This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

111Supported by National Natural Science Foundation of China (11805140, 11347185 and 11905002), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2017113), Natural Science Foundation of Shanxi Province(201801D221021 and 201801D221031), Natural Science Foundation of Hebei Province(A2020201002), the China Scholarship Council(201906935031)

𝑩¯𝑿𝒔𝜸\bar{B}\to X_{s}\gamma in BLMSSM

Jian-bin Chen1111[email protected], Meng Zhang1, Li-Li Xing1222[email protected], Tai-Fu Feng2333[email protected], Shu-Min Zhao2444[email protected], Ke-Sheng Sun3555[email protected] 1College of Physics and Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2Department of Physics, Hebei University, Baoding, 071002, China
3Department of Physics, Baoding University,Baoding, 071000, China
Abstract

Applying the effective Lagrangian method, we study the Flavor Changing Neutral Current bsγb\to s\gamma within the minimal supersymmetric extension of the standard model where baryon and lepton numbers are local gauge symmetries. Constraints on the parameters are investigated numerically with the experimental data on branching ratio of B¯Xsγ\bar{B}\to X_{s}\gamma. Additionally, we present the corrections to direct CP-violation in B¯Xsγ\bar{B}\rightarrow X_{s}\gamma and time-dependent CP-asymmetry in BKγB\rightarrow K^{*}\gamma. With appropriate assumptions on parameters, we find the direct CP-violation ACPA_{CP} is very small, while one-loop contributions to SKγS_{K^{*}\gamma} can be significant.

BLMSSM, Electroweak radiative corrections
pacs:
12.60.Jv; 12.15.Lk

I Introduction

Since the Flavor Changing Neutral Current process(FCNC) bsγb\to s\gamma originates only from loop diagrams, it is very sensitive to new physics beyond the Standard Model(SM). The updated average data of inclusive B¯Xsγ\bar{B}\rightarrow X_{s}\gamma is PDG

BR(B¯Xsγ)exp=(3.40±0.21)×104.\displaystyle BR(\bar{B}\rightarrow X_{s}\gamma)_{exp}=(3.40\pm 0.21)\times 10^{-4}. (1)

and the prediction of SM at next-next-to-leading order (NNLO) isBrSM1 ; BrSM2 ; BrSM3 ; BrSM4 ; BrSM5 ; BrSM6 ; BrSM7 ; BrSM8

BR(B¯Xsγ)SM=(3.36±0.23)×104.\displaystyle BR(\bar{B}\rightarrow X_{s}\gamma)_{SM}=(3.36\pm 0.23)\times 10^{-4}. (2)

Though the deviation of SM prediction from experimental results has been almost eliminated in the past few years, it is helpful to constrain parameters of new physics.

The discovery of Higgs boson on Large Hadron Collider(LHC) makes SM the most successful theory in particle physics. Because of the hierarchy problem and missing of gravitational interaction, it is believed that SM is just an effective approximation of a more fundamental theory at higher scale. Among various extensions of SM, supersymmetric models have been studied for decades.

As the simplest extension, the Minimal Supersymmetric Standard Model(MSSM)MSSM solves the hierarchy problem as well as the instability of Higgs boson by introducing a superpartner for each SM particle. The Lightest Supersymmetric Particle (LSP) within this frmework also provides candidates of dark matter as Weakly Interacting Massive Particles (WIMPs). However the MSSM can not naturely generates tiny neutrino mass which is needed to explain the observation of neutrino oscillation. To acquire neutrino masses, heavy majorana neutrinos are introduced in the seesaw mechanism, which implies that the lepton numbers are broken. Besides, the baryon numbers are also expected to be broken because of the asymmetry of matter-antimatter in the universe. The authors of BLMSSM1 ; BLMSSM2 present the so called BLMSSM model in which the baryon and lepton number are local gauged and spontaneously broken at TeV scale. The experimental bounds on proton decay lifetime is the main motivation of great desert hypothesis. In BLMSSM, the proton decay can be avoid with discrete symmetry called matter parity and R-parityPR597-2015-1-30

To describe the symmetries of baryon and lepton numbers, gauge group is enlarged to SU(3)CSU(2)LU(1)YU(1)BU(1)LSU(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{B}\otimes U(1)_{L}. Then corrections to various observations can be induced from new gauge boson and exotic fields within this scenario. In ref. JHEP1411-119 , corrections to anomalous magnetic moment from one loop diagrams and two-loop Barr-Zee type diagrams are investigated with effective Lagrangian method. One-loop contributions to c(t)c(t) electric dipole moment in CP-Violating BLMSSM is presented in ref. EPJC-zhao-2017 . To account for the experimental data on Higgs, the authors of NPB-871-2013-223 study the signals of hγγh\to\gamma\gamma and hVV(V=Z,W)h\to VV^{*}(V=Z,W) with a 125 GeV Higgs. In this work, we use the branching ratio to constrain the parameters. Furthermore, we present the corrections to CP-Violation of bsγb\to s\gamma due to new parameters introduced in this model.

Our presentation is organized as follows. In section II, we briefly introduce the construction of BLMSSM and the interactions we need for our caculation. After that, we present the one-loop corrections to branching ratio and CP-Violation with effective Lagrangian method in section III. Numerical results are discussed in section IV and the conclusions is given in section V.

II Introduction to BLMSSM

The BLMSSM is based on gauge symmetry SU(3)CSU(2)LU(1)YU(1)BU(1)LSU(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{B}\otimes U(1)_{L}. In order to cancel the anomalies of Baryon number(B), exotic quarks Q^4(3,2,1/6,B4,0),U^4c(3¯,1,2/3,B4,0),D^4c(3¯,1,1/3,B4,0),Q^5c(3¯,2,1/6,(1+B4),0),U^5(3,1,2/3,1+B4,0),D^5(3,1,1/3,1+B4,0)\hat{Q}_{4}\sim(3,2,1/6,B_{4},0),\hat{U}^{c}_{4}\sim(\bar{3},1,-2/3,-B_{4},0),\hat{D}^{c}_{4}\sim(\bar{3},1,1/3,-B_{4},0),\hat{Q}_{5}^{c}\sim(\bar{3},2,-1/6,-(1+B_{4}),0),\hat{U}_{5}\sim(3,1,2/3,1+B_{4},0),\hat{D}_{5}\sim(3,1,-1/3,1+B_{4},0) are introduced. Baryon number are broken spontaneously after Higgs superfields Φ^B(1,1,0,1,0),φ^B(1,1,0,1,0)\hat{\Phi}_{B}\sim(1,1,0,1,0),\hat{\varphi}_{B}\sim(1,1,0,-1,0) acquire nonzero vacuum expectation values(VEVs). To deal with the anomalies of Lepton number(L), exotic leptons L^4(1,2,1/2,0,L4),E^4c(1,1,1,0,L4),N^4c(1,1,0,0,L4),L^5c(1,2,1/2,0,(3+L4)),E^5(1,1,1,0,3+L4),N^5(1,1,0,0,3+L4)\hat{L}_{4}\sim(1,2,-1/2,0,L_{4}),\hat{E}^{c}_{4}\sim(1,1,1,0,-L_{4}),\hat{N}^{c}_{4}\sim(1,1,0,0,-L_{4}),\hat{L}_{5}^{c}\sim(1,2,1/2,0,-(3+L_{4})),\hat{E}_{5}\sim(1,1,-1,0,3+L_{4}),\hat{N}_{5}\sim(1,1,0,0,3+L_{4}) are introduced, and Φ^L(1,1,0,0,2),φ^L(1,1,0,0,2)\hat{\Phi}_{L}\sim(1,1,0,0,-2),\hat{\varphi}_{L}\sim(1,1,0,0,2) are responsable for the breaking of lepton numberBLMSSM2 . The superfields X^(1,1,0,2/3+B4,0),X^(1,1,0,(2/3+B4),0)\hat{X}\sim(1,1,0,2/3+B_{4},0),\hat{X^{\prime}}\sim(1,1,0,-(2/3+B_{4}),0) which mediate the decay of exotic quarks are added in this model to avoid their stability.

Given the superfields above, one can construct the superpotential as

𝒲BLMSSM=𝒲MSSM+𝒲B+𝒲L+𝒲X,\displaystyle{\cal W}_{{}_{BLMSSM}}={\cal W}_{{}_{MSSM}}+{\cal W}_{{}_{B}}+{\cal W}_{{}_{L}}+{\cal W}_{{}_{X}}, (3)

where 𝒲MSSM{\cal W}_{{}_{MSSM}} indicates the superpotential of MSSM, and

𝒲B=λQQ^4Q^5cΦ^B+λUU^4cU^5φ^B+λDD^4cD^5φ^B+μBΦ^Bφ^B\displaystyle{\cal W}_{{}_{B}}=\lambda_{{}_{Q}}\hat{Q}_{{}_{4}}\hat{Q}_{{}_{5}}^{c}\hat{\Phi}_{{}_{B}}+\lambda_{{}_{U}}\hat{U}_{{}_{4}}^{c}\hat{U}_{{}_{5}}\hat{\varphi}_{{}_{B}}+\lambda_{{}_{D}}\hat{D}_{{}_{4}}^{c}\hat{D}_{{}_{5}}\hat{\varphi}_{{}_{B}}+\mu_{{}_{B}}\hat{\Phi}_{{}_{B}}\hat{\varphi}_{{}_{B}}
+Yu4Q^4H^uU^4c+Yd4Q^4H^dD^4c+Yu5Q^5cH^dU^5+Yd5Q^5cH^uD^5,\displaystyle\hskip 34.14322pt+Y_{{}_{u_{4}}}\hat{Q}_{{}_{4}}\hat{H}_{{}_{u}}\hat{U}_{{}_{4}}^{c}+Y_{{}_{d_{4}}}\hat{Q}_{{}_{4}}\hat{H}_{{}_{d}}\hat{D}_{{}_{4}}^{c}+Y_{{}_{u_{5}}}\hat{Q}_{{}_{5}}^{c}\hat{H}_{{}_{d}}\hat{U}_{{}_{5}}+Y_{{}_{d_{5}}}\hat{Q}_{{}_{5}}^{c}\hat{H}_{{}_{u}}\hat{D}_{{}_{5}}\;,
𝒲L=Ye4L^4H^dE^4c+Yν4L^4H^uN^4c+Ye5L^5cH^uE^5+Yν5L^5cH^dN^5\displaystyle{\cal W}_{{}_{L}}=Y_{{}_{e_{4}}}\hat{L}_{{}_{4}}\hat{H}_{{}_{d}}\hat{E}_{{}_{4}}^{c}+Y_{{}_{\nu_{4}}}\hat{L}_{{}_{4}}\hat{H}_{{}_{u}}\hat{N}_{{}_{4}}^{c}+Y_{{}_{e_{5}}}\hat{L}_{{}_{5}}^{c}\hat{H}_{{}_{u}}\hat{E}_{{}_{5}}+Y_{{}_{\nu_{5}}}\hat{L}_{{}_{5}}^{c}\hat{H}_{{}_{d}}\hat{N}_{{}_{5}}
+YνL^H^uN^c+λNcN^cN^cφ^L+μLΦ^Lφ^L,\displaystyle\hskip 34.14322pt+Y_{{}_{\nu}}\hat{L}\hat{H}_{{}_{u}}\hat{N}^{c}+\lambda_{{}_{N^{c}}}\hat{N}^{c}\hat{N}^{c}\hat{\varphi}_{{}_{L}}+\mu_{{}_{L}}\hat{\Phi}_{{}_{L}}\hat{\varphi}_{{}_{L}}\;,
𝒲X=λ1Q^Q^5cX^+λ2U^cU^5X^+λ3D^cD^5X^+μXX^X^.\displaystyle{\cal W}_{{}_{X}}=\lambda_{1}\hat{Q}\hat{Q}_{{}_{5}}^{c}\hat{X}+\lambda_{2}\hat{U}^{c}\hat{U}_{{}_{5}}\hat{X}^{\prime}+\lambda_{3}\hat{D}^{c}\hat{D}_{{}_{5}}\hat{X}^{\prime}+\mu_{{}_{X}}\hat{X}\hat{X}^{\prime}\;. (4)

