This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\titlehead

KYUSHU-HET-223, KUNS-2862

Baryon number non-conservation
as Peccei-Quinn mechanism

Takahiro Ohata Department of Physics, Kyoto University, Kyoto 606–8502, Japan Kengo Takeuchi Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819–0395, Japan Koji Tsumura Email: [email protected] Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819–0395, Japan
Abstract

Baryon number is an accidental symmetry in the standard model, while Peccei-Quinn symmetry is hypothetical symmetry which is introduced to solve the strong CP problem. We study the possible connections between Peccei-Quinn symmetry and baryon number symmetry. In this framework, an axion is identified as the Nambu-Goldstone boson of baryon number violation. As a result, characteristic baryon number violating processes are predicted. We developed the general method to determine the baryon number and lepton number of new scalar in the axion model.

1 Introduction

The last undetermined parameter of the standard model for particle physics (SM) is the QCD θ\theta parameter. The θ\theta parameter is constrained to be extremely small by the search for the neutron electric dipole moment[1], which imply the CP symmetry in the strong interaction. However, the CP symmetry is broken in the electroweak sector of the SM by the Kobayashi-Maskawa mechanism. It is natural to expect the CP violation in the strong interaction against non-observation of the strong CP phase θ\theta. This unnaturalness is called the strong CP problem[2].

The strong CP problem may be solved by the hypothetical Peccei-Quinn symmetry (PQ symmetry)[3], where the enhanced global symmetry leaves an axion as Nambu-Goldstone boson after the symmetry breaking. Thanks to the shift symmetry of the axion, the QCD θ\theta parameter becomes unphysical. When the axion develops a vacuum expectation value (VEV), the vanishing θ\theta parameter is realized as a physical quantity. Thus, the strong CP problem is solved dynamically. The minimal extension of the SM to realize the PQ mechanism is known to be ruled out, where the second Higgs doublet is introduced with a global symmetry[4]. There are two major axion models. One is so-called KSVZ axion[5], where the PQ mechanism is realized outside the SM sector. An SM singlet complex scalar is coupled to the postulated heavy colored fermions. The other is DFSZ axion model[6], where an SM singlet complex scalar is added to the original axion model[4]. Assuming the large VEV of the singlet scalar, these axion models become invisible against experimental searches.

Invisible axion models are often combined with the global symmetries, which are motivated by the other problem in the SM. Froggatt-Nielsen mechanism is a familiar mechanism of the origin of fermion mass hierarchy, where a flavor symmetry is assumed. If the flavor symmetry and the PQ symmetry are broken by the common VEV, then these two independently inspired scenarios have the common physics scale and the characterized predictions[7, 8]. For another example of such model, the type-I seesaw mechanism is known to generate the lepton number violating Majorana neutrino masses. If the lepton number symmetry is identified with PQ symmetry, a pseudo Nambu-Goldstone boson called Majoron[9] plays a role of axion[10, 11].

The search for the violation of conservation law is believed to be a useful probe to access the physics far beyond the TeV scale. Although LHC has been reported null evidences of new physics below TeV scale, indirect searches using flavor/number as well as CP violation have been explored the high energy scale much higher than the TeV scale through the virtual mediator effects. Non-observation of the nucleon decay search has been provided one of the most stringent bound on such process[12]. The searches of the lepton number violating neutrinoless double beta decay and the lepton flavor violating processes have also been known to be very sensitive probes of new physics.

In the classical level of the SM, the baryon number 𝐁\mathbf{B} and lepton number 𝐋\mathbf{L} are accidentally conserved. However, in the SM effective field theory, these symmetries are, in general, violated by the higher dimensional operators. For instance, the 𝐋\mathbf{L} violating operator LLHHLLHH is allowed at dimension-five, while 𝐁+𝐋\mathbf{B}+\mathbf{L} violating operators are allowed at dimension-six[13, 14]. Depending on the operator dimensions, characteristic number violating processes are predicted[13, 14, 15]. If these number violation is identified as PQ symmetry breaking, the PQ mechanism may also be explored by the powerful number violation searches.

In this paper, we propose new axion models based on the lepton and/or baryon number conservation. These number symmetries are identified as the PQ symmetry. The strong CP problem is solved by ordinary PQ mechanism, while the characteristic number violation is predicted. The method to identify the lepton number symmetry by the PQ symmetry is developed in Majoraxion models, where the lepton number symmetry and PQ symmetry is identified. We then generalized the method with the baryon number symmetry. As typical examples, we construct axion models which predict nucleon decays, nn-n¯\bar{n} oscillation, and dinucleon decays.

This paper is organized as follows. In Section 2, the Majoraxion models are reviewed and formulated by the model independent framework. A method to identify the number symmetry by PQ symmetry is developed. In Section 3, axion models based on the baryon (and lepton) number violations are proposed with typical baryon number violating experimental signatures. Conclusion and discussion are given in Section 4.

2 Anatomy of Majoraxion models

In this section, we review on known Majoraxion models, and then the idea is reformulated in the model independent framework using the higher order operators.

The idea of the Majoraxion is to unify the axion and the Majoron, where the former is a pseudo-Nambu-Goldstone boson (pNGB) induced by the PQ symmetry breaking while the latter is one from the breaking of the lepton number symmetry. The first model[10] of this category is based on the connection between the type-I seesaw model and the KSVZ axion model. In the type-I seesaw model[16], the SM singlet right-handed neutrinos NRN_{R} are postulated to generate the observed neutrino mass and mixing. In this model, the lepton number conservation is broken explicitly by Majorana mass for right-handed neutrinos. The lepton number symmetry can be restored by introducing the SM singlet complex scalar SS as

N=(yNL¯H~NR+H.c.)12hNSNRC¯NR,\displaystyle{\mathcal{L}}_{N}=\Big{(}-y_{N}\,\overline{L}\widetilde{H}N_{R}+\text{H.c.}\Big{)}-\frac{1}{2}h_{N}\,S^{*}\overline{N_{R}^{C}}N_{R}, (1)

where LL and HH are the lepton and Higgs doublet in the SM, respectively. We also note H~=iτ2H\widetilde{H}=i\tau_{2}H^{*} and ψC=Cψ¯t\psi^{C}=C\overline{\psi}^{t}. Through Yukawa interaction with lepton numberless coupling constant, the lepton numbers 𝐋\mathbf{L} of NRN_{R} and SS are uniquely determined, i.e., 𝐋(NR)=+1\mathbf{L}(N_{R})=+1 and 𝐋(S)=+2\mathbf{L}(S)=+2. In Shin’s model[10], the common complex scalar SS is used to break the PQ symmetry of KSVZ axion model,111 The model can also be combined with DFSZ axion model[17, 18]. As discussed in Ref.[18], U(1)PQU(1)_{\text{PQ}} is entangled with U(1)BU(1)_{\textbf{B}}, U(1)LU(1)_{\textbf{L}} and U(1)YU(1)_{Y} in the DFSZ model due to the ambiguity of PQ charges of SM fermions. On the other hand, PQ symmetry is broken only by SM singlet scalar in the KSVZ model resulting no entanglement. Thus, PQ symmetry can be identified as a part of U(1)B×U(1)LU(1)_{\textbf{B}}\times U(1)_{\textbf{L}} symmetry.

Ψ=yΨSΨ¯LΨR+H.c.\displaystyle{\mathcal{L}}_{\Psi}=-y_{\Psi}\,S^{*}\,\overline{\Psi}_{L}\Psi_{R}+\text{H.c.} (2)

where ΨL\Psi_{L} and ΨR\Psi_{R} are so-called KSVZ quarks. It is now clear that since 𝐋(Ψ¯LΨR)0\mathbf{L}(\overline{\Psi}_{L}\Psi_{R})\neq 0, the lepton number symmetry plays a role of PQ symmetry in this setup. Thus, the Majoron is identified as the axion. As the simplest choice, ΨL\Psi_{L} and ΨR\Psi_{R} are assumed to transform as a fundamental representation of QCD and have single flavor in order to easily avoid the domain wall problem[19]. If we write the KSVZ Yukawa interaction with SS as

Ψ=yΨSΨ¯LΨR+H.c.\displaystyle{\mathcal{L}}^{\prime}_{\Psi}=-y_{\Psi}\,S\,\overline{\Psi}_{L}\Psi_{R}+\text{H.c.} (3)

a different lepton numbers assignment is possible.

Let us reformulate the idea of Majoraxion in a model independent way. At renormalizable level, the (global) lepton number symmetry is an accidental symmetry of the SM. On the other hand, the lepton number is in general broken by higher dimensional operators constructed by the SM fields. The most popular lepton number violating operator is so-called Weinberg operator with mass dimension five[13],

𝒪^5=LLHH.\displaystyle\widehat{\mathcal{O}}_{5}=LLHH. (4)

This operator breaks lepton number by two units, Δ𝐋=2\Delta\mathbf{L}=2. What was done in the Majoraxion model is to restore the lepton number symmetry by introducing the complex scalar SS, i.e.,

𝒪6=S𝒪^5=SLLHH,\displaystyle{\mathcal{O}}_{6}=S^{*}\widehat{\mathcal{O}}_{5}=S^{*}LLHH, (5)

where the lepton number of SS is fixed to be 𝐋(S)=+2\mathbf{L}(S)=+2. Now, SS has a well defined lepton number by Eq.(5), which is transmitted to ΨL\Psi_{L} and/or ΨR\Psi_{R} through the KSVZ Yukawa interaction in Eq.(3). This prescription is further developed with the baryon number symmetry in the next section. When SS acquires the VEV with this lepton number conserving operator, the Majoron appears as an axion. If we begin with a seesaw model which has lepton number violating dimensionful parameter, the Majoraxion model is derived by replacing this operator with the complex scalar SS. That was done in the above example.

