This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotic profiles for the Cauchy problem of damped beam equation with two variable coefficients and derivative nonlinearity

Mohamed Ali Hamza1, Yuta Wakasugi2∗ and Shuji Yoshikawa3 [email protected] [email protected] [email protected] 1 Basic Sciences Department, Deanship of Preparatory Year and Supporting Studies, P. O. Box 1982, Imam Abdulrahman Bin Faisal University, Dammam, KSA. 2 Laboratory of Mathematics, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan 3 Division of Mathematical Sciences, Faculty of Science and Technology, Oita University, Oita, 870-1192, Japan
Abstract.

In this article we investigate the asymptotic profile of solutions for the Cauchy problem of the nonlinear damped beam equation with two variable coefficients:

t2u+b(t)tua(t)x2u+x4u=x(N(xu)).\partial_{t}^{2}u+b(t)\partial_{t}u-a(t)\partial_{x}^{2}u+\partial_{x}^{4}u=\partial_{x}\left(N(\partial_{x}u)\right).

In the authors’ previous article [17], the asymptotic profile of solutions for linearized problem (N0N\equiv 0) was classified depending on the assumptions for the coefficients a(t)a(t) and b(t)b(t) and proved the asymptotic behavior in effective damping cases. We here give the conditions of the coefficients and the nonlinear term in order that the solution behaves as the solution for the heat equation: b(t)tua(t)x2u=0b(t)\partial_{t}u-a(t)\partial_{x}^{2}u=0 asymptotically as tt\to\infty.

Key words and phrases:
Nonlinear damped beam equations; asymptotic behavior; global existence; variable coefficients
0002010 Mathematics Subject Classification. 35G25; 35B40; 35A01000* Corresponding author

1. Introduction

We study the Cauchy problem of nonlinear damped beam equation

{t2u+b(t)tua(t)x2u+x4u=x(N(xu)),t(0,),x,u(0,x)=u0(x),tu(0,x)=u1(x),x,\displaystyle\left\{\begin{aligned} &\partial_{t}^{2}u+b(t)\partial_{t}u-a(t)\partial_{x}^{2}u+\partial_{x}^{4}u=\partial_{x}\left(N(\partial_{x}u)\right),&\qquad&t\in(0,\infty),x\in\mathbb{R},\\ &u(0,x)=u_{0}(x),\ \partial_{t}u(0,x)=u_{1}(x),&\qquad&x\in\mathbb{R},\end{aligned}\right. (1.1)

where u=u(t,x)u=u(t,x) is a real-valued unknown, a(t)a(t) and b(t)b(t) are given positive functions of tt, N(xu)N(\partial_{x}u) denotes the nonlinear function, and u0u_{0} and u1u_{1} are given initial data.

Before giving more precise assumptions for a(t)a(t), b(t)b(t) and NN and our result, we first mention the physical background and the mathematical motivations of the problem. The equation (1.1) corresponds to the so-called Falk model under isothermal assumption with the damping term. The Falk model is one of the models for a thermoelastic deformation with austenite-martensite phase transitions on shape memory alloys:

{t2u+x4u=x{(θθc)xu(xu)3+(xu)5},tθx2θ=θxutxu,t(0,),x,u(0,x)=u0(x),tu(0,x)=u1(x),θ(0,x)=θ0(x),x,\begin{cases}\partial_{t}^{2}u+\partial_{x}^{4}u=\partial_{x}\left\{(\theta-\theta_{c})\partial_{x}u-(\partial_{x}u)^{3}+(\partial_{x}u)^{5}\right\},\qquad&\\ \partial_{t}\theta-\partial_{x}^{2}\theta=\theta\partial_{x}u\partial_{t}\partial_{x}u,\qquad&t\in(0,\infty),x\in\mathbb{R},\\ u(0,x)=u_{0}(x),\ \partial_{t}u(0,x)=u_{1}(x),\ \theta(0,x)=\theta_{0}(x),\qquad&x\in\mathbb{R},\end{cases}

where uu and θ\theta are the displacement and the absolute temperature, respectively, and θc\theta_{c} is a positive constant representing the critical temperature for the phase transition. If we assume the temperature are controllable and uniformly distributed with respect to the space, that is, θ\theta is given function uniform in xx such as θθc=a(t)\theta-\theta_{c}=a(t) and set N(ε)=ε5ε3N(\varepsilon)=\varepsilon^{5}-\varepsilon^{3}, then the problem (1.1) is surely derived. Our interest directs to the behavior of solution around the initial temperature θ0\theta_{0} is closed to the critical temperature θc\theta_{c}. Indeed, the Lyapunov stability for the solution of the Falk model is shown in [11], which claims that the temperature tends to the function uniformly distributed in xx in the bounded domain case. For more precise information of the Falk model of shape memory alloys, we refer the reader to Chapter 5 in [2]. We are also motivated by the extensible beam equation proposed by Woinovsky-Krieger [16]:

t2u(|xu|2𝑑x)x2u+x4u=0.\partial_{t}^{2}u-\left(\int_{\mathbb{R}}|\partial_{x}u|^{2}dx\right)\partial_{x}^{2}u+\partial_{x}^{4}u=0. (1.2)

In [1], the model with the damping term was proposed and the stability result was shown. The problem (1.1) corresponds to the nonlinear generalization for the equation. As the observation similar to the Kirchhoff equation, the linearized problem substituting the given function a(t)a(t) into the nonlocal term was also studied by e.g. [4], [10], [17] and [6].

Next, let us explain the mathematical background of our problem. It is well-known that the solution of the Cauchy problem for the damped wave equation t2u+tux2u=0\partial_{t}^{2}u+\partial_{t}u-\partial_{x}^{2}u=0 behaves as the solution for the heat equation tux2u=0\partial_{t}u-\partial_{x}^{2}u=0 asymptotically as tt\to\infty (see e.g. [7]). Roughly speaking, this implies that t2u\partial_{t}^{2}u decays faster than tu\partial_{t}u as tt\to\infty. From the same observation, the solution for the beam equation t2u+tux2u+x4u=0\partial_{t}^{2}u+\partial_{t}u-\partial_{x}^{2}u+\partial_{x}^{4}u=0 behaves as the solution for the heat equation tux2u=0\partial_{t}u-\partial_{x}^{2}u=0 asymptotically as tt\to\infty, because x4u\partial_{x}^{4}u decays faster than x2u\partial_{x}^{2}u. The above observation induces the investigation of the solution for the equation with time variable coefficient: t2u+b(t)tux2u=0\partial_{t}^{2}u+b(t)\partial_{t}u-\partial_{x}^{2}u=0 with b(t)(1+t)βb(t)\sim(1+t)^{\beta}. The precise analysis implies that the solution behaves as the solution for the heat equation b(t)tux2u=0b(t)\partial_{t}u-\partial_{x}^{2}u=0 when β<1\beta<-1, and on the other hand, that the solution behaves as the solution for the wave equation t2ux2u=0\partial_{t}^{2}u-\partial_{x}^{2}u=0 when 1<β<1-1<\beta<1 (see e.g. [8], [9], [14] and [15]). Correspondingly, the authors in [17] studied the asymptotic behavior of the solution for the linearized problem of (1.1)

t2u+b(t)tua(t)x2u+x4u=0.\partial_{t}^{2}u+b(t)\partial_{t}u-a(t)\partial_{x}^{2}u+\partial_{x}^{4}u=0.

As in Figure 1, we divide the two-dimensional regions Ωj\Omega_{j} for (α,β)(\alpha,\beta) (j=1,2,3,4,5j=1,2,3,4,5) by

Ω1\displaystyle\Omega_{1} :={(α,β)21<β<min{α+1,2α+1}},\displaystyle:=\left\{(\alpha,\beta)\in\mathbb{R}^{2}\mid-1<\beta<\min\{\alpha+1,2\alpha+1\}\right\},
Ω2\displaystyle\Omega_{2} :={(α,β)2max{1,2α+1}<β<1},\displaystyle:=\left\{(\alpha,\beta)\in\mathbb{R}^{2}\mid\max\{-1,2\alpha+1\}<\beta<1\right\},
Ω3\displaystyle\Omega_{3} :={(α,β)2β<1<α},\displaystyle:=\left\{(\alpha,\beta)\in\mathbb{R}^{2}\mid\beta<-1<\alpha\right\},
Ω4\displaystyle\Omega_{4} :={(α,β)2β<1,α<1},\displaystyle:=\left\{(\alpha,\beta)\in\mathbb{R}^{2}\mid\beta<-1,\alpha<-1\right\},
Ω5\displaystyle\Omega_{5} :={(α,β)2max{1,α+1}<β}.\displaystyle:=\left\{(\alpha,\beta)\in\mathbb{R}^{2}\mid\max\{1,\alpha+1\}<\beta\right\}.
α\alphaβ\beta0111-112-\frac{1}{2}β=1\beta=-1β=α+1\beta=\alpha+1β=2α+1\beta=2\alpha+1Ω1\Omega_{1}Ω2\Omega_{2}Ω3\Omega_{3}Ω4\Omega_{4}Ω5\Omega_{5}Figure 1.

By a scaling argument, the result gives the conjecture for the classification of the asymptotic behavior of the solution:

  1. (1)

    In (α,β)Ω1(\alpha,\beta)\in\Omega_{1}, u(t)u(t) behaves as the solution for b(t)uta(t)uxx=0b(t)u_{t}-a(t)u_{xx}=0.

