This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bases for Riemann–Roch spaces of linearized function fields with applications to generalized algebraic geometry codes

Horacio Navarro [email protected] Departamento de Matemáticas, Universidad del Valle, Cali-Colombia.
Abstract

In this paper, we determine explicit bases for Riemann–Roch spaces of linearized function fields, and we give a lower bound for the minimum distance of generalized algebraic geometry codes. As a consequence, we construct generalized algebraic geometry codes with good parameters.

keywords:
Riemann–Roch spaces; Algebraic curves; Algebraic function fields; Generalized algebraic geometry codes;

1 Introduction

In 1999, Xing, Niederreiter, and Lam [8] presented a construction of linear codes based on algebraic curves over finite fields that generalizes the algebraic geometry codes (AG codes) introduced two decades before by Goppa. These codes are called generalized algebraic geometry codes (GAG codes), and the main feature of this construction is that it is possible to use places of arbitrary degree. In 2002, Heydtmman [3] studied how to define and represent the dual code of a GAG code, and she gave a decoding algorithm for this kind of codes. Later, Dorfer and Maharaj gave a short proof of the duality result presented by Heydtmman, and they showed generator and parity check matrices for GAG codes. To calculate those matrices as well as to determine the parameters of GAG codes, Riemann–Roch spaces play a fundamental role, as in Goppa’s construction. The paper is organized as follows.

In Section 2, we recall the definition of GAG codes, their properties, and present a generalization of the lower bound for the minimum distance given by Picone in [6]. In Section 3, we show the main properties of linearized function fields and calculate explicit bases of the Riemann–Roch spaces. Analogous results for function fields of Kummer type were proved by Garzón and Navarro in [1]. In Section 4, we show examples of GAG codes with good parameters, using the results obtained in the previous sections.

2 Generalized algebraic geometry codes

The following notation will be used throughout this correspondence. Let F/𝔽qF/\mathbb{F}_{q} be an algebraic function field with genus gg. The Riemann–Roch space corresponding to the divisor GG is defined as

(G)={xF:(x)G}{0},\mathcal{L}(G)=\{x\in F:(x)\geq-G\}\cup\{0\},

where (x)(x) is the principal divisor of xx. (G)\mathcal{L}(G) is a finite-dimensional vector space over 𝔽q\mathbb{F}_{q}, and its dimension is denoted by (G)\ell(G).

The differentials space of the divisor GG is defined as

Ω(G)={ηΩ:(η)G}{0},\Omega(G)=\{\eta\in\Omega:(\eta)\geq G\}\cup\{0\},

where Ω\Omega denotes the differentials space of FF. Ω(G)\Omega(G) is also a finite-dimensional vector space over 𝔽q\mathbb{F}_{q}, and its dimension, called the index of specialty of GG, is

i(G)=(G)degG+g1.i(G)=\ell(G)-\deg G+g-1.

For a canonical divisor WW of FF, i(G)i(G) is also equal to (WG)\ell(W-G). Let P1,,PsP_{1},\ldots,P_{s} be distinct places of FF of degrees k1,,ksk_{1},\ldots,k_{s}, respectively, and GG be a divisor with support disjoint from the support of the divisor D:=i=1sPiD:=\sum_{i=1}^{s}P_{i}. Let CiC_{i} be an [ni,ki,di][n_{i},k_{i},d_{i}] linear code over 𝔽q\mathbb{F}_{q}, and let πi:𝔽qkiCi𝔽qni\pi_{i}:\mathbb{F}_{q^{k_{i}}}\rightarrow C_{i}\subseteq\mathbb{F}_{q}^{n_{i}} be a fixed 𝔽q\mathbb{F}_{q}-linear isomorphim mapping 𝔽qki\mathbb{F}_{q^{k_{i}}} onto CiC_{i} for any i=1,2,,si=1,2,\ldots,s. Let n=i=1snin=\sum_{i=1}^{s}n_{i}. The generalized algebraic geometry codes (GAG codes) C(P1,,Ps;G;C1,,Cs)C_{\mathcal{L}}(P_{1},\ldots,P_{s};G;C_{1},\ldots,C_{s}) and CΩ(P1,,Ps;G;C1,,Cs)C_{\Omega}(P_{1},\ldots,P_{s};G;C_{1},\ldots,C_{s}) are defined as the images of the 𝔽q\mathbb{F}_{q}-linear maps

α:(G)𝔽qn,x(π1(x(P1)),π2(x(P2)),,πs(x(Ps)))\alpha_{\mathcal{L}}:\mathcal{L}(G)\longrightarrow\mathbb{F}_{q}^{n},\quad x\mapsto(\pi_{1}(x(P_{1})),\pi_{2}(x(P_{2})),\ldots,\pi_{s}(x(P_{s})))
αΩ:Ω(GD)𝔽qn,ω(π1(resP1(ω)),π2(resP2(ω)),,πs(resPs(ω))).\alpha_{\Omega}:\Omega(G-D)\longrightarrow\mathbb{F}_{q}^{n},\quad\omega\mapsto(\pi_{1}(\operatorname{res}_{P_{1}}(\omega)),\pi_{2}(\operatorname{res}_{P_{2}}(\omega)),\ldots,\pi_{s}(\operatorname{res}_{P_{s}}(\omega))).

If we take rational places and for each 1is1\leq i\leq s we choose Ci=[1,1,1]C_{i}=[1,1,1] the trivial lineal code over 𝔽q\mathbb{F}_{q} and πi\pi_{i} the identity map on 𝔽q\mathbb{F}_{q}, then the GAG codes reduce to AG codes.

Now, we recall some results concerning to the parameters of GAG codes.

Theorem 2.1.

C(P1,,Pn;G;C1,,Cs)C_{\mathcal{L}}(P_{1},\ldots,P_{n};G;C_{1},\ldots,C_{s}) is an [n,k,d][n,k,d] code with parameters

k=(G)(GD) and di=1sdimax{iSdi:SX},k=\ell(G)-\ell(G-D)\quad\text{ and }\quad d\geq\sum_{i=1}^{s}d_{i}-\max\left\{\sum_{i\in S}d_{i}:S\in X\right\},

where

X={S{1,,s}:iSkidegG}.X=\left\{S\subseteq\{1,\ldots,s\}:\sum_{i\in S}k_{i}\leq\deg G\right\}.

Furthermore, if degG<degD\deg G<\deg D, then k=(G)degG+1gk=\ell(G)\geq\deg G+1-g, and the equality holds if 2g2<degG<degD2g-2<\deg G<\deg D.

Theorem 2.2.

CΩ(P1,,Ps;G;C1,,Cs)C_{\Omega}(P_{1},\ldots,P_{s};G;C_{1},\ldots,C_{s}) is an [n,k,d][n,k,d] code with parameters

k=i(GD)i(G)=(GD)(G)+degD and k=i(G-D)-i(G)=\ell(G-D)-\ell(G)+\deg D\quad\text{ and }
di=1sdimax{iSdi:SX},d\geq\sum_{i=1}^{s}d_{i}-\max\left\{\sum_{i\in S}d_{i}:S\in X\right\},

where

X={S{1,,s}:iSkidegDdegG+2g2}.X=\left\{S\subseteq\{1,\ldots,s\}:\sum_{i\in S}k_{i}\leq\deg D-\deg G+2g-2\right\}.

Furthermore, if degG>2g2\deg G>2g-2 then

k=(GD)degG1+g+degDdegD+gdegG1k=\ell(G-D)-\deg G-1+g+\deg D\geq\deg D+g-\deg G-1

and the equality holds if 2g2<degG<degD2g-2<\deg G<\deg D.

We state the lower bound for the minimum distance of a GAG code given by Picone.

Theorem 2.3.