This prescription is applied for the type-II seesaw model[20], where a complex triplet scalar Δ\Delta with Y=1Y=1 is introduced.222 Our hypercharge convention is QEM=T3+YQ_{\text{EM}}=T_{3}+Y, where the electric charge QEMQ_{\text{EM}} and the third component of weak isospin T3T_{3}. In the type-II seesaw model, a dimensionful parameter with lepton number violation is μ\mu in the scalar potential, 𝒱μHΔH\mathcal{V}\sim\mu\,H^{*}\Delta H^{*}, where the lepton number of Δ\Delta is rigorously fixed by the Yukawa interaction yΔLΔLy_{\Delta}L\Delta L. Therefore, by promoting μ\mu as SS we obtain the Majoraxion extension of the type-II seesaw model[21]. The Majoraxion extension[22] of type-III seesaw model[23] is nothing different from the type-I seesaw model, where the right-handed neutrino is simply replaced by the triplet fermion ΣR\Sigma_{R} with Y=0Y=0. In Fig. 1, the diagrams for 𝒪6\mathcal{O}_{6} are given in type-I (left) and in type-II (right) Majoraxion models. The case for type-III seesaw extension is also shown in the left panel. If we truncate the external SS line in these diagram, we obtain the diagrams for the neutrino mass generation of lepton number violating dimension five operator 𝒪^5\widehat{\mathcal{O}}_{5} in ordinary seesaw mechanism.

Refer to caption
Figure 1: Diagrams for tree-level Majoraxion models.

The higher dimensional operator 𝒪6\mathcal{O}_{6} is not necessarily decomposed by tree diagrams. The above mentioned type-I -II -III seesaw models are based on the tree level decomposition[24] of the prototype operator of O^5\widehat{O}_{5}. The loop level classification of O^5\widehat{O}_{5} is called radiative seesaw model, where neutrino masses are generated by quantum corrections. The variants of radiative seesaw model have been studied very extensively (For a comprehensive review of radiative seesaw models, see [25]). There must be a loop level ultraviolet (UV) completion of 𝒪6\mathcal{O}_{6}, that is radiative Majoraxion model[26, 27]. The extension of these radiative seesaw model to the Majoraxion model is straightforward. In Fig. 2, the diagrams for the radiative Majoraxion extensions of Zee model (left), Zee-Babu model (center) and scotogenic model (right). In ordinary Zee model[28], a pair of singly charged scalar k±k^{\pm} and an extra Higgs doublet HH^{\prime} are introduced in order to form the lepton number violating connection μZk+HH\mu_{\text{Z}}\,k^{+}H^{*}H^{\prime*} with dimensionful coupling μZ\mu_{\text{Z}}. The substitution of μZ\mu_{\text{Z}} by SS again identifies the lepton number symmetry as PQ symmetry[29]. In ordinary Zee-Babu model[30] , a pair of doubly charged scalar k±±k^{\pm\pm} is added instead HH^{\prime}, then the lepton number violating dimensionful coupling μZB\mu_{\text{ZB}} is allowed as μZBk+k+k\mu_{\text{ZB}}\,k^{+}k^{+}k^{--}. By substituting μZ\mu_{\text{Z}} by SS, a Majoraxion extension of Zee-Babu model is realized[21]. In the scotogenic model[31], right-handed neutrinos and the so-called inert doublet are assumed to be odd under the ad-hoc Z2Z_{2} symmetry in order to make the dark matter stable. In the Majoraxion extension of the scotogenic model, the dimensionful parameter is provided by the Majorana mass of right-handed neutrinos as in type-I seesaw model. The stability of the dark matter is automatically guaranteed by the residual Z2Z_{2} symmetry (lepton parity[32, 33], which is lead by the breakdown of the global lepton number symmetry a la Krauss-Wilczek mechanism[34].

Refer to caption
Figure 2: Diagrams for loop-level Majoraxion models.

3 𝐁\mathbf{B} and 𝐋\mathbf{L} violation as PQ mechanism

In this section, we focus on the lepton number and baryon number violating operators with mass dimensions more than d=5d=5. At d=6d=6, 𝐁𝐋\mathbf{B-L} conserving operators of qqqqqq\ell are allowed, where qq and \ell are general quark and lepton fields. The d=7d=7 operators of qqq¯φqqq\overline{\ell}\varphi hold 𝐁+𝐋\mathbf{B+L} but violate 𝐁𝐋\mathbf{B-L}, where φ\varphi denotes a SM boson field or space-time derivative. In this paper, we assume φ\varphi to be the Higgs field HH or its charge conjugation. For the characterization of d>7d>7 baryon/lepton number violating operators, see for example[15].

A Axion models based on Δ(𝐁+𝐋)=2\Delta\mathbf{(B+L)}=2 symmetry breaking

The d=6d=6 operators of qqqqqq\ell type break both the baryon number and lepton number by one unit as 𝚫𝐁=𝚫𝐋=1\mathbf{\Delta B}=\mathbf{\Delta L}=1. These are given by

𝒪^6={uRuRdReR,uRdRQL,uRQQeR,QQQL},\displaystyle\widehat{\mathcal{O}}_{6}=\big{\{}u_{R}u_{R}d_{R}e_{R},u_{R}d_{R}QL,u_{R}QQe_{R},QQQL\big{\}}, (6)

where SM right-handed quark singlets uRu_{R}, dRd_{R} and left-handed quark doublet QQ, respectively. All these operators hold global 𝐁𝐋\mathbf{B-L} symmetry, while the 𝐁+𝐋\mathbf{B+L} symmetry is explicitly broken. According to the prescription discussed in the previous section, 𝐁+𝐋\mathbf{B+L} symmetry may be restored by introducing a complex scalar SS as

𝒪7=S𝒪^6.\displaystyle{\mathcal{O}}_{7}=S^{*}\,\widehat{\mathcal{O}}_{6}. (7)

Note that the baryon and lepton numbers of SS are determined as 𝐁(S)=𝐋(S)=+1\mathbf{B}(S)=\mathbf{L}(S)=+1 through this operator. In general, the 𝐁+𝐋\mathbf{B+L} conserving operator may be higher order as 𝒪8=(S)2𝒪^6,{\mathcal{O}}_{8}=(S^{*})^{2}\,\widehat{\mathcal{O}}_{6},\cdots, instead. If we commonly use SS^{*} or SS for the KSVZ Yukawa interaction as in Eq. (2) or Eq. (3), pNGB caused by 𝐁+𝐋\mathbf{B+L} symmetry breaking is identified as an axion. At this point, how can we assign 𝐁\mathbf{B} and 𝐋\mathbf{L} for ΨL\Psi_{L} and ΨR\Psi_{R}?

The 𝐁\mathbf{B} and 𝐋\mathbf{L} charges for ΨL\Psi_{L} and ΨR\Psi_{R} can be determined by introducing the one of the following mass mixing operators,

𝒪mix={Q¯H~ΨRU,ΨLU¯uR,Q¯HΨRD,ΨLD¯dR}.\displaystyle{\mathcal{O}}\,^{\prime}_{\text{mix}}=\big{\{}\overline{Q}\widetilde{H}\Psi_{R}^{U},\overline{\Psi^{U}_{L}}u_{R},\overline{Q}H\Psi_{R}^{D},\overline{\Psi^{D}_{L}}d_{R}\big{\}}. (8)