  2. (2)

    In (α,β)Ω2(\alpha,\beta)\in\Omega_{2}, u(t)u(t) behaves as the solution for b(t)ut+uxxxx=0b(t)u_{t}+u_{xxxx}=0.

  3. (3)

    In (α,β)Ω3(\alpha,\beta)\in\Omega_{3}, u(t)u(t) behaves as the solution for utta(t)uxx=0u_{tt}-a(t)u_{xx}=0.

  4. (4)

    In (α,β)Ω4(\alpha,\beta)\in\Omega_{4}, u(t)u(t) behaves as the solution for utt+uxxxx=0u_{tt}+u_{xxxx}=0.

  5. (5)

    In (α,β)Ω5(\alpha,\beta)\in\Omega_{5}, u(t)u(t) behaves as the solution for over damping case.

As a partial answer, the authors proved the effective damping cases (1) and (2) in [17]. Here we shall give the result for the nonlinear problem (1.1) in the case (1).

From now on, we shall give our main result. To state it precisely, we put the following assumptions.

Assumption (A) The coefficients a(t)a(t) and b(t)b(t) are smooth positive functions satisfying

C1(1+t)αa(t)C(1+t)α,C1(1+t)βb(t)C(1+t)β\displaystyle C^{-1}(1+t)^{\alpha}\leq a(t)\leq C(1+t)^{\alpha},\quad C^{-1}(1+t)^{\beta}\leq b(t)\leq C(1+t)^{\beta} (1.3)

and

|a(t)|C(1+t)α1,|b(t)|C(1+t)β1\displaystyle|a^{\prime}(t)|\leq C(1+t)^{\alpha-1},\quad|b^{\prime}(t)|\leq C(1+t)^{\beta-1} (1.4)

with some constant C1C\geq 1 and the parameters α,β\alpha,\beta\in\mathbb{R}. Moreover, we assume

(α,β)Ω1:={(α,β)21<β<min{α+1,2α+1}}.\displaystyle(\alpha,\beta)\in\Omega_{1}:=\left\{(\alpha,\beta)\in\mathbb{R}^{2}\mid-1<\beta<\min\{\alpha+1,2\alpha+1\}\right\}. (1.5)

Assumption (N) The function N(xu)N(\partial_{x}u) is a linear combination of (xu)2(\partial_{x}u)^{2} and pp-th order terms with p3p\geq 3. More precisely, the function NN has the form

N(z)=μz2+N~(z),\displaystyle N(z)=\mu z^{2}+\tilde{N}(z), (1.6)

with some μ\mu\in\mathbb{R}, where N~C2()\tilde{N}\in C^{2}(\mathbb{R}) satisfies

N~(j)(0)=0and|N~(j)(z)N~(j)(w)|C(|z|+|w|)p1j|zw|(z,w)\displaystyle\tilde{N}^{(j)}(0)=0\quad\text{and}\quad|\tilde{N}^{(j)}(z)-\tilde{N}^{(j)}(w)|\leq C(|z|+|w|)^{p-1-j}|z-w|\quad(z,w\in\mathbb{R}) (1.7)

holds with some p3p\geq 3 for j=0,1,2j=0,1,2.

A typical example of our nonlinearity is

x(N(xu))=x(xu)2+x(|xu|p1xu)\displaystyle\partial_{x}\left(N(\partial_{x}u)\right)=\partial_{x}(\partial_{x}u)^{2}+\partial_{x}\left(|\partial_{x}u|^{p-1}\partial_{x}u\right) (1.8)

with p3p\geq 3.

Remark 1.1.

The assumption (A) implies

β+1αβ+1<2<p.\displaystyle\frac{-\beta+1}{\alpha-\beta+1}<2<p. (1.9)

This means that the nonlinearity is supercritical (see the argument in Section 4.1).

We further prepare the following notations. Let G=G(t,x)G=G(t,x) be the Gaussian, that is,

G(t,x)=14πtexp(x24t).\displaystyle G(t,x)=\frac{1}{\sqrt{4\pi t}}\exp\left(-\frac{x^{2}}{4t}\right). (1.10)

We define

r(t)=a(t)b(t)andR(t)=0tr(τ)𝑑τ.\displaystyle r(t)=\frac{a(t)}{b(t)}\quad\text{and}\quad R(t)=\int_{0}^{t}r(\tau)\,d\tau. (1.11)

Remark that

C1(1+t)αβ+1R(t)C(1+t)αβ+1\displaystyle C^{-1}(1+t)^{\alpha-\beta+1}\leq R(t)\leq C(1+t)^{\alpha-\beta+1} (1.12)

holds with some constant C1C\geq 1, thanks to the assumption (A).

Theorem 1.2.

Under the assumptions (A) and (N), there exists a constant ε0>0\varepsilon_{0}>0 such that if (u0,u1)(H2,1()H3,0())×(H0,1()H1,0())(u_{0},u_{1})\in\left(H^{2,1}(\mathbb{R})\cap H^{3,0}(\mathbb{R})\right)\times\left(H^{0,1}(\mathbb{R})\cap H^{1,0}(\mathbb{R})\right) and

u0H2,1H3,0+u1H0,1H1,0ε0,\displaystyle\|u_{0}\|_{H^{2,1}\cap H^{3,0}}+\|u_{1}\|_{H^{0,1}\cap H^{1,0}}\leq\varepsilon_{0}, (1.13)

then there exists a unique solution

uC([0,);H2,1()H3,0())C1([0,);H0,1()H1,0()).\displaystyle u\in C([0,\infty);H^{2,1}(\mathbb{R})\cap H^{3,0}(\mathbb{R}))\cap C^{1}([0,\infty);H^{0,1}(\mathbb{R})\cap H^{1,0}(\mathbb{R})). (1.14)

Moreover, the solution uu has the asymptotic behavior

u(t,)mG(R(t),)L2C(R(t)+1)14λ2(u0H2,1H3,0+u1H0,1H1,0)\displaystyle\|u(t,\cdot)-m^{*}G(R(t),\cdot)\|_{L^{2}}\leq C(R(t)+1)^{-\frac{1}{4}-\frac{\lambda}{2}}\left(\|u_{0}\|_{H^{2,1}\cap H^{3,0}}+\|u_{1}\|_{H^{0,1}\cap H^{1,0}}\right) (1.15)

with some constants C>0C>0, mm^{*}\in\mathbb{R}, and λ>0\lambda>0.

Remark 1.3.

From the proof, λ\lambda is taken to be arbitrary so that

0<λ<min{12,2(β+1)αβ+1,2αβ+1αβ+1}.0<\lambda<\min\left\{\frac{1}{2},\frac{2(\beta+1)}{\alpha-\beta+1},\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right\}.

The proof is based on the method by Gallay and Raugel [5] using the self-similar transformation and the standard energy method.

This paper is organized as follows. In Section 2, we rewrite the problem through the self-similar transformation. Thereafter, we show several energy estimates in Section 3, and give a priori estimates through the estimates for the nonlinear terms in Section 4. In the appendix, we also give a lemma for energy identities which is frequently used in the proof and the proof of local-in-time existence of solution for the readers’ convenience.

At the end of this section we prepare notation and several definitions used throughout this paper. We denote by CC a positive constant, which may change from line to line. The symbol a(t)b(t)a(t)\sim b(t) means that C1b(t)a(t)Cb(t)C^{-1}b(t)\leq a(t)\leq Cb(t) holds for some constant C1C\geq 1. Lp=Lp()L^{p}=L^{p}(\mathbb{R}) stands for the usual Lebesgue space, and Hk,m=Hk,m()H^{k,m}=H^{k,m}(\mathbb{R}) for k0k\in\mathbb{Z}_{\geq 0} and mm\in\mathbb{R} is the weighted Sobolev space defined by

Hk,m()={fL2();fHk,m==0k(1+|x|)mxfL2<}.\displaystyle H^{k,m}(\mathbb{R})=\left\{f\in L^{2}(\mathbb{R});\|f\|_{H^{k,m}}=\sum_{\ell=0}^{k}\|(1+|x|)^{m}\partial_{x}^{\ell}f\|_{L^{2}}<\infty\right\}.

2. Scaling variables

The local existence of the solution in the class (1.14) is standard (see Appendix B). Thus, it suffices to show the a priori estimate. To prove it, following the argument of Gallay and Raugel [5], we introduce the scaling variables

s=log(R(t)+1),y=xR(t)+1,\displaystyle s=\log(R(t)+1),\quad y=\frac{x}{\sqrt{R(t)+1}}, (2.1)

and define v=v(s,y)v=v(s,y) and w=w(s,y)w=w(s,y) by

u(t,x)\displaystyle u(t,x) =1R(t)+1v(log(R(t)+1),xR(t)+1),\displaystyle=\frac{1}{\sqrt{R(t)+1}}v\left(\log(R(t)+1),\frac{x}{\sqrt{R(t)+1}}\right), (2.2)
ut(t,x)\displaystyle u_{t}(t,x) =R(t)(R(t)+1)3/2w(log(R(t)+1),xR(t)+1).\displaystyle=\frac{R^{\prime}(t)}{(R(t)+1)^{3/2}}w\left(\log(R(t)+1),\frac{x}{\sqrt{R(t)+1}}\right). (2.3)

Then, by a straightforward computation, the Cauchy problem (1.1) is rewritten as

{vsy2vy12v=w,r2esa(wsy2wy32w)+(1+ra)w=vyyesavyyyy+esay(N(esvy)),v(0,y)=v0(y),w(0,y)=w0(y),\displaystyle\left\{\begin{aligned} &v_{s}-\frac{y}{2}v_{y}-\frac{1}{2}v=w,\\ &\frac{r^{2}e^{-s}}{a}\left(w_{s}-\frac{y}{2}w_{y}-\frac{3}{2}w\right)+\left(1+\frac{r^{\prime}}{a}\right)w=v_{yy}-\frac{e^{-s}}{a}v_{yyyy}+\frac{e^{s}}{a}\partial_{y}\left(N\left(e^{-s}v_{y}\right)\right),\\ &v(0,y)=v_{0}(y),\ w(0,y)=w_{0}(y),\end{aligned}\right. (2.4)

where v0(y)=u0(y)v_{0}(y)=u_{0}(y) and w0(y)=1r(0)u1(y)w_{0}(y)=\frac{1}{r(0)}u_{1}(y). Here, we also note that the functions a,b,r,ra,b,r,r^{\prime} appearing the above precisely mean such as a(t(s))=a(R1(es1))a(t(s))=a(R^{-1}(e^{s}-1)).

