This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Auto-correlative weak-value amplification under strong noise background

Jing-Hui Huang1 Email:[email protected]    Xiang-Yun Hu1 Email:[email protected]    Adetunmise C. Dada2    Jeff S. Lundeen3    Kyle M. Jordan3    Huan Chen4    Jian-Qi An5 1Institute of Geophysics and Geomatics, China University of Geosciences, Lumo Road 388, 430074 Wuhan, China. 2School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 3Department of Physics and Centre for Research in Photonics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario, Canada K1N 6N5 4 School of Mathematics and Physics, China University of Geosciences, Lumo Road 388, 430074 Wuhan, China. 5 School of Automation, China University of Geosciences, Lumo Road 388, 430074 Wuhan, China.
Abstract

By choosing more orthogonality between pre-selection and post-selection states, one can significantly improve the sensitivity in the general optical quantum metrology based on the weak-value amplification (WVA) approach. However, increasing the orthogonality decreases the probability of detecting photons and makes the weak measurement difficult, especially when the weak measurement is disturbed by strong noise and the pointer is drowned in noise with a negative-dB signal-to-noise ratio (SNR). In this article, we investigate a modified weak measurement protocol with a temporal pointer, namely, the auto-correlative weak-value amplification (AWVA) approach. Specifically, a small longitudinal time delay (tiny phase shift) τ\tau of a Gaussian pulse is measured by implementing two simultaneous auto-correlative weak measurements under Gaussian white noise with different SNR. The small quantities τ\tau are obtained by measuring the auto-correlation coefficient of the pulses instead of fitting the shift of the mean value of the probe in the standard WVA technique. Simulation results show that the AWVA approach outperforms the standard WVA technique in the time domain with smaller statistical errors, remarkably increasing the precision of weak measurement under strong noise background.

I Introduction

Higher precision in the measurement of various quantities is a persistent goal of scientific communities. It is well known that the pre- and post-selection of the measured system have played a crucial role in amplifying detector signals in a weak measurement. The use of the pre- and post-selection [1] originated from the work of Aharonov, Albert, and Vaidman in 1988. Theoretically, they found the measurement result of the component of a particle spin, called the weak value, can be amplified by a large number, which opened up a gate for the quantum metrology [2, 3, 4, 5, 6, 7, 8] with the weak-value amplification (WVA).

Chronologically, a standard weak measurement includes an initial preparation of the measured system (pre-selection), weak coupling between the system and the pointer, a post-selection of the system, and a projective measurement on the pointer to read out the results [9]. For now, the widely used pointers in weak measurement are shifts of mean values, such as the temporal shifts [10, 11, 12, 13], the momentum shifts [14, 15], the frequency shifts [16, 17], and even the angular rotation shifts [18, 19]. But even so, the WVA scheme entails an inherent dilemma: when the pre- and post-selection are nearly orthogonal to achieve higher sensitivity, the probability of a successful post-selection will be reduced greatly [20, 21]. To obtain an observable distribution function, the measurement must be repeated a large number of times and the requirements on the apparatus are stringent [22]. For example, the resolution of the apparatus should be high enough and the intensity of the light source ought to be sufficiently strong.

Meanwhile, the determination of the pointer shift would inevitably be influenced by technical noise and the surrounding environment. Numerous studies [23, 21, 20] have been done to investigate the advantage of WVA in presence of noise. In particular, Knee et al. [21] argued that the amplified displacement offered no fundamental metrological advantage, due to the necessarily reduced probability of success. Using statistically rigorous arguments, Christopher et al. [20] showed that the technique of WVA does not perform better than standard statistical techniques for single parameter estimation or signal detection. Considering the measured system cannot be completely isolated from the surrounding environment and the instability of the element itself, the determination of the pointer shift will inevitably be influenced by many sources [23]: instability of the light source’s spectrum and intensity, interference of the beam with itself, thermal noise and shot noise of the detection, and other noise sources. A natural thought is to equate these types of noise with Gaussian white noise. In addition, Gaussian white noise has been replaced by colored noise (non-Gaussian ) [24, 25, 26, 27] in a variety of areas of physics, such as quantum Brownian motion in a general environment with nonlocal dissipation and colored noise [25], non-Gaussian noise-enhanced stability of foraging colony system [26]. Colored noise also appears in gravitational wave interferometer, where the specific noise distribution depends on the quantum state of the gravitational field [28]. However, in this paper, we assume that the contribution of all noise is Gaussian white noise and investigate the weak-value amplification technique under strong Gaussian white noise background.

It is encouraging that the WVA scheme based on the imaginary weak-value (in the frequency domain) has sound potential to outperform the standard measurement in presence of technical noise [10, 29, 30, 31, 32, 33]. Furthermore, Brunner et al. [10] proposed that the WVA scheme using the imaginary weak value amplification can result in 3 orders of magnitude higher precision than the traditional interference method. Therefore, the WVA scheme based on the imaginary weak value is currently used in the field of biosensors, such as a new chiral sensor based on weak measurement for estimation of a trace amount of chiral molecule [34], a tunable and high-sensitivity temperature-sensing method via WVA of Goos-Hänchen (GH) shifts in a graphene-coated system [35], and even an optical system based on optical rotation via weak measurement for detection of single- and double-strand state of DNA [36]. Furthermore, there have been several optimization schemes to improve the WVA scheme based on analysis of its Fisher information [32, 23, 37, 38].

Note that so far, how to achieve higher precision based on the WVA scheme with the temporal pointer (in the time domain) is seldom investigated, especially under strong noise background (corresponding to the negative-dB SNR). Nevertheless, different effects in the environment will inevitably cause signal noise, which makes the measurement with WVA more difficult. Thus, further study of the WVA under strong noise is imperative. In this paper, we proposed a modified weak measurement protocol with a temporal pointer, namely, auto-correlative weak-value amplification (AWVA). It is motivated by the widely used auto-correlation technique for signal denoising in engineering [39, 40, 41], where auto-correlation is a signal processing method describing the correlation of a signal with a delayed copy of itself [40]. The AWVA technique can realize the WVA scheme under strong noise background. In particular, the measurements with Gaussian white noises are studied at a certain signal-to-noise ratio (SNR). By simulating these measurements on Simulink and Matlab, we show that the measurement with AWVA is superior to the measurement with WVA under strong noise background.

The paper is organized as follows. In Sec. II.A, we briefly review the standard WVA technique for measuring a time delay τ\tau, which serves as the coupling strength in WVA. In Sec. II.B, we derive the AWVA technique for the time delay τ\tau measurement and introduce the auto-correlative intensity Θ\rm\Theta (units of voltage) to evaluate the weak value. In Sec. III, we present both the WVA scheme and the AWVA scheme under the Gaussian white noises. In Sec. IV, we show the analytic results with various types of noises and various coupling strengths. And Sec. V is devoted to a summary and discussions.

II Theory

II.1 The standard WVA technique

Let us briefly review the standard WVA technique of Ref. [10] with a two-level system (corresponding to the polarization state of the beam) in a quantum state |Φ\ket{\Phi} and a measurement device represented by a temporal pointer |Ψ\ket{\Psi} to estimate a time delay. The scheme is shown in Fig. 1. First, the system is pre-selected into a polarized state

|Φi=sin(π4)|H+cos(π4)|V=12(|H+|V),\ket{\Phi_{i}}={\rm sin}(\frac{\pi}{4})\ket{H}+{\rm cos}(\frac{\pi}{4})\ket{V}=\frac{1}{\sqrt{2}}(\ket{H}+\ket{V})\,, (1)

where |H\ket{H} and |V\ket{V} represent the horizontal and vertical polarized states, respectively.

Refer to caption

Figure 1: Scheme of the standard WVA technique. The Gaussian beam is produced by the Laser and Modulator. Then photons are pre-selected by the polarizer 1 (P1) with the optical axis set at 45045^{0}. A time delay τ\tau (corresponding to a phase shift between the horizontal polarized state |H|{H}\rangle and vertical polarized state |V|{V}\rangle) is induced by a birefringent crystal. Finally, the photons are post-selected by the polarizer 2 (P2) with an optical axis set at α45\alpha-45^{\circ}, and the arrival time of single photons is measured with an avalanche photodiode (APD).

Thus, the initial joint state of the system and the pointer is given by

|Φi|Ψi|Φi|Ψi=12(|H+|V)|Ψi,\ket{\Phi_{i}}\otimes\ket{\Psi_{i}}{\color[rgb]{0,0,0}\equiv\ket{\Phi_{i}}\ket{\Psi_{i}}}=\frac{1}{\sqrt{2}}(\ket{H}+\ket{V})\ket{\Psi_{i}}, (2)

where \otimes denotes tensor product. Note that the Laser prepares a (bright) quantum coherent state of the field for the autocorrelation measurements. A coherent state is what a laser prepares, but other types of light would work for our scheme as well. In particular, the state must be strong/bright so that we can ignore the effect of vacuum noise/partition noise in the following analysis in Sec IV.1. Then, the system and the pointer are weakly coupled with the interaction Hamiltonian H^=τA^p^\hat{H}=\tau\hat{A}\otimes\hat{p}, where the observable operator A^=|HH||VV|\hat{A}=\ket{H}\bra{H}-\ket{V}\bra{V} and p^\hat{p} is the momentum operator conjugated to the position operator q^\hat{q}. In the regime of weak measurement, the time shift τ\tau is much smaller than the pointer spread ω\omega, and the final state of the pointer is given by:

|Ψf\displaystyle\ket{\Psi_{f}} =\displaystyle= Φf|eiτA^p^|Ψi|Φi\displaystyle\bra{\Phi_{f}}e^{-i\tau\hat{A}\otimes\hat{p}}\ket{\Psi_{i}}\ket{\Phi_{i}} (3)
\displaystyle\approx Φf|[1iτA^p^]|Ψi|Φi\displaystyle\bra{\Phi_{f}}\left[1-i\tau\hat{A}\otimes\hat{p}\right]\ket{\Psi_{i}}\ket{\Phi_{i}}
=\displaystyle= Φf|Φi[1iτAwp^]|Ψi\displaystyle\langle{\Phi_{f}}|{\Phi_{i}}\rangle\left[1-i\tau A_{w}\hat{p}\right]\ket{\Psi_{i}}
=\displaystyle= Φf|ΦieiτAwp^|Ψi,\displaystyle\langle{\Phi_{f}}|{\Phi_{i}}\rangle e^{-i\tau A_{w}\hat{p}}\ket{\Psi_{i}}\,,

where Aw:=Φf|A^|Φi/Φf|ΦiA_{w}:={\bra{\Phi_{f}}\hat{A}\ket{\Phi_{i}}}/{\langle{\Phi_{f}}|{\Phi_{i}}\rangle}the so-called weak value [1]represents the mean value of observable A^\hat{A}. Note that the time shift τ\tau can be amplified by the weak value AwA_{w}. Normally, the weak value AwA_{w} is a complex number [42], thus the difference between the pointer in momentum space and that in position (temporal) space is used to perform the standard WVA. In particular, the imaginary part of AwA_{w} is associated with a shift of the pointer in momentum space, while the time shift τ\tau in the position of the pointer is amplified by the real part of AwA_{w} [43]:

Δq^=𝑑qq|q|Ψf|2𝑑q|q|Ψf|2=τRe[Aω].\Delta\langle\hat{q}\rangle=\frac{\int dqq\left|\left\langle q|\Psi_{f}\right\rangle\right|^{2}}{\int dq\left|\left\langle q|\Psi_{f}\right\rangle\right|^{2}}=\tau{\rm Re}\,[A_{\omega}]\,. (4)

In this paper, we design the weak measurement in the time domain and prepare the initial pointer with the Gaussian profile:

I1in(t;τ)=|t|Ψi|2=I01(2πω2)1/4e(tt0)2/4ω2.I^{in}_{1}(t;\tau)=\left|\left\langle t|\Psi_{i}\right\rangle\right|^{2}=I_{0}\frac{1}{(2\pi\omega^{2})^{1/4}}e^{-(t-t_{0})^{2}/4\omega^{2}}\,. (5)

where I0I_{0} represents the normalization factor. In order to amplify the ultra-small time shift τ\tau, the system is post-selected into the state:

|Φf=sin(π4+α)|H+cos(π4+α)|V,\ket{\Phi_{f}}={\rm sin}(-\frac{\pi}{4}+\alpha)\ket{H}+{\rm cos}(-\frac{\pi}{4}+\alpha)\ket{V}, (6)

where α\alpha should not be chosen as α\alpha=0 to obtain non-vanishing probability of post-selection. One then obtains the weak value as:

Aw=sin(π4+α)cos(π4+α)sin(π4+α)+cos(π4+α)=cotα,A_{w}=\frac{{\rm sin}(-\frac{\pi}{4}+\alpha)-{\rm cos}(\frac{\pi}{4}+\alpha)}{{\rm sin}(-\frac{\pi}{4}+\alpha)+{\rm cos}(\frac{\pi}{4}+\alpha)}=-{\rm cot}\alpha\,, (7)

The corresponding time shift τ\tau can be obtained from the peak shift δt=|τRe[Aw]|=τcotα\delta t=|\tau{\rm Re}\,[A_{w}]|=\tau{\rm cot}\alpha of the signal detected by an avalanche photodiode (APD), with the detected signal I1outI_{1}^{out} calculated from Eq. (3) as:

I1out(t;τ)\displaystyle I_{1}^{out}(t;\tau) =\displaystyle= |Φf|Φi|2e2iτAwp^|q|Ψi|2\displaystyle|\langle{\Phi_{f}}|{\Phi_{i}}\rangle|^{2}e^{-2i\tau A_{w}\hat{p}}\left|\left\langle q|\Psi_{i}\right\rangle\right|^{2} (8)
\displaystyle\approx I0(sinα)2(2πω2)1/4e(tt0δt)2/4ω2\displaystyle I_{0}\frac{({\rm sin}\alpha)^{2}}{(2\pi\omega^{2})^{1/4}}e^{-(t-t_{0}-\delta t)^{2}/4\omega^{2}}

In principle, a larger peak shift δt\delta t as well as a larger weak value are obtained by choosing a smaller α\alpha, at a cost of decreasing the probability of post-selection 𝒫=|Φf|Φi|2=(sinα)2\mathcal{P}=|{\langle{\Phi_{f}}|{\Phi_{i}}\rangle}|^{2}=({\rm sin}\alpha)^{2} . Note that the low probability 𝒫\mathcal{P} leads to a weak signal and makes the weak measurement more difficult under strong noise background. In the next subsection, we will improve it with an AWVA technique.

II.2 AWVA technique with auto-correlative intensity

We display the scheme of the AWVA technique in Fig. 2, in which we introduce an auto-correlative intensity Θ\rm\Theta for estimating the time shift τ\tau introduced by the birefringent crystal. The main difference between the two schemes is that an additional light path is added in the AWVA scheme, by dividing the light after pre-selection into two light paths with a beam splitter (BS, splitting ratio 50:50). In one path, light passes through the birefringent crystal and P2 as in the WVA scheme, while in the other path light passes only through Polarizer 3 (P3) for an auto-correlative measurement.

Refer to caption

Figure 2: Scheme of the AWVA technique. The light path is similar to that in the WVA scheme (Fig. 1), except for a 50:50 beam splitter being inserted between polarizer P1 and the birefringent crystal to add a light path for an auto-correlative measurement. The optical axis of polarizer 3 (P3) is also set at α450\alpha-45^{0}.

The signal I21out(t)I_{21}^{out}(t) detected at APD1 is similar to Eq. 8 except the intensity being halved by the BS

I21out(t;τ)=I02(sinα)2(2πω2)1/4e(tt0δt)2/4ω2\displaystyle I_{21}^{out}(t;\tau)=\frac{I_{0}}{2}\frac{({\rm sin}\alpha)^{2}}{(2\pi\omega^{2})^{1/4}}e^{-(t-t_{0}-\delta t)^{2}/4\omega^{2}} (9)

Considering the light only passing through P3, there is no shift of the mean value of the pointer and the signal I22out(t;τ)I_{22}^{out}(t;\tau) detected at APD2 is given as:

I22out(t;τ)=I02(sinα)2(2πω2)1/4e(tt0)2/4ω2.\displaystyle I_{22}^{out}(t;\tau)=\frac{I_{0}}{2}\frac{({\rm sin}\alpha)^{2}}{(2\pi\omega^{2})^{1/4}}e^{-(t-t_{0})^{2}/4\omega^{2}}\,. (10)

Refer to caption


Figure 3: Scheme of the signal processing module with AWVA technique.