The soft breaking terms are given by

soft\displaystyle{\cal L}_{{}_{soft}} =\displaystyle= softMSSM(mN~c2)IJN~IcN~JcmQ~42Q~4Q~4mU~42U~4cU~4cmD~42D~4cD~4c\displaystyle{\cal L}_{{}_{soft}}^{MSSM}-(m_{{}_{\tilde{N}^{c}}}^{2})_{{}_{IJ}}\tilde{N}_{I}^{c*}\tilde{N}_{J}^{c}-m_{{}_{\tilde{Q}_{4}}}^{2}\tilde{Q}_{{}_{4}}^{\dagger}\tilde{Q}_{{}_{4}}-m_{{}_{\tilde{U}_{4}}}^{2}\tilde{U}_{{}_{4}}^{c*}\tilde{U}_{{}_{4}}^{c}-m_{{}_{\tilde{D}_{4}}}^{2}\tilde{D}_{{}_{4}}^{c*}\tilde{D}_{{}_{4}}^{c} (5)
mQ~52Q~5cQ~5cmU~52U~5U~5mD~52D~5D~5mL~42L~4L~4Mν~42ν~4cν~4cmE~42e~4ce~4c\displaystyle-m_{{}_{\tilde{Q}_{5}}}^{2}\tilde{Q}_{{}_{5}}^{c\dagger}\tilde{Q}_{{}_{5}}^{c}-m_{{}_{\tilde{U}_{5}}}^{2}\tilde{U}_{{}_{5}}^{*}\tilde{U}_{{}_{5}}-m_{{}_{\tilde{D}_{5}}}^{2}\tilde{D}_{{}_{5}}^{*}\tilde{D}_{{}_{5}}-m_{{}_{\tilde{L}_{4}}}^{2}\tilde{L}_{{}_{4}}^{\dagger}\tilde{L}_{{}_{4}}-M_{{}_{\tilde{\nu}_{4}}}^{2}\tilde{\nu}_{{}_{4}}^{c*}\tilde{\nu}_{{}_{4}}^{c}-m_{{}_{\tilde{E}_{4}}}^{2}\tilde{e}_{{}_{4}}^{c*}\tilde{e}_{{}_{4}}^{c}
mL~52L~5cL~5cMν~52ν~5ν~5mE~52e~5e~5mΦB2ΦBΦBmφB2φBφB\displaystyle-m_{{}_{\tilde{L}_{5}}}^{2}\tilde{L}_{{}_{5}}^{c\dagger}\tilde{L}_{{}_{5}}^{c}-M_{{}_{\tilde{\nu}_{5}}}^{2}\tilde{\nu}_{{}_{5}}^{*}\tilde{\nu}_{{}_{5}}-m_{{}_{\tilde{E}_{5}}}^{2}\tilde{e}_{{}_{5}}^{*}\tilde{e}_{{}_{5}}-m_{{}_{\Phi_{{}_{B}}}}^{2}\Phi_{{}_{B}}^{*}\Phi_{{}_{B}}-m_{{}_{\varphi_{{}_{B}}}}^{2}\varphi_{{}_{B}}^{*}\varphi_{{}_{B}}
mΦL2ΦLΦLmφL2φLφL(mBλBλB+mLλLλL+h.c.)\displaystyle-m_{{}_{\Phi_{{}_{L}}}}^{2}\Phi_{{}_{L}}^{*}\Phi_{{}_{L}}-m_{{}_{\varphi_{{}_{L}}}}^{2}\varphi_{{}_{L}}^{*}\varphi_{{}_{L}}-(m_{{}_{B}}\lambda_{{}_{B}}\lambda_{{}_{B}}+m_{{}_{L}}\lambda_{{}_{L}}\lambda_{{}_{L}}+h.c.)
+{Au4Yu4Q~4HuU~4c+Ad4Yd4Q~4HdD~4c+Au5Yu5Q~5cHdU~5+Ad5Yd5Q~5cHuD~5\displaystyle+\Big{\{}A_{{}_{u_{4}}}Y_{{}_{u_{4}}}\tilde{Q}_{{}_{4}}H_{{}_{u}}\tilde{U}_{{}_{4}}^{c}+A_{{}_{d_{4}}}Y_{{}_{d_{4}}}\tilde{Q}_{{}_{4}}H_{{}_{d}}\tilde{D}_{{}_{4}}^{c}+A_{{}_{u_{5}}}Y_{{}_{u_{5}}}\tilde{Q}_{{}_{5}}^{c}H_{{}_{d}}\tilde{U}_{{}_{5}}+A_{{}_{d_{5}}}Y_{{}_{d_{5}}}\tilde{Q}_{{}_{5}}^{c}H_{{}_{u}}\tilde{D}_{{}_{5}}
+ABQλQQ~4Q~5cΦB+ABUλUU~4cU~5φB+ABDλDD~4cD~5φB+BBμBΦBφB+h.c.}\displaystyle+A_{{}_{BQ}}\lambda_{{}_{Q}}\tilde{Q}_{{}_{4}}\tilde{Q}_{{}_{5}}^{c}\Phi_{{}_{B}}+A_{{}_{BU}}\lambda_{{}_{U}}\tilde{U}_{{}_{4}}^{c}\tilde{U}_{{}_{5}}\varphi_{{}_{B}}+A_{{}_{BD}}\lambda_{{}_{D}}\tilde{D}_{{}_{4}}^{c}\tilde{D}_{{}_{5}}\varphi_{{}_{B}}+B_{{}_{B}}\mu_{{}_{B}}\Phi_{{}_{B}}\varphi_{{}_{B}}+h.c.\Big{\}}
+{Ae4Ye4L~4HdE~4c+AN4YN4L~4HuN~4c+Ae5Ye5L~5cHuE~5+AN5Yν5L~5cHdN~5\displaystyle+\Big{\{}A_{{}_{e_{4}}}Y_{{}_{e_{4}}}\tilde{L}_{{}_{4}}H_{{}_{d}}\tilde{E}_{{}_{4}}^{c}+A_{{}_{N_{4}}}Y_{{}_{N_{4}}}\tilde{L}_{{}_{4}}H_{{}_{u}}\tilde{N}_{{}_{4}}^{c}+A_{{}_{e_{5}}}Y_{{}_{e_{5}}}\tilde{L}_{{}_{5}}^{c}H_{{}_{u}}\tilde{E}_{{}_{5}}+A_{{}_{N_{5}}}Y_{{}_{\nu_{5}}}\tilde{L}_{{}_{5}}^{c}H_{{}_{d}}\tilde{N}_{{}_{5}}
+ANYNL~HuN~c+ANcλNcN~cN~cφL+BLμLΦLφL+h.c.}\displaystyle+A_{{}_{N}}Y_{{}_{N}}\tilde{L}H_{{}_{u}}\tilde{N}^{c}+A_{{}_{N^{c}}}\lambda_{{}_{N^{c}}}\tilde{N}^{c}\tilde{N}^{c}\varphi_{{}_{L}}+B_{{}_{L}}\mu_{{}_{L}}\Phi_{{}_{L}}\varphi_{{}_{L}}+h.c.\Big{\}}
+{A1λ1Q~Q~5cX+A2λ2U~cU~5X+A3λ3D~cD~5X+BXμXXX+h.c.}.\displaystyle+\Big{\{}A_{1}\lambda_{1}\tilde{Q}\tilde{Q}_{{}_{5}}^{c}X+A_{2}\lambda_{2}\tilde{U}^{c}\tilde{U}_{{}_{5}}X^{\prime}+A_{3}\lambda_{3}\tilde{D}^{c}\tilde{D}_{{}_{5}}X^{\prime}+B_{{}_{X}}\mu_{{}_{X}}XX^{\prime}+h.c.\Big{\}}.

The first term softMSSM{\cal L}_{{}_{soft}}^{MSSM} denotes the soft breaking terms of MSSM. To break the gauge symmetry from SU(3)CSU(2)LU(1)YU(1)BU(1)LSU(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{B}\otimes U(1)_{L} to electromagnetic symmetry U(1)eU(1)_{e}, nonzero VEVs vu,vdv_{u},v_{d} and vB,v¯B,vL,v¯Lv_{B},\bar{v}_{B},v_{L},\bar{v}_{L} are allocated to SU(2)LSU(2)_{L} doublets Hu,HdH_{u},H_{d} and SU(2)LSU(2)_{L} singlets ΦB,φB,ΦL,φL\Phi_{B},\varphi_{B},\Phi_{L},\varphi_{L}.

