This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotics of the first-passage function on free and Fuchsian groups

Petr Kosenko
Abstract

In this preprint we derive explicit estimates for the asymptotics of the first-passage function for a specific class of random walks on free groups and use them to prove the singularity of the hitting measure for a similarly defined class of random walks on Fuchsian groups.

1 Introduction

We continue to investigate the singularity conjecture for cocompact Fuchsian groups:

Conjecture 1.1 (Fuchsian singularity conjecture).

For every finite-range admissible random walk (Xn)(X_{n}) generated by a probability measure μ\mu on a cocompact Fuchsian group Γ\Gamma, the hitting measure νμ\nu_{\mu} is singular with respect to the Lebesgue measure on S1ΓS^{1}\simeq\partial\Gamma.

This conjecture is usually stated for lattices in SLn()SL_{n}(\mathbb{R}), and is attributed to Y. Guivarch, V. Kaimanovich, and F. Ledrappier. While it seems to be difficult to track down the exact source of this conjecture, we will refer to [DKN09] and [KL11] as the primary sources. See [Gui80], [KV83], [LS84], [GL93], [Le ̵08], [BHM11], [KL11], [GMM18], [DG20], [Aze+22] for related results.

In [Kos20] and [KT22] we developed techniques that allowed us to confirm Conjecture 1.1 for nearest-neighbour random walks on cocompact Fuchsian groups Γ\Gamma generated by side-pairing transformations (t1,,t2m)(t_{1},\dots,t_{2m}) which identify the opposite sides of a fundamental 2m2m-polygon (here we assume tm+i=ti1t_{m+i}=t_{i}^{-1}).

Recall the definition of the geometric distance: if x,yΓx,y\in\Gamma, then

d2(x,y):=d(x.O,y.O),d_{\mathbb{H}^{2}}(x,y):=d(x.O,y.O),

where O2O\in\mathbb{H}^{2} is the fixed basepoint. The main approach we used consists of establishing the following two inequalities:

1j2m11+edμ(e,tj)1,\sum_{1\leq j\leq 2m}\dfrac{1}{1+e^{d_{\mu}(e,t_{j})}}\geq 1, (1)
1j2m11+e(tj)<1,\sum_{1\leq j\leq 2m}\frac{1}{1+e^{\ell(t_{j})}}<1, (2)

where

(g):=limnd2(e,gn)n\ell(g):=\lim_{n\rightarrow\infty}\frac{d_{\mathbb{H}^{2}}(e,g^{n})}{n}

stands for the translation length, and dμd_{\mu} denotes the Green metric. We can combine (1) and (2) to deduce the existence of a (loxodromic) generator tjt_{j} such that

d2(e,tj)=(tj)>dμ(e,tj),d_{\mathbb{H}^{2}}(e,t_{j})=\ell(t_{j})>d_{\mu}(e,t_{j}),

which ensures the singularity of the harmonic measure due to the following lemma which follows from [BHM11, Theorem 1.5] (or [DG20, Theorem 1.1] for non-symmetric measures):

Lemma 1.1 ([KT22], Lemma 2.3).

Consider a random walk on a Fuchsian group Γ\Gamma generated by an admissible probability measure μ\mu with finite support. If there exists a loxodromic element gΓg\in\Gamma which satisfies dμ(e,g)<(g)d_{\mu}(e,g)<\ell(g), then the hitting measure νμ\nu_{\mu} is singular with respect to the Lebesgue measure on S1ΓS^{1}\simeq\partial\Gamma.

1.1 Formulating results for non-nearest neighbour random walks

We would like to adapt this method to arbitrary admissible finite-range random walks on cocompact Fuchsian groups with centrally symmetric fundamental polygons. Recall the definition of the first-passage function for a random walk (Xn)(X_{n}) generated by a probability measure μ\mu:

Fμ(x,y)=k=0(X0=x,Xk=y,Xjy for j<k).F_{\mu}(x,y)=\sum_{k=0}^{\infty}\mathbb{P}(X_{0}=x,X_{k}=y,X_{j}\neq y\text{ for }j<k).

Then we denote

ρμ(g):=lim infkFμ(e,gk)1k.\rho_{\mu}(g):=\liminf\limits_{k\rightarrow\infty}F_{\mu}(e,g^{k})^{\frac{1}{k}}.

Now we are prepared to formulate an effective sufficient condition for a random walk on a Fuchsian group to satisfy Conjecture 1.1.

Proposition 1.1.

Let Γ={t1,,t2m}\Gamma=\{t_{1},\dots,t_{2m}\} be a Fuchsian group with a centrally symmetric fundamental polygon equipped with side-pairing transformations identifying the opposite sides. Consider an admissible random walk on Γ\Gamma generated by a finitely supported probability measure μ\mu^{\prime}.

If there exists a finite-range probability measure μ\mu on Fm={ai±1}1imF_{m}=\{a_{i}^{\pm 1}\}_{1\leq i\leq m} such that μ=p(μ)\mu^{\prime}=p_{*}(\mu), where p:FmΓp:F_{m}\rightarrow\Gamma is the natural projection defined by aitia_{i}\mapsto t_{i}, and such that μ\mu satisfies

i11+ρμ(ai)1+11+ρμ(ai1)11,\sum\limits_{i}\frac{1}{1+\rho_{\mu}(a_{i})^{-1}}+\frac{1}{1+\rho_{\mu}(a_{i}^{-1})^{-1}}\geq 1, (3)

then the hitting measure νμ\nu^{\prime}_{\mu^{\prime}} is singular with respect to the Lebesgue measure on S1ΓS^{1}\simeq\partial\Gamma.

Proposition 1.1 suggests a reduction of the singularity conjecture to free groups. Recall the definition of cylinder sets in Fm\partial F_{m}:

C(g)={geodesic rays starting from identity containing g}Fm.C(g)=\{\text{geodesic rays starting from identity containing }g\}\subset\partial F_{m}.\\

Now we formulate the main results of the paper.

Theorem 1.1.

Consider a random walk on Fm=ai±1F_{m}=\left\langle a_{i}^{\pm 1}\right\rangle generated by a symmetric measure μ\mu such that supp(μ)={aij}1im1|j|n\text{supp}(\mu)=\{a_{i}^{j}\}_{\begin{subarray}{c}1\leq i\leq m\\ 1\leq|j|\leq n\end{subarray}} for some n1n\geq 1. Then we have

ρμ(ai)ν(C(ai))1ν(C(ai)).\rho_{\mu}(a_{i})\geq\dfrac{\nu(C(a_{i}))}{1-\nu(C(a_{i}))}. (4)

where ν\nu is the hitting measure on Fm\partial F_{m} corresponding to μ\mu.

Remark. It is a well-known fact, established by Ancona in [Anc88], that for any x,y,zx,y,z on a geodesic segment in the Cayley graph of a hyperbolic group we have

Fμ(x,y)Fμ(y,z)Fμ(x,z)CFμ(x,y)Fμ(y,z)F_{\mu}(x,y)F_{\mu}(y,z)\leq F_{\mu}(x,z)\leq CF_{\mu}(x,y)F_{\mu}(y,z)

for a constant CC which does not depend on the choice of x,y,zx,y,z. It implies the exponential decay of the Green/first-passage function. However, despite various improvements of this inequality for free and hyperbolic groups in [Lal93], [Led01], and [GL13], the existing methods do not provide the explicit dependence of CC on measures μ\mu and ν\nu.

Corollary 1.1.

Let Γ={t1,,t2m}\Gamma=\{t_{1},\dots,t_{2m}\} be a Fuchsian group with a centrally symmetric fundamental polygon equipped with side-pairing transformations identifying the opposite sides. Consider an admissible random walk on Γ\Gamma generated by a probability measure μ\mu^{\prime} supported on {tij}1i2m1jn\{t_{i}^{j}\}_{\begin{subarray}{c}1\leq i\leq 2m\\ 1\leq j\leq n\end{subarray}} for some n1n\geq 1. Then (Γ,μ)(\Gamma,\mu^{\prime}) satisfies Conjecture 1.1.

Proof.

Choose μ\mu on FmF_{m} in such a way, that μ(aij):=μ(tij)\mu(a_{i}^{j}):=\mu^{\prime}(t_{i}^{j}) for all 1im1\leq i\leq m, 1jn1\leq j\leq n. We just need to prove that (Γ,μ)(\Gamma,\mu^{\prime}) satisfies the conditions of Proposition 1.1, in particular, that the projection μ\mu of μ\mu^{\prime} satisfies (3). However, this follows from Theorem 1.1, as

ρμ(ai)ν(C(ai)1ν(C(ai))11+ρμ(ai)1ν(C(ai)),\rho_{\mu}(a_{i})\geq\dfrac{\nu(C(a_{i})}{1-\nu(C(a_{i}))}\Rightarrow\dfrac{1}{1+\rho_{\mu}(a_{i})^{-1}}\geq\nu(C(a_{i})),

so

i11+ρμ(ai)1+11+ρμ(ai1)1=2(i11+ρμ(ai)1)2(iν(C(ai)))=1,\sum\limits_{i}\frac{1}{1+\rho_{\mu}(a_{i})^{-1}}+\frac{1}{1+\rho_{\mu}(a_{i}^{-1})^{-1}}=2\left(\sum\limits_{i}\frac{1}{1+\rho_{\mu}(a_{i})^{-1}}\right)\geq 2\left(\sum\limits_{i}\nu(C(a_{i}))\right)=1,

as the cylinder sets C(ai)C(a_{i}) are disjoint for all 1im1\leq i\leq m, and ν(C(ai))=ν(C(ai1))\nu(C(a_{i}))=\nu(C(a_{i}^{-1})). ∎

To prove Theorem 1.1, we introduce the notions of barriers (Definition 2.1) and strong barriers (Definition 2.2) in order to establish linear relations between the measures of certain cylinder sets. It turns out that ρμ(ai)\rho_{\mu}(a_{i}) can be realized as the spectral radius of a certain irreducible matrix which corresponds to mentioned relations, and that allows us to make use of the Perron-Frobenius theorem. The proofs themselves are given in the end of Section 3.

