)\operatorname{id} (2.45b)

where f:Ob(π)0f:\text{Ob}(\pi)\to\mathbb{C}_{\neq 0}.

Theorem 2.23.

Suppose that f(a)=f(b)f(a)=f(b) if there exists an arrow α\alpha with s(α)=a,t(α)=bs(\alpha)=a,t(\alpha)=b, then the operator defined by

Rˇ(z,a)=ezσ(a)+ezσ1(a)\displaystyle\check{R}(z,a)=e^{z}\sigma(a)+e^{-z}\sigma^{-1}(a)

satisfies the dynamical Yang-Baxter equation (2.10).

Proof.

We use the relations

σ(a)+σ1(a)=f(a)id,σ(ah1)+σ1(ah1)=f(ah1)id=f(a)id\sigma(a)+\sigma^{-1}(a)=f(a)\operatorname{id},\quad\sigma(ah^{1})+\sigma^{-1}(ah^{1})=f(ah^{1})\operatorname{id}=f(a)\operatorname{id}

In the second case, if we assume that

Rˇ(x,a)=id+xT(a)\displaystyle\check{R}(x,a)=\operatorname{id}+xT(a) (2.46)

where T(a)T(a) is local dynamical Temperley-Lieb operators associated to κ¯\bar{\kappa} on VV as defined in 2.10 then we will get

Theorem 2.24.

Suppose that x=f(z),x=f(z),x′′=f(z′′),z′′=zzx=f(z),x^{\prime}=f(z^{\prime}),x^{\prime\prime}=f(z^{\prime\prime}),z^{\prime\prime}=z^{\prime}-z satisfies the following equation

x′′=xx1+κ¯(ah1)x+xx,x′′=xx1+κ¯(a)x+xx\displaystyle x^{{}^{\prime\prime}}=\frac{x^{\prime}-x}{1+\bar{\kappa}(ah^{1})x+xx^{\prime}},\quad x^{{}^{\prime\prime}}=\frac{x^{\prime}-x}{1+\bar{\kappa}(a)x+xx^{\prime}} (2.47)

then the operators Rˇ(x,a)=id+xT(a)\check{R}(x,a)=\operatorname{id}+xT(a) satisfies the dynamical Yang-Baxter equation (2.11).

Proof.

Inserting the assumption (2.46) into the dynamical Yang–Baxter equation and using the relations of local Temperlay–Lieb operator, we get the following relations

(x′′+x+κ¯(ah1)xx′′+xxx′′x)T(23)(ah(1))=(x′′+x+κ¯(a)xx′′+xxx′′x)T(12)(a),\begin{split}&(x^{\prime\prime}+x+\bar{\kappa}(ah^{1})xx^{\prime\prime}+xx^{\prime}x^{\prime\prime}-x^{\prime})T^{(23)}(ah^{(1)})\\ &=(x^{\prime\prime}+x+\bar{\kappa}(a)xx^{\prime\prime}+xx^{\prime}x^{\prime\prime}-x^{\prime})T^{(12)}(a),\end{split} (2.48)

so suppose that we have the relation (2.47), then the Yang-Baxter relation will be satisfied. ∎

In the third case, we consider about the Birman-Murakami-Wenzl case.

Theorem 2.25.

Suppose that the operators U(a)U(a) are the local dynamical Birman-Murakami-Wenzl operator associated with q¯,ν¯\bar{q},\bar{\nu} on VV, and suppose that q¯(a)=q¯(b),ν¯(a)=ν¯(b),\bar{q}(a)=\bar{q}(b),\bar{\nu}(a)=\bar{\nu}(b), if there exists an arrow απ\alpha\in\pi with s(α)=a,t(α)=bs(\alpha)=a,t(\alpha)=b. Then we define

Rˇ(u,v)[a]:=U(a)+q¯(a)q¯1(a)v/u1+q¯(a)q¯1(a)1+ν¯1(a)q¯(a)v/uK(a),\displaystyle\check{R}(u,v)[a]:=U(a)+\frac{\bar{q}(a)-\bar{q}^{-1}(a)}{v/u-1}+\frac{\bar{q}(a)-\bar{q}^{-1}(a)}{1+\bar{\nu}^{-1}(a)\bar{q}(a)v/u}K(a), (2.49)

and it satisfies the following two parameters dynamical Yang-Baxter equation

Rˇ(12)(u2,u3)[a]Rˇ(23)(u1,u3)[ah(1)]Rˇ(12)(u1,u2)[a]=Rˇ(23)(u1,u2)[ah(1)]Rˇ(12)(u1,u3)[a]Rˇ(23)(u2,u3)[ah(1)]\begin{split}&\check{R}^{(12)}(u_{2},u_{3})[a]\check{R}^{(23)}(u_{1},u_{3})[ah^{(1)}]\check{R}^{(12)}(u_{1},u_{2})[a]\\ &=\check{R}^{(23)}(u_{1},u_{2})[ah^{(1)}]\check{R}^{(12)}(u_{1},u_{3})[a]\check{R}^{(23)}(u_{2},u_{3})[ah^{(1)}]\end{split} (2.50)
Proof.

With the assumption q¯(a)=q¯(b),ν¯(a)=ν¯(b),\bar{q}(a)=\bar{q}(b),\bar{\nu}(a)=\bar{\nu}(b), if there exists an arrow απ\alpha\in\pi with s(α)=a,t(α)=bs(\alpha)=a,t(\alpha)=b, the proof is similar to the classical case. ∎

2.5. Example: unrestricted cases

The first case we consider is the unrestricted case. For the non-oriented graph with objects (+b)(\mathbb{Z}+b) and an edge for every two neighbouring numbers (see Figure 1),here bb is a generic shift to avoid the singularities of the operators we defined below,

πAunres:\pi^{\text{unres}}_{A}:\dots1+b1+b2+b2+b\dotsn+bn+b\dots
Figure 1. unrestricted groupoid of type AA

the corresponding groupoid is denoted by πAunres\pi_{A}^{\text{unres}}. And we define the following πAunres\pi_{A}^{\text{unres}} graded vector space,

V(a,1)πAunres=e(a,1),V(a,+1)πAunres=e(a,+1).\displaystyle V^{\pi^{\text{unres}}_{A}}_{(a,-1)}=\mathbb{C}e_{(a,-1)},\quad V^{\pi^{\text{unres}}_{A}}_{(a,+1)}=\mathbb{C}e_{(a,+1)}. (2.51)

here (a,1)(a,-1) is the edge with source a and target (a1)(a-1) and (a,+1)(a,+1) is the edge with source aa and target (a+1)(a+1).