Hu\displaystyle H_{u} =\displaystyle= (Hu+(vu+Hu0+iPu0)/2),\displaystyle\left(\begin{array}[]{c}H_{u}^{+}\\ (v_{u}+H_{u}^{0}+iP_{u}^{0})/\sqrt{2}\end{array}\right), (8)
Hu\displaystyle H_{u} =\displaystyle= ((vd+Hd0+iPd0)/2Hd),\displaystyle\left(\begin{array}[]{c}(v_{d}+H_{d}^{0}+iP_{d}^{0})/\sqrt{2}\\ H_{d}^{-}\end{array}\right), (11)
ΦB\displaystyle\Phi_{B} =\displaystyle= (vB+ΦB0+iPB0)/2,\displaystyle(v_{B}+\Phi_{B}^{0}+iP_{B}^{0})/\sqrt{2},
φB\displaystyle\varphi_{B} =\displaystyle= (v¯B+φB0+iP¯B0)/2,\displaystyle(\bar{v}_{B}+\varphi_{B}^{0}+i\bar{P}_{B}^{0})/\sqrt{2},
ΦL\displaystyle\Phi_{L} =\displaystyle= (vL+ΦL0+iPL0)/2,\displaystyle(v_{L}+\Phi_{L}^{0}+iP_{L}^{0})/\sqrt{2},
φL\displaystyle\varphi_{L} =\displaystyle= (v¯L+φL0+iP¯L0)/2.\displaystyle(\bar{v}_{L}+\varphi_{L}^{0}+i\bar{P}_{L}^{0})/\sqrt{2}. (12)

Here we take the notation tanβ=vu/vd,tanβB=v¯B/vB\tan\beta=v_{u}/v_{d},\tan\beta_{B}=\bar{v}_{B}/v_{B} and tanβL=v¯L/vL\tan\beta_{L}=\bar{v}_{L}/v_{L}. After spontaneously breaking and unitary transformation from interactive eigenstate to mass eigenstate, one can extract the Feynman rules and mass spectrums in BLMSSM. The mass matrices of the particles that mediate the one-loop process bsγb\to s\gamma can be found in ref. mass-matrice . The Feynman rules that we need can be extracted from the following terms, where all the repeated index of generation should be summed over.

H±du=(YdIZH1iPL+YuJZH2iPR)KJId¯IuJHi,\displaystyle\mathcal{L}_{H^{\pm}du}=\Big{(}-Y_{d}^{I}Z_{H}^{1i}P_{L}+Y_{u}^{J}Z_{H}^{2i}P_{R}\Big{)}K^{JI*}\bar{d}^{I}u^{J}H_{i}^{-},
D~χ0d=[(e2sWcWZDIi(13ZN1jsWZN2jcW)+YdIZD(I+3)iZN3j)PL\displaystyle\mathcal{L}_{\tilde{D}\chi^{0}d}=\Big{[}\Big{(}\frac{-e}{\sqrt{2}s_{W}c_{W}}Z_{D}^{Ii}(\frac{1}{3}Z_{N}^{1j}s_{W}-Z_{N}^{2j}c_{W})+Y_{d}^{I}Z_{D}^{(I+3)i}Z_{N}^{3j}\Big{)}P_{L}
+(e23cWZD(I+3)iZN1j+YdIZDIiZN3j)PR]χ¯0jdID~+i,\displaystyle\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+\Big{(}\frac{-e\sqrt{2}}{3c_{W}}Z_{D}^{(I+3)i}Z_{N}^{1j*}+Y_{d}^{I}Z_{D}^{Ii}Z_{N}^{3j*}\Big{)}P_{R}\Big{]}\bar{\chi}^{0}_{j}d^{I}\tilde{D}^{+}_{i},
D~χB0d=23gB(ZNB1jZDIiPL+ZNB1jZD(I+3)iPR)χ¯Bj0dID~+,\displaystyle\mathcal{L}_{\tilde{D}\chi_{B}^{0}d}=\frac{\sqrt{2}}{3}g_{B}\Big{(}Z_{N_{B}}^{1j}Z_{D}^{Ii}P_{L}+Z_{N_{B}}^{1j*}Z_{D}^{(I+3)i}P_{R}\Big{)}\bar{\chi}_{B_{j}}^{0}d^{I}\tilde{D}^{+},
U~χd=[(esWZUJiZ+1j+YuJZU(J+3)iZ+2j)PLYdIZUJiZ2jPR]KJIχ¯dU~,\displaystyle\mathcal{L}_{\tilde{U}\chi^{-}d}=\Big{[}\big{(}\frac{-e}{s_{W}}Z_{U}^{Ji*}Z_{+}^{1j}+Y_{u}^{J}Z_{U}^{(J+3)i*}Z_{+}^{2j}\big{)}P_{L}-Y_{d}^{I}Z_{U}^{Ji*}Z_{-}^{2j*}P_{R}\Big{]}K^{JI}\bar{\chi}^{-}d\tilde{U}^{-},
Xbd=[λ1(Wb)j1(ZX)1kPLλ3(Ub)j2(ZX)2kPR]b¯jdIXk,\displaystyle\mathcal{L}_{Xb^{\prime}d}=\Big{[}\lambda_{1}(W_{b}^{{\dagger}})_{j1}(Z_{X})_{1k}P_{L}-\lambda_{3}^{*}(U_{b}^{{\dagger}})_{j2}(Z_{X})_{2k}P_{R}\Big{]}\bar{b}^{\prime}_{j}d^{I}X_{k},
b~X~d=[λ1(Wb~)3ρPL+λ3(Wb~)4ρPR]X~¯dIb~ρ,\displaystyle\mathcal{L}_{\tilde{b}^{\prime}\tilde{X}d}=-\Big{[}\lambda_{1}(W_{\tilde{b}^{\prime}}^{*})_{3\rho}P_{L}+\lambda_{3}^{*}(W_{\tilde{b}^{\prime}})_{4\rho}P_{R}\Big{]}\bar{\tilde{X}}d^{I}\tilde{b}^{\prime}_{\rho},
D~ΛGd=g32Yαβa(ZDIiPL+ZD(I+3)iPR)Λ¯GadβID~iα+.\displaystyle\mathcal{L}_{\tilde{D}\Lambda_{G}d}=g_{3}\sqrt{2}Y_{\alpha\beta}^{a}\big{(}-Z_{D}^{Ii}P_{L}+Z_{D}^{(I+3)i}P_{R}\big{)}\bar{\Lambda}_{G}^{a}d_{\beta}^{I}\tilde{D}^{+}_{i\alpha}. (13)

III One-loop corrections to bsγb\rightarrow s\gamma from BLMSSM

The flavor transition process bsγb\rightarrow s\gamma can be described by effective Hamiltonian at scale μ=O(mb)\mu=O(m_{b}) as follow hamiltonian :

eff(bsγ)=4GF2VtsVtb[C1Q1c+C2Q2c+i=36CiQi+i=78(CiQi+C~iQ~i)],\displaystyle\mathcal{H}_{eff}(b\to s\gamma)=-\frac{4G_{F}}{\sqrt{2}}V_{ts}^{*}V_{tb}\Big{[}C_{1}Q_{1}^{c}+C_{2}Q_{2}^{c}+\sum_{i=3}^{6}C_{i}Q_{i}+\sum_{i=7}^{8}(C_{i}Q_{i}+\tilde{C}_{i}\tilde{Q}_{i})\Big{]}, (14)

and the operators are given by ref. operators1 ; operators2 ; operators3 :

𝒪1c\displaystyle\mathcal{O}_{1}^{c} =\displaystyle= (s¯LγμTabL)(c¯LγμTabL),\displaystyle(\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})(\bar{c}_{L}\gamma^{\mu}T^{a}b_{L}),
𝒪2c\displaystyle\mathcal{O}_{2}^{c} =\displaystyle= (s¯LγμbL)(c¯LγμTabL),\displaystyle(\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{c}_{L}\gamma^{\mu}T^{a}b_{L}),
𝒪3\displaystyle\mathcal{O}_{3} =\displaystyle= (s¯LγμbL)q(q¯γμq),\displaystyle(\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q),
𝒪4\displaystyle\mathcal{O}_{4} =\displaystyle= (s¯LγμTabL)q(q¯γμTaq),\displaystyle(\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q),
𝒪5\displaystyle\mathcal{O}_{5} =\displaystyle= (s¯LγμγνγρbL)q(q¯γμγμγνγρq),\displaystyle(\bar{s}_{L}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}q),
𝒪6\displaystyle\mathcal{O}_{6} =\displaystyle= (s¯LγμγνγρTabL)q(q¯γμγμγνγρTaq),\displaystyle(\bar{s}_{L}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}T^{a}q),
𝒪7\displaystyle\mathcal{O}_{7} =\displaystyle= e/gs2mb(s¯LσμνbR)Fμν,\displaystyle e/g_{s}^{2}m_{b}(\bar{s}_{L}\sigma_{\mu\nu}b_{R})F^{\mu\nu},
𝒪8\displaystyle\mathcal{O}_{8} =\displaystyle= 1/gs2mb(s¯LσμνTabR)Ga,μν,\displaystyle 1/g_{s}^{2}m_{b}(\bar{s}_{L}\sigma_{\mu\nu}T^{a}b_{R})G^{a,\mu\nu},
𝒪~7\displaystyle\tilde{\mathcal{O}}_{7} =\displaystyle= e/gs2mb(s¯RσμνbL)Fμν,\displaystyle e/g_{s}^{2}m_{b}(\bar{s}_{R}\sigma_{\mu\nu}b_{L})F^{\mu\nu},
𝒪~8\displaystyle\tilde{\mathcal{O}}_{8} =\displaystyle= 1/gs2mb(s¯RσμνTabL)Ga,μν.\displaystyle 1/g_{s}^{2}m_{b}(\bar{s}_{R}\sigma_{\mu\nu}T^{a}b_{L})G^{a,\mu\nu}. (15)

Coefficients of these operators can be extracted from Feynman amplitudes that originate from considered diagrams. Actually only the Coefficients of 𝒪7,8\mathcal{O}_{7,8} and 𝒪~7,8\tilde{\mathcal{O}}_{7,8} are needed if we adopt the branching ratio formula presented in ref. hamiltonian :