Remark. We would like to remark that the idea of exploiting barriers to characterize the behaviour of random walks at infinity for hyperbolic groups goes back to the works of Derriennic ([Der75]), Lalley, and Gouëzel (see [Lal93], [GL13]).

Unfortunately, there is a wide class of finite-range random walks for which (3) does not hold at all, which does not allow us to fully settle Conjecture 1.1. Let us consider an automorphism gg^g\mapsto\hat{g} of FmF_{m} which is uniquely defined by ai^=ai1\hat{a_{i}}=a_{i}^{-1}. Random walks generated by measures μ\mu satisfying μ(g)=μ(g^)\mu(g)=\mu(\hat{g}) for every gFmg\in F_{m} will be called antisymmetric.

Theorem 1.2.

Consider an antisymmetric random walk on Fm=ai±1F_{m}=\left\langle a_{i}^{\pm 1}\right\rangle generated by an admissible measure μ\mu satisfying the following condition: there exists 1im1\leq i\leq m such that the singleton {aj}\{a_{j}\} is an aja_{j}-barrier for jij\neq i and {ai}\{a_{i}\} is an ai2a_{i}^{2}-barrier (see Definition 2.1).

Then for each jij\neq i we have

ρμ(aj)=Fμ(e,aj)=ν(C(aj))1ν(C(aj)),\rho_{\mu}(a_{j})=F_{\mu}(e,a_{j})=\dfrac{\nu(C(a_{j}))}{1-\nu(C(a_{j}))},

and

ρμ(ai)=Fμ(e,ai)ν(C(ai))1ν(C(ai)).\rho_{\mu}(a_{i})=F_{\mu}(e,a_{i})\leq\dfrac{\nu(C(a_{i}))}{1-\nu(C(a_{i}))}.

Finally, we have

Fμ(e,ai)=ν(C(ai))1ν(C(ai))F_{\mu}(e,a_{i})=\dfrac{\nu(C(a_{i}))}{1-\nu(C(a_{i}))}

if and only if {ai}\{a_{i}\} is an aia_{i}-barrier.

As a quick corollary, we get the following application:

Corollary 1.2.

For any antisymmetric random walk on FmF_{m} supported on the set {ai,ai1,a1a2,a11a21}1im\{a_{i},a_{i}^{-1},a_{1}a_{2},a_{1}^{-1}a_{2}^{-1}\}_{1\leq i\leq m} we get

ρμ(a1)=Fμ(e,a1)<ν(C(a1))1ν(C(a1)),\rho_{\mu}(a_{1})=F_{\mu}(e,a_{1})<\dfrac{\nu(C(a_{1}))}{1-\nu(C(a_{1}))},

and

ρμ(aj)=Fμ(e,aj)=ν(C(aj))1ν(C(aj))\rho_{\mu}(a_{j})=F_{\mu}(e,a_{j})=\dfrac{\nu(C(a_{j}))}{1-\nu(C(a_{j}))}

for all j>1j>1. In particular, such random walks do not satisfy (3).

We provide the proof in Example 4.1. Finally, we show that there are symmetric examples which do not satisfy (3) as well, see Example 4.2.

Acknowledgments. We would like to thank Giulio Tiozzo, Kunal Chawla, and Steven Lalley for significantly improving the structure and overall presentation of the preprint, and Alexander Kalmynin for suggestions that eventually led to the proof of Lemma 3.2.

2 Prerequisites

Throughout this paper we consider (transient and irreducible) random walks (Xn)n0(X_{n})_{n\geq 0} on free groups Fm={a1±1,,am±1}F_{m}=\{a_{1}^{\pm 1},\dots,a_{m}^{\pm 1}\} generated by admissible probability measures μ\mu, that is, having the support generate FmF_{m} as a semigroup.

2.1 Notation

Let x,yFmx,y\in F_{m}. Recall the definitions of Green function and the first-passage functions:

Gμ(x,y)\displaystyle G_{\mu}(x,y) =k=0(X0=x,Xk=y)\displaystyle=\sum_{k=0}^{\infty}\mathbb{P}(X_{0}=x,X_{k}=y) (Green function)
Fμ(x,y)=k=0(X0\displaystyle F_{\mu}(x,y)=\sum_{k=0}^{\infty}\mathbb{P}(X_{0} =x,Xk=y,Xjy for j<k)\displaystyle=x,X_{k}=y,X_{j}\neq y\text{ for }j<k) (First-passage function)

What is known in our case is that both functions are always finite, this is equivalent to the transience of the random walks considered. Also, it is not hard to show that Fμ(x,y)Gμ(e,e)=Gμ(x,y)F_{\mu}(x,y)G_{\mu}(e,e)=G_{\mu}(x,y), therefore, it does not make a difference whether to consider the Green or first-passage function. We will be working with FμF_{\mu} and dμ(x,y)=log(Fμ(x,y))d_{\mu}(x,y)=-\log(F_{\mu}(x,y)), which is often referred to as the Green distance.

In particular, for admissible random walks on FmF_{m}, almost every sample path converges to the boundary Fm\partial F_{m}, and the respective pushforward measure is referred to as the hitting measure, and we will denote it by νμ\nu_{\mu}, or by ν\nu for brevity.

Let gFmg\in F_{m} be an element with the reduced representation g=w1wng=w_{1}\dots w_{n}, where wk{ai±1}1imw_{k}\in\{a_{i}^{\pm 1}\}_{1\leq i\leq m}.

C(g)={geodesic rays starting from identity containing g}Fm,Cfin(g)={gx:|gx|=|g|+|x|}Fm,\begin{gathered}C(g)=\{\text{geodesic rays starting from identity containing }g\}\subset\partial F_{m},\\ C_{fin}(g)=\{gx:|gx|=|g|+|x|\}\subset F_{m},\end{gathered}

where |g|:=dw(e,g)|g|:=d_{w}(e,g) denotes the word distance in FmF_{m}. We will call the set Cfin(g)C_{fin}(g) the gg-shadow.

We will also be using various restricted versions of the first-passage function.

Let x,yFmx,y\in F_{m}, and SbadFmS_{bad}\subset F_{m}, such that ySbady\notin S_{bad}. Let us denote

Fμ(x,y;Sbad)=k0(X0=x,Xk=y,XjSbad for j<k).F_{\mu}(x,y;S_{bad})=\sum_{k\geq 0}\mathbb{P}(X_{0}=x,X_{k}=y,X_{j}\notin S_{bad}\text{ for }j<k).

If AFmA\subset F_{m}, and xAx\notin A, then we denote

Fμ(xA):=1aAFμ(x,a;A{a})=(X0=x,XjA for any j>0).F_{\mu}(x\nrightarrow A):=1-\sum_{a\in A}F_{\mu}(x,a;A\setminus\{a\})=\mathbb{P}(X_{0}=x,X_{j}\notin A\text{ for any }j>0).

Finally, if A1,,ArFmA_{1},\dots,A_{r}\subset F_{m} are subsets which satisfy AiAi+1=A_{i}\cap A_{i+1}=\emptyset for all 1ir11\leq i\leq r-1, then we inductively define

Fμ(xA1Ar1Ar):=aA1Fμ(x,a;A1{a})Fμ(aA2Ar1Ar).\displaystyle F_{\mu}(x\rightarrow A_{1}\rightarrow\dots\rightarrow A_{r-1}\nrightarrow A_{r}):=\sum_{a\in A_{1}}F_{\mu}(x,a;A_{1}\setminus\{a\})F_{\mu}(a\rightarrow A_{2}\dots\rightarrow A_{r-1}\nrightarrow A_{r}).

We will also denote B(x,n)={yFm:dw(x,y)n}B(x,n)=\{y\in F_{m}:d_{w}(x,y)\leq n\}, where dwd_{w} denotes the word distance in FmF_{m} with respect to {ai±1}1im\{a_{i}^{\pm 1}\}_{1\leq i\leq m}.

2.2 Establishing the barrier framework

Definition 2.1.

Let gFm{e}g\in F_{m}\setminus\{e\}. A subset BFmB\subseteq F_{m} is called a gg-barrier if for any hCfin(g)h\in C_{fin}(g) we have Fμ(e,h;B)=0F_{\mu}(e,h;B)=0.

Example 2.1.

Let us denote B(g,n):={hFm:|h1g|n}B(g,n):=\{h\in F_{m}:|h^{-1}g|\leq n\}, and let diam(supp(μ))=n\text{diam}(\text{supp}(\mu))=n for some n>0n>0 with no other restrictions. Then for every element gFmg\in F_{m} the subset Cfin(g))B(e,n)C_{fin}(g))\cap B(e,n) is a gg-barrier.

Remark. Keep in mind that if the support has “holes”, in other words, μ(g)=0\mu(g)=0 for some gB(e,n)g\in B(e,n), then this might not be a minimal barrier as the next example shows.

Example 2.2.

Suppose that supp(μ)={aik}1im1|k|n\text{supp}(\mu)=\{a_{i}^{k}\}_{\begin{subarray}{c}1\leq i\leq m\\ 1\leq|k|\leq n\end{subarray}}. Then for every generator aia_{i} the geodesic segment {ai,ai2,,ain}\{a_{i},a_{i}^{2},\dots,a_{i}^{n}\} is a minimal aia_{i}-barrier.

The next lemma is simple but quite important.

Lemma 2.1.

If BB is an gg-barrier, then for every hCfin(g)h\in C_{fin}(g) we have

Fμ(e,h)=bBFμ(e,b;B{b})Fμ(b,h).F_{\mu}(e,h)=\sum_{b\in B}F_{\mu}(e,b;B\setminus\{b\})F_{\mu}(b,h). (5)
Proof.