Refer to caption

Refer to caption

Refer to caption

Figure 4: Simulation results with WVA and AWVA schemes in absence of noises. Left panels: the signals I1out(t;τ)I_{1}^{out}(t;\tau) with τ=0×109\tau=0\times 10^{-9} s and τ=3×109\tau=3\times 10^{-9} s in the WVA scheme. Middle panels: the signals I21out(t;τ)I_{21}^{out}(t;\tau) as well as I22out(t;τ)I_{22}^{out}(t;\tau) with τ=3×109\tau=3\times 10^{-9} s in the AWVA scheme. Right panels: the signals IAAC{\rm I}^{AC}_{A} with τ=0×109\tau=0\times 10^{-9} s and τ=3×109\tau=3\times 10^{-9} s in the AWVA scheme. The units of the quantities I21out(t;τ)I_{21}^{out}(t;\tau), I21out(t;τ)I_{21}^{out}(t;\tau) and I22out(t;τ)I_{22}^{out}(t;\tau) are units of I0I_{0}, the quantity IAAC{\rm I}^{AC}_{A} is units of voltage.

In this paper, we introduce the new quantity Θ\rm\Theta to estimate the time shift τ\tau rather than the peak shift of the pointer. Θ\rm\Theta is measured with the scheme shown in Fig. 3. The signals I21out(t;τ)I_{21}^{out}(t;\tau) and I22out(t;τ)I_{22}^{out}(t;\tau) detected at APD1 and APD2 pass through the “Product” and the “Integrator”. Finally, the “Scope” detects the Θ\rm\Theta signal, which is mathematically given as:

ΘA(t;τ)\displaystyle{\rm\Theta}_{A}(t;\tau) =\displaystyle= 0tI21out(t;τ)×I22out(t;τ)𝑑t\displaystyle\int_{0}^{t}I_{21}^{out}(t^{\prime};\tau)\times I_{22}^{out}(t^{\prime};\tau)dt^{\prime}
=\displaystyle= I024(sinα)4(2πω2)1/80te[(tt0)2+(tt0δt)2]/4ω2𝑑t.\displaystyle\frac{I_{0}^{2}}{4}\frac{({\rm sin}\alpha)^{4}}{(2\pi\omega^{2})^{1/8}}\int_{0}^{t}e^{-[(t^{\prime}-t_{0})^{2}+(t^{\prime}-t_{0}-\delta t)^{2}]/4\omega^{2}}dt^{\prime}\,.

The numerical results in absence of noises in the WVA scheme and the AWVA scheme are displayed in Fig. 4. In the WVA scheme, the time shift τ\tau can be estimated by fitting the Gaussian signals I1out(τ=0×109s)I_{1}^{out}(\tau=0\times 10^{-9}s) and I1out(τ=3×109s)I_{1}^{out}(\tau=3\times 10^{-9}s) by means of Least square method. In the AWVA scheme, the time shift τ\tau is estimated with the values of Θ{\rm\Theta}. Eq. (II.2) also indicates that the value of ΘA(t;τ){\rm\Theta}_{A}(t;\tau) depends strongly on the integral time tt, which affects the sensitivity of the measurement with the AWVA technique. We will show and discuss the results in the next section.

The signal processing module shown in Fig. 3 can be implemented by both digital circuits and analog circuits. However, in this paper, we will only simulate the signal processing process in Simulink and MATLAB. The tools in Simulink allow us to implement weak measurements under various types of noise, and these simulation results will be shown in the following part.

III WVA and AWVA under Gaussian white noises

Refer to caption

Refer to caption

Refer to caption

Figure 5: The Gaussian noise signals N(t,σ2=1.0×105,ξ=0)\textbf{N}(t,\sigma^{2}=1.0\times 10^{-5},\xi=0) in the time domain (left panels), its power spectral densities PSD(f,σ2=1.0×105,ξ=0)\textbf{PSD}(f,\sigma^{2}=1.0\times 10^{-5},\xi=0) (middle panels) and its FFT result FFT(f,σ2=1.0×105,ξ=0)\textbf{FFT}(f,\sigma^{2}=1.0\times 10^{-5},\xi=0) (right panels).

Refer to caption

Refer to caption

Refer to caption

Figure 6: The auto-correlative intensity ΘNN(t;τ){\rm\Theta_{NN}}(t;\tau) of various noises with different sampling frequency 1/T of APD. Left panel: the auto-correlative results of noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}) with different seeds ξ1\xi_{1} and ξ2\xi_{2} at SNR\rm SNR^{*}=7.2 dB and 1/T= 1MHz. Middle panel: the auto-correlative results of noises N(t,σ2,ξ1=0)\textbf{N}(t,\sigma^{2},\xi_{1}{\color[rgb]{0,0,0}=0}) and N(t,σ2,ξ2=700)\textbf{N}(t,\sigma^{2},\xi_{2}=700) at sampling frequency 1/T= 1MHz with different SNR\rm SNR^{*}s. Right panel: the auto-correlative results of noises N(t,σ2,ξ1=0)\textbf{N}(t,\sigma^{2},\xi_{1}{\color[rgb]{0,0,0}=0}) and N(t,σ2,ξ2=700)\textbf{N}(t,\sigma^{2},\xi_{2}=700) at SNR\rm SNR^{*}=-18.6 dB with different sampling frequency 1/T.

It has been pointed out that technical noise [23, 21, 20] has a great influence on weak measurements. To simulate the WVA and AWVA schemes with the temporal pointer on Simulink in a realistic situation, the effects of Gaussian white noises with different SNR on the two schemes are investigated first.

In this paper, we approximate the optical noise due to the instability of the light source, interference in the light path, thermal noise and shot noise of the detection, the partition noise (vacuum noise) due to the beamsplitter, and noises from other unknown sources as Gaussian noise. The characteristic of Gaussian white noise is that its power spectral density and the fast Fourier transform (FFT) result are uniformly distributed. In our work, the Gaussian normal distribution denoted as N(t,σ2,ξ)\textbf{N}(t,\sigma^{2},\xi) is generated by the pseudo-random number generator in Simulink, where σ2\sigma^{2} is the variance of the random signal. ξ\xi is the random seed and represents the initial value used to generate a pseudo-random number in Simulink. The noise N(t,σ2,ξ)\textbf{N}(t,\sigma^{2},\xi) with different ξ\xi is corresponding to the results of multiple measurements (different times). Note that thermal noise and shot noise of the detection may cause the different series of noises detected on APD1 and APD2. In addition, the influence of the noise of different time series is also investigated in Section IV.6.

The Gaussian white noise N(t,σ2=1.0×105,ξ=0)\textbf{N}(t,\sigma^{2}=1.0\times 10^{-5},\xi=0), the power spectral density PSD(f,σ2=1.0×105,ξ=0)\textbf{PSD}(f,\sigma^{2}=1.0\times 10^{-5},\xi=0) and the corresponding FFT(f,σ2=1.0×105,ξ=0)\textbf{FFT}(f,\sigma^{2}=1.0\times 10^{-5},\xi=0) results are shown in Fig. 5. Note that Gaussian white noise is not only uncorrelated but also statistically independent between random variables at two different moments. Thus, on the basis of auto-correlation technique for signal denoising in engineering [39, 40, 41], the ΘNN(t;τ)\rm{\Theta}_{NN}(t;\tau) of the Gaussian white noise N(t,σ2)\textbf{N}(t,\sigma^{2}) is defined as:

ΘNN(t;τ)\displaystyle{\rm\Theta_{NN}}(t;\tau) =\displaystyle= 0tN(t,σ2,ξ1)×N(t,σ2,ξ2)𝑑t\displaystyle\int_{0}^{t}{\textbf{N}(t^{\prime},\sigma^{2},\xi_{1})}\times{\textbf{N}(t^{\prime},\sigma^{2},\xi_{2})}dt^{\prime} (12)
=\displaystyle= 0(t).\displaystyle 0(t\xrightarrow{}\infty)\,.

where the ξ1\xi_{1} and ξ2\xi_{2} represent the different random seeds of the Gaussian white noise N(t,σ2,ξ)\textbf{N}(t,\sigma^{2},\xi). In this paper, for the measurements with the AWVA technique, the corresponding time series of noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}) detected at APD1 and APD2 respectively ought to be different. Even if the two noises only originate from the Laser (before the BS), the noise N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) which passes through the Birefringent Crystal and the different lengths of the two optical paths in Fig. 2 will cause a time delay between the noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}).

Then, we add the noise N(t,σ2;ξ)\textbf{N}(t,\sigma^{2};\xi) into both the WVA scheme and the AWVA scheme. For the measurement with the WVA technique, one gets the final signal I1+Nout(t;τ)I_{1+\textbf{N}}^{out}(t;\tau) under N(t,σ2,ξ)\textbf{N}(t,\sigma^{2},\xi) as:

I1+Nout(t;τ)=I1out(t;τ)+N(t,σ2,ξ).\displaystyle I_{1+\textbf{N}}^{out}(t;\tau)=I_{1}^{out}(t;\tau)+\textbf{N}(t,\sigma^{2},\xi)\,. (13)

Now we need to evaluate the mean shift δt\delta t by the Gaussian fitting the result of I1+Nout(t;τ)I_{1+\textbf{N}}^{out}(t;\tau). Obviously, the noise N(t,σ2,ξ)\textbf{N}(t,\sigma^{2},\xi) will lead to an uncertainty of estimating δt\delta t. The simulation results with different simulation conditions are shown in Fig. 8 , Table. 1 and Table. 3.

Refer to caption

Refer to caption

Refer to caption

Figure 7: Examples of estimating the SNR and the sensitivity the maximum sensitivity K2M{\rm K_{2}^{M}}: (A). An example of estimating the SNR in WVA scheme under the Gaussian white noise N(t,σ2=1011,ξ=0)\textbf{N}(t,\sigma^{2}=10^{-11},\xi=0) with different sampling frequency; (B). The dependence of the sensitivity with different SNR\rm SNR^{*} on the integral time tt under the noises N(t,σ2,ξ1=0)\textbf{N}(t,\sigma^{2},\xi_{1}{\color[rgb]{0,0,0}=0}) and N(t,σ2,ξ2=700)\textbf{N}(t,\sigma^{2},\xi_{2}=700) at sampling frequency 1/T= 1MHz; (C). The dependence of the sensitivity with different sampling frequency 1/T on the integral time tt under the noises N(t,σ2,ξ1=0)\textbf{N}(t,\sigma^{2},\xi_{1}{\color[rgb]{0,0,0}=0}) and N(t,σ2,ξ2=700)\textbf{N}(t,\sigma^{2},\xi_{2}=700) at SNR\rm SNR^{*}= -18.6 dB. The gray band represents the measurements failing to effectively detect the final signal.

For the measurement with the AWVA technique, we obtain the quantity ΘA+N(τ){\rm\Theta}_{A+\textbf{N}}(\tau) with the noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}). Then the ΘA+N(τ){\rm\Theta}_{A+\textbf{N}}(\tau) is defined as

ΘA+N(t;τ)\displaystyle{\rm\Theta}_{A+\textbf{N}}(t;\tau) =\displaystyle= 0tI21+Nout(t;τ)×I22+Nout(t;τ)𝑑t\displaystyle\int_{0}^{t}I_{21+\textbf{N}}^{out}(t^{\prime};\tau)\times I_{22+\textbf{N}}^{out}(t^{\prime};{\color[rgb]{0,0,0}\tau})dt^{\prime}
=\displaystyle= ΘA(t;τ)+Θ21N(t;τ)+\displaystyle{\rm\Theta}_{A}(t;\tau)+{\rm\Theta}_{21\textbf{N}}(t;\tau)+
Θ22N(t;τ)+ΘNN(t;τ)\displaystyle{\rm\Theta}_{22\textbf{N}}(t;\tau)+{\rm\Theta_{NN}}(t;\tau)

with

Θ21N(t;τ)\displaystyle{\rm\Theta}_{21\textbf{N}}(t;\tau) =\displaystyle= 0tI21out(t;τ)×N(t,σ2,ξ1)𝑑t,\displaystyle\int_{0}^{t}I_{21}^{out}(t^{\prime};\tau)\times{\textbf{N}(t^{\prime},\sigma^{2},\xi_{1})}dt^{\prime}\,, (15)
Θ22N(t;τ)\displaystyle{\rm\Theta}_{22\textbf{N}}(t;\tau) =\displaystyle= 0tI22out(t)×N(t,σ2,ξ2)𝑑t.\displaystyle\int_{0}^{t}I_{22}^{out}(t^{\prime})\times{\textbf{N}(t^{\prime},\sigma^{2},\xi_{2})}dt^{\prime}\,. (16)

However, due to the non-correlation between the signal and the random noise, we obtain that Θ21N(t;τ){\rm\Theta}_{21\textbf{N}}(t;\tau) = Θ22N(t;τ){\rm\Theta}_{22\textbf{N}}(t;\tau) = 0. Finally, we can get the relation ΘA+N(t;τ)=ΘA(t;τ){\rm\Theta}_{A+\textbf{N}}(t;\tau)={\rm\Theta}_{A}(t;\tau) from the theoretical analysis when the integral time tt is infinite, which means that the noise has no influence on evaluating the values of Θ\rm\Theta by assuming that the noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}) detected at APD1 and APD2 respectively are strictly time-independent. In particular, we first investigate the accuracy of the formula (12) using simulations on Simulink, based on Eq. (III).

The left panel of Fig. 6 shows the auto-correlative intensity ΘNN(t;τ){\rm\Theta_{NN}}(t;\tau) of various noises with different seeds ξ1\xi_{1} and ξ2\xi_{2} at SNR\rm SNR^{*}=7.2 dB and 1/T= 1MHz. The values of ΘNN(t;τ){\rm\Theta_{NN}}(t;\tau) with different initial time (seed) are on the order of 2.0×1011\times 10^{-11}, which is smaller than the theoretical maximum value of ΘA(t;τ){\rm\Theta_{A}}(t;\tau) calculated from Eq. (II.2) in Fig. 4. However, with the SNR of the Gaussian noise decreasing as shown in the middle panel of Fig. 6, the values of ΘNN(t;τ){\rm\Theta_{NN}}(t;\tau) increase. The larger values may have more negative effects on the AWVA technique. We will investigate the total auto-correlative intensity ΘA+N(t;τ){\rm\Theta_{A+N}}(t;\tau) in the next section. Note that infinite” is a relative concept: when the number of integral nodes (sample time) M>>1>>1 in the integral time t, the integral time can also be regarded as infinite. Therefore, the auto-correlative results of noises N(t,σ2,ξ1=0)\textbf{N}(t,\sigma^{2},\xi_{1}{\color[rgb]{0,0,0}=0}) and N(t,σ2,ξ2=700)\textbf{N}(t,\sigma^{2},\xi_{2}=700) at SNR\rm SNR^{*}=-18.6 dB with different sampling frequency 1/T (T corresponding to sampling interval) are displayed in the right panel of Fig. 6. The curves indicate that increasing the sampling rate (1/T) of APD can decrease the value of ΘNN(t;τ){\rm\Theta_{NN}}(t;\tau) and improve the accuracy of the formula (12).

In conclusion, the equality ΘA+N(τ){\rm\Theta}_{A+\textbf{N}}(\tau) =ΘA(τ){\rm\Theta}_{A}(\tau) represents that the AWVA scheme has strong robustness111The robustness” of the control system refers to the ability of the system to keep certain performance invariable under the disturbance(noise) of uncertainty against noise. The features of the realistic kinds of noise are indeed more complicated than the features of the Gaussian noise [24, 25, 26, 27]. However, it is necessary to first consider the effects of the strong Gaussian noise on the weak measurements theoretically, and the simulation results are shown in the next section.