Remark 2.1.

When N(z)=|z|p1zN(z)=|z|^{p-1}z, the nonlinearity has a bound

|esa(t(s))y(N(esvy))|Ce(β+1αβ+1p)s|vy|p1|vyy|.\displaystyle\left|\frac{e^{s}}{a(t(s))}\partial_{y}\left(N(e^{-s}v_{y})\right)\right|\leq Ce^{\left(\frac{-\beta+1}{\alpha-\beta+1}-p\right)s}|v_{y}|^{p-1}|v_{yy}|. (2.5)

Since β+1αβ+1<2\frac{-\beta+1}{\alpha-\beta+1}<2, the assumption (N) implies that the nonlinearity can be treated as remainder.

To investigate the asymptotic behavior of the solution of (2.4), we define

m(s):=v(s,y)𝑑y.\displaystyle m(s):=\int_{\mathbb{R}}v(s,y)\,dy. (2.6)

By the first equation of (2.4) and the integration by parts, we have

ms(s)=ddsm(s)=vs𝑑y=(y2vy+12v+w)𝑑y=w𝑑y.\displaystyle m_{s}(s)=\frac{d}{ds}m(s)=\int_{\mathbb{R}}v_{s}\,dy=\int_{\mathbb{R}}\left(\frac{y}{2}v_{y}+\frac{1}{2}v+w\right)\,dy=\int_{\mathbb{R}}w\,dy. (2.7)

We also define

ϕ(y)\displaystyle\phi(y) :=G(1,y)=14πexp(y24),\displaystyle:=G(1,y)=\frac{1}{\sqrt{4\pi}}\exp\left(-\frac{y^{2}}{4}\right), (2.8)
ψ(y)\displaystyle\psi(y) :=ϕyy(y).\displaystyle:=\phi_{yy}(y). (2.9)

Using them, we decompose (v,w)(v,w) as

v(s,y)=m(s)ϕ(y)+f(s,y),w(s,y)=ms(s)ϕ(y)+m(s)ψ(y)+g(s,y),\displaystyle\begin{aligned} v(s,y)&=m(s)\phi(y)+f(s,y),\\ w(s,y)&=m_{s}(s)\phi(y)+m(s)\psi(y)+g(s,y),\end{aligned} (2.10)

and we expect that the functions ff and gg defined above can be treated as remainders.

By a direct calculation, we obtain the following equation for m(s)m(s):

Lemma 2.2.

We have

r2esa(mssms)=(1+ra)ms.\displaystyle\frac{r^{2}e^{-s}}{a}\left(m_{ss}-m_{s}\right)=-\left(1+\frac{r^{\prime}}{a}\right)m_{s}. (2.11)

From the above lemma and the straightforward computation, we can see that (f,g)(f,g) satisfies the following equations.

{fsy2fy12f=g,r2esa(gsy2gy32g)+(1+ra)g=fyyesafyyyy+esay(N(esvy))+h,\displaystyle\left\{\begin{aligned} &f_{s}-\frac{y}{2}f_{y}-\frac{1}{2}f=g,\\ &\frac{r^{2}e^{-s}}{a}\left(g_{s}-\frac{y}{2}g_{y}-\frac{3}{2}g\right)+\left(1+\frac{r^{\prime}}{a}\right)g=f_{yy}-\frac{e^{-s}}{a}f_{yyyy}+\frac{e^{s}}{a}\partial_{y}\left(N\left(e^{-s}v_{y}\right)\right)+h,\end{aligned}\right. (2.12)

where

h\displaystyle h =r2esa(2msψy2mψy32mψ)ramψesamψyy.\displaystyle=-\frac{r^{2}e^{-s}}{a}\left(2m_{s}\psi-\frac{y}{2}m\psi_{y}-\frac{3}{2}m\psi\right)-\frac{r^{\prime}}{a}m\psi-\frac{e^{-s}}{a}m\psi_{yy}. (2.13)

They satisfy

f(s,y)𝑑y=g(s,y)𝑑y=h(s,y)𝑑y=0.\displaystyle\int_{\mathbb{R}}f(s,y)\,dy=\int_{\mathbb{R}}g(s,y)\,dy=\int_{\mathbb{R}}h(s,y)\,dy=0. (2.14)

Therefore, our goal is to give energy estimates of the solutions (f,g)(f,g) to the equation (2.12) under the condition (2.14).

3. Energy estimates

In this section, we give energy estimates of (f,g)(f,g) defined by (2.10). We first prepare the following general lemma for energy identities.

Lemma 3.1.

Let l,ml,m\in\mathbb{R}, n{0}n\in\mathbb{N}\cup\{0\}, and let c1(s),c2(s),c4(s)c_{1}(s),c_{2}(s),c_{4}(s) be smooth functions defined on [0,)[0,\infty). We consider a system for two functions f=f(s,y)f=f(s,y) and g=g(s,y)g=g(s,y) given by

{fsy2fylf=g,c1(s)(gsy2gymg)+c2(s)g+g=fyyc4(s)fyyyy+h(s,y)(0,)×,\displaystyle\left\{\begin{aligned} &f_{s}-\frac{y}{2}f_{y}-lf=g,\\ &c_{1}(s)\left(g_{s}-\frac{y}{2}g_{y}-mg\right)+c_{2}(s)g+g=f_{yy}-c_{4}(s)f_{yyyy}+h\end{aligned}\right.\quad(s,y)\in(0,\infty)\times\mathbb{R}, (3.1)

where h=h(s,y)h=h(s,y) is a given smooth function belonging to C([0,);H0,n())C([0,\infty);H^{0,n}(\mathbb{R})). We define the energies

E1(s)\displaystyle E_{1}(s) =12y2n(fy2+c4(s)fyy2+c1(s)g2)𝑑y,\displaystyle=\frac{1}{2}\int_{\mathbb{R}}y^{2n}\left(f_{y}^{2}+c_{4}(s)f_{yy}^{2}+c_{1}(s)g^{2}\right)\,dy, (3.2)
E2(s)\displaystyle E_{2}(s) =y2n(12f2+c1(s)fg)𝑑y.\displaystyle=\int_{\mathbb{R}}y^{2n}\left(\frac{1}{2}f^{2}+c_{1}(s)fg\right)\,dy. (3.3)

Then, we have

ddsE1(s)\displaystyle\frac{d}{ds}E_{1}(s) =y2ng2𝑑y+(2n14+l)y2nfy2𝑑y+(2n34+l)c4(s)y2nfyy2𝑑y\displaystyle=-\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\left(-\frac{2n-1}{4}+l\right)\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy+\left(-\frac{2n-3}{4}+l\right)c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy (3.4)
+(2n+14+m)c1(s)y2ng2𝑑yc2(s)y2ng2𝑑y\displaystyle\quad+\left(-\frac{2n+1}{4}+m\right)c_{1}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy-c_{2}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy (3.5)
2ny2n1fyg𝑑y2n(2n1)c4(s)y2n2fyyg𝑑y4nc4(s)y2n1fyygy𝑑y\displaystyle\quad-2n\int_{\mathbb{R}}y^{2n-1}f_{y}g\,dy-2n(2n-1)c_{4}(s)\int_{\mathbb{R}}y^{2n-2}f_{yy}g\,dy-4nc_{4}(s)\int_{\mathbb{R}}y^{2n-1}f_{yy}g_{y}\,dy (3.6)
+c4(s)2y2nfyy2𝑑y+c1(s)2y2ng2𝑑y+y2ngh𝑑y\displaystyle\quad+\frac{c_{4}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy+\frac{c_{1}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\int_{\mathbb{R}}y^{2n}gh\,dy (3.7)

and

ddsE2(s)\displaystyle\frac{d}{ds}E_{2}(s) =y2nfy2𝑑yc4(s)y2nfyy2𝑑y+(2n+14+l)y2nf2𝑑y\displaystyle=-\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy-c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy+\left(-\frac{2n+1}{4}+l\right)\int_{\mathbb{R}}y^{2n}f^{2}\,dy (3.8)
+c1(s)y2ng2𝑑y+(2n+12+l+m)c1(s)y2nfg𝑑yc2(s)y2nfg𝑑y\displaystyle\quad+c_{1}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\left(-\frac{2n+1}{2}+l+m\right)c_{1}(s)\int_{\mathbb{R}}y^{2n}fg\,dy-c_{2}(s)\int_{\mathbb{R}}y^{2n}fg\,dy (3.9)
2ny2n1ffy𝑑y4nc4(s)y2n1fyfyy𝑑y2n(2n1)c4(s)y2n2ffyy𝑑y\displaystyle\quad-2n\int_{\mathbb{R}}y^{2n-1}ff_{y}\,dy-4nc_{4}(s)\int_{\mathbb{R}}y^{2n-1}f_{y}f_{yy}\,dy-2n(2n-1)c_{4}(s)\int_{\mathbb{R}}y^{2n-2}ff_{yy}\,dy (3.10)
+c1(s)y2nfg𝑑y+y2nfh𝑑y.\displaystyle\quad+c_{1}^{\prime}(s)\int_{\mathbb{R}}y^{2n}fg\,dy+\int_{\mathbb{R}}y^{2n}fh\,dy. (3.11)

The case n=0n=0 is given by [17, Lemma 3.1]. We will prove a slightly more general version of this lemma in Appendix A.