This is just an application of the full probability formula combined with the Markov property: every path either enters BB before hitting hh, or avoids BB altogether:

Fμ(e,h)=bBFμ(e,b;(B{b}){h})Fμ(b,h)+Fμ(e,h;B).F_{\mu}(e,h)=\sum_{b\in B}F_{\mu}(e,b;(B\setminus\{b\})\cup\{h\})F_{\mu}(b,h)+F_{\mu}(e,h;B).

However, as BB is a gg-barrier, the term Fμ(e,h;B)F_{\mu}(e,h;B) vanishes. ∎

Proposition 2.1.

Let BB be a gg-barrier. Then for every hCfin(g)h\in C_{fin}(g) with the reduced representation h1hlh_{1}\dots h_{l} we have

ν(C(h))=bBCfin(h)Fμ(e,b;B{b})(1ν(C(b1h1hl1)))+bBCfin(h)Fμ(e,b;B{b})ν(C(b1h)).\nu(C(h))=\sum_{b\in B\cap C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})(1-\nu(C(b^{-1}h_{1}\dots h_{l-1})))+\sum_{b\in B\setminus C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})\nu(C(b^{-1}h)). (6)
Proof.

First of all, recall that there exist sets Sent=Cfin(h)B(h,n)S_{ent}=C_{fin}(h)\cap B(h,n) and Sexit=(FmCfin(h))B(h,n)S_{exit}=(F_{m}\setminus C_{fin}(h))\cap B(h,n) such that

ν(C(h))=k=0Fμ(eSentSexitSentSexitk returns).\nu(C(h))=\sum_{k=0}^{\infty}F_{\mu}(\underbrace{e\rightarrow S_{ent}\rightarrow S_{exit}\rightarrow\dots\rightarrow S_{ent}\nrightarrow S_{exit}}_{k\text{ returns}}).

This holds because SentS_{ent}, as defined, is a hh-barrier. As SentCfin(h)Cfin(g)S_{ent}\subset C_{fin}(h)\subset C_{fin}(g), we can use the barrier property of BB and Lemma 2.1 to write

Fμ(eSentSexitSentSexitk returns)=bBFμ(e,b;B{b})Fμ(bSentSexitk returns).\displaystyle F_{\mu}(\underbrace{e\rightarrow S_{ent}\rightarrow S_{exit}\rightarrow\dots\rightarrow S_{ent}\nrightarrow S_{exit}}_{k\text{ returns}})=\sum_{b\in B}F_{\mu}(e,b;B\setminus\{b\})F_{\mu}(\underbrace{b\rightarrow S_{ent}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}}).

We have to treat the term Fμ(bSentSexitk returns)F_{\mu}(\underbrace{b\rightarrow S_{ent}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}}) carefully, though: what happens if bBSentb\in B\cap S_{ent}? Taking this into account, we rewrite the above sum as follows:

Fμ(eSentSexitSentSexitk returns)\displaystyle F_{\mu}(\underbrace{e\rightarrow S_{ent}\rightarrow S_{exit}\rightarrow\dots\rightarrow S_{ent}\nrightarrow S_{exit}}_{k\text{ returns}}) =bBCfin(g)Fμ(e,b;B{b})Fμ(bSentSexitk returns)+\displaystyle=\sum_{b\in B\setminus C_{fin}(g)}F_{\mu}(e,b;B\setminus\{b\})F_{\mu}(\underbrace{b\rightarrow S_{ent}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}})+
+bBCfin(h)Fμ(e,b;B{b})Fμ(bSexitSexitk returns).\displaystyle+\sum_{b\in B\cap C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})F_{\mu}(\underbrace{b\rightarrow S_{exit}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}}).

Now take the sum of both sides over kk, so we get

k0Fμ(eSentSexitSentSexitk returns)\displaystyle\sum_{k\geq 0}F_{\mu}(\underbrace{e\rightarrow S_{ent}\rightarrow S_{exit}\rightarrow\dots\rightarrow S_{ent}\nrightarrow S_{exit}}_{k\text{ returns}}) =k0bBCfin(h)Fμ(e,b;B{b})Fμ(bSentSexitk returns)+\displaystyle=\sum_{k\geq 0}\sum_{b\in B\setminus C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})F_{\mu}(\underbrace{b\rightarrow S_{ent}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}})+ (7)
+k0bBCfin(h)Fμ(e,b;B{b})Fμ(bSexitSexitk returns).\displaystyle+\sum_{k\geq 0}\sum_{b\in B\cap C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})F_{\mu}(\underbrace{b\rightarrow S_{exit}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}}).

Let us treat both (double) sums on RHS separately. For bBCfin(h)b\in B\setminus C_{fin}(h) we immediately get

k0bBCfin(h)Fμ(e,b;B{b})Fμ(bSentSexitk returns)=\displaystyle\sum_{k\geq 0}\sum_{b\in B\setminus C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})F_{\mu}(\underbrace{b\rightarrow S_{ent}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}})=
=bBCfin(h)Fμ(e,b;B{b})k0Fμ(bSentSexitk returns)=\displaystyle=\sum_{b\in B\setminus C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})\sum_{k\geq 0}F_{\mu}(\underbrace{b\rightarrow S_{ent}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}})=
=bBCfin(h)Fμ(e,b;B{b})k0Fμ(eb1Sentb1Sexitk returns)=\displaystyle=\sum_{b\in B\setminus C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})\sum_{k\geq 0}F_{\mu}(\underbrace{e\rightarrow b^{-1}S_{ent}\rightarrow\dots\nrightarrow b^{-1}S_{exit}}_{k\text{ returns}})=
=bBCfin(h)Fμ(e,b;B{b})ν(C(b1h)),\displaystyle=\sum_{b\in B\setminus C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})\nu(C(b^{-1}h)),

as b1Sentb^{-1}S_{ent} is a b1hb^{-1}h-barrier.

It is a bit trickier if bBCfin(h)b\in B\cap C_{fin}(h), but the idea is rather similar:

k0bBCfin(h)Fμ(e,b;B{b})Fμ(bSexitSexitk returns)=\displaystyle\sum_{k\geq 0}\sum_{b\in B\cap C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})F_{\mu}(\underbrace{b\rightarrow S_{exit}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}})=
=bBCfin(h)Fμ(e,b;B{b})k0Fμ(bSexitSexitk returns)=\displaystyle=\sum_{b\in B\cap C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})\sum_{k\geq 0}F_{\mu}(\underbrace{b\rightarrow S_{exit}\rightarrow\dots\nrightarrow S_{exit}}_{k\text{ returns}})=
=bBCfin(h)Fμ(e,b;B{b})k0Fμ(eb1Sexitb1Sexitk returns)=\displaystyle=\sum_{b\in B\cap C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})\sum_{k\geq 0}F_{\mu}(\underbrace{e\rightarrow b^{-1}S_{exit}\rightarrow\dots\nrightarrow b^{-1}S_{exit}}_{k\text{ returns}})=
=bBCfin(h)Fμ(e,b;B{b})(1ν(C(b1h1hl1))),\displaystyle=\sum_{b\in B\cap C_{fin}(h)}F_{\mu}(e,b;B\setminus\{b\})(1-\nu(C(b^{-1}h_{1}\dots h_{l-1}))),

as b1Sexit=(FmCfin(b1h))B(b1h,n)b^{-1}S_{exit}=(F_{m}\setminus C_{fin}(b^{-1}h))\cap B(b^{-1}h,n) is a b1h1hl1b^{-1}h_{1}\dots h_{l-1}-barrier. This finishes our argument. ∎

Example 2.3.

Consider a symmetric random walk on FmF_{m} supported on {aik}1|k|n\{a_{i}^{k}\}_{1\leq|k|\leq n}. Then the equations (6) for the aia_{i}-barrier B={ai,,ain}B=\{a_{i},\dots,a_{i}^{n}\} look as follows:

ν(C(aik))=j=1k1Fμ(e,aij;B{aij})ν(C(aij+k))+j=knFμ(e,aij;B{aij})(1ν(C(aij+k1))),\nu(C(a_{i}^{k}))=\sum_{j=1}^{k-1}F_{\mu}(e,a_{i}^{j};B\setminus\{a_{i}^{j}\})\nu(C(a_{i}^{-j+k}))+\sum_{j=k}^{n}F_{\mu}(e,a_{i}^{j};B\setminus\{a_{i}^{j}\})(1-\nu(C(a_{i}^{-j+k-1}))), (8)

but as we have ν(C(aij))=ν(C(aij))\nu(C(a_{i}^{j}))=\nu(C(a_{i}^{-j})) due to invariance with respect to the automorphism aiai1a_{i}\mapsto a_{i}^{-1}, we get

ν(C(aik))=j=1k1Fμ(e,aij;B{aij})ν(C(aikj))+j=knFμ(e,aij;B{aij})(1ν(C(aijk+1))).\nu(C(a_{i}^{k}))=\sum_{j=1}^{k-1}F_{\mu}(e,a_{i}^{j};B\setminus\{a_{i}^{j}\})\nu(C(a_{i}^{k-j}))+\sum_{j=k}^{n}F_{\mu}(e,a_{i}^{j};B\setminus\{a_{i}^{j}\})(1-\nu(C(a_{i}^{j-k+1}))). (9)
Example 2.4.

Consider an admissible symmetric random walk on F2F_{2} which is supported on {a,a1,ab,b1a1}\{a,a^{-1},ab,b^{-1}a^{-1}\}. Let us consider the following barriers:

  1. 1.

    The subset {a,ab}\{a,ab\} is an aa-barrier:

    ν(C(a))=Fμ(e,a;{ab})(1ν(C(a1)))+Fμ(e,ab;{a})(1ν(C(b1a1)),\begin{gathered}\nu(C(a))=F_{\mu}(e,a;\{ab\})(1-\nu(C(a^{-1})))+F_{\mu}(e,ab;\{a\})(1-\nu(C(b^{-1}a^{-1})),\end{gathered}
  2. 2.

