This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Axial gravitational quasinormal modes of a self-dual black hole in loop quantum gravity

Sen Yanga,b,c [email protected]    Wen-Di Guoa,b,c [email protected], Wen-Di Guo and Sen Yang are co-first authors of this paper.    Qin Tana,b,c [email protected]    Yu-Xiao Liua,b,c [email protected], corresponding author a Institute of Theoretical Physics &\& Research Center of Gravitation, Lanzhou University, Lanzhou 730000, China
b Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou 730000, China
c Lanzhou Center for Theoretical Physics &\& Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
Abstract

We study the axial gravitational quasinormal modes of a self-dual black hole in loop quantum gravity. Considering the axial perturbation of the background spacetime, we obtain the Schrödinger-like master equation. Then we calculate the quasinormal frequencies with the Wentzel-Kramers-Brillouin approximation and the asymptotic iteration method. We also investigate the numerical evolution of an initial wave packet on the self-dual black hole spacetime. We find the quantum correction parameter PP positively affects the absolute values of both the real and imaginary parts of quasinormal frequencies. We derive the relation between the parameters of the circular null geodesics and quasinormal frequencies in the eikonal limit for the self-dual black hole, and numerically verify this relation.

I Introduction

The first direct detection of the gravitational wave (GW) in 2015 LIGOScientific:2016aoc marked an all-new era of physics and astronomy Cai:2017cbj ; Bian:2021ini . The Event Horizon Telescope has taken the first picture of a supermassive object at the center of galaxy M87 EventHorizonTelescope:2019dse ; EventHorizonTelescope:2019uob ; EventHorizonTelescope:2019jan ; EventHorizonTelescope:2019ths ; EventHorizonTelescope:2019pgp ; EventHorizonTelescope:2019ggy , and the picture of the central black hole in our Milky Way EventHorizonTelescope:2022wkp ; EventHorizonTelescope:2022apq ; EventHorizonTelescope:2022wok ; EventHorizonTelescope:2022exc ; EventHorizonTelescope:2022urf ; EventHorizonTelescope:2022xqj . Human beings can observe the universe with multi-messenger, both the gravitational wave and the electromagnetic wave. Until now, the LIGO–Virgo–KAGRA collaboration has finished three observing runs and detected 90 confident GW-burst events LIGOScientific:2018mvr ; LIGOScientific:2020ibl ; LIGOScientific:2021usb ; LIGOScientific:2021djp . GW-bursts, emitted from the merger of binary compact objects, bring information about gravitational theories and sources and provide us with a new approach to test general relativity in the strong gravitational field LIGOScientific:2016lio ; LIGOScientific:2019fpa ; LIGOScientific:2020tif ; LIGOScientific:2021sio . The whole gravitational wave waveform of a GW-burst event can be divided into three parts: inspiral, merger, and ringdown. And the ringdown part can be successfully described by the black hole perturbation theory Chandrasekhar:1985kt ; Maggiore:2018sht .

A black hole with perturbations is a dissipative system, and the eigenmodes of this system are named quasinormal modes (QNMs). The QNMs are the spectroscopy of a black hole, because the quasinormal frequencies depend only on the black hole’s parameters, while their amplitudes depend on the source exciting the oscillations Kokkotas:1999bd ; Nollert:1999ji ; Berti:2009kk ; Konoplya:2011qq . According to the behavior under space inversions, the gravitational perturbations of a spherically symmetric black hole can be divided into the odd (axial) parity part and the even (polar) parity part Chandrasekhar:1985kt . As the most successful theory for gravitational interaction, general relativity has passed many astrophysical tests Weinberg:1972kfs . In general relativity, Regge, Wheeler Regge:1957td , and Zerilli Zerilli:1970se first studied the odd parity and the even parity gravitational perturbations of the Schwarzschild black hole. Moncrief first studied both the odd parity and the even parity gravitational perturbations of the Reissner-Nordstrom black hole Moncrief:1974gw ; Moncrief:1974ng . And Teukolsky first studied the gravitational perturbations of the Kerr black hole Teukolsky:1972my . To get the quasinormal frequencies for the black hole perturbation problem, numerical methods are needed to solve the eigenvalue problem. With the development of the black hole perturbation theory, more and more numerical methods were proposed, such as the Wentzel-Kramers-Brillouin (WKB) approximations Mashhoon ; Schutz:1985km ; Iyer:1986np ; Konoplya:2003ii ; Matyjasek:2017psv ; Konoplya:2019hlu , the asymptotic iteration method Cho:2011sf , the monodromy technique Motl:2003cd , the series solution Horowitz:1999jd , the resonance method Berti:2009wx , and the Leaver’s continued fraction method Leaver:1985ax .

The singularity of general relativity is a good motivation to probe new physics. It is generally believed that a complete theory of quantum gravity has no singularity. Loop quantum gravity is exactly this case Rovelli:2004tv . In loop quantum gravity, spacetime is made up of some basic building blocks called spin networks. In the framework of loop quantum gravity, Modesto and Premont-Schwarz constructed the Reissner-Nordstrom-like self-dual black hole Modesto:2009ve ; Modesto:2008im . Many works investigated the phenomenological implications of this black hole Alesci:2011wn ; Barrau:2014yka ; Dasgupta:2012nk ; Sahu:2015dea ; Hossenfelder:2012tc ; Zhu:2020tcf ; Yan:2022fkr . The perturbations of the self-dual black hole also have been studied in some works, which can be divided into two categories by whether using the Arnowitt-Deser-Misner (ADM) mass of the black hole as one of the parameters fixed during calculation. Fixing the parameter M/(1+P)2M/(1+P)^{2} instead of the ADM mass of the self-dual black hole, Chen and Wang studied the QNMs of a massless scalar field Chen:2011zzi , Santos etal.et~{}al. studied QNMs of a massive scalar field nonminimally coupled to gravity Santos:2021wsw , Cruz etal.et~{}al. studied axial Cruz:2015bcj and polar gravitational perturbations Cruz:2020emz . But it is worth pointing out that the effective potential in Ref. Cruz:2015bcj cannot be reduced to the Schwarzschild black hole case when setting all loop quantum gravity parameters equal to zero. Fixing the ADM mass of the self-dual black hole, Liu etal.et~{}al. studied QNMs of the massless scalar field and electromagnetic field Liu:2020ola , and Momennia studied the QNMs of a test scalar field Momennia:2022tug .

In this work, we focus on the axial gravitational perturbation of the self-dual black hole with fixed ADM mass, because the ADM mass is the physical mass of a black hole measured in astronomical observations. Following Ref. Modesto:2009ve , we assume that the self-dual black hole is described by Einstein’s gravity minimally coupled to an anisotropic fluid, and derive the master equation of the axial gravitational perturbation of the self-dual black hole. This method also was used to study the gravitational perturbations of nonsingular black holes in conformal gravity Chen:2019iuo and non-singular Schwarzschild black holes in loop quantum gravity Bouhmadi-Lopez:2020oia . Then, we calculate the corresponding quasinormal frequencies with the WKB approximation and the asymptotic iteration method. The influence of the quantum correction parameter PP on the QNMs is also studied. We find that the parameter PP has a positive effect on the absolute values of both the real part and the imaginary part of quasinormal frequencies, which is consistent with the conclusions for the QNMs of the scalar field and the electromagnetic field on the self-dual black hole with fixed ADM mass during calculating Liu:2020ola ; Momennia:2022tug . Assuming the perturbation is a Gaussian packet, we investigate the numerical evolution of an initial wave packet on the self-dual black hole. Besides, Cardoso, Lemos, and Yoshida found that, in the eikonal limit, quasinormal modes of a stationary, spherically symmetric, and asymptotically flat black hole in any dimension are determined by the parameters of the circular null geodesics Cardoso:2008bp . We obtain the relation between the quasinormal frequencies in the eikonal limit of the axial gravitational perturbation and the parameters of the circular null geodesics in the self-dual black hole, and numerically verify this relation. The numerical results show that the relation between the parameters of the circular null geodesics and quasinormal frequencies in the eikonal limit is right in the self-dual black hole in loop quantum gravity.

This paper is organized as follows. In Sec. II, we derive the master equation of the axial gravitational perturbation of the self-dual black hole. In Sec. III, we calculate the corresponding quasinormal frequencies with the WKB approximation method and the asymptotic iteration method. And we investigate the numerical evolution of an initial wave packet on the self-dual black hole spacetime. Then we obtain the relation between the parameters of the circular null geodesics and quasinormal frequencies in the eikonal limit in the self-dual black hole, and numerically verify this relation in Sec. IV. Finally, the conclusions and discussions of this work are given in Sec. V.

