This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Banach property (T) for SLn()\rm SL_{n}(\mathbb{Z}) and its applications

Izhar Oppenheim Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
Abstract.

We prove that a large family of higher rank simple Lie groups (including SLn()\rm SL_{n}(\mathbb{R}) for n3n\geq 3) and their lattices have Banach property (T) with respect to all super-reflexive Banach spaces.

Two consequences of this result are: First, we deduce Banach fixed point properties with respect to all super-reflexive Banach spaces for a large family of higher rank simple Lie groups. For example, we show that for every n4n\geq 4, the group SLn()\rm SL_{n}(\mathbb{R}) and all its lattices have the Banach fixed point property with respect to all super-reflexive Banach spaces. Second, we settle a long standing open problem and show that the Margulis expanders (Cayley graphs of SLn(/m)\rm SL_{n}(\mathbb{Z}/m\mathbb{Z}) for a fixed n3n\geq 3 and mm tending to infinity) are super-expanders.

All of our results stem from proving Banach property (T) for SL3()\rm SL_{3}(\mathbb{Z}). Our method of proof for SL3()\rm SL_{3}(\mathbb{Z}) relies on a novel proof for relative Banach property (T) for the uni-triangular subgroup of SL3()\operatorname{SL}_{3}(\mathbb{Z}). This proof of relative property (T) is new even in the classical Hilbert setting and is interesting in its own right.

2010 Mathematics Subject Classification:
Primary 22D12, 22E40; Secondary 46B85, 20F65
The author was partially supported by ISF grant no. 293/18

1. Introduction

Property (T) was introduced by Kazhdan in [Kaž67] as a tool to prove finite generation. Since then it was found useful for a wide range of applications in various different areas of mathematics (see [BdlHV08] and the introduction of [BFGM07], and reference therein). We mention two such applications that are relevant in the context of this paper: First, property (T) for a group GG is equivalent (under some mild assumptions on GG) to property (FH) which states that every continuous isometric affine action of GG on a real Hilbert space admits a fixed point. Second, Margulis gave the first explicit construction of expanders using property (T).

More recently, Bader, Furman, Gelander and Monod [BFGM07] defined a Banach version of property (T) (and its connection to Banach fixed point properties). They conjectured that higher rank algebraic group should have this form of Banach property (T) with respect to the class of all super-reflexive Banach spaces. Roughly simultaneously to the work of [BFGM07], V. Lafforgue [Laf09] proved that groups of the form SL3(F)\operatorname{SL}_{3}(F) where FF is a non-Archimedian local field have a strong form of Banach property (T) for large classes of Banach spaces and that this strong form of Banach property (T) implies the fix point property. In particular, his work corroborates the conjecture of [BFGM07]: Namely, a consequence of Lafforgue’s work it that the groups SL3(F)\operatorname{SL}_{3}(F) where FF is a non-Archimedian local field have Banach property (T) and the fixed point property with respect to all super-reflexive Banach spaces. Later, Liao [Lia14] extended the work of Lafforgue and proved the strong version of Banach property (T) holds for every higher rank connected almost FF-simple algebraic group, where FF is a non-Archimedean local field. In his work [Laf09], Lafforgue also showed how to use his result to construct super-expanders, i.e., families of graphs that are expanders with respect to every super-reflexive Banach space (see exact definition below).

Unlike in the non-Archimedian case, much less was known regarding Banach property (T) for algebraic groups over \mathbb{R} (and their lattices). In the paper of Bader, Furman, Gelander and Monod [BFGM07] they showed that higher rank algebraic groups have Banach property (T) (and fixed point properties) for LpL^{p} spaces where 1<p<1<p<\infty (the case p=1p=1 was later resolved in [BGM12]). For general super-reflexive spaces (that are not LpL^{p} spaces), partial results were proven by de Laat, Mimura and de la Salle in various collaborations [dLdlS15, Sal16, dLMdlS16, dLdlS18, dlS19]. However, non of these works cover all super-reflexive spaces even for a single group of the form SLn()\operatorname{SL}_{n}(\mathbb{R}) with some n3n\geq 3.

In this paper, we make a major breakthrough regarding Banach property (T): We show that large family of connected simple (higher rank) Lie groups have Banach property (T) with respect to all super-reflexive Banach spaces. In particular, we show that for every n3n\geq 3, the groups SLn()\operatorname{SL}_{n}(\mathbb{Z}) and SLn()\operatorname{SL}_{n}(\mathbb{R}) have Banach property (T) with respect to all super-reflexive Banach spaces. This has several striking consequences: First, it allows us to prove that a family of connected simple (higher rank) Lie groups and their lattices have the fixed point property with respect to all super-reflexive Banach spaces. In particular, we show that for every n4n\geq 4, SLn()\operatorname{SL}_{n}(\mathbb{R}) and all its lattices have the fixed point property with respect to all super-reflexive Banach spaces. Second, we settle a long standing open problem and show that the Margulis expanders (i.e., Cayley graphs of SLn(/i)\operatorname{SL}_{n}(\mathbb{Z}/i\mathbb{Z}) where n3n\geq 3 is a fixed integer) are super-expanders. Last, we show that for every n5n\geq 5, the groups SLn()\operatorname{SL}_{n}(\mathbb{Z}) and SLn()\operatorname{SL}_{n}(\mathbb{R}) have a strengthening of the fixed point property (property (FF)(FF) defined below) with respect to all super-reflexive Banach spaces

Our method for proving Banach property (T) is also novel. The prior works of de Laat, Mimura and de la Salle mentioned above were based on generalizing the work of Lafforgue on strong (Hilbert) property (T) of SL3()\operatorname{SL}_{3}(\mathbb{R}) to the Banach setting. Our approach is very different: We first prove a relative version of Banach property (T) for the uni-triangular matrices in SL3()\operatorname{SL}_{3}(\mathbb{Z}) with respect to super-reflexive Banach spaces. We note that this proof is new even in the Hilbert setting. After that, we use a bounded generation argument à la Shalom to deduce Banach property (T) for SL3()\operatorname{SL}_{3}(\mathbb{Z}) for all super-reflexive spaces. Then using Howe-Moore we deduce Banach property (T)(T) for simple Lie groups with whose Lie algebra contain 𝔰𝔩3()\mathfrak{sl}_{3}(\mathbb{R}) (see exact formulation below). We note that most of this proof scheme was known to experts, but prior to this work, it was not known how to prove the relative Banach property (T)(T) result.

1.1. Uniformly convex and super-reflexive Banach spaces

A Banach space 𝔼\operatorname{\mathbb{E}} is called uniformly convex if there is a function δ:(0,2](0,1]\delta:(0,2]\rightarrow(0,1] called the modulus of convexity such that for every 0<ε20<\varepsilon\leq 2 and every ξ,η𝔼\xi,\eta\in\operatorname{\mathbb{E}} with ξ=η=1\|\xi\|=\|\eta\|=1, if ξηε\|\xi-\eta\|\geq\varepsilon, then ξ+η2(1δ(ε))\|\frac{\xi+\eta}{2}\|\leq(1-\delta(\varepsilon)).

We will not recall the definition of super-reflexive Banach spaces, but only note that by [BL00, Theorem A.6] a Banach space 𝔼\operatorname{\mathbb{E}} is super-reflexive if and only if there is a equivalent uniformly convex norm on 𝔼\operatorname{\mathbb{E}} (a reader who is not familiar with super-reflexive Banach spaces can take this as a definition).

1.2. Banach property (T) for SL3()\operatorname{SL}_{3}(\mathbb{Z}) and Simple Lie groups

Given a topological group GG and a Banach space 𝔼\operatorname{\mathbb{E}}, a linear isometric representation of GG on 𝔼\operatorname{\mathbb{E}} is a continuous homomorphism π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}), where O(𝔼)O(\operatorname{\mathbb{E}}) denotes the group of all invertible linear isometries of 𝔼\operatorname{\mathbb{E}} with the strong operator topology. A linear isometric representation π\pi is said to have almost invariant vectors if for every compact set KGK\subseteq G and every ε>0\varepsilon>0, there is a unit vector ξ𝔼\xi\in\operatorname{\mathbb{E}} such that

supgKπ(g)ξξ<ε.\sup_{g\in K}\|\pi(g)\xi-\xi\|<\varepsilon.

In [BFGM07], Bader, Furman, Gelander and Monod defined Banach property (T) of a group GG as follows:

Definition 1.1.

Let 𝔼\operatorname{\mathbb{E}} be Banach space and GG be a topological group. The group GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) if for every continuous linear isometric representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}), the quotient representation π:GO(𝔼/𝔼π(G))\pi^{\prime}:G\rightarrow O(\operatorname{\mathbb{E}}/\operatorname{\mathbb{E}}^{\pi(G)}) does not have almost invariant vectors.

The main result of this paper is proving Banach property (T𝔼)(T_{\operatorname{\mathbb{E}}}) with respect to every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}} for SL3()\operatorname{SL}_{3}(\mathbb{Z}):

Theorem 1.2.

Let 𝔼\operatorname{\mathbb{E}} be a super-reflexive Banach space. The group SL3()\operatorname{SL}_{3}(\mathbb{Z}) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}).

Using Howe-Moore Theorem, this allows us to deduce the following theorem:

Theorem 1.3.

Let GG be a connected simple real Lie group with a finite center and 𝔤\mathfrak{g} the Lie algebra of GG. If 𝔤\mathfrak{g} contains 𝔰𝔩3()\mathfrak{sl}_{3}(\mathbb{R}) as a Lie sub-algebra, then GG and all its lattices have property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}.

This corroborates a conjecture stated in [BFGM07] in which it was conjectured that all higher rank almost simple algebraic groups have property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}} (see [BFGM07, Remark 2.28]). An immediate consequence is:

Theorem 1.4.

Let n3n\geq 3 and 𝔼\operatorname{\mathbb{E}} be a super-reflexive Banach space. The group SLn()\operatorname{SL}_{n}(\mathbb{R}) and all its lattices have property (T𝔼)(T_{\operatorname{\mathbb{E}}}). In particular, for every n3n\geq 3 and every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}, the group SLn()\operatorname{SL}_{n}(\mathbb{Z}) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}).

1.3. Applications

Banach fixed point property for simple Lie groups

Given a Banach space 𝔼\operatorname{\mathbb{E}}, a topological group GG is said to have property (F𝔼)(F_{\operatorname{\mathbb{E}}}) is every affine (continuous) isometric action of GG on 𝔼\operatorname{\mathbb{E}} admits a fixed point.

As an application of Banach property (T)(T) for SL3()\operatorname{SL}_{3}(\mathbb{R}) we prove:

Theorem 1.5.

Let GG be a connected simple real Lie group with a finite center and 𝔤\mathfrak{g} be the Lie algebra of GG. If 𝔤\mathfrak{g} contains 𝔰𝔩4()\mathfrak{sl}_{4}(\mathbb{R}) as a Lie sub-algebra, then GG and any lattice Γ<G\Gamma<G have property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}.

Again, this corroborates a conjecture stated in [BFGM07] in which it was conjectured that all higher rank algebraic groups have property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}} (see [BFGM07, Conjecture 1.6]).

The method of proof of Theorem 1.5 is as follows: First, using ideas of [BFGM07], we show that Banach property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for SL3()\operatorname{SL}_{3}(\mathbb{R}) implies property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for SL4()\operatorname{SL}_{4}(\mathbb{R}). Second, via a (now standard) use of Maunter phenomenon, we deduce Theorem 1.5.

Super-expanders

A family of finite graphs with uniformly bounded degree is called a super-expander family (or a super-expander) if it has a Poincaré inequality with respect to every super-reflexive Banach space (see exact definition in section 9.2). The first examples of super-expanders were constructed by Lafforgue in [Laf09] as a consequence of his work on strong Banach property (T) for SL3(F)\operatorname{SL}_{3}(F), where FF is a non-Archimedean local field. Since Lafforgue’s work there have been several constructions of super-expanders using two main techniques: Namely, the work of Mendel and Naor on non-linear spectral calculus [MN14] which gave a zig-zag construction for super-expanders. In a different direction, several works [Vig19, dLV19, FNvL19, Saw20] gave constructions using warped cones of groups actions arising from groups with Banach property (T).

It was an open problem to determine whether the Margulis expanders is a super-expander family, i.e., if for a fixed n3n\geq 3 the Cayley graphs of SLn(/i)\operatorname{SL}_{n}(\mathbb{Z}/i\mathbb{Z}) form a super-expander family. This open question appeared in the literature several times, including in Assaf Naor’s Minerva lecture [Nao13] where it was attributed to Margulis and in de la Salle’s 2022 ICM lecture [dlS22, Conjecture 4.4] (see also [Obe18, Problem 5], [dLdlS18], [Mim13, Remark 5.3]). Partial results were achieved by de Laat and de la Salle in [dLdlS18], but up until our work, the problem remained open. As a consequence of our Theorem 1.4, we settle this problem to the affirmative and prove the following:

Theorem 1.6.

Let n3n\geq 3 and SS be a finite generating set of SLn()\operatorname{SL}_{n}(\mathbb{Z}) (e.g., S={ei,j(±1):1i,jn,ij}S=\{e_{i,j}(\pm 1):1\leq i,j\leq n,i\neq j\}). Also, let ϕi:SLn()SLn(/i)\phi_{i}:\operatorname{SL}_{n}(\mathbb{Z})\rightarrow\operatorname{SL}_{n}(\mathbb{Z}/i\mathbb{Z}) be the natural surjective homomorphism for every ii\in\mathbb{N}. Then the family of Cayley graphs of {(SLn(/i),ϕi(S))}i\{(\operatorname{SL}_{n}(\mathbb{Z}/i\mathbb{Z}),\phi_{i}(S))\}_{i\in\mathbb{N}} is a super-expander family.

As noted above, one can construct super-expanders using warped cones arising from an action of a Banach property (T) group on a compact Riemannian manifold (see [Vig19, dLV19, FNvL19, Saw20]). Combining this machinery with our Theorem 1.4 also leads to a construction of super-expanders (see section 9.2 for more details):

Theorem 1.7.

Let n3n\geq 3 and let MM be a compact Riemannian manifold such that SLn()\operatorname{SL}_{n}(\mathbb{Z}) acts on MM by Lipschitz homeomorphisms. For every increasing sequence {ti}i>0\{t_{i}\}_{i\in\mathbb{N}}\subseteq\mathbb{R}_{>0} tending to infinity, the family {(M,dSLn()ti)}i\{(M,d^{t_{i}}_{\operatorname{SL}_{n}(\mathbb{Z})})\}_{i\in\mathbb{N}} is quasi-isometric to a super-expander.

Banach property (FF𝔼)(FF_{\operatorname{\mathbb{E}}})

In [Mim11], Mimura defined the notion of property (FF𝔼)(FF_{\operatorname{\mathbb{E}}}) (see exact definition in section 9.3 below) that is a Banach version of property (TT) defined by Monod in [Mon01]. A result of de Laat, Mimura and de la Salle [dLMdlS16] allows one to deduce property (FF𝔼)(FF_{\operatorname{\mathbb{E}}}) for the groups SLn+2(),SLn+2()\operatorname{SL}_{n+2}(\mathbb{Z}),\operatorname{SL}_{n+2}(\mathbb{R}) from property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for the groups SLn(),SLn()\operatorname{SL}_{n}(\mathbb{Z}),\operatorname{SL}_{n}(\mathbb{R}). Thus, we can deduce the following:

Corollary 1.8.

For every n5n\geq 5 and every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}, the groups SLn(),SLn()\operatorname{SL}_{n}(\mathbb{Z}),\operatorname{SL}_{n}(\mathbb{R}) have property (FF𝔼)(FF_{\operatorname{\mathbb{E}}}).

1.4. Relative Banach property (T) for uni-triangular in SL3()\operatorname{SL}_{3}(\mathbb{Z})

Here we will outline the proof of Theorem 1.2 from which all our other results follow. The proof relies on a relative Banach property (T) argument that is novel even in the Hilbert setting.

Generalizing the definition of relative property (T) given in [Jol05, Theorem 1.2 (b2)] to the Banach setting, we will define relative Banach property (T) as follows:

Definition 1.9.

Let GG be a topological group and H<GH<G be a subgroup. For a Banach space 𝔼\operatorname{\mathbb{E}}, we will say that the pair (G,H)(G,H) has relative Banach property (T𝔼)(T_{\operatorname{\mathbb{E}}}) if for every continuous linear isometric representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) and every constant γ>0\gamma>0, there is a compact set KGK\subseteq G and a constant ε>0\varepsilon>0 such that for every unit vector ξ𝔼\xi\in\operatorname{\mathbb{E}}, if supgKπ(g)ξξ<ε\sup_{g\in K}\|\pi(g)\xi-\xi\|<\varepsilon, then there exits η𝔼π(H)\eta\in\operatorname{\mathbb{E}}^{\pi(H)} such that ξη<γ\|\xi-\eta\|<\gamma.

Remark 1.10.

This definition is a-priori weaker than definition of weak relative Banach property (T) given in [dLMdlS16] and is strictly weaker than the definition of strong relative Banach property (T) given in [BFGM07].

Let UT3()\operatorname{UT}_{3}(\mathbb{Z}) and LT3()\operatorname{LT}_{3}(\mathbb{Z}) denote the subgroups of uni-upper-triangular and uni-lower-triangular matrices in SL3()\operatorname{SL}_{3}(\mathbb{Z}), i.e.,

UT3()={(1ac01b001):a,b,c},\operatorname{UT}_{3}(\mathbb{Z})=\left\{\left(\begin{matrix}1&a&c\\ 0&1&b\\ 0&0&1\end{matrix}\right):a,b,c\in\mathbb{Z}\right\},

and

LT3()={(100a10cb1):a,b,c}.\operatorname{LT}_{3}(\mathbb{Z})=\left\{\left(\begin{matrix}1&0&0\\ a&1&0\\ c&b&1\end{matrix}\right):a,b,c\in\mathbb{Z}\right\}.

We prove the following (with respect to our definition of relative Banach property (T)(T) stated above):

Theorem 1.11.

For any super-reflexive Banach space 𝔼\operatorname{\mathbb{E}} the pairs (SL3(),UT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{UT}_{3}(\mathbb{Z})) and (SL3(),LT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{LT}_{3}(\mathbb{Z})) both have relative property (T𝔼)(T_{\operatorname{\mathbb{E}}}).

The proof of this theorem is via defining a sequence of finitely supported probability measures fnf_{n} on SL3()\operatorname{SL}_{3}(\mathbb{Z}) and showing that for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}} and every continuous isometric representation π:SL3()O(𝔼)\pi:\operatorname{SL}_{3}(\mathbb{Z})\rightarrow O(\operatorname{\mathbb{E}}) it holds that π(fn)\pi(f_{n}) converges in the norm topology and that the image of the limit operator is in 𝔼π(UT3())\operatorname{\mathbb{E}}^{\pi(\operatorname{UT}_{3}(\mathbb{Z}))}. We note that this method is new even in the classical Hilbert setting. Moreover, the proof is completely elementary in contrast with the more classical proofs of relative property (T), e.g., the proof that (SL2()2,2)(\operatorname{SL}_{2}(\mathbb{Z})\ltimes\mathbb{Z}^{2},\mathbb{Z}^{2}) has relative property (T) in [BdlHV08, Theorem 4.2.2] requires Fourier analysis and projections valued measures while our proof requires neither.

Combining Theorem 1.11 with a bounded generation argument à la Shalom implies Theorem 1.2.

Structure of this paper

This paper is organized as follows: In section 2, we cover some needed preliminaries. In section 3, we gather some facts regarding Banach property (T) (and relative versions of Banach property (T)). In section 4, we show how bounded generation and relative Banach property (T) imply Banach property (T). In section 5, we prove some bounds on the norms of averaging operations for the Heisenberg group that are needed for our relative Banach property (T) result. In section 6, we prove our relative Banach property (T) result (Theorem 1.11). In section 7, we prove Banach property (T) for SL3()\operatorname{SL}_{3}(\mathbb{Z}) (Theorem 1.2). In section 8, we prove Banach property (T) for a large family of simple Lie groups and their lattices (Theorem 1.3). Last, in section 9, we prove the applications stated above.

Acknowledgements

I thank Uri Bader and Mikael de la Salle for reading an early draft of this paper and making several valuable suggestions that vastly improved it. I also thank the anonymous referee of this paper for many corrections and suggestions that improved the correctness and readability of this paper.