    The subset {b1a1}\{b^{-1}a^{-1}\} is a b1b^{-1}-barrier:

    ν(C(b1))=Fμ(e,b1a1)(1ν(C(ab))),ν(C(b1a1))=Fμ(e,b1a1)(1ν(C(a)))\nu(C(b^{-1}))=F_{\mu}(e,b^{-1}a^{-1})(1-\nu(C(ab))),\quad\nu(C(b^{-1}a^{-1}))=F_{\mu}(e,b^{-1}a^{-1})(1-\nu(C(a)))
  3. 3.

    The subset {ab}\{ab\} is an abab-barrier:

    ν(C(ab))=Fμ(e,ab)(1ν(C(b1)))\nu(C(ab))=F_{\mu}(e,ab)(1-\nu(C(b^{-1})))
  4. 4.

    The subset {b}\{b\} is a bb-barrier:

    ν(C(b))=Fμ(e,b)(1ν(C(b1)))\nu(C(b))=F_{\mu}(e,b)(1-\nu(C(b^{-1})))
  5. 5.

    The subset {a1}\{a^{-1}\} is an a1a^{-1}-barrier:

    ν(C(a1))=Fμ(e,a1)(1ν(C(a)))\nu(C(a^{-1}))=F_{\mu}(e,a^{-1})(1-\nu(C(a)))

2.3 Strong barriers

In this subsection we modify the barrier definition in a way that allows us to formulate starting point-independent versions of Lemma 2.1 and Proposition 2.1.

Definition 2.2.

Let gFm{e}g\in F_{m}\setminus\{e\}. A subset BFmB\subset F_{m} is a strong gg-barrier if

  • BCfin(g)B\subset C_{fin}(g),

  • Fμ(h,h;B)=0F_{\mu}(h^{\prime},h;B)=0 for any hCfin(g)h\in C_{fin}(g), hFmCfin(g)h^{\prime}\in F_{m}\setminus C_{fin}(g).

Remark. It is easy to see that the second condition implies that every strong barrier is a barrier, as eCfin(g)e\notin C_{fin}(g) for any non-identity gg.

In order to formulate the next set of theorems, we need to establish some basic statements about shadows. Let us denote |g|=dw(e,g)|g|=d_{w}(e,g), where dwd_{w} stands for the word distance on FmF_{m}.

Lemma 2.2.

Let yCfin(ai±1)y\in C_{fin}(a_{i}^{\pm 1}). Then |xy|=|x|+|y||xy|=|x|+|y| if and only if x1Cfin(ai±1)x^{-1}\notin C_{fin}(a_{i}^{\pm 1}).

Proof.

By the definition of word distance, |xy|=|x|+|y||xy|=|x|+|y| if and only if the last digit of xx in its reduced representation does not equal to the first digit of yy in its reduced representation. However, the last digit of xx is the inverse of first digit of x1x^{-1}, and ww is the first digit of x1x^{-1} if and only if x1Cfin(w)x^{-1}\in C_{fin}(w). ∎

Lemma 2.3.

Consider g,xFmg,x\in F_{m} such that xCfin(g)x\notin C_{fin}(g), and g1xCfin(ai±1)g^{-1}x\in C_{fin}(a_{i}^{\pm 1}). Then g1Cfin(ai±1)g^{-1}\in C_{fin}(a_{i}^{\pm 1}).

Proof.

As xCfin(g)x\notin C_{fin}(g), we have |x|<|g|+|g1x||x|<|g|+|g^{-1}x|. We know that g1xCfin(ai±1)g^{-1}x\in C_{fin}(a_{i}^{\pm 1}), therefore, Lemma 2.2 implies that gCfin(ai±1)g\in C_{fin}(a_{i}^{\pm 1}). ∎

Lemma 2.4.

Let gFm{e}g\in F_{m}\setminus\{e\}, and consider xCfin(g)x\notin C_{fin}(g). Then x1Cfin(g)=Cfin(x1g)x^{-1}C_{fin}(g)=C_{fin}(x^{-1}g).

Proof.

We will proceed by showing that Cfin(g)xCfin(x1g)C_{fin}(g)\subseteq xC_{fin}(x^{-1}g) and xCfin(x1g)Cfin(g)xC_{fin}(x^{-1}g)\subseteq C_{fin}(g).

  • Suppose that gCfin(g)g^{\prime}\in C_{fin}(g). Then, by definition, g=gwg^{\prime}=gw, and |g|=|g|+|w||g^{\prime}|=|g|+|w|. We would like to prove that |x1g|=|x1g|+|w||x^{-1}g^{\prime}|=|x^{-1}g|+|w|. This is equivalent to |(g)1x|=|w1|+|g1x||(g^{\prime})^{-1}x|=|w^{-1}|+|g^{-1}x|. If g1xCfin(ai±1)g^{-1}x\in C_{fin}(a_{i}^{\pm 1}), then Lemma 2.3 implies g1Cfin(ai±1)g^{-1}\in C_{fin}(a_{i}^{\pm 1}). Suppose that wCfin(ai±1)w\in C_{fin}(a_{i}^{\pm 1}). Then we can apply Lemma 2.2 to |gw|=|g|+|w||gw|=|g|+|w|, and we get g1Cfin(ai±1)g^{-1}\notin C_{fin}(a_{i}^{\pm 1}), which leads to a contradiction. Therefore, wCfin(ai±1)w\notin C_{fin}(a_{i}^{\pm 1}), and |(g)1x|=|w1|+|g1x||(g^{\prime})^{-1}x|=|w^{-1}|+|g^{-1}x| due to Lemma 2.2.

  • Now suppose that gCfin(x1g)g^{\prime}\in C_{fin}(x^{-1}g). We want to prove that xgCfin(g)xg^{\prime}\in C_{fin}(g). By definition, |g|=|x1g|+|g1xg|=|(g)1x1g|+|g1x||g^{\prime}|=|x^{-1}g|+|g^{-1}xg^{\prime}|=|(g^{\prime})^{-1}x^{-1}g|+|g^{-1}x|. If g1xCfin(ai±1)g^{-1}x\in C_{fin}(a_{i}^{\pm 1}), Lemma 2.3 implies that g1Cfin(ai±1)g^{-1}\in C_{fin}(a_{i}^{\pm 1}), and Lemma 2.2 implies that (g)1x1gCfin(ai±1)(g^{\prime})^{-1}x^{-1}g\notin C_{fin}(a_{i}^{\pm 1}), and the same Lemma implies that |(g)1x1g|+|g1|=|(g)1x1||(g^{\prime})^{-1}x^{-1}g|+|g^{-1}|=|(g^{\prime})^{-1}x^{-1}|, which is equivalent to xgCfin(g)xg^{\prime}\in C_{fin}(g) by definition.

We can use Lemma 2.1 to get the following statement:

Lemma 2.5.

If BB is a strong gg-barrier, then for every hCfin(g)h\in C_{fin}(g), xFmCfin(g)x\in F_{m}\setminus C_{fin}(g) we have

Fμ(x,h)=bBFμ(x,b;B{b})Fμ(b,h).F_{\mu}(x,h)=\sum_{b\in B}F_{\mu}(x,b;B\setminus\{b\})F_{\mu}(b,h). (10)
Proof.

Let us prove that x1Bx^{-1}B is a x1gx^{-1}g-barrier. For every element yCfin(x1g)y\in C_{fin}(x^{-1}g) we have

Fμ(e,y;x1B)=Fμ(x,xy;B)=0,F_{\mu}(e,y;x^{-1}B)=F_{\mu}(x,xy;B)=0,

as xyCfin(g)xy\in C_{fin}(g) due to Lemma 2.4. Therefore,

bBFμ(x,b;B{b})Fμ(b,h)=bBFμ(e,x1b;x1B{x1b})Fμ(x1b,x1h)=Fμ(e,x1g)=Fμ(x,g),\sum_{b\in B}F_{\mu}(x,b;B\setminus\{b\})F_{\mu}(b,h)=\sum_{b\in B}F_{\mu}(e,x^{-1}b;x^{-1}B\setminus\{x^{-1}b\})F_{\mu}(x^{-1}b,x^{-1}h)=F_{\mu}(e,x^{-1}g)=F_{\mu}(x,g),

due to Lemma 2.1. ∎

In a similar way we can generalize Proposition 2.1 as well:

Proposition 2.2.

Let BB be a strong gg-barrier. Then for every hCfin(g)h\in C_{fin}(g), xFmCfin(g)x\in F_{m}\setminus C_{fin}(g), where h=h1hlh=h_{1}\dots h_{l} is the reduced representation, we have

ν(C(x1h))\displaystyle\nu(C(x^{-1}h)) =bBCfin(h)Fμ(x,b;B{b})(1ν(C(b1h1hl1)))+\displaystyle=\sum_{b\in B\cap C_{fin}(h)}F_{\mu}(x,b;B\setminus\{b\})(1-\nu(C(b^{-1}h_{1}\dots h_{l-1})))+ (11)
+bBCfin(h)Fμ(x,b;B{b})ν(C(b1h)).\displaystyle+\sum_{b\in B\setminus C_{fin}(h)}F_{\mu}(x,b;B\setminus\{b\})\nu(C(b^{-1}h)).
Proof.