Refer to caption

Refer to caption

Refer to caption

Refer to caption

Refer to caption

Refer to caption


Refer to caption

Refer to caption

Refer to caption

Refer to caption

Refer to caption

Refer to caption

Figure 8: The simulation results in two schemes under the Gaussian white noise with different SNR. Left panels: the signals I1out(t;τ)I_{1}^{out}(t;\tau) in the WVA scheme under noise N(t,σ2,ξ=0)\textbf{N}(t,\sigma^{2},\xi{\color[rgb]{0,0,0}=0}). Middle panels: the signals I21out(t;τ)I_{21}^{out}(t;\tau) and I22out(t;τ)I_{22}^{out}(t;\tau) in the AWVA scheme. Right panels: the auto-correlative intensity Θ\rm\Theta in the AWVA scheme under noises N(t,σ2,ξ1=0)\textbf{N}(t,\sigma^{2},\xi_{1}{\color[rgb]{0,0,0}=0}) and N(t,σ2,ξ2=700)\textbf{N}(t,\sigma^{2},\xi_{2}=700) with sampling frequency 1/T= 1MHz. The units of the quantities I21out(t;τ)I_{21}^{out}(t;\tau), I21out(t;τ)I_{21}^{out}(t;\tau) and I22out(t;τ)I_{22}^{out}(t;\tau) are units of I0I_{0}, the quality IAAC{\rm I}^{AC}_{A} is units of voltage.

Refer to caption

Refer to caption

Refer to caption

Figure 9: The simulation results the auto-correlative intensity Θ\rm\Theta in the AWVA scheme noises N(t,σ2,ξ1=0)\textbf{N}(t,\sigma^{2},\xi_{1}{\color[rgb]{0,0,0}=0}) and N(t,σ2,ξ2=700)\textbf{N}(t,\sigma^{2},\xi_{2}=700) at SNR\rm SNR^{*}=-18.6 dB with different sampling frequency 1/T.
Table 1: Parameters and some characteristic numerical results (dimensional quantities in unit of s) of measuring time shift τ=3.0×109\tau=3.0\times 10^{-9} under Gaussian noise with different SNR in the WVA scheme. The contents Et0{\rm E}_{t0} and Etτ{\rm E}_{t\tau} in parentheses represent the standard error for estimating the time shifts δt0\delta t_{0} and δtτ\delta t_{\tau} respectively. The data in red means the measurement is invalid. N(ξ=0)\textbf{N}(\xi{\color[rgb]{0,0,0}=0}), N(ξ=100)\textbf{N}(\xi=100)N(ξ=600)\textbf{N}(\xi=600) represent the multiple measurements with the different initial time.
SNR\rm SNR Noise δt0(±Et0)\delta t_{0}\,\rm(\pm E_{t0}) δtτ(±Etτ)\delta t_{\tau}\,\rm(\pm E_{t\tau}) K1(±E1)\rm K_{1}\,(\pm{\rm E}_{1})
- no-noise 0.00×1030.00\times 10^{-3} (±1.8×1012\pm 1.8\times 10^{-12}) 3.00×1053.00\times 10^{-5} (±1.8×1012\pm 1.8\times 10^{-12}) 10.0×10310.0\times 10^{3} (±1.21×103\pm 1.21\times 10^{-3})
N(ξ=000)\rm N(\xi=000) 9.20×1079.20\times 10^{-7} (±1.21×106\pm 1.21\times 10^{-6}) 3.07×1053.07\times 10^{-5} (±1.21×106\pm 1.21\times 10^{-6}) 9.92×1039.92\times 10^{3} (±0.81×103\pm 0.81\times 10^{3})
N(ξ=100)\rm N(\xi=100) 1.25×1061.25\times 10^{-6} (±1.24×106\pm 1.24\times 10^{-6}) 3.11×1053.11\times 10^{-5} (±1.24×106\pm 1.24\times 10^{-6}) 9.95×1039.95\times 10^{3} (±0.82×103\pm 0.82\times 10^{3})
N(ξ=200)\rm N(\xi=200) 2.33×1062.33\times 10^{-6} (±1.20×106\pm 1.20\times 10^{-6}) 3.23×1053.23\times 10^{-5} (±1.20×106\pm 1.20\times 10^{-6}) 9.99×1039.99\times 10^{3} (±0.80×103\pm 0.80\times 10^{3})
N(ξ=300)\rm N(\xi=300) 1.30×107-1.30\times 10^{-7} (±1.21×106\pm 1.21\times 10^{-6}) 2.97×1052.97\times 10^{-5} (±1.21×106\pm 1.21\times 10^{-6}) 9.90×1039.90\times 10^{3} (±0.81×103\pm 0.81\times 10^{3})
N(ξ=400)\rm N(\xi=400) 2.90×107-2.90\times 10^{-7} (±1.18×106\pm 1.18\times 10^{-6}) 2.98×1052.98\times 10^{-5} (±1.18×106\pm 1.18\times 10^{-6}) 9.93×1039.93\times 10^{3} (±0.78×103\pm 0.78\times 10^{3})
N(ξ=500)\rm N(\xi=500) 2.99×1062.99\times 10^{-6} (±1.20×106\pm 1.20\times 10^{-6}) 3.32×1053.32\times 10^{-5} (±1.20×106\pm 1.20\times 10^{-6}) 10.0×10310.0\times 10^{3} (±0.80×103\pm 0.80\times 10^{3})
11.5 N(ξ=600)\rm N(\xi=600) 7.90×107-7.90\times 10^{-7} (±1.21×106\pm 1.21\times 10^{-6}) 2.92×1052.92\times 10^{-5} (±1.21×106\pm 1.21\times 10^{-6}) 9.75×1039.75\times 10^{3} (±0.81×103\pm 0.81\times 10^{3})
N(ξ=000)\rm N(\xi=000) 3.83×1063.83\times 10^{-6} (±5.28×106\pm 5.28\times 10^{-6}) 3.29×1053.29\times 10^{-5} (±5.29×106\pm 5.29\times 10^{-6}) 9.69×1039.69\times 10^{3} (±3.52×103\pm 3.52\times 10^{3})
N(ξ=100)\rm N(\xi=100) 5.62×1065.62\times 10^{-6} (±5.49×106\pm 5.49\times 10^{-6}) 3.51×1053.51\times 10^{-5} (±5.47×106\pm 5.47\times 10^{-6}) 9.82×1039.82\times 10^{3} (±3.65×103\pm 3.65\times 10^{3})
N(ξ=200)\rm N(\xi=200) 1.05×1051.05\times 10^{-5} (±5.40×106\pm 5.40\times 10^{-6}) 4.05×1054.05\times 10^{-5} (±5.36×106\pm 5.36\times 10^{-6}) 10.0×10310.0\times 10^{3} (±3.59×103\pm 3.59\times 10^{3})
N(ξ=300)\rm N(\xi=300) 5.70×107-5.70\times 10^{-7} (±5.28×106\pm 5.28\times 10^{-6}) 2.85×1052.85\times 10^{-5} (±5.29×106\pm 5.29\times 10^{-6}) 9.69×1039.69\times 10^{3} (±3.52×103\pm 3.52\times 10^{3})
N(ξ=400)\rm N(\xi=400) 1.33×106-1.33\times 10^{-6} (±5.32×106\pm 5.32\times 10^{-6}) 2.89×1052.89\times 10^{-5} (±5.32×106\pm 5.32\times 10^{-6}) 10.0×10310.0\times 10^{3} (±3.55×103\pm 3.55\times 10^{3})
N(ξ=500)\rm N(\xi=500) 1.36×1051.36\times 10^{-5} (±5.53×106\pm 5.53\times 10^{-6}) 4.45×1054.45\times 10^{-5} (±5.48×106\pm 5.48\times 10^{-6}) 10.3×10310.3\times 10^{3} (±3.66×103\pm 3.66\times 10^{3})
2.8 N(ξ=600)\rm N(\xi=600) 3.5×106-3.5\times 10^{-6} (±5.40×106\pm 5.40\times 10^{-6}) 2.65×1052.65\times 10^{-5} (±5.41×106\pm 5.41\times 10^{-6}) 10.0×10310.0\times 10^{3} (±3.60×103\pm 3.60\times 10^{3})
N(ξ=000)\rm N(\xi=000) 7.63×1067.63\times 10^{-6} (±1.13×105\pm 1.13\times 10^{-5}) 3.57×1053.57\times 10^{-5} (±1.14×105\pm 1.14\times 10^{-5}) 9.35×1039.35\times 10^{3} (±7.53×103\pm 7.53\times 10^{3})
N(ξ=100)\rm N(\xi=100) 1.26×1051.26\times 10^{-5} (±1.20×105\pm 1.20\times 10^{-5}) 4.13×1054.13\times 10^{-5} (±1.18×105\pm 1.18\times 10^{-5}) 9.56×1039.56\times 10^{3} (±7.93×103\pm 7.93\times 10^{3})
N(ξ=200)\rm N(\xi=200) 2.38×1052.38\times 10^{-5} (±1.21×105\pm 1.21\times 10^{-5}) 5.37×1055.37\times 10^{-5} (±1.19×105\pm 1.19\times 10^{-5}) 9.96×1039.96\times 10^{3} (±7.93×103\pm 7.93\times 10^{3})
N(ξ=300)\rm N(\xi=300) 1.23×106-1.23\times 10^{-6} (±1.14×105\pm 1.14\times 10^{-5}) 2.69×1052.69\times 10^{-5} (±1.14×106\pm 1.14\times 10^{-6}) 9.37×1039.37\times 10^{3} (±7.60×103\pm 7.60\times 10^{3})
N(ξ=400)\rm N(\xi=400) 3.21×106-3.21\times 10^{-6} (±1.20×105\pm 1.20\times 10^{-5}) 2.74×1052.74\times 10^{-5} (±1.19×105\pm 1.19\times 10^{-5}) 10.2×10310.2\times 10^{3} (±7.93×103\pm 7.93\times 10^{3})
N(ξ=500)\rm N(\xi=500) 1.2577×1031.2577\times 10^{-3} (±7.91×105\pm 7.91\times 10^{-5}) 1.2682×1031.2682\times 10^{-3} (±7.96×105\pm 7.96\times 10^{-5}) 0.35×1030.35\times 10^{3} (±52.6×103\pm 52.6\times 10^{3})
-6.6 N(ξ=600)\rm N(\xi=600) 7.9×106-7.9\times 10^{-6} (±1.20×105\pm 1.20\times 10^{-5}) 2.22×1052.22\times 10^{-5} (±1.21×105\pm 1.21\times 10^{-5}) 10.0×10310.0\times 10^{3} (±8.00×103\pm 8.00\times 10^{3})
N(ξ=000)\rm N(\xi=000) 1.23×1051.23\times 10^{-5} (±2.12×105\pm 2.12\times 10^{-5}) 3.87×1053.87\times 10^{-5} (±2.14×105\pm 2.14\times 10^{-5}) 8.80×1038.80\times 10^{3} (±14.2×103\pm 14.2\times 10^{3})
N(ξ=100)\rm N(\xi=100) 2.52×1052.52\times 10^{-5} (±2.28×105\pm 2.28\times 10^{-5}) 5.22×1055.22\times 10^{-5} (±2.23×105\pm 2.23\times 10^{-5}) 9.82×1039.82\times 10^{3} (±15.1×103\pm 15.1\times 10^{3})
N(ξ=200)\rm N(\xi=200) 7.61×1047.61\times 10^{-4} (±3.93×105\pm 3.93\times 10^{-5}) 7.64×1047.64\times 10^{-4} (±3.98×105\pm 3.98\times 10^{-5}) 0.12×1030.12\times 10^{3} (±26.4×103\pm 26.4\times 10^{3})
N(ξ=300)\rm N(\xi=300) 2.40×106-2.40\times 10^{-6} (±2.14×105\pm 2.14\times 10^{-5}) 2.41×1052.41\times 10^{-5} (±2.15×105\pm 2.15\times 10^{-5}) 8.83×1038.83\times 10^{3} (±14.3×103\pm 14.3\times 10^{3})
N(ξ=400)\rm N(\xi=400) 6.60×106-6.60\times 10^{-6} (±2.42×105\pm 2.42\times 10^{-5}) 2.41×1052.41\times 10^{-5} (±2.42×105\pm 2.42\times 10^{-5}) 10.2×10310.2\times 10^{3} (±16.1×103\pm 16.1\times 10^{3})
N(ξ=500)\rm N(\xi=500) 1.4261×1031.4261\times 10^{-3} (±30.0×105\pm 30.0\times 10^{-5}) 1.4259×1031.4259\times 10^{-3} (±29.2×105\pm 29.2\times 10^{-5}) 0.06×103-0.06\times 10^{3} (±190×103\pm 190\times 10^{3})
-13.2 N(ξ=600)\rm N(\xi=600) 1.0995×103-1.0995\times 10^{-3} (±3.75×105\pm 3.75\times 10^{-5}) 1.0961×103-1.0961\times 10^{-3} (±3.89×105\pm 3.89\times 10^{-5}) 1.13×1031.13\times 10^{3} (±25.4×103\pm 25.4\times 10^{3})
Table 2: Parameters and some characteristic numerical results of measuring time shift τ=3.0×109\tau=3.0\times 10^{-9} under Gaussian noise with different SNR in the AWVA scheme. 1/T (units of MHz) represents sampling frequency of APD.
SNR\rm SNR^{*} 1/T N(t,ξ1)\rm N(t,\xi_{1}) N(t,ξ2)\rm N(t,\xi_{2}) Θ0\rm\Theta_{0} Θτ\rm\Theta_{\tau} ΔΘ\Delta{\rm\Theta} K2M\rm K_{2}^{M} K¯2(±E2)\rm\overline{K}_{2}(\pm{\rm E}_{2})
- - no-noise no-noise 1.2442×1091.2442\times 10^{-9} 1.1666×1091.1666\times 10^{-9} 7.76×10117.76\times 10^{-11} 0.0258
1 ξ1=000\xi_{1}=000 ξ2=700\xi_{2}=700 1.2462×1091.2462\times 10^{-9} 1.1678×1091.1678\times 10^{-9} 7.84×10117.84\times 10^{-11} 0.0261
1 ξ1=100\xi_{1}=100 ξ2=710\xi_{2}=710 1.2427×1091.2427\times 10^{-9} 1.1657×1091.1657\times 10^{-9} 7.70×10117.70\times 10^{-11} 0.0256
1 ξ1=200\xi_{1}=200 ξ2=720\xi_{2}=720 1.2452×1091.2452\times 10^{-9} 1.1654×1091.1654\times 10^{-9} 7.98×10117.98\times 10^{-11} 0.0266
1 ξ1=300\xi_{1}=300 ξ2=730\xi_{2}=730 1.2440×1091.2440\times 10^{-9} 1.1674×1091.1674\times 10^{-9} 7.66×10117.66\times 10^{-11} 0.0255
1 ξ1=400\xi_{1}=400 ξ2=740\xi_{2}=740 1.2454×1091.2454\times 10^{-9} 1.1680×1091.1680\times 10^{-9} 7.74×10117.74\times 10^{-11} 0.0258
1 ξ1=500\xi_{1}=500 ξ2=750\xi_{2}=750 1.2322×1091.2322\times 10^{-9} 1.1545×1091.1545\times 10^{-9} 7.77×10117.77\times 10^{-11} 0.0259
7.2 1 ξ1=600\xi_{1}=600 ξ2=770\xi_{2}=770 1.2591×1091.2591\times 10^{-9} 1.1817×1091.1817\times 10^{-9} 7.74×10117.74\times 10^{-11} 0.0258 0.02590(±0.0007\pm 0.0007)
1 ξ1=000\xi_{1}=000 ξ2=700\xi_{2}=700 1.1508×1091.1508\times 10^{-9} 1.0698×1091.0698\times 10^{-9} 8.10×10118.10\times 10^{-11} 0.0270
1 ξ1=100\xi_{1}=100 ξ2=710\xi_{2}=710 1.3055×1091.3055\times 10^{-9} 1.2308×1091.2308\times 10^{-9} 7.47×10117.47\times 10^{-11} 0.0249
1 ξ1=200\xi_{1}=200 ξ2=720\xi_{2}=720 1.1987×1091.1987\times 10^{-9} 1.1117×1091.1117\times 10^{-9} 8.70×10118.70\times 10^{-11} 0.0290
1 ξ1=300\xi_{1}=300 ξ2=730\xi_{2}=730 1.2190×1091.2190\times 10^{-9} 1.1465×1091.1465\times 10^{-9} 7.25×10117.25\times 10^{-11} 0.0241
1 ξ1=400\xi_{1}=400 ξ2=740\xi_{2}=740 1.2657×1091.2657\times 10^{-9} 1.1893×1091.1893\times 10^{-9} 7.64×10117.64\times 10^{-11} 0.0254
1 ξ1=500\xi_{1}=500 ξ2=750\xi_{2}=750 1.1748×1091.1748\times 10^{-9} 1.0971×1091.0971\times 10^{-9} 7.77×10117.77\times 10^{-11} 0.0259
-3.0 1 ξ1=600\xi_{1}=600 ξ2=770\xi_{2}=770 1.3835×1091.3835\times 10^{-9} 1.3072×1091.3072\times 10^{-9} 7.63×10117.63\times 10^{-11} 0.0254 0.02595(±0.0030\pm 0.0030)
1 ξ1=000\xi_{1}=000 ξ2=700\xi_{2}=700 0.6719×1090.6719\times 10^{-9} 0.5867×1090.5867\times 10^{-9} 8.52×10118.52\times 10^{-11} 0.0284
1 ξ1=100\xi_{1}=100 ξ2=710\xi_{2}=710 1.6234×1091.6234\times 10^{-9} 1.5524×1091.5524\times 10^{-9} 7.10×10117.10\times 10^{-11} 0.0236
1 ξ1=200\xi_{1}=200 ξ2=720\xi_{2}=720 0.9655×1090.9655\times 10^{-9} 0.8671×1090.8671\times 10^{-9} 9.84×10119.84\times 10^{-11} 0.0328
1 ξ1=300\xi_{1}=300 ξ2=730\xi_{2}=730 1.1025×1091.1025\times 10^{-9} 1.0363×1091.0363\times 10^{-9} 6.62×10116.62\times 10^{-11} 0.0220
1 ξ1=400\xi_{1}=400 ξ2=740\xi_{2}=740 1.3512×1091.3512\times 10^{-9} 1.2762×1091.2762\times 10^{-9} 7.50×10117.50\times 10^{-11} 0.0250
1 ξ1=500\xi_{1}=500 ξ2=750\xi_{2}=750 1.0343×1091.0343\times 10^{-9} 0.9565×1090.9565\times 10^{-9} 7.78×10117.78\times 10^{-11} 0.0259
-12.6 1 ξ1=600\xi_{1}=600 ξ2=770\xi_{2}=770 1.8158×1091.8158\times 10^{-9} 1.7411×1091.7411\times 10^{-9} 7.47×10117.47\times 10^{-11} 0.0249 0.02608(±0.0067\pm 0.0067)
1 ξ1=000\xi_{1}=000 ξ2=700\xi_{2}=700 1.3079×1091.3079\times 10^{-9} 1.2151×1091.2151\times 10^{-9} 9.28×10119.28\times 10^{-11} 0.0309
1 ξ1=100\xi_{1}=100 ξ2=710\xi_{2}=710 2.8789×1092.8789\times 10^{-9} 2.8145×1092.8145\times 10^{-9} 6.44×10116.44\times 10^{-11} 0.0214
1 ξ1=200\xi_{1}=200 ξ2=720\xi_{2}=720 0.4317×1090.4317\times 10^{-9} 0.3892×1090.3892\times 10^{-9} 4.25×10114.25\times 10^{-11} 0.0141
1 ξ1=300\xi_{1}=300 ξ2=730\xi_{2}=730 0.6522×1090.6522\times 10^{-9} 0.5974×1090.5974\times 10^{-9} 5.48×10115.48\times 10^{-11} 0.0182
1 ξ1=400\xi_{1}=400 ξ2=740\xi_{2}=740 1.6710×1091.6710\times 10^{-9} 1.5987×1091.5987\times 10^{-9} 7.23×10117.23\times 10^{-11} 0.0241
1 ξ1=500\xi_{1}=500 ξ2=750\xi_{2}=750 0.6262×1090.6262\times 10^{-9} 0.5484×1090.5484\times 10^{-9} 7.78×10117.78\times 10^{-11} 0.0259
-18.6 1 ξ1=600\xi_{1}=600 ξ2=770\xi_{2}=770 3.3287×1093.3287\times 10^{-9} 3.2569×1093.2569\times 10^{-9} 7.18×10117.18\times 10^{-11} 0.0239 0.02264(±0.0085\pm 0.0085)
10 ξ1=000\xi_{1}=000 ξ2=700\xi_{2}=700 1.5115×1091.5115\times 10^{-9} 1.4299×1091.4299\times 10^{-9} 8.16×10118.16\times 10^{-11} 0.0272
10 ξ1=100\xi_{1}=100 ξ2=710\xi_{2}=710 2.2062×1092.2062\times 10^{-9} 2.1381×1092.1381\times 10^{-9} 6.81×10116.81\times 10^{-11} 0.0227
10 ξ1=200\xi_{1}=200 ξ2=720\xi_{2}=720 0.8213×1090.8213\times 10^{-9} 0.7503×1090.7503\times 10^{-9} 7.10×10117.10\times 10^{-11} 0.0236
10 ξ1=300\xi_{1}=300 ξ2=730\xi_{2}=730 1.5151×1091.5151\times 10^{-9} 1.4387×1091.4387\times 10^{-9} 7.64×10117.64\times 10^{-11} 0.0254
10 ξ1=400\xi_{1}=400 ξ2=740\xi_{2}=740 1.8597×1091.8597\times 10^{-9} 1.7841×1091.7841\times 10^{-9} 7.56×10117.56\times 10^{-11} 0.0252
10 ξ1=500\xi_{1}=500 ξ2=750\xi_{2}=750 1.2757×1091.2757\times 10^{-9} 1.1975×1091.1975\times 10^{-9} 7.82×10117.82\times 10^{-11} 0.0260
-18.6 10 ξ1=600\xi_{1}=600 ξ2=770\xi_{2}=770 1.8199×1091.8199\times 10^{-9} 1.7344×1091.7344\times 10^{-9} 8.55×10118.55\times 10^{-11} 0.0285 0.02551(±0.0028\pm 0.0028)
100 ξ1=000\xi_{1}=000 ξ2=700\xi_{2}=700 1.2195×1091.2195\times 10^{-9} 1.1449×1091.1449\times 10^{-9} 7.46×10117.46\times 10^{-11} 0.0248
100 ξ1=100\xi_{1}=100 ξ2=710\xi_{2}=710 1.5641×1091.5641\times 10^{-9} 1.4852×1091.4852\times 10^{-9} 7.89×10117.89\times 10^{-11} 0.0263
100 ξ1=200\xi_{1}=200 ξ2=720\xi_{2}=720 0.9090×1090.9090\times 10^{-9} 0.8319×1090.8319\times 10^{-9} 7.71×10117.71\times 10^{-11} 0.0257
100 ξ1=300\xi_{1}=300 ξ2=730\xi_{2}=730 1.2707×1091.2707\times 10^{-9} 1.1929×1091.1929\times 10^{-9} 7.78×10117.78\times 10^{-11} 0.0259
100 ξ1=400\xi_{1}=400 ξ2=740\xi_{2}=740 1.2711×1091.2711\times 10^{-9} 1.1931×1091.1931\times 10^{-9} 7.80×10117.80\times 10^{-11} 0.0260
100 ξ1=500\xi_{1}=500 ξ2=750\xi_{2}=750 1.2311×1091.2311\times 10^{-9} 1.1559×1091.1559\times 10^{-9} 7.52×10117.52\times 10^{-11} 0.0250
-18.6 100 ξ1=600\xi_{1}=600 ξ2=770\xi_{2}=770 1.4695×1091.4695\times 10^{-9} 1.3910×1091.3910\times 10^{-9} 7.85×10117.85\times 10^{-11} 0.0261 0.02568(±0.0008\pm 0.0008)