II Gravitational perturbation of loop quantum black hole

The line element of the spherically symmetric self-dual black hole in loop quantum gravity is Modesto:2009ve

ds2=f(r)dt2+dr2g(r)+h(r)(dθ2+sin2θdφ2),ds^{2}=-f(r)dt^{2}+\frac{dr^{2}}{g(r)}+h(r)\left(d\theta^{2}+\sin^{2}\theta d\varphi^{2}\right), (2.1)

where the functions f(r)f(r), g(r)g(r), and h(r)h(r) have the following forms

f(r)\displaystyle f(r) =\displaystyle= (rr+)(rr)r4+a02(r+r0)2,\displaystyle\frac{(r-r_{+})(r-r_{-})}{r^{4}+a^{2}_{0}}(r+r_{0})^{2}, (2.2)
g(r)\displaystyle g(r) =\displaystyle= (rr+)(rr)r4+a02r4(r+r0)2,\displaystyle\frac{(r-r_{+})(r-r_{-})}{r^{4}+a^{2}_{0}}\frac{r^{4}}{(r+r_{0})^{2}}, (2.3)
h(r)\displaystyle h(r) =\displaystyle= r2+a02r2,\displaystyle r^{2}+\frac{a^{2}_{0}}{r^{2}}, (2.4)

where a05lP2/8πa_{0}\simeq 5l^{2}_{P}/8\pi (lpl_{p} is the Planck length) is related to the minimum area gap of loop quantum gravity, r+=2M/(1+P)2r_{+}=2M/(1+P)^{2} is the outer (event) horizon, with PP a function of the polymeric parameter δb\delta_{b} related to the geometric quantum effect of loop quantum gravity. r=2MP2/(1+P)2r_{-}=2MP^{2}/(1+P)^{2} is the inner (Cauchy) horizon, r0=r+rr_{0}=\sqrt{r_{+}r_{-}}, and MM is the ADM mass of the black hole. The deviation of the self-dual black hole from the Schwarzschild black hole is described by two quantum correction parameters PP and a0a_{0}. The constraints on the parameter PP have been obtained from various astrophysical observations Sahu:2015dea ; Zhu:2020tcf ; Yan:2022fkr , and the max one is P<0.0675P<0.0675 Zhu:2020tcf . Expanding Eqs. (2.2) and (2.3) in the power of 1/r1/r, one can see that the maximal correction from the parameter PP is at the order of (MP)/r(MP)/r, while the maximal correction from a0a_{0} is at the order of a02/r4a_{0}^{2}/r^{4} Zhu:2020tcf . In this work, we focus on the physics of QNMs outside the event horizon. And the radius of the event horizon of a typical Schwarzschild black hole with the mass of the sun is of about 33 km, then P𝒪(102)P\sim\mathcal{O}(10^{-2}) and a02/r4𝒪(1067)a_{0}^{2}/r^{4}\sim\mathcal{O}(10^{-67}). So the effect of a0a_{0} on astrophysical observation can be safely neglected, and we only care about the quantum correction from the parameter PP.

To study the perturbations of a spherically symmetric black hole, one can first focus on axisymmetric modes of perturbations Chandrasekhar:1985kt . We consider a perturbed spacetime which is described by a non-stationary and axisymmetric metric as

ds2=e2ν(dx0)2+e2ψ(dx1σdx0q2dx2q3dx3)2+e2μ2(dx2)2+e2μ3(dx3)2,\displaystyle ds^{2}=-e^{2\nu}\left(dx^{0}\right)^{2}+e^{2\psi}\left(dx^{1}-\sigma dx^{0}-q_{2}dx^{2}-q_{3}dx^{3}\right)^{2}+e^{2\mu_{2}}\left(dx^{2}\right)^{2}+e^{2\mu_{3}}\left(dx^{3}\right)^{2}, (2.5)

where ν\nu, ψ\psi, μ2\mu_{2}, μ3\mu_{3}, σ\sigma, q2q_{2}, and q3q_{3} depend on time coordinate tt (t=x0)(t=x^{0}), radial coordinate rr (r=x2)(r=x^{2}), and polar angle coordinate θ(θ=x3)\theta(\theta=x^{3}). And a tetrad basis e(a)μe_{(a)}^{\mu} corresponding to the metric (2.5) is

e(0)μ\displaystyle e^{\mu}_{(0)} =\displaystyle= (eν,σeν,0,0),\displaystyle(e^{-\nu},~{}~{}\sigma e^{-\nu},~{}~{}0,~{}~{}0),
e(1)μ\displaystyle e^{\mu}_{(1)} =\displaystyle= (0,eψ,0,0),\displaystyle(0,~{}~{}e^{-\psi},~{}~{}0,~{}~{}0),
e(2)μ\displaystyle e^{\mu}_{(2)} =\displaystyle= (0,q2eμ2,eμ2,0),\displaystyle(0,~{}~{}q_{2}e^{-\mu_{2}},~{}~{}e^{-\mu_{2}},~{}~{}0),
e(3)μ\displaystyle e^{\mu}_{(3)} =\displaystyle= (0,q3eμ3,0,eμ3).\displaystyle(0,~{}~{}q_{3}e^{-\mu_{3}},~{}~{}0,~{}~{}e^{-\mu_{3}}). (2.6)

In this regard, one can project any vector or tensor field onto the tetrad frame by

A(a)=e(a)μAμ,B(a)(b)=e(a)μe(b)νBμν.\displaystyle A_{(a)}=e^{\mu}_{(a)}A_{\mu},~{}~{}~{}~{}B_{(a)(b)}=e^{\mu}_{(a)}e^{\nu}_{(b)}B_{\mu\nu}. (2.7)

For a static and spherically symmetric spacetime, σ\sigma, q2q_{2}, and q3q_{3} are zero. Then, comparing the metric (2.5) with (2.1), one can get

e2ν=f(r),e2μ2=g(r),e2μ3=h(r),e2ψ=h(r)sin2θ.\displaystyle e^{2\nu}=f(r),~{}~{}~{}~{}e^{-2\mu_{2}}=g(r),~{}~{}~{}~{}e^{2\mu_{3}}=h(r),~{}~{}~{}e^{2\psi}=h(r)\sin^{2}\theta. (2.8)

For a self-dual black hole, one can simulate the quantum corrections with an effective anisotropic matter fluid, and write the field equation as the Einstein equation form Gμν=8πTμνG_{\mu\nu}=8\pi T_{\mu\nu}, where TμνT_{\mu\nu} is the effective energy-momentum tensor Modesto:2009ve . In the tetrad frame, the field equation can be rewritten as

R(a)(b)12η(a)(b)R=8πT(a)(b).\displaystyle R_{(a)(b)}-\frac{1}{2}\eta_{(a)(b)}R=8\pi T_{(a)(b)}. (2.9)

And it has been proven that the axial components of the perturbed energy-momentum tensor defined by an anisotropic fluid are zero in the tetrad formalism Chen:2019iuo . Therefore, the master equation of the axial gravitational perturbation of the self-dual black hole can be derived from the axial components of R(a)(b)=0R_{(a)(b)}=0. The (1,3)(1,3) and (1,2)(1,2) components of R(a)(b)|axial=0R_{(a)(b)}|_{\text{axial}}=0 are

[heνμ2(q2,3q3,2)],2\displaystyle\left[he^{\nu-\mu_{2}}\left(q_{2,3}-q_{3,2}\right)\right]_{,2} =\displaystyle= [heμ2ν(σ,3q3,0)],0,\displaystyle\left[he^{\mu_{2}-\nu}\left(\sigma_{,3}-q_{3,0}\right)\right]_{,0}, (2.10)
[heνμ2(q3,2q2,3)sin3θ],3\displaystyle\left[he^{\nu-\mu_{2}}\left(q_{3,2}-q_{2,3}\right)\sin^{3}\theta\right]_{,3} =\displaystyle= [h2eνμ2(σ,2q2,0)sin3θ],0,\displaystyle\left[h^{2}e^{-\nu-\mu_{2}}\left(\sigma_{,2}-q_{2,0}\right)\sin^{3}\theta\right]_{,0}, (2.11)

respectively, where F,iFxiF_{,i}\equiv\frac{\partial F}{\partial x^{i}}. Then, one can define

Q=heνμ2(q2,3q3,2)sin3θ,\displaystyle Q=he^{\nu-\mu_{2}}\left(q_{2,3}-q_{3,2}\right)\sin^{3}\theta, (2.12)

and rewrite Eqs. (2.10) and (2.11) as

eνμ2Q,2hsin3θ\displaystyle e^{\nu-\mu_{2}}\frac{Q_{,2}}{h\sin^{3}\theta} =\displaystyle= (σ,3q3,0),0,\displaystyle\left(\sigma_{,3}-q_{3,0}\right)_{,0}, (2.13)
eν+μ2Q,3h2sin3θ\displaystyle e^{\nu+\mu_{2}}\frac{Q_{,3}}{h^{2}\sin^{3}\theta} =\displaystyle= (σ,2q2,0),0.\displaystyle-\left(\sigma_{,2}-q_{2,0}\right)_{,0}. (2.14)

By differentiating Eqs. (2.13) and (2.14) and eliminating σ\sigma, one can obtain

1sin3θ(eνμ2hQ,2),2+eν+μ2h2(Q,3sin3θ),3=Q,00heνμ2sin3θ.\displaystyle\frac{1}{\sin^{3}\theta}\left(\frac{e^{\nu-\mu_{2}}}{h}Q_{,2}\right)_{,2}+\frac{e^{\nu+\mu_{2}}}{h^{2}}\left(\frac{Q_{,3}}{\sin^{3}\theta}\right)_{,3}=\frac{Q_{,00}}{he^{\nu-\mu_{2}}\sin^{3}\theta}. (2.15)

Considering the ansatz Chandrasekhar:1985kt

Q(r,θ)=Q(r)Y(θ)\displaystyle Q(r,\theta)=Q(r)Y(\theta) (2.16)

with Y(θ)Y(\theta) the Gegenbauer function satisfying

ddθ(1sin3θdYdθ)=μ2Ysin3θ,\displaystyle\frac{d}{d\theta}\left(\frac{1}{\sin^{3}\theta}\frac{dY}{d\theta}\right)=-\mu^{2}\frac{Y}{\sin^{3}\theta}, (2.17)

where μ2=(l1)(l+2)\mu^{2}=(l-1)(l+2), one can rewrite Eq. (2.15) as

(eνμ2hQ,r),r+(ω2heνμ2eν+μ2μ2h2)Q=0.\displaystyle\left(\frac{e^{\nu-\mu_{2}}}{h}Q_{,r}\right)_{,r}+\left(\frac{\omega^{2}}{he^{\nu-\mu_{2}}}-\frac{e^{\nu+\mu_{2}}\mu^{2}}{h^{2}}\right)Q=0. (2.18)

Note that here we have used the Fourier transformation tiω\partial t\rightarrow-i\omega. Then, one can define

Ψ(r)=Q(r)h(r).\displaystyle\Psi(r)=\frac{Q(r)}{\sqrt{h(r)}}. (2.19)

With this, we can obtain the Schrödinger-like master equation of the axial gravitational perturbation for the self-dual black hole