We apply the same idea used in the proof of Lemma 2.5. As x1Bx^{-1}B is a x1gx^{-1}g-barrier, for every x1hCfin(x1g)=x1Cfin(g)x^{-1}h\in C_{fin}(x^{-1}g)=x^{-1}C_{fin}(g) we have

bBCfin(h)Fμ(x,b;B{b})(1ν(C(b1h1hl1)))+\displaystyle\sum_{b\in B\cap C_{fin}(h)}F_{\mu}(x,b;B\setminus\{b\})(1-\nu(C(b^{-1}h_{1}\dots h_{l-1})))+
+bBCfin(h)Fμ(x,b;B{b})ν(C(b1h))=\displaystyle+\sum_{b\in B\setminus C_{fin}(h)}F_{\mu}(x,b;B\setminus\{b\})\nu(C(b^{-1}h))=
=x1bx1BCfin(x1h)Fμ(e,x1b;x1B{x1b})(1ν(C((x1b)1x1h1hl1)))+\displaystyle=\sum_{x^{-1}b\in x^{-1}B\cap C_{fin}(x^{-1}h)}F_{\mu}(e,x^{-1}b;x^{-1}B\setminus\{x^{-1}b\})(1-\nu(C((x^{-1}b)^{-1}x^{-1}h_{1}\dots h_{l-1})))+
+x1bx1BCfin(x1h)Fμ(e,x1b;x1B{x1b})ν(C((x1b)1x1h))=ν(C(x1h)).\displaystyle+\sum_{x^{-1}b\in x^{-1}B\setminus C_{fin}(x^{-1}h)}F_{\mu}(e,x^{-1}b;x^{-1}B\setminus\{x^{-1}b\})\nu(C((x^{-1}b)^{-1}x^{-1}h))=\nu(C(x^{-1}h)).

Consider an anti-symmetric random walk on FmF_{m} generated by a probability measure μ\mu. For every 1im1\leq i\leq m fix a strong aia_{i}-barrier B=(bj)1j|B|B=(b_{j})_{1\leq j\leq|B|}. Then we can define the following matrix:

(PB)j1,j2=Fμ(aibj1^,bj2;Bbj2).(P_{B})_{j_{1},j_{2}}=F_{\mu}(a_{i}\widehat{b_{j_{1}}},b_{j_{2}};B\setminus b_{j_{2}}).

Then, as a corollary from Proposition 2.2, we get the following theorem:

Theorem 2.1.
(Id+PB)1PB(11)=(ν(C(b11))ν(C(b|B|1)))(\text{Id}+P_{B})^{-1}P_{B}\begin{pmatrix}1\\ \vdots\\ 1\end{pmatrix}=\begin{pmatrix}\nu(C(b^{-1}_{1}))\\ \vdots\\ \nu(C(b^{-1}_{|B|}))\end{pmatrix}
Proof.

Applying Lemma 2.5 and exploiting the antysymmetry, we get

ν(C(bj11))=ν(C(bj11^))=ν(C((aibj1^)1ai))=j2Fμ(aibj1^,bj2;B{bj2})(1ν(C(bj21)))\nu(C(b_{j_{1}}^{-1}))=\nu(C(\widehat{b_{j_{1}}^{-1}}))=\nu(C((a_{i}\widehat{b_{j_{1}}})^{-1}a_{i}))=\sum_{j_{2}}F_{\mu}(a_{i}\widehat{b_{j_{1}}},b_{j_{2}};B\setminus\{b_{j_{2}}\})(1-\nu(C(b_{j_{2}}^{-1})))

for every 1j1,j2|B|1\leq j_{1},j_{2}\leq|B|. This can be rewritten as

PB(1ν(C(b11))1ν(C(b|B|1)))=(ν(C(b11))ν(C(b|B|1))).P_{B}\begin{pmatrix}1-\nu(C(b^{-1}_{1}))\\ \vdots\\ 1-\nu(C(b^{-1}_{|B|}))\end{pmatrix}=\begin{pmatrix}\nu(C(b^{-1}_{1}))\\ \vdots\\ \nu(C(b^{-1}_{|B|}))\end{pmatrix}.

This is equivalent to

PB(11)=(Id+PB)(ν(C(b11))ν(C(b|B|1)))(Id+PB)1PB(11)=(ν(C(b11))ν(C(b|B|1))).P_{B}\begin{pmatrix}1\\ \vdots\\ 1\end{pmatrix}=(\text{Id}+P_{B})\begin{pmatrix}\nu(C(b^{-1}_{1}))\\ \vdots\\ \nu(C(b^{-1}_{|B|}))\end{pmatrix}\Leftrightarrow(\text{Id}+P_{B})^{-1}P_{B}\begin{pmatrix}1\\ \vdots\\ 1\end{pmatrix}=\begin{pmatrix}\nu(C(b^{-1}_{1}))\\ \vdots\\ \nu(C(b^{-1}_{|B|}))\end{pmatrix}.

We will need the following lemma later.

Lemma 2.6.

Consider gFm{e}g\in F_{m}\setminus\{e\}, a strong gg-barrier BB, and an element xC(g)x\notin C(g) together with a set BB^{\prime} such that for every hCfin(g)h\in C_{fin}(g) we have Fμ(x,h;B)=0F_{\mu}(x,h;B^{\prime})=0 (this is equivalent to x1Bx^{-1}B^{\prime} being a x1hx^{-1}h-barrier).

Then for every bBb\in B we have

Fμ(x,b;B{b})=bB(B{b})Fμ(x,b;B{b})Fμ(b,b;B{b}).F_{\mu}(x,b;B\setminus\{b\})=\sum\limits_{b^{\prime}\in B^{\prime}\setminus(B\setminus\{b\})}F_{\mu}(x,b^{\prime};B^{\prime}\setminus\{b^{\prime}\})F_{\mu}(b^{\prime},b;B\setminus\{b\}).
Proof.

This is another consequence of the full-probability formula, as every path from xx to bb which avoids B{b}B\setminus\{b\} has to hit the barrier BB^{\prime}, as bCfin(g)b\in C_{fin}(g) due to the definition of a strong barrier. Moreover, if bb^{\prime} lies in the intersection of BB^{\prime} and B{b}B\setminus\{b\}, then the term Fμ(b,b;B{b})F_{\mu}(b^{\prime},b;B\setminus\{b\}) vanishes. ∎

3 Proof of Proposition 1.1 and Theorem 1.1

In this subsection we will be working in the setting of Example 2.3. We will need some algebraic lemmas in order to establish (4).

3.1 Technical linear-algebraic lemmas

This lemma follows immediately from the geometric definition of positive spans.

Lemma 3.1.

Let v1,vn2v_{1},\dots v_{n}\in\mathbb{R}^{2} be positive vectors (both coordinates are positive). Then the positive linear span of viv_{i}’s is the smallest cone which contains all viv_{i}’s. In other words, there exist 1i,jn1\leq i,j\leq n such that for all (xy)pspan{vi}\begin{pmatrix}x\\ y\end{pmatrix}\in\text{pspan}\{v_{i}\} we have

(vi)2(vi)1yx(vj)2(vj)1.\frac{(v_{i})_{2}}{(v_{i})_{1}}\leq\frac{y}{x}\leq\frac{(v_{j})_{2}}{(v_{j})_{1}}.
Lemma 3.2.

Let (pi)1in(p_{i})_{1\leq i\leq n} be non-negative numbers, and suppose that 0<νn<<ν2<ν1<120<\nu_{n}<\dots<\nu_{2}<\nu_{1}<\frac{1}{2} satisfy

{p1(1ν1)+p2(1ν2)++pn(1νn)=ν1p1ν1+p2(1ν1)++pn(1νn1)=ν2p1νn1+p2νn2++pn1ν1+pn(1ν1)=νn.\begin{cases}p_{1}(1-\nu_{1})+p_{2}(1-\nu_{2})+\dots+p_{n}(1-\nu_{n})=\nu_{1}\\ p_{1}\nu_{1}+p_{2}(1-\nu_{1})+\dots+p_{n}(1-\nu_{n-1})=\nu_{2}\\ \vdots\\ p_{1}\nu_{n-1}+p_{2}\nu_{n-2}+\dots+p_{n-1}\nu_{1}+p_{n}(1-\nu_{1})=\nu_{n}.\end{cases} (12)

Then ν11ν11νi1νi+1\dfrac{\nu_{1}}{1-\nu_{1}}\leq\dfrac{1-\nu_{i}}{1-\nu_{i+1}} for all 1in11\leq i\leq n-1.

Proof.

Suppose that

min{ν11ν1,1ν11ν2,,1νn11νn}=1νj1νj+1<ν11ν1.\min\left\{\frac{\nu_{1}}{1-\nu_{1}},\frac{1-\nu_{1}}{1-\nu_{2}},\dots,\frac{1-\nu_{n-1}}{1-\nu_{n}}\right\}=\frac{1-\nu_{j}}{1-\nu_{j+1}}<\frac{\nu_{1}}{1-\nu_{1}}.

for some 1jn11\leq j\leq n-1. Then 1νj1νj+1>νj+1νj\dfrac{1-\nu_{j}}{1-\nu_{j+1}}>\dfrac{\nu_{j+1}}{\nu_{j}} due to xx(1x)x\mapsto x(1-x) being monotone increasing on [0,12][0,\frac{1}{2}]. However, we can reinterpret the jj-th and (j+1)(j+1)-th equations in (12) as follows:

(νjνj+1)pspan{(νj1νj2),(νj2νj3),,(1ν1ν1),(1νnj+11νnj)}.\begin{pmatrix}\nu_{j}\\ \nu_{j+1}\end{pmatrix}\in\text{pspan}\left\{\begin{pmatrix}\nu_{j-1}\\ \nu_{j-2}\end{pmatrix},\begin{pmatrix}\nu_{j-2}\\ \nu_{j-3}\end{pmatrix},\dots,\begin{pmatrix}1-\nu_{1}\\ \nu_{1}\end{pmatrix},\dots\begin{pmatrix}1-\nu_{n-j+1}\\ 1-\nu_{n-j}\end{pmatrix}\right\}.