IV Numerical Results

After adding the Gaussian white noise with different SNR to the signals, we fit the peak shift δt\delta t in the WVA scheme and compute the values of Θ\rm\Theta in the AWVA scheme respectively. In our simulation, the initial temporal probe was chosen as:

I1in(t;τ)\displaystyle I^{in}_{1}(t;\tau) =\displaystyle= |q|Ψi|2\displaystyle\left|\left\langle q|\Psi_{i}\right\rangle\right|^{2} (17)
=\displaystyle= 1(2π×0.00022)1/4e(t0.0015)20.00042.\displaystyle\frac{1}{(2\pi\times 0.0002^{2})^{1/4}}e^{-\frac{(t-0.0015)^{2}}{0.0004^{2}}}\,.

where I0I_{0} is set as unit, the angle for post-selection was set at α=0.01\alpha=0.01 rad. Note that the sampling frequency 1/T of APDs has a great impact on the auto-correlative intensity ΘNN\rm\Theta_{NN} in the AWVA scheme, which has been discussed in the previous section. Therefore, the simulation of the final auto-correlative intensity ΘA+N\rm\Theta_{A+N} with 1/T= 10 MHz, 10 MHz and 100 MHz are investigated. The measured results along with various types of noise with different sampling frequency 1/T are shown in Fig. 8 and Fig. 9. On this basis we compare the sensitivity and the stability (robustness) of the two schemes.

IV.1 The signal-to-noise rate

In information theory, the Fisher information [32, 23, 37, 38] is a way of calculating the fundamental limit of the minimum uncertainty for parameter estimation, and has been widely used to estimate the SNR in the standard weak measurement. Indeed, the SNR calculation based on the Fisher information is more reasonable and we would investigate the fundamental limit of the AWVA scheme in future. Herein, we use a more general definition of SNR with voltage magnitudes of signals and noises in the WVA scheme:

SNR=20logMax[VI(t)]Max[VN(t)]=20logMax[I1out(t)]Max[N(t)],\displaystyle{\rm SNR}=20\rm log\frac{Max[V_{I}(t)]}{Max[V_{N}(t)]}=20\rm log\frac{Max[I_{1}^{out}(t)]}{Max[{\textbf{N}}(t)]}\,, (18)

where Max[I(t)]\rm Max[I(t)] and Max[N(t)]\rm Max[{\textbf{N}}(t)] represent the maximum amplitude of the signal and the noise respectively. The voltage magnitude VI(t)=𝒦I1out(t)\rm V_{I}(t)=\mathcal{K}I_{1}^{out}(t) is proportional to the amplitude of the signal I1out(t)I_{1}^{out}(t) and the voltage magnitude VN(t)=𝒦N(t)\rm V_{N}(t)=\mathcal{K}\textbf{N}(t) is proportional to the amplitude of the noise N(t)\textbf{N}(t), where the factor 𝒦\mathcal{K} represents the coefficient of photoelectric conversion of APD. Note that the SNR may not be well-defined, due to Max[N(t)]\rm{Max[{\textbf{N}}(t)]} increasing without bound as the number of samples is increased. Note that the left figure in Fig. 7 indicate that the value of Max[N(t)]\rm{Max[{\textbf{N}}(t)]} varies very little in the sampling frequency 1/T range of 1 MHz to 100 MHz. Thus, we neglect this uncertainty of SNR and calculate SNR with the value of Max[N(t)]\rm{Max[{\textbf{N}}(t)]} at 1/T=10 MHz. Take the example shown in Fig. 7(A), which gives SNR= 20×log1.40×1043.70×10520\times\rm log\frac{1.40\times 10^{-4}}{3.70\times 10^{-5}} = 11.5 dB. The numerical results in the WVA scheme with various kinds of noise are presented in Table. 1.

For the measurements with the AWVA technique, we define the sensitivity SNR\rm SNR^{*} as an intermediate step in the AWVA scheme and the sensitivity SNR\rm SNR^{*} is obtained by

SNR=20×logMax[I21out(t)]Max[N(t)],\displaystyle{\rm SNR^{*}}=20\times\rm log\frac{Max[I_{21}^{out}(t)]}{Max[{\textbf{N}}(t)]}\,, (19)

In the WVA scheme, the position of noise in the optical path has no effect on the calculation of SNR in our simulation, because there is only a single optical path in the WVA scheme. However, in the AWVA scheme, it is worth noting that the 50:50 beam splitter (shown in Fig. 2) will reduce the strength of the signal, and introduce vacuum noise. Thus, where the noise appears will lead to the different values of SNR\rm SNR^{*}. When the noise is assumed to occur only in the optical path before the BS element, the value of SNR\rm SNR^{*} is equal to the value of SNR\rm SNR. Note that the relationship SNR\rm SNR^{*}=SNR\rm SNR is true when we neglect the vacuum noise. This is the reason why a bright laser beam must be used - in that case the vacuum noise is small compared to the shot noise. In general, vacuum noise introduced by the BS element will cause SNR\rm SNR^{*} >> SNR. When the noise is assumed to occur only in the optical path after the BS element, the value of SNR\rm SNR^{*} is reduced and SNR=0.5SNR\rm SNR^{*}=0.5SNR. In addition, the value of SNR\rm SNR^{*} will be obtained at the range 0.5SNR<SNR<SNR\rm 0.5SNR<SNR^{*}<SNR when the noises occur throughout the optical path in the AWVA scheme. In this paper, in order to highlight the advantages of the scheme, we investigate the lowest SNR=0.5SNR\rm SNR^{*}=0.5SNR, because the lower the SNR\rm SNR^{*}, the harder it is to detect a useful signal. In addition, comparing the results with larger SNR\rm SNR^{*} to the results with SNR=0.5SNR\rm SNR^{*}=0.5SNR in the AWVA scheme, our simulation can also model the effect of noise before the beamsplitter. The results will be discussed in Sec. IV.3.

Note that the relationship ΘA+N(τ){\rm\Theta}_{A+\textbf{N}}(\tau) =ΘA(τ){\rm\Theta}_{A}(\tau) is only true if the integral time is infinite in Eq. (III). On the other hand, the sampling time (corresponding to the integral time) is finite and the pseudo-random number generator can not generate truly random numbers. Thus, the various types of noise will affect the value of Θ\rm\Theta and cause uncertainty in estimating the sensitivity of the scheme with the AWVA technique. In addition, the analysis of the sensitivity to various types of noise and the discussion of comparison with these results in the WVA scheme are shown in the next subsection.