In this case, we can identify the fiber space with some vector spaces and then write the operator in a matrix form. For any aπunresa\in\pi^{\rm{unres}},

αs1(a)(VπAunresVπAunres)α4\oplus_{\alpha\in s^{-1}(a)}(V^{\pi^{\text{unres}}_{A}}\otimes V^{\pi^{\text{unres}}_{A}})_{\alpha}\cong\mathbb{C}^{4} (2.52)

by identifying e(a,+1)e(a+1,+1)e_{(a,+1)}\otimes e_{(a+1,+1)} with (1,0)T(1,0)T(1,0)^{T}\otimes(1,0)^{T}, e(a,+1)e(a+1,1)e_{(a,+1)}\otimes e_{(a+1,-1)} with (1,0)T(0,1)T(1,0)^{T}\otimes(0,1)^{T},e(a,1)e(a1,+1)e_{(a,-1)}\otimes e_{(a-1,+1)} with (0,1)T(1,0)T(0,1)^{T}\otimes(1,0)^{T} and e(a,1)e(a1,1)e_{(a,-1)}\otimes e_{(a-1,-1)} with (0,1)T(0,1)T(0,1)^{T}\otimes(0,1)^{T}, let EijE_{ij} be the 2×22\times 2 matrix unit such that Eijek=δjkeiE_{ij}e_{k}=\delta_{jk}e_{i} for all k{1,2}k\in\{1,2\}.

In the following, we define operators TAtri(a),TAhyb(a),TAell(a)T^{\text{tri}}_{A}(a),T^{\text{hyb}}_{A}(a),T^{\text{ell}}_{A}(a) on αs1(a)Endk((VπAunresVπAunres)α)\oplus_{\alpha\in s^{-1}(a)}\operatorname{End}_{k}\big{(}(V^{\pi^{\text{unres}}_{A}}\otimes V^{\pi^{\text{unres}}_{A}})_{\alpha}\big{)}.

Proposition 2.26.

Let z:=sin(πzL+1)\langle z\rangle:=\sin(\frac{\pi z}{L+1}), the operators

TAtri(a)=a1a+1aE21E12+a+1a1aE12E21+a+1aE11E22+a1aE22E11\begin{split}T^{\text{tri}}_{A}(a)&=\frac{\sqrt{\langle a-1\rangle\langle a+1\rangle}}{\langle a\rangle}E_{21}\otimes E_{12}+\frac{\sqrt{\langle a+1\rangle\langle a-1\rangle}}{\langle a\rangle}E_{12}\otimes E_{21}\\ +&\frac{\langle a+1\rangle}{\langle a\rangle}E_{11}\otimes E_{22}+\frac{\langle a-1\rangle}{\langle a\rangle}E_{22}\otimes E_{11}\end{split} (2.53)

forms local dynamical Temperley–Lieb operator algebra on VπAunresV^{\pi^{\text{unres}}_{A}} associated with the constant function κ¯tri=2cosλ,λ=π/(L+1)\bar{\kappa}^{\text{tri}}=2\cos\lambda,\lambda=\pi/(L+1).

Lemma 2.27.

The function x=z1zx=\frac{\langle z\rangle}{\langle 1-z\rangle} satisfies the equation (2.47) for the κ¯tri\bar{\kappa}^{\text{tri}}, then it follows RˇAtri(z,a)=id+z1zTAtri(a)\check{R}^{\text{tri}}_{A}(z,a)=\operatorname{id}+\frac{\langle z\rangle}{\langle 1-z\rangle}T^{\text{tri}}_{A}(a) satisfies the dynamical YBE.

Proposition 2.28.

Let {{z}}:=sinh(πzL+1)\{\!\!\{z\}\!\!\}:=\sinh(\frac{\pi z}{L+1}), the operators

TAhyp(a)={{a1}}{{a+1}}{{a}}E21E12+{{a+1}}{{a1}}{{a}}E12E21+{{a+1}}{{a}}E11E22+{{a1}}{{a}}E22E11\begin{split}T_{A}^{\text{hyp}}(a)&=\frac{\sqrt{\{\!\!\{a-1\}\!\!\}\{\!\!\{a+1\}\!\!\}}}{\{\!\!\{a\}\!\!\}}E_{21}\otimes E_{12}+\frac{\sqrt{\{\!\!\{a+1\}\!\!\}\{\!\!\{a-1\}\!\!\}}}{\{\!\!\{a\}\!\!\}}E_{12}\otimes E_{21}\\ &+\frac{\{\!\!\{a+1\}\!\!\}}{\{\!\!\{a\}\!\!\}}E_{11}\otimes E_{22}+\frac{\{\!\!\{a-1\}\!\!\}}{\{\!\!\{a\}\!\!\}}E_{22}\otimes E_{11}\end{split} (2.54)

forms local dynamical Temperley–Lieb operator algebra on VπAunresV^{\pi^{\text{unres}}_{A}} associated with the constant function κ¯hyp(a)=2cosh(πL+1)\bar{\kappa}^{\text{hyp}}(a)=2\cosh(\frac{\pi}{L+1}).

Lemma 2.29.

The function x={{z}}{{1z}}x=\frac{\{\!\!\{z\}\!\!\}}{\{\!\!\{1-z\}\!\!\}} satisfies the equation (2.47) for the κ¯hyb\bar{\kappa}^{\text{hyb}}, then it follows RˇAhyb(z,a)=id+{{z}}{{1z}}TAhyb(a)\check{R}^{\text{hyb}}_{A}(z,a)=\operatorname{id}+\frac{\{\!\!\{z\}\!\!\}}{\{\!\!\{1-z\}\!\!\}}T^{\text{hyb}}_{A}(a) satisfies the dynamical YBE.

Fix complex numbers τ\tau and L2L\in\mathbb{Z}_{\geq 2} such that Imτ>0\operatorname{Im}\tau>0 and 1L+1+τ\frac{1}{L+1}\notin\mathbb{Z}+\tau\mathbb{Z}, let

θ(z,τ)=neiπ(n+12)2τ+2πi(n+12)(z+12)\displaystyle\theta(z,\tau)=-\sum_{n\in\mathbb{Z}}e^{i\pi(n+\frac{1}{2})^{2}\tau+2\pi i(n+\frac{1}{2})(z+\frac{1}{2})} (2.55)

be the odd Jacobi theta function and [z]=θ(z/(L+1),τ)/(θ(0,τ)/(L+1))[z]=\theta\big{(}z/(L+1),\tau\big{)}/\big{(}\theta^{{}^{\prime}}(0,\tau)/(L+1)\big{)} is normalized to have derivative 1 at z=0z=0.

Proposition 2.30.