Moreover, as we know that 1νi1νi+11νj1νj+1>νj+1νj\dfrac{1-\nu_{i}}{1-\nu_{i+1}}\geq\dfrac{1-\nu_{j}}{1-\nu_{j+1}}>\dfrac{\nu_{j+1}}{\nu_{j}} for all 1in11\leq i\leq n-1 and ν11ν1>1νj1νj+1>νj+1νj\dfrac{\nu_{1}}{1-\nu_{1}}>\dfrac{1-\nu_{j}}{1-\nu_{j+1}}>\dfrac{\nu_{j+1}}{\nu_{j}}, due to the Lemma 3.1 applied to {(νj1νj2),(νj2νj3),,(1ν1ν1),(1νnj+11νnj)}\left\{\begin{pmatrix}\nu_{j-1}\\ \nu_{j-2}\end{pmatrix},\begin{pmatrix}\nu_{j-2}\\ \nu_{j-3}\end{pmatrix},\dots,\begin{pmatrix}1-\nu_{1}\\ \nu_{1}\end{pmatrix},\dots\begin{pmatrix}1-\nu_{n-j+1}\\ 1-\nu_{n-j}\end{pmatrix}\right\}, there should be an index j<jj^{\prime}<j such that

νj+1νjνj+1νj.\frac{\nu_{j^{\prime}+1}}{\nu_{j^{\prime}}}\leq\frac{\nu_{j+1}}{\nu_{j}}.

But then we can repeat the argument until we get ν2ν1νj+1νj\dfrac{\nu_{2}}{\nu_{1}}\leq\dfrac{\nu_{j+1}}{\nu_{j}}. However, this will not work, as, on the one hand, the first and second equations in (12) give

(ν1ν2)pspan{(1ν1ν1),(1νn1νn1)},\begin{pmatrix}\nu_{1}\\ \nu_{2}\end{pmatrix}\in\text{pspan}\left\{\begin{pmatrix}1-\nu_{1}\\ \nu_{1}\end{pmatrix},\dots\begin{pmatrix}1-\nu_{n}\\ 1-\nu_{n-1}\end{pmatrix}\right\},

but on the other hand,

ν2ν1νj+1νj<1νj1νj+1=min{ν11ν1,1ν11ν2,,1νn11νn}.\dfrac{\nu_{2}}{\nu_{1}}\leq\dfrac{\nu_{j+1}}{\nu_{j}}<\frac{1-\nu_{j}}{1-\nu_{j+1}}=\min\left\{\frac{\nu_{1}}{1-\nu_{1}},\frac{1-\nu_{1}}{1-\nu_{2}},\dots,\frac{1-\nu_{n-1}}{1-\nu_{n}}\right\}.

Therefore, (ν1ν2)\begin{pmatrix}\nu_{1}\\ \nu_{2}\end{pmatrix} cannot belong to the cone generated by {(1ν1ν1),(1νn1νn1)}\left\{\begin{pmatrix}1-\nu_{1}\\ \nu_{1}\end{pmatrix},\dots\begin{pmatrix}1-\nu_{n}\\ 1-\nu_{n-1}\end{pmatrix}\right\}, which leads to a contradiction. ∎

Corollary 3.1.

In the setting of the Lemma 3.2, if pn>0p_{n}>0, we always have ν11ν1λ1\dfrac{\nu_{1}}{1-\nu_{1}}\leq\lambda_{1}, where λ1\lambda_{1} is the largest root of xnp1xn1pnx^{n}-p_{1}x^{n-1}-\dots-p_{n}.

Proof.

Let us consider the matrix FF defined as follows:

F=(p1p2pn1pn100001000010).F=\begin{pmatrix}p_{1}&p_{2}&\dots&p_{n-1}&p_{n}\\ 1&0&\dots&0&0\\ 0&1&\dots&0&0\\ &&\vdots&&\\ 0&0&\dots&1&0\end{pmatrix}.

This is an irreducible matrix, and the following identity holds:

F(1ν11ν21νn11νn)=(ν11ν11νn21νn1).F\begin{pmatrix}1-\nu_{1}\\ 1-\nu_{2}\\ \vdots\\ 1-\nu_{n-1}\\ 1-\nu_{n}\end{pmatrix}=\begin{pmatrix}\nu_{1}\\ 1-\nu_{1}\\ \vdots\\ 1-\nu_{n-2}\\ 1-\nu_{n-1}\end{pmatrix}.

Perron-Frobenius theorem applies here, and the Collatz-Wieland formula yields

min{ν11ν1,1ν11ν2,,1νn11νn}λ1.\min\left\{\frac{\nu_{1}}{1-\nu_{1}},\frac{1-\nu_{1}}{1-\nu_{2}},\dots,\frac{1-\nu_{n-1}}{1-\nu_{n}}\right\}\leq\lambda_{1}.

Keep in mind that the characteristic polynomial of FF is precisely the polynomial in the statement of the corollary. Finally, Lemma 3.2 tells us that this minimum just equals ν11ν1\dfrac{\nu_{1}}{1-\nu_{1}}. ∎

3.2 Proofs of the main results

Proof of Proposition 1.1.

As Fμ(e,p(g))Fμ(e,g)F_{\mu^{\prime}}(e,p(g))\geq F_{\mu}(e,g) for any gFmg\in F_{m}, we have ρμ(p(g))ρμ(g)\rho_{\mu^{\prime}}(p(g))\geq\rho_{\mu}(g) for any gFmg\in F_{m} as well, therefore,

i11+ρμ(ti)1+11+ρμ(ti1)1i11+ρμ(ai)1+11+ρμ(ai1)11.\sum\limits_{i}\frac{1}{1+\rho_{\mu^{\prime}}(t_{i})^{-1}}+\frac{1}{1+\rho_{\mu^{\prime}}(t_{i}^{-1})^{-1}}\geq\sum\limits_{i}\frac{1}{1+\rho_{\mu}(a_{i})^{-1}}+\frac{1}{1+\rho_{\mu}(a_{i}^{-1})^{-1}}\geq 1.

Without loss of generality, we can assume that there exists an index 1im1\leq i\leq m such that
lim supk(Fμ(e,tik))1k<el(ti)\limsup\limits_{k\rightarrow\infty}(F_{\mu^{\prime}}(e,t_{i}^{k}))^{-\frac{1}{k}}<e^{l(t_{i})}. In particular, there is k>1k^{\prime}>1 such that Fμ(e,tik)1k<el(ti)F_{\mu^{\prime}}(e,t_{i}^{k^{\prime}})^{-\frac{1}{k^{\prime}}}<e^{l(t_{i})}. But this inequality can be rewritten as follows:

Fμ(e,tik)>ekl(ti)log(Fμ(e,tik))=dμ(e,tik)<kl(ti)=l(tik).F_{\mu^{\prime}}(e,t_{i}^{k^{\prime}})>e^{-k^{\prime}l(t_{i})}\Leftrightarrow-\log(F_{\mu^{\prime}}(e,t_{i}^{k^{\prime}}))=d_{\mu^{\prime}}(e,t_{i}^{k^{\prime}})<k^{\prime}l(t_{i})=l(t_{i}^{k^{\prime}}).

Therefore, we can apply Lemma 1.1 to finish the proof. ∎

Proof of Theorem 1.1.

First of all, let us denote pk=Fμ(e,aik;B{aik})>0p_{k}=F_{\mu}(e,a_{i}^{k};B\setminus\{a_{i}^{k}\})>0, where B={ai,,ain}B=\{a_{i},\dots,a_{i}^{n}\}, and rewrite the equations (9) to obtain the following system:

{p1(1ν(C(ai)))+p2(1ν(C(ai2)))++pn(1ν(C(ain)))=ν(C(ai))p1ν(C(ai))+p2(1ν(C(ai)))++pn(1ν(C(ain1)))=ν(C(ai2))p1ν(C(ain1))+p2ν(C(ain2))++pn1ν(C(ai))+pn(1ν(C(ai)))=ν(C(ain)).\begin{cases}p_{1}(1-\nu(C(a_{i})))+p_{2}(1-\nu(C(a_{i}^{2})))+\dots+p_{n}(1-\nu(C(a_{i}^{n})))=\nu(C(a_{i}))\\ p_{1}\nu(C(a_{i}))+p_{2}(1-\nu(C(a_{i})))+\dots+p_{n}(1-\nu(C(a_{i}^{n-1})))=\nu(C(a_{i}^{2}))\\ \vdots\\ p_{1}\nu(C(a_{i}^{n-1}))+p_{2}\nu(C(a_{i}^{n-2}))+\dots+p_{n-1}\nu(C(a_{i}))+p_{n}(1-\nu(C(a_{i})))=\nu(C(a_{i}^{n})).\end{cases}

Corollary 3.1, applied to this system, implies that

ν(C(ai))1ν(C(ai))λ1,\dfrac{\nu(C(a_{i}))}{1-\nu(C(a_{i}))}\leq\lambda_{1}, (13)

where λ1\lambda_{1} is the largest root of xnp1xn1pn=0x^{n}-p_{1}x^{n-1}-\dots-p_{n}=0. Now we only have to prove that

limkFμ(e,aik)1k=λ1.\lim_{k\rightarrow\infty}F_{\mu}(e,a_{i}^{k})^{\frac{1}{k}}=\lambda_{1}.

As a consequence from Lemma 2.1, for every knk\geq n we have

FB(Fμ(e,aik1)Fμ(e,aikn))=(Fμ(e,aik)Fμ(e,aikn+1)),F_{B}\begin{pmatrix}F_{\mu}(e,a_{i}^{k-1})\\ \vdots\\ F_{\mu}(e,a_{i}^{k-n})\end{pmatrix}=\begin{pmatrix}F_{\mu}(e,a_{i}^{k})\\ \vdots\\ F_{\mu}(e,a_{i}^{k-n+1})\end{pmatrix},

where

FB=(p1p2pn1pn100001000010).F_{B}=\begin{pmatrix}p_{1}&p_{2}&\dots&p_{n-1}&p_{n}\\ 1&0&\dots&0&0\\ 0&1&\dots&0&0\\ &&\vdots&&\\ 0&0&\dots&1&0\end{pmatrix}.