Table 3: The numerical results (dimensional quantities in unit of s) for measuring the different τ\tau under the strong noise at SNR= -18.6 dB in the WVA scheme. The contents Et0{{\rm E}}_{t0} and Etτ{\rm E}_{t\tau} in parentheses represent the standard error for estimating the time shifts δt0\delta t_{0} and δtτ\delta t_{\tau} respectively. The data in red means the measurement is invalid. N(ξ=0)\textbf{N}(\xi{\color[rgb]{0,0,0}=0}), N(ξ=100)\textbf{N}(\xi=100)N(ξ=600)\textbf{N}(\xi=600) represent the multiple measurements with the different initial times.
τ\tau Noise δt0(±Et0)\delta t_{0}\,\rm(\pm E_{t0}) δtτ(±Etτ)\delta t_{\tau}\,\rm(\pm E_{t\tau}) K1(±E1)\rm K_{1}\,(\pm{\rm E}_{1})
N(ξ=000)\rm N(\xi=000) 1.23×1051.23\times 10^{-5} (±2.12×105\pm 2.12\times 10^{-5}) 6.57×1056.57\times 10^{-5} (±2.16×105\pm 2.16\times 10^{-5}) 8.90×1038.90\times 10^{3} (±7.13×103\pm 7.13\times 10^{3})
N(ξ=100)\rm N(\xi=100) 2.52×1052.52\times 10^{-5} (±2.28×105\pm 2.28\times 10^{-5}) 7.85×1057.85\times 10^{-5} (±2.20×105\pm 2.20\times 10^{-5}) 8.88×1038.88\times 10^{3} (±7.46×103\pm 7.46\times 10^{3})
N(ξ=200)\rm N(\xi=200) 7.6086×1047.6086\times 10^{-4} (±3.93×105\pm 3.93\times 10^{-5}) 7.7576×1047.7576\times 10^{-4} (±4.28×105\pm 4.28\times 10^{-5}) 2.48×1032.48\times 10^{3} (±13.6×103\pm 13.6\times 10^{3})
N(ξ=300)\rm N(\xi=300) 2.40×106-2.40\times 10^{-6} (±2.14×105\pm 2.14\times 10^{-5}) 5.07×1055.07\times 10^{-5} (±2.15×105\pm 2.15\times 10^{-5}) 8.85×1038.85\times 10^{3} (±7.15×103\pm 7.15\times 10^{3})
N(ξ=400)\rm N(\xi=400) 6.60×106-6.60\times 10^{-6} (±2.42×105\pm 2.42\times 10^{-5}) 5.49×1055.49\times 10^{-5} (±2.41×105\pm 2.41\times 10^{-5}) 10.2×10310.2\times 10^{3} (±8.05×103\pm 8.05\times 10^{3})
N(ξ=500)\rm N(\xi=500) 1.4261×1031.4261\times 10^{-3} (±30.0×105\pm 30.0\times 10^{-5}) 1.4251×1031.4251\times 10^{-3} (±28.2×105\pm 28.2\times 10^{-5}) 0.16×103-0.16\times 10^{3} (±98.6×103\pm 98.6\times 10^{3})
6×1096\times 10^{-9} N(ξ=600)\rm N(\xi=600) 1.0995×103-1.0995\times 10^{-3} (±3.75×105\pm 3.75\times 10^{-5}) 1.0920×103-1.0920\times 10^{-3} (±4.07×105\pm 4.07\times 10^{-5}) 1.25×1031.25\times 10^{3} (±13.0×103\pm 13.0\times 10^{3})
N(ξ=000)\rm N(\xi=000) 1.23×1051.23\times 10^{-5} (±2.12×105\pm 2.12\times 10^{-5}) 9.34×1059.34\times 10^{-5} (±2.19×105\pm 2.19\times 10^{-5}) 9.01×1039.01\times 10^{3} (±4.84×103\pm 4.84\times 10^{3})
N(ξ=100)\rm N(\xi=100) 2.52×1052.52\times 10^{-5} (±2.28×105\pm 2.28\times 10^{-5}) 10.4×10510.4\times 10^{-5} (±2.18×105\pm 2.18\times 10^{-5}) 8.75×1038.75\times 10^{3} (±5.22×103\pm 5.22\times 10^{3})
N(ξ=200)\rm N(\xi=200) 7.6086×1047.6086\times 10^{-4} (±3.93×105\pm 3.93\times 10^{-5}) 7.8843×1047.8843\times 10^{-4} (±4.58×105\pm 4.58\times 10^{-5}) 3.05×1033.05\times 10^{3} (±9.45×103\pm 9.45\times 10^{3})
N(ξ=300)\rm N(\xi=300) 2.40×106-2.40\times 10^{-6} (±2.14×105\pm 2.14\times 10^{-5}) 7.72×1057.72\times 10^{-5} (±2.16×105\pm 2.16\times 10^{-5}) 8.84×1038.84\times 10^{3} (±4.77×103\pm 4.77\times 10^{3})
N(ξ=400)\rm N(\xi=400) 6.60×106-6.60\times 10^{-6} (±2.42×105\pm 2.42\times 10^{-5}) 8.58×1058.58\times 10^{-5} (±2.39×105\pm 2.39\times 10^{-5}) 10.3×10310.3\times 10^{3} (±5.34×103\pm 5.34\times 10^{3})
N(ξ=500)\rm N(\xi=500) 1.4261×1031.4261\times 10^{-3} (±30.0×105\pm 30.0\times 10^{-5}) 1.4238×1031.4238\times 10^{-3} (±26.8×105\pm 26.8\times 10^{-5}) 0.25×103-0.25\times 10^{3} (±65.5×103\pm 65.5\times 10^{3})
9×1099\times 10^{-9} N(ξ=600)\rm N(\xi=600) 1.0995×103-1.0995\times 10^{-3} (±3.75×105\pm 3.75\times 10^{-5}) 1.0869×103-1.0869\times 10^{-3} (±4.31×105\pm 4.31\times 10^{-5}) 1.38×1031.38\times 10^{3} (±8.95×103\pm 8.95\times 10^{3})
N(ξ=000)\rm N(\xi=000) 1.23×1051.23\times 10^{-5} (±2.12×105\pm 2.12\times 10^{-5}) 12.2×10512.2\times 10^{-5} (±2.23×105\pm 2.23\times 10^{-5}) 9.12×1039.12\times 10^{3} (±3.62×103\pm 3.62\times 10^{3})
N(ξ=100)\rm N(\xi=100) 2.52×1052.52\times 10^{-5} (±2.28×105\pm 2.28\times 10^{-5}) 13.1×10513.1\times 10^{-5} (±2.18×105\pm 2.18\times 10^{-5}) 8.77×1038.77\times 10^{3} (±3.75×103\pm 3.75\times 10^{3})
N(ξ=200)\rm N(\xi=200) 7.6086×1047.6086\times 10^{-4} (±3.93×105\pm 3.93\times 10^{-5}) 8.1703×1048.1703\times 10^{-4} (±5.26×105\pm 5.26\times 10^{-5}) 4.68×1034.68\times 10^{3} (±7.65×103\pm 7.65\times 10^{3})
N(ξ=300)\rm N(\xi=300) 2.40×106-2.40\times 10^{-6} (±2.14×105\pm 2.14\times 10^{-5}) 10.4×10510.4\times 10^{-5} (±2.16×105\pm 2.16\times 10^{-5}) 9.21×1039.21\times 10^{3} (±2.68×103\pm 2.68\times 10^{3})
N(ξ=400)\rm N(\xi=400) 6.60×106-6.60\times 10^{-6} (±2.42×105\pm 2.42\times 10^{-5}) 11.7×10511.7\times 10^{-5} (±2.37×105\pm 2.37\times 10^{-5}) 10.3×10310.3\times 10^{3} (±3.99×103\pm 3.99\times 10^{3})
N(ξ=500)\rm N(\xi=500) 1.4261×1031.4261\times 10^{-3} (±30.0×105\pm 30.0\times 10^{-5}) 1.4217×1031.4217\times 10^{-3} (±25.2×105\pm 25.2\times 10^{-5}) 0.36×103-0.36\times 10^{3} (±45.8×103\pm 45.8\times 10^{3})
12×10912\times 10^{-9} N(ξ=600)\rm N(\xi=600) 1.0995×103-1.0995\times 10^{-3} (±4.66×105\pm 4.66\times 10^{-5}) 1.0797×103-1.0797\times 10^{-3} (±4.63×105\pm 4.63\times 10^{-5}) 1.65×1031.65\times 10^{3} (±7.40×103\pm 7.40\times 10^{3})
N(ξ=000)\rm N(\xi=000) 1.23×1051.23\times 10^{-5} (±2.12×105\pm 2.12\times 10^{-5}) 15.7×10515.7\times 10^{-5} (±2.27×105\pm 2.27\times 10^{-5}) 9.23×1039.23\times 10^{3} (±2.92×103\pm 2.92\times 10^{3})
N(ξ=100)\rm N(\xi=100) 2.52×1052.52\times 10^{-5} (±2.28×105\pm 2.28\times 10^{-5}) 15.6×10515.6\times 10^{-5} (±2.18×105\pm 2.18\times 10^{-5}) 8.76×1038.76\times 10^{3} (±2.96×103\pm 2.96\times 10^{3})
N(ξ=200)\rm N(\xi=200) 7.6086×1047.6086\times 10^{-4} (±3.93×105\pm 3.93\times 10^{-5}) 8.6756×1048.6756\times 10^{-4} (±6.45×105\pm 6.45\times 10^{-5}) 7.11×1037.11\times 10^{3} (±6.92×103\pm 6.92\times 10^{3})
N(ξ=300)\rm N(\xi=300) 2.40×106-2.40\times 10^{-6} (±2.14×105\pm 2.14\times 10^{-5}) 13.1×10513.1\times 10^{-5} (±2.16×105\pm 2.16\times 10^{-5}) 8.86×1038.86\times 10^{3} (±2.86×103\pm 2.86\times 10^{3})
N(ξ=400)\rm N(\xi=400) 6.60×106-6.60\times 10^{-6} (±2.42×105\pm 2.42\times 10^{-5}) 14.7×10514.7\times 10^{-5} (±2.34×105\pm 2.34\times 10^{-5}) 10.3×10310.3\times 10^{3} (±3.17×103\pm 3.17\times 10^{3})
N(ξ=500)\rm N(\xi=500) 1.4261×1031.4261\times 10^{-3} (±30.0×105\pm 30.0\times 10^{-5}) 1.4187×1031.4187\times 10^{-3} (±24.0×105\pm 24.0\times 10^{-5}) 0.49×103-0.49\times 10^{3} (±36.0×103\pm 36.0\times 10^{3})
15×10915\times 10^{-9} N(ξ=600)\rm N(\xi=600) 1.0995×103-1.0995\times 10^{-3} (±3.75×105\pm 3.75\times 10^{-5}) 1.0687×103-1.0687\times 10^{-3} (±5.24×105\pm 5.24\times 10^{-5}) 2.05×1032.05\times 10^{3} (±5.99×103\pm 5.99\times 10^{3})
Table 4: Parameters and some characteristic numerical results for measuring the different τ\tau under the strong noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}) at SNR= -18.6 dB in the AWVA scheme. The sampling frequency is set at 1/T= 10 MHz.
τ\tau (s) N(t,ξ1)\textbf{N}(t,\xi_{1}) N(t,ξ2)\textbf{N}(t,\xi_{2}) Θ0\rm\Theta_{0} Θτ\rm\Theta_{\tau} ΔΘ\Delta{\rm\Theta} K2M\rm K_{2}^{M} K¯2(±E2)\rm\overline{K}_{2}\,(\pm{\rm E}_{2})
no noise no noise 1.2443×1091.2443\times 10^{-9} 1.0837×1091.0837\times 10^{-9} 16.1×101116.1\times 10^{-11} 0.0268
N(ξ1=000)\rm N(\xi_{1}=000) N(ξ2=700)\rm N(\xi_{2}=700) 1.5116×1091.5116\times 10^{-9} 1.3418×1091.3418\times 10^{-9} 17.0×101117.0\times 10^{-11} 0.0283
N(ξ1=100)\rm N(\xi_{1}=100) N(ξ2=710)\rm N(\xi_{2}=710) 2.2062×1092.2062\times 10^{-9} 2.0626×1092.0626\times 10^{-9} 14.3×101114.3\times 10^{-11} 0.0238
N(ξ1=200)\rm N(\xi_{1}=200) N(ξ2=720)\rm N(\xi_{2}=720) 0.8214×1090.8214\times 10^{-9} 0.6742×1090.6742\times 10^{-9} 14.7×101114.7\times 10^{-11} 0.0245
N(ξ1=300)\rm N(\xi_{1}=300) N(ξ2=730)\rm N(\xi_{2}=730) 1.5151×1091.5151\times 10^{-9} 1.3575×1091.3575\times 10^{-9} 15.7×101115.7\times 10^{-11} 0.0261
N(ξ1=400)\rm N(\xi_{1}=400) N(ξ2=740)\rm N(\xi_{2}=740) 1.8597×1091.8597\times 10^{-9} 1.7035×1091.7035\times 10^{-9} 15.6×101115.6\times 10^{-11} 0.0260
N(ξ1=500)\rm N(\xi_{1}=500) N(ξ2=750)\rm N(\xi_{2}=750) 1.2757×1091.2757\times 10^{-9} 1.1136×1091.1136\times 10^{-9} 16.2×101116.2\times 10^{-11} 0.0270
6×1096\times 10^{-9} N(ξ1=600)\rm N(\xi_{1}=600) N(ξ2=760)\rm N(\xi_{2}=760) 1.8199×1091.8199\times 10^{-9} 1.6441×1091.6441\times 10^{-9} 17.6×101117.6\times 10^{-11} 0.0293 0.02643(±0.00287\pm 0.00287)
no noise no noise 1.2443×1091.2443\times 10^{-9} 0.9973×1090.9973\times 10^{-9} 24.7×101124.7\times 10^{-11} 0.0274
N(ξ1=000)\rm N(\xi_{1}=000) N(ξ2=700)\rm N(\xi_{2}=700) 1.5116×1091.5116\times 10^{-9} 1.2490×1091.2490\times 10^{-9} 26.2×101126.2\times 10^{-11} 0.0291
N(ξ1=100)\rm N(\xi_{1}=100) N(ξ2=710)\rm N(\xi_{2}=710) 2.2062×1092.2062\times 10^{-9} 1.9815×1091.9815\times 10^{-9} 22.4×101122.4\times 10^{-11} 0.0249
N(ξ1=200)\rm N(\xi_{1}=200) N(ξ2=720)\rm N(\xi_{2}=720) 0.8214×1090.8214\times 10^{-9} 0.5944×1090.5944\times 10^{-9} 22.7×101122.7\times 10^{-11} 0.0252
N(ξ1=300)\rm N(\xi_{1}=300) N(ξ2=730)\rm N(\xi_{2}=730) 1.5151×1091.5151\times 10^{-9} 1.2730×1091.2730\times 10^{-9} 24.2×101124.2\times 10^{-11} 0.0269
N(ξ1=400)\rm N(\xi_{1}=400) N(ξ2=740)\rm N(\xi_{2}=740) 1.8597×1091.8597\times 10^{-9} 1.6194×1091.6194\times 10^{-9} 24.0×101124.0\times 10^{-11} 0.0266
N(ξ1=500)\rm N(\xi_{1}=500) N(ξ2=750)\rm N(\xi_{2}=750) 1.2757×1091.2757\times 10^{-9} 1.0260×1091.0260\times 10^{-9} 25.0×101125.0\times 10^{-11} 0.0277
9×1099\times 10^{-9} N(ξ1=600)\rm N(\xi_{1}=600) N(ξ2=760)\rm N(\xi_{2}=760) 1.8199×1091.8199\times 10^{-9} 1.5501×1091.5501\times 10^{-9} 27.0×101127.0\times 10^{-11} 0.0300 0.02720(±0.00280\pm 0.00280)
no noise no noise 1.2443×1091.2443\times 10^{-9} 0.9091×1090.9091\times 10^{-9} 33.5×101133.5\times 10^{-11} 0.0279
N(ξ1=000)\rm N(\xi_{1}=000) N(ξ2=700)\rm N(\xi_{2}=700) 1.5116×1091.5116\times 10^{-9} 1.1535×1091.1535\times 10^{-9} 35.8×101135.8\times 10^{-11} 0.0298
N(ξ1=100)\rm N(\xi_{1}=100) N(ξ2=710)\rm N(\xi_{2}=710) 2.2062×1092.2062\times 10^{-9} 1.8966×1091.8966\times 10^{-9} 30.9×101130.9\times 10^{-11} 0.0257
N(ξ1=200)\rm N(\xi_{1}=200) N(ξ2=720)\rm N(\xi_{2}=720) 0.8214×1090.8214\times 10^{-9} 0.5128×1090.5128\times 10^{-9} 30.8×101130.8\times 10^{-11} 0.0256
N(ξ1=300)\rm N(\xi_{1}=300) N(ξ2=730)\rm N(\xi_{2}=730) 1.5151×1091.5151\times 10^{-9} 1.1870×1091.1870\times 10^{-9} 32.8×101132.8\times 10^{-11} 0.0273
N(ξ1=400)\rm N(\xi_{1}=400) N(ξ2=740)\rm N(\xi_{2}=740) 1.8597×1091.8597\times 10^{-9} 1.5336×1091.5336\times 10^{-9} 32.6×101132.6\times 10^{-11} 0.0271
N(ξ1=500)\rm N(\xi_{1}=500) N(ξ2=750)\rm N(\xi_{2}=750) 1.2757×1091.2757\times 10^{-9} 0.9364×1090.9364\times 10^{-9} 33.9×101133.9\times 10^{-11} 0.0282
12×10912\times 10^{-9} N(ξ1=600)\rm N(\xi_{1}=600) N(ξ2=760)\rm N(\xi_{2}=760) 1.8199×1091.8199\times 10^{-9} 1.4566×1091.4566\times 10^{-9} 36.3×101136.3\times 10^{-11} 0.0302 0.02770(±0.00250\pm 0.00250)
no noise no noise 1.2443×1091.2443\times 10^{-9} 0.8208×1090.8208\times 10^{-9} 43.4×101143.4\times 10^{-11} 0.0282
N(ξ1=000)\rm N(\xi_{1}=000) N(ξ2=700)\rm N(\xi_{2}=700) 1.5116×1091.5116\times 10^{-9} 1.0575×1091.0575\times 10^{-9} 45.4×101145.4\times 10^{-11} 0.0303
N(ξ1=100)\rm N(\xi_{1}=100) N(ξ2=710)\rm N(\xi_{2}=710) 2.2062×1092.2062\times 10^{-9} 1.8100×1091.8100\times 10^{-9} 39.6×101139.6\times 10^{-11} 0.0264
N(ξ1=200)\rm N(\xi_{1}=200) N(ξ2=720)\rm N(\xi_{2}=720) 0.8214×1090.8214\times 10^{-9} 0.4308×1090.4308\times 10^{-9} 39.1×101139.1\times 10^{-11} 0.0261
N(ξ1=300)\rm N(\xi_{1}=300) N(ξ2=730)\rm N(\xi_{2}=730) 1.5151×1091.5151\times 10^{-9} 1.1010×1091.1010\times 10^{-9} 41.4×101141.4\times 10^{-11} 0.0276
N(ξ1=400)\rm N(\xi_{1}=400) N(ξ2=740)\rm N(\xi_{2}=740) 1.8597×1091.8597\times 10^{-9} 1.4477×1091.4477\times 10^{-9} 41.2×101141.2\times 10^{-11} 0.0274
N(ξ1=500)\rm N(\xi_{1}=500) N(ξ2=750)\rm N(\xi_{2}=750) 1.2757×1091.2757\times 10^{-9} 0.8466×1090.8466\times 10^{-9} 42.9×101142.9\times 10^{-11} 0.0286
15×10915\times 10^{-9} N(ξ1=600)\rm N(\xi_{1}=600) N(ξ2=760)\rm N(\xi_{2}=760) 1.8199×1091.8199\times 10^{-9} 1.3628×1091.3628\times 10^{-9} 45.7×101145.7\times 10^{-11} 0.0304 0.02811(±0.00229\pm{\color[rgb]{0,0,0}0.00229})
Table 5: Parameters and some characteristic numerical results for measuring the different τ\tau under the strong noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}) at SNR= -18.6 dB in the AWVA scheme. The sampling frequency is set at 1/T= 100 MHz.
τ\tau (s) N(t,ξ1)\textbf{N}(t,\xi_{1}) N(t,ξ2)\textbf{N}(t,\xi_{2}) Θ0\rm\Theta_{0} Θτ\rm\Theta_{\tau} ΔΘ\Delta{\rm\Theta} K2M\rm K_{2}^{M} K¯2(±E2)\rm\overline{K}_{2}\,(\pm{\rm E}_{2})
no noise no noise 1.2443×1091.2443\times 10^{-9} 1.0837×1091.0837\times 10^{-9} 16.1×101116.1\times 10^{-11} 0.0267
N(ξ1=000)\rm N(\xi_{1}=000) N(ξ2=700)\rm N(\xi_{2}=700) 1.2195×1091.2195\times 10^{-9} 1.0651×1091.0651\times 10^{-9} 15.4×101115.4\times 10^{-11} 0.0257
N(ξ1=100)\rm N(\xi_{1}=100) N(ξ2=710)\rm N(\xi_{2}=710) 1.5641×1091.5641\times 10^{-9} 1.4010×1091.4010\times 10^{-9} 16.3×101116.3\times 10^{-11} 0.0272
N(ξ1=200)\rm N(\xi_{1}=200) N(ξ2=720)\rm N(\xi_{2}=720) 0.9090×1090.9090\times 10^{-9} 0.7495×1090.7495\times 10^{-9} 15.9×101115.9\times 10^{-11} 0.0265
N(ξ1=300)\rm N(\xi_{1}=300) N(ξ2=730)\rm N(\xi_{2}=730) 1.2707×1091.2707\times 10^{-9} 1.1104×1091.1104\times 10^{-9} 16.0×101116.0\times 10^{-11} 0.0266
N(ξ1=400)\rm N(\xi_{1}=400) N(ξ2=740)\rm N(\xi_{2}=740) 1.2711×1091.2711\times 10^{-9} 1.1095×1091.1095\times 10^{-9} 16.1×101116.1\times 10^{-11} 0.0268
N(ξ1=500)\rm N(\xi_{1}=500) N(ξ2=750)\rm N(\xi_{2}=750) 1.2311×1091.2311\times 10^{-9} 1.0754×1091.0754\times 10^{-9} 15.6×101115.6\times 10^{-11} 0.0260
6×1096\times 10^{-9} N(ξ1=600)\rm N(\xi_{1}=600) N(ξ2=760)\rm N(\xi_{2}=760) 1.4695×1091.4695\times 10^{-9} 1.3071×1091.3071\times 10^{-9} 16.2×101116.2\times 10^{-11} 0.0270 0.02654(±0.00084\pm 0.00084)
no noise no noise 1.2443×1091.2443\times 10^{-9} 0.9973×1090.9973\times 10^{-9} 24.7×101124.7\times 10^{-11} 0.0274
N(ξ1=000)\rm N(\xi_{1}=000) N(ξ2=700)\rm N(\xi_{2}=700) 1.2195×1091.2195\times 10^{-9} 0.9818×1090.9818\times 10^{-9} 23.8×101123.8\times 10^{-11} 0.0264
N(ξ1=100)\rm N(\xi_{1}=100) N(ξ2=710)\rm N(\xi_{2}=710) 1.5641×1091.5641\times 10^{-9} 1.3132×1091.3132\times 10^{-9} 25.1×101125.1\times 10^{-11} 0.0279
N(ξ1=200)\rm N(\xi_{1}=200) N(ξ2=720)\rm N(\xi_{2}=720) 0.9090×1090.9090\times 10^{-9} 0.6636×1090.6636\times 10^{-9} 24.5×101124.5\times 10^{-11} 0.0272
N(ξ1=300)\rm N(\xi_{1}=300) N(ξ2=730)\rm N(\xi_{2}=730) 1.2707×1091.2707\times 10^{-9} 1.0246×1091.0246\times 10^{-9} 24.6×101124.6\times 10^{-11} 0.0273
N(ξ1=400)\rm N(\xi_{1}=400) N(ξ2=740)\rm N(\xi_{2}=740) 1.2711×1091.2711\times 10^{-9} 1.0223×1091.0223\times 10^{-9} 24.8×101124.8\times 10^{-11} 0.0276
N(ξ1=500)\rm N(\xi_{1}=500) N(ξ2=750)\rm N(\xi_{2}=750) 1.2311×1091.2311\times 10^{-9} 0.9914×1090.9914\times 10^{-9} 24.0×101124.0\times 10^{-11} 0.0267
9×1099\times 10^{-9} N(ξ1=600)\rm N(\xi_{1}=600) N(ξ2=760)\rm N(\xi_{2}=760) 1.4695×1091.4695\times 10^{-9} 1.2196×1091.2196\times 10^{-9} 25.0×101125.0\times 10^{-11} 0.0278 0.02727(±0.00087\pm 0.00087)
no noise no noise 1.2443×1091.2443\times 10^{-9} 0.9091×1090.9091\times 10^{-9} 33.5×101133.5\times 10^{-11} 0.0279
N(ξ1=000)\rm N(\xi_{1}=000) N(ξ2=700)\rm N(\xi_{2}=700) 1.2195×1091.2195\times 10^{-9} 0.8967×1090.8967\times 10^{-9} 32.3×101132.3\times 10^{-11} 0.0269
N(ξ1=100)\rm N(\xi_{1}=100) N(ξ2=710)\rm N(\xi_{2}=710) 1.5641×1091.5641\times 10^{-9} 1.2236×1091.2236\times 10^{-9} 34.1×101134.1\times 10^{-11} 0.0284
N(ξ1=200)\rm N(\xi_{1}=200) N(ξ2=720)\rm N(\xi_{2}=720) 0.9090×1090.9090\times 10^{-9} 0.5760×1090.5760\times 10^{-9} 33.3×101133.3\times 10^{-11} 0.0277
N(ξ1=300)\rm N(\xi_{1}=300) N(ξ2=730)\rm N(\xi_{2}=730) 1.2707×1091.2707\times 10^{-9} 0.9375×1090.9375\times 10^{-9} 33.3×101133.3\times 10^{-11} 0.0277
N(ξ1=400)\rm N(\xi_{1}=400) N(ξ2=740)\rm N(\xi_{2}=740) 1.2711×1091.2711\times 10^{-9} 0.9332×1090.9332\times 10^{-9} 33.8×101133.8\times 10^{-11} 0.0282
N(ξ1=500)\rm N(\xi_{1}=500) N(ξ2=750)\rm N(\xi_{2}=750) 1.2311×1091.2311\times 10^{-9} 0.9056×1090.9056\times 10^{-9} 32.5×101132.5\times 10^{-11} 0.0271
12×10912\times 10^{-9} N(ξ1=600)\rm N(\xi_{1}=600) N(ξ2=760)\rm N(\xi_{2}=760) 1.4695×1091.4695\times 10^{-9} 1.1301×1091.1301\times 10^{-9} 33.9×101133.9\times 10^{-11} 0.0282 0.02774(±0.00084\pm 0.00084)
no noise no noise 1.2443×1091.2443\times 10^{-9} 0.8208×1090.8208\times 10^{-9} 43.4×101143.4\times 10^{-11} 0.0282
N(ξ1=000)\rm N(\xi_{1}=000) N(ξ2=700)\rm N(\xi_{2}=700) 1.2195×1091.2195\times 10^{-9} 0.8115×1090.8115\times 10^{-9} 40.8×101140.8\times 10^{-11} 0.0272
N(ξ1=100)\rm N(\xi_{1}=100) N(ξ2=710)\rm N(\xi_{2}=710) 1.5641×1091.5641\times 10^{-9} 1.1339×1091.1339\times 10^{-9} 43.0×101143.0\times 10^{-11} 0.0287
N(ξ1=200)\rm N(\xi_{1}=200) N(ξ2=720)\rm N(\xi_{2}=720) 0.9090×1090.9090\times 10^{-9} 0.4883×1090.4883\times 10^{-9} 42.1×101142.1\times 10^{-11} 0.0281
N(ξ1=300)\rm N(\xi_{1}=300) N(ξ2=730)\rm N(\xi_{2}=730) 1.2707×1091.2707\times 10^{-9} 0.8505×1090.8505\times 10^{-9} 42.0×101142.0\times 10^{-11} 0.0280
N(ξ1=400)\rm N(\xi_{1}=400) N(ξ2=740)\rm N(\xi_{2}=740) 1.2711×1091.2711\times 10^{-9} 0.8438×1090.8438\times 10^{-9} 42.7×101142.7\times 10^{-11} 0.0285
N(ξ1=500)\rm N(\xi_{1}=500) N(ξ2=750)\rm N(\xi_{2}=750) 1.2311×1091.2311\times 10^{-9} 0.8195×1090.8195\times 10^{-9} 41.2×101141.2\times 10^{-11} 0.0275
15×10915\times 10^{-9} N(ξ1=600)\rm N(\xi_{1}=600) N(ξ2=760)\rm N(\xi_{2}=760) 1.4695×1091.4695\times 10^{-9} 1.0405×1091.0405\times 10^{-9} 42.9×101142.9\times 10^{-11} 0.0286 0.02808(±0.00088\pm 0.00088)