([6, Proposition 2.9]) Let F/𝔽qF/\mathbb{F}_{q} be an algebraic function field of genus gg and P1,,PsP_{1},\ldots,P_{s} distinct places of FF of degrees k1,,ksk_{1},\ldots,k_{s} respectively, and CiC_{i} be an [ni,ki,di][n_{i},k_{i},d_{i}] linear code over 𝔽q\mathbb{F}_{q} for any i=1,2,,si=1,2,\ldots,s. Let AA, BB, CC, and ZZ be divisors of FF with support disjoint from the support of D=i=1sPiD=\sum_{i=1}^{s}P_{i}. Suppose (A)=(AZ)\mathcal{L}(A)=\mathcal{L}(A-Z) and (B)=(B+Z)=(C)\mathcal{L}(B)=\mathcal{L}(B+Z)=\mathcal{L}(C). If G=A+BG=A+B and dikid_{i}\geq k_{i} for 1is1\leq i\leq s, then the minimum distance dd of the code CΩ(P1,,Ps;G;C1,,Cs)C_{\Omega}(P_{1},\ldots,P_{s};G;C_{1},\ldots,C_{s}) satisfies

ddegG(2g2)+degZi(A)+i(GC).d\geq\deg G-(2g-2)+\deg Z-i(A)+i(G-C).

We remove some hypotheses from the result above to obtain a more general lower bound.

Here, it is necessary to introduce the notion of the greatest common divisor of two divisors. Given D1D_{1} and D2D_{2}, two divisors of a function field F/𝔽qF/\mathbb{F}_{q}, the greatest common divisor of D1D_{1} and D2D_{2} is defined as

gcd(D1,D2):=QFmin{νQ(D1),νQ(D2)}Q.\gcd(D_{1},D_{2}):=\sum_{Q\in\mathbb{P}_{F}}\min\{\nu_{Q}(D_{1}),\nu_{Q}(D_{2})\}Q.
Theorem 2.4.

Let F/𝔽qF/\mathbb{F}_{q} be an algebraic function field of genus gg and P1,,PsP_{1},\ldots,P_{s} distinct places of FF of degrees k1,,ksk_{1},\ldots,k_{s} respectively, and CiC_{i} be an [ni,ki,di][n_{i},k_{i},d_{i}] linear code over 𝔽q\mathbb{F}_{q} for any i=1,2,,si=1,2,\ldots,s. Let AA, BB, CC, and ZZ be divisors of FF with support disjoint from the support of D=i=1sPiD=\sum_{i=1}^{s}P_{i}. Suppose (A)=(AZ)\mathcal{L}(A)=\mathcal{L}(A-Z), (B)=(B+Z)(C)\mathcal{L}(B)=\mathcal{L}(B+Z)\subseteq\mathcal{L}(C). If G=A+BG=A+B, then the minimum distance dd of the code CΩ(P1,,Ps;G;C1,,Cs)C_{\Omega}(P_{1},\ldots,P_{s};G;C_{1},\ldots,C_{s}) satisfy

di=1sdimax{iSdi:SX},d\geq\sum_{i=1}^{s}d_{i}-\max\left\{\sum_{i\in S}d_{i}:S\in X\right\},

where

X={S{1,,s}:iSkidegDdegGdegZ+2g2i(A)+i(GC)}.X=\left\{S\subseteq\{1,\ldots,s\}:\sum_{i\in S}k_{i}\leq\deg D-\deg G-\deg Z+2g-2-i(A)+i(G-C)\right\}.
Proof.

Let ωΩ(GD)\omega\in\Omega(G-D) such that αΩ(ω)\alpha_{\Omega}(\omega) is a non-zero codeword of minimum weight. Let SS be the set of all ii such that resPi(ω)=0\operatorname{res}_{P_{i}}(\omega)=0 and let TT be the complement of SS in {1,2,,s}\{1,2,\ldots,s\}. Then

diTdi=i=1sdiiSdi.d\geq\sum_{i\in T}d_{i}=\sum_{i=1}^{s}d_{i}-\sum_{i\in S}d_{i}. (1)

Consider the divisor D:=iTPiD^{\prime}:=\sum_{i\in T}P_{i}. Since αΩ(ω)\alpha_{\Omega}(\omega) is zero for iSi\in S, then ωΩ(GD)\omega\in\Omega(G-D^{\prime}), that is, W:=(ω)GDW:=(\omega)\geq G-D^{\prime}. Thus, E:=WG+DE:=W-G+D^{\prime} is an effective divisor such that Supp(E)Supp(D)=\operatorname{Supp}(E)\cap\operatorname{Supp}(D^{\prime})=\emptyset and we have W=GD+EW=G-D^{\prime}+E. Taking degrees of both sides, we get that

2g2=degGdegD+degE=degGiTdegPi+degE,2g-2=\deg G-\deg D^{\prime}+\deg E=\deg G-\sum_{i\in T}\deg P_{i}+\deg E,

then

iTdegPidegG+2g2degE0,\sum_{i\in T}\deg P_{i}-\deg G+2g-2-\deg E\geq 0,

Summing iSdegPi=iSki\sum_{i\in S}\deg P_{i}=\sum_{i\in S}k_{i} in both sides of the inequality above, we have

degDdegG+2g2degEiSki,\deg D-\deg G+2g-2-\deg E\geq\sum_{i\in S}k_{i},

hence

degDdegG+2g2degZi(A)+i(GC)iSki,\deg D-\deg G+2g-2-\deg Z-i(A)+i(G-C)\geq\sum_{i\in S}k_{i}, (2)

if we assume degEdegZ+i(A)i(GC)\deg E\geq\deg Z+i(A)-i(G-C). Finally, from (1) and (2) the desired result follows. It remains to prove that deg(E)deg(Z)+i(A)i(GC)\deg(E)\geq\deg(Z)+i(A)-i(G-C). Notice that

degE\displaystyle\deg E =(A+E)(A)+i(A)i(A+E)\displaystyle=\ell(A+E)-\ell(A)+i(A)-i(A+E)
=(A+E)(AZ)+i(A)i(A+E)\displaystyle=\ell(A+E)-\ell(A-Z)+i(A)-i(A+E)
(A+E)(A+EZ)+i(A)i(A+E).\displaystyle\geq\ell(A+E)-\ell(A+E-Z)+i(A)-i(A+E). (3)

By the Riemann–Roch Theorem, we get

(A+E)=deg(A+E)+1g+(W(A+E))\ell(A+E)=\deg(A+E)+1-g+\ell(W-(A+E))

and

(A+EZ)=deg(A+EZ)+1g+(W(A+EZ)),\ell(A+E-Z)=\deg(A+E-Z)+1-g+\ell(W-(A+E-Z)),

hence,

(A+E)(A+EZ)\displaystyle\ell(A+E)-\ell(A+E-Z) =degZ+(W(A+E))(W(A+EZ))\displaystyle=\deg Z+\ell(W-(A+E))-\ell(W-(A+E-Z))
=degZ+(BD)(B+ZD)\displaystyle=\deg Z+\ell(B-D^{\prime})-\ell(B+Z-D^{\prime}) (4)

Since DD^{\prime} is effective and B,CB,C and ZZ have support disjoint from the support of DD^{\prime}, we get

gcd(B+ZD,B)BD and gcd(BD,C)CD.\gcd(B+Z-D^{\prime},B)\leq B-D^{\prime}\text{ and }\gcd(B-D^{\prime},C)\leq C-D^{\prime}.