The hypercharges of ΨLq\Psi_{L}^{q} and ΨRq\Psi_{R}^{q} are chosen to be +2/3+2/3 (for q=Uq=U) or 1/3-1/3 (for q=Dq=D). These operators are obtained by replacing a SM quark singlet qR(=uR,dR)q_{R}(=u_{R},d_{R}) by ΨRq\Psi_{R}^{q} or Q¯H~(Q¯H)\overline{Q}\widetilde{H}(\overline{Q}H) by ΨLU¯(ΨLD¯)\overline{\Psi^{U}_{L}}(\overline{\Psi^{D}_{L}}) in the quark Yukawa interactions, i.e., yUQ¯H~uRy_{U}\overline{Q}\widetilde{H}u_{R} and yDQ¯HdRy_{D}\overline{Q}Hd_{R}. This is usually done in the KSVZ model in order to allow the decay of KSVZ quark into the SM particles. Through these connections, we find 𝐁(ΨLq)=𝐁(ΨRq)=+1/3\mathbf{B}(\Psi^{q}_{L})=\mathbf{B}(\Psi^{q}_{R})=+1/3 and 𝐋(ΨLq)=𝐋(ΨRq)=0\mathbf{L}(\Psi^{q}_{L})=\mathbf{L}(\Psi^{q}_{R})=0. This is not the case for our purpose. In order to identify the pNGB as an axion, ΨL\Psi_{L} and ΨR\Psi_{R} must have different 𝐁\mathbf{B} and 𝐋\mathbf{L} charges. Therefore, we determine 𝐁\mathbf{B} and 𝐋\mathbf{L} only for ΨLq(ΨRq)\Psi_{L}^{q}\,(\Psi_{R}^{q}) by this procedure, and the other link for ΨRq(ΨLq)\Psi_{R}^{q}\,(\Psi_{L}^{q}) is taken from the KSVZ Yukawa interactions through Eq. (7). As a concrete example, we assume the operators of ΨLD¯dR\overline{\Psi^{D}_{L}}d_{R} and SQQQLS^{*}QQQL in our effective Lagrangian. At this point, 𝐁\mathbf{B} and 𝐋\mathbf{L} for ΨLD\Psi^{D}_{L} and SS are uniquely fixed, while that for ΨRD\Psi^{D}_{R} is ambiguous. Once the KSVZ Yukawa interaction SΨLD¯ΨRDS\overline{\Psi^{D}_{L}}\Psi_{R}^{D} is turned on, 𝐁\mathbf{B} and 𝐋\mathbf{L} for ΨRD\Psi^{D}_{R} are uniquely determined.

The 𝐁+𝐋\mathbf{B+L} conserving operator 𝒪7\mathcal{O}_{7} can be systematically constructed from the following 𝐁\mathbf{B} and 𝐋\mathbf{L} conserving operators,

𝒪6={ΨRUuRdReR,uRuRΨRDeR,ΨRUdRQL,uRΨRDQL,ΨRUQQeR},\displaystyle{\mathcal{O}}\,^{\prime}_{6}=\big{\{}\Psi_{R}^{U}u_{R}d_{R}e_{R},u_{R}u_{R}\Psi_{R}^{D}e_{R},\Psi_{R}^{U}d_{R}QL,u_{R}\Psi_{R}^{D}QL,\Psi_{R}^{U}QQe_{R}\big{\}}, (9)

where one of a SM quark singlet qRq_{R} is substituted by ΨRq\Psi_{R}^{q} in 𝒪^6\widehat{\mathcal{O}}_{6}. Similarly to the method developed with 𝒪mix{\mathcal{O}}\,^{\prime}_{\text{mix}}, 𝒪6{\mathcal{O}}\,^{\prime}_{6} determines the baryon (lepton) number of KSVZ quarks as 𝐁(ΨRq)=2/3\mathbf{B}(\Psi^{q}_{R})=-2/3 and 𝐋(ΨRq)=1\mathbf{L}(\Psi^{q}_{R})=-1. If we take ΨLq\Psi_{L}^{q} from 𝒪mix{\mathcal{O}}\,^{\prime}_{\text{mix}} and ΨRq\Psi_{R}^{q} from 𝒪6{\mathcal{O}}\,^{\prime}_{6}, the KSVZ Yukawa interaction in Eq. (3) induces 𝒪7{\mathcal{O}}_{7}. The higher order operator 𝒪8{\mathcal{O}}_{8} can also be derived by considering the operator 𝒪6′′=dRΨRUΨRUeR{\mathcal{O}}\,^{\prime\prime}_{6}=d_{R}\Psi_{R}^{U}\Psi_{R}^{U}e_{R}, where 𝐁(ΨRU)=1/6\mathbf{B}(\Psi^{U}_{R})=-1/6 and 𝐋(ΨRU)=1/2\mathbf{L}(\Psi^{U}_{R})=-1/2 correspond to 𝐁(S)=𝐋(S)=+1/2\mathbf{B}(S)=\mathbf{L}(S)=+1/2.

Let us show a UV complete example by introducing a singlet scalar ξ\xi with Y=1/3Y=-1/3. The leptoquark ξ\xi transforms as a fundamental representation of QCD, and the baryon and lepton numbers are assigned to 𝐁(ξ)=1/3\mathbf{B}(\xi)=-1/3 and 𝐋(ξ)=+1\mathbf{L}(\xi)=+1. The baryon and lepton number conservation are assumed as PQ symmetry. Then, the dimension-six interaction of ΨRUdRQL\Psi_{R}^{U}d_{R}QL is decomposed to the renormalizable interactions. The relevant Lagrangian is given by

=\displaystyle{\mathcal{L}}= yΨSΨLUa¯ΨRUaμUiΨLUa¯uiRayΨDiϵabcξa(ΨRUb)C¯diRc\displaystyle-y_{\Psi}\,S\,\overline{\Psi^{Ua}_{L}}\Psi^{Ua}_{R}-\mu_{U}^{i}\,\overline{\Psi^{Ua}_{L}}u_{iR}^{a}-y_{\Psi D}^{i}\,\epsilon_{abc}\xi^{a}\overline{(\Psi_{R}^{Ub})^{C}}d_{iR}^{c}
[+yQLij(Qia)C¯(iσ2)Lj+yUEij(uiRa)C¯eRj](ξa)+H.c.\displaystyle\qquad-\Big{[}+y_{QL}^{ij}\overline{(Q_{i}^{a})^{C}}(i\sigma_{2})L_{j}+y_{UE}^{ij}\,\overline{(u_{iR}^{a})^{C}}e_{Rj}\Big{]}(\xi^{a})^{*}+\text{H.c.} (10)

We here show the color indices (a,b,c=1,2,3a,b,c=1,2,3) and the flavor indices (i,j=1,2,3)(i,j=1,2,3) explicitly, and ϵabc\epsilon_{abc} is the Levi-Civita tensor. The Lagrangian is assumed to hold global 𝐁+𝐋\mathbf{B}+\mathbf{L} symmetry as PQ symmetry. The operators of QQξQQ\,\xi and uRdRξu_{R}d_{R}\,\xi, which lead dangerous dimension-six nucleon decays, are forbidden by 𝐁+𝐋\mathbf{B}+\mathbf{L} symmetry unlike ordinary leptoquark models. Note that ξ\xi has definite 𝐁\mathbf{B} and 𝐋\mathbf{L} by construction, no diquark interaction is allowed. On the other hand, the model predicts nucleon decays via 𝒪7{\mathcal{O}}_{7}. The corresponding Feynman diagram is depicted in the left of Fig. 3. The low energy effective Lagrangian for the nucleon decay is derived as

effΔ(𝐁+𝐋)=2=ϵabc(uiRa)C¯djRb[+CUDQLijkl((ukLc)C¯elL(dkLd)C¯νlL)+CUDUEijkl(ukRc)C¯elR]+H.c.\displaystyle{\mathcal{L}}_{\text{eff}}^{\Delta(\mathbf{B}+\mathbf{L})=2}=\epsilon_{abc}\overline{(u_{iR}^{a})^{C}}d_{jR}^{b}\Big{[}+C_{UDQL}^{ijkl}\big{(}\overline{(u_{kL}^{c})^{C}}e_{lL}-\overline{(d_{kL}^{d})^{C}}\nu_{lL}\big{)}+C_{UDUE}^{ijkl}\,\overline{(u_{kR}^{c})^{C}}e_{lR}\Big{]}+\text{H.c.} (11)

Here and hereafter, we omit the flavor indices. The Wilson coefficients are given by

CUDQLijkl=μUiyΨDjyQLklMΨMξ2,CUDUEijkl=μUiyΨDjyueklMΨMξ2.\displaystyle C_{UDQL}^{ijkl}=-\frac{\mu_{U}^{i}y_{\Psi D}^{j}y_{QL}^{kl}}{M_{\Psi}M_{\xi}^{2}},\quad C_{UDUE}^{ijkl}=-\frac{\mu_{U}^{i}y_{\Psi D}^{j}y_{ue}^{kl}}{M_{\Psi}M_{\xi}^{2}}. (12)

where mass of leptoquark is MξM_{\xi}, and that of KSVZ quark is MΨ=yΨSM_{\Psi}=y_{\Psi}\langle S\rangle.333 The typical mass scale of KSVZ quark can be as large as S\langle S\rangle, while a TeV scale mass is possible by assuming the small Yukawa coupling constant yΨ1y_{\Psi}\ll 1.

Refer to caption
Figure 3: Diagrams for 𝒪7{\mathcal{O}}_{7} in a UV complete model.