2. Preliminaries

2.1. Uniformly convexity

Below, we will state some needed facts regarding uniformly convex spaces.

Proposition 2.1.

Let 𝔼\operatorname{\mathbb{E}} be a uniformly convex Banach space with a modulus of convexity δ:(0,2](0,1]\delta:(0,2]\rightarrow(0,1] and denote O(𝔼)O(\operatorname{\mathbb{E}}) to be the group of invertible linear isometries of 𝔼\operatorname{\mathbb{E}}. Then for every 0<ε20<\varepsilon\leq 2, every S,TO(𝔼)S,T\in O(\operatorname{\mathbb{E}}) such that TS=STTS=ST and every ξ𝔼\xi\in\operatorname{\mathbb{E}}, if (IS)ξεξ\|(I-S)\xi\|\geq\varepsilon\|\xi\|, then

12I+T2ξ+12I+TS2ξmax{112δ(δ(ε)),114δ(ε)}ξ.\frac{1}{2}\left\|\frac{I+T}{2}\xi\right\|+\frac{1}{2}\left\|\frac{I+TS}{2}\xi\right\|\leq\max\left\{1-\frac{1}{2}\delta(\delta(\varepsilon)),1-\frac{1}{4}\delta(\varepsilon)\right\}\|\xi\|.

This proposition is probably well-known and we give the proof for completeness:

Proof.

Fix ξ𝔼\xi\in\operatorname{\mathbb{E}} and 0<ε20<\varepsilon\leq 2, and assume that (IS)ξεξ\|(I-S)\xi\|\geq\varepsilon\|\xi\|. If (IT)ξδ(ε)\|(I-T)\xi\|\geq\delta(\varepsilon), then

12I+T2ξ+12I+TS2ξ12(1δ(δ(ε)))ξ+12ξ=(112δ(δ(ε)))ξ,\displaystyle\frac{1}{2}\left\|\frac{I+T}{2}\xi\right\|+\frac{1}{2}\left\|\frac{I+TS}{2}\xi\right\|\leq\frac{1}{2}\left(1-\delta(\delta(\varepsilon))\right)\|\xi\|+\frac{1}{2}\|\xi\|=\left(1-\frac{1}{2}\delta(\delta(\varepsilon))\right)\|\xi\|,

as needed.

Otherwise, IT2ξδ(ε)2\|\frac{I-T}{2}\xi\|\leq\frac{\delta(\varepsilon)}{2} and

12I+T2ξ+12I+TS2ξ12ξ+12I+S2ξ+12S(TI)2ξ\displaystyle\frac{1}{2}\left\|\frac{I+T}{2}\xi\right\|+\frac{1}{2}\left\|\frac{I+TS}{2}\xi\right\|\leq\frac{1}{2}\|\xi\|+\frac{1}{2}\left\|\frac{I+S}{2}\xi\right\|+\frac{1}{2}\left\|\frac{S(T-I)}{2}\xi\right\|\leq
12ξ+12(1δ(ε))ξ+14δ(ε)ξ=(114δ(ε))ξ.\displaystyle\frac{1}{2}\|\xi\|+\frac{1}{2}(1-\delta(\varepsilon))\|\xi\|+\frac{1}{4}\delta(\varepsilon)\|\xi\|=\left(1-\frac{1}{4}\delta(\varepsilon)\right)\|\xi\|.

We will be interested in classes of uniformly convex Banach spaces defined as follows: Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a monotone increasing function. Denote us(δ0)\mathcal{E}_{us}(\delta_{0}) to be the class of all uniformly convex Banach spaces 𝔼\operatorname{\mathbb{E}} with such that the modulus of convexity of 𝔼\operatorname{\mathbb{E}} is bounded by δ0\delta_{0}, i.e., for a uniformly convex Banach space 𝔼\operatorname{\mathbb{E}} with a modulus of convexity δ:(0,2](0,1]\delta:(0,2]\rightarrow(0,1] it holds that 𝔼uc(δ0)\operatorname{\mathbb{E}}\in\mathcal{E}_{uc}(\delta_{0}) if and only if for every 0<ε20<\varepsilon\leq 2 it holds that δ(ε)δ0(ε)\delta(\varepsilon)\geq\delta_{0}(\varepsilon). For these classes of Banach space, we state the following immediate corollary of Proposition 2.1:

Corollary 2.2.

Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a function and 0<ε20<\varepsilon\leq 2 be a constant. There is r0=r0(δ0,ε)r_{0}=r_{0}(\delta_{0},\varepsilon), 0r0<10\leq r_{0}<1 such that for every 𝔼uc(δ0)\operatorname{\mathbb{E}}\in\mathcal{E}_{uc}(\delta_{0}) and every two commuting operators S,TO(𝔼)S,T\in O(\operatorname{\mathbb{E}}) it holds for every ξ𝔼\xi\in\operatorname{\mathbb{E}} that if (IS)ξεξ\|(I-S)\xi\|\geq\varepsilon\|\xi\|, then

12I+T2ξ+12I+TS2ξr0ξ.\frac{1}{2}\left\|\frac{I+T}{2}\xi\right\|+\frac{1}{2}\left\|\frac{I+TS}{2}\xi\right\|\leq r_{0}\|\xi\|.

We will need the following theorems:

Theorem 2.3.

[Day41, Theorem 3] Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a function and {𝔼n}nuc(δ0)\{\operatorname{\mathbb{E}}_{n}\}_{n\in\mathbb{N}}\subseteq\mathcal{E}_{uc}(\delta_{0}) a sequence. Then the 2\ell^{2}-sum n𝔼n\bigoplus_{n}\operatorname{\mathbb{E}}_{n} is a uniformly convex Banach space.

Theorem 2.4.

[LT79, Theorem 1.e.9] Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a function. There is a function δ0:(0,2](0,1]\delta_{0}^{\prime}:(0,2]\rightarrow(0,1] that for every finite measure space (X,μ)(X,\mu) and every 𝔼uc(δ0)\operatorname{\mathbb{E}}\in\mathcal{E}_{uc}(\delta_{0}) it holds that L2(X,μ;𝔼)uc(δ0)L^{2}(X,\mu;\operatorname{\mathbb{E}})\in\mathcal{E}_{uc}(\delta_{0}^{\prime}).

Remark 2.5.

In the above theorem, we implicitly use the fact that L2(X,μ;𝔼)L^{2}(X,\mu;\operatorname{\mathbb{E}}^{*}) is isometrically isomorphic to (L2(X,μ;𝔼))(L^{2}(X,\mu;\operatorname{\mathbb{E}}))^{*}. This follows from [DU77, Section IV.1, Theorem 1] combined with the fact that reflexive Banach spaces (and in particular uniformly convex Banach spaces) have the Radon-Nikodým property (see [DU77, Section III.2, Corollary 13]).

2.2. Linear Representation of groups on Banach spaces

Given a topological group GG and a Banach space 𝔼\operatorname{\mathbb{E}}, a linear representation of GG on 𝔼\operatorname{\mathbb{E}} is a continuous homomorphism π:GGL(𝔼)\pi:G\rightarrow\operatorname{GL}(\operatorname{\mathbb{E}}), where GL(𝔼)\operatorname{GL}(\operatorname{\mathbb{E}}) denotes the group of all invertible linear transformations of 𝔼\operatorname{\mathbb{E}} with the strong operator topology. Throughout this paper, π\pi will denote a continuous representation.

For a given linear representation of GG on 𝔼\operatorname{\mathbb{E}}, the contragredient representation is the map π:GGL(𝔼)\pi^{*}:G\rightarrow\operatorname{GL}(\operatorname{\mathbb{E}}^{*}) defined as

gG,ξ𝔼,η𝔼,π(g)ξ,η=ξ,π(g1)η.\forall g\in G,\forall\xi\in\operatorname{\mathbb{E}},\eta\in\operatorname{\mathbb{E}}^{*},\langle\pi(g)\xi,\eta\rangle=\langle\xi,\pi^{*}(g^{-1})\eta\rangle.

We note that if π\pi is an isometric representation, then π\pi^{*} is also isometric, but in general π\pi^{*} need not be continuous. However, for every reflexive (and hence super-reflexive) Banach space 𝔼\operatorname{\mathbb{E}}, if π\pi is continuous, then so is π\pi^{*}.

Below, we will need the following result from [BFGM07]:

Proposition 2.6.

[BFGM07, Proposition 2.6] Let 𝔼\operatorname{\mathbb{E}} be a super-reflexive Banach space, GG be a topological group and π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) be a continuous linear isometric representation. Denote 𝔼(π)\operatorname{\mathbb{E}}^{\prime}(\pi) to be the annihilator of (𝔼)π(G)(\operatorname{\mathbb{E}}^{*})^{\pi^{*}(G)} in 𝔼\operatorname{\mathbb{E}}, i.e.,

𝔼(π)={ξ𝔼:η(𝔼)π(G),ξ,η=0}.\operatorname{\mathbb{E}}^{\prime}(\pi)=\{\xi\in\operatorname{\mathbb{E}}:\forall\eta\in(\operatorname{\mathbb{E}}^{*})^{\pi^{*}(G)},\langle\xi,\eta\rangle=0\}.

Then 𝔼=𝔼π(G)𝔼(π)\operatorname{\mathbb{E}}=\operatorname{\mathbb{E}}^{\pi(G)}\oplus\operatorname{\mathbb{E}}^{\prime}(\pi).

2.3. Steinberg relations in SL3()\operatorname{SL}_{3}(\mathbb{Z})

For 1i,j3,ij1\leq i,j\leq 3,i\neq j and mm\in\mathbb{Z}, denote ei,j(m)e_{i,j}(m) to be the elementary matrix with 11’s along the main diagonal, mm in the (i,j)(i,j)-entry and 0 in all other entries. Using the convention [a,b]=a1b1ab[a,b]=a^{-1}b^{-1}ab, the group SL3()\operatorname{SL}_{3}(\mathbb{Z}) has the following relations that are called the Steinberg relations:

  1. (1)

    For every 1i,j3,ij1\leq i,j\leq 3,i\neq j and every m1,m2m_{1},m_{2}\in\mathbb{Z},

    ei,j(m1)ei,j(m2)=ei,j(m1+m2).e_{i,j}(m_{1})e_{i,j}(m_{2})=e_{i,j}(m_{1}+m_{2}).
  2. (2)

    For every 1i,j,k3,{i,j,k}={1,2,3}1\leq i,j,k\leq 3,\{i,j,k\}=\{1,2,3\} and every m1,m2m_{1},m_{2}\in\mathbb{Z},

    [ei,j(m1),ej,k(m2)]=ei,k(m1m2).[e_{i,j}(m_{1}),e_{j,k}(m_{2})]=e_{i,k}(m_{1}m_{2}).
  3. (3)

    For every 1i,j,k3,{i,j,k}={1,2,3}1\leq i,j,k\leq 3,\{i,j,k\}=\{1,2,3\} and every m1,m2m_{1},m_{2}\in\mathbb{Z},

    [ei,j(m1),ei,k(m2)]=[ej,i(m1),ek,i(m2)]=I.[e_{i,j}(m_{1}),e_{i,k}(m_{2})]=[e_{j,i}(m_{1}),e_{k,i}(m_{2})]=I.

The group SL3()\operatorname{SL}_{3}(\mathbb{Z}) has other relations that do not stem from the Steinberg relations. Forgetting the other relations of SL3()\operatorname{SL}_{3}(\mathbb{Z}) yields the Steinberg group St3()\operatorname{St}_{3}(\mathbb{Z}). Explicitly, the Steinberg group St3()\operatorname{St}_{3}(\mathbb{Z}) is the group generated by the set S={xi,j:1i,j3,ij}S=\{x_{i,j}:1\leq i,j\leq 3,i\neq j\} with the following relations: For every mm\in\mathbb{Z}, denote xi,j(m)=xi,jmx_{i,j}(m)=x_{i,j}^{m}. With this notation, the relations defining St3()\operatorname{St}_{3}(\mathbb{Z}) are:

  1. (1)

    For every 1i,j3,ij1\leq i,j\leq 3,i\neq j and every m1,m2m_{1},m_{2}\in\mathbb{Z},

    xi,j(m1)xi,j(m2)=xi,j(m1+m2).x_{i,j}(m_{1})x_{i,j}(m_{2})=x_{i,j}(m_{1}+m_{2}).
  2. (2)

    For every 1i,j,k3,{i,j,k}={1,2,3}1\leq i,j,k\leq 3,\{i,j,k\}=\{1,2,3\} and every m1,m2m_{1},m_{2}\in\mathbb{Z},

    [xi,j(m1),xj,k(m2)]=xi,k(m1m2).[x_{i,j}(m_{1}),x_{j,k}(m_{2})]=x_{i,k}(m_{1}m_{2}).
  3. (3)

    For every 1i,j,k3,{i,j,k}={1,2,3}1\leq i,j,k\leq 3,\{i,j,k\}=\{1,2,3\} and every m1,m2m_{1},m_{2}\in\mathbb{Z},

    [xi,j(m1),xi,k(m2)]=[xj,i(m1),xk,i(m2)]=I.[x_{i,j}(m_{1}),x_{i,k}(m_{2})]=[x_{j,i}(m_{1}),x_{k,i}(m_{2})]=I.

2.4. The Heisenberg group H3()\rm H_{3}(\mathbb{Z})

The Heisenberg group H3()\rm H_{3}(\mathbb{Z}) is the group

H3()=x,y,z|[x,y]=z,[x,z]=e,[y,z]=e.\rm H_{3}(\mathbb{Z})=\langle\left.x,y,z\right|[x,y]=z,[x,z]=e,[y,z]=e\rangle.

Below, we will use the following relations for the Heisenberg group that are not hard verify: for every k,mk,m\in\mathbb{Z} it holds that ykxmyk=xmzkmy^{-k}x^{m}y^{k}=x^{m}z^{km} and xkymxk=ymzkmx^{-k}y^{m}x^{k}=y^{m}z^{-km}.

In the sequel, we will use the fact that SL3()\operatorname{SL}_{3}(\mathbb{Z}) (and St3()\operatorname{St}_{3}(\mathbb{Z})) contain several copies of H3()\rm H_{3}(\mathbb{Z}). Explicitly, for every {i,j,k}={1,2,3}\{i,j,k\}=\{1,2,3\}, if denote x~=ei,j(1),y~=ej,k(1),z~=ei,k(1)SL3()\tilde{x}=e_{i,j}(1),\tilde{y}=e_{j,k}(1),\tilde{z}=e_{i,k}(1)\in\operatorname{SL}_{3}(\mathbb{Z}), then x~,y~,z~<SL3()\langle\tilde{x},\tilde{y},\tilde{z}\rangle<\operatorname{SL}_{3}(\mathbb{Z}) is isomorphic to H3()\rm H_{3}(\mathbb{Z}) (by the Steinberg relations) via the isomorphism xx~,yy~,zz~x\mapsto\tilde{x},y\mapsto\tilde{y},z\mapsto\tilde{z}.

3. Banach property (T)

3.1. Banach property (T)(T) for super-reflexive Banach spaces

Bader, Furman, Gelander and Monod [BFGM07] gave an equivalent version to Banach property (T) for super-reflexive spaces that is more convenient to work with than their general definition. In [BFGM07], it is shown that if 𝔼\operatorname{\mathbb{E}} is a super-reflexive Banach space and π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) is a linear isometric representation, then one can pass to a compatible norm on 𝔼\operatorname{\mathbb{E}} in which 𝔼\operatorname{\mathbb{E}} is uniformly convex and π\pi remains a linear isometric representation with respect to this new norm. It follows that for a given topological group GG the following are equivalent:

  • The group GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}.

  • The group GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}.

Thus, below we will focus on property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for uniformly convex Banach spaces 𝔼\operatorname{\mathbb{E}} and the general result for super-reflexive Banach spaces will follow.

For uniformly convex Banach spaces, [BFGM07] gave the following equivalent definition for property (T𝔼)(T_{\operatorname{\mathbb{E}}}):

Definition 3.1.

[BFGM07, Remark 2.11] Let 𝔼\operatorname{\mathbb{E}} be uniformly convex space and GG be a topological group. Denote 𝔼(π)\operatorname{\mathbb{E}}^{\prime}(\pi) to be the annihilator of (𝔼)π(G)(\operatorname{\mathbb{E}}^{*})^{\pi^{*}(G)} in 𝔼\operatorname{\mathbb{E}}, i.e.,

𝔼(π)={ξ𝔼:η(𝔼)π(G),ξ,η=0}.\operatorname{\mathbb{E}}^{\prime}(\pi)=\{\xi\in\operatorname{\mathbb{E}}:\forall\eta\in(\operatorname{\mathbb{E}}^{*})^{\pi^{*}(G)},\langle\xi,\eta\rangle=0\}.

The group GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) if for every continuous linear isometric representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}), the restricted representation π:GO(𝔼(π))\pi^{\prime}:G\rightarrow O(\operatorname{\mathbb{E}}^{\prime}(\pi)) does not have almost invariant vectors, i.e., there is a Kazhdan pair (K,ε)(K,\varepsilon) (that depends on π\pi) where KGK\subseteq G is compact and ε>0\varepsilon>0 such that for every vector ξ𝔼(π)\xi\in\operatorname{\mathbb{E}}^{\prime}(\pi) it holds that

supgKπ(g)ξξεξ.\sup_{g\in K}\|\pi^{\prime}(g)\xi-\xi\|\geq\varepsilon\|\xi\|.
Observation 3.2.

Let GG be a topological group. By the above definition the following are equivalent:

  1. (1)

    The group GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}.

  2. (2)

    For every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}} and every isometric representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) with 𝔼π(G)={0}\operatorname{\mathbb{E}}^{\pi(G)}=\{0\}, there is a compact set KGK\subseteq G and a constant ε>0\varepsilon>0 such that for every unit vector ξ𝔼\xi\in\operatorname{\mathbb{E}},

    supgKπ(g)ξξεξ.\sup_{g\in K}\|\pi(g)\xi-\xi\|\geq\varepsilon\|\xi\|.

3.2. Relative Banach property (T)

Here we introduce a variation of relative Banach property (T) called relative Banach property (Tproj)(T^{\operatorname{proj}}) that can be seen as a generalization of the definition of Banach property (Tproj)(T^{\operatorname{proj}}) given in [dLdlS18]. We will show that relative Banach property (Tproj)(T^{\operatorname{proj}}) is a-priori stronger than the definition of relative Banach property (T) given in the introduction (we do not know if the two definitions do in fact coincide - see Remark 3.5 below). In order to define relative Banach property (Tproj)(T^{\operatorname{proj}}), we will need to first introduce some notation and terminology.

Let GG be a locally compact group with Haar measure μ\mu. We denote Cc(G)C_{c}(G) to be the compactly supported continuous functions f:Gf:G\rightarrow\mathbb{C} with the convolution product. We further denote Probc(G)Cc(G)\operatorname{Prob}_{c}(G)\subseteq C_{c}(G) to be functions f:G[0,)f:G\rightarrow[0,\infty) such that Gf(g)𝑑μ(g)=1\int_{G}f(g)d\mu(g)=1. Given a continuous representation π:GGL(𝔼)\pi:G\rightarrow\operatorname{GL}(\operatorname{\mathbb{E}}) where 𝔼\operatorname{\mathbb{E}} is a Banach space, we define for every fCc(G)f\in C_{c}(G) an operator π(f)\pi(f) via the Bochner integral

π(f)ξ=Gf(g)π(g)ξ𝑑μ(g),ξ𝔼.\pi(f)\xi=\int_{G}f(g)\pi(g)\xi d\mu(g),\forall\xi\in\operatorname{\mathbb{E}}.

For a class of Banach spaces \mathcal{E}, we denote 𝒰(G,)\mathcal{U}(G,\mathcal{E}) to be the class of all continuous isometric linear representations (π,𝔼)(\pi,\operatorname{\mathbb{E}}) where 𝔼\operatorname{\mathbb{E}}\in\mathcal{E}. When GG is obvious from the context, we will denote 𝒰()=𝒰(G,)\mathcal{U}(\mathcal{E})=\mathcal{U}(G,\mathcal{E}). We define a norm .𝒰(G,)\|.\|_{\mathcal{U}(G,\mathcal{E})} on Cc(G)C_{c}(G) by

f𝒰(G,)=supπ𝒰(G,)π(f),\|f\|_{\mathcal{U}(G,\mathcal{E})}=\sup_{\pi\in\mathcal{U}(G,\mathcal{E})}\|\pi(f)\|,

and denote C𝒰(G,)(G)C_{\mathcal{U}(G,\mathcal{E})}(G) to be the completion of Cc(G)C_{c}(G) with respect to this norm. We note that for every fC𝒰(G,)(G)f\in C_{\mathcal{U}(G,\mathcal{E})}(G) and every π𝒰(G,)\pi\in\mathcal{U}(G,\mathcal{E}), the operator π(f)B(𝔼)\pi(f)\in B(\operatorname{\mathbb{E}}) is well-defined as a limit of operators π(fn)\pi(f_{n}) with fnCc(G)f_{n}\in C_{c}(G).