Here we apply the Perron-Frobeinus theorem once again. As FBF_{B} is irreducible, we can use the min-max Collatz-Wielandt formula to get that for every k>nk>n we have

min{Fμ(e,a1k)Fμ(e,a1k1),,Fμ(e,a1kn+1)Fμ(e,a1kn)}λ1max{Fμ(e,a1k)Fμ(e,a1k1),,Fμ(e,a1kn+1)Fμ(e,a1kn)}.\min\left\{\dfrac{F_{\mu}(e,a_{1}^{k})}{F_{\mu}(e,a_{1}^{k-1})},\dots,\dfrac{F_{\mu}(e,a_{1}^{k-n+1})}{F_{\mu}(e,a_{1}^{k-n})}\right\}\leq\lambda_{1}\leq\max\left\{\dfrac{F_{\mu}(e,a_{1}^{k})}{F_{\mu}(e,a_{1}^{k-1})},\dots,\dfrac{F_{\mu}(e,a_{1}^{k-n+1})}{F_{\mu}(e,a_{1}^{k-n})}\right\}.

We know that limkFμ(e,a1k)Fμ(e,a1k1)\lim\limits_{k\rightarrow\infty}\dfrac{F_{\mu}(e,a_{1}^{k})}{F_{\mu}(e,a_{1}^{k-1})} exists, we just need to establish that the limit is, indeed, the largest eigenvalue. Denoting it by LL, and applying limk\lim\limits_{k\rightarrow\infty}, we get

Lλ1L.L\leq\lambda_{1}\leq L.

So,

L=limkFμ(e,aik)1k=λ1.L=\lim_{k\rightarrow\infty}F_{\mu}(e,a_{i}^{k})^{\frac{1}{k}}=\lambda_{1}. (14)

Combining (13) and (14), we get (4). ∎

Remark. We would like to note that the equations (9) and Lemma 2.6 imply the following matrix identity corresponding to the barrier B={ai,,ain}B=\{a_{i},\dots,a_{i}^{n}\}:

FBn=SPB,F_{B}^{n}=SP_{B}, (15)

where PBP_{B} is the same operator as the one defined in Theorem 2.1, SS is the permutation matrix which reverses the rows. If we denote pjk:=Fμ(ain+j,aik;B{aik})p_{jk}:=F_{\mu}(a_{i}^{-n+j},a_{i}^{k};B\setminus\{a_{i}^{k}\}) for 1j,kn1\leq j,k\leq n, Lemma 2.6, applied to B=ain+jBB^{\prime}=a_{i}^{-n+j}B for various jj, turns out to be equivalent to the following matrix identity in Matn()\text{Mat}_{n}(\mathbb{R}) for all 1im1\leq i\leq m and 1jn1\leq j\leq n.

FB(pj1pj2pjnpj+1 1pj+1 2pj+1npn1pn2pnn100010)=(pj1 1pj1 2pj1npj1pj2pjnpn1pn2pnn100010).F_{B}\begin{pmatrix}p_{j1}&p_{j2}&\dots&p_{jn}\\ p_{j+1\,1}&p_{j+1\,2}&\dots&p_{j+1\,n}\\ \vdots&\vdots&\vdots&\vdots\\ p_{n1}&p_{n2}&\dots&p_{nn}\\ 1&0&\dots&0\\ 0&1&\dots&0\\ &&\ddots&\end{pmatrix}=\begin{pmatrix}p_{j-1\,1}&p_{j-1\,2}&\dots&p_{j-1\,n}\\ p_{j1}&p_{j2}&\dots&p_{jn}\\ \vdots&\vdots&\vdots&\vdots\\ p_{n1}&p_{n2}&\dots&p_{nn}\\ 1&0&\dots&0\\ 0&1&\dots&0\\ &&\ddots&\end{pmatrix}.

It remains to note that for j=nj=n the defined above matrices equal FBF_{B}, and for j=1j=1 we get SPBSP_{B}.

4 Disproving (3) in the general case

First of all, let us prove Theorem 1.2, then we will present a random walk on FmF_{m} which satisfies the property in Theorem 1.2, and is not supported on the generating set.

Proof of Theorem 1.2.

First of all, let us notice that if the random walk satisfies the property mentioned in the statement, then Lemma 2.1 implies that

Fμ(e,ajk)=Fμ(e,aj)Fμ(e,ajk1)F_{\mu}(e,a_{j}^{k})=F_{\mu}(e,a_{j})F_{\mu}(e,a_{j}^{k-1})

for any 1jm1\leq j\leq m, k>1k>1. Therefore,

j=1m11+ρμ(ai)+11+ρμ(ai1)=j=1m11+Fμ(e,ai)1+11+Fμ(e,ai1)1.\sum_{j=1}^{m}\dfrac{1}{1+\rho_{\mu}(a_{i})}+\dfrac{1}{1+\rho_{\mu}(a_{i}^{-1})}=\sum_{j=1}^{m}\dfrac{1}{1+F_{\mu}(e,a_{i})^{-1}}+\dfrac{1}{1+F_{\mu}(e,a_{i}^{-1})^{-1}}.

Moreover, the fact that aja_{j} is an aja_{j}-barrier for all jij\neq i implies that supp(μ)Cfin(aj)={aj}\text{supp}(\mu)\cap C_{fin}(a_{j})=\{a_{j}\} by the definition of the barriers. This allows to apply Proposition 2.1 in a certain way: consider an aia_{i}-barrier BB which fully lies in Cfin(ai)C_{fin}(a_{i}). Then

bBFμ(e,b;B{b})(1ν(C(b1)))=ν(C(ai)).\sum_{b\in B}F_{\mu}(e,b;B\setminus\{b\})(1-\nu(C(b^{-1})))=\nu(C(a_{i})).

Observe that for every bB{ai}b\in B\setminus\{a_{i}\} we have ν(C(b1))<ν(C(ai))\nu(C(b^{-1}))<\nu(C(a_{i})): if b1=w1wrb^{-1}=w_{1}\dots w_{r} is the reduced representation of b1b^{-1}, then we can fix the first index t>0t>0 such that wt=ai±1w_{t}=a_{i}^{\pm 1}. As wr=ai1w_{r}=a_{i}^{-1}, tt is always well-defined. In this case Lemma 2.1 implies

ν(C(b1))=Fμ(e,w1)Fμ(e,wt1)ν(C(wtwr))<ν(C(wtwr))=ν(C(wt±1wr±1))ν(C(ai)),\nu(C(b^{-1}))=F_{\mu}(e,w_{1})\dots F_{\mu}(e,w_{t-1})\nu(C(w_{t}\dots w_{r}))<\nu(C(w_{t}\dots w_{r}))=\nu(C(w_{t}^{\pm 1}\dots w_{r}^{\pm 1}))\leq\nu(C(a_{i})),

as wt±1=aiw_{t}^{\pm 1}=a_{i} and C(wt±1wr±1)C(ai)C(w_{t}^{\pm 1}\dots w_{r}^{\pm 1})\subset C(a_{i}) (here antisymmetry implies ν(C(g))=ν(C(g^))\nu(C(g))=\nu(C(\hat{g}))). Notice that the same argument implies that ν(C(b1))=ν(C(ai))\nu(C(b^{-1}))=\nu(C(a_{i})) only if b=aib=a_{i}. Therefore,

bBFμ(e,b;B{b})(1ν(C(ai)))<bBFμ(e,b;B{b})(1ν(C(b1)))=ν(C(ai))\sum_{b\in B}F_{\mu}(e,b;B\setminus\{b\})(1-\nu(C(a_{i})))<\sum_{b\in B}F_{\mu}(e,b;B\setminus\{b\})(1-\nu(C(b^{-1})))=\nu(C(a_{i}))

is equivalent to B{ai}B\neq\{a_{i}\}. However,

bBFμ(e,b;B{b})(1ν(C(ai)))<ν(C(ai))Fμ(e,ai)<bBFμ(e,b;B{b})<ν(C(ai))1ν(C(ai))).\sum_{b\in B}F_{\mu}(e,b;B\setminus\{b\})(1-\nu(C(a_{i})))<\nu(C(a_{i}))\Leftrightarrow F_{\mu}(e,a_{i})<\sum_{b\in B}F_{\mu}(e,b;B\setminus\{b\})<\dfrac{\nu(C(a_{i}))}{1-\nu(C(a_{i})))}.

Example 4.1.

Consider an antisymmetric random walk on FmF_{m} supported on the set {ai,ai1,a1a2,a11a21}1im\{a_{i},a_{i}^{-1},a_{1}a_{2},a_{1}^{-1}a_{2}^{-1}\}_{1\leq i\leq m}, and assume that μ(ai)=μ(ai1)\mu(a_{i})=\mu(a_{i}^{-1}), μ(a1a2)=μ(a11a21)\mu(a_{1}a_{2})=\mu(a_{1}^{-1}a_{2}^{-1}). Then it is easy to see that {aj}\{a_{j}\} is an aja_{j}-barrier for j>1j>1, and a1a_{1} is still an a12a_{1}^{2}-barrier, as there is no way to enter Cfin(a12)C_{fin}(a_{1}^{2}) directly from a1aj±1a_{1}a_{j}^{\pm 1}. Therefore, we get

i11+ρμ(ai)1+11+ρμ(ai1)1=2(11+Fμ(e,ai)1+2imν(C(ai)))<2(1imν(C(ai)))=1\sum\limits_{i}\frac{1}{1+\rho_{\mu}(a_{i})^{-1}}+\frac{1}{1+\rho_{\mu}(a_{i}^{-1})^{-1}}=2\left(\frac{1}{1+F_{\mu}(e,a_{i})^{-1}}+\sum_{2\leq i\leq m}\nu(C(a_{i}))\right)<2\left(\sum_{1\leq i\leq m}\nu(C(a_{i}))\right)=1

due to C(ai)C(a_{i}) being disjoint.