Using these effective interactions, the proton decay rates are

Γpπ0ei+=\displaystyle\Gamma_{p\to\pi^{0}e^{+}_{i}}= mp32π(1mπ2mp2)2(|CUDQL111iπ0|(ud)RuL|pi|2+|CUDUE111iπ0|(ud)LuL|pi|2),\displaystyle\frac{m_{p}}{32\pi}\bigg{(}1-\frac{m_{\pi}^{2}}{m_{p}^{2}}\bigg{)}^{\!\!2}\,\bigg{(}\Big{|}C_{UDQL}^{111i}\langle\pi^{0}|(ud)_{R}u_{L}|p\rangle_{i}\Big{|}^{2}+\Big{|}C_{UDUE}^{111i}\langle\pi^{0}|(ud)_{L}u_{L}|p\rangle_{i}\Big{|}^{2}\bigg{)}, (13)
Γpπ+ν¯i=\displaystyle\Gamma_{p\to\pi^{+}\overline{\nu}_{i}}= mp32π(1mπ2mp2)2|CUDQL111iπ+|(du)RdL|p|2,\displaystyle\frac{m_{p}}{32\pi}\bigg{(}1-\frac{m_{\pi}^{2}}{m_{p}^{2}}\bigg{)}^{\!\!2}\,\Big{|}C_{UDQL}^{111i}\langle\pi^{+}|(du)_{R}d_{L}|p\rangle\Big{|}^{2}, (14)
ΓpK0ei+=\displaystyle\Gamma_{p\to K^{0}e_{i}^{+}}= mp32π(1mK2mp2)2(|CUDQL121iK0|(us)RuL|pi|2+|CUDUE121iK0|(us)LuL|pi|2)\displaystyle\frac{m_{p}}{32\pi}\bigg{(}1-\frac{m^{2}_{K}}{m^{2}_{p}}\bigg{)}^{\!\!2}\,\bigg{(}\Big{|}C_{UDQL}^{121i}\langle K^{0}|(us)_{R}u_{L}|p\rangle_{i}\Big{|}^{2}+\Big{|}C_{UDUE}^{121i}\langle K^{0}|(us)_{L}u_{L}|p\rangle_{i}\Big{|}^{2}\bigg{)} (15)
ΓpK+ν¯i=\displaystyle\Gamma_{p\to K^{+}\overline{\nu}_{i}}= mp32π(1mK2mp2)2|CUDQL121iK+|(us)RdL|p+CUDQL112iK+|(ud)RsL|p|2,\displaystyle\frac{m_{p}}{32\pi}\bigg{(}1-\frac{m_{K}^{2}}{m_{p}^{2}}\bigg{)}^{\!\!2}\,\Big{|}C_{UDQL}^{121i}\langle K^{+}|(us)_{R}d_{L}|p\rangle+C_{UDQL}^{112i}\langle K^{+}|(ud)_{R}s_{L}|p\rangle\Big{|}^{2}, (16)
Γpη0ei+=\displaystyle\Gamma_{p\to\eta^{0}e^{+}_{i}}= mp32π(1mη2mp2)2(|CUDQL111iη0|(ud)RuL|pi|2+|CUDUE111iη0|(ud)LuL|pi|2).\displaystyle\frac{m_{p}}{32\pi}\bigg{(}1-\frac{m_{\eta}^{2}}{m_{p}^{2}}\bigg{)}^{\!\!2}\bigg{(}\Big{|}C_{UDQL}^{111i}\langle\eta^{0}|(ud)_{R}u_{L}|p\rangle_{i}\Big{|}^{2}+\Big{|}C_{UDUE}^{111i}\langle\eta^{0}|(ud)_{L}u_{L}|p\rangle_{i}\Big{|}^{2}\bigg{)}. (17)

where the nucleon matrix elements are taken from the lattice simulation result[35]. For simplicity, we assume yQLij=yueij=yqy_{QL}^{ij}=y_{ue}^{ij}=y_{q\ell}, yΨDi=yΨDy_{\Psi D}^{i}=y_{\Psi D} and μUi=μU\mu_{U}^{i}=\mu_{U} in numerical estimates. The proton (partial) lifetime is evaluated as functions of model parameters as

τpπ0e+\displaystyle\tau_{p\to\pi^{0}e^{+}} (2.4×1034yrs)×(0.2μU/MΨ)2(1|yΨD|)2(1|yq|)2(Mξ2.0×1015GeV)4,\displaystyle\simeq(2.4\times 10^{34}\,\text{yrs})\times\bigg{(}\frac{0.2}{\mu_{U}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{q\ell}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\xi}}{2.0\times 10^{15}\text{GeV}}\bigg{)}^{\!\!4}, (18)
τpπ0μ+\displaystyle\tau_{p\to\pi^{0}\mu^{+}} (1.6×1034yrs)×(0.2μU/MΨ)2(1|yΨD|)2(1|yq|)2(Mξ1.7×1015GeV)4,\displaystyle\simeq(1.6\times 10^{34}\,\text{yrs})\times\bigg{(}\frac{0.2}{\mu_{U}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{q\ell}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\xi}}{1.7\times 10^{15}\text{GeV}}\bigg{)}^{\!\!4}, (19)
τpπ+ν¯i\displaystyle\tau_{p\to\pi^{+}\overline{\nu}_{i}} (3.9×1032yrs)×(0.2μU/MΨ)2(1|yΨD|)2(1|yq|)2(Mξ6.9×1014GeV)4,\displaystyle\simeq(3.9\times 10^{32}\,\text{yrs})\times\bigg{(}\frac{0.2}{\mu_{U}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{q\ell}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\xi}}{6.9\times 10^{14}\text{GeV}}\bigg{)}^{\!\!4}, (20)
τpK0e+\displaystyle\tau_{p\to K^{0}e^{+}} (1.0×1033yrs)×(0.2μU/MΨ)2(1|yΨD|)2(1|yq|)2(Mξ6.0×1014GeV)4,\displaystyle\simeq(1.0\times 10^{33}\,\text{yrs})\times\bigg{(}\frac{0.2}{\mu_{U}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{q\ell}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\xi}}{6.0\times 10^{14}\text{GeV}}\bigg{)}^{\!\!4}, (21)
τpK0μ+\displaystyle\tau_{p\to K^{0}\mu^{+}} (1.6×1033yrs)×(0.2μU/MΨ)2(1|yΨD|)2(1|yq|)2(Mξ6.7×1014GeV)4,\displaystyle\simeq(1.6\times 10^{33}\,\text{yrs})\times\bigg{(}\frac{0.2}{\mu_{U}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{q\ell}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\xi}}{6.7\times 10^{14}\text{GeV}}\bigg{)}^{\!\!4}, (22)
τpK+ν¯i\displaystyle\tau_{p\to K^{+}\overline{\nu}_{i}} (6.6×1033yrs)×(0.2μU/MΨ)2(1|yΨD|)2(1|yq|)2(Mξ1.2×1015GeV)4,\displaystyle\simeq(6.6\times 10^{33}\,\text{yrs})\times\bigg{(}\frac{0.2}{\mu_{U}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{q\ell}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\xi}}{1.2\times 10^{15}\text{GeV}}\bigg{)}^{\!\!4}, (23)
τpη0e+\displaystyle\tau_{p\to\eta^{0}e^{+}} (1.0×1034yrs)×(0.2μU/MΨ)2(1|yΨD|)2(1|yq|)2(Mξ1.0×1015GeV)4,\displaystyle\simeq(1.0\times 10^{34}\,\text{yrs})\times\bigg{(}\frac{0.2}{\mu_{U}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{q\ell}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\xi}}{1.0\times 10^{15}\text{GeV}}\bigg{)}^{\!\!4}, (24)
τpη0μ+\displaystyle\tau_{p\to\eta^{0}\mu^{+}} (4.7×1033yrs)×(0.2μU/MΨ)2(1|yΨD|)2(1|yq|)2(Mξ8.1×1014GeV)4,\displaystyle\simeq(4.7\times 10^{33}\,\text{yrs})\times\bigg{(}\frac{0.2}{\mu_{U}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{q\ell}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\xi}}{8.1\times 10^{14}\text{GeV}}\bigg{)}^{\!\!4}, (25)

where τpMi=ΓpMi1\tau_{p\to M\ell_{i}}=\Gamma_{p\to M\ell_{i}}^{-1}, μU/MΨ\mu_{U}/M_{\Psi} characterizes the mixing between the SM and KSVZ quark. Among the current experimental bounds[36, 37, 38, 39, 40, 41, 42] on the proton decay modes, we find that pπ0e+p\to\pi^{0}e^{+} mode gives the strongest constraint on this model. In the above formula, we normalize the partial lifetime of the proton by their current lower bound, e.g. the lower bound for pπ0e+p\to\pi^{0}e^{+} mode is τpπ0e+<2.4×1034yrs\tau_{p\to\pi^{0}e^{+}}<2.4\times 10^{34}\,\text{yrs}[36]. Among all the proton decay constraints, pπ0e+p\to\pi^{0}e^{+} gives a strongest one. If we assume the order one Yukawa couplings |yΨD||yq|1|y_{\Psi D}|\sim|y_{q\ell}|\sim 1 and the order one mixing μU/MΨ0.2\mu_{U}/M_{\Psi}\sim 0.2, the proton decay has already given a very stringent constraint on the new physics scale MξM_{\xi} as Mξ1015M_{\xi}\gtrsim 10^{15}\,GeV, which is much larger than typical PQ scale of 10121410^{12-14}\,GeV. We note that the scale of direct search of new colored particles at hadron colliders is only a few TeV, and those of indirect searches through the flavor changing observables are about 10010010001000 TeV by assuming the order one coupling constants. Therefore, the proton decay search is the most promising way to explore this model.