2Ψr2+[ω2V(r)]Ψ=0,\displaystyle\frac{\partial^{2}\Psi}{\partial r^{2}_{\ast}}+\left[\omega^{2}-V(r)\right]\Psi=0, (2.20)

where

V(r)=f(r)(l1)(l+2)h(r)f(r)g(r)h(r)ddr(f(r)g(r)h(r)dh(r)dr)\displaystyle V(r)=\frac{f(r)(l-1)(l+2)}{h(r)}-\sqrt{f(r)g(r)h(r)}\frac{d}{dr}\left(\frac{\sqrt{f(r)g(r)}}{h(r)}\frac{d\sqrt{h(r)}}{dr}\right) (2.21)

is the effective potential, and rr_{\ast} is the tortoise coordinate defined by

r\displaystyle r_{\ast} =\displaystyle= drf(r)g(r)\displaystyle\int\frac{dr}{\sqrt{f(r)g(r)}} (2.22)
=\displaystyle= ra02r+r(1rr++rr+rln(r))+1(r+r)(a02+r+4r+2ln(rr+)a02+r4r2ln(rr)).\displaystyle r-\frac{a_{0}^{2}}{r_{+}r_{-}}\left(\frac{1}{r}-\frac{r_{+}+r_{-}}{r_{+}r_{-}}\ln(r)\right)+\frac{1}{(r_{+}-r_{-})}\left(\frac{a^{2}_{0}+r^{4}_{+}}{r^{2}_{+}}\ln(r-r_{+})-\frac{a^{2}_{0}+r^{4}_{-}}{r^{2}_{-}}\ln(r-r_{-})\right).

It is worthwhile to mention that rr_{\ast} running from -\infty to ++\infty matches rr from the event horizon to spatial infinity. With different values of the parameter PP, the plots for the effective potential (2.21) in the tortoise coordinate (2.22) are shown in Fig. 1. It can be seen that, the height of the effective potential increases with the parameter PP.

Refer to caption
Figure 1: The effective potential (2.21) in the tortoise coordinate (2.22) with M=1M=1, l=2l=2, and different values of the parameter PP. The black curve shows the Regge–Wheeler potential of the Schwarzschild black hole.

III quasinormal modes and ringdown waveforms

III.1 Quasinormal Modes

The Schrödinger-like equation (2.20) has a set of complex eigenvalues, which are the QNMs of the self-dual black holes (2.1). In this work, we calculate the QNMs of the self-dual black hole using the WKB approximation method and the asymptotic iteration method.

The WKB approximation method was first applied to the problem of scattering around a black hole at the first order by Schutz and Will Schutz:1985km , and later developed to higher orders Iyer:1986np ; Konoplya:2003ii ; Matyjasek:2017psv ; Konoplya:2019hlu . This method can be used to solve the eigenvalue problem in which the effective potential has the form of a potential barrier and approaches to constant values at the event horizon and spatial infinity. The effective potential (2.21) satisfies these conditions. And the WKB approximation works best for low overtones, i.e., modes with a long decay time, and in the eikonal limit of large ll. Setting a0=0a_{0}=0, PP from 0 to 0.050.05, and {l=2,3,4}(0n<l)\{l=2,3,4\}(0\leq n<l), we use the WKB approximation to calculate the quasinormal frequencies ωnl\omega_{nl} for the axial gravitational perturbation of the self-dual black hole. The results are listed in Tables 1, 2, and 3.

To use the asymptotic iteration method, we first rewrite the Schrödinger-like equation (2.20) in the rr coordinate as follows

f(r)g(r)Ψ′′(r)+12[f(r)g(r)+f(r)g(r)]Ψ(r)+[ω2V(r)]Ψ=0,\displaystyle f(r)g(r)\Psi^{\prime\prime}(r)+\frac{1}{2}[f^{\prime}(r)g(r)+f(r)g^{\prime}(r)]\Psi^{\prime}(r)+[\omega^{2}-V(r)]\Psi=0, (3.1)

where the prime denotes the derivative to rr. For the perturbation propagating in the black hole spacetime, there are two physical boundary conditions: i) Ψ(r)eiωr\Psi(r_{\ast})\sim e^{-i\omega r_{\ast}} as r(rr+)r_{\ast}\rightarrow-\infty~{}(r\rightarrow r_{+}), which means the wave near the event horizon should purely enter the black hole; ii) Ψ(r)eiωr\Psi(r_{\ast})\sim e^{i\omega r_{\ast}} as r(r)r_{\ast}\rightarrow\infty~{}(r\rightarrow\infty), which means the wave is purely outgoing at spatial infinity. For a0=0a_{0}=0 and P0P\neq 0, the self-dual black hole has both a Cauchy horizon and an event horizon, and one can define the solution of Eq. (3.1) as

Ψ(r)=eiωrr(rr)1+iω+iωr+2/(r+r)(rr+)iωr+2/(r+r)ψ(r).\displaystyle\Psi(r)=\frac{e^{i\omega r}}{r}(r-r_{-})^{1+i\omega+i\omega r_{+}^{2}/(r_{+}-r_{-})}(r-r_{+})^{-i\omega r^{2}_{+}/(r_{+}-r_{-})}\psi(r). (3.2)

Taking the solution (3.2), we use the asymptotic iteration method to solve Eq. (3.1) and obtain the corresponding quasinormal frequencies with the same setting in the previous WKB calculation. The results are also listed in Tables 1, 2, and 3.

In Tables 1, 2, and 3, one can find that when P=0P=0, the quasinormal frequencies we obtained agree well with the quasinormal frequencies for the axial gravitational perturbation of the Schwarzschild black hole Konoplya:2003ii ; Cardoso:2003vt . This is in line with expectations because the metric (2.1) goes back to the Schwarzschild black hole when both the two quantum parameters vanish. For l=2,3,4l=2,3,4 and n=0n=0, the absolute values of both the real part and the imaginary part of the quasinormal frequencies varying with the value of PP are shown in Fig. 2. It can be seen that the absolute values of both the real and imaginary parts of the quasinormal frequencies increase with the parameter PP. This means the parameter PP has a positive effect on both the oscillation frequency and decay timescale of the axial gravitational perturbation of the self-dual black hole. This is consistent with the conclusions for the QNMs of the perturbations of the test scalar field and the electromagnetic field of the self-dual black hole Liu:2020ola ; Momennia:2022tug by taking the ADM mass of the self-dual black hole as a parameter. But it is different from the results in works Chen:2011zzi ; Santos:2021wsw ; Cruz:2015bcj ; Cruz:2020emz in which the ADM mass of the self-dual black hole varied during calculation. It is worth mentioning that the effective potential (2.21) we obtain is not the same as the one in Cruz:2015bcj , and the effective potential in Cruz:2015bcj can not go back to the Schwarzschild case when both the two quantum parameters vanish.