To bring out the decay property of the solutions (f,g)(f,g) to (2.12) from the condition (2.14), we define the auxiliary functions

F(s,y):=yf(s,z)𝑑z,G(s,y):=yg(s,z)𝑑z,H(s,y):=yh(s,z)𝑑z.\displaystyle F(s,y):=\int_{-\infty}^{y}f(s,z)\,dz,\quad G(s,y):=\int_{-\infty}^{y}g(s,z)\,dz,\quad H(s,y):=\int_{-\infty}^{y}h(s,z)\,dz. (3.12)

Then, by the following Hardy inequality, the conditions (2.14) and f(s),g(s)H0,1()f(s),g(s)\in H^{0,1}(\mathbb{R}) ensure F(s),G(s)L2()F(s),G(s)\in L^{2}(\mathbb{R}).

Lemma 3.2 (Hardy-type inequality [13, Lemma 3.9]).

Let f=f(y)H0,1()f=f(y)\in H^{0,1}(\mathbb{R}) and satisfy f(y)𝑑y=0\int_{\mathbb{R}}f(y)\,dy=0. Let F(y)=yf(z)𝑑zF(y)=\int_{-\infty}^{y}f(z)\,dz. Then, we have

F(y)2𝑑y4y2f(y)2𝑑y.\displaystyle\int_{\mathbb{R}}F(y)^{2}\,dy\leq 4\int_{\mathbb{R}}y^{2}f(y)^{2}\,dy. (3.13)

From (2.12), FF and GG satisfy the following system.

{Fsy2Fy=G,r2esa(Gsy2GyG)+(1+ra)G=FyyesaFyyyy+esaN(esvy)+H.\displaystyle\left\{\begin{aligned} &F_{s}-\frac{y}{2}F_{y}=G,\\ &\frac{r^{2}e^{-s}}{a}\left(G_{s}-\frac{y}{2}G_{y}-G\right)+\left(1+\frac{r^{\prime}}{a}\right)G=F_{yy}-\frac{e^{-s}}{a}F_{yyyy}+\frac{e^{s}}{a}N\left(e^{-s}v_{y}\right)+H.\end{aligned}\right. (3.14)

We define the energies of (F,G)(F,G) by

E01(s)\displaystyle E_{01}(s) :=12Fy(s,y)2𝑑y+es2aFyy(s,y)2𝑑y+r2es2aG(s,y)2𝑑y,\displaystyle:=\frac{1}{2}\int_{\mathbb{R}}F_{y}(s,y)^{2}\,dy+\frac{e^{-s}}{2a}\int_{\mathbb{R}}F_{yy}(s,y)^{2}\,dy+\frac{r^{2}e^{-s}}{2a}\int_{\mathbb{R}}G(s,y)^{2}\,dy, (3.15)
E02(s)\displaystyle E_{02}(s) :=12F(s,y)2𝑑y+r2esaF(s,y)G(s,y)𝑑y.\displaystyle:=\frac{1}{2}\int_{\mathbb{R}}F(s,y)^{2}\,dy+\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}F(s,y)G(s,y)\,dy. (3.16)
Lemma 3.3.

We have

ddsE01(s)+G2𝑑y\displaystyle\frac{d}{ds}E_{01}(s)+\int_{\mathbb{R}}G^{2}\,dy =12E01(s)a2ra2Fyy2𝑑yra2a2G2𝑑y\displaystyle=\frac{1}{2}E_{01}(s)-\frac{a^{\prime}}{2ra^{2}}\int_{\mathbb{R}}F_{yy}^{2}\,dy-\frac{ra^{\prime}}{2a^{2}}\int_{\mathbb{R}}G^{2}\,dy (3.17)
+GesaN(esvy)𝑑y+GH𝑑y,\displaystyle\quad+\int_{\mathbb{R}}G\frac{e^{s}}{a}N\left(e^{-s}v_{y}\right)\,dy+\int_{\mathbb{R}}GH\,dy, (3.18)
ddsE02(s)+12E02(s)+2E01(s)\displaystyle\frac{d}{ds}E_{02}(s)+\frac{1}{2}E_{02}(s)+2E_{01}(s) =2r2esaG2𝑑y+(raraa2)FG𝑑y\displaystyle=2\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}G^{2}\,dy+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}FG\,dy (3.19)
+FesaN(esvy)𝑑y+FH𝑑y.\displaystyle\quad+\int_{\mathbb{R}}F\frac{e^{s}}{a}N\left(e^{-s}v_{y}\right)\,dy+\int_{\mathbb{R}}FH\,dy. (3.20)
Proof.

We apply Lemma 3.1 as f=Ff=F, g=Gg=G and h=esaN(esvy)+Hh=\frac{e^{s}}{a}N(e^{-s}v_{y})+H with l=0l=0, m=1m=1, n=0n=0, c1(s)=r2es/ac_{1}(s)=r^{2}e^{-s}/a, c2(s)=r/ac_{2}(s)=r^{\prime}/a, and c4(s)=es/ac_{4}(s)=e^{-s}/a. Noting that

ddsr(t(s))=ddsr(R1(es1))=r(t(s))r(t(s))es,\displaystyle\frac{d}{ds}r(t(s))=\frac{d}{ds}r(R^{-1}(e^{s}-1))=\frac{r^{\prime}(t(s))}{r(t(s))}e^{s}, (3.21)

we first have

c1(s)\displaystyle c_{1}^{\prime}(s) =1a2(2rdrdsaesr2aesr2dadses)=2rar2esaraa2,\displaystyle=\frac{1}{a^{2}}\left(2r\frac{dr}{ds}ae^{-s}-r^{2}ae^{-s}-r^{2}\frac{da}{ds}e^{-s}\right)=\frac{2r^{\prime}}{a}-\frac{r^{2}e^{-s}}{a}-\frac{ra^{\prime}}{a^{2}}, (3.22)
c4(s)\displaystyle c_{4}^{\prime}(s) =1a2(aesdadses)=esaara2.\displaystyle=\frac{1}{a^{2}}\left(-ae^{-s}-\frac{da}{ds}e^{-s}\right)=-\frac{e^{-s}}{a}-\frac{a^{\prime}}{ra^{2}}. (3.23)

Thus, we obtain

ddsE01(s)\displaystyle\frac{d}{ds}E_{01}(s) =G2𝑑y+14Fy2𝑑y+3es4aFyy2𝑑y\displaystyle=-\int_{\mathbb{R}}G^{2}\,dy+\frac{1}{4}\int_{\mathbb{R}}F_{y}^{2}\,dy+\frac{3e^{-s}}{4a}\int_{\mathbb{R}}F_{yy}^{2}\,dy (3.24)
+3r2es4aG2𝑑yraG2𝑑y12(esa+ara2)Fyy2𝑑y\displaystyle\quad+\frac{3r^{2}e^{-s}}{4a}\int_{\mathbb{R}}G^{2}\,dy-\frac{r^{\prime}}{a}\int_{\mathbb{R}}G^{2}\,dy-\frac{1}{2}\left(\frac{e^{-s}}{a}+\frac{a^{\prime}}{ra^{2}}\right)\int_{\mathbb{R}}F_{yy}^{2}\,dy (3.25)
+12(2rar2esaraa2)G2𝑑y\displaystyle\quad+\frac{1}{2}\left(\frac{2r^{\prime}}{a}-\frac{r^{2}e^{-s}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}G^{2}\,dy (3.26)
+GesaN(esvy)𝑑y+GH𝑑y\displaystyle\quad+\int_{\mathbb{R}}G\frac{e^{s}}{a}N\left(e^{-s}v_{y}\right)\,dy+\int_{\mathbb{R}}GH\,dy (3.27)
=G2𝑑y+12E01(s)a2ra2Fyy2𝑑yra2a2G2𝑑y\displaystyle=-\int_{\mathbb{R}}G^{2}\,dy+\frac{1}{2}E_{01}(s)-\frac{a^{\prime}}{2ra^{2}}\int_{\mathbb{R}}F_{yy}^{2}\,dy-\frac{ra^{\prime}}{2a^{2}}\int_{\mathbb{R}}G^{2}\,dy (3.28)
+GesaN(esvy)𝑑y+GH𝑑y.\displaystyle\quad+\int_{\mathbb{R}}G\frac{e^{s}}{a}N\left(e^{-s}v_{y}\right)\,dy+\int_{\mathbb{R}}GH\,dy. (3.29)