Note that the other type of UV completion is also possible with more particles. For instance, if we introduce a QCD anti-fundamental scalar singlet diquark ζ\zeta with Y=+1/3Y=+1/3 together with ξ\xi, then the new Yukawa interaction uRdRζu_{R}d_{R}\zeta^{*} and the source of the mass mixing between the diquark and the leptoquark, ζξS\zeta^{*}\xi^{*}S, are allowed. The corresponding Feynman diagram for this UV completion is shown in the right of Fig. 3 as an example.

We may add right-handed neutrinos without imposing the lepton number symmetry in these setup. Since the Majorana mass term for right-handed neutrinos breaks the continuous lepton number symmetry explicitly, the baryon number symmetry is solely identified as PQ symmetry in this case. Thus, the ‘Sakharaxion’ scenario is realized in a minimal way, where the Sakharon[43], pNGB from the spontaneous baryon number violation, is identified as an axion.

Finally, we comment on the axion physics of the models. The model predictions for the axions are not changed from the minimal KSVZ model. This feature is common to the Majoraxion model. The constraints on the axion decay constant, e.g. from the duration time of neutrinos from the supernova SN 1987A[44], are applicable without modification. The possible axion dark matter scenario[45] can also be combined. Therefore, the model is examined only through the baryon number violation or the effect of new particles.

B Axion models based on Δ(𝐁𝐋)=2\Delta\mathbf{(B-L)}=2 symmetry breaking

The d=7d=7 operators of qqq¯φqqq\overline{\ell}\varphi violate the baryon and lepton number as Δ𝐁=Δ𝐋=1\Delta\mathbf{B}=-\Delta\mathbf{L}=1. which are given by

𝒪^7={uRdRdRL¯H,dRdRdRL¯H,dRdRQe¯RH,dRQQL¯H}.\displaystyle\widehat{\mathcal{O}}_{7}=\big{\{}u_{R}d_{R}d_{R}\overline{L}H^{*},d_{R}d_{R}d_{R}\overline{L}H,d_{R}d_{R}Q\overline{e}_{R}H^{*},d_{R}QQ\overline{L}H^{*}\big{\}}. (26)

The global 𝐁+𝐋\mathbf{B+L} symmetry is kept, while the 𝐁𝐋\mathbf{B-L} symmetry is not. The 𝐁𝐋\mathbf{B-L} symmetry may be restored with a complex scalar SS as

𝒪8=S𝒪^7.\displaystyle{\mathcal{O}}_{8}=S^{*}\,\widehat{\mathcal{O}}_{7}. (27)

The baryon and lepton numbers of SS are fixed to be 𝐁(S)=𝐋(S)=+1\mathbf{B}(S)=-\mathbf{L}(S)=+1.

As discussed in the previous subsection, the 𝐁\mathbf{B} and 𝐋\mathbf{L} charges for ΨL(ΨR)\Psi_{L}\,(\Psi_{R}) can be fixed by 𝒪mix{\mathcal{O}}\,^{\prime}_{\text{mix}}. On the other hand, those for ΨR(ΨL)\Psi_{R}\,(\Psi_{L}) is determined by the following 𝐁\mathbf{B} and 𝐋\mathbf{L} conserving operators,

𝒪7={ΨRUdRdRL¯H,uRΨRDdRL¯H,ΨRDdRdRL¯H,ΨRDdRQe¯RH,ΨRDQQL¯H},\displaystyle{\mathcal{O}}\,^{\prime}_{7}=\big{\{}\Psi_{R}^{U}d_{R}d_{R}\overline{L}H^{*},u_{R}\Psi_{R}^{D}d_{R}\overline{L}H^{*},\Psi_{R}^{D}d_{R}d_{R}\overline{L}H,\Psi_{R}^{D}d_{R}Q\overline{e}_{R}H^{*},\Psi_{R}^{D}QQ\overline{L}H^{*}\big{\}}, (28)

where the SM singlet quarks are substituted by ΨR\Psi_{R}, and

𝒪6={dRdRΨLDe¯R,dRΨLDQL¯},\displaystyle{\mathcal{O}}\,^{\prime}_{6}=\big{\{}d_{R}d_{R}\Psi^{D}_{L}\overline{e}_{R},d_{R}\Psi^{D}_{L}Q\overline{L}\big{\}}, (29)

where QHQH^{*} is replaced by ΨLD\Psi^{D}_{L} in Eq.(26). Thus, we obtain 𝐁(ΨL/Rq)=2/3\mathbf{B}(\Psi^{q}_{L/R})=-2/3 and 𝐋(ΨL/Rq)=+1\mathbf{L}(\Psi^{q}_{L/R})=+1 from these connections. The extensions to higher order operators are straightforward.

As an example, we give a UV completion of this type of models by introducing a doublet scalar Ξ\Xi with Y=2/3Y=-2/3. The Ξ\Xi transforms as a fundamental representation of QCD, and the baryon and lepton numbers are assigned to 𝐁(Ξ)=+2/3\mathbf{B}(\Xi)=+2/3 and 𝐋(Ξ)=1\mathbf{L}(\Xi)=-1. The operator of dRΨLDQL¯d_{R}\Psi^{D}_{L}Q\overline{L} is decomposed by the following renormalizable interactions

=\displaystyle{\mathcal{L}}= yΨSΨLDa¯ΨRDayDiQia¯HΨRDayΨQiϵabcΞa(ΨLDb)C¯QicyL¯Dij(Ξa)Li¯djRa+H.c.\displaystyle-y_{\Psi}\,S^{*}\overline{\Psi^{Da}_{L}}\Psi^{Da}_{R}-{{y^{\prime}}_{D}^{i}}\overline{Q_{i}^{a}}H\Psi_{R}^{Da}-y_{\Psi Q}^{i}\,\epsilon_{abc}\,\Xi^{a}\overline{(\Psi_{L}^{Db})^{C}}Q_{i}^{c}-y_{\overline{L}D}^{ij}(\Xi^{a})^{*}\overline{L_{i}}d_{jR}^{a}+\text{H.c.} (30)

The global 𝐁𝐋\mathbf{B}-\mathbf{L} symmetry is imposed as PQ symmetry. This model predicts 𝐁+𝐋\mathbf{B}+\mathbf{L} conserving nucleon decays via 𝒪8{\mathcal{O}}_{8} as shown in Fig. 4. The low energy effective Lagrangian for the nucleon decay is derived as

effΔ(𝐁𝐋)=2=CDQL¯Dijklϵabc(diLa)C¯(ujLbνkL¯+djLbekL¯)dlRc+H.c.\displaystyle{\mathcal{L}}_{\text{eff}}^{\Delta(\mathbf{B}-\mathbf{L})=2}=C_{DQ\overline{L}D}^{ijkl}\epsilon_{abc}\overline{(d_{iL}^{a})^{C}}\big{(}u_{jL}^{b}\overline{\nu_{kL}}+d_{jL}^{b}\overline{e_{kL}}\big{)}d_{lR}^{c}+\text{H.c.} (31)

with

CDQL¯Dijkl=yDiyΨQjyL¯DklMΞ2MΨvEW2.\displaystyle C_{DQ\overline{L}D}^{ijkl}=-\frac{{{y_{D}^{i}}^{\prime}}^{*}y_{\Psi Q}^{j}y_{\overline{L}D}^{kl}}{M_{\Xi}^{2}M_{\Psi}}\frac{v_{\text{EW}}}{\sqrt{2}}. (32)

where MΞM_{\Xi} denotes the mass of Ξ\Xi, and vEWv_{\text{EW}} is the Higgs VEV of electroweak symmetry breaking.

Refer to caption
Figure 4: Diagrams for 𝒪8{\mathcal{O}}_{8} in a UV complete model.

In this model, no charged lepton mode of proton decay is induced. Only neutrino modes are available

Γpπ+νi=\displaystyle\Gamma_{p\to\pi^{+}\nu_{i}}= mp32π(1mπ2mp2)2|CDQL¯D11i1π+|(ud)RdL|p|2,\displaystyle\frac{m_{p}}{32\pi}\bigg{(}1-\frac{m_{\pi}^{2}}{m_{p}^{2}}\bigg{)}^{\!\!2}\,\Big{|}-C_{DQ\overline{L}D}^{11i1}\langle\pi^{+}|(ud)_{R}d_{L}|p\rangle\Big{|}^{2}, (33)
ΓpK+νi=\displaystyle\Gamma_{p\to K^{+}\nu_{i}}= mp32π(1mK2mp2)2|CDQL¯D21i1K+|(us)RdL|pCDQL¯D11i2K+|(ud)RsL|p|2,\displaystyle\frac{m_{p}}{32\pi}\bigg{(}1-\frac{m_{K}^{2}}{m_{p}^{2}}\bigg{)}^{\!\!2}\,\Big{|}-C_{DQ\overline{L}D}^{21i1}\langle K^{+}|(us)_{R}d_{L}|p\rangle-C_{DQ\overline{L}D}^{11i2}\langle K^{+}|(ud)_{R}s_{L}|p\rangle\Big{|}^{2}, (34)

where the nucleon matrix elements are determined by the lattice calculation[35]. We assume yL¯Dij=yL¯Dy_{\overline{L}D}^{ij}=y_{\overline{L}D}, yDi=yD{y_{D}^{i}}^{\prime}=y_{D}^{\prime}, yΨQi=yΨQy_{\Psi Q}^{i}=y_{\Psi Q} in the following numerical estimation for simplicity. The partial lifetimes calculated from inverse partial widths are