Definition 3.3.

Let GG be a locally compact group with a subgroup H<GH<G. We will say that (G,H)(G,H) has relative property (Tproj)(T_{\mathcal{E}}^{\operatorname{proj}}) if there is a sequence hnProbc(G)h_{n}\in\operatorname{Prob}_{c}(G) that converges to fC𝒰(G,)(G)f\in C_{\mathcal{U}(G,\mathcal{E})}(G) (with respect to the norm .𝒰(G,)\|.\|_{\mathcal{U}(G,\mathcal{E})}) such that for every (π,𝔼)𝒰(G,)(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(G,\mathcal{E}), Im(π(f))𝔼π(H)\operatorname{Im}(\pi(f))\subseteq\operatorname{\mathbb{E}}^{\pi(H)}.

We show that relative property (Tproj)(T^{\operatorname{proj}}_{\mathcal{E}}) imply relative property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every 𝔼\operatorname{\mathbb{E}}\in\mathcal{E} as defined above (see Definition 1.9):

Proposition 3.4.

Let GG be a locally compact group, H<GH<G a subgroup and \mathcal{E} a class of Banach spaces. Assume that (G,H)(G,H) has relative property (Tproj)(T^{\operatorname{proj}}_{\mathcal{E}}). Then for every 𝔼\operatorname{\mathbb{E}}\in\mathcal{E}, the pair (G,H)(G,H) has relative property (T𝔼)(T_{\operatorname{\mathbb{E}}}).

Proof.

We need to show that for every γ>0\gamma>0, there are KGK\subseteq G compact and ε>0\varepsilon>0, such that for every (π,𝔼)𝒰()(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}) and every unit vector ξ𝔼\xi\in\operatorname{\mathbb{E}}, if supgKπ(g)ξξ<ε\sup_{g\in K}\|\pi(g)\xi-\xi\|<\varepsilon, then there is η𝔼π(H)\eta\in\operatorname{\mathbb{E}}^{\pi(H)} such that ξη<γ\|\xi-\eta\|<\gamma.

Let γ>0\gamma>0 arbitrary. By the assumption that (G,H)(G,H) has relative property (Tproj)(T^{\operatorname{proj}}_{\mathcal{E}}) it follows that there is a sequence hnProbc(G)h_{n}\in\operatorname{Prob}_{c}(G) that converges to fC𝒰()(G)f\in C_{\mathcal{U}(\mathcal{E})}(G) such that for every (π,𝔼)𝒰()(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}), Im(π(f))𝔼π(H)\operatorname{Im}(\pi(f))\subseteq\operatorname{\mathbb{E}}^{\pi(H)}.

For fC𝒰()(G)f\in C_{\mathcal{U}(\mathcal{E})}(G) as above, there is hProbc(G)h\in\operatorname{Prob}_{c}(G) such that fh𝒰()<γ2\|f-h\|_{\mathcal{U}(\mathcal{E})}<\frac{\gamma}{2}. We take KK to be a compact set such that supp(h)K\operatorname{supp}(h)\subseteq K and ε=γ2\varepsilon=\frac{\gamma}{2} and show that this choice of K,εK,\varepsilon fulfils the needed condition.

Indeed, for every (π,𝔼)𝒰()(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}) and every unit vector ξ𝔼\xi\in\operatorname{\mathbb{E}}, if supgKπ(g)ξξ<ε=γ2\sup_{g\in K}\|\pi(g)\xi-\xi\|<\varepsilon=\frac{\gamma}{2}, then for η=π(f)ξ𝔼π(H)\eta=\pi(f)\xi\in\operatorname{\mathbb{E}}^{\pi(H)} it holds that

ξηξπ(h)ξ+π(h)ξη<Gh(g)(ξπ(g)ξ)𝑑μ(g)+γ2Gh(g)ξπ(g)ξ𝑑μ(g)+γ2maxgsupp(h)ξπ(g)ξ+γ2γ\|\xi-\eta\|\leq\|\xi-\pi(h)\xi\|+\|\pi(h)\xi-\eta\|<\left\|\int_{G}h(g)(\xi-\pi(g)\xi)d\mu(g)\right\|+\frac{\gamma}{2}\leq\\ {\int_{G}h(g)\left\|\xi-\pi(g)\xi\right\|d\mu(g)}+\frac{\gamma}{2}\leq\max_{g\in\operatorname{supp}(h)}\left\|\xi-\pi(g)\xi\right\|+\frac{\gamma}{2}\leq\gamma

as needed. ∎

Remark 3.5.

We do not know if the opposite direction of the above proposition is also true, i.e., if relative property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every 𝔼\operatorname{\mathbb{E}}\in\mathcal{E} implies property (Tproj)(T^{\operatorname{proj}}_{\mathcal{E}}). The problem is that even in the classical setting of Hilbert spaces there is not natural candidate for the sequence hnProbc(G)h_{n}\in\operatorname{Prob}_{c}(G). To illustrate this, we consider what should be a simple situation: Let GG be a finitely generating group with a finite generating set SS and NGN\triangleleft G a normal subgroup and \mathcal{H} be the class of all Hilbert spaces.

We recall that from that fact that NN is a normal subgroup it follows for every unitary (π,)(\pi,\mathbb{H}) of GG on a Hilbert space \mathbb{H} the subspaces π(N),(π(N))\mathbb{H}^{\pi(N)},(\mathbb{H}^{\pi(N)})^{\perp} are GG-invariant subspaces with respect to the GG action. In this setting, relative property (T)(T) for (G,N)(G,N) can be described by the following formulation in [Jol05, Theorem 1.2 (b2)]: There is ε0>0\varepsilon_{0}>0 such that for every α>0\alpha>0, every unitary representation (π,)(\pi,\mathbb{H}) of GG on a Hilbert space \mathbb{H} and every unit vector ξ\xi\in\mathbb{H}, if

maxsSπ(s)ξξαε0\max_{s\in S}\|\pi(s)\xi-\xi\|\leq\alpha\varepsilon_{0}

then ξPπ(N)ξα\|\xi-P_{\mathbb{H}^{\pi(N)}}\xi\|\leq\alpha where Pπ(N)P_{\mathbb{H}^{\pi(N)}} is the orthogonal projection on π(N)\mathbb{H}^{\pi(N)}.

Our naive guess for hnProbc(G)h_{n}\in\operatorname{Prob}_{c}(G) is the sequence

hn=(12I+12|S|sSs)n,h_{n}=\left(\frac{1}{2}I+\frac{1}{2|S|}\sum_{s\in S}s\right)^{n},

(which is the sequence that converges to a Kazhdan projection when N=GN=G). For every unitary representation (π,)(\pi,\mathbb{H}), π|(π(N))(hn)\left.\pi\right|_{(\mathbb{H}^{\pi(N)})^{\perp}}(h_{n}) indeed converges to 0 and the rate of convergence can be bounded independently of π\pi. However, we see no reason that π|π(N)(hn)\left.\pi\right|_{\mathbb{H}^{\pi(N)}}(h_{n}) will converge when NGN\neq G and thus (as far as we can tell) this naive attempt fails.

3.3. Hereditary properties of property (T𝔼)(T_{\operatorname{\mathbb{E}}})

Lafforgue showed that property (T𝔼)(T_{\operatorname{\mathbb{E}}}) is inherited by lattices via an induction of representation:

Proposition 3.6.

[Laf08, Proposition 4.5], [Laf09, Proposition 5.3] Let GG be a locally compact group, Γ<G\Gamma<G a lattice and \mathcal{E} a class of Banach spaces. Also let \mathcal{E}^{\prime} be a class of Banach spaces such that for every 𝔼\operatorname{\mathbb{E}}\in\mathcal{E} and every finite measure space (X,μ)(X,\mu) it holds that L2(X,μ;𝔼)L^{2}(X,\mu;\operatorname{\mathbb{E}})\in\mathcal{E}^{\prime}. If GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}^{\prime}}) for every 𝔼\operatorname{\mathbb{E}}^{\prime}\in\mathcal{E}^{\prime} , then Γ\Gamma has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every 𝔼\operatorname{\mathbb{E}}\in\mathcal{E}.

Remark 3.7.

The above formulation differs from the formulation in [Laf08, Laf09] since we do not assume that \mathcal{E} is closed under passing to L2L^{2}-sums.

Corollary 3.8.

Let GG be a locally compact group and Γ<G\Gamma<G a lattice. If GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}, then Γ\Gamma has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}.

Proof.

This follows immediately from Proposition 3.6 and Theorem 2.4. ∎

4. Bounded generation and Banach property (T)

In this section, we adapt a bounded generation argument of Shalom [Sha99] to our setting and show that, in our setting, relative Banach property (T) and bounded generation imply Banach property (T).

Definition 4.1.

Let GG be a group with subgroups H1,,HkH_{1},...,H_{k}. We say that H1,,HkH_{1},...,H_{k} boundedly generate GG if there is a number ν=ν(H1,,Hk)\nu=\nu(H_{1},...,H_{k})\in\mathbb{N} such that every element gGg\in G can be written by at most ν\nu elements of H1HkH_{1}\cup...\cup H_{k}.

Lemma 4.2.

Let GG be a group with subgroups H1,,HkH_{1},...,H_{k} that boundedly generate GG and denote ν=ν(H1,,Hk)\nu=\nu(H_{1},...,H_{k}) as above. Also, let π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) be a continuous linear isometric representation. Assume that there are η1,,ηk𝔼\eta_{1},...,\eta_{k}\in\operatorname{\mathbb{E}} such that for every 1ik1\leq i\leq k, ηi𝔼π(Hi)\eta_{i}\in\operatorname{\mathbb{E}}^{\pi(H_{i})}. Then for every ξ𝔼\xi\in\operatorname{\mathbb{E}} and every gGg\in G,

π(g)ξξ2νmax1ikξηi.\|\pi(g)\xi-\xi\|\leq 2\nu\max_{1\leq i\leq k}\|\xi-\eta_{i}\|.
Proof.

Let gGg\in G such that g=g1gjg=g_{1}...g_{j} with g1,,gji=1kHig_{1},...,g_{j}\in\bigcup_{i=1}^{k}H_{i}. We will prove by induction that for every ξ𝔼\xi\in\operatorname{\mathbb{E}},

(1) π(g)ξξ2jmax1ikξηi.\|\pi(g)\xi-\xi\|\leq 2j\max_{1\leq i\leq k}\|\xi-\eta_{i}\|.

For j=1j=1, there is 1i0k1\leq i_{0}\leq k such that gHi0g\in H_{i_{0}}. Then

π(g)ξξ=π(g)ξπ(g)ηi0+ηi0ξπ(g)(ξηi0)+ηi0ξ=\displaystyle\|\pi(g)\xi-\xi\|=\|\pi(g)\xi-\pi(g)\eta_{i_{0}}+\eta_{i_{0}}-\xi\|\leq\|\pi(g)(\xi-\eta_{i_{0}})\|+\|\eta_{i_{0}}-\xi\|=
2ξηi02max1ikξηi.\displaystyle 2\|\xi-\eta_{i_{0}}\|\leq 2\max_{1\leq i\leq k}\|\xi-\eta_{i}\|.

Assume (1) holds for jj and let g=g1gj+1g=g_{1}...g_{j+1} with g1,,gj+1i=1kHig_{1},...,g_{j+1}\in\bigcup_{i=1}^{k}H_{i}. Then for every ξ𝔼\xi\in\operatorname{\mathbb{E}},

π(g)ξξ=π(g1gjgj+1)ξπ(g1gj)ξ+π(g1gj)ξξ\displaystyle\|\pi(g)\xi-\xi\|=\|\pi(g_{1}...g_{j}g_{j+1})\xi-\pi(g_{1}...g_{j})\xi+\pi(g_{1}...g_{j})\xi-\xi\|\leq
π(g1gj)(π(gj+1)ξξ)+π(g1gj)ξξ=\displaystyle\|\pi(g_{1}...g_{j})(\pi(g_{j+1})\xi-\xi)\|+\|\pi(g_{1}...g_{j})\xi-\xi\|=
(π(gj+1)ξξ)+π(g1gj)ξξThe induction assumption\displaystyle\|(\pi(g_{j+1})\xi-\xi)\|+\|\pi(g_{1}...g_{j})\xi-\xi\|\leq^{\text{The induction assumption}}
2max1ikξηi+2jmax1ikξηi=2(j+1)max1ikξηi.\displaystyle 2\max_{1\leq i\leq k}\|\xi-\eta_{i}\|+2j\max_{1\leq i\leq k}\|\xi-\eta_{i}\|=2(j+1)\max_{1\leq i\leq k}\|\xi-\eta_{i}\|.

By the assumption of bounded generation, every gGg\in G can be written as g=g1gνg=g_{1}...g_{\nu} with g1,,gνi=1kHig_{1},...,g_{\nu}\in\bigcup_{i=1}^{k}H_{i} and thus it follows that for every gGg\in G and every ξ𝔼\xi\in\operatorname{\mathbb{E}},

π(g)ξξ2νmax1ikξηi,\|\pi(g)\xi-\xi\|\leq 2\nu\max_{1\leq i\leq k}\|\xi-\eta_{i}\|,

as needed. ∎

Theorem 4.3.

Let GG be a locally compact group and H1,,Hk<GH_{1},...,H_{k}<G subgroups that boundedly generate GG. If the pairs (G,H1),,(G,Hk)(G,H_{1}),...,(G,H_{k}) has relative property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}, then GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}.

Proof.

By Observation 3.2, we need to show that for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}} and every π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) with 𝔼π(G)={0}\operatorname{\mathbb{E}}^{\pi(G)}=\{0\} there is a compact set KGK\subseteq G and ε>0\varepsilon>0 such that for every unit vector ξ𝔼\xi\in\operatorname{\mathbb{E}},

supgKπ(g)ξξε.\sup_{g\in K}\|\pi(g)\xi-\xi\|\geq\varepsilon.

Denote ν=ν(H1,,Hk)\nu=\nu(H_{1},...,H_{k})\in\mathbb{N} as in the definition above. By assumption, there are compact sets K1,,KkK_{1},...,K_{k} and constants ε1,,εk>0\varepsilon_{1},...,\varepsilon_{k}>0 such that for every i=1,,ki=1,...,k and every unit vector ξ𝔼\xi\in\operatorname{\mathbb{E}} if

supgKiπ(g)ξξ<εi,\sup_{g\in K_{i}}\|\pi(g)\xi-\xi\|<\varepsilon_{i},

then there is ηi𝔼π(Hi)\eta_{i}\in\operatorname{\mathbb{E}}^{\pi(H_{i})} such that

ξηi14(ν+1).\|\xi-\eta_{i}\|\leq\frac{1}{4(\nu+1)}.

Denote K=i=1kKiK=\bigcup_{i=1}^{k}K_{i} and ε=min{ε1,,εk}\varepsilon=\min\{\varepsilon_{1},...,\varepsilon_{k}\}. We will show that for this choice of K,εK,\varepsilon it holds for every unit vector ξ𝔼\xi\in\operatorname{\mathbb{E}} that

supgKπ(g)ξξε.\sup_{g\in K}\|\pi(g)\xi-\xi\|\geq\varepsilon.

Assume towards contradiction that there is a unit vector ξ𝔼\xi\in\operatorname{\mathbb{E}} such that

supgKπ(g)ξξ<ε.\sup_{g\in K}\|\pi(g)\xi-\xi\|<\varepsilon.

Thus, for every i=1,,ki=1,...,k there is ηi𝔼π(Hi)\eta_{i}\in\operatorname{\mathbb{E}}^{\pi(H_{i})} such that ξηi<14(ν+1)\|\xi-\eta_{i}\|<\frac{1}{4(\nu+1)}. Applying Lemma 4.2, it follows that for every gGg\in G,

π(g)ξξν2(ν+1)12.\|\pi(g)\xi-\xi\|\leq\frac{\nu}{2(\nu+1)}\leq\frac{1}{2}.

Thus the orbit of ξ\xi in 𝔼\operatorname{\mathbb{E}} under the action of GG is contained in a closed ball of radius 12\frac{1}{2} around ξ\xi. Denote CC to be the closure of the convex hull of the orbit of ξ\xi. Recall that ξ\xi is a unit vector and thus 0C0\notin C. By uniform convexity there is a unique vector with a minimal norm in CC and thus this vector is fixed by the π\pi action of GG. It follows that C𝔼π(G)C\cap\operatorname{\mathbb{E}}^{\pi(G)}\neq\emptyset which contradicts the assumption that 𝔼π(G){0}\operatorname{\mathbb{E}}^{\pi(G)}\neq\{0\}. ∎

5. Averaging operations on H3()\rm H_{3}(\mathbb{Z})

In this section, we will prove norm bounds on averaging operations on the Heisenberg group that are needed in our proof of relative Banach property (T) stated in the introduction.

For every k{0}k\in\mathbb{N}\cup\{0\}, we define Xk,Yk,ZkProbc(H3())X_{k},Y_{k},Z_{k}\in\operatorname{Prob}_{c}(\rm H_{3}(\mathbb{Z})) by

Xk=e+x2k2,Yk=e+y2k2,Zk=e+z2k2.X_{k}=\frac{e+x^{2^{k}}}{2},Y_{k}=\frac{e+y^{2^{k}}}{2},Z_{k}=\frac{e+z^{2^{k}}}{2}.

Also, for dd\in\mathbb{N}, we define

Xd=12da=02d1xa,Yd=12db=02d1yb,Zd=12dc=02d1zc.X^{d}=\frac{1}{2^{d}}\sum_{a=0}^{2^{d}-1}x^{a},Y^{d}=\frac{1}{2^{d}}\sum_{b=0}^{2^{d}-1}y^{b},Z^{d}=\frac{1}{2^{d}}\sum_{c=0}^{2^{d}-1}z^{c}.
Observation 5.1.

For every dd\in\mathbb{N} it holds that

Xd=a=0d1Xa,Yd=b=0d1Yb,Zd=c=0d1Zc.X^{d}=\prod_{a=0}^{d-1}X_{a},Y^{d}=\prod_{b=0}^{d-1}Y_{b},Z^{d}=\prod_{c=0}^{d-1}Z_{c}.
Theorem 5.2.

Let dd\in\mathbb{N} be a constant and A,B{0,,d1}A,B\subseteq\{0,...,d-1\} be sets such that (maxA)(maxB)d2(\max A)(\max B)\leq d-2, then for every Banach space 𝔼\operatorname{\mathbb{E}} and every isometric linear representation π:H3()O(𝔼)\pi:H_{3}(\mathbb{Z})\rightarrow O(\operatorname{\mathbb{E}}) it holds that

π(((aAXa)(bBYb)(bBYb)(aAXa))Zd)8(12)dmaxAmaxB.\left\|\pi\left(\left(\left(\prod_{a\in A}X_{a}\right)\left(\prod_{b\in B}Y_{b}\right)-\left(\prod_{b\in B}Y_{b}\right)\left(\prod_{a\in A}X_{a}\right)\right)Z^{d}\right)\right\|\leq 8\left(\frac{1}{2}\right)^{d-\max A-\max B}.

In particular, for d1,d2,d3{0}d_{1},d_{2},d_{3}\in\mathbb{N}\cup\{0\}, if d1+d2d32d_{1}+d_{2}\leq d_{3}-2, then for any class of Banach spaces \mathcal{E} it holds that

(Xd1Yd2Yd2Xd1)Zd𝒰()8(12)d3(d1+d2).\left\|\left(X^{d_{1}}Y^{d_{2}}-Y^{d_{2}}X^{d_{1}}\right)Z^{d}\right\|_{\mathcal{U}(\mathcal{E})}\leq 8\left(\frac{1}{2}\right)^{d_{3}-(d_{1}+d_{2})}.
Proof.