As

(B+ZD)(B+Z)=(B),\mathcal{L}(B+Z-D^{\prime})\subseteq\mathcal{L}(B+Z)=\mathcal{L}(B),

then

(B+ZD)=(B+ZD)(B)=(gcd(B+ZD,B))(BD)\mathcal{L}(B+Z-D^{\prime})=\mathcal{L}(B+Z-D^{\prime})\cap\mathcal{L}(B)=\mathcal{L}(\gcd(B+Z-D^{\prime},B))\subseteq\mathcal{L}(B-D^{\prime})

and thus

(B+ZD)(BD).\ell(B+Z-D^{\prime})\leq\ell(B-D^{\prime}). (5)

In a similar way, note that

(BD)(B)(C),\mathcal{L}(B-D^{\prime})\subseteq\mathcal{L}(B)\subseteq\mathcal{L}(C),

implies

(BD)=(BD)(C)=(gcd(BD,C))(CD)\mathcal{L}(B-D^{\prime})=\mathcal{L}(B-D^{\prime})\cap\mathcal{L}(C)=\mathcal{L}(\gcd(B-D^{\prime},C))\subseteq\mathcal{L}(C-D^{\prime})

and hence

(BD)(CD).\ell(B-D^{\prime})\leq\ell(C-D^{\prime}). (6)

Finally, we have

i(A+E)\displaystyle i(A+E) =(W(A+E))=(BD)(CD)(by (6))\displaystyle=\ell(W-(A+E))=\ell(B-D^{\prime})\leq\ell(C-D^{\prime})\,\,(\text{by }\eqref{equcota9})
(CD+E)=i(WC+DE)=i(GC).\displaystyle\leq\ell(C-D^{\prime}+E)=i(W-C+D^{\prime}-E)=i(G-C). (7)

Combining this with (2)–(5) yields the desired result.

Corollary 2.5.

Let F/𝔽qF/\mathbb{F}_{q} be an algebraic function field of genus gg and P1,,PsP_{1},\ldots,P_{s} distinct places of FF of degrees k1,,ksk_{1},\ldots,k_{s} respectively, and CiC_{i} be a [ni,ki,di][n_{i},k_{i},d_{i}] linear code over 𝔽q\mathbb{F}_{q} for any i=1,2,,si=1,2,\ldots,s. Let AA, BB, and ZZ be divisors of FF with support disjoint from the support of D=i=1sPiD=\sum_{i=1}^{s}P_{i}. Suppose (A)=(AZ)\mathcal{L}(A)=\mathcal{L}(A-Z) and (B)=(B+Z)\mathcal{L}(B)=\mathcal{L}(B+Z). If G=A+BG=A+B, then the minimum distance dd of the code CΩ(P1,,Ps;G;C1,,Cs)C_{\Omega}(P_{1},\ldots,P_{s};G;C_{1},\ldots,C_{s}) satisfies

di=1sdimax{iSdi:SX},d\geq\sum_{i=1}^{s}d_{i}-\max\left\{\sum_{i\in S}d_{i}:S\in X\right\},

where

X={S{1,,s}:iSkidegDdegGdegZ+2g2}.X=\left\{S\subseteq\{1,\ldots,s\}:\sum_{i\in S}k_{i}\leq\deg D-\deg G-\deg Z+2g-2\right\}.
Proof.

This follows immediately from Proposition 2.4, taking C=BC=B. ∎

We use this result in Section 4 to construct examples of GAG codes with good parameters.

3 Bases for Riemann–Roch spaces of linearized function fields

We start this section by defining linearized function fields and showing some important properties that will be used frequently.

A linearized function field is a function field F=𝔽qn(x,y)F=\mathbb{F}_{q^{n}}(x,y) defined by the equation

L(y)=h(x):=f(x)g(x),L(y)=h(x):=\frac{f(x)}{g(x)}, (8)

with L(y)=i=0raiyqi𝔽qn[y]L(y)=\sum_{i=0}^{r}a_{i}y^{q^{i}}\in\mathbb{F}_{q^{n}}[y] a linearized polynomial, ar,a00a_{r},a_{0}\neq 0, and qrq^{r} roots in 𝔽qn\mathbb{F}_{q^{n}}. We assume throughout that the factorization into irreducibles of ff and gg is f=j=1mqjmj,f=\prod_{j=1}^{m}q_{j}^{m_{j}}, and g=i=1spinig=\prod_{i=1}^{s}p_{i}^{n_{i}} respectively, and the positive integers nin_{i}, d:=degfdegg>0d:=\deg f-\deg g>0 are coprime to char𝔽q\operatorname{char}\mathbb{F}_{q}.

Proposition 3.1.

With the notations above, we have the following:

  1. 1.

    For 1is1\leq i\leq s, let PiP_{i} (resp. PP_{\infty}) be the zero of pip_{i} (resp. the pole of xx) in 𝔽qn(x)\mathbb{F}_{q^{n}}(x). The places P1,,Ps,P_{1},\ldots,P_{s}, and PP_{\infty} are totally ramified places in F/𝔽qn(x)F/\mathbb{F}_{q^{n}}(x).

  2. 2.

    The functions 1,y,,yqr11,y,\ldots,y^{q^{r}-1} form an integral basis at any place PP of 𝔽qn(x)\mathbb{F}_{q^{n}}(x) different from P1,,Ps,P_{1},\ldots,P_{s}, and PP_{\infty}. Moreover, P1,,Ps,P_{1},\ldots,P_{s}, and PP_{\infty} are the only ramified places in F/𝔽qn(x)F/\mathbb{F}_{q^{n}}(x).

  3. 3.

    For 1is1\leq i\leq s, let QiQ_{i} (resp. QQ_{\infty}) be the only zero of pip_{i} (resp. the only pole of xx) in FF. Then the principal divisor of pip_{i} in FF is

    (pi)=qrQiqrdegpiQ,(p_{i})=q^{r}Q_{i}-q^{r}\deg p_{i}Q_{\infty},
  4. 4.

    For 1jm1\leq j\leq m, let SjS_{j} be the only zero of qjq_{j} in 𝔽qn(x)\mathbb{F}_{q^{n}}(x). Then SjS_{j} splits completely in FF. Moreover, the principal divisor of yy in FF is

    (y)=j=1mmjRji=1sniQi(degfdegg)Q,(y)=\sum_{j=1}^{m}m_{j}R_{j}-\sum_{i=1}^{s}n_{i}Q_{i}-(\deg f-\deg g)Q_{\infty},

    where RjR_{j} is the only zero of yy in FF lying over SjS_{j}, for each 1jm1\leq j\leq m.

Proof.
  1. 1.

    Let QQ be a place lying over PP_{\infty} and let ee be the index of ramification of Q|PQ|P_{\infty}. Since νP(h(x))=(degfdegg)=d<0\nu_{P_{\infty}}(h(x))=-(\deg f-\deg g)=-d<0 we have νQ(L(y))=qrνQ(y)\nu_{Q}(L(y))=q^{r}\nu_{Q}(y) and

    qrνQ(y)=νQ(L(y))=eνP(h(x))=ed.q^{r}\nu_{Q}(y)=\nu_{Q}(L(y))=e\nu_{P_{\infty}}(h(x))=-e\cdot d. (9)

    By the equation (9) and as gcd(d,q)=1\gcd(d,q)=1, then PP_{\infty} is totally ramified and νQ(y)=d.\nu_{Q}(y)=-d. In the same way as before, we have that PiP_{i} is totally ramified and νQ(y)=ni,\nu_{Q}(y)=-n_{i}, with 1is.1\leq i\leq s.

  2. 2.

    Let PP be any place of 𝔽qn(x)\mathbb{F}_{q^{n}}(x) different from P1,,PsP_{1},\ldots,P_{s}, and PP_{\infty}, and let QQ be a place of FF lying over PP. It is clear that the minimum polynomial of yy over 𝔽qn(x)\mathbb{F}_{q^{n}}(x) satisfies

    φ(t)=L(t)h(x)=tqr+ar1tqr1++a1tq+a0th(x)𝒪P[T],\varphi(t)=L(t)-h(x)=t^{q^{r}}+a_{r-1}t^{q^{r-1}}+\cdots+a_{1}t^{q}+a_{0}t-h(x)\in\mathcal{O}_{P}[T],

    and νQ(φ(y))=νQ(a0)=0\nu_{Q}(\varphi^{\prime}(y))=\nu_{Q}(a_{0})=0, then by [[7], Corollary 3.5.11] {1,y,,yqr1}\{1,y,\ldots,y^{q^{r}-1}\} is an integral basis of FF at PP and PP is not ramified in F/𝔽qn(x)F/\mathbb{F}_{q^{n}}(x).

  3. 3.