PP 0 0.0010.001 0.0020.002 0.0030.003 0.0040.004
ω02\omega_{02} WKB 0.7472390.177782i0.747239-0.177782i 0.7490700.178631i0.749070-0.178631i 0.7510420.179012i0.751042-0.179012i 0.7530130.179395i0.753013-0.179395i 0.7549890.179778i0.754989-0.179778i
AIM 0.7473430.177925i0.747343-0.177925i 0.7493080.178310i0.749308-0.178310i 0.7512750.178696i0.751275-0.178696i 0.7532450.179083i0.753245-0.179083i 0.7552190.179469i0.755219-0.179469i
ω12\omega_{12} WKB 0.6925930.546960i0.692593-0.546960i 0.6944580.550582i0.694458-0.550582i 0.6963970.551722i0.696397-0.551722i 0.6983080.552887i0.698308-0.552887i 0.7002310.554047i0.700231-0.554047i
AIM 0.6934220.547830i0.693422-0.547830i 0.6953310.549007i0.695331-0.549007i 0.6972440.550185i0.697244-0.550185i 0.6991600.551364i0.699160-0.551364i 0.7010790.552544i0.701079-0.552544i
PP 0.0050.005 0.0060.006 0.0070.007 0.0080.008 0.0090.009
ω02\omega_{02} WKB 0.7569680.180161i0.756968-0.180161i 0.7589470.180545i0.758947-0.180545i 0.7609370.180927i0.760937-0.180927i 0.7629170.181313i0.762917-0.181313i 0.7649110.181696i0.764911-0.181696i
AIM 0.7571950.179856i0.757195-0.179856i 0.7591750.180243i0.759175-0.180243i 0.7611580.180630i0.761158-0.180630i 0.7631440.181018i0.763144-0.181018i 0.7651330.181406i0.765133-0.181406i
ω12\omega_{12} WKB 0.7021620.555202i0.702162-0.555202i 0.7040740.556377i0.704074-0.556377i 0.7060390.557514i0.706039-0.557514i 0.7079240.558717i0.707924-0.558717i 0.7098830.559865i0.709883-0.559865i
AIM 0.7030010.553724i0.703001-0.553724i 0.7049270.554905i0.704927-0.554905i 0.7068560.556086i0.706856-0.556086i 0.7087880.557269i0.708788-0.557269i 0.7107230.558451i0.710723-0.558451i
PP 0.010.01 0.020.02 0.030.03 0.040.04 0.050.05
ω02\omega_{02} WKB 0.7669070.182080i0.766907-0.182080i 0.7870230.185939i0.787023-0.185939i 0.8074440.189824i0.807444-0.189824i 0.8281840.193732i0.828184-0.193732i 0.8492260.197664i0.849226-0.197664i
AIM 0.7671260.181794i0.767126-0.181794i 0.7872200.185688i0.787220-0.185688i 0.8076260.189606i0.807626-0.189606i 0.8283420.193545i0.828342-0.193545i 0.8493700.197505i0.849370-0.197505i
ω12\omega_{12} WKB 0.7118400.561018i0.711840-0.561018i 0.7314650.572694i0.731465-0.572694i 0.7513820.584477i0.751382-0.584477i 0.7716770.596294i0.771677-0.596294i 0.7922500.608217i0.792250-0.608217i
AIM 0.7126620.559635i0.712662-0.559635i 0.7322290.571507i0.732229-0.571507i 0.7521240.583441i0.752124-0.583441i 0.7723480.595432i0.772348-0.595432i 0.7929020.607476i0.792902-0.607476i
Table 1: The QNMs of the axial gravitational perturbation of the self-dual black hole with different values of PP and l=2(n<l)l=2~{}(n<l) calculated by the WKB approximation method and the asymptotic iteration method.
PP 0 0.0010.001 0.0020.002 0.0030.003 0.0040.004
ω03\omega_{03} WKB 1.1988900.185405i1.198890-0.185405i 1.2020700.185814i1.202070-0.185814i 1.2052600.186225i1.205260-0.186225i 1.2084500.186637i1.208450-0.186637i 1.2116600.187049i1.211660-0.187049i
AIM 1.1988900.185406i1.198890-0.185406i 1.2020700.185818i1.202070-0.185818i 1.2052600.186229i1.205260-0.186229i 1.2084600.186641i1.208460-0.186641i 1.2116600.187054i1.211660-0.187054i
ω13\omega_{13} WKB 1.1652800.562581i1.165280-0.562581i 1.1683700.563804i1.168370-0.563804i 1.1715300.565043i1.171530-0.565043i 1.1746600.566297i1.174660-0.566297i 1.1778400.567532i1.177840-0.567532i
AIM 1.1652900.562596i1.165290-0.562596i 1.1684300.563839i1.168430-0.563839i 1.1715800.565083i1.171580-0.565083i 1.1747400.566327i1.174740-0.566327i 1.1779000.567572i1.177900-0.567572i
ω23\omega_{23} WKB 1.1031900.958094i1.103190-0.958094i 1.1051900.959163i1.105190-0.959163i 1.1082900.961239i1.108290-0.961239i 1.1112900.963398i1.111290-0.963398i 1.1144400.965438i1.114440-0.965438i
AIM 1.1033700.958185i1.103370-0.958185i 1.1064400.960284i1.106440-0.960284i 1.1095200.962384i1.109520-0.962384i 1.1126000.964485i1.112600-0.964485i 1.1156900.966587i1.115690-0.966587i
PP 0.0050.005 0.0060.006 0.0070.007 0.0080.008 0.0090.009
ω03\omega_{03} WKB 1.2148600.187462i1.214860-0.187462i 1.2180800.187874i1.218080-0.187874i 1.2212900.188287i1.221290-0.188287i 1.2245100.188700i1.224510-0.188700i 1.2277400.189113i1.227740-0.189113i
AIM 1.2148700.187466i1.214870-0.187466i 1.2180800.187879i1.218080-0.187879i 1.2213000.188292i1.221300-0.188292i 1.2245200.188705i1.224520-0.188705i 1.2277400.189119i1.227740-0.189119i
ω13\omega_{13} WKB 1.1809900.568787i1.180990-0.568787i 1.1842000.570014i1.184200-0.570014i 1.1873400.571279i1.187340-0.571279i 1.1905300.572520i1.190530-0.572520i 1.1937300.573760i1.193730-0.573760i
AIM 1.1810600.568818i1.181060-0.568818i 1.1842300.570065i1.184230-0.570065i 1.1874100.571312i1.187410-0.571312i 1.1905900.572560i1.190590-0.572560i 1.1937800.573809i1.193780-0.573809i
ω23\omega_{23} WKB 1.1174600.967595i1.117460-0.967595i 1.1206900.969581i1.120690-0.969581i 1.1236600.971795i1.123660-0.971795i 1.1268100.973858i1.126810-0.973858i 1.1299800.975910i1.129980-0.975910i
AIM 1.1187800.968691i1.118780-0.968691i 1.1218800.970795i1.121880-0.970795i 1.1249800.972901i1.124980-0.972901i 1.1280900.975008i1.128090-0.975008i 1.1312000.977116i1.131200-0.977116i
PP 0.010.01 0.020.02 0.030.03 0.040.04 0.050.05
ω03\omega_{03} WKB 1.2309700.189527i1.230970-0.189527i 1.2635600.193675i1.263560-0.193675i 1.2966500.197847i1.296650-0.197847i 1.3302400.202038i1.330240-0.202038i 1.3643300.206247i1.364330-0.206247i
AIM 1.2309700.189533i1.230970-0.189533i 1.2635600.193683i1.263560-0.193683i 1.2966600.197856i1.296660-0.197856i 1.3302500.202049i1.330250-0.202049i 1.3643400.206260i1.364340-0.206260i
ω13\omega_{13} WKB 1.1968900.575022i1.196890-0.575022i 1.2291200.587533i1.229120-0.587533i 1.2617900.600136i1.261790-0.600136i 1.2950100.612780i1.295010-0.612780i 1.3287400.625475i1.328740-0.625475i
AIM 1.1969700.575058i1.196970-0.575058i 1.2291600.587590i1.229160-0.587590i 1.2618600.600186i1.261860-0.600186i 1.2950800.612838i1.295080-0.612838i 1.3287900.625548i1.328790-0.625548i
ω23\omega_{23} WKB 1.1330000.978100i1.133000-0.978100i 1.1645500.999115i1.164550-0.999115i 1.1964401.020400i1.196440-1.020400i 1.2289701.041680i1.228970-1.041680i 1.2620401.063030i1.262040-1.063030i
AIM 1.1343200.979225i1.134320-0.979225i 1.1657801.000370i1.165780-1.000370i 1.1977701.021610i1.197770-1.021610i 1.2302901.042940i1.230290-1.042940i 1.2634301.064120i1.263430-1.064120i
Table 2: The QNMs of the axial gravitational perturbation of the self-dual black hole with different values of PP and l=3(n<l)l=3~{}(n<l) calculated by the WKB approximation method and the asymptotic iteration method.
PP 0 0.0010.001 0.0020.002 0.0030.003 0.0040.004
ω04\omega_{04} WKB 1.6183600.188328i1.618360-0.188328i 1.6226700.188743i1.622670-0.188743i 1.6269800.189162i1.626980-0.189162i 1.6313100.189581i1.631310-0.189581i 1.6356400.190001i1.635640-0.190001i
AIM 1.6183600.188328i1.618360-0.188328i 1.6226700.188747i1.622670-0.188747i 1.6269900.189166i1.626990-0.189166i 1.6313100.189586i1.631310-0.189586i 1.6356400.190006i1.635640-0.190006i
ω14\omega_{14} WKB 1.5932600.568668i1.593260-0.568668i 1.5975200.569909i1.597520-0.569909i 1.6018100.571169i1.601810-0.571169i 1.6060900.572435i1.606090-0.572435i 1.6104100.573693i1.610410-0.573693i
AIM 1.5932600.568669i1.593260-0.568669i 1.5975400.569930i1.597540-0.569930i 1.6018300.571193i1.601830-0.571193i 1.6061200.572456i1.606120-0.572456i 1.6104200.573720i1.610420-0.573720i
ω24\omega_{24} WKB 1.5453900.959799i1.545390-0.959799i 1.5492300.961465i1.549230-0.961465i 1.5534800.963572i1.553480-0.963572i 1.5576800.965712i1.557680-0.965712i 1.5619800.967793i1.561980-0.967793i
AIM 1.5454200.959816i1.545420-0.959816i 1.5496400.961934i1.549640-0.961934i 1.5538700.964053i1.553870-0.964053i 1.5581000.966173i1.558100-0.966173i 1.5623400.968294i1.562340-0.968294i
ω34\omega_{34} WKB 1.4793301.367800i1.479330-1.367800i 1.4809701.368580i1.480970-1.368580i 1.4851601.371530i1.485160-1.371530i 1.4892201.374600i1.489220-1.374600i 1.4935301.377460i1.493530-1.377460i
AIM 1.4796701.367850i1.479670-1.367850i 1.4838201.370840i1.483820-1.370840i 1.4879701.373830i1.487970-1.373830i 1.4921201.376830i1.492120-1.376830i 1.4962901.379820i1.496290-1.379820i
PP 0.0050.005 0.0060.006 0.0070.007 0.0080.008 0.0090.009
ω04\omega_{04} WKB 1.6399800.190421i1.639980-0.190421i 1.6443200.190841i1.644320-0.190841i 1.6486800.191261i1.648680-0.191261i 1.6530400.191682i1.653040-0.191682i 1.6574000.192103i1.657400-0.192103i
AIM 1.6399800.190426i1.639980-0.190426i 1.6443200.190846i1.644320-0.190846i 1.6486800.191266i1.648680-0.191266i 1.6530300.191687i1.653030-0.191687i 1.6574000.192108i1.657400-0.192108i
ω14\omega_{14} WKB 1.6147200.574957i1.614720-0.574957i 1.6190100.5762290i1.619010-0.5762290i 1.6233500.577488i1.623350-0.577488i 1.6276800.578753i1.627680-0.578753i 1.6320100.580023i1.632010-0.580023i
AIM 1.6147300.574985i1.614730-0.574985i 1.6190400.576250i1.619040-0.576250i 1.6233600.577516i1.623360-0.577516i 1.6276900.578783i1.627690-0.578783i 1.6320300.580050i1.632030-0.580050i
ω24\omega_{24} WKB 1.5662300.969911i1.566230-0.969911i 1.5704100.972080i1.570410-0.972080i 1.5747500.974154i1.574750-0.974154i 1.5790300.976273i1.579030-0.976273i 1.5832800.978414i1.583280-0.978414i
AIM 1.5665900.970416i1.566590-0.970416i 1.5708400.972540i1.570840-0.972540i 1.5751100.974664i1.575110-0.974664i 1.5793800.976790i1.579380-0.976790i 1.5836500.978917i1.583650-0.978917i
ω34\omega_{34} WKB 1.4977101.380440i1.497710-1.380440i 1.5017001.383610i1.501700-1.383610i 1.5060701.386430i1.506070-1.386430i 1.5102801.389400i1.510280-1.389400i 1.5144101.392460i1.514410-1.392460i
AIM 1.5004601.382820i1.500460-1.382820i 1.5046401.385820i1.504640-1.385820i 1.5088201.388820i1.508820-1.388820i 1.5132001.391820i1.513200-1.391820i 1.5172201.394830i1.517220-1.394830i
PP 0.010.01 0.020.02 0.030.03 0.040.04 0.050.05
ω04\omega_{04} WKB 1.6617700.192524i1.661770-0.192524i 1.7058600.196748i1.705860-0.196748i 1.7506300.200992i1.750630-0.200992i 1.7960600.205255i1.796060-0.205255i 1.8421600.209535i1.842160-0.209535i
AIM 1.6617700.192529i1.661770-0.192529i 1.7058600.196753i1.705860-0.196753i 1.7506300.200998i1.750630-0.200998i 1.7960600.205262i1.796060-0.205262i 1.8421600.209537i1.842160-0.209537i
ω14\omega_{14} WKB 1.6363600.581289i1.636360-0.581289i 1.6801400.594005i1.680140-0.594005i 1.7246100.606781i1.724610-0.606781i 1.7697700.619610i1.769770-0.619610i 1.8155900.632491i1.815590-0.632491i
AIM 1.6363700.581318i1.636370-0.581318i 1.6801500.594035i1.680150-0.594035i 1.7246300.606813i1.724630-0.606813i 1.7697800.619645i1.769780-0.619645i 1.8155900.632407i1.815590-0.632407i
ω24\omega_{24} WKB 1.5875800.980530i1.587580-0.980530i 1.6307801.001860i1.630780-1.001860i 1.6746901.023290i1.674690-1.023290i 1.7193101.044790i1.719310-1.044790i 1.7645901.066390i1.764590-1.066390i
AIM 1.5879400.981045i1.587940-0.981045i 1.6311501.002380i1.631150-1.002380i 1.6750701.023810i1.675070-1.023810i 1.7196901.045310i1.719690-1.045310i 1.7650601.065550i1.765060-1.065550i
ω34\omega_{34} WKB 1.5186501.395430i1.518650-1.395430i 1.5610301.425560i1.561030-1.425560i 1.6041301.455810i1.604130-1.455810i 1.6480101.486120i1.648010-1.486120i 1.6925001.516630i1.692500-1.516630i
AIM 1.5214301.397830i1.521430-1.397830i 1.5639001.427990i1.563900-1.427990i 1.6070901.458230i1.607090-1.458230i 1.6511501.488830i1.651150-1.488830i 1.6990901.510890i1.699090-1.510890i
Table 3: The QNMs of the axial gravitational perturbation of the self-dual black hole with different values of PP and l=4(n<l)l=4~{}(n<l) calculated by the WKB approximation method and the asymptotic iteration method.
Refer to caption
Refer to caption
Figure 2: The left plot shows the real parts of ω02\omega_{02}, ω03\omega_{03}, ω04\omega_{04} in with the parameter PP. The right plot shows the inverse values of the imaginary parts of ω02\omega_{02}, ω03\omega_{03}, ω04\omega_{04} in with the parameter PP.