Next, we compute the derivative of E02(s)E_{02}(s). By Lemma 3.1, we obtain

ddsE02(s)\displaystyle\frac{d}{ds}E_{02}(s) =Fy2𝑑yesaFyy2𝑑y14F2𝑑y\displaystyle=-\int_{\mathbb{R}}F_{y}^{2}\,dy-\frac{e^{-s}}{a}\int_{\mathbb{R}}F_{yy}^{2}\,dy-\frac{1}{4}\int_{\mathbb{R}}F^{2}\,dy (3.30)
+r2esaG2𝑑y+r2es2aFG𝑑yraFG𝑑y\displaystyle\quad+\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}G^{2}\,dy+\frac{r^{2}e^{-s}}{2a}\int_{\mathbb{R}}FG\,dy-\frac{r^{\prime}}{a}\int_{\mathbb{R}}FG\,dy (3.31)
+FesaN(esvy)𝑑y+FH𝑑y\displaystyle\quad+\int_{\mathbb{R}}F\frac{e^{s}}{a}N\left(e^{-s}v_{y}\right)\,dy+\int_{\mathbb{R}}FH\,dy (3.32)
+(2rar2esaraa2)FG𝑑y\displaystyle\quad+\left(\frac{2r^{\prime}}{a}-\frac{r^{2}e^{-s}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}FG\,dy (3.33)
=12E02(s)2E01(s)\displaystyle=-\frac{1}{2}E_{02}(s)-2E_{01}(s) (3.34)
+2r2esaG2𝑑y+(raraa2)FG𝑑y\displaystyle\quad+2\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}G^{2}\,dy+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}FG\,dy (3.35)
+FesaN(esvy)𝑑y+FH𝑑y.\displaystyle\quad+\int_{\mathbb{R}}F\frac{e^{s}}{a}N\left(e^{-s}v_{y}\right)\,dy+\int_{\mathbb{R}}FH\,dy. (3.36)

This completes the proof. ∎

Next, for n=0,1n=0,1, we define the energies of (f,g)(f,g) by

E11(n)(s)\displaystyle E_{11}^{(n)}(s) :=12y2nfy(s,y)2𝑑y+es2ay2nfyy(s,y)2𝑑y+r2es2ay2ng(s,y)2𝑑y,\displaystyle:=\frac{1}{2}\int_{\mathbb{R}}y^{2n}f_{y}(s,y)^{2}\,dy+\frac{e^{-s}}{2a}\int_{\mathbb{R}}y^{2n}f_{yy}(s,y)^{2}\,dy+\frac{r^{2}e^{-s}}{2a}\int_{\mathbb{R}}y^{2n}g(s,y)^{2}\,dy, (3.37)
E12(n)(s)\displaystyle E_{12}^{(n)}(s) :=12y2nf(s,y)2𝑑y+r2esay2nf(s,y)g(s,y)𝑑y.\displaystyle:=\frac{1}{2}\int_{\mathbb{R}}y^{2n}f(s,y)^{2}\,dy+\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}y^{2n}f(s,y)g(s,y)\,dy. (3.38)
Lemma 3.4.

For n=0,1n=0,1, we have

ddsE11(n)(s)+y2ng2𝑑y\displaystyle\frac{d}{ds}E_{11}^{(n)}(s)+\int_{\mathbb{R}}y^{2n}g^{2}\,dy =32n2E11(n)(s)2ny2n1fyg𝑑y\displaystyle=\frac{3-2n}{2}E_{11}^{(n)}(s)-2n\int_{\mathbb{R}}y^{2n-1}f_{y}g\,dy (3.39)
2n(2n1)esay2n2fyyg𝑑y4nesay2n1fyygy𝑑y\displaystyle\quad-2n(2n-1)\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-2}f_{yy}g\,dy-4n\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-1}f_{yy}g_{y}\,dy (3.40)
a2ra2y2nfyy2𝑑yra2a2y2ng2𝑑y\displaystyle\quad-\frac{a^{\prime}}{2ra^{2}}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy-\frac{ra^{\prime}}{2a^{2}}\int_{\mathbb{R}}y^{2n}g^{2}\,dy (3.41)
+y2ng(esay(N(esvy))+h)𝑑y\displaystyle\quad+\int_{\mathbb{R}}y^{2n}g\left(\frac{e^{s}}{a}\partial_{y}(N(e^{-s}v_{y}))+h\right)\,dy (3.42)

and

ddsE12(n)(s)+12E12(n)(s)+2E11(n)(s)\displaystyle\frac{d}{ds}E_{12}^{(n)}(s)+\frac{1}{2}E_{12}^{(n)}(s)+2E_{11}^{(n)}(s) =(1n)E12(n)(s)+2r2esay2ng2𝑑y2ny2n1ffy𝑑y\displaystyle=(1-n)E_{12}^{(n)}(s)+\frac{2r^{2}e^{-s}}{a}\int_{\mathbb{R}}y^{2n}g^{2}\,dy-2n\int_{\mathbb{R}}y^{2n-1}ff_{y}\,dy (3.43)
4nesay2n1fyfyy𝑑y2n(2n1)esay2n2ffyy𝑑y\displaystyle\quad-4n\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-1}f_{y}f_{yy}\,dy-2n(2n-1)\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-2}ff_{yy}\,dy (3.44)
+(raraa2)y2nfg𝑑y+y2nf(esay(N(esvy))+h)𝑑y.\displaystyle\quad+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}y^{2n}fg\,dy+\int_{\mathbb{R}}y^{2n}f\left(\frac{e^{s}}{a}\partial_{y}(N(e^{-s}v_{y}))+h\right)\,dy. (3.45)
Proof.

For n=0,1n=0,1, we apply Lemma 3.1 as f=ff=f, g=gg=g and h=esayN(esvy)+hh=\frac{e^{s}}{a}\partial_{y}N(e^{-s}v_{y})+h with l=12l=\frac{1}{2}, m=32m=\frac{3}{2}, c1(s)=r2es/ac_{1}(s)=r^{2}e^{-s}/a, c2(s)=r/ac_{2}(s)=r^{\prime}/a, and c4(s)=es/ac_{4}(s)=e^{-s}/a. Using (3.22) and (3.23), we have

ddsE11(n)(s)\displaystyle\frac{d}{ds}E_{11}^{(n)}(s) =y2ng2𝑑y+32n4y2nfy2𝑑y+52n4esay2nfyy2𝑑y\displaystyle=-\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\frac{3-2n}{4}\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy+\frac{5-2n}{4}\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy (3.46)
+52n4r2esay2ng2𝑑yray2ng2𝑑y2ny2n1fyg𝑑y\displaystyle\quad+\frac{5-2n}{4}\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}y^{2n}g^{2}\,dy-\frac{r^{\prime}}{a}\int_{\mathbb{R}}y^{2n}g^{2}\,dy-2n\int_{\mathbb{R}}y^{2n-1}f_{y}g\,dy (3.47)
2n(2n1)esay2n2fyyg𝑑y4nesay2n1fyygy𝑑y\displaystyle\quad-2n(2n-1)\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-2}f_{yy}g\,dy-4n\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-1}f_{yy}g_{y}\,dy (3.48)
12(esa+ara2)y2nfyy2𝑑y+12(2rar2esaraa2)y2ng2𝑑y\displaystyle\quad-\frac{1}{2}\left(\frac{e^{-s}}{a}+\frac{a^{\prime}}{ra^{2}}\right)\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy+\frac{1}{2}\left(\frac{2r^{\prime}}{a}-\frac{r^{2}e^{-s}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}y^{2n}g^{2}\,dy (3.49)
+y2ng(esay(N(esvy))+h)𝑑y\displaystyle\quad+\int_{\mathbb{R}}y^{2n}g\left(\frac{e^{s}}{a}\partial_{y}(N(e^{-s}v_{y}))+h\right)\,dy (3.50)
=y2ng2𝑑y+32n2E11(n)(s)\displaystyle=-\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\frac{3-2n}{2}E_{11}^{(n)}(s) (3.51)
2ny2n1fyg𝑑y2n(2n1)esay2n2fyyg𝑑y4nesay2n1fyygy𝑑y\displaystyle\quad-2n\int_{\mathbb{R}}y^{2n-1}f_{y}g\,dy-2n(2n-1)\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-2}f_{yy}g\,dy-4n\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-1}f_{yy}g_{y}\,dy (3.52)
a2ra2y2nfyy2𝑑yra2a2y2ng2𝑑y\displaystyle\quad-\frac{a^{\prime}}{2ra^{2}}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy-\frac{ra^{\prime}}{2a^{2}}\int_{\mathbb{R}}y^{2n}g^{2}\,dy (3.53)
+y2ng(esay(N(esvy))+h)𝑑y.\displaystyle\quad+\int_{\mathbb{R}}y^{2n}g\left(\frac{e^{s}}{a}\partial_{y}(N(e^{-s}v_{y}))+h\right)\,dy. (3.54)