    Since the principal divisor of pip_{i} in 𝔽qn(x)\mathbb{F}_{q^{n}}(x) is (pi)=PidegpiQ(p_{i})=P_{i}-\deg p_{i}Q_{\infty} and the places PiP_{i} and PP_{\infty} are totally ramified, then

    (pi)=QFνQ(pi)Q=νQi(pi)Qi+νQ(pi)Q=qrQiqrdegpiQ.(p_{i})=\sum_{Q\in\mathbb{P}_{F}}\nu_{Q}(p_{i})Q=\nu_{Q_{i}}(p_{i})Q_{i}+\nu_{Q_{\infty}}(p_{i})Q_{\infty}=q^{r}Q_{i}-q^{r}\deg p_{i}Q_{\infty}.
  4. 4.

    The place SjS_{j} is a zero of h(x)h(x) because it is the zero of qjq_{j} in 𝔽q(x)\mathbb{F}_{q}(x), then φ(t)𝒪Sj[t]\varphi(t)\in\mathcal{O}_{S_{j}}[t]. The reduction modulus SjS_{j} of φ(t)\varphi(t) is the polynomial

    φ¯(t)=tqr+ar1tqr1++a1tq+a0t,\overline{\varphi}(t)=t^{q^{r}}+a_{r-1}t^{q^{r-1}}+\cdots+a_{1}t^{q}+a_{0}t,

    which has all its roots in 𝔽qn\mathbb{F}_{q^{n}}, hence there exist qrq^{r} places lying over SjS_{j} by [[7], Theorem 3.3.7]. One of them is a zero of yy lying over SjS_{j}, and we will call it RjR_{j}. It is clear that νRj(y)=mj\nu_{R_{j}}(y)=m_{j}. All of the above allows us to conclude that

    (y)=QFνQ(pi)Q=j=1mmjRji=1sniQi(degfdegg)Q.(y)=\sum_{Q\in\mathbb{P}_{F}}\nu_{Q}(p_{i})Q=\sum_{j=1}^{m}m_{j}R_{j}-\sum_{i=1}^{s}n_{i}Q_{i}-(\deg f-\deg g)Q_{\infty}.

We can now formulate our main results.

Theorem 3.2.

Consider the divisor G:=i=1saiQi+bQG:=\sum_{i=1}^{s}a_{i}Q_{i}+b_{\infty}Q_{\infty} on the function field defined by the equation (8) where ai,ba_{i},b_{\infty}\in\mathbb{Z} for 1is1\leq i\leq s. Then

S:={ykxe,ki=1spiei,k:0e,k,ei,k,aikni+qrei,k,k(degfdegg)+qr(e,k+i=1sei,kdegpi)b, for all k, 0kqr1.}S:=\left\{y^{k}x^{e_{\infty,k}}\prod_{i=1}^{s}p_{i}^{e_{i,k}}:\begin{array}[]{c}0\leq e_{\infty,k},\,e_{i,k}\in\mathbb{Z},-a_{i}\leq-kn_{i}+q^{r}e_{i,k},\\ \\ k(\deg f-\deg g)+q^{r}(e_{\infty,k}+\sum_{i=1}^{s}e_{i,k}\deg p_{i})\leq b_{\infty},\\ \\ \text{ for all }k,\,0\leq k\leq q^{r}-1.\end{array}\right\}

is a generator set of (G).\mathcal{L}(G).

Proof.

We first show that S(G)S\subseteq\mathcal{L}(G). By Proposition 3.1.3, 4 and since the divisor of xx is (x)=(x)0qrQ(x)=(x)_{0}-q^{r}Q_{\infty}, we have that the divisor of the function ykxe,ki=1spiei,kSy^{k}x^{e_{\infty,k}}\prod_{i=1}^{s}p_{i}^{e_{i,k}}\in S satisfies the inequality

(ykxe,ki=1spiei,k)i=1s(qrei,kkni)Qi(kd+qr(e,k+i=1sei,kdegpi))Q,\left(y^{k}x^{e_{\infty,k}}\prod_{i=1}^{s}p_{i}^{e_{i,k}}\right)\geq\sum_{i=1}^{s}(q^{r}e_{i,k}-kn_{i})Q_{i}-\left(kd+q^{r}(e_{\infty,k}+\sum_{i=1}^{s}e_{i,k}\deg p_{i})\right)Q_{\infty},

with d=degfdeggd=\deg f-\deg g and for any 0kqr10\leq k\leq q^{r}-1. Since qrei,kkniaiq^{r}e_{i,k}-kn_{i}\geq-a_{i} and kd+qr(e,k+i=1sei,kdegpi)bkd+q^{r}(e_{\infty,k}+\sum_{i=1}^{s}e_{i,k}\deg p_{i})\leq b_{\infty}, then we conclude that S(G)S\subseteq\mathcal{L}(G) and the 𝔽qn\mathbb{F}_{q^{n}}-linear span of SS is a subset of (G)\mathcal{L}(G).

Next, we prove that every element of (G)\mathcal{L}(G) can be expressed as a linear combination of elements from SS with coefficients from 𝔽qn\mathbb{F}_{q^{n}}. Let z(G)z\in\mathcal{L}(G) be a non-zero element. Then the places QiQ_{i} and QQ_{\infty} are the only possible poles of zz. Since {1,y,,yqr1}\{1,y,\ldots,y^{q^{r}-1}\} is a basis of F/𝔽qn(x)F/\mathbb{F}_{q^{n}}(x), there exist zi𝔽qn(x)z_{i}\in\mathbb{F}_{q^{n}}(x) such that

z=z0+z1y++zqr1yqr1,z=z_{0}+z_{1}y+\cdots+z_{q^{r}-1}y^{q^{r}-1},

and the only possible poles in 𝔽qn(x)\mathbb{F}_{q^{n}}(x) of the zkz_{k} are the places P1,,PsP_{1},\ldots,P_{s} and PP_{\infty}. Indeed, suppose that P{P1,,Ps,P}P\not\in\{P_{1},\ldots,P_{s},P_{\infty}\} is a pole of zkz_{k} for some 0kqr10\leq k\leq q^{r}-1. Note that for any place QQ lying over PP, we have QSupp(G)Q\not\in\operatorname{Supp}(G), which gives νQ(z)0\nu_{Q}(z)\geq 0 and zQ|P𝒪Qz\in\bigcap_{Q|P}\mathcal{O}_{Q}. By [[7], Corollary 3.3.5] and Proposition 3.1.2 the integral closure 𝒪P\mathcal{O}^{\prime}_{P} of 𝒪P\mathcal{O}_{P} in FF is

𝒪P=Q|P𝒪Q=k=0qr1𝒪Pyk.\mathcal{O}^{\prime}_{P}=\bigcap_{Q|P}\mathcal{O}_{Q}=\sum_{k=0}^{q^{r}-1}\mathcal{O}_{P}y^{k}.

Hence, z𝒪Pz\in\mathcal{O}^{\prime}_{P}, so each zkz_{k} must belong to 𝒪P\mathcal{O}_{P}. This contradiction implies that the zkz_{k} are of the form

zk=fki=1spiei,kz_{k}=f_{k}\prod_{i=1}^{s}p_{i}^{e_{i,k}}

where ei,ke_{i,k} are integers, fkf_{k} is a polynomial in 𝔽qn[x]\mathbb{F}_{q^{n}}[x], and pip_{i} does not divide fkf_{k} for any 1is1\leq i\leq s. Thus, zkz_{k} is a 𝔽qn\mathbb{F}_{q^{n}}-linear combination of functions

Ak,m=xmi=1spiei,kA_{k,m}=x^{m}\prod_{i=1}^{s}p_{i}^{e_{i,k}}

for m=0,1,,degfkm=0,1,\ldots,\deg f_{k}. In order to prove the theorem, it is sufficient to show that for 0kqr10\leq k\leq q^{r}-1 and m=0,1,,degfkm=0,1,\ldots,\deg f_{k}, the functions ykAk,my^{k}A_{k,m} belong to SS. Let 0js0\leq j\leq s, Q:=QjQ:=Q_{j}, and P:=PjP:=P_{j}. Since PP is the place defined by the irreducible polynomial pj𝔽qn[x]p_{j}\in\mathbb{F}_{q^{n}}[x], we have

νP(zk)=νP(fk)+νP(i=1spiei,k)=ej,k.\nu_{P}(z_{k})=\nu_{P}(f_{k})+\nu_{P}\left(\prod_{i=1}^{s}p_{i}^{e_{i,k}}\right)=e_{j,k}.