III.2 Ringdown Waveforms

To investigate the contribution of all modes of the axial perturbation of the self-dual black hole, we can consider the numeric evolution of an initial wave packet in the self-dual black hole spacetime. In a finite time domain, the Schrödinger-like equation (2.20) can be rewritten as

2Ψr22Ψt2V(r)Ψ=0.\displaystyle\frac{\partial^{2}\Psi}{\partial r^{2}_{\ast}}-\frac{\partial^{2}\Psi}{\partial t^{2}}-V(r_{\ast})\Psi=0. (3.3)

Using the light-cone coordinates u=tru=t-r_{\ast} and v=t+rv=t+r_{\ast} Gundlach:1993tp , the above equation can be written as

42Ψ(u,v)uvV(u,v)Ψ(u,v)=0.\displaystyle 4\frac{\partial^{2}\Psi(u,v)}{\partial u\partial v}-V(u,v)\Psi(u,v)=0. (3.4)

Here, we set the initial data for Eq. (3.4) as

Ψ(u,0)=0andΨ(0,v)=exp((vvc)22β2),\displaystyle\Psi(u,0)=0~{}~{}\text{and}~{}~{}\Psi(0,v)=\text{exp}\left(-\frac{(v-v_{c})^{2}}{2\beta^{2}}\right), (3.5)

where Ψ(0,v)\Psi(0,v) is a Gaussian wave packet centered in vcv_{c} and having width β\beta. Then, we choose the observer located at r=10r+r=10r_{+} and numerically solve the partial differential equation (3.4) to generate the ringdown waveforms. As shown in Fig. 3, the waveform with a larger value of the parameter PP damps more quickly. Finally, without loss of generality, we use a modified exponentially decaying function eωItAsin(ωR+B)e^{\omega_{I}t}A\sin(\omega_{R}+B) to fit the data in Fig. 3 and calculate the fundamental mode ω02\omega_{02} with different values of the parameter PP, which plays a major role in the ringdown waveforms. The results are shown in Tab. 4. Considering the error in the numerical calculation process, one can find that the fitting values of the fundamental mode ω02\omega_{02} with different values of the parameter PP in Tab. 4 agree well with the results obtained by using the WKB approximation method and the asymptotic iteration method.

Refer to caption
Figure 3: The time evolution of the wave function Ψ2(t)\Psi_{2}(t) (l=2l=2) of the axial gravitational perturbation for the self-dual black hole with different values of the parameter PP, evaluated at r=10r+r=10r_{+}. The black curve (P=0P=0) shows the Schwarzschild ringdown case.
PP 0 0.010.01 0.050.05
ω02\omega_{02} Fitting 0.7473040.178066i0.747304-0.178066i 0.7654870.182486i0.765487-0.182486i 0.8448210.199696i0.844821-0.199696i
WKB 0.7472390.177782i0.747239-0.177782i 0.7669070.182080i0.766907-0.182080i 0.8492260.197664i0.849226-0.197664i
AIM 0.7473430.177925i0.747343-0.177925i 0.7671260.181794i0.767126-0.181794i 0.8493700.197505i0.849370-0.197505i
Table 4: The fundamental mode ω02\omega_{02} calculated by fitting the data in Fig. 3, WKB approximation method, and the asymptotic iteration method.

IV QNMs in the eikonal limit and circular null geodesics

Assuming a stationary, spherically symmetric, and asymptotically flat line element, Cardoso etal.et~{}al. showed that, in the eikonal limit ll\rightarrow\infty, the QNMs of a black hole in any dimensions are Cardoso:2008bp

ωQNM=Ωcli(n+1/2)|λc|,\displaystyle\omega_{\text{QNM}}=\Omega_{c}l-i(n+1/2)|\lambda_{c}|, (3.6)

where the subscript cc means that the quantity is evaluated at the radius r=rcr=r_{c} of a circular null geodesic, Ωc\Omega_{c} and λc\lambda_{c} are the coordinate angular velocity and the Lyapunov exponent of the circular null geodesics, respectively. It is an interesting relation between quasinormal frequencies and the parameters of the circular null geodesics, but it may be not valid in a specific black hole Konoplya:2017wot . In this section, based on Eq. (3.6), we shall derive the explicit relation between the QNMs, in the eikonal limit, and the parameters of the circular null geodesics of the self-dual black hole. Then we numerically verify this relation.

The Lagrangian for a photon in the equatorial plane (θ=π/2\theta=\pi/2) in the self-dual black hole is

=12[f(r)t˙2+1g(r)r˙2+h(r)φ˙2],\displaystyle\mathscr{L}=\frac{1}{2}\left[-f(r)\dot{t}^{2}+\frac{1}{g(r)}\dot{r}^{2}+h(r)\dot{\varphi}^{2}\right], (3.7)

and the generalized momentum from this Lagrangian is

pt\displaystyle p_{t} =\displaystyle= f(r)t˙=E,\displaystyle-f(r)\dot{t}=-E, (3.8)
pφ\displaystyle p_{\varphi} =\displaystyle= h(r)φ˙=L,\displaystyle h(r)\dot{\varphi}=L, (3.9)
pr\displaystyle p_{r} =\displaystyle= r˙g(r),\displaystyle\frac{\dot{r}}{g(r)}, (3.10)

where EE is the energy, LL is the angular momentum, and the dot denotes differentiation to an affine parameter along the geodesics of the photon. Because the Lagrangian (3.7) is independent of both tt and φ\varphi, EE and LL are conserved. From Eqs. (3.8) and (3.9), one can get

φ˙=Lh(r),t˙=Ef(r).\displaystyle\dot{\varphi}=\frac{L}{h(r)},~{}~{}\dot{t}=\frac{E}{f(r)}. (3.11)

The Hamiltonian for the photon is

\displaystyle\mathscr{H} =\displaystyle= 12[Et˙+Lφ˙+1g(r)r˙2]=0.\displaystyle\frac{1}{2}\left[-E\dot{t}+L\dot{\varphi}+\frac{1}{g(r)}\dot{r}^{2}\right]=0. (3.12)

With Eqs. (3.11) and (3.12), one can define the effective potential as

Vrr˙2=g(r)[E2f(r)L2h(r)].\displaystyle V_{r}\equiv\dot{r}^{2}=g(r)\left[\frac{E^{2}}{f(r)}-\frac{L^{2}}{h(r)}\right]. (3.13)

For the circular (r=rcr=r_{c}) null geodesics on the equatorial plane, the conditions Vr=Vr=0V_{r}=V_{r}^{\prime}=0 lead to