On the source fiber vector space of VπAunresV^{\pi^{\rm{unres}}_{A}}, the operators TAellT^{\rm{ell}}_{A} defined by

TAell(a)=[a1][a+1][a]E21E12+[a+1][a1][a]E12E21+[a+1][a]E11E22+[a1][a]E22E11\begin{split}T^{\rm{ell}}_{A}(a)&=\frac{\sqrt{[a-1][a+1]}}{[a]}E_{21}\otimes E_{12}+\frac{\sqrt{[a+1][a-1]}}{[a]}E_{12}\otimes E_{21}\\ +&\frac{[a+1]}{[a]}E_{11}\otimes E_{22}+\frac{[a-1]}{[a]}E_{22}\otimes E_{11}\end{split} (2.56)

forms local dynamical Temperley–Lieb operator associated with map

κ¯ell(a)=[a+1]+[a1][a]\bar{\kappa}^{\text{ell}}(a)=\frac{[a+1]+[a-1]}{[a]} (2.57)
Proof.

The first equation (2.18a) is directly computed and it will produce the κ¯ell\bar{\kappa}^{\text{ell}} map. For the equation (2.18b) and (2.21c), same as proof 2.12, it is directly checked. ∎

In the elliptic case, the dynamical Rˇ\check{R} matrix related to TAellT^{\text{ell}}_{A} is Andrews-Baxter-Forrester [2] parametrization of elliptic dynamical [20] RR matrix

RˇAell(z,a)=i=12EiiEii+[a1][a+1][z][a][1z]E21E12+[a+1][a1][z][a][1z]E12E21+[a+z][1][a][1z]E11E22+[az][1][a][1z]E22E11\begin{split}\check{R}^{\text{ell}}_{A}(z,a)&=\sum_{i=1}^{2}E_{ii}\otimes E_{ii}+\frac{\sqrt{[a-1][a+1]}[z]}{[a][1-z]}E_{21}\otimes E_{12}+\frac{\sqrt{[a+1][a-1]}[z]}{[a][1-z]}E_{12}\otimes E_{21}\\ +&\frac{[a+z][1]}{[a][1-z]}E_{11}\otimes E_{22}+\frac{[a-z][1]}{[a][1-z]}E_{22}\otimes E_{11}\end{split} (2.58)
Lemma 2.31.

Taking the trigonometric limit τi\tau\to-i\infty of RˇAell\check{R}^{\text{ell}}_{A} and Tˇell\check{T}^{\text{ell}}, we get the corresponding RˇAhyb\check{R}^{\text{hyb}}_{A} and TˇAhyb\check{T}^{\text{hyb}}_{A}.

Proof.

we have the following addition formula

a+z1=sin(π(a+z)πL+1)sin(πL+1)\displaystyle\langle a+z\rangle\langle 1\rangle=\sin(\frac{\pi(a+z)\pi}{L+1})\sin(\frac{\pi}{L+1})
=(sin(aπL+1)cos(zπL+1))sin(πL+1)+sin(zπL+1)cos(aπL+1)sin(πL+1)\displaystyle=(\sin(\frac{a\pi}{L+1})\cos(\frac{z\pi}{L+1}))\sin(\frac{\pi}{L+1})+\sin(\frac{z\pi}{L+1})\cos(\frac{a\pi}{L+1})\sin(\frac{\pi}{L+1})
sin(zπL+1)cos(πL+1)sin(aπL+1)+sin(zπL+1)cos(πL+1)sin(aπL+1)\displaystyle-\sin(\frac{z\pi}{L+1})\cos(\frac{\pi}{L+1})\sin(\frac{a\pi}{L+1})+\sin(\frac{z\pi}{L+1})\cos(\frac{\pi}{L+1})\sin(\frac{a\pi}{L+1})
=sin(aπL+1)(sin(πL+1zπL+1))+sin(πzL+1)sin(π(a+1))L+1\displaystyle=\sin(\frac{a\pi}{L+1})(\sin(\frac{\pi}{L+1}-\frac{z\pi}{L+1}))+\sin(\frac{\pi z}{L+1})\sin\frac{(\pi(a+1))}{L+1}

and similarly for az1\langle a-z\rangle\langle 1\rangle. ∎

Remark 2.32.

There are two new phenomenons in the elliptic case, the first is that the function κ\kappa is not constant, the second is that TˇAell\check{T}^{\text{ell}}_{A} is not Baxterized in the sense of 2.24. This can be seen as the mathematical interpretation of the physics fact that only passing to the trigonometric or hyperbolic limit of the lattice model, we have some critical behaviors.

2.6. Example: restricted case

In this section, we recover reformulate the classical results of Pasquier models [36] and Temperley–Lieb interaction models [35], see also [40].

We first discuss the classical ADEADE case, let Γ\Gamma be one of the classical ADEADE diagrams. From the Proposition 2.12, we get the dynamical Temperley–Lieb operator corresponding to those graphs. The Perro-Frobenius eigenvalue of the graphs are 2cos(λ)2\cos(\lambda) where λ=π/h\lambda=\pi/h and hh is the coexter number for the ADE graph as in the Table 2:

Lie algebra ALA_{L} DLD_{L} E6E_{6} E7E_{7} E8E_{8}
Coxter number L+1L+1 2L22L-2 1212 1818 3030
Table 2. table of coexter number
Proposition 2.33.

The parameterization x=sinzsin(λz)x=\frac{\sin z}{\sin(\lambda-z)} satisfies the relation (2.47) for κ¯Γ\bar{\kappa}_{\Gamma}, the dynamical Rˇ(z,a):=id+sinzsin(λz)TΓ(a)\check{R}(z,a):=\operatorname{id}+\frac{\sin z}{\sin(\lambda-z)}T_{\Gamma}(a) satisfies the dynamical YBE.

Let Γ(1)\Gamma^{(1)} denote one of the affine ADEADE graphs, from the Proposition 2.12, we get the dynamical Temperley–Lieb operator corresponding to those graphs, the Perro-Frobenius eigenvalue of the graphs are 2.

Proposition 2.34.

The parameterization x=z1zx=\frac{z}{1-z} satisfies the relation (2.47) for κΓ(1)\kappa_{\Gamma^{(1)}}, the dynamical Rˇ(z,a):=id+z1zTΓ(1)\check{R}(z,a):=\operatorname{id}+\frac{z}{1-z}T_{\Gamma^{(1)}} satisfies the dynamical YBE.

For the type AA case, we can write the Rˇ\check{R} matrix and operator TT more explicitly as a matrix similar to the unrestricted setting, but because our groupoid graded vector space is the restricted case, we do not have the isomorphism for all fiber space 2.52, so there are some items may not appear due to the restriction.