τpπ+νi\displaystyle\tau_{p\to\pi^{+}\nu_{i}} (3.9×1032yrs)×(109yDvEW2/MΨ)2(1|yΨQ|)2(1|yL¯D|)2(MΞ4.9×1010GeV)4,\displaystyle\simeq(3.9\times 10^{32}\,\text{yrs})\times\bigg{(}\frac{10^{-9}}{\tfrac{y_{D}^{\prime}v_{\text{EW}}}{\sqrt{2}}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi Q}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\overline{L}D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\Xi}}{4.9\times 10^{10}\text{GeV}}\bigg{)}^{\!\!4}, (35)
τpK+νi\displaystyle\tau_{p\to K^{+}\nu_{i}} (6.6×1033yrs)×(109yDvEW2/MΨ)2(1|yΨQ|)2(1|yL¯D|)2(MΞ8.5×1010GeV)4,\displaystyle\simeq(6.6\times 10^{33}\,\text{yrs})\times\bigg{(}\frac{10^{-9}}{\tfrac{y_{D}^{\prime}v_{\text{EW}}}{\sqrt{2}}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\Psi Q}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{\overline{L}D}|}\bigg{)}^{\!\!2}\bigg{(}\frac{M_{\Xi}}{8.5\times 10^{10}\text{GeV}}\bigg{)}^{\!\!4}, (36)

where (yDvEW2/MΨ)(\tfrac{y_{D}^{\prime}v_{\text{EW}}}{\sqrt{2}}/M_{\Psi}) characterizes the mixing between the SM and KSVZ quark. Comparing the experimental bound of these two proton decay mode, pK+ν¯p\to K^{+}\bar{\nu} mode gives about an order of magnitude stronger bound than that on pπ+ν¯p\to\pi^{+}\bar{\nu} mode. Thus, pK+ν¯p\to K^{+}\bar{\nu} mode is the most promising mode to explore this model.

The impact of the Higgs field insertion of the operators appears in the mixing between the SM and KSVZ quark, which is strongly suppressed by vEW/MΨv_{\text{EW}}/M_{\Psi} Note that vEWv_{\text{EW}} cannot be taken to be very large unlike the model discussed in the previous subsection. Even though the proton decay search has potential to probe high energy scale far beyond the collider reach if we assume the order one coupling constants.

C More axion models

At d=7d=7, there is a dressed operator LLHH|H|2LLHH|H|^{2} with Δ𝐋=2\Delta\mathbf{L}=2. At d=8d=8, we have Δ𝐁=Δ𝐋=1\Delta\mathbf{B}=\Delta\mathbf{L}=1 operators[15]

𝒪^8={uRuRQLHcHc,dRdRQLHH,dRQQeRHH,𝒪^6|H|2},\displaystyle\widehat{\mathcal{O}}_{8}=\big{\{}u_{R}u_{R}QLH^{c}H^{c},d_{R}d_{R}QLHH,d_{R}QQe_{R}HH,\widehat{\mathcal{O}}_{6}|H|^{2}\big{\}}, (37)

where 𝒪^6\widehat{\mathcal{O}}_{6} expresses dimension-six 𝐁+𝐋\mathbf{B+L} violating operators. These operators can also be used to construct an axion model. Since the model is controlled by the same symmetry, 𝒪7=S𝒪^6{\mathcal{O}}_{7}=S\widehat{\mathcal{O}}_{6} is allowed simultaneously with 𝒪9=S𝒪^8{\mathcal{O}}_{9}=S\widehat{\mathcal{O}}_{8}. The effects of 𝒪7\mathcal{O}_{7} are dominated in the low energy phenomena such as nucleon decays.

We can continue the same discussions with d>8d>8 operators which contain lepton and baryon number violations. There are many variations of operators, which are characterized by Δ𝐁\Delta\mathbf{B} and Δ𝐋\Delta\mathbf{L} (see FIG.1 of [15]). These operators can also be used to construct a model of axions.

Refer to caption
Figure 5: Diagrams for nn-n¯\bar{n} oscillation in a UV complete model.

A model for nn-n¯\bar{n} oscillation: At d=9d=9, there are purely baryon number violating six-quark operators with Δ𝐁=2(Δ𝐋=0)\Delta\mathbf{B}=2\,(\Delta\mathbf{L}=0). Therefore, the model predicts Sakharaxion without considering the lepton number violation. We here construct such a concrete model as an example. In order to build a model with minimal particle content, a color adjoint (Majorana) fermion Ψ8\Psi_{8} is introduced instead of the ordinary KSVZ quarks Ψ\Psi. Then, KSVZ Yukawa interaction is replaced by

Ψ8=12y8S(Ψ8LA)C¯Ψ8LA+H.c.\displaystyle{\mathcal{L}}_{\Psi_{8}}=-\frac{1}{2}\,y_{8}\,S^{*}\overline{(\Psi_{8L}^{A})^{C}}\,\Psi_{8L}^{A}+\text{H.c.} (38)

where A=(1,2,,8)A=(1,2,\cdots,8). A model with this Yukawa interaction is known as the gluino-axion model[46], where the quantum charges of Ψ8\Psi_{8} are the same as gluino in the supersymmetric theories. In addition, a QCD color anti-fundamental weak singlet diquark ζ\zeta with Y=+1/3Y=+1/3 is introduced. The baryon number symmetry is assumed as the PQ symmetry with 𝐁(Ψ8)=+1\mathbf{B}(\Psi_{8})=+1, 𝐁(ζ)=+2/3\mathbf{B}(\zeta)=+2/3 and 𝐁(S)=+2\mathbf{B}(S)=+2. The relevant Lagrangian is given by

=yζijϵabc(ζa)(uiRb)C¯djRcy8Diζa(TA)baΨ8LA¯diRb+H.c.\displaystyle{\mathcal{L}}=-y_{\zeta}^{ij}\epsilon_{abc}(\zeta_{a})^{*}\overline{(u_{iR}^{b})^{C}}d_{jR}^{c}-y_{8D}^{i}\,\zeta_{a}(T^{A})_{~{}b}^{a}\,\overline{\Psi_{8L}^{A}}d_{iR}^{b}+\text{H.c.} (39)

where (TA)ba(T^{A})_{~{}b}^{a} is the generator of SU(3)CSU(3)_{C}. This model predicts Δ𝐁=2\Delta\mathbf{B}=2 process such as nn-n¯\bar{n} oscillation as shown in Fig. 5. The low energy effective Lagrangian for the nn-n¯\bar{n} oscillation is calculated as

effΔ𝐁=2=CUUDDDDijklmnT[ab][cd]{ef}AAS(uiRa)C¯djRb(ukRc)C¯dlRd(dmRe)C¯dnRf+H.c.\displaystyle{\mathcal{L}}_{\text{eff}}^{\Delta\mathbf{B}=2}=\,C_{UUDDDD}^{ijklmn}\,T^{AAS}_{[ab][cd]\{ef\}}\overline{(u_{iR}^{a})^{C}}d_{jR}^{b}\overline{(u_{kR}^{c})^{C}}d_{lR}^{d}\overline{(d_{mR}^{e})^{C}}d_{nR}^{f}+\text{H.c.} (40)

with

CUUDDDDijklmn=yζijyζkly8Dmy8Dn12Mζ4M8,T[ab][cd]{ef}AAS=ϵabeϵcdf+ϵabfϵcde,\displaystyle C_{UUDDDD}^{ijklmn}=\frac{y_{\zeta}^{ij}y_{\zeta}^{kl}y_{8D}^{m}y_{8D}^{n}}{12M_{\zeta}^{4}M_{8}},\quad T^{AAS}_{[ab][cd]\{ef\}}=\epsilon_{abe}\epsilon_{cdf}+\epsilon_{abf}\epsilon_{cde}, (41)

where MζM_{\zeta} and M8M_{8} denote the masses of ζ\zeta and Ψ8\Psi_{8}. Using the result of the neutron-antineutiron matrix element[47], the nn-n¯\bar{n} oscillation rate is estimated as

Γnn¯=\displaystyle\Gamma_{n\overline{n}}= 109s1(700TeV)5|(4.2)×14CUUDDDD111111|.\displaystyle\frac{10^{-9}\,\text{s}^{-1}}{(700\,\text{TeV})^{-5}}\Bigg{|}(-4.2)\times\frac{1}{4}C_{UUDDDD}^{111111}\Bigg{|}. (42)