On the other hand, by Proposition 3.1.4 νQ(y)=nj\nu_{Q}(y)=-n_{j}, then

νQ(zkyk)=qrνP(zk)+kνQ(y)=qrνP(zk)knj=qrej,kknj.\nu_{Q}(z_{k}y^{k})=q^{r}\nu_{P}(z_{k})+k\nu_{Q}(y)=q^{r}\nu_{P}(z_{k})-kn_{j}=q^{r}e_{j,k}-kn_{j}.

Now, for 0kqr10\leq k\leq q^{r}-1, we have that νQ(zkyk)\nu_{Q}(z_{k}y^{k}) are distinct because they are distinct module qrq^{r}. Thus,

qrej,kknjmin0kqr1{νQ(zkyk)}=νQ(z)ajq^{r}e_{j,k}-kn_{j}\geq\min_{0\leq k\leq q^{r}-1}\{\nu_{Q}(z_{k}y^{k})\}=\nu_{Q}(z)\geq-a_{j}

since z(G)z\in\mathcal{L}(G). Finally, for 0kqr10\leq k\leq q^{r}-1 and m=0,1,,degfkm=0,1,\ldots,\deg f_{k}, we obtain

νQ(ykAk,m)\displaystyle\nu_{Q}(y^{k}A_{k,m}) =\displaystyle= νQ(ykxmi=1spiei,k)=kνQ(y)+mνQ(x)+i=1sei,kνQ(pi)\displaystyle\nu_{Q}(y^{k}x^{m}\prod_{i=1}^{s}p_{i}^{e_{i,k}})=k\nu_{Q}(y)+m\nu_{Q}(x)+\sum_{i=1}^{s}{e_{i,k}}\nu_{Q}(p_{i})
\displaystyle\geq kνQ(y)+ej,kνQ(pj)=qrej,kknjaj.\displaystyle k\nu_{Q}(y)+e_{j,k}\nu_{Q}(p_{j})=q^{r}e_{j,k}-kn_{j}\geq-a_{j}.

It remains to establish νQ(ykAk,m)b.\nu_{Q_{\infty}}(y^{k}A_{k,m})\geq-b_{\infty}. We proceed in a similar way as before. Recalling zk=fki=1spiei,kz_{k}=f_{k}\prod_{i=1}^{s}p_{i}^{e_{i,k}}, we get

νP(zk)=νP(fk)+i=1sei,kνP(pi)=degfki=1sei,kdegpi.\nu_{P_{\infty}}(z_{k})=\nu_{P_{\infty}}(f_{k})+\sum_{i=1}^{s}{e_{i,k}}\nu_{P_{\infty}}(p_{i})=-\deg f_{k}-\sum_{i=1}^{s}e_{i,k}\deg p_{i}. (10)

Now, for 0kqr10\leq k\leq q^{r}-1, the integers qrνP(zk)kdq^{r}\nu_{P_{\infty}}(z_{k})-kd are distinct because they are distinct module qrq^{r}. Then,

qrνP(zk)kdmin0kqr1{νQ(zkyk)}=νQ(z)b,q^{r}\nu_{P_{\infty}}(z_{k})-kd\geq\min_{0\leq k\leq q^{r}-1}\{\nu_{Q_{\infty}}(z_{k}y^{k})\}=\nu_{Q_{\infty}}(z)\geq-b_{\infty}, (11)

because z(G)z\in\mathcal{L}(G). On the other hand, for m=0,1,,degfkm=0,1,\ldots,\deg f_{k} we have

νQ(ykAk,m)\displaystyle\nu_{Q_{\infty}}(y^{k}A_{k,m}) =\displaystyle= kνQ(y)+mνQ(x)+i=1sei,kνQ(pi)\displaystyle k\nu_{Q_{\infty}}(y)+m\nu_{Q_{\infty}}(x)+\sum_{i=1}^{s}{e_{i,k}}\nu_{Q_{\infty}}(p_{i}) (12)
=\displaystyle= kdqr(m+i=1sei,kdegpi).\displaystyle-kd-q^{r}\left(m+\sum_{i=1}^{s}e_{i,k}\deg p_{i}\right).

Then, combining (10)–(12), we obtain

νQ(ykAk,m)\displaystyle-\nu_{Q_{\infty}}(y^{k}A_{k,m}) =\displaystyle= kd+qr(m+i=1sei,kdegpi)\displaystyle kd+q^{r}\left(m+\sum_{i=1}^{s}e_{i,k}\deg p_{i}\right)
\displaystyle\leq kd+qr(degfk+i=1sei,kdegpi)\displaystyle kd+q^{r}\left(\deg f_{k}+\sum_{i=1}^{s}e_{i,k}\deg p_{i}\right)
\displaystyle\leq b.\displaystyle b_{\infty}.

Lemma 3.3 ([4], Lemma 3.5).

Let F/KF/K be a function field. Let GG be a divisor of FF, and let PP be a rational place of FF. Let V={νP(z):z(G){0}}V=\{\nu_{P}(z):z\in\mathcal{L}(G)\setminus\{0\}\}. For each iVi\in V, choose ui(G)u_{i}\in\mathcal{L}(G) such that νP(ui)=i.\nu_{P}(u_{i})=i. Then the set B={ui:iV}B=\{u_{i}:i\in V\} is a basis for (G)\mathcal{L}(G).

Theorem 3.4.

Consider the divisor G:=i=1saiQi+bQG:=\sum_{i=1}^{s}a_{i}Q_{i}+b_{\infty}Q_{\infty} on the function field defined by the equation (8) where ai,ba_{i},b_{\infty}\in\mathbb{Z} for 1is1\leq i\leq s. Then the dimension of (G)\mathcal{L}(G) over 𝔽qn\mathbb{F}_{q^{n}} is

(G)=k=0qr1max{i=1saikniqrdegpi+bkdqr+1,0},\ell(G)=\sum_{k=0}^{q^{r}-1}\max\left\{\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}+1,0\right\},

with d=degfdeggd=\deg f-\deg g.

Proof.

For 0kqr10\leq k\leq q^{r}-1 set

Vk:={kdqr(e+i=1seidegpi):ei,aikni+qrei for all 1is,0e,kd+qr(e+i=1seidegpi)b.}V_{k}:=\left\{-kd-q^{r}\left(e+\sum_{i=1}^{s}e_{i}\deg p_{i}\right):\begin{array}[]{c}e_{i}\in\mathbb{Z},\,-a_{i}\leq-kn_{i}+q^{r}e_{i}\text{ for all }1\leq i\leq s,\\ 0\leq e,\,kd+q^{r}(e+\sum_{i=1}^{s}e_{i}\deg p_{i})\leq b_{\infty}.\end{array}\right\}

and let V:=k=0qr1VkV:=\bigcup_{k=0}^{q^{r}-1}V_{k}. The proof will be divided into several steps.

Step 1. V={νQ(z):z(G){0}}V=\{\nu_{Q_{\infty}}(z):z\in\mathcal{L}(G)\setminus\{0\}\}.