We denote a:=sin(aπ/(L+1))\langle a\rangle:=\sin(a\pi/(L+1)), for 3aL33\leq a\leq L-3, we have the following

RˇΓA(u,a)=(100001+sin(u)a+1sin(λu)asinua1a+1sin(λu)a00sin(u)a1a+1sin(λu)a1+sin(u)a1sin(λu)a00001)\displaystyle\check{R}_{\Gamma_{A}}(u,a)=\begin{pmatrix}1&0&0&0\\ 0&1+\frac{\sin(u)\langle a+1\rangle}{\sin(\lambda-u)\langle a\rangle}&\frac{\sin u\sqrt{\langle a-1\rangle\langle a+1\rangle}}{\sin(\lambda-u)\langle a\rangle}&0\\ 0&\frac{\sin(u)\sqrt{\langle a-1\rangle\langle a+1\rangle}}{\sin(\lambda-u)\langle a\rangle}&1+\frac{\sin(u)\langle a-1\rangle}{\sin(\lambda-u)\langle a\rangle}&0\\ 0&0&0&1\end{pmatrix} (2.59)

And in this case the TΓAT_{\Gamma_{A}} is the following:

TΓA(a):=(00000a+1aa1a+1a00a1a+1aa1a00000)\displaystyle T_{\Gamma_{A}}(a):=\begin{pmatrix}0&0&0&0\\ 0&\frac{\langle a+1\rangle}{\langle a\rangle}&\frac{\sqrt{\langle a-1\rangle\langle a+1\rangle}}{\langle a\rangle}&0\\ 0&\frac{\sqrt{\langle a-1\rangle\langle a+1\rangle}}{\langle a\rangle}&\frac{\langle a-1\rangle}{\langle a\rangle}&0\\ 0&0&0&0\end{pmatrix}

For other aa near the boundary, certain terms in these matrix are not defined because the fiber space do not have the isomorphism (2.47). For example, if a=2a=2,

RˇΓA(u,a)=(100001+sin(u)a+1sin(λu)asinua1a+1sin(λu)a00sin(u)a1a+1sin(λu)a1+sin(u)a1sin(λu)a0000)\displaystyle\check{R}_{\Gamma_{A}}(u,a)=\begin{pmatrix}1&0&0&0\\ 0&1+\frac{\sin(u)\langle a+1\rangle}{\sin(\lambda-u)\langle a\rangle}&\frac{\sin u\sqrt{\langle a-1\rangle\langle a+1\rangle}}{\sin(\lambda-u)\langle a\rangle}&0\\ 0&\frac{\sin(u)\sqrt{\langle a-1\rangle\langle a+1\rangle}}{\sin(\lambda-u)\langle a\rangle}&1+\frac{\sin(u)\langle a-1\rangle}{\sin(\lambda-u)\langle a\rangle}&0\\ 0&0&0&*\end{pmatrix}

if a=1a=1,

TΓA(a):=(00000a+1a0000000)\displaystyle T_{\Gamma_{A}}(a):=\begin{pmatrix}0&0&0&0\\ 0&\frac{\langle a+1\rangle}{\langle a\rangle}&*&0\\ 0&*&*&0\\ 0&0&0&0\end{pmatrix}

For a=L,L1a=L,L-1, the situation is similar.

2.7. Transfer matrix and hamiltonian of spin chain

For complicity, we briefly recall the definition of convolution algebra with coefficients in π\pi graded algebras over a field and the partial traces to describe the transfer matrix in terms of π\pi graded vector space developed in [22].

Definition 2.35.

Let π\pi be a groupoid , a π\pi graded algebra RR over kk is a collection (Rγ)γπ(R_{\gamma})_{\gamma\in\pi} of kk-vector spaces labeled by arrows of π\pi with bilinear products Rα×RβRβα,(x,y)xyR_{\alpha}\times R_{\beta}\to R_{\beta\circ\alpha},(x,y)\to xy defined for composable arrows α,β\alpha,\beta and units 1aRa1_{a}\in R_{a}, for aAa\in A such that (i)(xy)z=x(yz)(i)(xy)z=x(yz) whenever defined and (ii)x1b=x=1ax(ii)x1_{b}=x=1_{a}x for all xRαx\in R_{\alpha} of degree απ(a,b)\alpha\in\pi(a,b).

Example 2.36.

Let VVectk(π)V\in\text{Vect}_{k}(\pi) and let End¯V\underline{\operatorname{End}}V be the π\pi graded vector space with (End¯V)α=γπ(a,a)Homk(Vαγα1,Vγ)(\underline{\operatorname{End}}V)_{\alpha}=\oplus_{\gamma\in\pi(a,a)}\operatorname{Hom}_{k}(V_{\alpha\circ\gamma\circ\alpha^{-1}},V_{\gamma}) where a=s(a)a=s(a), then End¯V\underline{\operatorname{End}}V with the product given by the composition of linear maps

Homk(Vαγα1)Homk(Vβαγα1β1,Vαγα1)Homk(Vβαγ(βα)1,Vγ)\displaystyle\operatorname{Hom}_{k}(V_{\alpha\gamma\alpha^{-1}})\otimes\operatorname{Hom}_{k}(V_{\beta\alpha\gamma\alpha^{-1}\beta^{-1}},V_{\alpha\gamma\alpha^{-1}})\to\operatorname{Hom}_{k}(V_{\beta\alpha\gamma(\beta\alpha)^{-1}},V_{\gamma})

and unit 1a=γπ(a,a)idVγ1_{a}=\oplus_{\gamma\in\pi(a,a)}\operatorname{id}_{V_{\gamma}} is a π\pi graded algebra.

Definition 2.37.

Let RR be a π\pi graded algebra, the convolution algebra Γ(π,R)\Gamma(\pi,R) with coefficients in RR is the kk algebra of maps f:παπRαf:\pi\to\sqcup_{\alpha\in\pi}R_{\alpha} such that

  1. (1)

    f(α)Rαf(\alpha)\in R_{\alpha} for all arrows απ\alpha\in\pi,

  2. (2)

    for every aAa\in A, there are finitely many αs1(a)t1(a)\alpha\in s^{-1}(a)\cup t^{-1}(a) such that f(α)0f(\alpha)\neq 0.