Replacing the Wilson coefficient by the model parameters, we found

τnn¯=Γnn¯1=(7×108s)×(Mζ400TeV)4(M8400TeV)(1|yζ11|)2(1|y8d1|)2.\displaystyle\tau_{n\overline{n}}={\Gamma_{n\overline{n}}}^{-1}=(7\times 10^{8}\,\text{s})\times\bigg{(}\frac{M_{\zeta}}{400\,\text{TeV}}\bigg{)}^{\!\!4}\bigg{(}\frac{M_{8}}{400\,\text{TeV}}\bigg{)}\bigg{(}\frac{1}{|y_{\zeta}^{11}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{8d}^{1}|}\bigg{)}^{\!\!2}. (43)

The current lower limit on neutron-antineutron oscillation is τnn¯>4.7×108s\tau_{n\overline{n}}>4.7\times 10^{8}\,\text{s}, which is given by Super-Kamiokande[48]. Assuming the order one Yukawa coupling constants and the common new particle masses, the mass is constrained to be larger than 400400\,TeV. This process explores much higher new physics scale than that of LHC direct searches for new colored particles. Comparably strong bounds of 102410^{2\text{--}4} TeV[49] may be obtained from neutral meson mixing, if the diquark ζ\zeta generates tree-level four fermion interactions with heavy quarks s,cs,c and bb. If the diquark is assumed to interact only with the first generation quarks, we can avoid these flavor constraints since severe bounds come from KK, DD and BB meson data.444 A comprehensive study for the diquark flavor structure is found, for example, in Ref. [50]. We also note that the model only predicts baryon number violations by two units, and thus no ordinary nucleon decay with Δ𝐁=1\Delta\mathbf{B}=1 is induced.

Refer to caption
Figure 6: Diagrams for di-nucleon decay in a UV complete model.

A model for di-nucleon decay: Another interesting baryon number violating processes are di-nucleon decays, which are induced at d=12d=12. Together with the QCD fundamental KSVZ quark ΨU\Psi^{U} with Y=+2/3Y=+2/3, one may introduce a leptoquark ξ\xi, a diquark ζ\zeta and a tetraquark ω\omega with Y=1/3Y=-1/3 and 𝐋(ω)=+2\mathbf{L}(\omega)=+2. The Lagrangian relevant to the di-nucleon decay is given by

=\displaystyle{\mathcal{L}}= yΨSΨLUa¯ΨRUaμUiΨLUa¯uiRa[yQLij(Qia)C¯(iσ2)Lj+yUEij(uiRa)C¯ejR](ξa)\displaystyle-y_{\Psi}S\,\overline{\Psi_{L}^{Ua}}\Psi_{R}^{Ua}-\mu_{U}^{i}\overline{\Psi_{L}^{Ua}}u_{iR}^{a}-\Big{[}y_{QL}^{ij}\overline{(Q_{i}^{a})^{C}}(i\sigma_{2})L_{j}+y_{UE}^{ij}\overline{(u_{iR}^{a})^{C}}e_{jR}\Big{]}(\xi^{a})^{*}
ϵabc[yQQij(Qib)C¯(iσ2)Qjc+yUDij(uiRb)C¯djRc](ζa)yΨDiϵabc(ΨRUa)C¯diRbωc\displaystyle-\epsilon_{abc}\Big{[}y_{QQ}^{ij}\overline{(Q_{i}^{b})^{C}}(i\sigma_{2})Q_{j}^{c}+y_{UD}^{ij}\overline{(u_{iR}^{b})^{C}}d_{jR}^{c}\Big{]}(\zeta_{a})^{*}-y_{\Psi D}^{i}\epsilon_{abc}\overline{(\Psi_{R}^{Ua})^{C}}d_{iR}^{b}\,\omega^{c}
λξaξbζa(ωb)+H.c.\displaystyle-\lambda^{\prime}\,\xi^{a}\xi^{b}\zeta_{a}(\omega^{b})^{*}+\text{H.c.} (44)

We note that 𝐁(ΨRu)=5/3\mathbf{B}(\Psi^{u}_{R})=-5/3. The di-nucleon decay is generated by the diagram shown in Fig. 6. The low energy effective Lagrangian for di-nucleon decays is written as

effΔ(𝐁+𝐋)=4=CUUUUDDEET[ab][cd]{ef}AAS(uRa)C¯dRb(uRc)C¯dRd(uRe)C¯uRfeRC¯eR+H.c.\displaystyle{\mathcal{L}}_{\text{eff}}^{\Delta(\mathbf{B}+\mathbf{L})=4}=C_{UUUUDDEE}\,T_{[ab][cd]\{ef\}}^{AAS}\overline{(u_{R}^{a})^{C}}d_{R}^{b}\,\overline{(u_{R}^{c})^{C}}d_{R}^{d}\,\overline{(u_{R}^{e})^{C}}u_{R}^{f}\,\overline{e_{R}^{C}}e_{R}+\text{H.c.} (45)

with

CUUUUDDEE=λμU1yΨD1yUD11(yUE11)24Mω2Mζ2Mξ4MΨ,\displaystyle C_{UUUUDDEE}=-\frac{\lambda^{\prime}\,\mu_{U}^{1}\,y_{\Psi D}^{1}y_{UD}^{11}(y_{UE}^{11})^{2}}{4M_{\omega}^{2}M_{\zeta}^{2}M_{\xi}^{4}M_{\Psi}}, (46)

where MξM_{\xi}, MζM_{\zeta} and MωM_{\omega} are masses of leptoquark, diquark and tetraquark, respectively. Let us evaluate the di-nuclaon decay rate with this effective interaction. Here, we set the parameters as yQQ=yQL=0y_{QQ}=y_{QL}=0 for simplicity. Following Ref.[51], the width of the di-nucleon decay is

Γppe+e+\displaystyle\Gamma_{pp\to e^{+}e^{+}}\,\simeq~{} (TeV)162×1026yrs(ρN0.25fm3)(mN0.939GeV)2(ΛQCD200MeV)12|CUUUUDDEE|2.\displaystyle\frac{(\text{TeV})^{16}}{2\times 10^{26}\,\text{yrs}}\bigg{(}\frac{\rho_{N}}{0.25\,\text{fm}^{-3}}\bigg{)}\bigg{(}\frac{m_{N}}{0.939\,\text{GeV}}\bigg{)}^{\!\!2}\bigg{(}\frac{\Lambda_{\text{QCD}}}{200\,\text{MeV}}\bigg{)}^{\!\!12}\Big{|}C_{UUUUDDEE}\Big{|}^{2}. (47)

where mN=(mp+mn)/2m_{N}=(m_{p}+m_{n})/2 is the mass of nucleon, ρN(0.25fm3)\rho_{N}(\sim 0.25\,\text{fm}^{-3}) is the average nuclear matter density, and ΛQCD\Lambda_{\text{QCD}} is the QCD scale parameter. In the present model, we found

τppe+e+=Γppe+e+1\displaystyle\tau_{pp\to e^{+}e^{+}}=\Gamma_{pp\to e^{+}e^{+}}^{-1}\,\simeq~{} (5×1033yrs)×(Mω2TeV)4(Mζ2TeV)4(Mξ2TeV)8\displaystyle(5\times 10^{33}\,\text{yrs})\times\bigg{(}\frac{M_{\omega}}{2\,\text{TeV}}\bigg{)}^{\!\!4}\bigg{(}\frac{M_{\zeta}}{2\,\text{TeV}}\bigg{)}^{\!\!4}\bigg{(}\frac{M_{\xi}}{2\,\text{TeV}}\bigg{)}^{\!\!8}
×(0.2μU1/MΨ)2(1|λ|)2(1|yUD11|)2(1|yUE11|)4(1|yΨD1|)2.\displaystyle\quad\times\bigg{(}\frac{0.2}{\mu_{U}^{1}/M_{\Psi}}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|\lambda^{\prime}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{UD}^{11}|}\bigg{)}^{\!\!2}\bigg{(}\frac{1}{|y_{UE}^{11}|}\bigg{)}^{\!\!4}\bigg{(}\frac{1}{|y_{\Psi D}^{1}|}\bigg{)}^{\!\!2}. (48)

The lower limit of the lifetime of the ppe+e+pp\to e^{+}e^{+} di-nucleon decay mode is τppe+e+>4.2×1033yrs\tau_{pp\to e^{+}e^{+}}>4.2\times 10^{33}\,\text{yrs}[52]. Even if we take order one new coupling constants, the common mass scale of new particles is about 22\,TeV. This scale is almost the same as the current LHC bound on the colored new particles. Thus, the forthcoming high luminosity running of the LHC can help to test this model through the direct production of new colored particles. In order to avoid the constraint from the low energy flavor data, a specific flavor structure of the Yukawa coupling might be required. For example, if we assume that new colored particles solely couple the first generation fermions. In this case, effects on flavor changing decays of μ\mu, τ\tau and mesons, and neutral meson mixing are forbidden at leading order. We also comment that no Δ𝐁=1\Delta\mathbf{B}=1 proton decay as well as no nn-n¯\bar{n} oscillation are predicted in this model.