EL=±fchc,fchc=fchc.\displaystyle\frac{E}{L}=\pm\sqrt{\frac{f_{c}}{h_{c}}},~{}~{}f_{c}h_{c}^{\prime}=f_{c}^{\prime}h_{c}. (3.14)

In this case

Vr′′=L2gcfchc2(fchc′′fc′′hc),\displaystyle V_{r}^{\prime\prime}=\frac{L^{2}g_{c}}{f_{c}h_{c}^{2}}\left(f_{c}h_{c}^{\prime\prime}-f_{c}^{\prime\prime}h_{c}\right), (3.15)

and the coordinate angular velocity is

Ωc=φ˙t˙=(fchc)1/2.\displaystyle\Omega_{c}=\frac{\dot{\varphi}}{\dot{t}}=\left(\frac{f_{c}}{h_{c}}\right)^{1/2}. (3.16)

The principal Lyapunov exponent is a quantity that characterizes the rate of separation of infinitesimally close geodesics. Using the expression of the principal Lyapunov exponent Cardoso:2008bp

λ=Vr′′2t˙2,\displaystyle\lambda=\sqrt{\frac{V_{r}^{\prime\prime}}{2\dot{t}^{2}}}, (3.17)

we get

λc=gc2hc(fchc′′fc′′hc)\displaystyle\lambda_{c}=\sqrt{\frac{g_{c}}{2h_{c}}\left(f_{c}h_{c}^{\prime\prime}-f_{c}^{\prime\prime}h_{c}\right)} (3.18)

for the circular null geodesics of the self-dual black hole. Taking Eqs. (3.16) and (3.18) into (3.6), we derive the relation between the QNMs, in the eikonal limit, and the parameters of the circular null geodesics of the self-dual black hole

ωQNM=l(fchc)1/2i(n+1/2)gc2hc(fchc′′fc′′hc).\displaystyle\omega_{\text{QNM}}=l\left(\frac{f_{c}}{h_{c}}\right)^{1/2}-i(n+1/2)\sqrt{\frac{g_{c}}{2h_{c}}\left(f_{c}h_{c}^{\prime\prime}-f_{c}^{\prime\prime}h_{c}\right)}. (3.19)

Setting l=100l=100 and n=0,1,2,3,4{n=0,1,2,3,4}, we calculate the quasinormal frequencies in the eiknoal limit by the WKB approximation method and the relation (3.19). We list the numerical results in Tab. 5. Considering the error of calculation, one can find that the quasinormal frequencies obtained by the WKB approximation method and the relation (3.19) agree well with each other in Tab. 5. It means that the general relation (3.6), between quasinormal frequencies and the parameters of the circular null geodesics, is right for the self-dual black hole in loop quantum gravity.

PP 0 0.0010.001 0.0020.002 0.0030.003 0.0040.004
ω0,100\omega_{0,100} WKB 38.67750.19244i38.6775-0.19244i 38.78070.19287i38.7807-0.19287i 38.88410.19330i38.8841-0.19330i 38.98760.19373i38.9876-0.19373i 39.09130.19416i39.0913-0.19416i
CNG 38.49000.19245i38.4900-0.19245i 38.59270.19288i38.5927-0.19288i 38.69560.19331i38.6956-0.19331i 38.79870.19373i38.7987-0.19373i 38.90190.19416i38.9019-0.19416i
ω1,100\omega_{1,100} WKB 38.67640.57733i38.6764-0.57733i 38.77960.57862i38.7796-0.57862i 38.88300.57990i38.8830-0.57990i 38.98660.58119i38.9866-0.58119i 39.09030.58247i39.0903-0.58247i
CNG 38.49000.57735i38.4900-0.57735i 38.59270.57863i38.5927-0.57863i 38.69560.57992i38.6956-0.57992i 38.79870.58120i38.7987-0.58120i 38.90190.58249i38.9019-0.58249i
ω2,100\omega_{2,100} WKB 38.67430.96225i38.6743-0.96225i 38.77750.96439i38.7775-0.96439i 38.88090.96653i38.8809-0.96653i 38.98440.96867i38.9844-0.96867i 39.08810.97081i39.0881-0.97081i
CNG 38.49000.96225i38.4900-0.96225i 38.59270.96439i38.5927-0.96439i 38.69560.96653i38.6956-0.96653i 38.79870.96867i38.7987-0.96867i 38.90190.97081i38.9019-0.97081i
ω3,100\omega_{3,100} WKB 38.67111.34719i38.6711-1.34719i 38.77431.35019i38.7743-1.35019i 38.87771.35318i38.8777-1.35318i 38.98121.35618i38.9812-1.35618i 39.08491.35918i39.0849-1.35918i
CNG 38.49001.34715i38.4900-1.34715i 38.59271.35015i38.5927-1.35015i 38.69561.35314i38.6956-1.35314i 38.79871.35614i38.7987-1.35614i 38.90191.35914i38.9019-1.35914i
ω4,100\omega_{4,100} WKB 38.66681.73219i38.6668-1.73219i 38.77011.73603i38.7701-1.73603i 38.87341.73989i38.8734-1.73989i 38.97701.74374i38.9770-1.74374i 39.08061.74760i39.0806-1.74760i
CNG 38.49001.73205i38.4900-1.73205i 38.59271.73590i38.5927-1.73590i 38.69561.73975i38.6956-1.73975i 38.79871.74361i38.7987-1.74361i 38.90191.74746i38.9019-1.74746i
PP 0.0050.005 0.0060.006 0.0070.007 0.0080.008 0.0090.009
ω0,100\omega_{0,100} WKB 39.19520.19458i39.1952-0.19458i 39.29920.19501i39.2992-0.19501i 39.40340.19544i39.4034-0.19544i 39.50770.19587i39.5077-0.19587i 39.61220.19630i39.6122-0.19630i
CNG 39.00520.19459i39.0052-0.19459i 39.10870.19502i39.1087-0.19502i 39.21240.19545i39.2124-0.19545i 39.31620.19588i39.3162-0.19588i 39.42020.19631i39.4202-0.19631i
ω1,100\omega_{1,100} WKB 39.19410.58376i39.1941-0.58376i 39.29810.58504i39.2981-0.58504i 39.40230.58633i39.4023-0.58633i 39.50670.58762i39.5067-0.58762i 39.61120.58891i39.6112-0.58891i
CNG 39.00520.58377i39.0052-0.58377i 39.10870.58506i39.1087-0.58506i 39.21240.58635i39.2124-0.58635i 39.31620.58764i39.3162-0.58764i 39.42020.58892i39.4202-0.58892i
ω2,100\omega_{2,100} WKB 39.19200.97295i39.1920-0.97295i 39.29600.97510i39.2960-0.97510i 39.40020.97724i39.4002-0.97724i 39.50450.97939i39.5045-0.97939i 39.60900.98154i39.6090-0.98154i
CNG 39.00520.97296i39.0052-0.97296i 39.10870.97510i39.1087-0.97510i 39.21240.97725i39.2124-0.97725i 39.31620.97939i39.3162-0.97939i 39.42020.98154i39.4202-0.98154i
ω3,100\omega_{3,100} WKB 39.18881.36218i39.1888-1.36218i 39.29281.36518i39.2928-1.36518i 39.39701.36819i39.3970-1.36819i 39.50131.37119i39.5013-1.37119i 39.60581.37420i39.6058-1.37420i
CNG 39.00521.36214i39.0052-1.36214i 39.10871.36514i39.1087-1.36514i 39.21241.36814i39.2124-1.36814i 39.31621.37115i39.3162-1.37115i 39.42021.37416i39.4202-1.37416i
ω4,100\omega_{4,100} WKB 39.18451.75146i39.1845-1.75146i 39.28851.75532i39.2885-1.75532i 39.39271.75918i39.3927-1.75918i 39.49701.76305i39.4970-1.76305i 39.60151.76691i39.6015-1.76691i
CNG 39.00521.75132i39.0052-1.75132i 39.10871.75518i39.1087-1.75518i 39.21241.75904i39.2124-1.75904i 39.31621.76291i39.3162-1.76291i 39.42021.76677i39.4202-1.76677i
PP 0.010.01 0.020.02 0.030.03 0.040.04 0.050.05
ω0,100\omega_{0,100} WKB 39.71690.19673i39.7169-0.19673i 40.77230.20104i40.7723-0.20104i 41.84360.20537i41.8436-0.20537i 42.93080.20971i42.9308-0.20971i 44.03380.21406i44.0338-0.21406i
CNG 39.52440.19674i39.5244-0.19674i 40.57470.20105i40.5747-0.20105i 41.64080.20537i41.6408-0.20537i 42.72270.20972i42.7227-0.20972i 43.82040.21407i43.8204-0.21407i
ω1,100\omega_{1,100} WKB 39.71580.59020i39.7158-0.59020i 40.77120.60312i40.7712-0.60312i 41.84250.61610i41.8425-0.61610i 42.92970.62913i42.9297-0.62913i 44.03270.64220i44.0327-0.64220i
CNG 39.52440.59021i39.5244-0.59021i 40.57470.60314i40.5747-0.60314i 41.64080.61612i41.6408-0.61612i 42.72270.62915i42.7227-0.62915i 43.82040.64222i43.8204-0.64222i
ω2,100\omega_{2,100} WKB 39.71370.98368i39.7137-0.98368i 40.76901.00523i40.7690-1.00523i 41.84031.02686i41.8403-1.02686i 42.92751.04857i42.9275-1.04857i 44.03041.07036i44.0304-1.07036i
CNG 39.52440.98369i39.5244-0.98369i 40.57471.00523i40.5747-1.00523i 41.64081.02686i41.6408-1.02686i 42.72271.04858i42.7227-1.04858i 43.82041.07036i43.8204-1.07036i
ω3,100\omega_{3,100} WKB 39.71041.37721i39.7104-1.37721i 40.76581.40737i40.7658-1.40737i 41.83701.43765i41.8370-1.43765i 42.92411.46805i42.9241-1.46805i 44.02701.49855i44.0270-1.49855i
CNG 39.52441.37716i39.5244-1.37716i 40.57471.40732i40.5747-1.40732i 41.64081.43761i41.6408-1.43761i 42.72271.46801i42.7227-1.46801i 43.82041.49851i43.8204-1.49851i
ω4,100\omega_{4,100} WKB 39.70611.77078i39.7061-1.77078i 40.76141.80955i40.7614-1.80955i 41.83261.84850i41.8326-1.84850i 42.91971.88758i42.9197-1.88758i 44.02251.92680i44.0225-1.92680i
CNG 39.52441.77064i39.5244-1.77064i 40.57471.80941i40.5747-1.80941i 41.64081.84836i41.6408-1.84836i 42.72271.88744i42.7227-1.88744i 43.82041.92665i43.8204-1.92665i
Table 5: The QNMs ωnl\omega_{nl} of the axial gravitational perturbation of the self-dual black hole with different values of the parameter PP and l=100l=100, calculated by the WKB approximation method and the QNMs-circular null geodesics (CNG) relation (3.19).