The product is the convolution product

fg(γ)=βα=γf(α)g(β)\displaystyle f*g(\gamma)=\sum_{\beta\circ\alpha=\gamma}f(\alpha)g(\beta) (2.60)

The partial trace over VV is the map

trV:HomVectk(π)(VW,WV)Γ(π,End¯W)\displaystyle\text{tr}_{V}:\operatorname{Hom}_{\text{Vect}_{k}(\pi)}(V\otimes W,W\otimes V)\to\Gamma(\pi,\underline{\operatorname{End}}W) (2.61)

defined as follows. For fHom(VW,WV)f\in\operatorname{Hom}(V\otimes W,W\otimes V) and απ(a,b),γπ(a,a)\alpha\in\pi(a,b),\gamma\in\pi(a,a), let f(α,γ)f(\alpha,\gamma) be the component of the mapping, which is the mapping between two paths in the figure 2.64.

f(α,γ):VαWαγα1WγVα\displaystyle f(\alpha,\gamma):V_{\alpha}\otimes W_{\alpha\gamma\alpha^{-1}}\to W_{\gamma}\otimes V_{\alpha} (2.62)

Define

trVαf(α,γ)=i(idei)f(α,γ)(eiid)Hom(Wαγα1,Wγ)\displaystyle\text{tr}_{V_{\alpha}}f(\alpha,\gamma)=\sum_{i}(\operatorname{id}\otimes e^{*}_{i})f(\alpha,\gamma)(e_{i}\otimes\operatorname{id})\in\operatorname{Hom}(W_{\alpha\gamma\alpha^{-1}},W_{\gamma}) (2.63)

for any basis eie_{i} of VαV_{\alpha} and dual basis eie^{*}_{i} of the dual vector space (Vα)(V_{\alpha})^{*}.

f(α,γ):=aabbWγVαVαWαγα1trVαf(α,γ)=aabbWγααWαγα1f(\alpha,\gamma):=\leavevmode\hbox to63.3pt{\vbox to54.63pt{\pgfpicture\makeatletter\hbox{\hskip 31.6517pt\lower-30.88771pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-25.89696pt}{-21.94443pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 6.94849pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.64294pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${a}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.94849pt\hfil&\hfil\hskip 30.94846pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.64294pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${a}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.94849pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 6.45137pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.14583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${b}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.45137pt\hfil&\hfil\hskip 30.45134pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.14583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${b}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.45137pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.07988pt}{2.39986pt}\pgfsys@curveto{-1.69989pt}{0.95992pt}{-0.85313pt}{0.27998pt}{0.0pt}{0.0pt}\pgfsys@curveto{-0.85313pt}{-0.27998pt}{-1.69989pt}{-0.95992pt}{-2.07988pt}{-2.39986pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{12.81947pt}\pgfsys@lineto{11.40002pt}{12.81947pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{12.81947pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.82713pt}{16.81113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{W_{\gamma}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-18.94847pt}{6.45976pt}\pgfsys@lineto{-18.94847pt}{-10.74033pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-18.94847pt}{-10.9403pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.49893pt}{-4.30136pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{\alpha}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.94847pt}{6.45976pt}\pgfsys@lineto{18.94847pt}{-10.74033pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{18.94847pt}{-10.9403pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.30124pt}{-4.30136pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{\alpha}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-12.2971pt}{-19.44443pt}\pgfsys@lineto{11.89714pt}{-19.44443pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.09712pt}{-19.44443pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.71927pt}{-26.58052pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{W_{\alpha\gamma\alpha^{-1}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\text{tr}_{V_{\alpha}}f(\alpha,\gamma)=\leavevmode\hbox to55.86pt{\vbox to54.63pt{\pgfpicture\makeatletter\hbox{\hskip 27.93192pt\lower-30.88771pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-25.89696pt}{-21.94443pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 6.94849pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.64294pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${a}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.94849pt\hfil&\hfil\hskip 30.94846pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.64294pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${a}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.94849pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 6.45137pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.14583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${b}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.45137pt\hfil&\hfil\hskip 30.45134pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.14583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${b}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.45137pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{12.81947pt}\pgfsys@lineto{11.40002pt}{12.81947pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{12.81947pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.82713pt}{16.81113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{W_{\gamma}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-18.94847pt}{6.45976pt}\pgfsys@lineto{-18.94847pt}{-10.74033pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-18.94847pt}{-10.9403pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-25.77914pt}{-3.8472pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.94847pt}{6.45976pt}\pgfsys@lineto{18.94847pt}{-10.74033pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{18.94847pt}{-10.9403pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.30124pt}{-3.8472pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-12.2971pt}{-19.44443pt}\pgfsys@lineto{11.89714pt}{-19.44443pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.09712pt}{-19.44443pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.71927pt}{-26.58052pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{W_{\alpha\gamma\alpha^{-1}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} (2.64)
Definition 2.38.

The partial trace trVfΓ(π,End¯W)\text{tr}_{V}f\in\Gamma(\pi,\underline{\operatorname{End}}W) of fHomVectk(π)(VW,WV)f\in\operatorname{Hom}_{\text{Vect}_{k}(\pi)}(V\otimes W,W\otimes V) over VV is the section

trVf:αγπ(a,a)trVαf(α,γ)(End¯W)α\displaystyle\text{tr}_{V}f:\alpha\to\oplus_{\gamma\in\pi(a,a)}\text{tr}_{V_{\alpha}}f(\alpha,\gamma)\in(\underline{\operatorname{End}}W)_{\alpha} (2.65)

For the vector spaces Vi,V0Vectk(π)V_{i},V_{0}\in\text{Vect}_{k}(\pi) with the dynamical Yang-Baxter operator RˇV0,Vi(x,a)\check{R}_{V_{0},V_{i}}(x,a), the component α\alpha of face type transfer matrix

M(x,α)=trV0(i=0N1RˇV0,Vi+1(i+1,i+2)(x,ah(i)))(α)M(x,\alpha)=\text{tr}_{V_{0}}\big{(}\prod_{i=0}^{N-1}\check{R}^{(i+1,i+2)}_{V_{0},V_{i+1}}(x,ah^{(i)})\big{)}(\alpha)\\

can be draw as in the 2.66 which transfer from lower horizontal line to the upper horizontal line, it is an element in Γ(π,End¯(V1VN))\Gamma(\pi,\underline{\operatorname{End}}(V_{1}\otimes\dots\otimes V_{N})), its component α,s(α)=a\alpha,s(\alpha)=a is written as