BR(B¯Xsγ)NP\displaystyle BR(\bar{B}\rightarrow X_{s}\gamma)_{NP} (16)
=\displaystyle= 104×{(3.36±0.23)+16π2a77αs2(μb)[|C7,NP(μEW)|2+|C~7,NP(μEW)|2]\displaystyle 10^{-4}\times\left\{(3.36\pm 0.23)+\frac{16\pi^{2}a_{77}}{\alpha_{s}^{2}(\mu_{b})}\big{[}|C_{7,NP}(\mu_{EW})|^{2}+|\tilde{C}_{7,NP}(\mu_{EW})|^{2}\big{]}\right.
+16π2a88αs2(μb)[|C8,NP(μEW)|2+|C~8,NP(μEW)|2]\displaystyle+\frac{16\pi^{2}a_{88}}{\alpha_{s}^{2}(\mu_{b})}\big{[}|C_{8,NP}(\mu_{EW})|^{2}+|\tilde{C}_{8,NP}(\mu_{EW})|^{2}\big{]}
+4παs(μb)Re[a7C7,NP(μEW)+a8C8,NP(μEW).\displaystyle+\frac{4\pi}{\alpha_{s}(\mu_{b})}\mbox{Re}\big{[}a_{7}C_{7,NP}(\mu_{EW})+a_{8}C_{8,NP}(\mu_{EW})\big{.}
+.4πa78αs(μb)(C7,NP(μEW)C8,NP(μEW)+C~7,NP(μEW)C~8,NP(μEW))]},\displaystyle+\left.\big{.}\frac{4\pi a_{78}}{\alpha_{s}(\mu_{b})}\big{(}C_{7,NP}(\mu_{EW})C_{8,NP}(\mu_{EW})+\tilde{C}_{7,NP}(\mu_{EW})\tilde{C}_{8,NP}(\mu_{EW})\big{)}\big{]}\right\},

where the first term is SM prediction. The others come from new physics in which C7,NP(μEW)C_{7,NP}(\mu_{EW}), C8,NP(μEW)C_{8,NP}(\mu_{EW}), C~7,NP(μEW)\tilde{C}_{7,NP}(\mu_{EW}) and C~8,NP(μEW)\tilde{C}_{8,NP}(\mu_{EW}) indicate Wilson coefficients at electroweak scale. It is an advantage of this expression that we don’t have to evolve them down to hadronic scale μmb\mu\sim m_{b} as the effect of evolution has already been involved in the coefficients a7,8,77,88,78a_{7,8,77,88,78}. The numerical values of these coefficients are given in table 1.

Table 1: Numerical values for the coefficients a7,8,77,88,78a_{7,8,77,88,78} at electroweak scale.
a7a_{7} a8a_{8} a77a_{77} a88a_{88} a78a_{78}
7.184+0.612i-7.184+0.612i 2.2250.557i-2.225-0.557i 4.7434.743 0.7890.789 2.4540.884i2.454-0.884i
Refer to caption
Figure 1: One-loop Feynman diagrams of bsb\to s. The inner-line particles χB0,X\chi_{B}^{0},X denote baryon neutralinos and new scalar particle introduced in BLMSSM. bb^{\prime} and b~\tilde{b}^{\prime} are exotic quarks and squarks respectively. The photon and gluon can be attached in all possible ways.

To obtain the New Physics corrections in BLMSSM, we investigate one-loop diagrams shown in Figure 1. Photons should be attached to all inner lines with electric charge to complete the diagrams of bsγb\to s\gamma that contribute to 𝒪7\mathcal{O}_{7} and 𝒪~7\tilde{\mathcal{O}}_{7}. Similarly, diagrams of bsgb\to sg can be completed with gluons attached to all the inner lines with color charge, and 𝒪8\mathcal{O}_{8} and 𝒪~8\tilde{\mathcal{O}}_{8} originate from these process.

In details, we attach a photon to SM quark ui,(i=1,2,3)u_{i},(i=1,2,3) or charged Higgs H±H^{\pm} in Figure 1.(a) to get a set of trigonal diagrams for bsγb\to s\gamma, while gluon can only be attached to up-type quarks uiu_{i} to form a specific diagram of bsgb\to sg. To give a complete correction originating from Figure 1.(a), contributions from all generations of uiu_{i} and Higgs should be summed over. From the amplitudes of these diagrams, one can extract Wilson coefficients of electric- and chromomagnetic-dipole operators 𝒪7\mathcal{O}_{7} and 𝒪~7\tilde{\mathcal{O}}_{7} at electroweak scale,

GF2C7γa(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{a}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ηH±L)sui(ηH±L)uibF1,γ(a)(xui,xH±)\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\eta^{L}_{H^{\pm}})_{su_{i}}^{\dagger}(\eta^{L}_{H^{\pm}})_{u_{i}b}F_{1,\gamma}^{(a)}(x_{u_{i}},x_{H^{\pm}})\right.
+mfmb(ηH±L)sui(ηH±R)uibF2,γ(a)(xui,xH±)},\displaystyle\left.+\frac{m_{f}}{m_{b}}(\eta^{L}_{H^{\pm}})_{su_{i}}^{\dagger}(\eta^{R}_{H^{\pm}})_{u_{i}b}F_{2,\gamma}^{(a)}(x_{u_{i}},x_{H^{\pm}})\right\},
GF2C~7γa(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{7\gamma}^{a}(\Lambda) =\displaystyle= GF2C7γa(Λ)(ηH±LηH±R),\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{a}(\Lambda)\big{(}\eta^{L}_{H^{\pm}}\leftrightarrow\eta^{R}_{H^{\pm}}\big{)}, (17)

where xi=mi2/μEW2x_{i}=m_{i}^{2}/\mu_{EW}^{2}. The concrete expressions of relevant couplings are already given in previous section, and the form factors can be written as:

F1,γ(a)(x,y)\displaystyle F_{1,\gamma}^{(a)}(x,y) =\displaystyle= [1723ϱ3,1y3+1242ϱ2,1y216ϱ1,1y](x,y),\displaystyle\Big{[}\frac{1}{72}\frac{\partial^{3}\varrho_{{}_{3,1}}}{\partial y^{3}}+\frac{1}{24}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial y^{2}}-\frac{1}{6}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}\Big{]}(x,y),
F2,γ(a)(x,y)\displaystyle F_{2,\gamma}^{(a)}(x,y) =\displaystyle= [1122ϱ2,1y216ϱ1,1y13ϱ1,1x](x,y),\displaystyle\Big{[}\frac{1}{12}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial y^{2}}-\frac{1}{6}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}-\frac{1}{3}\frac{\partial\varrho_{{}_{1,1}}}{\partial x}\Big{]}(x,y), (18)

where function ϱm,n(x,y)\varrho_{m,n}(x,y) is defined as:

ϱm,n(x,y)=xmlnnxymlnnyxy.\displaystyle\varrho_{{}_{m,n}}(x,y)={x^{m}\ln^{n}x-y^{m}\ln^{n}y\over x-y}. (19)

Corrections from all the other diagrams to C7γC_{7\gamma} and C~7γ\tilde{C}_{7\gamma} can be obtained similarly. In Figure 1.(b), the photon can only be attached to charged -1/3 squark D~\tilde{D}. We present contributions from both neutralinos χi0\chi_{i}^{0} and baryon neutralinos χB0\chi_{B}^{0} at electroweak scale as

GF2C7γb(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{b}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ξχi0L)sD~(ξχi0L)D~bF1,γ(b)(xχi0,xD~)+mfmb(ξχi0L)sD~(ξχi0R)D~bF2,γ(b)(xχi0,xD~)\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\xi^{L}_{\chi_{i}^{0}})_{s\tilde{D}}^{\dagger}(\xi^{L}_{\chi_{i}^{0}})_{\tilde{D}b}F_{1,\gamma}^{(b)}(x_{\chi_{i}^{0}},x_{\tilde{D}})+\frac{m_{f}}{m_{b}}(\xi^{L}_{\chi_{i}^{0}})_{s\tilde{D}}^{\dagger}(\xi^{R}_{\chi_{i}^{0}})_{\tilde{D}b}F_{2,\gamma}^{(b)}(x_{\chi_{i}^{0}},x_{\tilde{D}})\right.
+(ξχB0L)sD~(ξχB0L)D~bF1,γ(b)(xχB0,xD~)+mfmb(ξχB0L)sD~(ξχB0R)D~bF2,γ(b)(xχB0,xD~)},\displaystyle\;\;\;\;+\left.(\xi^{L}_{\chi_{B}^{0}})_{s\tilde{D}}^{\dagger}(\xi^{L}_{\chi_{B}^{0}})_{\tilde{D}b}F_{1,\gamma}^{(b)}(x_{\chi_{B}^{0}},x_{\tilde{D}})+\frac{m_{f}}{m_{b}}(\xi^{L}_{\chi_{B}^{0}})_{s\tilde{D}}^{\dagger}(\xi^{R}_{\chi_{B}^{0}})_{\tilde{D}b}F_{2,\gamma}^{(b)}(x_{\chi_{B}^{0}},x_{\tilde{D}})\right\},
GF2C~7γb(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{7\gamma}^{b}(\Lambda) =\displaystyle= GF2C7γb(Λ)(ξχi0Lξχi0R,ξχB0LξχB0R).\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{b}(\Lambda)\big{(}\xi^{L}_{\chi_{i}^{0}}\leftrightarrow\xi^{R}_{\chi_{i}^{0}}\;,\;\xi^{L}_{\chi_{B}^{0}}\leftrightarrow\xi^{R}_{\chi_{B}^{0}}\big{)}. (20)
F1,γ(b)(x,y)\displaystyle F_{1,\gamma}^{(b)}(x,y) =\displaystyle= [1723ϱ3,13y+1242ϱ2,12y](x,y),\displaystyle\big{[}-\frac{1}{72}\frac{\partial^{3}\varrho_{{}_{3,1}}}{\partial^{3}y}+\frac{1}{24}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}\big{]}(x,y),
F2,γ(b)(x,y)\displaystyle F_{2,\gamma}^{(b)}(x,y) =\displaystyle= [1122ϱ2,12y+16ϱ1,1y](x,y).\displaystyle\big{[}-\frac{1}{12}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}+\frac{1}{6}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}\big{]}(x,y). (21)

With the photon attached to the charged +2/3 squarks U~\tilde{U} or chargino χi±\chi^{\pm}_{i} in Figure 1.(c), the contributions to Wilson coefficients read