We note that

(aAXa)(bBYb)(bBYb)(aAXa)=\displaystyle\left(\prod_{a\in A}X_{a}\right)\left(\prod_{b\in B}Y_{b}\right)-\left(\prod_{b\in B}Y_{b}\right)\left(\prod_{a\in A}X_{a}\right)=
12|A|+|B|f{0,1}A,h{0,1}BxkAf(k)2kylBh(l)2lylBh(l)2lxkAf(k)2k=\displaystyle\frac{1}{2^{|A|+|B|}}\sum_{f\in\{0,1\}^{A},h\in\{0,1\}^{B}}x^{\sum_{k\in A}f(k)2^{k}}y^{\sum_{l\in B}h(l)2^{l}}-y^{\sum_{l\in B}h(l)2^{l}}x^{\sum_{k\in A}f(k)2^{k}}=
12|A|+|B|f{0,1}A,h{0,1}BxkAf(k)2kylBh(l)2l(ez(kAf(k)2k)(lBh(l)2l)).\displaystyle\frac{1}{2^{|A|+|B|}}\sum_{f\in\{0,1\}^{A},h\in\{0,1\}^{B}}x^{\sum_{k\in A}f(k)2^{k}}y^{\sum_{l\in B}h(l)2^{l}}(e-z^{(\sum_{k\in A}f(k)2^{k})(\sum_{l\in B}h(l)2^{l})}).

Note that for every f{0,1}A,h{0,1}Bf\in\{0,1\}^{A},h\in\{0,1\}^{B} it holds that

(kAf(k)2k)(lBh(l)2l)2maxA+maxB+2.(\sum_{k\in A}f(k)2^{k})(\sum_{l\in B}h(l)2^{l})\leq 2^{\max A+\max B+2}.

Thus, it is enough to show that for every 1m2maxA+maxB+21\leq m\leq 2^{\max A+\max B+2} it holds that

π((ezm)Zd)2m2d(12)dmaxAmaxB3,\|\pi((e-z^{m})Z^{d})\|\leq\frac{2m}{2^{d}}\leq\left(\frac{1}{2}\right)^{d-\max A-\max B-3},

but this follows immediately from the fact that

(ezm)Zd=12d(k=0m1zkk=2d2d+m1zk).(e-z^{m})Z^{d}=\frac{1}{2^{d}}\left(\sum_{k=0}^{m-1}z^{k}-\sum_{k=2^{d}}^{2^{d}+m-1}z^{k}\right).

Lemma 5.3.

Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a function. There is a constant 0r0<10\leq r_{0}<1 such that for every (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})), every k,m{0}k,m\in\mathbb{N}\cup\{0\} and every ζ𝔼\zeta\in\operatorname{\mathbb{E}}, if π(ezm)ζ12ζ\|\pi(e-z^{m})\zeta\|\geq\frac{1}{2}\|\zeta\|, then

π(e+xzk2e+ym2)ζr0ζ.\left\|\pi\left(\frac{e+xz^{k}}{2}\frac{e+y^{m}}{2}\right)\zeta\right\|\leq r_{0}\|\zeta\|.
Proof.

We will show that the needed inequality holds for r0=r0(δ0,12)r_{0}=r_{0}(\delta_{0},\frac{1}{2}) where this is the constant of Corollary 2.2.

Fix (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})), k,m{0}k,m\in\mathbb{N}\cup\{0\} and ζ𝔼\zeta\in\operatorname{\mathbb{E}} such that π(ezm)ζ12ζ\|\pi(e-z^{m})\zeta\|\geq\frac{1}{2}\|\zeta\|.

We note that

e+xzk2e+ym2=12(e+xzk2)+12(ym+xymzk2)=\displaystyle\frac{e+xz^{k}}{2}\frac{e+y^{m}}{2}=\frac{1}{2}\left(\frac{e+xz^{k}}{2}\right)+\frac{1}{2}\left(\frac{y^{m}+xy^{m}z^{k}}{2}\right)=
12(e+xzk2)+ym2(e+ymxymzk2)=12(e+xzk2)+ym2(e+xzkzm2).\displaystyle\frac{1}{2}\left(\frac{e+xz^{k}}{2}\right)+\frac{y^{m}}{2}\left(\frac{e+y^{-m}xy^{m}z^{k}}{2}\right)=\frac{1}{2}\left(\frac{e+xz^{k}}{2}\right)+\frac{y^{m}}{2}\left(\frac{e+xz^{k}z^{m}}{2}\right).

Thus

π(e+xzk2e+ym2)ζ12π(e+xzk2)ζ+12π(ym)π(e+xzkzm2)ζπ(ym)=1\displaystyle\left\|\pi\left(\frac{e+xz^{k}}{2}\frac{e+y^{m}}{2}\right)\zeta\right\|\leq\frac{1}{2}\left\|\pi\left(\frac{e+xz^{k}}{2}\right)\zeta\right\|+\frac{1}{2}\left\|\pi(y^{m})\pi\left(\frac{e+xz^{k}z^{m}}{2}\right)\zeta\right\|\leq^{\|\pi(y^{m})\|=1}
12I+π(xzk)2ζ+12I+π(xzk)π(zm)2ζ.\displaystyle\frac{1}{2}\left\|\frac{I+\pi(xz^{k})}{2}\zeta\right\|+\frac{1}{2}\left\|\frac{I+\pi(xz^{k})\pi(z^{m})}{2}\zeta\right\|.

Denote T=π(xzk)T=\pi(xz^{k}) and S=π(zm)S=\pi(z^{m}). Note that T,SO(𝔼)T,S\in O(\operatorname{\mathbb{E}}) are commuting operators and that (IS)ζ12ζ\|(I-S)\zeta\|\geq\frac{1}{2}\|\zeta\|. Thus the conditions of Corollary 2.2 and it follows that

12I+π(xzk)2ζ+12I+π(xzk)π(zm)2ζ=12I+T2ζ+12I+TS2ζr0ζ,\frac{1}{2}\left\|\frac{I+\pi(xz^{k})}{2}\zeta\right\|+\frac{1}{2}\left\|\frac{I+\pi(xz^{k})\pi(z^{m})}{2}\zeta\right\|=\frac{1}{2}\left\|\frac{I+T}{2}\zeta\right\|+\frac{1}{2}\left\|\frac{I+TS}{2}\zeta\right\|\leq r_{0}\|\zeta\|,

as needed. ∎

Lemma 5.4.

Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a function. There is a constant 0r1<10\leq r_{1}<1 such that for every (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})), every n,mn,m\in\mathbb{N} such that 1m2n11\leq m\leq 2^{n-1} and every ζ𝔼\zeta\in\operatorname{\mathbb{E}}, if π(ezm)ζ12ζ\|\pi(e-z^{m})\zeta\|\geq\frac{1}{2}\|\zeta\|, then

π(X0Yn)ζr1ζ.\left\|\pi\left(X_{0}Y^{n}\right)\zeta\right\|\leq r_{1}\|\zeta\|.
Proof.

Fix (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})) and n,mn,m\in\mathbb{N} as above. Let 0r0<10\leq r_{0}<1 be the constant of Lemma 5.3. We will show that for r1=r0+12r_{1}=\frac{r_{0}+1}{2} the needed inequality holds.

Fix ζ𝔼\zeta\in\operatorname{\mathbb{E}} such that π(ezm)ζ12ζ\|\pi(e-z^{m})\zeta\|\geq\frac{1}{2}\|\zeta\|.

Denote t=2n2mt=\lfloor\frac{2^{n}}{2m}\rfloor and k=2n2mtk=2^{n}-2mt and note that t1,0kmin{2n1,2m1}t\geq 1,0\leq k\leq\min\{2^{n-1},2m-1\} and 2n=2mt+k2^{n}=2mt+k. It follows that

Yn=12nb=02n1yb=2mt2n(12mtb=02mt1yb)+k2n(1kb=2mt2n1yb).\displaystyle Y^{n}=\frac{1}{2^{n}}\sum_{b=0}^{2^{n}-1}y^{b}=\frac{2mt}{2^{n}}\left(\frac{1}{2mt}\sum_{b=0}^{2mt-1}y^{b}\right)+\frac{k}{2^{n}}\left(\frac{1}{k}\sum_{b=2mt}^{2^{n}-1}y^{b}\right).

We claim it is sufficient to prove that

(2) π(X0(12mtb=02mt1yb))ζr0ζ.\left\|\pi\left(X_{0}\left(\frac{1}{2mt}\sum_{b=0}^{2mt-1}y^{b}\right)\right)\zeta\right\|\leq r_{0}\|\zeta\|.

Indeed, note that

π(X0(1kb=2mt2n1yb))1\left\|\pi\left(X_{0}\left(\frac{1}{k}\sum_{b=2mt}^{2^{n}-1}y^{b}\right)\right)\right\|\leq 1

and thus if (2) holds, then

π(X0Yn)ζ2mt2nπ(X0(12mtb=02mt1yb))ζ+k2nπ(X0(1kb=2mt2n1yb))ζ\displaystyle\left\|\pi\left(X_{0}Y^{n}\right)\zeta\right\|\leq\frac{2mt}{2^{n}}\left\|\pi\left(X_{0}\left(\frac{1}{2mt}\sum_{b=0}^{2mt-1}y^{b}\right)\right)\zeta\right\|+\frac{k}{2^{n}}\left\|\pi\left(X_{0}\left(\frac{1}{k}\sum_{b=2mt}^{2^{n}-1}y^{b}\right)\right)\zeta\right\|\leq
(2mt2nr0+k2n)ζk2n1r0+12ζ,\displaystyle\left(\frac{2mt}{2^{n}}r_{0}+\frac{k}{2^{n}}\right)\|\zeta\|\leq^{k\leq 2^{n-1}}\frac{r_{0}+1}{2}\|\zeta\|,

as needed.

We will finish the proof by proving (2). We note that

12mtb=02mt1yb=(1mb1=0m1yb1)(1tb2=0t1y2mb2)(e+ym2).\displaystyle\frac{1}{2mt}\sum_{b=0}^{2mt-1}y^{b}=\left(\frac{1}{m}\sum_{b_{1}=0}^{m-1}y^{b_{1}}\right)\left(\frac{1}{t}\sum_{b_{2}=0}^{t-1}y^{2mb_{2}}\right)\left(\frac{e+y^{m}}{2}\right).

Thus,

X0(12mtb=02mt1yb)=e+x2(1mb1=0m1yb1)(1tb2=0t1y2mb2)(e+ym2)=\displaystyle X_{0}\left(\frac{1}{2mt}\sum_{b=0}^{2mt-1}y^{b}\right)=\frac{e+x}{2}\left(\frac{1}{m}\sum_{b_{1}=0}^{m-1}y^{b_{1}}\right)\left(\frac{1}{t}\sum_{b_{2}=0}^{t-1}y^{2mb_{2}}\right)\left(\frac{e+y^{m}}{2}\right)=
1mtb1=0m1b2=0t1yb1+2mb2e+y(b1+2mb2)xyb1+2mb22(e+ym2)=\displaystyle\frac{1}{mt}\sum_{b_{1}=0}^{m-1}\sum_{b_{2}=0}^{t-1}y^{b_{1}+2mb_{2}}\frac{e+y^{-(b_{1}+2mb_{2})}xy^{b_{1}+2mb_{2}}}{2}\left(\frac{e+y^{m}}{2}\right)=
1mtb1=0m1b2=0t1yb1+2mb2e+xzb1+2mb22(e+ym2).\displaystyle\frac{1}{mt}\sum_{b_{1}=0}^{m-1}\sum_{b_{2}=0}^{t-1}y^{b_{1}+2mb_{2}}\frac{e+xz^{b_{1}+2mb_{2}}}{2}\left(\frac{e+y^{m}}{2}\right).

Using the fact that π(yb1+2mb2)=1\|\pi(y^{b_{1}+2mb_{2}})\|=1 for every b1,b2b_{1},b_{2}\in\mathbb{N}, it follows that

π(X0(12mtb=02mt1yb))ζ\displaystyle\left\|\pi\left(X_{0}\left(\frac{1}{2mt}\sum_{b=0}^{2mt-1}y^{b}\right)\right)\zeta\right\|\leq
1mtb1=0m1b2=0t1π(e+xzb1+2mb22)π(e+ym2)ζLemma 5.31mtb1=0m1b2=0t1r0ζ=r0ζ,\displaystyle\frac{1}{mt}\sum_{b_{1}=0}^{m-1}\sum_{b_{2}=0}^{t-1}\left\|\pi\left(\frac{e+xz^{b_{1}+2mb_{2}}}{2}\right)\pi\left(\frac{e+y^{m}}{2}\right)\zeta\right\|\leq^{\text{Lemma }\ref{product inequality lemma}}\frac{1}{mt}\sum_{b_{1}=0}^{m-1}\sum_{b_{2}=0}^{t-1}r_{0}\|\zeta\|=r_{0}\|\zeta\|,

and the proof of (2) is concluded. ∎

Theorem 5.5.

Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a function. Let 0r1<10\leq r_{1}<1 be the constant given in Lemma 5.4 above. For every (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})), every n,n2n\in\mathbb{N},n\geq 2 and every ξ𝔼\xi\in\operatorname{\mathbb{E}}, it holds that

π(X0Yn(eZ0))ξmax{r1π(eZ0)ξ,12n2ξ}.\left\|\pi\left(X_{0}Y^{n}(e-Z_{0})\right)\xi\right\|\leq\max\left\{r_{1}\|\pi(e-Z_{0})\xi\|,\frac{1}{2^{n-2}}\|\xi\|\right\}.
Proof.

Fix (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})), n,n2n\in\mathbb{N},n\geq 2 and ξ𝔼\xi\in\operatorname{\mathbb{E}}. If π(eZ0)ξ12n2ξ\|\pi(e-Z_{0})\xi\|\leq\frac{1}{2^{n-2}}\|\xi\|, then

π(X0Yn(eZ0))ξπ(eZ0)ξ12n2ξ,\left\|\pi\left(X_{0}Y^{n}(e-Z_{0})\right)\xi\right\|\leq\|\pi(e-Z_{0})\xi\|\leq\frac{1}{2^{n-2}}\|\xi\|,

and we are done.

Assume that π(eZ0)ξ>12n2ξ\|\pi(e-Z_{0})\xi\|>\frac{1}{2^{n-2}}\|\xi\|. Then

12n1m=02n11π((ezm)(eZ0))ξπ((e12n1m=02n11zm)(eZ0))ξ\displaystyle\frac{1}{2^{n-1}}\sum_{m=0}^{2^{n-1}-1}\|\pi((e-z^{m})(e-Z_{0}))\xi\|\geq\left\|\pi\left(\left(e-\frac{1}{2^{n-1}}\sum_{m=0}^{2^{n-1}-1}z^{m}\right)(e-Z_{0})\right)\xi\right\|\geq
π(eZ0)ξπ((12n1m=02n11zm)(eZ0))ξeZ0=ez2\displaystyle\|\pi(e-Z_{0})\xi\|-\left\|\pi\left(\left(\frac{1}{2^{n-1}}\sum_{m=0}^{2^{n-1}-1}z^{m}\right)(e-Z_{0})\right)\xi\right\|\geq^{e-Z_{0}=\frac{e-z}{2}}
π(eZ0)ξ12n1π(ez2n12)ξ\displaystyle\left\|\pi(e-Z_{0})\xi\right\|-\frac{1}{2^{n-1}}\left\|\pi\left(\frac{e-z^{2^{n-1}}}{2}\right)\xi\right\|\geq
π(eZ0)ξ12n1ξ>π(eZ0)ξ>12n2ξ\displaystyle\left\|\pi(e-Z_{0})\xi\right\|-\frac{1}{2^{n-1}}\|\xi\|>^{\|\pi(e-Z_{0})\xi\|>\frac{1}{2^{n-2}}\|\xi\|}
π(eZ0)ξ12π(eZ0)ξ=12π(eZ0)ξ.\displaystyle\left\|\pi(e-Z_{0})\xi\right\|-\frac{1}{2}\left\|\pi(e-Z_{0})\xi\right\|=\frac{1}{2}\left\|\pi(e-Z_{0})\xi\right\|.

It follows that for ζ=π(eZ0)ξ\zeta=\pi(e-Z_{0})\xi, there is 1m2n111\leq m\leq 2^{n-1}-1 such that π(ezm)ζ12ζ\|\pi(e-z^{m})\zeta\|\geq\frac{1}{2}\|\zeta\|. Thus, by Lemma 5.4,

π(X0Yn)ζr1ζ,\|\pi\left(X_{0}Y^{n}\right)\zeta\|\leq r_{1}\|\zeta\|,

i.e.,

π(X0Yn(eZ0))ξr1π(eZ0)ξ,\left\|\pi\left(X_{0}Y^{n}(e-Z_{0})\right)\xi\right\|\leq r_{1}\|\pi(e-Z_{0})\xi\|,

as needed. ∎

Corollary 5.6.

Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a function. Let 0r1<10\leq r_{1}<1 be the constant given in Lemma 5.4 above. For every (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})), every n,n2n\in\mathbb{N},n\geq 2, every a0,b0{0}a_{0},b_{0}\in\mathbb{N}\cup\{0\} and every ξ𝔼\xi\in\operatorname{\mathbb{E}}, it holds that

π((Xa0(b=0n1Yb0+b))(eZa0+b0))ξmax{r1π(eZa0+b0)ξ,12n2ξ}.\left\|\pi\left(\left(X_{a_{0}}\left(\prod_{b=0}^{n-1}Y_{b_{0}+b}\right)\right)(e-Z_{a_{0}+b_{0}})\right)\xi\right\|\leq\max\left\{r_{1}\|\pi(e-Z_{a_{0}+b_{0}})\xi\|,\frac{1}{2^{n-2}}\|\xi\|\right\}.
Proof.

Fix (π,𝔼),n,a0,b0(\pi,\operatorname{\mathbb{E}}),n,a_{0},b_{0} as above.

Let H<H3()H<H_{3}(\mathbb{Z}) be the subgroup H=x2a0,y2b0H=\langle x^{2^{a_{0}}},y^{2^{b_{0}}}\rangle. We note that HH is isomorphic to H3()H_{3}(\mathbb{Z}) via the isomorphism Φ:H3()H\Phi:H_{3}(\mathbb{Z})\rightarrow H induced by Φ(x)=x2a0,Φ(y)=y2b0\Phi(x)=x^{2^{a_{0}}},\Phi(y)=y^{2^{b_{0}}}. Note that (by extending Φ\Phi linearly)

Φ(X0)=Xa0,Φ(Yn)=b=0n1Yb0+b.\Phi(X_{0})=X_{a_{0}},\Phi(Y^{n})=\prod_{b=0}^{n-1}Y_{b_{0}+b}.

Also note that

Φ(z)=Φ(x1y1xy)=x2a0y2b0x2a0y2b0=z2a0+b0,\Phi(z)=\Phi(x^{-1}y^{-1}xy)=x^{-2^{a_{0}}}y^{-2^{b_{0}}}x^{2^{a_{0}}}y^{2^{b_{0}}}=z^{2^{a_{0}+b_{0}}},

and thus Φ(Z0)=Za0+b0\Phi(Z_{0})=Z_{a_{0}+b_{0}}.

Define a new representation (π0,𝔼)(\pi_{0},\operatorname{\mathbb{E}}) of H3()H_{3}(\mathbb{Z}) by π0=πΦ\pi_{0}=\pi\circ\Phi. Let ξ𝔼\xi\in\operatorname{\mathbb{E}}, then

π((Xa0(b=0n1Yb0+b))(eZa0+b0))ξ=π0((X0Yn)(eZ0))ξ\displaystyle\left\|\pi\left(\left(X_{a_{0}}\left(\prod_{b=0}^{n-1}Y_{b_{0}+b}\right)\right)(e-Z_{a_{0}+b_{0}})\right)\xi\right\|=\left\|\pi_{0}\left(\left(X_{0}Y^{n}\right)(e-Z_{0})\right)\xi\right\|\leq
max{r1π0(eZ0)ξ,12n2ξ}=max{r1π(eZa0+b0)ξ,12n2ξ},\displaystyle\max\left\{r_{1}\|\pi_{0}(e-Z_{0})\xi\|,\frac{1}{2^{n-2}}\|\xi\|\right\}=\max\left\{r_{1}\|\pi(e-Z_{a_{0}+b_{0}})\xi\|,\frac{1}{2^{n-2}}\|\xi\|\right\},

as needed. ∎

Theorem 5.7.

Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a function. There are constants 0r2<1,C>00\leq r_{2}<1,C>0 such that for every d1,d2,d3d_{1},d_{2},d_{3}\in\mathbb{N} with d1,d2d3,d1+d2d3d_{1},d_{2}\leq d_{3},d_{1}+d_{2}\geq d_{3}, it holds that

Xd1Yd2(Zd3Zd3+1)𝒰(uc(δ0))Cr2d1+d2d3.\left\|X^{d_{1}}Y^{d_{2}}\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq Cr_{2}^{\sqrt{d_{1}+d_{2}-d_{3}}}.
Proof.

Let r1=r1(δ0)r_{1}=r_{1}(\delta_{0}) be the constant of Corollary 5.6. We will prove that the inequality stated above holds for r2=max{r1,12}r_{2}=\max\{r_{1},\frac{1}{\sqrt{2}}\}.

Fix d1,d2,d3d_{1},d_{2},d_{3}\in\mathbb{N} as above and denote t=2d1+d2d32t=2\lfloor\frac{\sqrt{d_{1}+d_{2}-d_{3}}}{2}\rfloor. We note that td1+d2d3t+2t\leq\sqrt{d_{1}+d_{2}-d_{3}}\leq t+2 and thus it is enough to prove that there is a constant CC^{\prime} such that

Xd1Yd2(Zd3Zd3+1)𝒰(uc(δ0))Cr2t.\left\|X^{d_{1}}Y^{d_{2}}\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq C^{\prime}r_{2}^{t}.

Without loss of generality, we can assume that t4t\geq 4 (for t<4t<4, the constant CC^{\prime} can be chosen to be large enough such that Cr242C^{\prime}r_{2}^{4}\geq 2 and the needed inequality holds trivially).

Denote

A0={d11kt:0kt1}.A_{0}=\{d_{1}-1-kt:0\leq k\leq t-1\}.

Note that for every 0kt10\leq k\leq t-1

d11d11kt>d11t2+ttd1+d2d3\displaystyle d_{1}-1\geq d_{1}-1-kt>d_{1}-1-t^{2}+t\geq^{t\leq\sqrt{d_{1}+d_{2}-d_{3}}}
d11(d1+d2d3)+t=d3d2+t1d3d2,t40,\displaystyle d_{1}-1-(d_{1}+d_{2}-d_{3})+t=d_{3}-d_{2}+t-1\geq^{d_{3}\geq d_{2},t\geq 4}0,

and thus A0{0,,d11}A_{0}\subseteq\{0,...,d_{1}-1\}.

Also, denote

B0=k=0t1{d3d1+1+kt+j:0jt21},B_{0}=\bigcup_{k=0}^{t-1}\left\{d_{3}-d_{1}+1+kt+j:0\leq j\leq\frac{t}{2}-1\right\},

(note that tt is always even and thus t2\frac{t}{2}\in\mathbb{N}). Note that for every 0kt10\leq k\leq t-1 and every 0jt210\leq j\leq\frac{t}{2}-1 it holds that

d3d1+1+kt+jd3d1+1d3d10d_{3}-d_{1}+1+kt+j\geq d_{3}-d_{1}+1\geq^{d_{3}\geq d_{1}}0

and

d3d1+1+kt+jd3d1+1+t2t2td1+d2d3d3d1+1+(d1+d2d3)t2=\displaystyle d_{3}-d_{1}+1+kt+j\leq d_{3}-d_{1}+1+t^{2}-\frac{t}{2}\leq^{t\leq\sqrt{d_{1}+d_{2}-d_{3}}}d_{3}-d_{1}+1+(d_{1}+d_{2}-d_{3})-\frac{t}{2}=
d2+1t2t4d21.\displaystyle d_{2}+1-\frac{t}{2}\leq^{t\geq 4}d_{2}-1.

It follows that B0{0,,d21}B_{0}\subseteq\{0,...,d_{2}-1\}.

Thus,

Xd1Yd2(Zd3Zd3+1)𝒰(uc(δ0))\displaystyle\left\|X^{d_{1}}Y^{d_{2}}\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
(a{0,,d11}A0Xa)𝒰(uc(δ0))(aA0Xa)Yd2(Zd3Zd3+1)𝒰(uc(δ0))\displaystyle\left\|\left(\prod_{a\in\{0,...,d_{1}-1\}\setminus A_{0}}X_{a}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\left\|\left(\prod_{a\in A_{0}}X_{a}\right)Y^{d_{2}}\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
(aA0Xa)(bB0Yb)(Zd3Zd3+1)𝒰(uc(δ0))(b{0,,d21}B0Yb)𝒰(uc(δ0))\displaystyle\left\|\left(\prod_{a\in A_{0}}X_{a}\right)\left(\prod_{b\in B_{0}}Y_{b}\right)\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\left\|\left(\prod_{b\in\{0,...,d_{2}-1\}\setminus B_{0}}Y_{b}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
(aA0Xa)(bB0Yb)(Zd3Zd3+1)𝒰(uc(δ0)).\displaystyle\left\|\left(\prod_{a\in A_{0}}X_{a}\right)\left(\prod_{b\in B_{0}}Y_{b}\right)\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}.

It follows that it is enough to prove that there is a constant CC^{\prime} such that

(aA0Xa)(bB0Yb)(Zd3Zd3+1)𝒰(uc(δ0))Cr2t,\left\|\left(\prod_{a\in A_{0}}X_{a}\right)\left(\prod_{b\in B_{0}}Y_{b}\right)\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq C^{\prime}r_{2}^{t},

i.e., it is enough to prove that for every (π,𝔼)uc(δ0)(\pi,\operatorname{\mathbb{E}})\in\mathcal{E}_{uc}(\delta_{0}) and every ξ𝔼\xi\in\operatorname{\mathbb{E}}, it holds that

(3) π((aA0Xa)(bB0Yb)(Zd3Zd3+1))ξCr2tξ.\left\|\pi\left(\left(\prod_{a\in A_{0}}X_{a}\right)\left(\prod_{b\in B_{0}}Y_{b}\right)\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right)\xi\right\|\leq C^{\prime}r_{2}^{t}\|\xi\|.

Fix (π,𝔼)uc(δ0)(\pi,\operatorname{\mathbb{E}})\in\mathcal{E}_{uc}(\delta_{0}) and ξ𝔼\xi\in\operatorname{\mathbb{E}}. For 1it11\leq i\leq t-1, define the sets

Ai={d11kt:ikt1},A_{i}=\{d_{1}-1-kt:i\leq k\leq t-1\},
Bi=k=it1{d3d1+1+kt+j:0jt21}.B_{i}=\bigcup_{k=i}^{t-1}\left\{d_{3}-d_{1}+1+kt+j:0\leq j\leq\frac{t}{2}-1\right\}.

Also define At=Bt=A_{t}=B_{t}=\emptyset. For 0it0\leq i\leq t denote

Ii=π((aAiXa)(bBiYb)(Zd3Zd3+1))ξ.I_{i}=\left\|\pi\left(\left(\prod_{a\in A_{i}}X_{a}\right)\left(\prod_{b\in B_{i}}Y_{b}\right)\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right)\xi\right\|.

We claim that in order to prove (3), it is sufficient to show that for every 0it10\leq i\leq t-1 it holds that

(4) Ii36(12)tξ+r1Ii+1,I_{i}\leq 36\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi\|+r_{1}I_{i+1},

where r1r_{1} is the constant of Corollary 5.6. Indeed, if (4) holds, then

I036(12)tξ(1+r1++r1t1)+r1tIt\displaystyle I_{0}\leq 36\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi\|(1+r_{1}+...+r_{1}^{t-1})+r_{1}^{t}I_{t}\leq
361r1(12)tξ+r1tπ(Zd3Zd3+1)ξ\displaystyle\frac{36}{1-r_{1}}\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi\|+r_{1}^{t}\|\pi(Z^{d_{3}}-Z^{d_{3}+1})\xi\|\leq
361r1(12)tξ+2r1tξ(361r1+2)r2t,\displaystyle\frac{36}{1-r_{1}}\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi\|+2r_{1}^{t}\|\xi\|\leq\left(\frac{36}{1-r_{1}}+2\right)r_{2}^{t},

as needed.

We are left to prove (4). Fix 0it10\leq i\leq t-1. For 0kt10\leq k\leq t-1, denote

Bk={d3d1+1+kt+j:0jt21},B_{k}^{\prime}=\left\{d_{3}-d_{1}+1+kt+j:0\leq j\leq\frac{t}{2}-1\right\},

thus Bi=k=it1BkB_{i}=\bigcup_{k=i}^{t-1}B_{k}^{\prime}. We note that

d3maxAi+1maxBi=d3(d11(i+1)t)(d3d1+it+t2)=t2+1.d_{3}-\max A_{i+1}-\max B_{i}^{\prime}=d_{3}-(d_{1}-1-(i+1)t)-(d_{3}-d_{1}+it+\frac{t}{2})=\frac{t}{2}+1.

Therefore, by Theorem 5.2,

π(((aAi+1Xa)(bBiYb)(bBiYb)(aAi+1Xa))Zd3)\displaystyle\left\|\pi\left(\left(\left(\prod_{a\in A_{i+1}}X_{a}\right)\left(\prod_{b\in B_{i}^{\prime}}Y_{b}\right)-\left(\prod_{b\in B_{i}^{\prime}}Y_{b}\right)\left(\prod_{a\in A_{i+1}}X_{a}\right)\right)Z^{d_{3}}\right)\right\|\leq
8(12)d3maxAi+1maxBi=16(12)t.\displaystyle 8\left(\frac{1}{2}\right)^{d_{3}-\max A_{i+1}-\max B_{i}^{\prime}}=16\left(\frac{1}{\sqrt{2}}\right)^{t}.

Thus,

π((aAiXa)(bBiYb)Zd3(Xd11it(bBiYb))(aAi+1Xa)(bBi+1Yb)Zd3)\displaystyle\left\|\pi\left(\left(\prod_{a\in A_{i}}X_{a}\right)\left(\prod_{b\in B_{i}}Y_{b}\right)Z^{d_{3}}-\left(X_{d_{1}-1-it}\left(\prod_{b\in B_{i}^{\prime}}Y_{b}\right)\right)\left(\prod_{a\in A_{i+1}}X_{a}\right)\left(\prod_{b\in B_{i+1}}Y_{b}\right)Z^{d_{3}}\right)\right\|\leq
16(12)t.\displaystyle 16\left(\frac{1}{\sqrt{2}}\right)^{t}.

By Observation 5.1, Zd3+1=Zd3Zd3Z^{d_{3}+1}=Z^{d_{3}}Z_{d_{3}} and thus Zd3Zd3+1=Zd3(eZd3)Z^{d_{3}}-Z^{d_{3}+1}=Z^{d_{3}}(e-Z_{d_{3}}). Using this and the inequality stated above, we can deduce

Ii=π((aAiXa)(bBiYb)Zd3(eZd3))ξπ((Xd11it(bBiYb))(aAi+1Xa)(bBi+1Yb)Zd3(eZd3))ξ+16(12)tπ(eZd3)ξπ((Xd11it(bBiYb)(eZd3))(aAi+1Xa)(bBi+1Yb)Zd3)ξ+32(12)tξ=π(Xd11it(bBiYb)(eZd3))π((aAi+1Xa)(bBi+1Yb)Zd3)ξ+32(12)tξ.I_{i}=\left\|\pi\left(\left(\prod_{a\in A_{i}}X_{a}\right)\left(\prod_{b\in B_{i}}Y_{b}\right)Z^{d_{3}}\left(e-Z_{d_{3}}\right)\right)\xi\right\|\leq\left\|\pi\left(\left(X_{d_{1}-1-it}\left(\prod_{b\in B_{i}^{\prime}}Y_{b}\right)\right)\left(\prod_{a\in A_{i+1}}X_{a}\right)\left(\prod_{b\in B_{i+1}}Y_{b}\right)Z^{d_{3}}(e-Z_{d_{3}})\right)\xi\right\|+{16\left(\frac{1}{\sqrt{2}}\right)^{t}\|\pi\left(e-Z_{d_{3}}\right)\xi\|}\leq\left\|\pi\left(\left(X_{d_{1}-1-it}\left(\prod_{b\in B_{i}^{\prime}}Y_{b}\right)(e-Z_{d_{3}})\right)\left(\prod_{a\in A_{i+1}}X_{a}\right)\left(\prod_{b\in B_{i+1}}Y_{b}\right)Z^{d_{3}}\right)\xi\right\|+32\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi\|=\\ \left\|\pi\left(X_{d_{1}-1-it}\left(\prod_{b\in B_{i}^{\prime}}Y_{b}\right)(e-Z_{d_{3}})\right)\pi\left(\left(\prod_{a\in A_{i+1}}X_{a}\right)\left(\prod_{b\in B_{i+1}}Y_{b}\right)Z^{d_{3}}\right)\xi\right\|+32\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi\|.

Denote ξ=π((aAi+1Xa)(bBi+1Yb)Zd3)ξ\xi^{\prime}=\pi\left(\left(\prod_{a\in A_{i+1}}X_{a}\right)\left(\prod_{b\in B_{i+1}}Y_{b}\right)Z^{d_{3}}\right)\xi. With this notation, we showed that

Iiπ(Xd11it(bBiYb)(eZd3))ξ+32(12)tξ.I_{i}\leq\left\|\pi\left(X_{d_{1}-1-it}\left(\prod_{b\in B_{i}^{\prime}}Y_{b}\right)(e-Z_{d_{3}})\right)\xi^{\prime}\right\|+32\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi\|.

We note that

π(eZd3)ξ=π((aAi+1Xa)(bBi+1Yb)(Zd3Zd3+1))ξ=Ii+1.\left\|\pi(e-Z_{d_{3}})\xi^{\prime}\right\|=\left\|\pi\left(\left(\prod_{a\in A_{i+1}}X_{a}\right)\left(\prod_{b\in B_{i+1}}Y_{b}\right)\left(Z^{d_{3}}-Z^{d_{3}+1}\right)\right)\xi\right\|=I_{i+1}.

Thus, in order to prove (4), we are left to prove that

π(Xd11it(bBiYb)(eZd3))ξ4(12)tξ+r1π(eZd3)ξ.\left\|\pi\left(X_{d_{1}-1-it}\left(\prod_{b\in B_{i}^{\prime}}Y_{b}\right)(e-Z_{d_{3}})\right)\xi^{\prime}\right\|\leq 4\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi\|+r_{1}\|\pi(e-Z_{d_{3}})\xi^{\prime}\|.

We recall that

π(Xd11it(bBiYb)(eZd3))ξ=π(Xd11it(b=0t21Y(d3d1+1+it)+b)(eZd3))ξ.\displaystyle\left\|\pi\left(X_{d_{1}-1-it}\left(\prod_{b\in B_{i}^{\prime}}Y_{b}\right)(e-Z_{d_{3}})\right)\xi^{\prime}\right\|=\left\|\pi\left(X_{d_{1}-1-it}\left(\prod_{b=0}^{\frac{t}{2}-1}Y_{(d_{3}-d_{1}+1+it)+b}\right)(e-Z_{d_{3}})\right)\xi^{\prime}\right\|.

Denoting a0=d11it,b0=d3d1+1+it,n=t2a_{0}=d_{1}-1-it,b_{0}=d_{3}-d_{1}+1+it,n=\frac{t}{2} and applying Corollary 5.6 (noting that a0+b0=d3a_{0}+b_{0}=d_{3} and that we assumed that n=t22n=\frac{t}{2}\geq 2) yields that

π(Xd11it(b=0t21Y(d3d1+1+it)+b)(eZd3))ξmax{r1π(eZd3)ξ,12t22ξ}\displaystyle\left\|\pi\left(X_{d_{1}-1-it}\left(\prod_{b=0}^{\frac{t}{2}-1}Y_{(d_{3}-d_{1}+1+it)+b}\right)(e-Z_{d_{3}})\right)\xi^{\prime}\right\|\leq\max\left\{r_{1}\|\pi(e-Z_{d_{3}})\xi^{\prime}\|,\frac{1}{2^{\frac{t}{2}-2}}\|\xi^{\prime}\|\right\}\leq
4(12)tξ+r1π(eZd3)ξ4(12)tξ+r1π(eZd3)ξ,\displaystyle 4\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi^{\prime}\|+r_{1}\|\pi(e-Z_{d_{3}})\xi^{\prime}\|\leq 4\left(\frac{1}{\sqrt{2}}\right)^{t}\|\xi\|+r_{1}\|\pi(e-Z_{d_{3}})\xi^{\prime}\|,

as needed. ∎

Corollary 5.8.

Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be a function. There are constants 0r<1,C>00\leq r<1,C>0 such that for every d1,d2,d3,d4d_{1},d_{2},d_{3},d_{4}\in\mathbb{N} such that d1,d214min{d3,d4}d_{1},d_{2}\geq\frac{1}{4}\min\{d_{3},d_{4}\} and d1+d2max{d3,d4}14min{d3,d4}d_{1}+d_{2}-\max\{d_{3},d_{4}\}\geq\frac{1}{4}\min\{d_{3},d_{4}\}, it holds that

Xd1Yd2(Zd3Zd4)𝒰(uc(δ0))|d4d3|Crmin{d3,d4},\left\|X^{d_{1}}Y^{d_{2}}\left(Z^{d_{3}}-Z^{d_{4}}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq|d_{4}-d_{3}|Cr^{\sqrt{\min\{d_{3},d_{4}\}}},

and

Yd1Xd2(Zd3Zd4)𝒰(uc(δ0))|d4d3|Crmin{d3,d4}.\left\|Y^{d_{1}}X^{d_{2}}\left(Z^{d_{3}}-Z^{d_{4}}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq|d_{4}-d_{3}|Cr^{\sqrt{\min\{d_{3},d_{4}\}}}.
Proof.

Without loss of generality, we will assume that d4>d3d_{4}>d_{3}.

We will start by proving the first inequality.

Let r2,Cr_{2},C be the constants of Theorem 5.7 and take r=r2r=\sqrt{r_{2}}. We note that it is enough to prove that for any 0jd4d310\leq j\leq d_{4}-d_{3}-1 it holds that

Xd1Yd2(Zd3+jZd3+j+1)𝒰(uc(δ0))Crd3.\left\|X^{d_{1}}Y^{d_{2}}\left(Z^{d_{3}+j}-Z^{d_{3}+j+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq Cr^{\sqrt{d_{3}}}.

If d1,d2d3+jd_{1},d_{2}\leq d_{3}+j this inequality follow immediately from Theorem 5.7. Otherwise, either d2>d3+jd_{2}>d_{3}+j or d1>d3+jd_{1}>d_{3}+j (or both) and thus

min{d1,d3+j}+min{d2,d3+j}d3j14d3.\min\{d_{1},d_{3}+j\}+\min\{d_{2},d_{3}+j\}-d_{3}-j\geq\frac{1}{4}d_{3}.

In this case, we apply Theorem 5.7 replacing did_{i} with min{di,d3+j}\min\{d_{i},d_{3}+j\} for i=1,2i=1,2:

Xd1Yd2(Zd3+jZd3+j+1)𝒰(uc(δ0))\displaystyle\left\|X^{d_{1}}Y^{d_{2}}\left(Z^{d_{3}+j}-Z^{d_{3}+j+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
Xmin{d1,d3+j}Ymin{d2,d3+j}(Zd3+jZd3+j+1)𝒰(uc(δ0))Crd3,\displaystyle\left\|X^{\min\{d_{1},d_{3}+j\}}Y^{\min\{d_{2},d_{3}+j\}}\left(Z^{d_{3}+j}-Z^{d_{3}+j+1}\right)\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq Cr^{\sqrt{d_{3}}},

as needed.

In order to prove the second inequality, we need to prove that for every (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})) it holds that

π(Yd2Xd1(Zd3Zd4))(d4d3)Crd3.\left\|\pi\left(Y^{d_{2}}X^{d_{1}}\left(Z^{d_{3}}-Z^{d_{4}}\right)\right)\right\|\leq(d_{4}-d_{3})Cr^{\sqrt{d_{3}}}.

Fix (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})). Let Φ:H3()H3()\Phi:\rm H_{3}(\mathbb{Z})\rightarrow\rm H_{3}(\mathbb{Z}) be the isomorphism induced by Φ(x1)=y\Phi(x^{-1})=y and Φ(y)=x\Phi(y)=x. We note that

Φ(z)=Φ(x1y1xy)=yx1y1x=[x,y1]1=z.\Phi(z)=\Phi(x^{-1}y^{-1}xy)=yx^{-1}y^{-1}x=[x,y^{-1}]^{-1}=z.