M(x,α):=aabbV1αV2V0V3V0V0VNV0αV1V2V3VNM(x,\alpha):=\leavevmode\hbox to206.31pt{\vbox to53.72pt{\pgfpicture\makeatletter\hbox{\hskip 103.15402pt\lower-30.3194pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-101.11906pt}{-22.01387pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 6.94849pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.64294pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${a}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.94849pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\bullet}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\bullet}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\bullet}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\bullet}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.94846pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.64294pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${a}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.94849pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 6.45137pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.14583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${b}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.45137pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\bullet}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\bullet}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\bullet}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\bullet}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.45134pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.14583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${b}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.45137pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-87.0221pt}{12.75003pt}\pgfsys@lineto{-63.82208pt}{12.75003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-63.6221pt}{12.75003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-79.04155pt}{16.39168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-94.17058pt}{6.39032pt}\pgfsys@lineto{-94.17058pt}{-10.80977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-94.17058pt}{-11.00975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-101.00125pt}{-3.91664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-49.41104pt}{12.75003pt}\pgfsys@lineto{-26.21103pt}{12.75003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.01105pt}{12.75003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-41.4305pt}{16.39168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-56.41658pt}{6.39032pt}\pgfsys@lineto{-56.41658pt}{-13.30977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-56.41658pt}{-13.50975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-66.40823pt}{-5.40692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{12.75003pt}\pgfsys@lineto{11.40002pt}{12.75003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{12.75003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.81944pt}{16.39168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{3}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-18.80553pt}{6.39032pt}\pgfsys@lineto{-18.80553pt}{-13.30977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-18.80553pt}{-13.50975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.79718pt}{-5.40692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{25.81107pt}{12.75003pt}\pgfsys@lineto{49.01108pt}{12.75003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{49.21106pt}{12.75003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{34.98605pt}{5.49727pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\dots}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.80553pt}{6.39032pt}\pgfsys@lineto{18.80553pt}{-13.30977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{18.80553pt}{-13.50975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.81387pt}{-5.40692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{63.42212pt}{12.75003pt}\pgfsys@lineto{86.62213pt}{12.75003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{86.82211pt}{12.75003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{70.57768pt}{16.46947pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{N}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{56.41658pt}{6.39032pt}\pgfsys@lineto{56.41658pt}{-13.30977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{56.41658pt}{-13.50975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{46.42493pt}{-5.40692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{94.17058pt}{6.39032pt}\pgfsys@lineto{94.17058pt}{-10.80977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{94.17058pt}{-11.00975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{96.52335pt}{-3.91664pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-87.51921pt}{-19.51387pt}\pgfsys@lineto{-63.82208pt}{-19.51387pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-63.6221pt}{-19.51387pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-79.29012pt}{-26.64996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-49.41104pt}{-19.51387pt}\pgfsys@lineto{-26.21103pt}{-19.51387pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.01105pt}{-19.51387pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-41.4305pt}{-26.64996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{-19.51387pt}\pgfsys@lineto{11.40002pt}{-19.51387pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{-19.51387pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.81944pt}{-26.64996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{3}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{25.81107pt}{-19.51387pt}\pgfsys@lineto{49.01108pt}{-19.51387pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{49.21106pt}{-19.51387pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{34.98605pt}{-26.76663pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\dots}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{63.42212pt}{-19.51387pt}\pgfsys@lineto{87.11925pt}{-19.51387pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{87.31923pt}{-19.51387pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{70.82623pt}{-26.64996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{V_{N}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} (2.66)
Proposition 2.39.

By the corallory 3.9 of [22], we have the family of commuting transfer matrix

M(x)M(y)=M(y)M(x)M(x)*M(y)=M(y)*M(x) (2.67)

Now let V=ViVectk(π),i=0,,NV=V_{i}\in\text{Vect}_{k}(\pi),i=0,\dots,N, suppose that we have the Baxterization with respect to the local Temperley-Lieb operators as in with the ansatz RˇV,V(x,a)=id+xT(a)\check{R}_{V,V}(x,a)=\operatorname{id}+xT(a), the component (α)(\alpha) of transfer matrix can be written as

M(x,α)=trVi=0N1(id+xT(i+1,i+2)(ah(i)))(α)\displaystyle M(x,\alpha)=\text{tr}_{V}\prod_{i=0}^{N-1}\big{(}\operatorname{id}+xT^{(i+1,i+2)}(ah^{(i)})\big{)}(\alpha) (2.68)

We can then define the hamiltonian H(x,α)Γ(π,End¯(VN))H(x,\alpha)\in\Gamma(\pi,\underline{\operatorname{End}}(V^{\otimes N})) to be the ”log derivative” at 0 of the transfer matrix

H(x,α):=M1(0,α)M(x,α)|x=0=M1(0,α)trV(i=0N1T(i+1,i+2)(ah(i)))H(x,\alpha):=M^{-1}(0,\alpha)M^{\prime}(x,\alpha)|_{x=0}=M^{-1}(0,\alpha)\text{tr}_{V}\big{(}\sum_{i=0}^{N-1}T^{(i+1,i+2)}(ah^{(i)})\big{)} (2.70)

From the commuting of the transfer matrices, we have the following commuting relations

Proposition 2.40.
H(x)M(y)=M(y)H(x)H(x)*M(y)=M(y)*H(x) (2.71)

We have that M(0,α)=trV(id)M(0,\alpha)=\text{tr}_{V}(\operatorname{id}), if we assume that

dimVα=1,for all α\displaystyle\dim V_{\alpha}=1,\quad\text{for all $\alpha$} (2.72)

for simplicity to deal with the partial trace and also enough for all our examples.

Then we have more explicitly form of M(0,α)End¯(VN)M(0,\alpha)\in\underline{\operatorname{End}}(V^{\otimes N})

M(0,α)|Vα1VαN:\displaystyle M(0,\alpha)|_{V_{\alpha_{1}}\dots\otimes V_{\alpha_{N}}}: Vα1VαNVαNV1VαN1\displaystyle V_{\alpha_{1}}\dots\otimes V_{\alpha_{N}}\to V_{\alpha_{N}}\otimes V_{1}\dots\otimes V_{\alpha_{N-1}} (2.73)
v1vNvNv1v2vN1\displaystyle v_{1}\otimes\dots v_{N}\mapsto v_{N}\otimes v_{1}\otimes v_{2}\dots v_{N-1} (2.74)

graphically this corresponds to

a{a}b{b}a2{a_{2}}{\dots}a{a}b{b}a2{a_{2}}a3{a_{3}}{\dots}b{b}α\scriptstyle{\alpha}α\scriptstyle{\alpha}vN\scriptstyle{v_{N}}α1\scriptstyle{\alpha_{1}}v1\scriptstyle{v_{1}}α1\scriptstyle{\alpha_{1}}v1\scriptstyle{v_{1}}α2\scriptstyle{\alpha_{2}}v2\scriptstyle{v_{2}}α2\scriptstyle{\alpha_{2}}αN1\scriptstyle{\alpha_{N-1}}vN1\scriptstyle{v_{N-1}}α\scriptstyle{\alpha}α1\scriptstyle{\alpha_{1}}v1\scriptstyle{v_{1}}α2\scriptstyle{\alpha_{2}}v2\scriptstyle{v_{2}}α3\scriptstyle{\alpha_{3}}v3\scriptstyle{v_{3}}αN=α\scriptstyle{\alpha_{N}=\alpha}vN\scriptstyle{v_{N}} (2.75)