GF2C7γc(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{c}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ηU~L)sχi±(ηU~L)χi±bF1,γ(c)(xχi±,xU~)+mfmb(ηU~L)sχi±(ηU~R)χi±bF2,γ(c)(xχi±,xU~)},\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\eta^{L}_{\tilde{U}})_{s\chi_{i}^{\pm}}^{\dagger}(\eta^{L}_{\tilde{U}})_{\chi_{i}^{\pm}b}F_{1,\gamma}^{(c)}(x_{\chi_{i}^{\pm}},x_{\tilde{U}})+\frac{m_{f}}{m_{b}}(\eta^{L}_{\tilde{U}})_{s\chi_{i}^{\pm}}^{\dagger}(\eta^{R}_{\tilde{U}})_{\chi_{i}^{\pm}b}F_{2,\gamma}^{(c)}(x_{\chi_{i}^{\pm}},x_{\tilde{U}})\right\},
GF2C~7γc(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{7\gamma}^{c}(\Lambda) =\displaystyle= GF2C7γc(Λ)(ηU~LηU~R).\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{c}(\Lambda)\big{(}\eta^{L}_{\tilde{U}}\leftrightarrow\eta^{R}_{\tilde{U}}\big{)}. (22)
F1,γ(c)(x,y)\displaystyle F_{1,\gamma}^{(c)}(x,y) =\displaystyle= [1723ϱ3,13y+162ϱ2,12y14ϱ1,1y](x,y),\displaystyle\big{[}-\frac{1}{72}\frac{\partial^{3}\varrho_{{}_{3,1}}}{\partial^{3}y}+\frac{1}{6}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}-\frac{1}{4}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}\big{]}(x,y),
F2,γ(c)(x,y)\displaystyle F_{2,\gamma}^{(c)}(x,y) =\displaystyle= [1122ϱ2,12y+16ϱ1,1y12ϱ1,1x](x,y).\displaystyle\big{[}-\frac{1}{12}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}+\frac{1}{6}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}-\frac{1}{2}\frac{\partial\varrho_{{}_{1,1}}}{\partial x}\big{]}(x,y). (23)

The intermediate particles in Figure 1.(d) are the exotic quarks bb^{\prime} with charge -1/3 and superfield XX introduced in BLMSSM. The contributions from this diagram are

GF2C7γd(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{d}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ηXjL)sb(ηXjL)bbF1,γ(d)(xb,xXj)+mfmb(ηXjL)sb(ηXjR)bbF2,γ(d)(xb,xXj)},\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\eta^{L}_{X^{j}})_{sb^{\prime}}^{\dagger}(\eta^{L}_{X^{j}})_{b^{\prime}b}F_{1,\gamma}^{(d)}(x_{b^{\prime}},x_{X^{j}})+\frac{m_{f}}{m_{b}}(\eta^{L}_{X^{j}})_{sb^{\prime}}^{\dagger}(\eta^{R}_{X^{j}})_{b^{\prime}b}F_{2,\gamma}^{(d)}(x_{b^{\prime}},x_{X^{j}})\right\},
GF2C~7γd(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{7\gamma}^{d}(\Lambda) =\displaystyle= GF2C7γd(Λ)(ηXjLηXjR).\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{d}(\Lambda)\big{(}\eta^{L}_{X^{j}}\leftrightarrow\eta^{R}_{X^{j}}\big{)}. (24)

Correspondingly, the corrections of exotic squarks b~\tilde{b}^{\prime} with charge -1/3 and fermionic particle XX can be obtained from Figure 1.(e)

GF2C7γe(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{e}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ηb~L)sX~j(ηb~L)X~jbF1,γ(e)(xX~j,xb~)+mfmb(ηb~L)sX~j(ηb~R)X~jbF2,γ(e)(xX~j,xb~)},\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\eta^{L}_{\tilde{b}^{\prime}})_{s\tilde{X}^{j}}^{\dagger}(\eta^{L}_{\tilde{b}^{\prime}})_{\tilde{X}^{j}b}F_{1,\gamma}^{(e)}(x_{\tilde{X}^{j}},x_{\tilde{b}^{\prime}})+\frac{m_{f}}{m_{b}}(\eta^{L}_{\tilde{b}^{\prime}})_{s\tilde{X}^{j}}^{\dagger}(\eta^{R}_{\tilde{b}^{\prime}})_{\tilde{X}^{j}b}F_{2,\gamma}^{(e)}(x_{\tilde{X}^{j}},x_{\tilde{b}^{\prime}})\right\},
GF2C~7γe(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{7\gamma}^{e}(\Lambda) =\displaystyle= GF2C7γe(Λ)(ηb~Lηb~R).\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{e}(\Lambda)\big{(}\eta^{L}_{\tilde{b}^{\prime}}\leftrightarrow\eta^{R}_{\tilde{b}^{\prime}}\big{)}. (25)
F1,γ(e)(x,y)\displaystyle F_{1,\gamma}^{(e)}(x,y) =\displaystyle= [1723ϱ3,13y+1242ϱ2,12y](x,y),\displaystyle\big{[}-\frac{1}{72}\frac{\partial^{3}\varrho_{{}_{3,1}}}{\partial^{3}y}+\frac{1}{24}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}\big{]}(x,y),
F2,γ(e)(x,y)\displaystyle F_{2,\gamma}^{(e)}(x,y) =\displaystyle= [1122ϱ2,12y+16ϱ1,1y](x,y).\displaystyle\big{[}-\frac{1}{12}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}+\frac{1}{6}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}\big{]}(x,y). (26)

From Figure 1.(f), we obtain the corrections from gluinos ΛG\Lambda_{G} in MSSM, the Wilson coefficients at μEW\mu_{EW} are

GF2C7γf(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{f}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ηD~L)sΛG(ηD~L)ΛGbF1,γ(f)(xΛG,xD~)+mfmb(ηD~L)sΛG(ηD~R)ΛGbF2,γ(f)(xΛG,xD~)},\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\eta^{L}_{\tilde{D}})_{s\Lambda_{G}}^{\dagger}(\eta^{L}_{\tilde{D}})_{\Lambda_{G}b}F_{1,\gamma}^{(f)}(x_{\Lambda_{G}},x_{\tilde{D}})+\frac{m_{f}}{m_{b}}(\eta^{L}_{\tilde{D}})_{s\Lambda_{G}}^{\dagger}(\eta^{R}_{\tilde{D}})_{\Lambda_{G}b}F_{2,\gamma}^{(f)}(x_{\Lambda_{G}},x_{\tilde{D}})\right\},
GF2C~7γf(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{7\gamma}^{f}(\Lambda) =\displaystyle= GF2C7γf(Λ)(ηD~LηD~R).\displaystyle\frac{G_{F}}{\sqrt{2}}C_{7\gamma}^{f}(\Lambda)\big{(}\eta^{L}_{\tilde{D}}\leftrightarrow\eta^{R}_{\tilde{D}}\big{)}. (27)

with

F1,γ(f)(x,y)\displaystyle F_{1,\gamma}^{(f)}(x,y) =\displaystyle= [1243ϱ3,13y182ϱ2,12y](x,y),\displaystyle\big{[}\frac{1}{24}\frac{\partial^{3}\varrho_{{}_{3,1}}}{\partial^{3}y}-\frac{1}{8}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}\big{]}(x,y),
F2,γ(f)(x,y)\displaystyle F_{2,\gamma}^{(f)}(x,y) =\displaystyle= [142ϱ2,12y12ϱ1,1y](x,y).\displaystyle\big{[}\frac{1}{4}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}-\frac{1}{2}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}\big{]}(x,y). (28)

The corrections to C8gC_{8g} and C~8g\tilde{C}_{8g} at electroweak scale can be obtained by attaching the gluon to intermediate virtual particles with colors. For diagrams in Figure 1, the gluon can be attached to SM up-type quarks uiu_{i}, squarks in MSSM U~,D~\tilde{U},\tilde{D}, exotic quarks bb^{\prime} with charge -1/3 and its supersymmetric partners b~\tilde{b}^{\prime}, as well as the gluinos ΛG\Lambda_{G}. Wilson coefficients at electroweak scale can be formulated as:

GF2C8Ga(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8G}^{a}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ηH±L)sui(ηH±L)uibF1,g(a)(xui,xH±)+mfmb(ηH±L)sui(ηH±R)uibF2,g(a)(xui,xH±)},\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\eta^{L}_{H^{\pm}})_{su_{i}}^{\dagger}(\eta^{L}_{H^{\pm}})_{u_{i}b}F_{1,g}^{(a)}(x_{u_{i}},x_{H^{\pm}})+\frac{m_{f}}{m_{b}}(\eta^{L}_{H^{\pm}})_{su_{i}}^{\dagger}(\eta^{R}_{H^{\pm}})_{u_{i}b}F_{2,g}^{(a)}(x_{u_{i}},x_{H^{\pm}})\right\},
GF2C~8Ga(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{8G}^{a}(\Lambda) =\displaystyle= GF2C8Ga(Λ)(ηH±LηH±R,ηG±LηG±R),\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8G}^{a}(\Lambda)(\eta^{L}_{H^{\pm}}\leftrightarrow\eta^{R}_{H^{\pm}}\;,\;\eta^{L}_{G^{\pm}}\leftrightarrow\eta^{R}_{G^{\pm}}),
GF2C8Gb(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8G}^{b}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ξχi0L)sD~(ξχi0L)D~bF1,g(b)(xχi0,xD~)+mfmb(ξχi0L)sD~(ξχi0R)D~bF2,g(b)(xχi0,xD~)\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\xi^{L}_{\chi_{i}^{0}})_{s\tilde{D}}^{\dagger}(\xi^{L}_{\chi_{i}^{0}})_{\tilde{D}b}F_{1,g}^{(b)}(x_{\chi_{i}^{0}},x_{\tilde{D}})+\frac{m_{f}}{m_{b}}(\xi^{L}_{\chi_{i}^{0}})_{s\tilde{D}}^{\dagger}(\xi^{R}_{\chi_{i}^{0}})_{\tilde{D}b}F_{2,g}^{(b)}(x_{\chi_{i}^{0}},x_{\tilde{D}})\right.
+(ξχB0L)sD~(ξχB0L)D~bF1,g(b)(xχB0,xD~)+mfmb(ξχB0L)sD~(ξχB0R)D~bF2,g(b)(xχB0,xD~)},\displaystyle\;\;\;\;+\left.(\xi^{L}_{\chi_{B}^{0}})_{s\tilde{D}}^{\dagger}(\xi^{L}_{\chi_{B}^{0}})_{\tilde{D}b}F_{1,g}^{(b)}(x_{\chi_{B}^{0}},x_{\tilde{D}})+\frac{m_{f}}{m_{b}}(\xi^{L}_{\chi_{B}^{0}})_{s\tilde{D}}^{\dagger}(\xi^{R}_{\chi_{B}^{0}})_{\tilde{D}b}F_{2,g}^{(b)}(x_{\chi_{B}^{0}},x_{\tilde{D}})\right\},
GF2C~8Gb(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{8G}^{b}(\Lambda) =\displaystyle= GF2C8gb(Λ)(ξχi0Lξχi0R,ξχB0LξχB0R),\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8g}^{b}(\Lambda)\big{(}\xi^{L}_{\chi_{i}^{0}}\leftrightarrow\xi^{R}_{\chi_{i}^{0}}\;,\;\xi^{L}_{\chi_{B}^{0}}\leftrightarrow\xi^{R}_{\chi_{B}^{0}}\big{)},
GF2C8Gc(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8G}^{c}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ξχi±L)sD~(ξχi±L)D~bF1,g(c)(xχi±,xU~)+mfmb(ξχi±L)sD~(ξχi±R)D~bF2,g(c)(xχi±,xU~)},\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\xi^{L}_{\chi_{i}^{\pm}})_{s\tilde{D}}^{\dagger}(\xi^{L}_{\chi_{i}^{\pm}})_{\tilde{D}b}F_{1,g}^{(c)}(x_{\chi_{i}^{\pm}},x_{\tilde{U}})+\frac{m_{f}}{m_{b}}(\xi^{L}_{\chi_{i}^{\pm}})_{s\tilde{D}}^{\dagger}(\xi^{R}_{\chi_{i}^{\pm}})_{\tilde{D}b}F_{2,g}^{(c)}(x_{\chi_{i}^{\pm}},x_{\tilde{U}})\right\},
GF2C~8Gc(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{8G}^{c}(\Lambda) =\displaystyle= GF2C8gc(Λ)(ξχi±Lξχi±R),\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8g}^{c}(\Lambda)\big{(}\xi^{L}_{\chi_{i}^{\pm}}\leftrightarrow\xi^{R}_{\chi_{i}^{\pm}}\big{)},
GF2C8Gd(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8G}^{d}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ηXjL)sb(ηXjL)bbF1,g(d)(xb,xXj)+mfmb(ηXjL)sb(ηXjR)bbF2,g(d)(xb,xXj)},\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\eta^{L}_{X^{j}})_{sb^{\prime}}^{\dagger}(\eta^{L}_{X^{j}})_{b^{\prime}b}F_{1,g}^{(d)}(x_{b^{\prime}},x_{X^{j}})+\frac{m_{f}}{m_{b}}(\eta^{L}_{X^{j}})_{sb^{\prime}}^{\dagger}(\eta^{R}_{X^{j}})_{b^{\prime}b}F_{2,g}^{(d)}(x_{b^{\prime}},x_{X^{j}})\right\},
GF2C~8Gd(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{8G}^{d}(\Lambda) =\displaystyle= GF2C8Gd(Λ)(ηXjLηXjR),\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8G}^{d}(\Lambda)\big{(}\eta^{L}_{X^{j}}\leftrightarrow\eta^{R}_{X^{j}}\big{)},
GF2C8Ge(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8G}^{e}(\Lambda) =\displaystyle= iΛ2(VtsVtb)1{(ξb~L)sX~j(ξb~L)X~jbF1,g(e)(xX~j,xb~)+mfmb(ξb~L)sX~j(ξb~R)X~jbF2,g(e)(xX~j,xb~)},\displaystyle-i\Lambda^{-2}(V^{*}_{ts}V_{tb})^{-1}\left\{(\xi^{L}_{\tilde{b}^{\prime}})_{s\tilde{X}^{j}}^{\dagger}(\xi^{L}_{\tilde{b}^{\prime}})_{\tilde{X}^{j}b}F_{1,g}^{(e)}(x_{\tilde{X}^{j}},x_{\tilde{b}^{\prime}})+\frac{m_{f}}{m_{b}}(\xi^{L}_{\tilde{b}^{\prime}})_{s\tilde{X}^{j}}^{\dagger}(\xi^{R}_{\tilde{b}^{\prime}})_{\tilde{X}^{j}b}F_{2,g}^{(e)}(x_{\tilde{X}^{j}},x_{\tilde{b}^{\prime}})\right\},
GF2C~8Ge(Λ)\displaystyle\frac{G_{F}}{\sqrt{2}}\tilde{C}_{8G}^{e}(\Lambda) =\displaystyle= GF2C8Ge(Λ)(ξb~Lξb~R)),\displaystyle\frac{G_{F}}{\sqrt{2}}C_{8G}^{e}(\Lambda)\big{(}\xi^{L}_{\tilde{b}^{\prime}}\leftrightarrow\xi^{R}_{\tilde{b}^{\prime}})\big{)}, (29)

with the form factors listed below. As gluon can only be attached to intermediate fermion uiu_{i} and bb^{\prime} in Figure 1.(a) and 1.(d), so the form factors have the same expressions. While in Figure 1.(b), 1.(c) and Figure 1.(e), the gluon can only be attached to scalar particles. Then form factors associated to these diagrams are the same. By summing over the contributions to Wilson coefficients when gluon attached to ΛG\Lambda_{G} and D~\tilde{D}, we get form factors of Figure 1.(f).

F1,g(a)(x,y)\displaystyle F_{1,g}^{(a)}(x,y) =\displaystyle= F1,g(d)(x,y)=[1243ϱ3,13y+142ϱ2,12y14ϱ1,1y](x,y),\displaystyle F_{1,g}^{(d)}(x,y)=\Big{[}-\frac{1}{24}\frac{\partial^{3}\varrho_{{}_{3,1}}}{\partial^{3}y}+\frac{1}{4}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}-\frac{1}{4}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}\Big{]}(x,y),
F2,g(a)(x,y)\displaystyle F_{2,g}^{(a)}(x,y) =\displaystyle= F2,g(d)(x,y)=[142ϱ2,12y+12ϱ1,1y12ϱ1,1x](x,y),\displaystyle F_{2,g}^{(d)}(x,y)=\Big{[}-\frac{1}{4}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}+\frac{1}{2}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}-\frac{1}{2}\frac{\partial\varrho_{{}_{1,1}}}{\partial x}\Big{]}(x,y),
F1,g(b)(x,y)\displaystyle F_{1,g}^{(b)}(x,y) =\displaystyle= F1,g(c)(x,y)=F1,g(e)(x,y)=[1243ϱ3,13y182ϱ2,12y](x,y),\displaystyle F_{1,g}^{(c)}(x,y)=F_{1,g}^{(e)}(x,y)=\Big{[}\frac{1}{24}\frac{\partial^{3}\varrho_{{}_{3,1}}}{\partial^{3}y}-\frac{1}{8}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}\Big{]}(x,y),
F2,g(b)(x,y)\displaystyle F_{2,g}^{(b)}(x,y) =\displaystyle= F2,g(c)(x,y)=F2,g(e)(x,y)=[142ϱ2,12y12ϱ1,1y](x,y),\displaystyle F_{2,g}^{(c)}(x,y)=F_{2,g}^{(e)}(x,y)=\Big{[}\frac{1}{4}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}-\frac{1}{2}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}\Big{]}(x,y),
F1,g(f)(x,y)\displaystyle F_{1,g}^{(f)}(x,y) =\displaystyle= [182ϱ2,12y14ϱ1,1y](x,y),\displaystyle\Big{[}\frac{1}{8}\frac{\partial^{2}\varrho_{{}_{2,1}}}{\partial^{2}y}-\frac{1}{4}\frac{\partial\varrho_{{}_{1,1}}}{\partial y}\Big{]}(x,y),
F2,g(f)(x,y)\displaystyle F_{2,g}^{(f)}(x,y) =\displaystyle= [12ϱ1,1x](x,y).\displaystyle\Big{[}-\frac{1}{2}\frac{\partial\varrho_{{}_{1,1}}}{\partial x}\Big{]}(x,y). (30)

The Wilson coefficients obtained above can also be used to direct CP-violation in B¯Xsγ\bar{B}\rightarrow X_{s}\gamma and the time-dependent CP-asymmetry in BKγB\rightarrow K^{*}\gamma. The direct CP-violation AB¯XsγCPA^{CP}_{\bar{B}\rightarrow X_{s}\gamma} and CP-asymmetry SKγS_{K^{*}\gamma} are defined in hadronic scale ACP-def1 ; ACP-def2 ; ACP-def3 ; ACP-def4 ; ACP-def5

AB¯XsγCP\displaystyle A^{CP}_{\bar{B}\rightarrow X_{s}\gamma} =\displaystyle= Γ(B¯Xsγ)Γ(BXs¯γ)Γ(B¯Xsγ)+Γ(BXs¯γ)|Eγ>(1δ)Eγmax\displaystyle\left.\frac{\Gamma(\bar{B}\rightarrow X_{s}\gamma)-\Gamma(B\rightarrow X_{\bar{s}}\gamma)}{\Gamma(\bar{B}\rightarrow X_{s}\gamma)+\Gamma(B\rightarrow X_{\bar{s}}\gamma)}\right|_{E_{\gamma}>(1-\delta)E_{\gamma}^{max}} (31)
\displaystyle\simeq 102|C7(μb)|2[1.23(C2(μb)C7(μb))\displaystyle\frac{10^{-2}}{|C_{7}(\mu_{b})|^{2}}\Big{[}1.23\mathfrak{I}\big{(}C_{2}(\mu_{b})C_{7}^{*}(\mu_{b})\big{)}
9.52(C8(μb)C7(μb))+0.01(C2(μb)C8(μb))],\displaystyle-9.52\mathfrak{I}\big{(}C_{8}(\mu_{b})C_{7}^{*}(\mu_{b})\big{)}+0.01\mathfrak{I}\big{(}C_{2}(\mu_{b})C_{8}^{*}(\mu_{b})\big{)}\Big{]},
SKγ\displaystyle S_{K^{*}\gamma} \displaystyle\simeq 2Im(eiϕdC7(μb)C7(μb))|C7(μb)|2+|C7(μb)|2,\displaystyle\frac{2\text{Im}(e^{-i\phi_{d}}C_{7}(\mu_{b})C_{7}^{\prime}(\mu_{b}))}{|C_{7}(\mu_{b})|^{2}+|C_{7}^{\prime}(\mu_{b})|^{2}}, (32)

where the photon energy cut in ACPA^{CP} is taken as δ=3\delta=3, and ϕd\phi_{d} in SKγS_{K^{*}\gamma} is phase of BdB_{d} mixing amplititude. Here we use the experimental data sinϕd=0.67±0.02\sin\phi_{d}=0.67\pm 0.02 given in ref. 1010-1589 .

As the Wilson coefficients are calculated at electroweak scale μEW\mu_{EW}, we need to evolve them down to hadronic scale μmb\mu\sim m_{b} with renormalization group equations.