Extending Φ\Phi linearly yields that

Φ(Yd2)=Xd2,Φ(Zd3)=Zd3,Φ(Zd4)=Zd4,\Phi(Y^{d_{2}})=X^{d_{2}},\Phi(Z^{d_{3}})=Z^{d_{3}},\Phi(Z^{d_{4}})=Z^{d_{4}},

and

Φ(Xd1)=12d1b=2d1+10yb=y2d1+1(12d1b=02d11yb)=y2d1+1Yd1.\Phi(X^{d_{1}})=\frac{1}{2^{d_{1}}}\sum_{b=-2^{d_{1}}+1}^{0}y^{b}=y^{-2^{d_{1}}+1}\left(\frac{1}{2^{d_{1}}}\sum_{b=0}^{2^{d_{1}}-1}y^{b}\right)=y^{-2^{d_{1}}+1}Y^{d_{1}}.

Define π0=πΦ\pi_{0}=\pi\circ\Phi, then (π0,𝔼)𝒰(uc(δ0))(\pi_{0},\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})) and by the first inequality proven above it follows that

Crd3π0(Xd1Yd2(Zd3Zd4))=\displaystyle Cr^{\sqrt{d_{3}}}\geq\left\|\pi_{0}\left(X^{d_{1}}Y^{d_{2}}\left(Z^{d_{3}}-Z^{d_{4}}\right)\right)\right\|=
π(Φ(Xd1)Φ(Yd2)(Φ(Zd3)Φ(Zd4)))=\displaystyle\left\|\pi\left(\Phi(X^{d_{1}})\Phi(Y^{d_{2}})\left(\Phi(Z^{d_{3}})-\Phi(Z^{d_{4}})\right)\right)\right\|=
π(y2d1+1)π(Yd1Xd2(Zd3Zd4))=\displaystyle\left\|\pi(y^{-2^{d_{1}}+1})\pi\left(Y^{d_{1}}X^{d_{2}}\left(Z^{d_{3}}-Z^{d_{4}}\right)\right)\right\|=
π(Yd1Xd2(Zd3Zd4)),\displaystyle\left\|\pi\left(Y^{d_{1}}X^{d_{2}}\left(Z^{d_{3}}-Z^{d_{4}}\right)\right)\right\|,

as needed. ∎

6. Relative Banach property (T) for (SL3(),UT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{UT}_{3}(\mathbb{Z})) and (SL3(),LT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{LT}_{3}(\mathbb{Z}))

In this section we will prove our main relative Banach property (T) result stated in the introduction.

For any {i,j,k}={1,2,3}\{i,j,k\}=\{1,2,3\}, we denote

Hi,k=ei,j(1),ej,k(1),ei,k(1)<SL3(),H_{i,k}=\langle e_{i,j}(1),e_{j,k}(1),e_{i,k}(1)\rangle<\operatorname{SL}_{3}(\mathbb{Z}),
H~i,k=xi,j(1),xj,k(1),xi,k(1)<St3(),\widetilde{H}_{i,k}=\langle x_{i,j}(1),x_{j,k}(1),x_{i,k}(1)\rangle<\operatorname{St}_{3}(\mathbb{Z}),

For example, H1,3H_{1,3} is the group of uni-upper-triangular matrices UT3()\operatorname{UT}_{3}(\mathbb{Z}) that appeared in the introduction.

We will prove the following theorem:

Theorem 6.1.

For any function δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] and any 1i,k3,ik1\leq i,k\leq 3,i\neq k, the pairs (SL3(),Hi,k)(\operatorname{SL}_{3}(\mathbb{Z}),H_{i,k}) and (St3(),H~i,k)(\operatorname{St}_{3}(\mathbb{Z}),\widetilde{H}_{i,k}) have relative property (Tuc(δ0)proj)(T^{\operatorname{proj}}_{\mathcal{E}_{uc}(\delta_{0})}).

In particular, for any function δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1], the pairs (SL3(),UT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{UT}_{3}(\mathbb{Z})) and (SL3(),LT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{LT}_{3}(\mathbb{Z})) have relative property (Tuc(δ0)proj)(T^{\operatorname{proj}}_{\mathcal{E}_{uc}(\delta_{0})}).

Below, we will prove this theorem only for the pair (SL3(),UT3())(\operatorname{SL}_{3}(\mathbb{Z}),UT_{3}(\mathbb{Z})). The proof will only use the Steinberg relations of SL3()\operatorname{SL}_{3}(\mathbb{Z}) and thus it applies verbatim to the pair (St3(),H~1,3())(\operatorname{St}_{3}(\mathbb{Z}),\widetilde{H}_{1,3}(\mathbb{Z})) (replacing each ei,je_{i,j} with xi,jx_{i,j}). The proof for any other Hi,kH_{i,k} (or H~i,k\widetilde{H}_{i,k} in the case of the Steinberg group) follows from the case UT3()=H1,3UT_{3}(\mathbb{Z})=H_{1,3} after permuting the indices.

In order to prove this theorem, we define the following: Let 1i,k3,ik1\leq i,k\leq 3,i\neq k and dd\in\mathbb{N}. Define Xi,kdProbc(SL3())X_{i,k}^{d}\in\operatorname{Prob}_{c}(\operatorname{SL}_{3}(\mathbb{Z})) by

Xi,kd=12da=02d1ei,k(a).X_{i,k}^{d}=\frac{1}{2^{d}}\sum_{a=0}^{2^{d}-1}e_{i,k}(a).

Informally, the idea of the proof is to look a product of all the Xi,kdX_{i,k}^{d}’s and to preform “moves” on this product with a small “norm cost” (such that this “cost” decrease as dd increases). We will consider the following “moves” for {i,j,k}={1,2,3}\{i,j,k\}=\{1,2,3\}:

  1. (1)

    Switch moves on Hi,kH_{i,k}: Replacing Xi,jd1Xi,kd3Xj,kd2X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}} with Xj,kd2Xi,kd3Xi,jd1X_{j,k}^{d_{2}}X_{i,k}^{d_{3}}X_{i,j}^{d_{1}} and vice-versa.

  2. (2)

    Up/down moves on Hi,kH_{i,k}: Replacing Xi,jd1Xi,kd3Xj,kd2X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}} with Xj,kd2Xi,kd4Xi,jd1X_{j,k}^{d_{2}}X_{i,k}^{d_{4}}X_{i,j}^{d_{1}} where d4d_{4}\in\mathbb{N} (when d4>d3d_{4}>d_{3} this will be called an up move and when d4<d3d_{4}<d_{3} this will be called a down move).

The following lemma bounds the “norm cost” of these moves:

Lemma 6.2.

Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] and {i,j,k}={1,2,3}\{i,j,k\}=\{1,2,3\}. For any P1,P1,TProbc(SL3())P_{1},P_{1},T\in\operatorname{Prob}_{c}(\operatorname{SL}_{3}(\mathbb{Z})) the following holds:

  1. (1)

    Switch moves on Hi,kH_{i,k} have small “norm cost”: For any constants d1,d2,d3d_{1},d_{2},d_{3}\in\mathbb{N} with d1+d2d32d_{1}+d_{2}\leq d_{3}-2 it holds that

    P1(Xi,jd1Xi,kd3Xj,kd2)P2T𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
    P1(Xj,kd2Xi,kd3Xi,jd1)P2T𝒰(uc(δ0))+8(12)d3(d1+d2),\displaystyle\left\|P_{1}\left(X_{j,k}^{d_{2}}X_{i,k}^{d_{3}}X_{i,j}^{d_{1}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+8\left(\frac{1}{2}\right)^{d_{3}-(d_{1}+d_{2})},
    P1(Xj,kd2Xi,kd3Xi,jd1)P2T𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{j,k}^{d_{2}}X_{i,k}^{d_{3}}X_{i,j}^{d_{1}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
    P1(Xi,jd1Xi,kd3Xj,kd2)P2T𝒰(uc(δ0))+8(12)d3(d1+d2).\displaystyle\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+8\left(\frac{1}{2}\right)^{d_{3}-(d_{1}+d_{2})}.
  2. (2)

    Up/down moves on Hi,kH_{i,k} have small “norm cost”: Let 0r<1,C>00\leq r<1,C>0 be the constants of Corollary 5.8. For every d1,d2,d3,d4d_{1},d_{2},d_{3},d_{4}\in\mathbb{N} such that d1,d214min{d3,d4}d_{1},d_{2}\geq\frac{1}{4}\min\{d_{3},d_{4}\} and d1+d2max{d3,d4}14min{d3,d4}d_{1}+d_{2}-\max\{d_{3},d_{4}\}\geq\frac{1}{4}\min\{d_{3},d_{4}\}, it holds that

    P1(Xi,jd1Xi,kd3Xj,kd2)P2T𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
    P1(Xi,jd1Xi,kd4Xj,kd2)P2T𝒰(uc(δ0))+|d4d3|Crmin{d3,d4},\displaystyle\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{4}}X_{j,k}^{d_{2}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+|d_{4}-d_{3}|Cr^{\sqrt{\min\{d_{3},d_{4}\}}},
    P1(Xj,kd2Xi,kd3Xi,jd1)P2T𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{j,k}^{d_{2}}X_{i,k}^{d_{3}}X_{i,j}^{d_{1}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
    P1(Xj,kd2Xi,kd4Xi,jd1)P2T𝒰(uc(δ0))+|d4d3|Crmin{d3,d4}.\displaystyle\left\|P_{1}\left(X_{j,k}^{d_{2}}X_{i,k}^{d_{4}}X_{i,j}^{d_{1}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+|d_{4}-d_{3}|Cr^{\sqrt{\min\{d_{3},d_{4}\}}}.
Proof.

The bounds of the “norm cost” of switch moves follow directly from Theorem 5.2. We will prove the bound of the first switch move (the proof of second bound is similar). Let d1,d2,d3d_{1},d_{2},d_{3}\in\mathbb{N} with d1+d2d32d_{1}+d_{2}\leq d_{3}-2, then by Theorem 5.2

P1(Xi,jd1Xi,kd3Xj,kd2)P2T𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
P1(Xj,kd2Xi,kd3Xi,jd1)P2T𝒰(uc(δ0))+P1(Xi,jd1Xi,kd3Xj,kd2Xj,kd2Xi,kd3Xi,jd1)P2𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{j,k}^{d_{2}}X_{i,k}^{d_{3}}X_{i,j}^{d_{1}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}}-X_{j,k}^{d_{2}}X_{i,k}^{d_{3}}X_{i,j}^{d_{1}}\right)P_{2}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
P1(Xj,kd2Xi,kd3Xi,jd1)P2T𝒰(uc(δ0))+Xi,jd1Xi,kd3Xj,kd2Xj,kd2Xi,kd3Xi,jd1𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{j,k}^{d_{2}}X_{i,k}^{d_{3}}X_{i,j}^{d_{1}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+\left\|X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}}-X_{j,k}^{d_{2}}X_{i,k}^{d_{3}}X_{i,j}^{d_{1}}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
P1(Xj,kd2Xi,kd3Xi,jd1)P2T𝒰(uc(δ0))+8(12)d3(d1+d2).\displaystyle\left\|P_{1}\left(X_{j,k}^{d_{2}}X_{i,k}^{d_{3}}X_{i,j}^{d_{1}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+8\left(\frac{1}{2}\right)^{d_{3}-(d_{1}+d_{2})}.

The bounds of the “norm cost” of up/down moves follow directly from Corollary 5.8. We will prove the bound of the first up/down move (the proof of second bound is similar). Let d1,d2,d3,d4d_{1},d_{2},d_{3},d_{4}\in\mathbb{N} such that d1,d214min{d3,d4}d_{1},d_{2}\geq\frac{1}{4}\min\{d_{3},d_{4}\} and d1+d2max{d3,d4}14min{d3,d4}d_{1}+d_{2}-\max\{d_{3},d_{4}\}\geq\frac{1}{4}\min\{d_{3},d_{4}\}. By Corollary 5.8,

P1(Xi,jd1Xi,kd3Xj,kd2)P2T𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
P1(Xi,jd1Xi,kd4Xj,kd2)P2T𝒰(uc(δ0))+P1(Xi,jd1Xi,kd3Xj,kd2Xi,jd1Xi,kd4Xj,kd2)P2𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{4}}X_{j,k}^{d_{2}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}}-X_{i,j}^{d_{1}}X_{i,k}^{d_{4}}X_{j,k}^{d_{2}}\right)P_{2}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
P1(Xi,jd1Xi,kd4Xj,kd2)P2T𝒰(uc(δ0))+Xi,jd1Xi,kd3Xj,kd2Xi,jd1Xi,kd4Xj,kd2𝒰(uc(δ0))\displaystyle\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{4}}X_{j,k}^{d_{2}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+\left\|X_{i,j}^{d_{1}}X_{i,k}^{d_{3}}X_{j,k}^{d_{2}}-X_{i,j}^{d_{1}}X_{i,k}^{d_{4}}X_{j,k}^{d_{2}}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
P1(Xi,jd1Xi,kd4Xj,kd2)P2T𝒰(uc(δ0))+|d4d3|Crmin{d3,d4}.\displaystyle\left\|P_{1}\left(X_{i,j}^{d_{1}}X_{i,k}^{d_{4}}X_{j,k}^{d_{2}}\right)P_{2}-T\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+|d_{4}-d_{3}|Cr^{\sqrt{\min\{d_{3},d_{4}\}}}.

For dd\in\mathbb{N}, we define Td,SdProbc(SL3())T_{d},S_{d}\in\operatorname{Prob}_{c}(\operatorname{SL}_{3}(\mathbb{Z})) as follows:

Td=X1,24dX1,310dX2,39dX2,19dX3,110dX3,24d,T_{d}=X_{1,2}^{4d}X_{1,3}^{10d}X_{2,3}^{9d}X_{2,1}^{9d}X_{3,1}^{10d}X_{3,2}^{4d},
Sd=X2,34dX1,310dX1,29dX3,29dX3,110dX2,14d.S_{d}=X_{2,3}^{4d}X_{1,3}^{10d}X_{1,2}^{9d}X_{3,2}^{9d}X_{3,1}^{10d}X_{2,1}^{4d}.

Using the lemma above, we will show that TdSd±1\|T_{d}-S_{d\pm 1}\| is small:

Lemma 6.3.

Let δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1] be some function. Then there are constants 0r<10\leq r<1 and L>0L>0 such that for every dd\in\mathbb{N} it holds that

TdSd±1𝒰(uc(δ0))Ldrd.\left\|T_{d}-S_{d\pm 1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq Ldr^{\sqrt{d}}.
Proof.

We will prove the bound only for TdSd+1\|T_{d}-S_{d+1}\|, the proof for TdSd1\|T_{d}-S_{d-1}\| is similar. Let r,Cr,C be the constants of Corollary 5.8. Without loss of generality, we can assume that d>10d>10 (otherwise, we can choose LL to be large enough such that Lr102Lr^{\sqrt{10}}\geq 2 and the inequality holds trivially).

The idea of the proof is to use switch moves and up/down moves to change TdT_{d} into Sd+1S_{d+1} while book-keeping the “norm cost” using Lemma 6.2. We remark that when preforming up/down moves on Hi,kH_{i,k}, the order of the product of Xi,jd1,Xj,kd2,Xi,kd3X_{i,j}^{d_{1}},X_{j,k}^{d_{2}},X_{i,k}^{d_{3}} (where {i,j,k}={1,2,3}\{i,j,k\}=\{1,2,3\}) does not matter, since Xi,kd3X_{i,k}^{d_{3}} commutes with Xi,jd1X_{i,j}^{d_{1}} and Xj,kd2X_{j,k}^{d_{2}}.

Step 1 (Up moves on H1,3,H3,1H_{1,3},H_{3,1}): We note that we assumed that d>10d>10 and thus for d1=4d,d2=9d,d3=10d,d4=10(d+1)d_{1}=4d,d_{2}=9d,d_{3}=10d,d_{4}=10(d+1) the conditions of Lemma 6.2(2) hold. Preforming up moves on H1,3H_{1,3} and H3,1H_{3,1}, we get by Lemma 6.2 that

TdSd+1𝒰(uc(δ0))=\displaystyle\left\|T_{d}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}=
(X1,24dX1,310dX2,39d)(X2,19dX3,110dX3,24d)Sd+1𝒰(uc(δ0))\displaystyle\left\|\left(X_{1,2}^{4d}X_{1,3}^{10d}X_{2,3}^{9d}\right)\left(X_{2,1}^{9d}X_{3,1}^{10d}X_{3,2}^{4d}\right)-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
(X1,24dX1,310(d+1)X2,39d)(X2,19dX3,110(d+1)X3,24d)Sd+1𝒰(uc(δ0))+20Cr10d.\displaystyle\left\|\left(X_{1,2}^{4d}X_{1,3}^{10(d+1)}X_{2,3}^{9d}\right)\left(X_{2,1}^{9d}X_{3,1}^{10(d+1)}X_{3,2}^{4d}\right)-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+20Cr^{\sqrt{10d}}.

Bottom line: The “norm cost” of this step is 20Cr10d20Cdrd20Cr^{\sqrt{10d}}\leq 20Cdr^{\sqrt{d}}.

Step 2 (Down moves on H2,3,H2,1H_{2,3},H_{2,1}): For d1=10(d+1),d2=9d,d3=9d,d4=4(d+1)d_{1}=10(d+1),d_{2}=9d,d_{3}=9d,d_{4}=4(d+1), the conditions of Lemma 6.2(2) are fulfilled and thus we can preform the following down move on H2,3H_{2,3}:

X1,24d(X1,310(d+1)X2,39dX2,19d)X3,110(d+1)X3,24dSd+1𝒰(uc(δ0))\displaystyle\left\|X_{1,2}^{4d}\left(X_{1,3}^{10(d+1)}X_{2,3}^{9d}X_{2,1}^{9d}\right)X_{3,1}^{10(d+1)}X_{3,2}^{4d}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
X1,24d(X1,310(d+1)X2,34(d+1)X2,19d)X3,110(d+1)X3,24dSd+1𝒰(uc(δ0))+(9d4(d+1))Cr4(d+1).\displaystyle\left\|X_{1,2}^{4d}\left(X_{1,3}^{10(d+1)}X_{2,3}^{4(d+1)}X_{2,1}^{9d}\right)X_{3,1}^{10(d+1)}X_{3,2}^{4d}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+(9d-4(d+1))Cr^{\sqrt{4(d+1)}}.

After that, we preform a down move on H2,1H_{2,1} with d1=4(d+1),d2=10(d+1),d3=9d,d4=4(d+1)d_{1}=4(d+1),d_{2}=10(d+1),d_{3}=9d,d_{4}=4(d+1) (using Lemma 6.2(2) again):

X1,24dX1,310(d+1)(X2,34(d+1)X2,19dX3,110(d+1))X3,24dSd+1𝒰(uc(δ0))\displaystyle\left\|X_{1,2}^{4d}X_{1,3}^{10(d+1)}\left(X_{2,3}^{4(d+1)}X_{2,1}^{9d}X_{3,1}^{10(d+1)}\right)X_{3,2}^{4d}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
X1,24dX1,310(d+1)(X2,34(d+1)X2,14(d+1)X3,110(d+1))X3,24dSd+1𝒰(uc(δ0))+(9d4(d+1))Cr4(d+1).\displaystyle\left\|X_{1,2}^{4d}X_{1,3}^{10(d+1)}\left(X_{2,3}^{4(d+1)}X_{2,1}^{4(d+1)}X_{3,1}^{10(d+1)}\right)X_{3,2}^{4d}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+(9d-4(d+1))Cr^{\sqrt{4(d+1)}}.

Bottom line: The “norm cost” of this step is 2(9d4(d+1))Cr4(d+1)10dCrd2(9d-4(d+1))Cr^{\sqrt{4(d+1)}}\leq 10dCr^{\sqrt{d}}.