More explicitly, we have different forms

H(x,α)\displaystyle H(x,\alpha) =M1(0,α)(i=1N2M(0,α)T(i+1,i+2)(ah(i))+M(0,α)T(N,1)(a))\displaystyle=M^{-1}(0,\alpha)\big{(}\sum_{i=1}^{N-2}M(0,\alpha)T^{(i+1,i+2)}(ah^{(i)})+M(0,\alpha)T^{(N,1)}(a)\big{)} (2.76a)
=i=1N2T(i+1,i+2)(ah(i))+T(N,1)(a)\displaystyle=\sum_{i=1}^{N-2}T^{(i+1,i+2)}(ah^{(i)})+T^{(N,1)}(a) (2.76b)
=i=1N2T(i+1,i+2)(ah(i))+M1(0,α)T(1,2)(a)M(0,α)\displaystyle=\sum_{i=1}^{N-2}T^{(i+1,i+2)}(ah^{(i)})+M^{-1}(0,\alpha)T^{(1,2)}(a)M(0,\alpha) (2.76c)
Example 2.41.

For each representation of local dynamical Temperley-Lieb that can be Baxterized and also satisfies the assumption (2.72), we can construct Hamitonians as expressed in (2.76).

  1. (1)

    Plug the representation in Proposition 2.26 and 2.28 into (2.76), this corresponds to the case of trigonometric and hyperbolic unrestricted type AA.

  2. (2)

    Plug the representation in Proposition 2.33 and 2.34 into (2.76), this corresponds to the case of restricted ADE and affine ADE type.

Remark 2.42.

The local dynamical Temperley–Lieb structure underlying these one dimensional integrable systems are probably new. As a physics system expressed in the square lattice language, these systems has been widely studied in physics, for example the work of [3], where they considered restricted type A and calculate the eigenvectors and eigenvalues.

Appendix A Perron-Frobenius theorem

In this appendix, we recall the classical Perron-Frobenius theorem in the form of the book [10], Theorem 3.2.1.

Theorem A.1 (Frobenius-Perron).

Let BB be a square matrix with non-negative real entries.

  1. (1)

    BB has a non-negative real eigenvalue. The largest non-negative real eigenvalue λ(B)\lambda(B) of BB dominates the absolute values of all other eigenvalues μ\mu of B:|μ|λ(B)B:|\mu|\leq\lambda(B) (in other words, the spectral radius of BB is an eigenvalue.) Moreover, there is an eigenvector of BB with non-negative entries and eigenvalue λ(B)\lambda(B).

  2. (2)

    If BB has strictly positive entries then λ(B)\lambda(B) is a simple positive eigenvalue, and the corresponding eigenvector can be normalized to have strictly positive entries. Moreover, |μ|<λ(B)|\mu|<\lambda(B) for any other eigenvalue μ\mu of BB.

  3. (3)

    If a matrix BB with non-negative entries has an eigenvector vv with strictly positive entries, then the corresponding eigenvalue is λ(B)\lambda(B).

Proof.

See the proof of [10], Theorem 3.2.1. ∎

As a example of the above theorem, we have the following table 3 of Perro-Frobenius eigenvector of classical ADE Dykin diagram, see for example [40].

Lie lagebra Perro-Frobenius Eigenvector
ALA_{L} (sin(πL+1),sin2πL+1,,sinLπL+1)(\sin(\frac{\pi}{L+1}),\sin\frac{2\pi}{L+1},\dots,\sin\frac{L\pi}{L+1})
DLD_{L} (2cos(L2)π2L2,,2cos2π2L2,2cosπ2L2,1,1)(2\cos\frac{(L-2)\pi}{2L-2},\dots,2\cos\frac{2\pi}{2L-2},2\cos\frac{\pi}{2L-2},1,1)
E6E_{6} (sinπ12,sinπ6,sinπ4,sinπ3sinπ42cosπ12,sin5π12sinπ4,sinπ42cosπ18)(\sin\frac{\pi}{12},\sin\frac{\pi}{6},\sin\frac{\pi}{4},\sin\frac{\pi}{3}-\frac{\sin\frac{\pi}{4}}{2\cos\frac{\pi}{12}},\sin\frac{5\pi}{12}-\sin\frac{\pi}{4},\frac{\sin\frac{\pi}{4}}{2\cos\frac{\pi}{18}})
E7E_{7} (sinπ18,sinπ9,sinπ6,sin2π9,sin2π18sin2π92cosπ18,sinπ3sin2π9,sin2π92cosπ30)(\sin\frac{\pi}{18},\sin\frac{\pi}{9},\sin\frac{\pi}{6},\sin\frac{2\pi}{9},\sin\frac{2\pi}{18}-\frac{\sin\frac{2\pi}{9}}{2\cos\frac{\pi}{18}},\sin\frac{\pi}{3}-\sin\frac{2\pi}{9},\frac{\sin\frac{2\pi}{9}}{2\cos\frac{\pi}{30}})
E8E_{8} (sinπ30,sinπ15,sinπ10,sin2π15,sinπ6,sinπ5sinπ62cosπ30,sin7π30sinπ6,sinπ62cosπ30)(\sin\frac{\pi}{30},\sin\frac{\pi}{15},\sin\frac{\pi}{10},\sin\frac{2\pi}{15},\sin\frac{\pi}{6},\sin\frac{\pi}{5}-\frac{\sin\frac{\pi}{6}}{2\cos\frac{\pi}{30}},\sin\frac{7\pi}{30}-\sin\frac{\pi}{6},\frac{\sin\frac{\pi}{6}}{2\cos\frac{\pi}{30}})
AL1(1)A^{(1)}_{L-1} (1,,1)(1,\dots,1)
DL1(1)D^{(1)}_{L-1} (1,1,2,2,,2,2,1,1)(1,1,2,2,\dots,2,2,1,1)
E6(1)E^{(1)}_{6} (1,2,3,2,1,2,1)(1,2,3,2,1,2,1)
E7(1)E^{(1)}_{7} (1,2,3,4,3,2,1,2)(1,2,3,4,3,2,1,2)
E8(1)E^{(1)}_{8} (1,2,3,4,5,6,4,2,3)(1,2,3,4,5,6,4,2,3).
Table 3. Table of Eigenvector