CNP(μ)\displaystyle\vec{C}_{NP}(\mu) =\displaystyle= U^(μ,μ0)CNP(μ0),\displaystyle\hat{U}(\mu,\mu_{0})\vec{C}_{NP}(\mu_{0}),
CNP(μ)\displaystyle\vec{C}^{\prime}_{NP}(\mu) =\displaystyle= U^(μ,μ0)CNP(μ0),\displaystyle\hat{U}^{\prime}(\mu,\mu_{0})\vec{C}^{\prime}_{NP}(\mu_{0}), (33)

where the Wilson coefficients are constructed as

CNPT\displaystyle\vec{C}^{\mathrm{T}}_{NP} =\displaystyle= (C1,NP,,C6,NP,C7,NPeff,C8,NPeff),\displaystyle(C_{1,NP},\cdots,C_{6,NP},C^{eff}_{7,NP},C^{eff}_{8,NP}),
CNP,T\displaystyle\vec{C}^{\prime,\mathrm{T}}_{NP} =\displaystyle= (C7,NPeff,C8,NPeff).\displaystyle(C^{\prime eff}_{7,NP},C^{\prime eff}_{8,NP}). (34)

To be convenient, we take the numerrical results of effective coefficients CeffC^{eff} from SM at next-to-next-to-leading logarithmic(NNLL) level, C7eff(mb)=0.304,C8eff(mb)=0.167C_{7}^{eff}(m_{b})=-0.304,C_{8}^{eff}(m_{b})=-0.167. The evolving matrices involved in Eq.(33) are given as

U^(μ,μ0)1[12β0lnαs(μ)αs(μ0)]γ^(0)T,\displaystyle\hat{U}(\mu,\mu_{0})\simeq 1-\left[\frac{1}{2\beta_{0}}\ln\frac{\alpha_{s}(\mu)}{\alpha_{s}(\mu_{0})}\right]\hat{\gamma}^{(0)T},
U^(μ,μ0)1[12β0lnαs(μ)αs(μ0)]γ^(0)T,\displaystyle\hat{U}^{\prime}(\mu,\mu_{0})\simeq 1-\left[\frac{1}{2\beta_{0}}\ln\frac{\alpha_{s}(\mu)}{\alpha_{s}(\mu_{0})}\right]\hat{\gamma}^{\prime(0)T}, (35)

with anomalous dimension matrices

γ^(0)=(483029002082431731621200430041681702700052302176811427004091009495615224358716200025630206272816596270025695694092346242434772810000003230000000329283),\displaystyle\hat{\gamma}^{(0)}=\left(\begin{array}[]{cccccccc}-4&\frac{8}{3}&0&-\frac{2}{9}&0&0&-\frac{208}{243}&\frac{173}{162}\\ 12&0&0&\frac{4}{3}&0&0&\frac{416}{81}&\frac{70}{27}\\ 0&0&0&-\frac{52}{3}&0&2&-\frac{176}{81}&\frac{14}{27}\\ 0&0&-\frac{40}{9}&-\frac{100}{9}&\frac{4}{9}&\frac{5}{6}&-\frac{152}{243}&-\frac{587}{162}\\ 0&0&0&-\frac{256}{3}&0&20&-\frac{6272}{81}&\frac{6596}{27}\\ 0&0&-\frac{256}{9}&\frac{56}{9}&\frac{40}{9}&-\frac{2}{3}&\frac{4624}{243}&\frac{4772}{81}\\ 0&0&0&0&0&0&\frac{32}{3}&0\\ 0&0&0&0&0&0&-\frac{32}{9}&\frac{28}{3}\end{array}\right), (44)

and

γ^(0)=(3230329283).\displaystyle\hat{\gamma}^{\prime(0)}=\left(\begin{array}[]{cc}\frac{32}{3}&0\\ -\frac{32}{9}&\frac{28}{3}\end{array}\right). (47)

IV Numerical analysis

The consistency of SM prediction and experimental data on B¯Xsγ\bar{B}\to X_{s}\gamma sets stringent constraint on new physics parameters. In this section, we discuss the numerical results of branching ratio with some assumptions. The SM inputs are given in Table 2. All the parameters with mass dimension are given in the unit GeV. To be concise, we omit all the unit GeV in this section. Other free parameters introduced in BLMSSM are set to be ABU=ABD=ABQ=ABU=ABD=ABQ=Ad4=Ad5=Au4=Au5=Ad4=Ad5=Au4=Au5=100A_{BU}=A_{BD}=A_{BQ}=A^{\prime}_{BU}=A^{\prime}_{BD}=A^{\prime}_{BQ}=A_{d_{4}}=A_{d_{5}}=A_{u_{4}}=A_{u_{5}}=A^{\prime}_{d_{4}}=A^{\prime}_{d_{5}}=A^{\prime}_{u_{4}}=A^{\prime}_{u_{5}}=100, MQ~42=MQ~52=MU~42=MU~52=MD~42=MD~52=2500M^{2}_{\tilde{Q}_{4}}=M^{2}_{\tilde{Q}_{5}}=M^{2}_{\tilde{U}_{4}}=M^{2}_{\tilde{U}_{5}}=M^{2}_{\tilde{D}_{4}}=M^{2}_{\tilde{D}_{5}}=2500, m1=m2=1200m_{1}=m_{2}=1200 and mZB=1000m_{Z_{B}}=1000 to make sure the masses of new physics particles under experimental limitations.

As a new field introduced in BLMSSM, superfield XX interacts with exotic quarks. The coplings between XX and Q5^,U5^\hat{Q_{5}},\hat{U_{5}} denoted by λi,(i=1,2,3)\lambda_{i},(i=1,2,3) are given in Eq.4. From the analytical expressions, one can find the Wilson coefficients are sensitive to these couplings as well as coefficients of mass term of XX, which turns up in 𝒲X\mathcal{W}_{X} as μX\mu_{X} and BXB_{X}. We show the branching ratio varying with λ1\lambda_{1}, λ3\lambda_{3}, μX\mu_{X} and BXB_{X} in firgure 2. The dependency of λ2\lambda_{2} is not listed as it is similar to λ1\lambda_{1}.

Table 2: SM inputs in numerical analysis.
α\alpha 1/1281/128 mWm_{W} 80.38580.385 mZm_{Z} 91.18891.188
mum_{u} 0.00230.0023 mcm_{c} 1.2751.275 mtm_{t} 173.5173.5
mdm_{d} 0.00480.0048 msm_{s} 0.0950.095 mbm_{b} 4.184.18
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma) varying with parameters relevant to superfield XX.

In Figure 2.(a), one can find the branching ratio increases when λ1\lambda_{1} raises up. The experimental limitations are denoted by the gray area, and we have taken λ3/(4π)=0.07,tanβ=10,λQ=0.7,λU=0.3,λD=0.2,μ=600,μB=μX=mZB=mB=1000,BX=400,vbt=6000\lambda_{3}/(4\pi)=0.07,\tan\beta=10,\lambda_{Q}=0.7,\lambda_{U}=0.3,\lambda_{D}=0.2,\mu=-600,\mu_{B}=\mu_{X}=m_{Z_{B}}=m_{B}=1000,B_{X}=400,v_{bt}=6000. It can be seen in this figure that branching ratio reachs the upper limitations of experimental limitations when λ1/(4π)0.94\lambda_{1}/(4\pi)\sim 0.94, then we get the constrain λ1/(4π)<0.94\lambda_{1}/(4\pi)<0.94.

Similarly, we plot the branching ratio varying with λ3\lambda_{3} in Figure 2.(b). By taking λ1/(4π)=0.07\lambda_{1}/(4\pi)=0.07, which satisfies the limitations obtained in Figure 2.(a), and tanβ=5,λQ=0.2,λU=0.5,λD=0.8,μ=800,μB=μX=1100,mZB=1000,mB=500,BX=400,vbt=6000\tan\beta=5,\lambda_{Q}=0.2,\lambda_{U}=0.5,\lambda_{D}=0.8,\mu=-800,\mu_{B}=\mu_{X}=1100,m_{Z_{B}}=1000,m_{B}=500,B_{X}=400,v_{bt}=6000, we find the branching ratio rises very slowly when λ3/(4π)\lambda_{3}/(4\pi) runs from 0.01 to 1.5. The whole curve lies in the gray area, which means the branching ratio satisfies the experimental constraint under our assumptions.

To investigate the trends of Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma) varying with μX\mu_{X}, we take λ1/(4π)=0.06,λ3/(4π)=0.08,tanβ=5,λQ=0.8,λU=0.5,λD=0.2,μ=600,μB=1000,BX=400,mzB=1100,vbt=6000,mB=2500\lambda_{1}/(4\pi)=0.06,\lambda_{3}/(4\pi)=0.08,\tan\beta=5,\lambda_{Q}=0.8,\lambda_{U}=0.5,\lambda_{D}=0.2,\mu=-600,\mu_{B}=1000,B_{X}=400,m_{z_{B}}=1100,v_{bt}=6000,m_{B}=2500. We find from Figure 2.(c) that the branching ratio diminishes steeply with increasing of μX\mu_{X}, and finally gets to the value of standard model. In Figure 2.(d), we plot the branching ratio varying with BXB_{X}, where we take λ1/(4π)=0.15,λ3/(4π)=0.08,tanβ=5,λQ=0.7,λU=0.2,λD=0.3,μ=1000,μB=1100,μX=2500,mzB=900,vbt=5500,mB=2000\lambda_{1}/(4\pi)=0.15,\lambda_{3}/(4\pi)=0.08,\tan\beta=5,\lambda_{Q}=0.7,\lambda_{U}=0.2,\lambda_{D}=0.3,\mu=-1000,\mu_{B}=1100,\mu_{X}=2500,m_{z_{B}}=900,v_{bt}=5500,m_{B}=2000. With the upper limitations of experimental result, we get the constraints BX<1930B_{X}<1930.

Refer to caption
Refer to caption
Figure 3: Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma) varying with λQ\lambda_{Q} and vbtv_{bt}.