Similarly, we calculate

ddsE12(n)(s)\displaystyle\frac{d}{ds}E_{12}^{(n)}(s) =y2nfy2𝑑yesay2nfyy2𝑑y+12n4y2nf2𝑑y\displaystyle=-\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy-\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy+\frac{1-2n}{4}\int_{\mathbb{R}}y^{2n}f^{2}\,dy (3.55)
+r2esay2ng2𝑑y+32n2r2esay2nfg𝑑yray2nfg𝑑y\displaystyle\quad+\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\frac{3-2n}{2}\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}y^{2n}fg\,dy-\frac{r^{\prime}}{a}\int_{\mathbb{R}}y^{2n}fg\,dy (3.56)
2ny2n1ffy𝑑y4nesay2n1fyfyy𝑑y2n(2n1)esay2n2ffyy𝑑y\displaystyle\quad-2n\int_{\mathbb{R}}y^{2n-1}ff_{y}\,dy-4n\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-1}f_{y}f_{yy}\,dy-2n(2n-1)\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-2}ff_{yy}\,dy (3.57)
+(2rar2esaraa2)y2nfg𝑑y+y2nf(esay(N(esvy))+h)𝑑y\displaystyle\quad+\left(\frac{2r^{\prime}}{a}-\frac{r^{2}e^{-s}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}y^{2n}fg\,dy+\int_{\mathbb{R}}y^{2n}f\left(\frac{e^{s}}{a}\partial_{y}(N(e^{-s}v_{y}))+h\right)\,dy (3.58)
=12n2E12(n)(s)2E11(n)(s)+2r2esay2ng2𝑑y\displaystyle=\frac{1-2n}{2}E_{12}^{(n)}(s)-2E_{11}^{(n)}(s)+\frac{2r^{2}e^{-s}}{a}\int_{\mathbb{R}}y^{2n}g^{2}\,dy (3.59)
2ny2n1ffy𝑑y4nesay2n1fyfyy𝑑y2n(2n1)esay2n2ffyy𝑑y\displaystyle\quad-2n\int_{\mathbb{R}}y^{2n-1}ff_{y}\,dy-4n\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-1}f_{y}f_{yy}\,dy-2n(2n-1)\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2n-2}ff_{yy}\,dy (3.60)
+(raraa2)y2nfg𝑑y+y2nf(esay(N(esvy))+h)𝑑y.\displaystyle\quad+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}y^{2n}fg\,dy+\int_{\mathbb{R}}y^{2n}f\left(\frac{e^{s}}{a}\partial_{y}(N(e^{-s}v_{y}))+h\right)\,dy. (3.61)

This completes the proof. ∎

Finally, to control the bad term 4esayfyygy𝑑y\displaystyle-4\frac{e^{-s}}{a}\int_{\mathbb{R}}yf_{yy}g_{y}\,dy in ddsE11(1)(s)\dfrac{d}{ds}E_{11}^{(1)}(s), we consider the energies

E21(s)\displaystyle E_{21}(s) =12(fyy2+esafyyy2+r2esagy2)𝑑y,\displaystyle=\frac{1}{2}\int_{\mathbb{R}}\left(f_{yy}^{2}+\frac{e^{-s}}{a}f_{yyy}^{2}+\frac{r^{2}e^{-s}}{a}g_{y}^{2}\right)\,dy, (3.62)
E22(s)\displaystyle E_{22}(s) =(12fy2+r2esafygy)𝑑y.\displaystyle=\int_{\mathbb{R}}\left(\frac{1}{2}f_{y}^{2}+\frac{r^{2}e^{-s}}{a}f_{y}g_{y}\right)\,dy. (3.63)

Since (fy,gy)(f_{y},g_{y}) satisfies the equations

{(fy)sy2(fy)yfy=gy,r2esa((gy)sy2(gy)y2gy)+gy+ragy=(fy)yyesa(fy)yyyy+esay2N(esvy))+hy,\displaystyle\left\{\begin{aligned} &(f_{y})_{s}-\frac{y}{2}(f_{y})_{y}-f_{y}=g_{y},\\ &\frac{r^{2}e^{-s}}{a}\left((g_{y})_{s}-\frac{y}{2}(g_{y})_{y}-2g_{y}\right)+g_{y}+\frac{r^{\prime}}{a}g_{y}=(f_{y})_{yy}-\frac{e^{-s}}{a}(f_{y})_{yyyy}+\frac{e^{s}}{a}\partial_{y}^{2}N(e^{-s}v_{y}))+h_{y},\end{aligned}\right. (3.64)

we have the following lemma.

Lemma 3.5.

We have

ddsE21(s)+gy2𝑑y\displaystyle\frac{d}{ds}E_{21}(s)+\int_{\mathbb{R}}g_{y}^{2}\,dy =52E21(s)a2ra2fyyy2𝑑yra2a2gy2𝑑y\displaystyle=\frac{5}{2}E_{21}(s)-\frac{a^{\prime}}{2ra^{2}}\int_{\mathbb{R}}f_{yyy}^{2}\,dy-\frac{ra^{\prime}}{2a^{2}}\int_{\mathbb{R}}g_{y}^{2}\,dy (3.65)
+gy(esay2(N(esvy))+hy)𝑑y\displaystyle\quad+\int_{\mathbb{R}}g_{y}\left(\frac{e^{s}}{a}\partial_{y}^{2}(N(e^{-s}v_{y}))+h_{y}\right)\,dy (3.66)

and

ddsE22(s)+2E21(s)\displaystyle\frac{d}{ds}E_{22}(s)+2E_{21}(s) =32E22(s)+2r2esagy2𝑑y+(raraa2)fygy𝑑y\displaystyle=\frac{3}{2}E_{22}(s)+2\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}g_{y}^{2}\,dy+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}f_{y}g_{y}\,dy (3.67)
+fy(esay2(N(esvy))+hy)𝑑y.\displaystyle\quad+\int_{\mathbb{R}}f_{y}\left(\frac{e^{s}}{a}\partial_{y}^{2}(N(e^{-s}v_{y}))+h_{y}\right)\,dy. (3.68)
Proof.

Applying Lemma 3.1 as f=fyf=f_{y}, g=gyg=g_{y} and h=esayyN(esvy)+hyh=\frac{e^{s}}{a}\partial_{yy}N(e^{-s}v_{y})+h_{y} with l=1l=1, m=2m=2, n=0n=0, c1(s)=r2esac_{1}(s)=\frac{r^{2}e^{-s}}{a}, c2(s)=rac_{2}(s)=\frac{r^{\prime}}{a}, and c4(s)=esac_{4}(s)=\frac{e^{-s}}{a}, and also using (3.22) and (3.23), we have

ddsE21(s)\displaystyle\frac{d}{ds}E_{21}(s) =gy2𝑑y+54fyy2𝑑y+74esafyyy2𝑑y\displaystyle=-\int_{\mathbb{R}}g_{y}^{2}\,dy+\frac{5}{4}\int_{\mathbb{R}}f_{yy}^{2}\,dy+\frac{7}{4}\frac{e^{-s}}{a}\int_{\mathbb{R}}f_{yyy}^{2}\,dy (3.69)
+74r2esagy2𝑑yragy2𝑑y\displaystyle\quad+\frac{7}{4}\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}g_{y}^{2}\,dy-\frac{r^{\prime}}{a}\int_{\mathbb{R}}g_{y}^{2}\,dy (3.70)
12(esa+ara2)fyyy2𝑑y+12(2rar2esaraa2)gy2𝑑y\displaystyle\quad-\frac{1}{2}\left(\frac{e^{-s}}{a}+\frac{a^{\prime}}{ra^{2}}\right)\int_{\mathbb{R}}f_{yyy}^{2}\,dy+\frac{1}{2}\left(\frac{2r^{\prime}}{a}-\frac{r^{2}e^{-s}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}g_{y}^{2}\,dy (3.71)
+gy(esay2(N(esvy))+hy)𝑑y\displaystyle\quad+\int_{\mathbb{R}}g_{y}\left(\frac{e^{s}}{a}\partial_{y}^{2}(N(e^{-s}v_{y}))+h_{y}\right)\,dy (3.72)
=gy2𝑑y+52E21(s)\displaystyle=-\int_{\mathbb{R}}g_{y}^{2}\,dy+\frac{5}{2}E_{21}(s) (3.73)
a2ra2fyyy2𝑑yra2a2gy2𝑑y\displaystyle\quad-\frac{a^{\prime}}{2ra^{2}}\int_{\mathbb{R}}f_{yyy}^{2}\,dy-\frac{ra^{\prime}}{2a^{2}}\int_{\mathbb{R}}g_{y}^{2}\,dy (3.74)
+gy(esay2(N(esvy))+hy)𝑑y.\displaystyle\quad+\int_{\mathbb{R}}g_{y}\left(\frac{e^{s}}{a}\partial_{y}^{2}(N(e^{-s}v_{y}))+h_{y}\right)\,dy. (3.75)

Similarly, we have

ddsE22(s)\displaystyle\frac{d}{ds}E_{22}(s) =fyy2𝑑yesafyyy2𝑑y+34fy2𝑑y\displaystyle=-\int_{\mathbb{R}}f_{yy}^{2}\,dy-\frac{e^{-s}}{a}\int_{\mathbb{R}}f_{yyy}^{2}\,dy+\frac{3}{4}\int_{\mathbb{R}}f_{y}^{2}\,dy (3.76)
+r2esagy2𝑑y+52r2esafygy𝑑yrafygy𝑑y\displaystyle\quad+\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}g_{y}^{2}\,dy+\frac{5}{2}\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}f_{y}g_{y}\,dy-\frac{r^{\prime}}{a}\int_{\mathbb{R}}f_{y}g_{y}\,dy (3.77)
+(2rar2esaraa2)fygy𝑑y+fy(esay2(N(esvy))+hy)𝑑y\displaystyle\quad+\left(\frac{2r^{\prime}}{a}-\frac{r^{2}e^{-s}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}f_{y}g_{y}\,dy+\int_{\mathbb{R}}f_{y}\left(\frac{e^{s}}{a}\partial_{y}^{2}(N(e^{-s}v_{y}))+h_{y}\right)\,dy (3.78)
=32E22(s)2E21(s)\displaystyle=\frac{3}{2}E_{22}(s)-2E_{21}(s) (3.79)
+2r2esagy2𝑑y+(raraa2)fygy𝑑y\displaystyle\quad+2\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}g_{y}^{2}\,dy+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}f_{y}g_{y}\,dy (3.80)
+fy(esay2(N(esvy))+hy)𝑑y.\displaystyle\quad+\int_{\mathbb{R}}f_{y}\left(\frac{e^{s}}{a}\partial_{y}^{2}(N(e^{-s}v_{y}))+h_{y}\right)\,dy. (3.81)

This completes the proof. ∎

Finally, we define

Em1(s)\displaystyle E_{m1}(s) :=12r2esams(s)2,\displaystyle:=\frac{1}{2}\frac{r^{2}e^{-s}}{a}m_{s}(s)^{2}, (3.82)
Em2(s)\displaystyle E_{m2}(s) :=12m(s)2+r2esam(s)ms(s).\displaystyle:=\frac{1}{2}m(s)^{2}+\frac{r^{2}e^{-s}}{a}m(s)m_{s}(s). (3.83)

Then, we have the following energy identities.