Step 3 (Switch moves on H1,3,H3,1H_{1,3},H_{3,1}): Preforming switch moves on H1,3H_{1,3} and H3,1H_{3,1} with d1=4d,d2=4(d+1),d3=10(d+1)d_{1}=4d,d_{2}=4(d+1),d_{3}=10(d+1), we get by Lemma 6.2(1) that

(X1,24dX1,310(d+1)X2,34(d+1))(X2,14(d+1)X3,110(d+1)X3,24d)Sd+1𝒰(uc(δ0))\displaystyle\left\|\left(X_{1,2}^{4d}X_{1,3}^{10(d+1)}X_{2,3}^{4(d+1)}\right)\left(X_{2,1}^{4(d+1)}X_{3,1}^{10(d+1)}X_{3,2}^{4d}\right)-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
(X2,34(d+1)X1,310(d+1)X1,24d)(X3,24dX3,110(d+1)X2,14(d+1))Sd+1𝒰(uc(δ0))+16(12)2(d+1).\displaystyle\left\|\left(X_{2,3}^{4(d+1)}X_{1,3}^{10(d+1)}X_{1,2}^{4d}\right)\left(X_{3,2}^{4d}X_{3,1}^{10(d+1)}X_{2,1}^{4(d+1)}\right)-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+16\left(\frac{1}{2}\right)^{2(d+1)}.

Bottom line: The “norm cost” of this step is 16(12)2(d+1)16drd16\left(\frac{1}{2}\right)^{2(d+1)}\leq 16dr^{\sqrt{d}} (by the choice of r2r_{2} in the proof of Theorem 5.7 it follows that r12r\geq\frac{1}{2}).

Step 4 (Up moves on H1,2,H3,2H_{1,2},H_{3,2}): For d1=10(d+1),d2=4d,d3=4d,d4=9(d+1)d_{1}=10(d+1),d_{2}=4d,d_{3}=4d,d_{4}=9(d+1), the conditions of Lemma 6.2(2) are fulfilled and thus we can preform the following up move on H1,2H_{1,2}:

X2,34(d+1)(X1,310(d+1)X1,24dX3,24d)X3,110(d+1)X2,14(d+1)Sd+1𝒰(uc(δ0))\displaystyle\left\|X_{2,3}^{4(d+1)}\left(X_{1,3}^{10(d+1)}X_{1,2}^{4d}X_{3,2}^{4d}\right)X_{3,1}^{10(d+1)}X_{2,1}^{4(d+1)}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
X2,34(d+1)(X1,310(d+1)X1,29(d+1)X3,24d)X3,110(d+1)X2,14(d+1)Sd+1𝒰(uc(δ0))+(9(d+1)4d)Cr4d.\displaystyle\left\|X_{2,3}^{4(d+1)}\left(X_{1,3}^{10(d+1)}X_{1,2}^{9(d+1)}X_{3,2}^{4d}\right)X_{3,1}^{10(d+1)}X_{2,1}^{4(d+1)}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+(9(d+1)-4d)Cr^{\sqrt{4d}}.

After that, we preform an up move on H3,2H_{3,2} with d1=9(d+1),d2=10(d+1),d3=4d,d4=9(d+1)d_{1}=9(d+1),d_{2}=10(d+1),d_{3}=4d,d_{4}=9(d+1) (using Lemma 6.2(2) again):

X2,34(d+1)X1,310(d+1)(X1,29(d+1)X3,24dX3,110(d+1))X2,14(d+1)Sd+1𝒰(uc(δ0))\displaystyle\left\|X_{2,3}^{4(d+1)}X_{1,3}^{10(d+1)}\left(X_{1,2}^{9(d+1)}X_{3,2}^{4d}X_{3,1}^{10(d+1)}\right)X_{2,1}^{4(d+1)}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq
X2,34(d+1)X1,310(d+1)(X1,29(d+1)X3,29(d+1)X3,110(d+1))X2,14(d+1)Sd+1𝒰(uc(δ0))+(9(d+1)4d)Cr4d=\displaystyle\left\|X_{2,3}^{4(d+1)}X_{1,3}^{10(d+1)}\left(X_{1,2}^{9(d+1)}X_{3,2}^{9(d+1)}X_{3,1}^{10(d+1)}\right)X_{2,1}^{4(d+1)}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+(9(d+1)-4d)Cr^{\sqrt{4d}}=
Sd+1Sd+1𝒰(uc(δ0))+(9(d+1)4d)Cr4d=(9(d+1)4d)Cr4d.\displaystyle\left\|S_{d+1}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}+(9(d+1)-4d)Cr^{\sqrt{4d}}=(9(d+1)-4d)Cr^{\sqrt{4d}}.

Bottom line: The “norm cost” of this step is 2(9(d+1)4d)Cr4d12dCrd2(9(d+1)-4d)Cr^{\sqrt{4d}}\leq 12dCr^{\sqrt{d}}.

Using the bounds of the norm costs at each step, we deduce that

TdSd+1𝒰(uc(δ0))20Cdrd+10dCrd+16drd+12dCrd=(42C+16)drd,\left\|T_{d}-S_{d+1}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq 20Cdr^{\sqrt{d}}+10dCr^{\sqrt{d}}+16dr^{\sqrt{d}}+12dCr^{\sqrt{d}}=(42C+16)dr^{\sqrt{d}},

as needed. ∎

After this, we can prove Theorem 6.1:

Proof.

Fix δ0:(0,2](0,1]\delta_{0}:(0,2]\rightarrow(0,1].

Define hdProbc(SL3())h_{d}\in\operatorname{Prob}_{c}(\operatorname{SL}_{3}(\mathbb{Z})) by

hd={Tdd is oddSdd is even.h_{d}=\begin{cases}T_{d}&d\text{ is odd}\\ S_{d}&d\text{ is even}\end{cases}.

By Lemma 6.3, there are L>0,0r<1L>0,0\leq r<1 such that for every dd,

hdhd+1𝒰(uc(δ0))dLrd.\|h_{d}-h_{d+1}\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq dLr^{\sqrt{d}}.

Thus {hd}d\{h_{d}\}_{d\in\mathbb{N}} is a Cauchy sequence with respect to .𝒰(uc(δ0))\|.\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))} and it has a limit that we will denote fC𝒰(uc(δ0))f\in C_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}. We note that for every odd dd,

(ee1,2(1))hd𝒰(uc(δ0))(ee1,2(1))X1,24d𝒰(uc(δ0))124d(ee1,2(24d))𝒰(uc(δ0))124d1.\|(e-e_{1,2}(1))h_{d}\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq\left\|(e-e_{1,2}(1))X_{1,2}^{4d}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq\\ \left\|\frac{1}{2^{4d}}(e-e_{1,2}(2^{4d}))\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq\frac{1}{2^{4d-1}}.

Therefore (ee1,2(1))f𝒰(uc(δ0))=0\|(e-e_{1,2}(1))f\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}=0. This implies that for every (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})), π(e1,2(1)f)=π(f)\pi(e_{1,2}(1)f)=\pi(f) and thus Im(π(f))𝔼π(e1,2(1))\operatorname{Im}(\pi(f))\subseteq\operatorname{\mathbb{E}}^{\pi(\langle e_{1,2}(1)\rangle)}. Similarly, for every even dd,

(ee2,3(1))hd𝒰(uc(δ0))(ee1,2(1))X2,34d𝒰(uc(δ0))124n(ee1,2(24d))𝒰(uc(δ0))124d1,\|(e-e_{2,3}(1))h_{d}\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq\left\|(e-e_{1,2}(1))X_{2,3}^{4d}\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq\\ \left\|\frac{1}{2^{4n}}(e-e_{1,2}(2^{4d}))\right\|_{\mathcal{U}(\mathcal{E}_{uc}(\delta_{0}))}\leq\frac{1}{2^{4d-1}},

and thus for every (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})), Im(π(f))𝔼π(e2,3(1))\operatorname{Im}(\pi(f))\subseteq\operatorname{\mathbb{E}}^{\pi(\langle e_{2,3}(1)\rangle)}. It follows that for every (π,𝔼)𝒰(uc(δ0))(\pi,\operatorname{\mathbb{E}})\in\mathcal{U}(\mathcal{E}_{uc}(\delta_{0})), Im(π(f))𝔼π(e1,2(1),e2,3(1))=𝔼π(UT3())\operatorname{Im}(\pi(f))\subseteq\operatorname{\mathbb{E}}^{\pi(\langle e_{1,2}(1),e_{2,3}(1)\rangle)}=\operatorname{\mathbb{E}}^{\pi(\operatorname{UT}_{3}(\mathbb{Z}))} as needed. ∎

As a corollary, we get Theorem 1.11 that appeared in the introduction:

Corollary 6.4.

The pairs (SL3(),UT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{UT}_{3}(\mathbb{Z})) and (SL3(),LT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{LT}_{3}(\mathbb{Z})) have relative property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}.

Proof.

The proof readily follows from Theorem 6.1 and Proposition 3.4. ∎

7. Banach property (T) for SL3()\operatorname{SL}_{3}(\mathbb{Z})

In this section, we will prove our main result regarding the Banach property (T) of SL3()\operatorname{SL}_{3}(\mathbb{Z}).

We fix the following terminology: an elementary subgroup of SLn()\operatorname{SL}_{n}(\mathbb{Z}) is a subgroup of the form Ei,j={ei,j(a):a}E_{i,j}=\{e_{i,j}(a):a\in\mathbb{Z}\} for some 1i,jn,ij1\leq i,j\leq n,i\neq j. A theorem of Carter and Keller is that these subgroups boundedly generate SLn()\operatorname{SL}_{n}(\mathbb{Z}):

Theorem 7.1.

[CK83, Main Theorem] Let n3n\geq 3. The group SLn()\operatorname{SL}_{n}(\mathbb{Z}) is boundedly generated by all the elementary subgroups.

This allows us to prove the following theorem:

Theorem 7.2.

For every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}, the group SL3()\operatorname{SL}_{3}(\mathbb{Z}) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}).

Proof.

As noted above in section 3.1, it is enough to prove the result for uniformly convex Banach spaces. Let 𝔼\operatorname{\mathbb{E}} be some uniformly convex Banach space.

Denote UT3()\operatorname{UT}_{3}(\mathbb{Z}) and LT3()\operatorname{LT}_{3}(\mathbb{Z}) be the subgroups of uni-upper-triangular and uni-lower-triangular matrices defined above.

By Theorem 7.1, UT3()\operatorname{UT}_{3}(\mathbb{Z}) and LT3()\operatorname{LT}_{3}(\mathbb{Z}) boundedly generate SL3()\operatorname{SL}_{3}(\mathbb{Z}) and by Corollary 6.4, (SL3(),UT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{UT}_{3}(\mathbb{Z})) and (SL3(),LT3())(\operatorname{SL}_{3}(\mathbb{Z}),\operatorname{LT}_{3}(\mathbb{Z})) both have relative property (T𝔼)(T_{\operatorname{\mathbb{E}}}). Thus, by Theorem 4.3, SL3()\operatorname{SL}_{3}(\mathbb{Z}) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}).

Remark 7.3.

At this point, it is also possible to give a bounded generation proof that shows that for that for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}} and every n3n\geq 3, the group SLn()\operatorname{SL}_{n}(\mathbb{Z}) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) via induction on nn (using the SL3()\operatorname{SL}_{3}(\mathbb{Z}) case as the basis of the induction). We will not do this here, since this result will follow from our general treatment of Banach property (T)(T) for simple Lie groups below.

8. Banach property (T)(T) for simple Lie groups

The aim of the section is to prove Theorem 1.3 that appeared in the introduction. We start by stating Howe-Moore’s Theorem for reflexive Banach spaces:

Theorem 8.1.

[Howe-Moore’s Theorem for reflexive Banach spaces [Vee79]] Let 𝔼\operatorname{\mathbb{E}} be a reflexive Banach space and GG be a connected simple real Lie group with a finite center. Then for every continuous linear isometric representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) such that 𝔼π(G)={0}\operatorname{\mathbb{E}}^{\pi(G)}=\{0\} it holds for every ξ𝔼\xi\in\operatorname{\mathbb{E}} and η𝔼\eta\in\operatorname{\mathbb{E}}^{*} that

limgπ(g)ξ,η=0.\lim_{g\rightarrow\infty}\langle\pi(g)\xi,\eta\rangle=0.
Corollary 8.2.

Let 𝔼\operatorname{\mathbb{E}} be a uniformly convex Banach space and GG be a connected simple real Lie group with a finite center. For every unbounded subgroup H<GH<G and every continuous linear isometric representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) it holds that 𝔼π(G))=𝔼π(H)\operatorname{\mathbb{E}}^{\pi(G))}=\operatorname{\mathbb{E}}^{\pi(H)} and that 𝔼(π)=𝔼(π|H)\operatorname{\mathbb{E}}^{\prime}(\pi)=\operatorname{\mathbb{E}}^{\prime}(\left.\pi\right|_{H}).

Proof.

Let ξ𝔼π(H)𝔼(π)\xi\in\operatorname{\mathbb{E}}^{\pi(H)}\cap\operatorname{\mathbb{E}}^{\prime}(\pi) and denote π\pi^{\prime} the restriction of π\pi to 𝔼(π)\operatorname{\mathbb{E}}^{\prime}(\pi). Fix hnHh_{n}\in H tending to infinity. By Howe-Moore it follows for every η𝔼\eta\in\operatorname{\mathbb{E}}^{*} that

ξ,η=limnπ(hn)ξ,η=0,\langle\xi,\eta\rangle=\lim_{n}\langle\pi(h_{n})\xi,\eta\rangle=0,

thus ξ=0\xi=0. This shows that 𝔼π(G)=𝔼π(H)\operatorname{\mathbb{E}}^{\pi(G)}=\operatorname{\mathbb{E}}^{\pi(H)}. Similarly, 𝔼π(G)=𝔼π(H)\operatorname{\mathbb{E}}^{\pi^{*}(G)}=\operatorname{\mathbb{E}}^{\pi^{*}(H)}. Recall that 𝔼\operatorname{\mathbb{E}}^{\prime} and 𝔼(π|H)\operatorname{\mathbb{E}}^{\prime}(\left.\pi\right|_{H}) are the annihilators of 𝔼π(G)\operatorname{\mathbb{E}}^{\pi^{*}(G)} and 𝔼π(H)\operatorname{\mathbb{E}}^{\pi^{*}(H)}, and thus 𝔼(π)=𝔼(π|H)\operatorname{\mathbb{E}}^{\prime}(\pi)=\operatorname{\mathbb{E}}^{\prime}(\left.\pi\right|_{H}). ∎

Corollary 8.3.

Let 𝔼\operatorname{\mathbb{E}} be a uniformly convex Banach space and GG be a connected simple real Lie group with a finite center. For every unbounded subgroup H<GH<G, if HH has property (T𝔼)(T_{\operatorname{\mathbb{E}}}), then so does GG.

Proof.

By Observation 3.2, it is enough to show that every continuous isometric representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) with 𝔼π(G)={0}\operatorname{\mathbb{E}}^{\pi(G)}=\{0\} does not have almost invariant vectors. Fix π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) with 𝔼π(G)={0}\operatorname{\mathbb{E}}^{\pi(G)}=\{0\}.

By Corollary 8.2, it holds that 𝔼π(H)={0}\operatorname{\mathbb{E}}^{\pi(H)}=\{0\}. Thus it follows that π|H\left.\pi\right|_{H} does not have (HH-)almost invariant vectors and as a result π\pi does not have (GG-)almost invariant vectors. ∎

An immediate consequence of this corollary is the following:

Corollary 8.4.

The group SL3()\operatorname{SL}_{3}(\mathbb{R}) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}.

Proof.

For every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}, combining Theorem 7.2 and Corollary 8.3 yields that SL3()\operatorname{SL}_{3}(\mathbb{R}) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}). ∎

A standard argument allows us to use this corollary in order to prove Theorem 1.3 that appeared in the introduction :

Theorem 8.5.

Let GG be a connected simple real Lie group with a finite center and 𝔤\mathfrak{g} the Lie algebra of GG. If 𝔤\mathfrak{g} contains 𝔰𝔩3()\mathfrak{sl}_{3}(\mathbb{R}) as a Lie sub-algebra, then GG all its lattices have property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}.

Proof.

We note since Z(G)Z(G) is finite, it follows that if Ad(G)=G/Z(G)\rm Ad(G)=G/Z(G) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}, then GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}. Thus we can replace GG with Ad(G)=G/Z(G)\rm Ad(G)=G/Z(G) and assume that GG is algebraic.

Fix a uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}. By Corollary 8.3, in order to prove that GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) it is enough to show that there is an unbounded subgroup GG such that has property (T𝔼)(T_{\operatorname{\mathbb{E}}}).

By our assumption on 𝔤\mathfrak{g}, the group GG contains a subgroup HH whose (algebraic) simply connected covering (see [Mar91, Definition 1.4.12]) is isomorphic to SL3()\operatorname{SL}_{3}(\mathbb{R}). Thus there is φ:SL3()H\varphi:\operatorname{SL}_{3}(\mathbb{R})\rightarrow H such that the cokernel of φ\varphi is finite. Since property (T𝔼)(T_{\operatorname{\mathbb{E}}}) is inherited by quotients, it follows from Corollary 8.4 that φ(H)\varphi(H) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) as needed.

Last, note that by Corollary 3.8, if GG has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}, then every lattice Γ<G\Gamma<G has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}. ∎

9. Applications

9.1. Banach fixed point property for simple Lie groups

Let 𝔼\operatorname{\mathbb{E}} be a Banach space and GG be a topological group. An affine isometric action of GG on 𝔼\operatorname{\mathbb{E}} is a continuous homomorphism ρ:GIsomaff(𝔼)\rho:G\rightarrow\operatorname{Isom}_{aff}(\operatorname{\mathbb{E}}), where Isomaff(𝔼)\operatorname{Isom}_{aff}(\operatorname{\mathbb{E}}) denotes the group of affine isometric automorphisms of 𝔼\operatorname{\mathbb{E}}. We recall such that ρ\rho is of the form

ρ(g)ξ=π(g)ξ+c(g),ξ𝔼\rho(g)\xi=\pi(g)\xi+c(g),\forall\xi\in\operatorname{\mathbb{E}}

where π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) is a continuous isometric linear representation that is called the linear part of ρ\rho and c:G𝔼c:G\rightarrow\operatorname{\mathbb{E}} is a continuous 11-cocycle into π\pi, i.e., it is a continuous map such that for every g,hGg,h\in G,

c(gh)=c(g)+π(g)c(h).c(gh)=c(g)+\pi(g)c(h).

The group GG is said to have property (F𝔼)(F_{\operatorname{\mathbb{E}}}) if every affine isometric action of GG on 𝔼\operatorname{\mathbb{E}} admits a fixed point.

Below, we will prove Theorem 1.5 that states that a simple Lie group whose Lie algebra contains 𝔰𝔩4()\mathfrak{sl}_{4}(\mathbb{R}) has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space. For this we will state the following results:

Theorem 9.1.

Metric Mautner phenomenon, [BG17, Theorem 1.3] Let GG be a connected simple real Lie group with a finite center. Assume that GG acts isometrically and continuously on a metric space (𝕏,d)(\mathbb{X},d). If there is a non-compact point stabilizer (of the action of GG on 𝕏\mathbb{X}), then the action of GG on 𝕏\mathbb{X} admits a fixed point.

Lemma 9.2.

[BFGM07, Lemma 5.6] Let H1×H2H_{1}\times H_{2} be a topological group that acts by a continuous affine isometric action ρ\rho on a uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}. If the linear part of ρ\rho restricted to H1H_{1} does not have almost invariant vectors, then the action of H2H_{2} on 𝔼\operatorname{\mathbb{E}} admits a fixed point.

Last, using [BFGM07] we can show that for higher rank Lie groups property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every uniformly convex 𝔼\operatorname{\mathbb{E}} is inherited to (and from) passing to lattices:

Proposition 9.3.

Let GG be a connected higher rank simple real Lie group and Γ<G\Gamma<G a lattice. The group GG has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space if and only if the group Γ\Gamma has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}.

Proof.

In [BFGM07, Proposition 8.8] it was shown that for any locally compact group GG, any lattice Γ<G\Gamma<G and any uniformly convex Banach space 𝔼\operatorname{\mathbb{E}} the following holds:

  • If Γ\Gamma has property (F𝔼)(F_{\operatorname{\mathbb{E}}}), then GG has property (F𝔼)(F_{\operatorname{\mathbb{E}}}).

  • If GG has property (FL2(G/Γ;𝔼))(F_{L^{2}(G/\Gamma;\operatorname{\mathbb{E}})}) and Γ\Gamma is 22-integrable (see [BFGM07, Definition 8.2]), then Γ\Gamma has property (F𝔼)(F_{\operatorname{\mathbb{E}}}).