Refer to caption

Refer to caption

Refer to caption

Figure 10: The normalized sensitivity in the WVA scheme and in the AWVA scheme under the Gaussian noises with different SNR and sampling frequency: (A). the normalized sensitivity in the WVA scheme under noises N(t,σ2,ξ)\textbf{N}(t,\sigma^{2},\xi) with different SNR; (B). the normalized sensitivity in the AWVA scheme under noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}) at sampling frequency 1/T= 1 MHz with different SNR; (C). the normalized sensitivity in the AWVA scheme under noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}) at SNR= -18.6 dB with different sampling frequency 1/T. The gray band represents the measurements failing to effectively detect the final signal. The “red” data with the error bar represent the final results of seven statistical averages in the AWVA scheme.

IV.2 The sensitivity with the standard error

In order to calculate the sensitivity in the two schemes, we did the simulation with both schemes with the time shift τ\tau. In the WVA scheme, the sensitivity is defined as

K1=Δ(δt)Δ(τ)=δtτδt0τ,\displaystyle{\rm K_{1}}=\frac{\Delta(\delta t)}{\Delta(\tau)}=\frac{\delta t_{\tau}-\delta t_{0}}{\tau}, (20)

where peak value shift δt0\delta t_{0} of the temporal pointer and its standard error Et0{\rm E}_{t0} represent the results with the time shift τ\tau= 0s. The peak value shift δtτ\delta t_{\tau} of the temporal pointer and its standard error Etτ{\rm E}_{t\tau} are obtained by fitting the Gaussian profile of the signal I1out(t,τ)I_{1}^{out}(t,\tau) with least square method. Then, the statistical error E1{\rm E}_{1} for estimating the value of K1\rm K_{1} can be calculated from Eq. (20) with the law of error propagation: E1=(|Etτ|+|Et0|)/τ{\rm E}_{1}=(|{\rm E}_{t\tau}|+|{\rm E}_{t0}|)/\tau. Finally, the sensitivity K1\rm K_{1} with its the statistical error E1{\rm E}_{1} under different simulation conditions are shown in Table 1 and Table 3.

Note that the quantities measured in the AWVA scheme are the values of Θ\rm\Theta, therefore, the sensitivity in the AWVA scheme is defined as:

K2(t)\displaystyle{\rm K_{2}(t)} =\displaystyle= Δ[Θ(t;τ)]Δ(τ)=Θ0Θττ,\displaystyle\frac{\Delta[\rm\Theta(t;\tau)]}{\Delta(\tau)}=\frac{\Theta_{0}-\Theta_{\tau}}{\tau}\,, (21)

where Θτ\Theta_{\tau} represents the result ΘA+N(t;τ)\Theta_{A+N}(t;\tau) calculated from Eq. (15), Θ0\Theta_{0} represents the initial value of the measurement without the time shift τ\tau and can be calculated from the data I22+NoutI_{22+N}^{out} on APD2 in Fig. 2:

Θ0\displaystyle\Theta_{0} =\displaystyle= 0tI22+Nout(t)×I22+Nout(t)𝑑t\displaystyle\int_{0}^{t}I_{22+\textbf{N}}^{out}(t^{\prime})\times I_{22+\textbf{N}}^{out}(t^{\prime})dt^{\prime} (22)

Note that the sensitivity K2(t){\rm K_{2}(t)} depends on the scope of time integral tt. The dependence of the sensitivity on tt with various types of noise is shown in Fig. 7(B) and Fig. 7(C), and one can find that the maximum sensitivity K2M{\rm K_{2}^{M}} is achieved when integrated to t=1.5t=1.5 ms. In addition, we neglect the standard error of K2M{\rm K_{2}^{M}}, since Θ\Theta can be estimated by using a high vertical resolution oscilloscope. We show the maximum sensitivity K2M{\rm K_{2}^{M}} without standard errors in Table. 2 and Table. 4. In this paper, we define the central value K¯2{\rm\overline{K}_{2}} with its statistical error E2{\rm E}_{2} in the AWVA scheme, which is created by calculating the seven statistical averages of K2M{\rm K_{2}^{M}} with different measurements:

K¯2=i=1nK2M(i)/n,E2=Max{|K¯2K2M(i)|},\displaystyle\rm\overline{K}_{2}=\sum\limits_{i=1}^{n}{\rm K_{2}^{M}(i)}/n,\,\,{\rm E}_{2}=\rm Max\{|\overline{K}_{2}-K_{2}^{M}(i)|\}\,, (23)

where the K2M(i){\rm K_{2}^{M}(i)} represents the result of the ith measurement with the different value of ξ\xi, n represents the total number of measurements and n=7. For different simulation conditions, the central value K¯2{\rm\overline{K}_{2}} with its statistical error E2{\rm E}_{2} in the AWVA scheme are displayed in Table 2 and Table 4.