Proof of step 1. Let a non-zero element z(G)z\in\mathcal{L}(G). By Theorem 3.2, we have

z=k=0qr1αk(ykxe,ki=1spiei,k)=k=0qr1(αkxe,ki=1spiei,k)yk:=k=0qr1zkykz=\sum_{k=0}^{q^{r}-1}\alpha_{k}\left(y^{k}x^{e_{\infty,k}}\prod_{i=1}^{s}p_{i}^{e_{i,k}}\right)=\sum_{k=0}^{q^{r}-1}\left(\alpha_{k}x^{e_{\infty,k}}\prod_{i=1}^{s}p_{i}^{e_{i,k}}\right)y^{k}:=\sum_{k=0}^{q^{r}-1}z_{k}y^{k}

where αk𝔽qr\alpha_{k}\in\mathbb{F}_{q^{r}}, e,ke_{\infty,k} is a nonnegative integer, each ei,ke_{i,k} is an integer, for all 1is1\leq i\leq s, aikni+qrei,k-a_{i}\leq-kn_{i}+q^{r}e_{i,k} and kd+qr(e,k+i=1sei,kdegpi)bkd+q^{r}(e_{\infty,k}+\sum_{i=1}^{s}e_{i,k}\deg p_{i})\leq b_{\infty}. Thus, for any 0kqr10\leq k\leq q^{r}-1, we obtain

νQ(z)=νQ(zkyk)=qrνP(zk)+kνQ(y)=qr(e,k+i=1sei,kdegpi)kdVk.\nu_{Q_{\infty}}(z)=\nu_{Q_{\infty}}(z_{k}y^{k})=q^{r}\nu_{P_{\infty}}(z_{k})+k\nu_{Q_{\infty}}(y)=-q^{r}\left(e_{\infty,k}+\sum_{i=1}^{s}e_{i,k}\deg p_{i}\right)-kd\in V_{k}.

Conversely, let mVm\in V. Then mVjm\in V_{j} for some 0jqr10\leq j\leq q^{r}-1. Hence,

m=kdqr(e+i=1seidegpi)m=-kd-q^{r}\left(e+\sum_{i=1}^{s}e_{i}\deg p_{i}\right)

where 0e0\leq e, eie_{i}\in\mathbb{Z}, aikni+qrei-a_{i}\leq-kn_{i}+q^{r}e_{i}, and kd+qr(e+i=1seidegpi)bkd+q^{r}\left(e+\sum_{i=1}^{s}e_{i}\deg p_{i}\right)\leq b_{\infty}. Finally, if we choose

z=ykxei=1spieiz=y^{k}x^{e}\prod_{i=1}^{s}p_{i}^{e_{i}}

we have νQ(z)=m\nu_{Q_{\infty}}(z)=m.

According to Lemma 3.3, it follows that (G)=|V|\ell(G)=|V|. Therefore, we proceed to count the number of elements in VV. This will be the second step of the proof.

Step 2. Fix kk, 0kqr1.0\leq k\leq q^{r}-1. Then kdcqrV-kd-cq^{r}\in V if and only if

i=1saikniqrdegpicbkdqr-\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}\leq c\leq\frac{b_{\infty}-kd}{q^{r}}\cdot

Proof of step 2. Firstly, we will prove that the sets VkV_{k} are mutually disjoint. Let NVkVjN\in V_{k}\cap V_{j}, then kdqra=N=jdqrb-kd-q^{r}a=N=-jd-q^{r}b, where a,ba,b\in\mathbb{Z}, so

kdjdmodqr.kd\equiv jd\mod q^{r}.

Since (d,q)=1(d,q)=1, then kjmodqrk\equiv j\mod q^{r}, thus k=jk=j. This implies that

(G)=|V|=k=0qr1|Vk|.\ell(G)=|V|=\sum_{k=0}^{q^{r}-1}|V_{k}|.

It remains to determine |Vk||V_{k}|. Now fix kk, 0kqr10\leq k\leq q^{r}-1, and set m:=kdqrcm:=-kd-q^{r}c where c.c\in\mathbb{Z}. Then mVm\in V if and only if m=kdqrcVkm=-kd-q^{r}c\in V_{k}. This holds if and only if

kdqrc=kdqr(e+i=1seidegpi),-kd-q^{r}c=-kd-q^{r}\left(e+\sum_{i=1}^{s}e_{i}\deg p_{i}\right),

for some integers eie_{i} and e0e\geq 0 with

kd+qr(e+i=1seidegpi)bkd+q^{r}(e+\sum_{i=1}^{s}e_{i}\deg p_{i})\leq b_{\infty}

and

aikni+qrei for any 1is.-a_{i}\leq-kn_{i}+q^{r}e_{i}\quad\text{ for any }\quad 1\leq i\leq s.

These inequalities are equivalent to

c=e+i=1seidegpic=e+\sum_{i=1}^{s}e_{i}\deg p_{i}

and

e+i=1seidegpibkdqre+\sum_{i=1}^{s}e_{i}\deg p_{i}\leq\frac{b_{\infty}-kd}{q^{r}}

and

eiaikniqr=aikniqre_{i}\geq{\left\lceil-\frac{a_{i}-kn_{i}}{q^{r}}\right\rceil}=-{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}

for any 1is1\leq i\leq s. Therefore, the integers eie_{i} and e0e\geq 0 exist if and only if

i=1saikniqrdegpicbkdqr.-\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}\leq c\leq\frac{b_{\infty}-kd}{q^{r}}.

Now it follows that |Vk||V_{k}| is the number of integers in the interval

[i=1saikniprdegpi,bkdpr],\left[-\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{p^{r}}\right\rfloor}\deg p_{i},{\left\lfloor\frac{b_{\infty}-kd}{p^{r}}\right\rfloor}\right],

i.e.,

|Vk|:=max{i=1saikniqrdegpi+bkdqr+1,0}.|V_{k}|:=\max\left\{\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}+1,0\right\}.

This implies that

(G)=k=0qr1max{i=1saikniqrdegpi+bkdqr+1,0}\ell(G)=\sum_{k=0}^{q^{r}-1}\max\left\{\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}+1,0\right\}

Corollary 3.5.

Consider the divisor G:=i=1saiQi+bQG:=\sum_{i=1}^{s}a_{i}Q_{i}+b_{\infty}Q_{\infty} on the function field defined by the equation (8) where ai,ba_{i},b_{\infty}\in\mathbb{Z} for 1is1\leq i\leq s. Then

0kqr1k\bigcup_{0\leq k\leq q^{r}-1}\mathcal{B}_{k}

where each k\mathcal{B}_{k} is defined as

{ykxe,ki=1spiei,k:0e,k,i=1saikniqrdegpie,k+i=1sei,kdegpibkdqr}\left\{y^{k}x^{e_{\infty,k}}\prod_{i=1}^{s}p_{i}^{e_{i,k}}:0\leq e_{{}_{\infty,k}},-\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}\leq e_{{}_{\infty,k}}+\sum_{i=1}^{s}e_{{}_{i,k}}\deg p_{i}\leq{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}\right\}

is a basis for (G)\mathcal{L}(G) as a vector space over 𝔽qn\mathbb{F}_{q^{n}}.

Proof.

This follows immediately from Theorem 3.2 and the proof of Theorem 3.4. ∎

Corollary 3.6 ([7], Proposition 4.1 (h)).

Consider a function field F=𝔽qn(x,y)F=\mathbb{F}_{q^{n}}(x,y) with

yq+μy=g(x)𝔽qn[x],y^{q}+\mu y=g(x)\in\mathbb{F}_{q^{n}}[x],

0μ𝔽qn0\neq\mu\in\mathbb{F}_{q^{n}}. Assume that degg:=m\deg g:=m is relatively prime to qq and {β:βq+μβ=0}𝔽qn\{\beta:\beta^{q}+\mu\beta=0\}\subseteq\mathbb{F}_{q^{n}}. Then a basis for the Riemann-Roch space (rQ)\mathcal{L}(rQ_{\infty}) is

\scaletok=05pt\scaletoq15ptk={ykxj:0j,0kq1,jq+kmr}.\bigcup_{\scaleto{k=0}{5pt}}^{\scaleto{q-1}{5pt}}\mathcal{B}_{k}=\{y^{k}x^{j}:0\leq j,\quad 0\leq k\leq q-1,\quad jq+km\leq r\}.