In Figure 3.(a), we present the branching ratio varying with λQ\lambda_{Q}, which is the coupling truns up in superpotential term λQQ^4Q^5cΦ^B\lambda_{{}_{Q}}\hat{Q}_{{}_{4}}\hat{Q}_{{}_{5}}^{c}\hat{\Phi}_{{}_{B}}. With λ1/(4π)=0.08,λ3/(4π)=0.06,tanβ=20,λU=0.3,λD=0.6,μ=800,μB=μX=1000,BX=400,mzB=1000,vbt=5000,mB=1500\lambda_{1}/(4\pi)=0.08,\lambda_{3}/(4\pi)=0.06,\tan\beta=20,\lambda_{U}=0.3,\lambda_{D}=0.6,\mu=-800,\mu_{B}=\mu_{X}=1000,B_{X}=400,m_{z_{B}}=1000,v_{bt}=5000,m_{B}=1500, we find branching ratio decreases when λQ\lambda_{Q} gets larger. To consist with the experimental data, one has λQ>0.87\lambda_{Q}>0.87. Another interesting parameter is vbtv_{bt}, which is defined as vbt=v¯B2+vB2v_{bt}=\sqrt{\bar{v}_{B}^{2}+v_{B}^{2}}, where vBv_{B} and v¯B\bar{v}_{B} are VEVs of ΦB\Phi_{B} and φB\varphi_{B} respectively. We plot branching ratio varying with vbtv_{bt} in Figure 3.(b) with λ1/(4π)=λ3/(4π)=0.1,tanβ=5,λQ=0.4,λU=0.2,λD=0.7,μ=1000,μB=1100,μX=1500,BX=400,mzB=1000,mB=1500\lambda_{1}/(4\pi)=\lambda_{3}/(4\pi)=0.1,\tan\beta=5,\lambda_{Q}=0.4,\lambda_{U}=0.2,\lambda_{D}=0.7,\mu=-1000,\mu_{B}=1100,\mu_{X}=1500,B_{X}=400,m_{z_{B}}=1000,m_{B}=1500. To satisfy the experimental constraints, we have vbt>2900v_{bt}>2900.

Additionally, we plot the direct CP-violation of B¯Xsγ\bar{B}\to X_{s}\gamma and time-dependent CP-asymmetry of BKγB\rightarrow K^{*}\gamma varying with λ1,λ3,μX,BX,λQ,λD\lambda_{1},\lambda_{3},\mu_{X},B_{X},\lambda_{Q},\lambda_{D} and vbtv_{bt}. Within the framework of SM, we have 0.6%<ACPSM<+2.8%-0.6\%<A_{CP}^{SM}<+2.8\% PRL-106-2011-141801 , and the average value of this observable is ACPexp=0.009±0.018A_{CP}^{exp}=-0.009\pm 0.018PDG . Within some uncertainty, the theoretical value is consistent with the experimental result. Compared with direct CP-violation of B¯Xsγ\bar{B}\to X_{s}\gamma, there is significant deviation between SM prediction and experimental result of SKγS_{K^{*}\gamma}. The SM prediction of time-dependent CP-asymmetry in BKγB\rightarrow K^{*}\gamma at LO level is given as SKγSM(2.3±1.6)%S_{K^{*}\gamma}^{SM}\simeq(-2.3\pm 1.6)\% skr-SM and the experimental result is SKγ0.15±0.22S_{K^{*}\gamma}\simeq-0.15\pm 0.22 PDG ; operators1 .

To investigate AB¯XsγCPA^{CP}_{\bar{B}\to X_{s}\gamma} and SKγS_{K^{*}\gamma} numerically, some parameters are taken to be complex, and the area within experimental boundaries are filled to be gray in the presented figures. In Figure 4, we plot the dependency of parameters relevant to superfield XX. Under our assumptions of free parameters introduced in BLMSSM, we find that AB¯XsγCPA^{CP}_{\bar{B}\to X_{s}\gamma} (solid line) are hardly affected by the change of λ1,λ3,μX,BX\lambda_{1},\lambda_{3},\mu_{X},B_{X}. Though corrections from one-loop level are almost zero, the numerical results are consistent with experimental data.

As shown in Figure 4.(a), one-loop corrections to SKγS_{K^{*}\gamma} (dashed line) in BLMSSM can reach 0.25-0.25 with appropriate inputs. By changing the free parameters, one finds SKγS_{K^{*}\gamma} can be as small as zero in Figure 4.(b). In Figure 4.(c), it can be seen that SKγS_{K^{*}\gamma} raise obviously with increasing of μX\mu_{X}, and finally gets stable around zero. The SKγS_{K^{*}\gamma} varying with BXB_{X} are given in Figure 4.(d). When BXB_{X} raises up, we can see that SKγS_{K^{*}\gamma} decreases. Within the range of parameters λ1,λ3,μX\lambda_{1},\lambda_{3},\mu_{X} and BXB_{X}, we find SKγS_{K^{*}\gamma} is consistent with experimental data.

In Figure 5, we take into account the parameters λQ\lambda_{Q} and λD\lambda_{D}. When λQ\lambda_{Q} runs from 0.01 to 2.0, the time-dependent CP-asymmetry decrease from 0.020.02 to 0.22-0.22. While for the increasing of λD\lambda_{D}, SKγS_{K^{*}\gamma} raises from 0.28-0.28 to 0.02-0.02. Under our assumptions, we conclude that λQ\lambda_{Q} and λD\lambda_{D} affect SKγS_{K^{*}\gamma} apparently, and the numerical results of new physics correction are consistent with experimental data. However, the direct CP-violation of B¯Xsγ\bar{B}\to X_{s}\gamma depends on λQ\lambda_{Q} and λD\lambda_{D} weakly, and the one-loop contributions from BLMSSM are very small.

The last Figure 6 illustrates the trend of SKγS_{K^{*}\gamma} and AB¯XsγCPA^{CP}_{\bar{B}\to X_{s}\gamma} varying with vbtv_{bt}. By taking λ1/(4π)=0.8,λ3/(4π)=0.9,BX=400\lambda_{1}/(4\pi)=0.8,\lambda_{3}/(4\pi)=0.9,B_{X}=400 and λQ=0.4e0.625π\lambda_{Q}=0.4e^{0.625\pi}, we find that SKγS_{K^{*}\gamma} increases from 0.26-0.26 to 0.06-0.06. The AB¯XsγCPA^{CP}_{\bar{B}\to X_{s}\gamma} stays around zero within the range 100<vbt<10000100<v_{bt}<10000.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: AB¯XsγCPA^{CP}_{\bar{B}\rightarrow X_{s}\gamma} and SKγS_{K^{*}\gamma} varying with paremeters relevant to superfield XX.
Refer to caption
Refer to caption
Figure 5: AB¯XsγCPA^{CP}_{\bar{B}\rightarrow X_{s}\gamma} and SKγS_{K^{*}\gamma} varying with λQ\lambda_{Q} and λD\lambda_{D}.
Refer to caption
Figure 6: AB¯XsγCPA^{CP}_{\bar{B}\rightarrow X_{s}\gamma} and SKγS_{K^{*}\gamma} varying with vbtv_{bt}.

V Conclusions

As an interesting process of FCNC, we investigate the transition bsγb\to s\gamma within the framework of BLMSSM. With effective Hamiltonian method, we present the Wilson coefficients extracted from amplitudes corresponding to the concerned one-loop diagrams. Based on the analytical expressions, constraints on parameters are given in the numerical section with the experimental data of branching ratio of B¯Xsγ\bar{B}\to X_{s}\gamma. The direct CP-violation of B¯Xsγ\bar{B}\to X_{s}\gamma in BLMSSM is very small, and depend on the free parameters weakly. However, the time-dependent CP-asymmetry SKγS_{K^{*}\gamma} in BKγB\rightarrow K^{*}\gamma varies with μX,BX,λQ,λD\mu_{X},B_{X},\lambda_{Q},\lambda_{D} and vbtv_{bt} obviously. The contributions from new physics can reach 0.28-0.28 under appropriate setup of the parameters.

References

  • (1) M. Tanabashi et al.(Particle Data Group), Phys. Rev. D 98: 030001 (2018)
  • (2) M. Misiak et al., Phys. Rev. Lett. 114: 221801 (2015)
  • (3) M. Czakon, P. Fiedler, T. Huber, M. Misiak, T. Schutzmeier and M. Steinhauser, (2015), arXiv:1503.01791[hep-ph]
  • (4) M. Misiak et al., Phys. Rev. Lett. 98: 022002 (2007)
  • (5) M. Misiak and M. Steinhauser, Nucl. Phys. B 764: 62 (2007)
  • (6) K. Chetyrkin, M. Misiak and M. Munz, Phys. Lett. B 400: 206 (1997)
  • (7) C. Greub, T. Hurth and D. Wyler, Phys. Rev. D 54: 3350 (1996)
  • (8) K. Adel and Y.-P. Yao, Phys. Rev. D 49: 4945 (1994)
  • (9) A. Ali and C. Greub, Phys. Lett. B 361: 146 (1995)
  • (10) J. Rosiek, Phys. Rev. D 41: 3464 (1990)
  • (11) P. F. Perez and M. B. Wise, JHEP, 1108: 068 (2011)
  • (12) P. F. Perez and M. B. Wise, Phys. Rev. D 82: 011901 (2010)
  • (13) P. F. Perez, Physics reports 597: 1 (2015)
  • (14) S. M. Zhao, T.F. Feng, H.B.Zhang, B. Yan and Y. J. Zhang, JHEP,1411: 119 (2014)
  • (15) S. M. Zhao, T. F. Feng, Z, J. Yang, H. B. Zhang, X. X. Dong and T. Guo, Eur. Phys. J. C77: 102 (2017)
  • (16) T. F. Feng, S. M. Zhao, H. B. Zhang, Y. J. Zhang, Y. L. Yan, Nucl. Phys. B 871: 223 (2013)
  • (17) H. Li, J. B. Chen and L. L. Xing, MPLA 33: 1850034 (2018)
  • (18) E. Lunghi and J. Matias, JHEP 0704:058 (2007)
  • (19) T. F. Feng, Y. L. Yan, H. B. Zhang and S. M. Zhao, Phys. Rev. D 92 : 055024 (2015)
  • (20) C. Bobeth, M. Misiak and J. Urban, Nucl. Phys. B 574:291-330 (2000)
  • (21) W. Altmannshofer, P. Ball1, A. Bharucha, A. J. Buras, D. M. Straub1 and M. Wick, JHEP 01:019 (2009)
  • (22) H. M. Asatrian and A. N. Ioannissian, Phys. Rev. D 54 (1996) 5642
  • (23) M. Ciuchini, E. Gabrielli and G.F. Giudice, Phys. Lett. B388:353 (1996)
  • (24) S. Baek, P. Ko, Phys. Rev. Lett. 83:488 (1999)
  • (25) A. L. Kagan and M. Neubert, Phys. Rev. D 58:094012 (1998)
  • (26) K. Kiers, A. Soni, and G. H. Wu, Phys. Rev. D62:116004 (2000)
  • (27) D. Asner et al.(Heavy Flavor Averaging Group), (2010) arXiv:1010.1589[hep-ex]
  • (28) M. Benzke, S. J. Lee, M. Neubert and G. Paz, Phys. Rev. Lett. 106:141801 (2011)
  • (29) P. Ball, G. W. Jones and R. Zwicky Phys. Rev. D 75:054004 (2007)