Lemma 3.6.

We have

ddsEm1(s)+12Em1(s)+ms(s)2\displaystyle\frac{d}{ds}E_{m1}(s)+\frac{1}{2}E_{m1}(s)+m_{s}(s)^{2} =(3r2es4ara2a2)ms(s)2\displaystyle=\left(\frac{3r^{2}e^{-s}}{4a}-\frac{ra^{\prime}}{2a^{2}}\right)m_{s}(s)^{2} (3.84)

and

ddsEm2(s)\displaystyle\frac{d}{ds}E_{m2}(s) =2Em1(s)+(raraa2)m(s)ms(s).\displaystyle=2E_{m1}(s)+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)m(s)m_{s}(s). (3.85)
Proof.

By (3.22) and Lemma 2.2, we have

ddsEm1(s)\displaystyle\frac{d}{ds}E_{m1}(s) =12dds(r2esa)ms2+r2esamsmss\displaystyle=\frac{1}{2}\frac{d}{ds}\left(\frac{r^{2}e^{-s}}{a}\right)m_{s}^{2}+\frac{r^{2}e^{-s}}{a}m_{s}m_{ss} (3.86)
=12(2rar2esaraa2)ms2\displaystyle=\frac{1}{2}\left(\frac{2r^{\prime}}{a}-\frac{r^{2}e^{-s}}{a}-\frac{ra^{\prime}}{a^{2}}\right)m_{s}^{2} (3.87)
+r2esams2(1+ra)ms2\displaystyle\quad+\frac{r^{2}e^{-s}}{a}m_{s}^{2}-\left(1+\frac{r^{\prime}}{a}\right)m_{s}^{2} (3.88)
=12r2esams212raa2ms2ms2\displaystyle=\frac{1}{2}\frac{r^{2}e^{-s}}{a}m_{s}^{2}-\frac{1}{2}\frac{ra^{\prime}}{a^{2}}m_{s}^{2}-m_{s}^{2} (3.89)
=12Em1(s)ms2+(3r2es4ara2a2)ms2.\displaystyle=-\frac{1}{2}E_{m1}(s)-m_{s}^{2}+\left(\frac{3r^{2}e^{-s}}{4a}-\frac{ra^{\prime}}{2a^{2}}\right)m_{s}^{2}. (3.90)

Similarly, we have

ddsEm2(s)\displaystyle\frac{d}{ds}E_{m2}(s) =mms+dds(r2esa)mms+r2esams2+r2esammss\displaystyle=mm_{s}+\frac{d}{ds}\left(\frac{r^{2}e^{-s}}{a}\right)mm_{s}+\frac{r^{2}e^{-s}}{a}m_{s}^{2}+\frac{r^{2}e^{-s}}{a}mm_{ss} (3.91)
=mms+(2rar2esaraa2)mms\displaystyle=mm_{s}+\left(\frac{2r^{\prime}}{a}-\frac{r^{2}e^{-s}}{a}-\frac{ra^{\prime}}{a^{2}}\right)mm_{s} (3.92)
+r2esams2+r2esamms(1+ra)mms\displaystyle\quad+\frac{r^{2}e^{-s}}{a}m_{s}^{2}+\frac{r^{2}e^{-s}}{a}mm_{s}-\left(1+\frac{r^{\prime}}{a}\right)mm_{s} (3.93)
=r2esams2+(raraa2)mms\displaystyle=\frac{r^{2}e^{-s}}{a}m_{s}^{2}+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)mm_{s} (3.94)
=2Em1(s)+(raraa2)mms.\displaystyle=2E_{m1}(s)+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)mm_{s}. (3.95)

3.1. Energy estimates

Now, we combine the energy identities in the previous subsection to obtain the energy estimates. First, we prepare the following estimates for remainders.

Lemma 3.7.

Set

δ\displaystyle\delta :=min{β+1αβ+1,2αβ+1αβ+1},\displaystyle:=\min\left\{\frac{\beta+1}{\alpha-\beta+1},\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right\}, (3.96)

which is positive if (α,β)Ω1(\alpha,\beta)\in\Omega_{1}. Then, we have

r2esaeβ+1αβ+1sCeδs,esae2αβ+1αβ+1sCeδs,\displaystyle\frac{r^{2}e^{-s}}{a}\sim e^{-\frac{\beta+1}{\alpha-\beta+1}s}\leq Ce^{-\delta s},\quad\frac{e^{-s}}{a}\sim e^{-\frac{2\alpha-\beta+1}{\alpha-\beta+1}s}\leq Ce^{-\delta s}, (3.97)

and

|ara2|Cesa,|raa2|Cr2esa,|ra|Cr2esa.\displaystyle\left|\frac{a^{\prime}}{ra^{2}}\right|\leq C\frac{e^{-s}}{a},\quad\left|\frac{ra^{\prime}}{a^{2}}\right|\leq C\frac{r^{2}e^{-s}}{a},\quad\left|\frac{r^{\prime}}{a}\right|\leq C\frac{r^{2}e^{-s}}{a}. (3.98)

Define

𝔼0(s)\displaystyle\mathbb{E}_{0}(s) :=E01(s)+c0E02(s),\displaystyle:=E_{01}(s)+c_{0}E_{02}(s), (3.99)

where c0>0c_{0}>0 is a sufficiently large constant determined later.

Lemma 3.8.

There exists a constant c0>0c_{0}>0 satisfying the following: For any η>0\eta>0, there exists s0>0s_{0}>0 such that for any ss0s\geq s_{0}, we have

𝔼0(s)C(Fy2𝑑y+es2aFyy2𝑑y+r2es2aG2𝑑y+F2𝑑y)\displaystyle\mathbb{E}_{0}(s)\geq C\left(\int_{\mathbb{R}}F_{y}^{2}\,dy+\frac{e^{-s}}{2a}\int_{\mathbb{R}}F_{yy}^{2}\,dy+\frac{r^{2}e^{-s}}{2a}\int_{\mathbb{R}}G^{2}\,dy+\int_{\mathbb{R}}F^{2}\,dy\right) (3.100)

and

dds𝔼0(s)+12𝔼0(s)+14G2𝑑y\displaystyle\frac{d}{ds}\mathbb{E}_{0}(s)+\frac{1}{2}\mathbb{E}_{0}(s)+\frac{1}{4}\int_{\mathbb{R}}G^{2}\,dy (3.101)
η𝔼0(s)+C(η)(H(s)L22+e2sa2N(esvy)L22).\displaystyle\leq\eta\mathbb{E}_{0}(s)+C(\eta)\left(\|H(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|N(e^{-s}v_{y})\|_{L^{2}}^{2}\right). (3.102)
Proof.

Let η>0\eta>0 be arbitrary. Lemmas 3.3 and 3.7, and the Schwarz inequality imply

ddsE01(s)+G2𝑑y\displaystyle\frac{d}{ds}E_{01}(s)+\int_{\mathbb{R}}G^{2}\,dy 12E01(s)+C1esaFyy2𝑑y+C1r2esaG2𝑑y\displaystyle\leq\frac{1}{2}E_{01}(s)+C_{1}\frac{e^{-s}}{a}\int_{\mathbb{R}}F_{yy}^{2}\,dy+C_{1}\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}G^{2}\,dy (3.103)
+12G2𝑑y+C(H(s)L22+e2sa2N(esvy)L22)\displaystyle\quad+\frac{1}{2}\int_{\mathbb{R}}G^{2}\,dy+C\left(\|H(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|N(e^{-s}v_{y})\|_{L^{2}}^{2}\right) (3.104)
(12+2C1)E01(s)+12G2𝑑y\displaystyle\leq\left(\frac{1}{2}+2C_{1}\right)E_{01}(s)+\frac{1}{2}\int_{\mathbb{R}}G^{2}\,dy (3.105)
+C(H(s)L22+e2sa2N(esvy)L22)\displaystyle\quad+C\left(\|H(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|N(e^{-s}v_{y})\|_{L^{2}}^{2}\right) (3.106)