Now, we recall the notion of the floor of a divisor. The floor of a divisor GG with (G)>0\ell(G)>0, denoted G{\left\lfloor G\right\rfloor}, is the minimum degree divisor such that (G)=(G)\mathcal{L}(G)=\mathcal{L}({\left\lfloor G\right\rfloor}). The next result states that from a generator set of a Riemann–Roch space (G)\mathcal{L}(G), we can calculate G{\left\lfloor G\right\rfloor}.

Lemma 3.7.

[[4], Theorem 2.6] Let GG be a divisor of F/𝔽qF/\mathbb{F}_{q}, and let b1,,bt(G)b_{1},\ldots,b_{t}\in\mathcal{L}(G) be a spanning set for (G)\mathcal{L}(G). Then, G=gcd((bi):i=1,,t).{\left\lfloor G\right\rfloor}=-\gcd((b_{i}):i=1,\ldots,t).

In order to conclude this section, we compute the floor of certain divisors of linearized function fields.

Theorem 3.8.

Let G:=i=1saiQi+bQG:=\sum_{i=1}^{s}a_{i}Q_{i}+b_{\infty}Q_{\infty} be a divisor of the function field defined by the equation (8) where ai,ba_{i},b_{\infty}\in\mathbb{Z} for 1is1\leq i\leq s. The floor of GG is given by

G:=i=1sαiQi+βQ,{\left\lfloor G\right\rfloor}:=\sum_{i=1}^{s}\alpha_{i}Q_{i}+\beta_{\infty}Q_{\infty},

with

αi:=max\scaleto0kqr15pt{kni+qraikniqr:i=1saikniqrdegpi+bkdqr0}\alpha_{i}:=\max_{\scaleto{0\leq k\leq q^{r}-1}{5pt}}\left\{kn_{i}+q^{r}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}:\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}\geq 0\right\}

and

β:=max\scaleto0kqr15pt{kd+qrbkdqr:i=1saikniqrdegpi+bkdqr0}\beta_{\infty}:=\max_{\scaleto{0\leq k\leq q^{r}-1}{5pt}}\left\{kd+q^{r}{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}:\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}\geq 0\right\}

and d=degfdeggd=\deg f-\deg g.

Proof.

By Corollary 3.5 , =k=0qr1k\mathcal{B}=\bigcup_{k=0}^{q^{r}-1}\mathcal{B}_{k} is a basis for (G)\mathcal{L}(G), where each k\mathcal{B}_{k} is the set

{ykxe\scaleto,k4pti=1spiei,k:0e\scaleto,k4.5pt,i=1saikniqrdegpie\scaleto,k4.5pt+i=1sei,kdegpibkdqr}.\left\{y^{k}x^{e_{\scaleto{\infty,k}{4pt}}}\prod_{i=1}^{s}p_{i}^{e_{i,k}}:0\leq e_{\scaleto{\infty,k}{4.5pt}},-\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}\leq e_{\scaleto{\infty,k}{4.5pt}}+\sum_{i=1}^{s}e_{{}_{i,k}}\deg p_{i}\leq{\left\lfloor\frac{b_{{}_{\infty}}-kd}{q^{r}}\right\rfloor}\right\}.

Suppose k\mathcal{B}_{k}, is non-empty and consider z=ykxei=1spieikz=y^{k}x^{e}\prod_{i=1}^{s}p_{i}^{e_{i}}\in\mathcal{B}_{k}. By Proposition 3.1.3, 4, and since the divisor of xx is (x)=(x)0qrQ(x)=(x)_{0}-q^{r}Q_{\infty} and kj=1mmjRj+(x)0k\sum_{j=1}^{m}m_{j}R_{j}+(x)_{0} is an effective divisor, we have

(z)\displaystyle(z) =\displaystyle= kj=1mmjRj+e(x)0+i=1s(kni+eiqr)Qi(kd+qr(e+i=1seidegpi))Q\displaystyle k\sum_{j=1}^{m}m_{j}R_{j}+e(x)_{0}+\sum_{i=1}^{s}(-kn_{i}+e_{i}q^{r})Q_{i}-(kd+q^{r}(e+\sum_{i=1}^{s}e_{i}\deg p_{i}))Q_{\infty}
\displaystyle\geq i=1s(kniqraikniqr)Qi(kd+qrbkdqr)Q.\displaystyle\sum_{i=1}^{s}\left(-kn_{i}-q^{r}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\right)Q_{i}-\left(kd+q^{r}{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}\right)Q_{\infty}.

Now, take z=yki=1spieiz=y^{k}\prod_{i=1}^{s}p_{i}^{e_{i}} with ei=aikniqre_{i}=-{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}. Then

νQi(z)=kni+eiqr=kniqraikniqr.\nu_{Q_{i}}(z)=-kn_{i}+e_{i}q^{r}=-kn_{i}-q^{r}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}.

Observe that k\mathcal{B}_{k} is non-empty if and only if i=1saikniqrdegpi+bkdqr0\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}\geq 0. Therefore,

αi\displaystyle\alpha_{i} =\displaystyle= min0kqr1{νQi(z):i=1saikniqrdegpi+bkdqr0}\displaystyle-\min_{0\leq k\leq q^{r}-1}\left\{\nu_{Q_{i}}(z):\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}\geq 0\right\}
=\displaystyle= max0kqr1{kni+qraikniqr:i=1saikniqrdegpi+bkdqr0}.\displaystyle\max_{0\leq k\leq q^{r}-1}\left\{kn_{i}+q^{r}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}:\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}\geq 0\right\}.

It remains to calculate β\beta_{\infty}. Similarly, choosing z=ykxei=1spieiz=y^{k}x^{e}\prod_{i=1}^{s}p_{i}^{e_{i}} with ei=aikniqre_{i}=-{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor} and

e=bkdqr+i=1saikniqrdegpi=bkdqri=1seidegpi,e={\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}+\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}={\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}-\sum_{i=1}^{s}e_{i}\deg p_{i},

we can see that

νQ(z)=kdqr(e+i=1seidegpi)=kdqrbkdqr.\nu_{Q_{\infty}}(z)=-kd-q^{r}(e+\sum_{i=1}^{s}e_{i}\deg p_{i})=-kd-q^{r}{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}.

Thus,

β\displaystyle\beta_{\infty} =\displaystyle= min0kqr1{νQ(z):i=1saikniqrdegpi+bkdqr0}\displaystyle-\min_{0\leq k\leq q^{r}-1}\left\{\nu_{Q_{\infty}}(z):\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}\geq 0\right\}
=\displaystyle=
=\displaystyle= max0kqr1{kd+qrbkdqr:i=1saikniqrdegpi+bkdqr0},\displaystyle\max_{0\leq k\leq q^{r}-1}\left\{kd+q^{r}{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}:\sum_{i=1}^{s}{\left\lfloor\frac{a_{i}-kn_{i}}{q^{r}}\right\rfloor}\deg p_{i}+{\left\lfloor\frac{b_{\infty}-kd}{q^{r}}\right\rfloor}\geq 0\right\},

and by Lemma 3.7, we obtain G=i=1sαiQi+βQ.{\left\lfloor G\right\rfloor}=\sum_{i=1}^{s}\alpha_{i}Q_{i}+\beta_{\infty}Q_{\infty}.

4 Examples

In this section, we show examples of GAG codes with good parameters. For this purpose, we choose divisors AA, BB, and RR such that Z=AAZ=A-{\left\lfloor A\right\rfloor}, Z=RRZ=R-{\left\lfloor R\right\rfloor}, and B=RB={\left\lfloor R\right\rfloor}. Then

(AZ)=(A) and (B+Z)=(B)\ell(A-Z)=\ell(A)\quad\text{ and }\quad\ell(B+Z)=\ell(B)

In this way, A,B,ZA,B,Z and G=A+BG=A+B satisfy the hypotheses of the Corollary 2.5, so we obtain lower bounds for minimum distance. We use Theorem 2.2 to calculate the dimension of the codes, Theorem 3.4 for the dimension of the Riemann–Roch spaces involved, and Theorem 3.8 for the floor of the divisors considered. All examples presented are improvements on MinT’s tables [5]. In examples 1–3, we consider the function field F=𝔽49(x,y)F=\mathbb{F}_{49}(x,y) defined by the equation

y7+y=(x2+1)2x2.y^{7}+y=\frac{(x^{2}+1)^{2}}{x^{2}}.