V Conclusions and Discussions

In this work, we investigated the QNMs of the axial gravitational perturbation of the self-dual black hole with the fixed ADM mass in loop quantum gravity. Simulating the quantum correction by an effective anisotropic matter fluid, we obtained the master equation of the axial gravitational perturbation of the self-dual black hole. We considered the influence of the quantum parameter PP, and found that the height of the effective potential increases with the parameter PP. Using the WKB approximation method and the asymptotic iteration method, we calculated the QNMs of the axial gravitational perturbation of the self-dual black hole with different values of the parameter PP. We found that the parameter PP has a positive effect on the absolute values of both the real part and imaginary part of the quasinormal frequency. This result is consistent with the conclusions for the QNMs of the perturbation of the scalar field and the electromagnetic field on the self-dual black hole with the fixed ADM mass Liu:2020ola ; Momennia:2022tug . In the eikonal limit, we obtained the relation between the QNMs and the parameters of the circular null geodesics in the self-dual black hole, and numerically verify it.

With more and more gravitational wave signals of compact binary components detected by the LIGO-Virgo-KAGRA collaboration and pictures of supermassive objects taken by the Event Horizon Telescope, it is possible to test gravitational theories in the strong gravitational field with multi-messenger. And the coupling of electromagnetic and gravitational fields should be considered Zou:2021lkj ; Guo:2022rms . Cardoso etal.et~{}al. provided the parameterized black hole quasinormal ringdown in the general spherical symmetry background spacetime McManus:2019ulj ; Cardoso:2019mqo . Völkel etal.et~{}al. got the bounds on modifications of black hole perturbation potentials near the light ring Volkel:2022khh . The shadow and ring of a black hole may exhibit rich behavior Feng:2020tyc ; Yifu ; Zeng:2021mok ; Chen:2022qrw ; Liu:2022ruc , and the relation between QNMs and shadow should be further explored. It would be interesting to find the constraints on the quantum correction parameters of the black holes in loop quantum gravity with the observed gravitational wave ringdown signals and pictures of black holes. And thermodynamics is also a fundamental property of black holes Wei:2021bwy ; Cai:2021sag ; Song:2020arr , the relation between QNMs and the thermodynamics of a black hole deserves attention. On the other hand, black holes always rotate in the real world, so the gravitational perturbations of the rotating black holes in loop quantum gravity and the related properties should be considered in future work.

Acknowledgements

We thank Tao Zhu for important suggestion. This work was supported by National Key Research and Development Program of China (Grant No. 2020YFC2201503), the National Natural Science Foundation of China (Grants No. 12205129, No. 12147166, No. 11875151, No. 12075103, and No. 12247101), the China Postdoctoral Science Foundation (Grant No. 2021M701529), the 111 Project (Grant No. B20063), and Lanzhou City’s scientific research funding subsidy to Lanzhou University.