To compare the sensitivity in the two schemes, we further normalized them with their corresponding theoretical results in Fig. 10 and Fig. 11. Note that when the value of the sensitivity K\rm K << 0, corresponding to the Loss of sensitivity” area, the measurement is invalid. The central value K¯2{\rm\overline{K}_{2}} with its statistical error E2{\rm E}_{2} in the AWVA scheme are displayed as the red” data with error bar in Fig. 10 and Fig. 11.

IV.3 Effects of Gaussian noise with different SNR

Fig. 8 displays the results in the two schemes under the Gaussian white noise with different SNRs. In addition, the corresponding results of the sensitivity are shown in Table. 1 and Table. 2. Combining the results of the normalized sensitivity in Fig. 10, we come to the following summaries of the effects of noises in the two schemes:

1). In general, the AWVA scheme outperforms the WVA scheme, because the statistical error of the normalized sensitivity in the AWVA scheme is much smaller than that in the WVA scheme at the same level of SNR. Note that our results may be obtained by assuming that the time resolution and the vertical resolution of the oscilloscope can meet the requirements of our scheme, where the vertical resolution of the oscilloscope limits the accuracy of the value of Θ\rm\Theta. On the other hand, the signal processing modules (Fig. 3) do not need to be implemented in hardware if the weak measurement does not meet the real-time measurement and this process may generate other kinds of noise. Thus, the results of Θ\rm\Theta can be calculated mathematically after the measurement from the collected data on APD1 and APD2 of the scheme in Fig. 2.

2). There is no doubt that the intensity of noise significantly affects the results in both schemes. As shown in Fig. 10, the statistical error of K1\rm K_{1} and K¯2\rm\overline{K}_{2} increase, when the SNR is smaller. However, when the SNR is smaller than -6.6 dB, the central values of the measurement under noise N(SNR=6.6dB,ξ= 500)\rm\textbf{N}(SNR=\,-6.6\,dB,\xi=\,500), N(SNR=13.2dB,ξ= 300)\rm N(SNR=\,-13.2\,dB,\xi=\,300), N(SNR=13.2dB,ξ= 500)\rm\textbf{N}(SNR=\,-13.2\,dB,\xi=\,500) and N(SNR=13.2dB,ξ=600)\rm\textbf{N}(SNR=\,-13.2\,dB,\xi=600) deviates greatly from the theoretical value in WVA scheme. In addition, the measurements under noise at SNR= -13.2 dB in the WVA scheme are invalid due to the error bars extending into the “Loss of sensitivity” area. Meanwhile, under the strong noise with negative-dB SNR, the scheme with the AWVA technique gives more accurate results with smaller statistical errors than the scheme with the WVA technique.

3). Note that we obtain SNR=0.5SNR\rm SNR^{*}=0.5SNR in the AWVA scheme by assuming that noise occurs after the beamsplitter. When the noises occur throughout the optical path, the value of SNR\rm SNR^{*} will be obtained in the range 0.5SNR<SNR<SNR\rm 0.5SNR<SNR^{*}<SNR. As shown in Fig. 10, the results corresponding to 0.5SNR<SNR<SNR\rm 0.5SNR<SNR^{*}<SNR are equivalent to shifting the curve to the right and lead to a smaller error bar compering to the results with SNR=0.5SNR\rm SNR^{*}=0.5SNR. Therefore, the AWVA scheme performs the WVA scheme no matter where the noise appears.

In conclusion, the advantage of the scheme with the AWVA technique is more obvious when the SNR is lower. Note that the statistical errors in the AWVA scheme get larger when SNR is lower. Therefore, there is also a lower limit (corresponding to the minimum SNR) to how effective the AWVA scheme can be measured.

IV.4 Effects of the sampling frequency

In this paper, we only investigate the influence of the sampling frequency 1/T on estimating the auto-correlative intensity Θ\rm\Theta in the AWVA scheme due to the estimation of Θ\rm\Theta strongly depending on the sampling frequency. In Sec. III, the influence of the different sampling frequency 1/T on the auto-correlative intensity ΘNN\rm\Theta_{NN} of noises has been discussed. And the right figure of Fig. 9 indicates that increasing sampling frequency gets a lower ΘNN\rm\Theta_{NN}. The effects of the different sampling frequencies on the auto-correlative intensity ΘA+N\rm\Theta_{A+N} of noises and the sensitivity in the AWVA scheme are shown in Table. 2 and Fig. 10(C). Predictably, increasing sampling frequency 1/T can dramatically enhance the AWVA scheme’s robustness.

It is worth noting that the upper limit of the sampling frequency 1/T is set at 100 MHz. There are two reasons for the choice in our simulation. One is that the results with 1/T=100 MHz are obviously better than the results with 1/T=10 MHz. And our simulation with 1/T=1000 MHz on Simulink takes a prohibitively large amount of time. Therefore the simulation with a larger 1/T=100 MHz is unnecessary. Another reason is that, in order to achieve sampling accuracy, the realistic sampling frequency normally needs to reach 3-10 times of the theoretical sampling frequency according to the Nyquist theorem [44]. Furthermore, it is difficult to guarantee that the time resolution (1/T) and the vertical resolution of the oscilloscope meet the requirements at the same time since the vertical resolution must be high enough to detect the shift of Θ\rm\Theta.

IV.5 Effects of the coupling strength

In the two schemes for measuring the time shifts τ\tau induced by a birefringent crystal, the time shift τ\tau serves as the coupling strength in the weak measurements. Next, we will show the results with the two schemes at different coupling strengths τ\tau. Note that this discussion is necessary because the two schemes can be transformed to measure other physical quantities. In Fig. 11, we show the results of δt\delta t in the WVA scheme and the shift of Θ\rm\Theta(t=1.5 ms) in the AWVA scheme, as well as their corresponding sensitivities, under the noise N(t,σ2=4.0×107)\textbf{N}(t,\sigma^{2}=4.0\times 10^{-7}) with SNR= -13.2 dB. Note that the sensitivity K1\rm K_{1} and K¯2\rm\overline{K}_{2} have been normalized to highlight the deviation from the theoretical values. Fig. 11 shows the deviations of the results in the two schemes from the theoretical value. We come to the following summaries of the effects of the coupling strength in the two schemes:

Refer to caption

Refer to caption

Refer to caption

Refer to caption

Refer to caption

Refer to caption

Figure 11: The shifts Δ(δt)\Delta(\delta t) as well as the shifts Δ\Delta(Θ\rm\Theta) (upper panels), and the corresponding sensitivity (lower panels) with respect to the coupling strength τ\tau under the Gaussian noise with SNR= -12.6 dB. The left panel shows the results under noises N(t,σ2,ξ)\textbf{N}(t,\sigma^{2},\xi) with different seeds ξ\xi in the WVA scheme, the middle panel shows the results at sampling frequency 1/T= 10 MHz under noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}) with different seeds ξ1\xi_{1} and ξ2\xi_{2} in the AWVA scheme, and the right panel shows the results at sampling frequency 1/T= 100 MHz under noises N(t,σ2,ξ1)\textbf{N}(t,\sigma^{2},\xi_{1}) and N(t,σ2,ξ2)\textbf{N}(t,\sigma^{2},\xi_{2}) with different seeds ξ1\xi_{1} and ξ2\xi_{2} in the AWVA scheme. The “red” data with the error bar represent the final results of seven statistical averages in the AWVA scheme.

(1). The upper panels in Fig. 11 display the shifts Δ(δt)\Delta(\delta t) in the WVA scheme and the shifts Δ\Delta(Θ\rm\Theta) in the AWVA scheme dependence of the coupling strength τ\tau. Under the same noise with SNR= -13.2 dB, the measurements with their error bars in the WVA scheme extending into the “Loss of sensitivity” area are invalid, while all the measurements in the AWVA scheme give valid results with statistical errors. Besides, the central values of measuring Δ\Delta(Θ\rm\Theta) in the AWVA scheme agree with the theoretical results in absence of noise. Nevertheless, the central values of measuring Δ(δt)\Delta(\delta t) in the WVA scheme deviated greatly from the theoretical values. In addition, the magnitudes of the statistical errors in the WVA scheme are independent of the coupling strength τ\tau, and it is clear to verify that when discarding the measurements with the noise N(σ=105,ξ=500)\rm\textbf{N}(\sigma=10^{-5},\xi=500) and N(σ=105,ξ=600)\rm\textbf{N}(\sigma=10^{-5},\xi=600). While the magnitudes of the error bars in the AWVA scheme get bigger when the coupling strength τ\tau increases.

(2). The lower panels in Fig. 11 display the normalized sensitivity K1\rm{K}_{1} and K¯2\rm\overline{K}_{2} dependence of the coupling strength τ\tau. The results in the WVA scheme indicate that the statistical errors of estimating K1\rm{K}_{1} get smaller when the coupling strength τ\tau increases. While results in the AWVA scheme indicate that the statistical errors of estimating K¯2\rm\overline{K}_{2} are independent of the coupling strength τ\tau. Furthermore, if the experimental conditions permit multiple measurements, the measurements, where the central value deviates greatly from the theoretical value, can be eliminated to obtain the results with smaller error bars.

(3). The middle panels (1/T= 10 MHz) and right panels (1/T= 100 MHz) show the influence of the sampling frequency on the results in the AWVA scheme. There is little deviation between the central value and the theoretical value with sampling frequency 1/T= 100 MHz. Therefore, increasing the sampling frequency can enhance the robustness of detecting the change of the coupling strengths τ\tau.

In conclusion, the scheme with the WVA technique is superior to the scheme with the AWVA technique when the coupling strength τ>\tau> 1.5×1081.5\times 10^{-8} s. On the other hand, the advantage of the scheme with the AWVA technique is more obvious when the coupling strength is lower and the sampling frequency is higher.

IV.6 The measurements with different random seed

So far, the previous results and discussion have been based on the assumption that the thermal noise and shot noise of the detection may not cause the different series of noise detected on APD1 and APD2 in the AVWA scheme. Therefore, the shift ΔΘ\Delta{\rm\Theta} as well as sensitivity K2\rm K_{2} were calculated from the data for Θ(τ=0s)\rm\Theta(\tau=0~{}s) and Θ(τ)\rm\Theta(\tau) with the same ξ\xi. In other words, the noise is the same when you measure Θ(τ=0s)\rm\Theta(\tau=0~{}s) and Θ(τ)\rm\Theta(\tau). Meanwhile, we calculated Δ(δt)\Delta(\delta t) from the data for δt0\delta t_{0} and δtτ\delta t_{\tau} with the same ξ\xi. Note that these measurements can only be completed under special experimental conditions. Further, we use the data with the different ξ\xi to estimate the shift Δ(δt)\Delta(\delta t) and ΔΘ\Delta{\rm\Theta}. In particular, the results of the measurements with different random seed were calculated and were shown in Table. 6. Where the average results δt¯0(±E¯t0)\delta\overline{t}_{0}(\pm\overline{{\rm E}}_{t0}), δt¯τ(±E¯tτ)\delta\overline{t}_{\tau}(\pm\overline{{\rm E}}_{t\tau}), Θ¯0(±E¯c0)\overline{\Theta}_{0}(\pm\overline{{\rm E}}_{c0}) and Θ¯τ(±E¯cτ)\overline{\Theta}_{\tau}(\pm\overline{{\rm E}}_{c\tau}) of multiple measurements are redefined:

δt¯0\displaystyle\delta\overline{t}_{0} =\displaystyle= i=1nδt0(i)/n,E¯t0=Max{|δt¯0δt0(i)|},\displaystyle\sum\limits_{i=1}^{n}{\delta{t}_{0}(i)}/n,\,\,\overline{{\rm E}}_{t0}={\rm Max}\{|\delta\overline{t}_{0}-{\delta{t}_{0}(i)}|\}\,, (24)
δt¯τ\displaystyle\delta\overline{t}_{\tau} =\displaystyle= i=1nδtτ(i)/n,E¯tτ=Max{|δt¯0δtτ(i)|},\displaystyle\sum\limits_{i=1}^{n}{\delta{t}_{\tau}(i)}/n,\,\,\overline{{\rm E}}_{t\tau}={\rm Max}\{|\delta\overline{t}_{0}-{\delta{t}_{\tau}(i)}|\}\,, (25)
Θ¯0\displaystyle\overline{\Theta}_{0} =\displaystyle= i=1nΘ0(i)/n,E¯c0=Max{|Θ¯0Θ0(i)|},\displaystyle\sum\limits_{i=1}^{n}{{\Theta}_{0}(i)}/n,\,\,\overline{{\rm E}}_{c0}={\rm Max}\{|\overline{\Theta}_{0}-{{\rm\Theta}_{0}(i)}|\}\,, (26)
Θ¯τ\displaystyle\overline{{\rm\Theta}}_{\tau} =\displaystyle= i=1nΘτ(i)/n,E¯cτ=Max{|Θ¯τΘτ(i)|},\displaystyle\sum\limits_{i=1}^{n}{{\rm\Theta}_{\tau}(i)}/n,\,\,\overline{{\rm E}}_{c\tau}={\rm Max}\{|\overline{{\rm\Theta}}_{\tau}-{{\rm\Theta}_{\tau}(i)}|\}\,, (27)

where the (i) represents the result of the ith measurement with the different value of ξ\xi, n represents the total number of measurements and n=7. Then, the corresponding shifts Δ(δt¯)\Delta(\delta\overline{t}) and ΔΘ¯\Delta\overline{\Theta} are obtained by the relationships Δ(δt¯)=δt¯τδt¯0\Delta(\delta\overline{t})=\delta\overline{t}_{\tau}-\delta\overline{t}_{0}, ΔΘ¯=Θ¯0Θ¯τ\Delta\overline{\Theta}=\overline{\Theta}_{0}-\overline{\Theta}_{\tau}. Furthermore, the sensitivity K¯1(±E¯1)\rm\overline{K}_{1}(\pm\overline{E}_{1}) in scheme WVA and the sensitivity K¯¯2(±E¯2)\rm\overline{\overline{K}}_{2}(\pm\overline{E}_{2}) can be calculated by