In [2], it was proven that F/𝔽49F/\mathbb{F}_{49} has genus 1212 and 170170 rational places. Also, it can be shown that it has many places of degree two and three. The only pole of xx and yy and the only pole of yy over the zero of xx in 𝔽49(x)\mathbb{F}_{49}(x) will be denoted by PP_{\infty} and P0P_{0}, respectively.

Example 1.

Let A=5P+18P0A=5P_{\infty}+18P_{0}, B=4P+18P0B=4P_{\infty}+18P_{0}, G=A+B=9P+36P0G=A+B=9P_{\infty}+36P_{0}, and Z=PZ=P_{\infty}, then (G)=34\ell(G)=34.

  1. 1.

    Taking 109s168109\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s, we obtain linear codes with parameters [s,s34,24][s,s-34,24].

  2. 2.

    Taking 116s168116\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[2,2,1][n_{i},k_{i},d_{i}]=[2,2,1] for i=s+1i=s+1, we obtain linear codes with parameters [s+2,s32,23][s+2,s-32,23].

  3. 3.

    Taking 139s168139\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[2,2,1][n_{i},k_{i},d_{i}]=[2,2,1] for i=s+1,s+2i=s+1,s+2, we obtain linear codes with parameters [s+4,s30,22][s+4,s-30,22].

  4. 4.

    Taking 112s168112\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for i=s+1i=s+1, we obtain linear codes with parameters [s+3,s32,24][s+3,s-32,24].

  5. 5.

    Taking 123s168123\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for i=s+1,s+2i=s+1,s+2, we obtain linear codes with parameters [s+6,s30,24][s+6,s-30,24].

  6. 6.

    Taking 123s168123\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for i=s+1,s+2i=s+1,s+2, we obtain linear codes with parameters [s+6,s30,24][s+6,s-30,24].

  7. 7.

    Taking 163s168163\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[5,4,2][n_{i},k_{i},d_{i}]=[5,4,2] for i=s+1i=s+1, we obtain linear codes with parameters [s+5,s30,22][s+5,s-30,22].

Example 2.

Let A=19P+4P0A=19P_{\infty}+4P_{0}, B=18P+3P0B=18P_{\infty}+3P_{0}, G=A+B=37P+7P0G=A+B=37P_{\infty}+7P_{0}, and Z=PZ=P_{\infty}. Then (G)=33\ell(G)=33.

  1. 1.

    Taking 107s168107\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s, we obtain linear codes with parameters [s,s33,23][s,s-33,23].

  2. 2.

    Taking 127s168127\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[2,2,1][n_{i},k_{i},d_{i}]=[2,2,1] for i=s+1i=s+1, we obtain linear codes with parameters [s+2,s31,22][s+2,s-31,22].

  3. 3.

    Taking 150s168150\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[2,2,1][n_{i},k_{i},d_{i}]=[2,2,1] for i=s+1,s+2i=s+1,s+2, we obtain linear codes with parameters [s+4,s29,21][s+4,s-29,21].

  4. 4.

    Taking 127s168127\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for i=s+1,s+2i=s+1,s+2, we obtain linear codes with parameters [s+6,s29,23][s+6,s-29,23].

Example 3.

Let A=19PA=19P_{\infty}, B=18P+4P0B=18P_{\infty}+4P_{0}, G=A+B=37P+4P0G=A+B=37P_{\infty}+4P_{0} and Z=PZ=P_{\infty}. Then (G)=30\ell(G)=30.

  1. 1.

    Taking 129s168129\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s, we obtain linear codes with parameters [s,s30,20][s,s-30,20].

  2. 2.

    Taking 152s168152\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[2,2,1][n_{i},k_{i},d_{i}]=[2,2,1] for i=s+1i=s+1, we obtain linear codes with parameters [s+2,s28,19][s+2,s-28,19].

  3. 3.

    Taking 148s168148\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for i=s+1i=s+1, we obtain linear codes with parameters [s+3,s28,20][s+3,s-28,20].

  4. 4.

    Taking 164s168164\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for i=s+1,s+2i=s+1,s+2, we obtain linear codes with parameters [s+6,s26,20][s+6,s-26,20].

  5. 5.

    Taking 166s168166\leq s\leq 168 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[4,2,3][n_{i},k_{i},d_{i}]=[4,2,3] for i=s+1i=s+1, we obtain linear codes with parameters [s+4,s28,20][s+4,s-28,20].

In example 4, we consider the function field F=𝔽64(x,y)F=\mathbb{F}_{64}(x,y) defined by the equation

y4+y2+y=x9.y^{4}+y^{2}+y=x^{9}.

It can be proven that F/𝔽64F/\mathbb{F}_{64} has genus 1212, 257257 rational places and many places of degree three. The only pole of xx and yy will be denoted by PP_{\infty}.

Example 4.

Let A=23PA=23P_{\infty}, B=22PB=22P_{\infty}, G=A+B=45PG=A+B=45P_{\infty} and Z=PZ=P_{\infty}, then (G)=34\ell(G)=34.

  1. 1.

    Taking 228s256228\leq s\leq 256 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s, we obtain linear codes with parameters [s,s34,24][s,s-34,24].

  2. 2.

    Taking 255s256255\leq s\leq 256 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for i=s+1i=s+1, we obtain linear codes with parameters [s+3,s32,24][s+3,s-32,24].

  3. 3.

    Taking 254s256254\leq s\leq 256 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for s+1is+2s+1\leq i\leq s+2, we obtain linear codes with parameters [s+6,s30,24][s+6,s-30,24].

  4. 4.

    Taking 253s256253\leq s\leq 256 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for s+1is+3s+1\leq i\leq s+3, we obtain linear codes with parameters [s+9,s28,24][s+9,s-28,24].

  5. 5.

    Taking 252s256252\leq s\leq 256 and [ni,ki,di]=[1,1,1][n_{i},k_{i},d_{i}]=[1,1,1] for 1is1\leq i\leq s and [ni,ki,di]=[3,2,2][n_{i},k_{i},d_{i}]=[3,2,2] for s+1is+4s+1\leq i\leq s+4, we obtain linear codes with parameters [s+12,s26,24][s+12,s-26,24].

References

  • [1] A. Garzón and H. Navarro. Bases of Riemann–Roch spaces from Kummer extensions and algebraic geometry codes. Finite Fields and Their Applications, 80:102025, 2022.
  • [2] Rohit Gupta, Erik AR Mendoza, and Luciane Quoos. Reciprocal polynomials and curves with many points over a finite field. Research in Number Theory, 9(3):60, 2023.
  • [3] Agnes Eileen Heydtmann. Generalized geometric Goppa codes. Communications in Algebra, 30(6):2763–2789, 2002.
  • [4] Hiren Maharaj, Gretchen L Matthews, and Gottlieb Pirsic. Riemann–Roch spaces of the Hermitian function field with applications to algebraic geometry codes and low-discrepancy sequences. Journal of Pure and Applied Algebra, 195(3):261–280, 2005.
  • [5] MinT. Online database for optimal parameters of (t,m,s)(t,m,s)-nets, (t,s)(t,s)-sequences, orthogonal arrays, and linear codes.
  • [6] Alberto Picone. New lower bounds for the minimum distance of generalized algebraic geometry codes. Journal of Pure and Applied Algebra, 217(6):1164–1172, 2013.
  • [7] H. Stichtenoth. Algebraic function fields and codes, volume 254 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2009.
  • [8] Chaoping Xing, H. Niederreiter, and Kwok Yan Lam. A generalization of algebraic-geometry codes. IEEE Transactions on Information Theory, 45(7):2498–2501, 1999.