References

  • (1) B. P. Abbott et al. [LIGO Scientific and Virgo], Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), [arXiv:1602.03837 [gr-qc]].
  • (2) R. G. Cai, Z. Cao, Z. K. Guo, S. J. Wang, and T. Yang, The Gravitational-Wave Physics, Natl. Sci. Rev. 4 (2017) no.5, 687-706, [arXiv:1703.00187 [gr-qc]].
  • (3) L. Bian, R. G. Cai, S. Cao, Z. Cao, H. Gao, Z. K. Guo, K. Lee, D. Li, J. Liu, and Y. Lu, et al. The Gravitational-wave physics II: Progress, Sci. China Phys. Mech. Astron. 64 (2021) no.12, 120401, [arXiv:2106.10235 [gr-qc]].
  • (4) K. Akiyama et al. [Event Horizon Telescope], First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875, L1 (2019), [arXiv:1906.11238 [astro-ph.GA]].
  • (5) K. Akiyama et al. [Event Horizon Telescope], First M87 Event Horizon Telescope Results. II. Array and Instrumentation, Astrophys. J. Lett. 875, L2 (2019), [arXiv:1906.11239 [astro-ph.IM]].
  • (6) K. Akiyama et al. [Event Horizon Telescope], First M87 Event Horizon Telescope Results. III. Data Processing and Calibration, Astrophys. J. Lett. 875, L3 (2019), [arXiv:1906.11240 [astro-ph.GA]].
  • (7) K. Akiyama et al. [Event Horizon Telescope], First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole, Astrophys. J. Lett. 875, L4 (2019), [arXiv:1906.11241 [astro-ph.GA]].
  • (8) K. Akiyama et al. [Event Horizon Telescope], First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring, Astrophys. J. Lett. 875, L5 (2019), [arXiv:1906.11242 [astro-ph.GA]].
  • (9) K. Akiyama et al. [Event Horizon Telescope], First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole, Astrophys. J. Lett. 875, L6 (2019), [arXiv:1906.11243 [astro-ph.GA]].
  • (10) K. Akiyama et al. [Event Horizon Telescope], First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, Astrophys. J. Lett. 930, L12 (2022).
  • (11) K. Akiyama et al. [Event Horizon Telescope], First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration, Astrophys. J. Lett. 930, L13 (2022).
  • (12) K. Akiyama et al. [Event Horizon Telescope], First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole, Astrophys. J. Lett. 930, L14 (2022).
  • (13) K. Akiyama et al. [Event Horizon Telescope], First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass, Astrophys. J. Lett. 930, L15 (2022).
  • (14) K. Akiyama et al. [Event Horizon Telescope], First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole, Astrophys. J. Lett. 930, L16 (2022).
  • (15) K. Akiyama et al. [Event Horizon Telescope], First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric, Astrophys. J. Lett. 930, L17 (2022).
  • (16) B. P. Abbott et al. [LIGO Scientific and Virgo], GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019), [arXiv:1811.12907 [astro-ph.HE]].
  • (17) R. Abbott et al. [LIGO Scientific and Virgo], GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021), [arXiv:2010.14527 [gr-qc]].
  • (18) R. Abbott et al. [LIGO Scientific and VIRGO], GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, [arXiv:2108.01045 [gr-qc]].
  • (19) R. Abbott et al. [LIGO Scientific, VIRGO and KAGRA], GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run’, [arXiv:2111.03606 [gr-qc]].
  • (20) B. P. Abbott et al. [LIGO Scientific and Virgo], Tests of general relativity with GW150914, Phys. Rev. Lett. 116, 221101 (2016), [erratum: Phys. Rev. Lett. 121 (2018), 129902] [arXiv:1602.03841 [gr-qc]].
  • (21) B. P. Abbott et al. [LIGO Scientific and Virgo], Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1, Phys. Rev. D 100, 104036 (2019), [arXiv:1903.04467 [gr-qc]].
  • (22) R. Abbott et al. [LIGO Scientific and Virgo], Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103, 122002 (2021), [arXiv:2010.14529 [gr-qc]].
  • (23) R. Abbott et al. [LIGO Scientific, VIRGO and KAGRA], Tests of General Relativity with GWTC-3, [arXiv:2112.06861 [gr-qc]].
  • (24) S. Chandrasekhar, The mathematical theory of black holes, Oxford University Press, New York, 1983.
  • (25) M. Maggiore, Gravitational Waves. Vol. 2: Astrophysics and Cosmology, Oxford University Press, 2018, ISBN 978-0-19-857089-9.
  • (26) K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel. 2, 2 (1999), [arXiv:gr-qc/9909058 [gr-qc]].
  • (27) H. P. Nollert, TOPICAL REVIEW: Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quant. Grav. 16, R159-R216 (1999).
  • (28) E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26, 163001 (2009), [arXiv:0905.2975 [gr-qc]].
  • (29) R. A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys. 83, 793-836 (2011), [arXiv:1102.4014 [gr-qc]].
  • (30) S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley and Sons, 1972, ISBN 978-0-471-92567-5, 978-0-471-92567-5.
  • (31) T. Regge and J. A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108, 1063-1069 (1957).
  • (32) F. J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett. 24, 737-738 (1970).
  • (33) V. Moncrief, Odd-parity stability of a Reissner-Nordstrom black hole, Phys. Rev. D 9, 2707-2709 (1974).
  • (34) V. Moncrief, Stability of Reissner-Nordstrom black holes, Phys. Rev. D 10, 1057-1059 (1974).
  • (35) S. A. Teukolsky, Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett. 29, 1114-1118 (1972).
  • (36) B. Mashhoon, in Proceedings of the Third Marcel Grossmann Meeting on Recent Developments of General Relativity, edited by H. Ning, p. 599, Amsterdam, 1983, North-Holland.
  • (37) B. F. Schutz and C. M. Will, BLACK HOLE NORMAL MODES: A SEMIANALYTIC APPROACH, Astrophys. J. Lett. 291, L33-L36 (1985).
  • (38) S. Iyer and C. M. Will, Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering, Phys. Rev. D 35 (1987), 3621.
  • (39) R. A. Konoplya, Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach, Phys. Rev. D 68, 024018 (2003), [arXiv:gr-qc/0303052 [gr-qc]].
  • (40) J. Matyjasek and M. Opala, Quasinormal modes of black holes. The improved semianalytic approach, Phys. Rev. D 96, no.2, 024011 (2017), [arXiv:1704.00361 [gr-qc]].
  • (41) R. A. Konoplya, A. Zhidenko and A. F. Zinhailo, Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations, Class. Quant. Grav. 36, 155002 (2019), [arXiv:1904.10333 [gr-qc]].
  • (42) H. T. Cho, A. S. Cornell, J. Doukas, T. R. Huang, and W. Naylor, A New Approach to Black Hole Quasinormal Modes: A Review of the Asymptotic Iteration Method, Adv. Math. Phys. 2012, 281705 (2012), [arXiv:1111.5024 [gr-qc]].
  • (43) L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7, 307-330 (2003), [arXiv:hep-th/0301173].
  • (44) G. T. Horowitz and V. E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62, 024027 (2000), [arXiv:hep-th/9909056].
  • (45) E. Berti, V. Cardoso, and P. Pani, Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes, Phys. Rev. D 79, 101501 (2009), [arXiv:0903.5311 [gr-qc]].
  • (46) E. W. Leaver, An Analytic representation for the quasi normal modes of Kerr black holes, Proc. Roy. Soc. Lond. A 402, 285-298 (1985).
  • (47) C. Rovelli, Quantum gravity, Univ. Pr., 2004.
  • (48) L. Modesto and I. Premont-Schwarz, Self-dual Black Holes in LQG: Theory and Phenomenology, Phys. Rev. D 80, 064041 (2009), [arXiv:0905.3170 [hep-th]].
  • (49) L. Modesto, Semiclassical loop quantum black hole, Int. J. Theor. Phys. 49, 1649-1683 (2010), [arXiv:0811.2196 [gr-qc]].
  • (50) E. Alesci and L. Modesto, Particle Creation by Loop Black Holes, Gen. Rel. Grav. 46, 1656 (2014), [arXiv:1101.5792 [gr-qc]].
  • (51) A. Dasgupta, Entropy Production and Semiclassical Gravity, SIGMA 9, 013 (2013), [arXiv:1203.5119 [gr-qc]].
  • (52) A. Barrau, C. Rovelli and F. Vidotto, Fast Radio Bursts and White Hole Signals, Phys. Rev. D 90, 127503 (2014), [arXiv:1409.4031 [gr-qc]].
  • (53) S. Hossenfelder, L. Modesto, and I. Premont-Schwarz, Emission spectra of self-dual black holes, [arXiv:1202.0412 [gr-qc]].
  • (54) S. Sahu, K. Lochan, and D. Narasimha, Gravitational lensing by self-dual black holes in loop quantum gravity, Phys. Rev. D 91, 063001 (2015), [arXiv:1502.05619 [gr-qc]].
  • (55) T. Zhu and A. Wang, Observational tests of the self-dual spacetime in loop quantum gravity, Phys. Rev. D 102, 124042 (2020), [arXiv:2008.08704 [gr-qc]].
  • (56) J. M. Yan, Q. Wu, C. Liu, T. Zhu, and A. Wang, Constraints on self-dual black hole in loop quantum gravity with S0-2 star in the galactic center, JCAP 09, 008 (2022), [arXiv:2203.03203 [gr-qc]].
  • (57) J. H. Chen and Y. J. Wang, Complex frequencies of a massless scalar field in loop quantum black hole spacetime, Chin. Phys. B 20, 030401 (2011).
  • (58) J. S. Santos, M. B. Cruz, and F. A. Brito, Quasinormal modes of a massive scalar field nonminimally coupled to gravity in the spacetime of self-dual black hole, Eur. Phys. J. C 81, 1082 (2021), [arXiv:2103.11212 [hep-th]].
  • (59) M. B. Cruz, C. A. S. Silva, and F. A. Brito, Gravitational axial perturbations and quasinormal modes of loop quantum black holes, Eur. Phys. J. C 79, 157 (2019), [arXiv:1511.08263 [gr-qc]].
  • (60) M. B. Cruz, F. A. Brito, and C. A. S. Silva, Polar gravitational perturbations and quasinormal modes of a loop quantum gravity black hole, Phys. Rev. D 102, 044063 (2020), [arXiv:2005.02208 [gr-qc]].
  • (61) C. Liu, T. Zhu, Q. Wu, K. Jusufi, M. Jamil, M. Azreg-Aïnou, and A. Wang, Shadow and quasinormal modes of a rotating loop quantum black hole, Phys. Rev. D 101, 084001 (2020) [erratum: Phys. Rev. D 103 (2021) no.8, 089902], [arXiv:2003.00477 [gr-qc]].
  • (62) M. Momennia, Quasinormal modes of self-dual black holes in loop quantum gravity, Phys. Rev. D 106, 024052 (2022), [arXiv:2204.03259 [gr-qc]].
  • (63) C. Y. Chen and P. Chen, Gravitational perturbations of nonsingular black holes in conformal gravity, Phys. Rev. D 99, 104003 (2019), [arXiv:1902.01678 [gr-qc]].
  • (64) M. Bouhmadi-López, S. Brahma, C. Y. Chen, P. Chen, and D. h. Yeom, A consistent model of non-singular Schwarzschild black hole in loop quantum gravity and its quasinormal modes, JCAP 07, 066 (2020), [arXiv:2004.13061 [gr-qc]].
  • (65) V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T. Zanchin, Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev. D 79, 064016 (2009), [arXiv:0812.1806 [hep-th]].
  • (66) C. Gundlach, R. H. Price, and J. Pullin, Late time behavior of stellar collapse and explosions: 1. Linearized perturbations, Phys. Rev. D 49, 883-889 (1994), [arXiv:gr-qc/9307009].
  • (67) R. A. Konoplya, Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach, Phys. Rev. D 68 (2003), 024018, [arXiv:gr-qc/0303052 [gr-qc]].
  • (68) V. Cardoso, J. P. S. Lemos, and S. Yoshida, Quasinormal modes of Schwarzschild black holes in four-dimensions and higher dimensions, Phys. Rev. D 69, 044004 (2004), [arXiv:gr-qc/0309112].
  • (69) R. A. Konoplya and Z. Stuchlík, Are eikonal quasinormal modes linked to the unstable circular null geodesics?, Phys. Lett. B 771, 597-602 (2017), [arXiv:1705.05928 [gr-qc]].
  • (70) Y. Zou, M. Wang and J. Jing, Test of a model coupling of electromagnetic and gravitational fields by using high-frequency gravitational waves, Sci. China Phys. Mech. Astron. 64 (2021) no.5, 250411.
  • (71) W. D. Guo, Q. Tan and Y. X. Liu, Gravito-Electromagnetic coupled perturbations and quasinormal modes of a charged black hole with scalar hair, [arXiv:2212.08784 [gr-qc]].
  • (72) V. Cardoso, M. Kimura, A. Maselli, E. Berti, C. F. B. Macedo, and R. McManus, Parametrized black hole quasinormal ringdown: Decoupled equations for nonrotating black holes, Phys. Rev. D 99, 104077 (2019), [arXiv:1901.01265 [gr-qc]].
  • (73) R. McManus, E. Berti, C. F. B. Macedo, M. Kimura, A. Maselli, and V. Cardoso, Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes, Phys. Rev. D 100, 044061 (2019), [arXiv:1906.05155 [gr-qc]].
  • (74) S. H. Völkel, N. Franchini, E. Barausse, and E. Berti, Constraining modifications of black hole perturbation potentials near the light ring with quasinormal modes, Phys. Rev. D 106, 124036 (2022), [arXiv:2209.10564 [gr-qc]].
  • (75) W. B. Feng, S. J. Yang, Q. Tan, J. Yang, and Y. X. Liu, Overcharging a Reissner-Nordström Taub-NUT regular black hole, Sci. China Phys. Mech. Astron. 64 (2021) no.6, 260411, [arXiv:2009.12846 [gr-qc]].
  • (76) Y. F. Cai, Remarkable effects of multiple photon spheres on black hole observations, Sci. China Phys. Mech. Astron. 65 (2022) no.12, 120431.
  • (77) X. X. Zeng, K. J. He, and G. P. Li, Effects of dark matter on shadows and rings of Brane-World black holes illuminated by various accretions, Sci. China Phys. Mech. Astron. 65 (2022) no.9, 290411, [arXiv:2111.05090 [gr-qc]].
  • (78) Y. Chen, G. Guo, P. Wang, H. Wu, and H. Yang, Appearance of an infalling star in black holes with multiple photon spheres, Sci. China Phys. Mech. Astron. 65 (2022) no.12, 120412, [arXiv:2206.13705 [gr-qc]].
  • (79) X. Liu, S. Chen, and J. Jing, Polarization distribution in the image of a synchrotron emitting ring around a regular black hole, Sci. China Phys. Mech. Astron. 65 (2022) no.12, 120411, [arXiv:2205.00391 [gr-qc]].
  • (80) S. W. Wei, Y. Q. Wang, Y. X. Liu, and R. B. Mann, Observing dynamic oscillatory behavior of triple points among black hole thermodynamic phase transitions, Sci. China Phys. Mech. Astron. 64 (2021) no.7, 270411, [arXiv:2102.00799 [gr-qc]].
  • (81) R. G. Cai, Oscillatory behaviors near a black hole triple point, Sci. China Phys. Mech. Astron. 64 (2021) no.9, 290432.
  • (82) S. Song, H. Li, Y. Ma, and C. Zhang, Entropy of black holes with arbitrary shapes in loop quantum gravity, Sci. China Phys. Mech. Astron. 64 (2021) no.12, 120411, [arXiv:2002.08869 [gr-qc]].