Example 4.2.

We would like to show that (3) breaks in the symmetric case as well. Consider Example 2.4. Due to {b}\{b\} being a bb-barrier, and {a1}\{a^{-1}\} being an a1a^{-1}-barrier, we have

Fμ(e,ak)=Fμ(e,a1)k=Fμ(e,a)k,Fμ(e,bk)=Fμ(e,b)k=Fμ(e,b1)kF_{\mu}(e,a^{-k})=F_{\mu}(e,a^{-1})^{k}=F_{\mu}(e,a)^{k},\quad F_{\mu}(e,b^{k})=F_{\mu}(e,b)^{k}=F_{\mu}(e,b^{-1})^{k}

due to Lemma 2.1. Therefore, ρμ(a)=ρμ(a1)=Fμ(e,a)\rho_{\mu}(a)=\rho_{\mu}(a^{-1})=F_{\mu}(e,a), and ρμ(b)=ρμ(b1)=Fμ(e,b)\rho_{\mu}(b)=\rho_{\mu}(b^{-1})=F_{\mu}(e,b).

To finish the argument, we consider an automorphism s:F2F2s:F_{2}\rightarrow F_{2}, defined by aa,ba1ba\mapsto a,b\mapsto a^{-1}b. Denoting μ:=s(μ)\mu^{\prime}:=s_{*}(\mu) and using the invariance of the first-passage functions w.r.t. automorphisms, we get

11+Fμ(e,a)1+11+Fμ(e,b)1=11+Fμ(e,a)1+11+Fμ(e,a1b)1.\dfrac{1}{1+F_{\mu}(e,a)^{-1}}+\dfrac{1}{1+F_{\mu}(e,b)^{-1}}=\dfrac{1}{1+F_{\mu^{\prime}}(e,a)^{-1}}+\dfrac{1}{1+F_{\mu^{\prime}}(e,a^{-1}b)^{-1}}.

As the support of μ\mu^{\prime} is {a,a1,b,b1}\{a,a^{-1},b,b^{-1}\}, the first-passage function is still multiplicative, and we have an exact identity for the measures of the cylinder sets for ν=s(ν)\nu^{\prime}=s_{*}(\nu), so we get

11+Fμ(e,a)1+11+Fμ(e,a1b)1=\displaystyle\dfrac{1}{1+F_{\mu^{\prime}}(e,a)^{-1}}+\dfrac{1}{1+F_{\mu^{\prime}}(e,a^{-1}b)^{-1}}=
=11+Fμ(e,a)1+11+Fμ(e,a)1Fμ(e,b)1<\displaystyle=\dfrac{1}{1+F_{\mu^{\prime}}(e,a)^{-1}}+\dfrac{1}{1+F_{\mu^{\prime}}(e,a)^{-1}F_{\mu^{\prime}}(e,b)^{-1}}<
<11+Fμ(e,a)1+11+Fμ(e,b)1=ν(C(a))+ν(C(b))=12.\displaystyle<\dfrac{1}{1+F_{\mu^{\prime}}(e,a)^{-1}}+\dfrac{1}{1+F_{\mu^{\prime}}(e,b)^{-1}}=\nu^{\prime}(C(a))+\nu^{\prime}(C(b))=\dfrac{1}{2}.

5 Further directions

  • As pointed out to the author by Kunal Chawla, the existing results on continuity of the drift and entropy, in particular, [GMM18, Proposition 2.3] and [GMM18, Theorem 2.9], are applicable due to the random walks considered being finitely supported. Therefore, the dimension dim(ν)=h/l\text{dim}(\nu)=h/l also continuously depends on μ\mu due to [BHM11] and [Tan19], which allows us to extend Corollary 1.1 to sufficiently small perturbations of measures supported strictly on the powers of generators. Also, see [Aze+22] for the most recent results in this direction.

  • At the same time, we would like to note that Theorem 1.2 does not yield any actual counterexamples to the Fuchsian version of (3): while (3) does not hold for every random walk on free groups, it can still hold when we pass to Fuchsian groups as the corresponding first-passage functions are strictly larger for Fuchsian groups.

    Besides, even if (3) is not true for arbitrary finite range random walks on Fuchsian groups, it still doesn’t necessarly contradict the singularity conjecture itself, as (g)>dμ(e,g)\ell(g)>d_{\mu}(e,g) is expected to hold for an element other than a power of a side-pairing generator of Γ\Gamma.

    Nevertheless, Theorem 1.2 should still be considered a negative result, and it confirms that reducing the conjecture to covering random walks on free groups cannot settle the singularity conjecture alone; we believe that other approaches are necessary in order to settle Conjecture 1.1.

  • Finally, we would like to remark that Theorem 2.1 proved to be not enough by itself to establish Theorem 1.1 and, consequently, (3). Essentially, the proof required us to represent the respective operator PBP_{B} as a power of an operator with a much simpler structure (see the remark after the proof of Theorem 1.1). It seems reasonable that Lemma 2.6 yields similar (to (15)) decompositions for barrier operators PBP_{B} in the general case, and we hope that they will, potentially, suggest the correct generalization of (3) for arbitrary random walks on free groups.

References

  • [Anc88] Alano Ancona “Positive harmonic functions and hyperbolicity” In Potential Theory Surveys and Problems Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 1–23
  • [Aze+22] Aitor Azemar et al. “Random walk speed is a proper function on Teichmüller space” arXiv, 2022 DOI: 10.48550/ARXIV.2212.06581
  • [BHM11] Sébastien Blachère, Peter Haïssinsky and Pierre Mathieu “Harmonic measures versus quasiconformal measures for hyperbolic groups” In Ann. Sci. Éc. Norm. Supér. (4) 44.4, 2011, pp. 683–721 DOI: 10.24033/asens.2153
  • [Der75] Yves Derriennic “Marche aléatoire sur le groupe libre et frontière de Martin” In Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32.4, 1975, pp. 261–276 DOI: 10.1007/BF00535840
  • [DG20] Matthieu Dussaule and Ilya Gekhtman “Entropy and drift for word metrics on relatively hyperbolic groups” In Groups Geom. Dyn. 14.4, 2020, pp. 1455–1509
  • [DKN09] Bertrand Deroin, Victor Kleptsyn and Andrés Navas “On the question of ergodicity for minimal group actions on the circle” In Mosc. Math. J. 9.2, 2009, pp. 263–303\bibrangessepback matter DOI: 10.17323/1609-4514-2009-9-2-263-303
  • [GL13] Sébastien Gouëzel and Steven P. Lalley “Random walks on co-compact fuchsian groups” In Annales scientifiques de l’École Normale Supérieure Ser. 4, 46.1 Société mathématique de France, 2013, pp. 131–175 DOI: 10.24033/asens.2186
  • [GL93] Y. Guivarc’h and Y. Le Jan “Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions” In Annales scientifiques de l’École Normale Supérieure Ser. 4, 26.1 Elsevier, 1993, pp. 23–50 DOI: 10.24033/asens.1666
  • [GMM18] Sébastien Gouëzel, Frédéric Mathéus and François Maucourant “Entropy and drift in word hyperbolic groups” In Invent. Math. 211.3, 2018, pp. 1201–1255 DOI: 10.1007/s00222-018-0788-y
  • [Gui80] Y. Guivarc’h “Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire” In Conference on Random Walks (Kleebach, 1979) (French) 74, Astérisque Soc. Math. France, Paris, 1980, pp. 47–98\bibrangessep3
  • [KL11] Vadim A. Kaimanovich and Vincent Le Prince “Matrix random products with singular harmonic measure” In Geom. Dedicata 150, 2011, pp. 257–279 DOI: 10.1007/s10711-010-9504-9
  • [Kos20] Petr Kosenko “Fundamental Inequality for Hyperbolic Coxeter and Fuchsian Groups Equipped with Geometric Distances” In International Mathematics Research Notices 2021.6, 2020, pp. 4709–4728 DOI: 10.1093/imrn/rnaa213
  • [KT22] Petr Kosenko and Giulio Tiozzo “The fundamental inequality for cocompact Fuchsian groups” In Forum of Mathematics, Sigma 10 Cambridge University Press, 2022, pp. e102 DOI: 10.1017/fms.2022.94
  • [KV83] V.. Kaimanovich and A.. Vershik “Random walks on discrete groups: boundary and entropy” In Ann. Probab. 11.3, 1983, pp. 457–490
  • [Lal93] Steven P. Lalley “Finite Range Random Walk on Free Groups and Homogeneous Trees” In The Annals of Probability 21.4 Institute of Mathematical Statistics, 1993, pp. 2087–2130 URL: http://www.jstor.org/stable/2244712
  • [Le ̵08] Vincent Le Prince “A relation between dimension of the harmonic measure, entropy and drift for a random walk on a hyperbolic space” In Electron. Commun. Probab. 13, 2008, pp. 45–53 DOI: 10.1214/ECP.v13-1350
  • [Led01] François Ledrappier “Some asymptotic properties of random walks on free groups” In Topics in probability and Lie groups: boundary theory 28, CRM Proc. Lecture Notes Amer. Math. Soc., Providence, RI, 2001, pp. 117–152 DOI: 10.1090/crmp/028/05
  • [LS84] Terry Lyons and Dennis Sullivan “Function theory, random paths and covering spaces” In J. Differential Geom. 19.2, 1984, pp. 299–323 URL: http://projecteuclid.org/euclid.jdg/1214438681
  • [Tan19] Ryokichi Tanaka “Dimension of harmonic measures in hyperbolic spaces” In Ergodic Theory Dynam. Systems 39.2, 2019, pp. 474–499 DOI: 10.1017/etds.2017.23