Thus it readily follows that if Γ\Gamma has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}, then so does GG.

In the other direction, we use the following two facts: First, Shalom [Sha00] showed that every lattice in a connected higher rank simple Lie groups in 22-integrable. Second, by Theorem 2.4, L2(G/Γ;𝔼)L^{2}(G/\Gamma;\operatorname{\mathbb{E}}) is uniformly convex. ∎

Our starting point towards proving Theorem 1.5 it to prove SL4()\operatorname{SL}_{4}(\mathbb{R}) has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}:

Theorem 9.4.

For every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}, the group SL4()\operatorname{SL}_{4}(\mathbb{R}) has property (F𝔼)(F_{\operatorname{\mathbb{E}}}).

Proof.

By [BFGM07, Proposition 2.13] it is enough to consider uniformly convex Banach spaces.

Fix some uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}.

Let ρ:SL4()Isomaff(𝔼)\rho:\operatorname{SL}_{4}(\mathbb{R})\rightarrow\rm Isom_{aff}(\operatorname{\mathbb{E}}) be a continuous affine isometric action of SL4()\operatorname{SL}_{4}(\mathbb{R}) on 𝔼\operatorname{\mathbb{E}} with a linear part π\pi. As in [BFGM07, 5.c], the fact that SL4()\operatorname{SL}_{4}(\mathbb{R}) has a compact abelianization allows us to assume that 𝔼π(SL4())={0}\operatorname{\mathbb{E}}^{\pi(\operatorname{SL}_{4}(\mathbb{R}))}=\{0\}.

Define H<SL4()H<\operatorname{SL}_{4}(\mathbb{R}) to be the subgroup

H={(0A000001det(A)):AGL3()}.H=\left\{\left(\begin{matrix}&0\\ A&0\\ &0\\ 0\hskip 7.22743pt0\hskip 7.22743pt0&\frac{1}{\rm det(A)}\end{matrix}\right):A\in\rm GL_{3}(\mathbb{R})\right\}.

We note that HGL3()SL3()×H\cong\rm GL_{3}(\mathbb{R})\cong\operatorname{SL}_{3}(\mathbb{R})\times\mathbb{R}^{*}. By Corollary 8.2, 𝔼π(SL3())={0}\operatorname{\mathbb{E}}^{\pi(\operatorname{SL}_{3}(\mathbb{R}))}=\{0\}. Thus, by Corollary 8.4, the representation π|SL3()\left.\pi\right|_{\operatorname{SL}_{3}(\mathbb{R})} does not have almost invariant vectors and by Lemma 9.2, the ρ\rho-action of \mathbb{R}^{*} on 𝔼\operatorname{\mathbb{E}} has a fixed point. It follows from Theorem 9.1 that the ρ\rho-action of SL4()\operatorname{SL}_{4}(\mathbb{R}) on 𝔼\operatorname{\mathbb{E}} has a fixed point as needed. ∎

Theorem 9.5.

Let GG be a connected simple real Lie group with a finite center and 𝔤\mathfrak{g} be the Lie algebra of GG. If 𝔤\mathfrak{g} contains 𝔰𝔩4()\mathfrak{sl}_{4}(\mathbb{R}) as a Lie sub-algebra, then GG and any lattice Γ<G\Gamma<G have property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}.

Proof.

By [BFGM07, Proposition 2.13] it is enough to consider uniformly convex Banach spaces.

We note that since Z(G)Z(G) is finite, if Ad(G)=G/Z(G)\rm Ad(G)=G/Z(G) has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}, then GG has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}. Thus we can replace GG with Ad(G)=G/Z(G)\rm Ad(G)=G/Z(G) and assume that GG is algebraic.

By Proposition 9.3, if GG has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}, then every lattice of GG has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}. Thus, it is enough to prove that GG has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) for every uniformly convex Banach space 𝔼\operatorname{\mathbb{E}}.

Fix a uniformly convex Banach space 𝔼\operatorname{\mathbb{E}} and a continuous affine isometric action of GG on 𝔼\operatorname{\mathbb{E}}.

By our assumption on 𝔤\mathfrak{g}, the group GG contains a subgroup HH whose (algebraic) simply connected covering is isomorphic to SL4()\operatorname{SL}_{4}(\mathbb{R}). Thus there is φ:SL4()H\varphi:\operatorname{SL}_{4}(\mathbb{R})\rightarrow H such that the cokernel of φ\varphi is finite. Observe that property (F𝔼)(F_{\operatorname{\mathbb{E}}}) is preserved under passing to quotients and thus by Theorem 9.4 it follows that φ(SL4())\varphi(\operatorname{SL}_{4}(\mathbb{R})) has property (F𝔼)(F_{\operatorname{\mathbb{E}}}). It follows that the action of φ(SL4())\varphi(\operatorname{SL}_{4}(\mathbb{R})) on 𝔼\operatorname{\mathbb{E}} has a fixed point, so there is a non-compact point stabilizer of the action of GG on 𝔼\operatorname{\mathbb{E}}. By Theorem 9.1 it follows that the GG action on 𝔼\operatorname{\mathbb{E}} has a fixed point. ∎

9.2. Super-expanders

We start by recalling the definition of Mendel and Naor [MN14] for super-expanders.

Let 𝔼\operatorname{\mathbb{E}} be a Banach space and {(Vi,Ei)}i\{(V_{i},E_{i})\}_{i\in\mathbb{N}} be a sequence of finite graphs with uniformly bounded degree, such that limi|Vi|=\lim_{i}|V_{i}|=\infty. We say that {(Vi,Ei)}i\{(V_{i},E_{i})\}_{i\in\mathbb{N}} has a Poincaré inequality with respect to 𝔼\operatorname{\mathbb{E}} if there are constants p,γ(0,)p,\gamma\in(0,\infty) such that for every ii\in\mathbb{N} and every ϕ:Vi𝔼\phi:V_{i}\rightarrow\operatorname{\mathbb{E}} we have

1|Vi|2(u,v)Vi×Viϕ(u)ϕ(v)pγ|Vi|(x,y)Eiϕ(x)ϕ(y)p.\frac{1}{|V_{i}|^{2}}\sum_{(u,v)\in V_{i}\times V_{i}}\|\phi(u)-\phi(v)\|^{p}\leq\frac{\gamma}{|V_{i}|}\sum_{(x,y)\in E_{i}}\|\phi(x)-\phi(y)\|^{p}.

The sequence {(Vi,Ei)}i\{(V_{i},E_{i})\}_{i\in\mathbb{N}} is called a super-expander family if it has a Poincaré inequality with respect to every super-reflexive Banach space (or equivalently for every uniformly convex Banach space).

For Cayley graphs, the following proposition of Lafforgue gives a relation between Poincaré inequality of Cayley graphs and Banach property (T)(T):

Proposition 9.6.

[Laf08, Proposition 5.2] Let Γ\Gamma be a finitely generated discrete group and let {Ni}i\{N_{i}\}_{i\in\mathbb{N}} be a sequence of finite index normal subgroups of Γ\Gamma such that iNi={1}\bigcap_{i}N_{i}=\{1\}. Also let 𝔼\operatorname{\mathbb{E}} be a Banach space. If Γ\Gamma has Banach property (T𝔼)(T_{\operatorname{\mathbb{E}}^{\prime}}) for 𝔼=2(iG/Ni;𝔼)\operatorname{\mathbb{E}}^{\prime}=\ell^{2}(\bigcup_{i}G/N_{i};\operatorname{\mathbb{E}}), then for every fixed finite symmetric generating set SS, the family of Cayley graphs of {(G/Ni,S/Ni)}i\{(G/N_{i},S/N_{i})\}_{i\in\mathbb{N}} has a Poincaré inequality with respect to 𝔼\operatorname{\mathbb{E}}.

A consequence of this proposition and Theorem 1.4 implies the following theorem that appeared in the introduction (Theorem 1.6):

Theorem 9.7.

Let n3n\geq 3 and let SS be a finite generating set of SLn()\operatorname{SL}_{n}(\mathbb{Z}) (e.g., S={ei,j(±1):1i,jn,ij}S=\{e_{i,j}(\pm 1):1\leq i,j\leq n,i\neq j\}). Let Φi:SLn()SLn(/i)\Phi_{i}:\operatorname{SL}_{n}(\mathbb{Z})\rightarrow\operatorname{SL}_{n}(\mathbb{Z}/i\mathbb{Z}) be the natural surjective homomorphism. Then the family of Cayley graphs of {(SLn(/i),Φi(S))}i\{(\operatorname{SL}_{n}(\mathbb{Z}/i\mathbb{Z}),\Phi_{i}(S))\}_{i\in\mathbb{N}} is a super-expander family.

Proof.

Let 𝔼\operatorname{\mathbb{E}} be some uniformly convex Banach space. By Theorem 2.3, 2(iG/Ni;𝔼)\ell^{2}(\bigcup_{i}G/N_{i};\operatorname{\mathbb{E}}) is a uniformly convex Banach space. Thus by Theorem 1.4 and Proposition 9.6, the family of Cayley graphs of {(SLn(/i),Φi(S))}i\{(\operatorname{SL}_{n}(\mathbb{Z}/i\mathbb{Z}),\Phi_{i}(S))\}_{i\in\mathbb{N}} is a 𝔼\operatorname{\mathbb{E}}-expander family. ∎

It was shown in [Vig19, dLV19, FNvL19, Saw20] that one can construct super-expanders using warped cones arising from an action of a Banach property (T) group on a compact manifold. Combining this machinery with our Theorem 1.4 also leads to a construction of super-expanders as we will briefly now explain. Let (M,dM)(M,d_{M}) be a compact Riemannian manifold and Γ\Gamma be a finitely generated group with finite symmetric generating set SS. Assume that Γ\Gamma acts on MM by Lipschitz homeomorphisms. For t>0t>0, define the tt-level warped cone denoted (M,dΓt)(M,d_{\Gamma}^{t}) to be the metric space such that dΓtd_{\Gamma}^{t} is the largest metric satisfying:

  • dΓt(x,y)tdM(x,y)d_{\Gamma}^{t}(x,y)\leq td_{M}(x,y) for every x,yMx,y\in M.

  • dΓt(x,s.x)1d_{\Gamma}^{t}(x,s.x)\leq 1 for every xMx\in M and sSs\in S.

Remark 9.8.

The metric dΓtd_{\Gamma}^{t} is dependent on the choice of the generating set, but this dependence will be irrelevant with respect to our application below, because of the following fact (see [Roe05]): For metrics dΓtd_{\Gamma}^{t} and (dΓt)(d_{\Gamma}^{t})^{\prime} that correspond to generating sets SS and SS^{\prime}, it holds that dΓtd_{\Gamma}^{t} and (dΓt)(d_{\Gamma}^{t})^{\prime} are Lipschitz equivalent.

The following theorem is a straight-forward implication of Sawicki’s main result in [Saw20]:

Theorem 9.9.

[Saw20, Theorem 1.1] Let (M,dM)(M,d_{M}) be a compact Riemannian manifold and Γ\Gamma be a finitely generated group acting on MM by Lipschitz homeomorphisms. If Γ\Gamma has property (T𝔼)(T_{\operatorname{\mathbb{E}}}) for every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}, then for every increasing sequence {ti}i>0\{t_{i}\}_{i\in\mathbb{N}}\subseteq\mathbb{R}_{>0} tending to infinity, the family {(M,dΓti)}i\{(M,d^{t_{i}}_{\Gamma})\}_{i\in\mathbb{N}} is quasi-isometric to a super-expander.

Combining this theorem with Theorem 1.4 leads to the following theorem stated in the introduction:

Theorem 9.10.

Let n3n\geq 3 and let (M,dM)(M,d_{M}) be a compact Riemannian manifold such that SLn()\operatorname{SL}_{n}(\mathbb{Z}) acts on MM by Lipschitz homeomorphisms. For every increasing sequence {ti}i\{t_{i}\}_{i\in\mathbb{N}}\subseteq\mathbb{R} tending to infinity, the family {(M,dSLn()ti)}i\{(M,d^{t_{i}}_{\operatorname{SL}_{n}(\mathbb{Z})})\}_{i\in\mathbb{N}} is quasi-isometric to a super-expander.

9.3. Property (FF𝔼)(FF_{\operatorname{\mathbb{E}}}) for SLn(),SLn()\operatorname{SL}_{n}(\mathbb{R}),\operatorname{SL}_{n}(\mathbb{Z})

When 𝔼\operatorname{\mathbb{E}} is reflexive it follows for the Ryll-Nardzewski fixed-point Theorem that GG has property (F𝔼)(F_{\operatorname{\mathbb{E}}}) if and only if for every isometric linear representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) it holds that every continuous 11-cocycle into π\pi is bounded. This lead to the stronger notion of property (FF𝔼)(FF_{\operatorname{\mathbb{E}}}) defined by Mimura [Mim11] as a Banach version of Monod’s [Mon01] property (TT): Given a continuous isometric linear representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}), a continuous quasi-11-cocycle into π\pi is a continuous map c:G𝔼c:G\rightarrow\operatorname{\mathbb{E}} such that

supg,hGc(gh)(c(g)+π(g)c(h))<.\sup_{g,h\in G}\|c(gh)-(c(g)+\pi(g)c(h))\|<\infty.

A group GG is said to have property property (FF𝔼)(FF_{\operatorname{\mathbb{E}}}) if for every continuous isometric linear representation π:GO(𝔼)\pi:G\rightarrow O(\operatorname{\mathbb{E}}) it holds that every continuous quasi-11-cocycle into π\pi is bounded.

The following result of de Laat, Mimura and de la Salle allows one to deduce property (FF𝔼)(FF_{\operatorname{\mathbb{E}}}) from property (T𝔼)(T_{\operatorname{\mathbb{E}}}):

Theorem 9.11.

[dLMdlS16, Section 5] Let n3n\geq 3 and 𝔼\operatorname{\mathbb{E}} be a super-reflexive Banach space. For R=,R=\mathbb{Z},\mathbb{R}, if SLn(R)\operatorname{SL}_{n}(R) has property (T𝔼)(T_{\operatorname{\mathbb{E}}}), then SLn+2(R)\operatorname{SL}_{n+2}(R) has property (FF𝔼)(FF_{\operatorname{\mathbb{E}}}).

Combining this theorem with Theorem 1.4 yields the following corollary that appeared in the introduction (Corollary 1.8):

Corollary 9.12.

For every n5n\geq 5 and every super-reflexive Banach space 𝔼\operatorname{\mathbb{E}}, the groups SLn(),SLn()\operatorname{SL}_{n}(\mathbb{Z}),\operatorname{SL}_{n}(\mathbb{R}) have property (FF𝔼)(FF_{\operatorname{\mathbb{E}}}).

References

  • [BdlHV08] Bachir Bekka, Pierre de la Harpe, and Alain Valette. Kazhdan’s property (T), volume 11 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2008.
  • [BFGM07] Uri Bader, Alex Furman, Tsachik Gelander, and Nicolas Monod. Property (T)(T) and rigidity for actions on Banach spaces. Acta Math., 198(1):57–105, 2007.
  • [BG17] Uri Bader and Tsachik Gelander. Equicontinuous actions of semisimple groups. Groups Geom. Dyn., 11(3):1003–1039, 2017.
  • [BGM12] U. Bader, T. Gelander, and N. Monod. A fixed point theorem for L1L^{1} spaces. Invent. Math., 189(1):143–148, 2012.
  • [BL00] Yoav Benyamini and Joram Lindenstrauss. Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2000.
  • [CK83] David Carter and Gordon Keller. Bounded elementary generation of SLn(𝒪){\rm SL}_{n}(\mathcal{O}). Amer. J. Math., 105(3):673–687, 1983.
  • [Day41] Mahlon M. Day. Some more uniformly convex spaces. Bull. Amer. Math. Soc., 47:504–507, 1941.
  • [dLdlS15] Tim de Laat and Mikael de la Salle. Strong property (T) for higher-rank simple Lie groups. Proc. Lond. Math. Soc. (3), 111(4):936–966, 2015.
  • [dLdlS18] Tim de Laat and Mikael de la Salle. Approximation properties for noncommutative LpL^{p}-spaces of high rank lattices and nonembeddability of expanders. J. Reine Angew. Math., 737:49–69, 2018.
  • [dLMdlS16] Tim de Laat, Masato Mimura, and Mikael de la Salle. On strong property (T) and fixed point properties for Lie groups. Ann. Inst. Fourier (Grenoble), 66(5):1859–1893, 2016.
  • [dlS19] Mikael de la Salle. Strong property (T)(T) for higher-rank lattices. Acta Math., 223(1):151–193, 2019.
  • [dlS22] Mikael de la Salle. Analysis on simple Lie groups and lattices. https://arxiv.org/abs/2204.12381, April 2022.
  • [dLV19] Tim de Laat and Federico Vigolo. Superexpanders from group actions on compact manifolds. Geom. Dedicata, 200:287–302, 2019.
  • [DU77] J. Diestel and J. J. Uhl, Jr. Vector measures. Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis.
  • [FNvL19] David Fisher, Thang Nguyen, and Wouter van Limbeek. Rigidity of warped cones and coarse geometry of expanders. Adv. Math., 346:665–718, 2019.
  • [Jol05] Paul Jolissaint. On property (T) for pairs of topological groups. Enseign. Math. (2), 51(1-2):31–45, 2005.
  • [Kaž67] D. A. Každan. On the connection of the dual space of a group with the structure of its closed subgroups. Funkcional. Anal. i Priložen., 1:71–74, 1967.
  • [Laf08] Vincent Lafforgue. Un renforcement de la propriété (T). Duke Math. J., 143(3):559–602, 2008.
  • [Laf09] Vincent Lafforgue. Propriété (T) renforcée banachique et transformation de Fourier rapide. J. Topol. Anal., 1(3):191–206, 2009.
  • [Lia14] Benben Liao. Strong Banach property (T) for simple algebraic groups of higher rank. J. Topol. Anal., 6(1):75–105, 2014.
  • [LT79] Joram Lindenstrauss and Lior Tzafriri. Classical Banach spaces. II, volume 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin-New York, 1979. Function spaces.
  • [Mar91] G. A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991.
  • [Mim11] Masato Mimura. Fixed point properties and second bounded cohomology of universal lattices on Banach spaces. J. Reine Angew. Math., 653:115–134, 2011.
  • [Mim13] Masato Mimura. Fixed point property for universal lattice on Schatten classes. Proc. Amer. Math. Soc., 141(1):65–81, 2013.
  • [MN14] Manor Mendel and Assaf Naor. Nonlinear spectral calculus and super-expanders. Publ. Math. Inst. Hautes Études Sci., 119:1–95, 2014.
  • [Mon01] Nicolas Monod. Continuous bounded cohomology of locally compact groups, volume 1758 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001.
  • [Nao13] Assaf Naor. Minerva Lectures 2013 - Assaf Naor Talk 3: Super-expanders and nonlinear spectral calculus. https://www.youtube.com/watch?v=4a1OqpvrWiA, October 2013.
  • [Obe18] Mini-workshop: superexpanders and their coarse geometry. Oberwolfach Rep., 15(2):1117–1160, 2018. Abstracts from the mini-workshop held April 15–21, 2018, Organized by Anastasia Khukhro, Tim de Laat and Mikael de la Salle.
  • [Roe05] John Roe. Warped cones and property A. Geom. Topol., 9:163–178, 2005.
  • [Sal16] Mikael de la Salle. Towards strong Banach property (T) for SL(3,)(3,\mathbb{R}). Israel J. Math., 211(1):105–145, 2016.
  • [Saw20] Damian Sawicki. Super-expanders and warped cones. Ann. Inst. Fourier (Grenoble), 70(4):1753–1774, 2020.
  • [Sha99] Yehuda Shalom. Bounded generation and Kazhdan’s property (T). Inst. Hautes Études Sci. Publ. Math., (90):145–168 (2001), 1999.
  • [Sha00] Yehuda Shalom. Rigidity of commensurators and irreducible lattices. Invent. Math., 141(1):1–54, 2000.
  • [Vee79] William A. Veech. Weakly almost periodic functions on semisimple Lie groups. Monatsh. Math., 88(1):55–68, 1979.
  • [Vig19] Federico Vigolo. Discrete fundamental groups of warped cones and expanders. Math. Ann., 373(1-2):355–396, 2019.