4 Summary and discussions

PQ symmetry is often introduced in order to solve strong CP problem and is sometimes linked to other new physics scenarios such as lepton number violating neutrino masses. Possible connections between the PQ symmetry and the baryon number and lepton number symmetries have been studied in the extensions of KSVZ model. Since the KSVZ solves the strong CP problem in purely new physics sector, i.e., new KSVZ quark and a complex scalar, the baryon number and lepton number of new particles are undermined. In order to fix these quantum numbers, we have used the baryon and lepton number violating higher dimensional operators in the SM. Combining these operators with the scalar in the KSVZ model, we have developed the method to determine the baryon and lepton number of the new scalar. As a result, variants of the KSVZ axion model, which predict characteristic baryon number violations, are constructed. If we combine the scalar with d=6(7)d=6\,(7) 𝐁+𝐋(𝐁𝐋)\mathbf{B}+\mathbf{L}\,(\mathbf{B}-\mathbf{L}) violating operator, the axion model can also be explored through the nucleon decay experiment. With d=9d=9 operator, the nn-n¯\bar{n} oscillation is generated in the axion model. Since the VEV of the scalar violates the baryon number only by two units, Δ𝐁=1\Delta\mathbf{B}=1 nucleon decay is forbidden in this model. Similarly with d=12d=12 operator, the Δ(𝐁+𝐋)=4\Delta(\mathbf{B}+\mathbf{L})=4 di-nucleon decay is predicted while no other baryon number violation is generated from the lower dimension operators. The experimental search for the baryon number violation are expected to be upgrade in the near future[53, 54, 55], it might be interesting to consider a diversity of baryon number violations other than the grand unified theories.

Acknowledgments

We would like to thank Ernest Ma for pointing out the key idea of this paper and for careful reading of our manuscript. This work was supported by MEXT KAKENHI Grant Number JP18H05543.

References

  • [1] C. Abel et al. [nEDM], Phys. Rev. Lett. 124, no.8, 081803 (2020).
  • [2] G. ’t Hooft, Phys. Rev. Lett.  37, 8 (1976); Phys. Rev. D 14, 3432 (1976), Erratum: [Phys. Rev. D 18, 2199 (1978)].
  • [3] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett.  38, 1440 (1977); Phys. Rev. D 16, 1791 (1977).
  • [4] S. Weinberg, Phys. Rev. Lett.  40, 223 (1978); F. Wilczek, Phys. Rev. Lett.  40, 279 (1978).
  • [5] J. E. Kim, Phys. Rev. Lett.  43, 103 (1979); M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 166, 493 (1980).
  • [6] A. R. Zhitnitsky, Sov. J. Nucl. Phys.  31, 260 (1980) [Yad. Fiz.  31, 497 (1980)]; M. Dine, W. Fischler and M. Srednicki, Phys. Lett.  104B, 199 (1981).
  • [7] Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama, JHEP 01, 096 (2017).
  • [8] L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler and J. Zupan, Phys. Rev. D 95, no.9, 095009 (2017).
  • [9] Y. Chikashige, R. N. Mohapatra and R. D. Peccei, Phys. Lett.  98B, 265 (1981); G. B. Gelmini and M. Roncadelli, Phys. Lett.  99B, 411 (1981).
  • [10] M. Shin, Phys. Rev. Lett.  59, 2515 (1987), Erratum: [Phys. Rev. Lett.  60, 383 (1988)].
  • [11] E. Ma, Phys. Lett. B 514, 330 (2001)
  • [12] K. Abe, Y. Hayato, T. Iida, K. Iyogi, J. Kameda, Y. Kishimoto, Y. Koshio, L. Marti, M. Miura and S. Moriyama, et al. Nucl. Instrum. Meth. A 737, 253-272 (2014). Y. Fukuda et al. [Super-Kamiokande], Nucl. Instrum. Meth. A 501, 418-462 (2003).
  • [13] S. Weinberg, Phys. Rev. Lett.  43, 1566 (1979).
  • [14] F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571-1573 (1979).
  • [15] J. Heeck and V. Takhistov, Phys. Rev. D 101, no.1, 015005 (2020).
  • [16] P. Minkowski, Phys. Lett. B 67 (1977) 421; T. Yanagida, in Proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, edited by O. Sawada and A. Sugamoto (KEK, Tsukuba, 1979); M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by P. van Niewenhuizen and D. Freedman (North Holland, Amsterdam, 1979); S. L. Glashow, NATO Sci. Ser. B 61 (1980) 687; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett.  44 (1980) 912.
  • [17] P. Langacker, R. D. Peccei and T. Yanagida, Mod. Phys. Lett. A 1, 541 (1986); J. D. Clarke and R. R. Volkas, Phys. Rev. D 93, no.3, 035001 (2016).
  • [18] J. Quevillon and C. Smith, Phys. Rev. D 102, no.7, 075031 (2020).
  • [19] P. Sikivie, Phys. Rev. Lett.  48, 1156 (1982).
  • [20] J. Schechter and J. W. F. Valle, Phys. Rev. D 22 (1980) 2227; M. Magg and C. Wetterich, Phys. Lett. B 94 (1980) 61; G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B 181 (1981) 287.
  • [21] S. Bertolini, L. Di Luzio, H. Kolešová and M. Malinský, Phys. Rev. D 91, no.5, 055014 (2015).
  • [22] Y. H. Ahn and E. J. Chun, Phys. Lett. B 752, 333-337 (2016).
  • [23] R. Foot, H. Lew, X. G. He and G. C. Joshi, Z. Phys. C 44, 441 (1989).
  • [24] E. Ma, Phys. Rev. Lett.  81, 1171 (1998).
  • [25] Y. Cai, J. Herrero-García, M. A. Schmidt, A. Vicente and R. R. Volkas, Front. in Phys. 5, 63 (2017).
  • [26] B. Dasgupta, E. Ma and K. Tsumura, Phys. Rev. D 89, no. 4, 041702 (2014).
  • [27] E. Ma, T. Ohata and K. Tsumura, Phys. Rev. D 96, no.7, 075039 (2017).
  • [28] A. Zee, Phys. Lett. B 93, 389 (1980) [Erratum-ibid. B 95, 461 (1980)].
  • [29] S. Bertolini and A. Santamaria, Nucl. Phys. B 357, 222-240 (1991), H. Arason, P. Ramond and B. D. Wright, Phys. Rev. D 43, 2337-2350 (1991).
  • [30] A. Zee, Nucl. Phys.  B 264, 99 (1986); K. S. Babu, Phys. Lett.  B 203, 132 (1988).
  • [31] E. Ma, Phys. Rev. D 73, 077301 (2006).
  • [32] E. Ma, Phys. Rev. Lett.  115, no. 1, 011801 (2015).
  • [33] S. Y. Ho, T. Toma and K. Tsumura, Phys. Rev. D 94, no. 3, 033007 (2016).
  • [34] L. M. Krauss and F. Wilczek, Phys. Rev. Lett. 62, 1221 (1989).
  • [35] Y. Aoki, T. Izubuchi, E. Shintani and A. Soni, Phys. Rev. D 96, no.1, 014506 (2017).
  • [36] A. Takenaka et al. [Super-Kamiokande], Phys. Rev. D 102, no.11, 112011 (2020).
  • [37] K. Abe et al. [Super-Kamiokande], Phys. Rev. Lett. 113, no.12, 121802 (2014).
  • [38] K. Kobayashi et al. [Super-Kamiokande], Phys. Rev. D 72, 052007 (2005).
  • [39] C. Regis et al. [Super-Kamiokande], Phys. Rev. D 86, 012006 (2012).
  • [40] K. Abe et al. [Super-Kamiokande], Phys. Rev. D 90, no.7, 072005 (2014).
  • [41] V. Takhistov [Super-Kamiokande], [arXiv:1605.03235 [hep-ex]].
  • [42] K. Abe et al. [Super-Kamiokande], Phys. Rev. D 96, no.1, 012003 (2017).
  • [43] E. Ma, Mod. Phys. Lett. A 32, no.08, 1730007 (2017).
  • [44] G. G. Raffelt, Lect. Notes Phys. 741, 51-71 (2008).
  • [45] M. S. Turner, Phys. Rev. D 33, 889-896 (1986).
  • [46] D. A. Demir and E. Ma, Phys. Rev. D 62, 111901 (2000).
  • [47] E. Rinaldi, S. Syritsyn, M. L. Wagman, M. I. Buchoff, C. Schroeder and J. Wasem, Phys. Rev. Lett. 122, no.16, 162001 (2019).
  • [48] K. Abe et al. [Super-Kamiokande], Phys. Rev. D 103, no.1, 012008 (2021).
  • [49] G. Isidori, Adv. Ser. Direct. High Energy Phys. 26, 339-355 (2016).
  • [50] G. F. Giudice, B. Gripaios and R. Sundrum, JHEP 08, 055 (2011).
  • [51] X. G. He and X. D. Ma, JHEP 06, 047 (2021).
  • [52] S. Sussman et al. [Super-Kamiokande], [arXiv:1811.12430 [hep-ex]].
  • [53] Z. Djurcic et al. [JUNO], [arXiv:1508.07166 [physics.ins-det]].
  • [54] R. Acciarri et al. [DUNE], [arXiv:1512.06148 [physics.ins-det]].
  • [55] K. Abe et al. [Hyper-Kamiokande], [arXiv:1805.04163 [physics.ins-det]].