References

  • [1] M. Aganagic and A. Okounkov. Elliptic stable envelopes. J.Am.Math.Soc., 34(1):79–133, dec 2021.
  • [2] G.E. Andrews, R.J. Baxter, and P.J. Forrester. Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities. Journal of Statistical Physics, 35(3-4):193–266, 1984.
  • [3] V.V. Bazhanov and N.Yu. Reshetikhin. Critical RSOS Models and Conformal Field Theory. Int.J.Mod.Phys.A, 4(01):115–142, jan 1989.
  • [4] A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Physics B, 241(2):333–380, jul 1984.
  • [5] J.S. Birman and H. Wenzl. Braids, link polynomials and a new algebra. Transactions of the American Mathematical Society, 313(1):249–273, 1989.
  • [6] K. Costello, E. Witten, and M. Yamazaki. Gauge theory and integrability, I. ICCM Not., 6(1):46–119, 2018.
  • [7] K. Costello, E. Witten, and M. Yamazaki. Gauge theory and integrability, II. ICCM Not., 6(1):120–146, 2018.
  • [8] J. de Gier and A. Nichols. The two-boundary Temperley–Lieb algebra. Journal of Algebra, 321(4):1132–1167, feb 2009.
  • [9] V. Drinfeld. Quantum groups. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 798–820. Amer. Math. Soc., Providence, RI, 1987.
  • [10] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, volume 205. American Mathematical Society, Providence, RI, 2015.
  • [11] P. Etingof and A. Kirillov. Macdonald’s polynomials and representations of quantum groups. Mathematical Research Letters, 1:279–296, 1994.
  • [12] P. Etingof and F. Latour. The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems, volume 29 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2005.
  • [13] P. Etingof and O. Schiffmann. Lectures on the dynamical Yang-Baxter equations. In Quantum groups and Lie theory (Durham, 1999), volume 290 of London Math. Soc. Lecture Note Ser., pages 89–129. Cambridge Univ. Press, Cambridge, 2001.
  • [14] P. Etingof, O. Schiffmann, and A. Varchenko. Traces of intertwiners for quantum groups and difference equations. Letters in Mathematical Physics, 62(2):143–158, nov 2002.
  • [15] P. Etingof and A. Varchenko. Geometry and classification of solutions of the classical dynamical Yang-Baxter equation. Comm. Math. Phys., 192(1):77–120, 1998.
  • [16] P. Etingof and A. Varchenko. Solutions of the quantum dynamical Yang-Baxter equation and dynamical quantum groups. Comm. Math. Phys., 196(3):591–640, 1998.
  • [17] P. Etingof and A. Varchenko. Exchange dynamical quantum groups. Comm. Math. Phys., 205(1):19–52, 1999.
  • [18] L.D. Faddeev. How the algebraic Bethe ansatz works for integrable models. In Symétries quantiques (Les Houches, 1995), pages 149—-219. North-Holland, Amsterdam, 1998.
  • [19] L.D. Faddeev, N.Yu. Reshetikhin, and L.A. Takhtajan. Quantization of Lie Groups and Lie Algebras. Algebraic Analysis, pages 129–139, jan 1988.
  • [20] G. Felder. Conformal field theory and integrable systems associated with elliptic curves. Proceedings of the International Congress of Mathematicians, pages 1247–1255, jul 1994.
  • [21] G. Felder. Elliptic quantum groups. In XIth International Congress of Mathematical Physics (Paris, 1994), pages 211–218. Int. Press, Cambridge, MA, 1995.
  • [22] G. Felder and M. Ren. Quantum Groups for Restricted SOS Models. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 17:26, oct 2020.
  • [23] G. Felder, V. Tarasov, and A. Varchenko. Solutions of the elliptic qKZB equations and Bethe ansatz. I. In Topics in singularity theory, volume 180 of Amer. Math. Soc. Transl. Ser. 2, pages 45–75. Amer. Math. Soc., Providence, RI, 1997.
  • [24] G. Felder, V. Tarasov, and A. Varchenko. Monodromy of solutions of the elliptic quantum Knizhnik-Zamolodchikov-Bernard difference equations. Internat. J. Math., 10(8):943–975, 1999.
  • [25] G. Felder and A. Varchenko. On representations of the elliptic quantum group Eτ,η(sl2)E_{\tau,\eta}({\rm sl}_{2}). Comm. Math. Phys., 181(3):741–761, 1996.
  • [26] G. Felder and A. Varchenko. Elliptic quantum groups and Ruijsenaars models. Journal of Statistical Physics, 89(5-6):963–980, apr 1997.
  • [27] D. Friedan, Z. Qiu, and S. Shenker. Conformal Invariance, Unitarity, and Critical Exponents in Two Dimensions. Physical Review Letters, 52(18):1575, apr 1984.
  • [28] J.L. Gervais and A. Neveu. Novel triangle relation and absence of tachyons in Liouville string field theory. Nuclear Physics B, 238(1):125–141, may 1984.
  • [29] V.F.R. Goodman, F.M. and de la Harpe, P. and Jones. Coxeter graphs and towers of algebras. Springer-Verlag, New York, 1989.
  • [30] M. Jimbo. A q-Analog of U(gl(N+1))U(gl(N+1)),Hecke Algebra and the Yang-Baxter Equation. Lett.Math.Phys., 11(3):247, apr 1986.
  • [31] V.F.R. Jones. Baxterization. International Journal of Modern Physics B, 04(05):701–713, apr 1990.
  • [32] R. Klabbers and J. Lamers. The deformed Inozemtsev spin chain. arXiv:2306.13066v3, jun 2023.
  • [33] H. Konno. Elliptic quantum groups, volume 37 of SpringerBriefs in Mathematical Physics. Springer Singapore, 2020.
  • [34] J. Murakami. Solvable Lattice Models and Algebras of Face Operators. Integrable Sys Quantum Field Theory, pages 399–415, jan 1989.
  • [35] A.L. Owczarek and R.J. Baxter. A class of interaction-round-a-face models and its equivalence with an ice-type model. Journal of Statistical Physics, 49(5-6):1093–1115, 1987.
  • [36] V. Pasquier. Operator content of the ADE lattice models. Journal of Physics A: General Physics, 20(16):5707–5717, 1987.
  • [37] V. Pasquier. Two-dimensional critical systems labelled by Dynkin diagrams. Nuclear Physics B, 285(C):162–172, jan 1987.
  • [38] V. Pasquier. Continuum limit of lattice models built on quantum groups. Nuclear Physics, Section B, 295(4):491–510, 1988.
  • [39] V. Pasquier. Etiology of IRF models. Communications in Mathematical Physics, 118(3):355–364, 1988.
  • [40] P.A. Pearce. Temperley-Lieb operators and critical ADE models. International Journal of Modern Physics B, 04(05):715–734, jan 1990.
  • [41] J. V. Stokman and N. Reshetikhin. N-point spherical functions and asymptotic boundary KZB equations. Inventiones Mathematicae, 229(1):1–86, jul 2022.