K¯1=δt¯/τ,E¯1=(E¯t0+E¯tτ)/τ,\displaystyle\overline{{\rm K}}_{1}=\delta\overline{t}/\tau,\,\,\,\overline{{\rm E}}_{1}=(\overline{{\rm E}}_{t0}+\overline{{\rm E}}_{t\tau})/\tau, (28)
K¯¯2=δt¯/τ,E¯2=(E¯c0+E¯cτ)/τ.\displaystyle\overline{\overline{{\rm K}}}_{2}=\delta\overline{t}/\tau,\,\,\,\overline{{\rm E}}_{2}=(\overline{{\rm E}}_{c0}+\overline{{\rm E}}_{c\tau})/\tau. (29)
Table 6: The numerical average results (dimensional quantities in unit of s) of multiple measurement time shift τ=3.0×109s\tau=3.0\times 10^{-9}s under Gaussian noise with different SNR.
SNR\rm SNR 1/T δt¯0(±E¯t0)\delta\overline{t}_{0}(\pm\overline{{\rm E}}_{t0}) δt¯τ(±E¯tτ)\delta\overline{t}_{\tau}(\pm\overline{{\rm E}}_{t\tau}) Δ(δt¯)\Delta(\delta\overline{t}) K¯1(±E¯1)/1.0×103\overline{{\rm K}}_{1}\,(\pm\overline{{\rm E}}_{1})/1.0\times 10^{3}
11.5 1 8.97×1078.97\times 10^{-7} (±2.09×106\pm 2.09\times 10^{-6}) 3.09×1053.09\times 10^{-5} (±2.30×106\pm 2.30\times 10^{-6}) 3.00×1053.00\times 10^{-5} (±4.39×106\pm 4.39\times 10^{-6}) 1.000(±\pm0.146)
2.8 1 4.02×1064.02\times 10^{-6} (±9.58×106\pm 9.58\times 10^{-6}) 3.38×1053.38\times 10^{-5} (±1.07×105\pm 1.07\times 10^{-5}) 2.98×1052.98\times 10^{-5} (±2.03×105\pm 2.03\times 10^{-5}) 0.993(±\pm0.676)
-6.6 1 1.84×1041.84\times 10^{-4} (±1.07×103\pm 1.07\times 10^{-3}) 2.11×1042.11\times 10^{-4} (±1.06×103\pm 1.06\times 10^{-3}) 2.70×1052.70\times 10^{-5} (±2.13×103\pm 2.13\times 10^{-3}) 0.900(±\pm71.00)
-13.2 1 1.59×1041.59\times 10^{-4} (±1.27×103\pm 1.27\times 10^{-3}) 1.76×1041.76\times 10^{-4} (±1.27×103\pm 1.27\times 10^{-3}) 1.70×1051.70\times 10^{-5} (±2.54×103\pm 2.54\times 10^{-3}) 0.566(±\pm84.66)
SNR 1/T Θ¯0(±E¯c0)\rm\overline{\Theta}_{0}(\pm\rm\overline{E}_{c0}) Θ¯τ(±E¯cτ)\rm\overline{\Theta}_{\tau}(\pm\rm\overline{E}_{c\tau}) ΔΘ¯\Delta{\rm\overline{\Theta}} K¯¯2(±E¯2)/0.0258\rm\overline{\overline{K}}_{2}\,(\pm\rm\overline{E}_{2})/0.0258
11.5 1 1.2450×1091.2450\times 10^{-9} (±1.41×1011\pm 1.41\times 10^{-11}) 1.1672×1091.1672\times 10^{-9} (±1.45×1011\pm 1.45\times 10^{-11}) 7.78×10117.78\times 10^{-11} (±2.86×1011\pm 2.86\times 10^{-11}) 1.005(±\pm0.369)
2.8 1 1.2426×1091.2426\times 10^{-9} (±1.41×1010\pm 1.41\times 10^{-10}) 1.1646×1091.1646\times 10^{-9} (±1.43×1010\pm 1.43\times 10^{-10}) 7.80×10117.80\times 10^{-11} (±2.84×1010\pm 2.84\times 10^{-10}) 1.008(±\pm3.669)
-6.6 1 1.2235×1091.2235\times 10^{-9} (±5.92×1010\pm 5.92\times 10^{-10}) 1.1452×1091.1452\times 10^{-9} (±5.96×1010\pm 5.96\times 10^{-10}) 7.83×10117.83\times 10^{-11} (±1.19×1009\pm 1.19\times 10^{-09}) 1.012(±\pm15.37)
-13.2 1 1.5567×1091.5567\times 10^{-9} (±2.17×1009\pm 2.17\times 10^{-09}) 1.4886×1091.4886\times 10^{-9} (±1.77×1009\pm 1.77\times 10^{-09}) 6.81×10116.81\times 10^{-11} (±3.94×1009\pm 3.94\times 10^{-09}) 0.880(±\pm50.90)
-13.2 10 1.5728×1091.5728\times 10^{-9} (±7.52×1010\pm 7.52\times 10^{-10}) 1.4961×1091.4961\times 10^{-9} (±7.46×1010\pm 7.46\times 10^{-10}) 7.67×10117.67\times 10^{-11} (±1.50×1009\pm 1.50\times 10^{-09}) 0.991(±\pm19.38)
-13.2 100 1.2764×1091.2764\times 10^{-9} (±3.67×1010\pm 3.67\times 10^{-10}) 1.1993×1091.1993\times 10^{-9} (±3.67×1010\pm 3.67\times 10^{-10}) 7.71×10117.71\times 10^{-11} (±7.34×1010\pm 7.34\times 10^{-10}) 0.996(±\pm9.483)

Finally, we display these average results of the multiple measurements with different random seeds in Table. 6. The simulation results show that the AWVA scheme with larger error bars has no advantage over the WVA scheme in the environment of weak noises with SNR= 11.5 dB and SNR= 2.8 dB when the sampling frequency is set 1/T= 1 MHz; however, the error bars can diminish when a larger sampling frequency is employed. When multiple measurements are completed under strong noises with SNR= -6.6 dB and SNR= -13,2 dB, the central value K¯¯2/0.0258\rm\overline{\overline{K}}_{2}/0.0258 (0.0258 corresponding to the theoretical value without noise) is closer to the theoretical value 1, and the values of E¯2/0.0258\rm\overline{E}_{2}/0.0258 are much smaller than that of statistical errors E¯1/1.0×103\rm\overline{E}_{1}/1.0\times 10^{3}. In addition, the results of multiple measurements with a lager sampling frequency 1/T have smaller deviation of central value K¯¯2/0.0258\rm\overline{\overline{K}}_{2}/0.0258 from the theoretical value and statistical errors E¯2\rm\overline{E}_{2}. In general, when multiple measurements are completed under strong noises with negative-dB SNR, the AWVA scheme may have the potential to outperform the WVA scheme with a smaller deviation from the theoretical value and statistical errors. The AWVA technique is a kind of easily realized and novel scheme that can adapt to strong noise for real-time estimation of unknown small evolution parameters.

V Summary and discussions

We have performed a new scheme with auto-correlative weak-value amplification for precision phase estimation. A simulated experiment for estimating the time shift with the standard weak-value amplification (WVA) technique and the auto-correlative weak-value amplification (AWVA) technique has been derived under Gaussian white noise with different signal-noise-ratio. In addition, a new quality (pointer), namely the auto-correlative intensity Θ\rm\Theta, is defined in our scheme with the AWVA technique to estimate the small signal. Compared to fitting the shift of the Gaussian pointer with the standard WVA technique, measuring the shift of Θ\rm\Theta has the advantage of suppressing noise, and the advantage of the scheme with the AWVA technique is more obvious when the SNR and the coupling strength are lower. Therefore, our results have demonstrated that the AWVA technique outperforms the standard WVA technique in the time domain even when the signal is submerged in noise (SNR << 0). The robustness suggests that the AWVA technique can be applied for a vast range of weak measurements in the time domain.

Note that we assume that the contribution of all noise is Gaussian white noise in this paper. However, the real technical noise and environmental noise are far more complex than Gaussian white noise. In addition, in many areas of physics Gaussian noise has been replaced by colored noise (non-Gaussian) [24, 25, 26, 27]. Therefore, the auto-correlative weak-value amplification technique under the colored noises or the real noises will be investigated in our future work. Finally, we must admit that the precision and robustness of AWVA technique depends on both the sampling frequency (1/T) and the vertical resolution of the oscilloscope. Thus, our scheme needs further experimental verification.

After completion of this work, we found that the AWVA technique can also be achieved on the weak measurement in the frequency domain. The quantity Θ\rm\Theta can also be obtained mathematically by the integral of momentum, and we will explore how to realize this scheme in our future study.

Acknowledgements.
This study is financially supported by the National Science Foundation of China (No. 41630317), MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. MSFGPMR01-4), the National Key Research and Development Program of China (No. 2018YFC1503705), and the Fundamental Research Funds for National Universities, China University of Geosciences (Wuhan). A.C.D. acknowledges support from the EPSRC, Impact Acceleration Account (EP/R511705/1).

References

  • Aharonov et al. [1988] Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60, 1351 (1988).
  • Dressel et al. [2014] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, Colloquium: Understanding quantum weak values: Basics and applications, Rev. Mod. Phys. 86, 307 (2014).
  • Ren et al. [2020] J. Ren, L. Qin, W. Feng, and X.-Q. Li, Weak-value-amplification analysis beyond the aharonov-albert-vaidman limit, Phys. Rev. A 102, 042601 (2020).
  • Yin et al. [2021] P. Yin, W.-H. Zhang, L. Xu, Z.-G. Liu, W.-F. Zhuang, L. Chen, M. Gong, Y. Ma, X.-X. Peng, G.-C. Li, J.-S. Xu, Z.-Q. Zhou, L. Zhang, G. Chen, C.-F. Li, and G.-C. Guo, Improving the precision of optical metrology by detecting fewer photons with biased weak measurement, Light: Science & Applications 10, 103 (2021).
  • Lecocq et al. [2021] F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, X. Y. Jin, R. W. Simmonds, J. D. Teufel, and J. Aumentado, Efficient qubit measurement with a nonreciprocal microwave amplifier, Phys. Rev. Lett. 126, 020502 (2021).
  • Krafczyk et al. [2021] C. Krafczyk, A. N. Jordan, M. E. Goggin, and P. G. Kwiat, Enhanced weak-value amplification via photon recycling, Phys. Rev. Lett. 126, 220801 (2021).
  • Lundeen and Bamber [2012] J. S. Lundeen and C. Bamber, Procedure for direct measurement of general quantum states using weak measurement, Phys. Rev. Lett. 108, 070402 (2012).
  • Xu et al. [2020] L. Xu, Z. Liu, A. Datta, G. C. Knee, J. S. Lundeen, Y.-q. Lu, and L. Zhang, Approaching quantum-limited metrology with imperfect detectors by using weak-value amplification, Phys. Rev. Lett. 125, 080501 (2020).
  • Ma et al. [2021] F.-Y. Ma, J.-G. Li, and J. Zou, The influence of non-gaussian noise on weak values, Physics Letters A 388, 127027 (2021).
  • Brunner and Simon [2010] N. Brunner and C. Simon, Measuring small longitudinal phase shifts: Weak measurements or standard interferometry?, Phys. Rev. Lett. 105, 010405 (2010).
  • Viza et al. [2013] G. I. Viza, J. Martínez-Rincón, G. A. Howland, H. Frostig, I. Shomroni, B. Dayan, and J. C. Howell, Weak-values technique for velocity measurements, Opt. Lett. 38, 2949 (2013).
  • Li et al. [2020] Z. Li, L. Xie, Q. Ti, P. Duan, Z. Zhang, and C. Ren, Increasing the dynamic range of weak measurement with two pointers, Phys. Rev. A 102, 023701 (2020).
  • Huang et al. [2022] J.-H. Huang, F.-F. He, X.-Y. Duan, G.-J. Wang, and X.-Y. Hu, Modified weak-value-amplification technique for measuring a mirror’s velocity based on the vernier effect, Phys. Rev. A 105, 013718 (2022).
  • Dixon et al. [2009] P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Ultrasensitive beam deflection measurement via interferometric weak value amplification, Phys. Rev. Lett. 102, 173601 (2009).
  • Kocsis et al. [2011] S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Observing the average trajectories of single photons in a two-slit interferometer, Science 332, 1170 (2011).
  • Xu et al. [2013] X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, and G.-C. Guo, Phase estimation with weak measurement using a white light source, Phys. Rev. Lett. 111, 033604 (2013).
  • Yang et al. [2020] Y. Yang, Y. Xu, T. Guan, L. Shi, J. Li, D. Li, Y. He, X. Wang, Z. Li, and Y. Ji, Spectrum intensity ratio detection for frequency domain weak measurement system, IEEE Photonics Journal 12, 1 (2020).
  • de Lima Bernardo et al. [2014] B. de Lima Bernardo, S. Azevedo, and A. Rosas, Ultrasmall polarization rotation measurements via weak value amplification, Physics Letters A 378, 2029 (2014).
  • Magaña Loaiza et al. [2014] O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, Amplification of angular rotations using weak measurements, Phys. Rev. Lett. 112, 200401 (2014).
  • Ferrie and Combes [2014] C. Ferrie and J. Combes, Weak value amplification is suboptimal for estimation and detection, Phys. Rev. Lett. 112, 040406 (2014).
  • Knee and Gauger [2014] G. C. Knee and E. M. Gauger, When amplification with weak values fails to suppress technical noise, Phys. Rev. X 4, 011032 (2014).
  • Zhu et al. [2021] J. Zhu, Z. Li, Y. Liu, Y. Ye, Q. Ti, Z. Zhang, and F. Gao, Weak measurement with the peak-contrast-ratio pointer, Phys. Rev. A 103, 032212 (2021).
  • Wu et al. [2021] H. Wu, P. Wu, Z.-C. Luo, L.-P. Xu, J.-H. Xie, T.-Y. Chang, H.-F. Shi, C.-L. Du, and H.-L. Cui, Pragmatic implementation with non-gaussian devices of noise-limited weak value amplification, IEEE Photonics Journal 13, 1 (2021).
  • Fox et al. [1988] R. F. Fox, I. R. Gatland, R. Roy, and G. Vemuri, Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise, Phys. Rev. A 38, 5938 (1988).
  • Hu et al. [1992] B. L. Hu, J. P. Paz, and Y. Zhang, Quantum brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D 45, 2843 (1992).
  • Wu et al. [2020] J.-L. Wu, W.-L. Duan, Y. Luo, and F. Yang, Time delay and non-gaussian noise-enhanced stability of foraging colony system, Physica A: Statistical Mechanics and its Applications 553, 124253 (2020).
  • Pountougnigni et al. [2020] O. V. Pountougnigni, R. Yamapi, C. Tchawoua, V. Pierro, and G. Filatrella, Detection of signals in presence of noise through josephson junction switching currents, Phys. Rev. E 101, 052205 (2020).
  • Parikh et al. [2021] M. Parikh, F. Wilczek, and G. Zahariade, Signatures of the quantization of gravity at gravitational wave detectors, Phys. Rev. D 104, 046021 (2021).
  • Feizpour et al. [2011] A. Feizpour, X. Xing, and A. M. Steinberg, Amplifying single-photon nonlinearity using weak measurements, Phys. Rev. Lett. 107, 133603 (2011).
  • Kedem [2012] Y. Kedem, Using technical noise to increase the signal-to-noise ratio of measurements via imaginary weak values, Phys. Rev. A 85, 060102 (2012).
  • Jordan et al. [2014] A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, Technical advantages for weak-value amplification: When less is more, Phys. Rev. X 4, 011031 (2014).
  • Harris et al. [2017] J. Harris, R. W. Boyd, and J. S. Lundeen, Weak value amplification can outperform conventional measurement in the presence of detector saturation, Phys. Rev. Lett. 118, 070802 (2017).
  • Nishizawa et al. [2012] A. Nishizawa, K. Nakamura, and M.-K. Fujimoto, Weak-value amplification in a shot-noise-limited interferometer, Phys. Rev. A 85, 062108 (2012).
  • Li et al. [2018] D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, A chiral sensor based on weak measurement for the determination of proline enantiomers in diverse measuring circumstances, Biosensors and Bioelectronics 110, 103 (2018).
  • Zhou et al. [2021] X. Zhou, W. Cheng, S. Liu, J. Zhang, C. Yang, and Z. Luo, Tunable and high-sensitivity temperature-sensing method based on weak-value amplification of goos–hänchen shifts in a graphene-coated system, Optics Communications 483, 126655 (2021).
  • Guan et al. [2019] T. Guan, Y. Yang, Q. Zhang, Y. He, N. Xu, D. Li, L. Shi, Y. Xu, and X. Wang, Label-free and Non-destruction Determination of Single- and Double-Strand DNA based on Quantum Weak Measurement, Scientific Reports 9, 1891 (2019).
  • Zhu and Zhang [2016] X. Zhu and Y.-X. Zhang, Influence of environmental noise on the weak value amplification, Quantum Information Processing 15, 3421 (2016).
  • Sinclair et al. [2017] J. Sinclair, M. Hallaji, A. M. Steinberg, J. Tollaksen, and A. N. Jordan, Weak-value amplification and optimal parameter estimation in the presence of correlated noise, Phys. Rev. A 96, 052128 (2017).
  • Lee et al. [1950] Y. Lee, T. Cheatham, and J. Wiesner, Application of correlation analysis to the detection of periodic signals in noise, Proceedings of the IRE 38, 1165 (1950).
  • Liu et al. [2021] Y. Liu, J. Liu, and R. Kennel, Frequency measurement method of signals with low signal-to-noise-ratio using cross-correlation, Machines 910.3390/machines9060123 (2021).
  • Takahashi et al. [2013] E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses, Nature Communications 4, 2691 (2013).
  • Jozsa [2007] R. Jozsa, Complex weak values in quantum measurement, Phys. Rev. A 76, 044103 (2007).
  • Susa et al. [2012] Y. Susa, Y. Shikano, and A. Hosoya, Optimal probe wave function of weak-value amplification, Phys. Rev. A 85, 052110 (2012).
  • Qaisar et al. [2013] S. Qaisar, R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee, Compressive sensing: From theory to applications, a survey, Journal of Communications and Networks 15, 443 (2013).