with some C1>0C_{1}>0 and

ddsE02(s)+12E02(s)+2E01(s)\displaystyle\frac{d}{ds}E_{02}(s)+\frac{1}{2}E_{02}(s)+2E_{01}(s) C2(η1)eδsG2𝑑y+η1F2𝑑y\displaystyle\leq C_{2}(\eta_{1})e^{-\delta s}\int_{\mathbb{R}}G^{2}\,dy+\eta_{1}\int_{\mathbb{R}}F^{2}\,dy (3.107)
+C(η1)(H(s)L22+e2sa2N(esvy)L22),\displaystyle\quad+C(\eta_{1})\left(\|H(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|N(e^{-s}v_{y})\|_{L^{2}}^{2}\right), (3.108)

with some C2(η1)>0C_{2}(\eta_{1})>0, where η1\eta_{1} is an arbitrary small positive number determined later. We take c0c_{0} sufficiently large so that 2c0122C1122c_{0}-\frac{1}{2}-2C_{1}\geq\frac{1}{2}. Then, letting s0s_{0} sufficiently large so that c0C2(η1)eδs14c_{0}C_{2}(\eta_{1})e^{-\delta s}\leq\frac{1}{4} holds for any ss0s\geq s_{0}, we conclude

dds𝔼0(s)+12𝔼0(s)+14G2𝑑y\displaystyle\frac{d}{ds}\mathbb{E}_{0}(s)+\frac{1}{2}\mathbb{E}_{0}(s)+\frac{1}{4}\int_{\mathbb{R}}G^{2}\,dy (3.109)
2c0η1F2𝑑y+C(H(s)L22+e2sa2N(esvy)L22).\displaystyle\leq 2c_{0}\eta_{1}\int_{\mathbb{R}}F^{2}\,dy+C\left(\|H(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|N(e^{-s}v_{y})\|_{L^{2}}^{2}\right). (3.110)

On the other hand, we remark that

r2esa|F(s,y)G(s,y)𝑑y|\displaystyle\frac{r^{2}e^{-s}}{a}\left|\int_{\mathbb{R}}F(s,y)G(s,y)\,dy\right| 14F(s,y)2𝑑y+C(r2esa)2G(s,y)2𝑑y\displaystyle\leq\frac{1}{4}\int_{\mathbb{R}}F(s,y)^{2}\,dy+C\left(\frac{r^{2}e^{-s}}{a}\right)^{2}\int_{\mathbb{R}}G(s,y)^{2}\,dy (3.111)
14F(s,y)2𝑑y+Ceδsr2es2aG(s,y)2𝑑y.\displaystyle\leq\frac{1}{4}\int_{\mathbb{R}}F(s,y)^{2}\,dy+Ce^{-\delta s}\frac{r^{2}e^{-s}}{2a}\int_{\mathbb{R}}G(s,y)^{2}\,dy. (3.112)

From this, retaking s0s_{0} larger if needed, we have for ss0s\geq s_{0},

𝔼0(s)C(Fy2𝑑y+es2aFyy2𝑑y+r2es2aG2𝑑y+F2𝑑y),\displaystyle\mathbb{E}_{0}(s)\geq C\left(\int_{\mathbb{R}}F_{y}^{2}\,dy+\frac{e^{-s}}{2a}\int_{\mathbb{R}}F_{yy}^{2}\,dy+\frac{r^{2}e^{-s}}{2a}\int_{\mathbb{R}}G^{2}\,dy+\int_{\mathbb{R}}F^{2}\,dy\right), (3.113)

which shows the first assertion. In particular, it gives Fy2𝑑yC𝔼0(s)\int_{\mathbb{R}}F_{y}^{2}\,dy\leq C\mathbb{E}_{0}(s) Applying this to the right-hand side of (3.110) and taking η1\eta_{1} so that η=2c0Cη1\eta=2c_{0}C\eta_{1}, we have the desired estimate. ∎

Next, for n=0,1n=0,1, we define

𝔼1(n)(s):=E11(n)(s)+c1(n)E12(n)(s),\displaystyle\mathbb{E}^{(n)}_{1}(s):=E^{(n)}_{11}(s)+c_{1}^{(n)}E^{(n)}_{12}(s), (3.114)

where c1(0)c_{1}^{(0)} and c1(1)c_{1}^{(1)} are sufficiently large constants determined later. The following two lemmas are the estimates for 𝔼1(0)(s)\mathbb{E}_{1}^{(0)}(s) and 𝔼1(1)(s)\mathbb{E}_{1}^{(1)}(s), respectively.

Lemma 3.9.

There exist positive constants c1(0)c_{1}^{(0)} and s1(0)s_{1}^{(0)} such that for any ss1(0)s\geq s_{1}^{(0)}, we have

𝔼1(0)(s)C(fy2𝑑y+es2afyy2𝑑y+r2es2ag2𝑑y+f2𝑑y)\displaystyle\mathbb{E}^{(0)}_{1}(s)\geq C\left(\int_{\mathbb{R}}f_{y}^{2}\,dy+\frac{e^{-s}}{2a}\int_{\mathbb{R}}f_{yy}^{2}\,dy+\frac{r^{2}e^{-s}}{2a}\int_{\mathbb{R}}g^{2}\,dy+\int_{\mathbb{R}}f^{2}\,dy\right) (3.115)

and

dds𝔼1(0)(s)+12𝔼1(0)(s)+14g2𝑑y\displaystyle\frac{d}{ds}\mathbb{E}^{(0)}_{1}(s)+\frac{1}{2}\mathbb{E}^{(0)}_{1}(s)+\frac{1}{4}\int_{\mathbb{R}}g^{2}\,dy (3.116)
C𝔼0(s)+C(h(s)L22+e2sa2yN(esvy)L22).\displaystyle\leq C\mathbb{E}_{0}(s)+C\left(\|h(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\left\|\partial_{y}N\left(e^{-s}v_{y}\right)\right\|_{L^{2}}^{2}\right). (3.117)
Proof.

By Lemmas 3.4 and 3.7, and the Schwarz inequality, we have

ddsE11(0)(s)+12E11(0)(s)+g2𝑑y\displaystyle\frac{d}{ds}E_{11}^{(0)}(s)+\frac{1}{2}E_{11}^{(0)}(s)+\int_{\mathbb{R}}g^{2}\,dy (3.118)
2E11(0)(s)+Cesafyy2𝑑y+Cr2esag2𝑑y\displaystyle\leq 2E_{11}^{(0)}(s)+C\frac{e^{-s}}{a}\int_{\mathbb{R}}f_{yy}^{2}\,dy+C\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}g^{2}\,dy (3.119)
+12g2𝑑y+C(h(s)L22+e2sa2y(N(esvy))L22),\displaystyle\quad+\frac{1}{2}\int_{\mathbb{R}}g^{2}\,dy+C\left(\|h(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|\partial_{y}\left(N\left(e^{-s}v_{y}\right)\right)\|_{L^{2}}^{2}\right), (3.120)

which implies

ddsE11(0)(s)+12E11(0)(s)+12g2𝑑y\displaystyle\frac{d}{ds}E_{11}^{(0)}(s)+\frac{1}{2}E_{11}^{(0)}(s)+\frac{1}{2}\int_{\mathbb{R}}g^{2}\,dy (3.121)
(2+C1)E11(0)(s)+C(h(s)L22+e2sa2y(N(esvy))L22)\displaystyle\leq\left(2+C_{1}\right)E_{11}^{(0)}(s)+C\left(\|h(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|\partial_{y}\left(N\left(e^{-s}v_{y}\right)\right)\|_{L^{2}}^{2}\right) (3.122)

with some constant C1>0C_{1}>0. In a similar way, we also obtain

ddsE12(0)(s)+12E12(0)(s)+2E11(0)(s)\displaystyle\frac{d}{ds}E_{12}^{(0)}(s)+\frac{1}{2}E_{12}^{(0)}(s)+2E_{11}^{(0)}(s) (3.123)
Cf2𝑑y+C2eδsg2𝑑y\displaystyle\leq C\int_{\mathbb{R}}f^{2}\,dy+C_{2}e^{-\delta s}\int_{\mathbb{R}}g^{2}\,dy (3.124)
+C(h(s)L22+e2sa2y(N(esvy))L22)\displaystyle\quad+C\left(\|h(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|\partial_{y}\left(N\left(e^{-s}v_{y}\right)\right)\|_{L^{2}}^{2}\right) (3.125)

with some constant C2>0C_{2}>0. Therefore, taking c1(0)c_{1}^{(0)} and s1(0)s_{1}^{(0)} sufficiently large so that 2c1(0)(2+C1)122c_{1}^{(0)}-\left(2+C_{1}\right)\geq\frac{1}{2} and c1(0)C2eδs14c_{1}^{(0)}C_{2}e^{-\delta s}\leq\frac{1}{4} holds for any ss1(0)s\geq s_{1}^{(0)}, we conclude

dds𝔼1(0)(s)+12𝔼1(0)(s)+14g2𝑑y\displaystyle\frac{d}{ds}\mathbb{E}^{(0)}_{1}(s)+\frac{1}{2}\mathbb{E}^{(0)}_{1}(s)+\frac{1}{4}\int_{\mathbb{R}}g^{2}\,dy (3.126)
Cf2𝑑y+C(h(s)L22+e2sa2yN(esvy)L22).\displaystyle\leq C\int_{\mathbb{R}}f^{2}\,dy+C\left(\|h(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\left\|\partial_{y}N\left(e^{-s}v_{y}\right)\right\|_{L^{2}}^{2}\right). (3.127)

Finally, by f2𝑑y=Fy2𝑑yC𝔼0\int_{\mathbb{R}}f^{2}\,dy=\int_{\mathbb{R}}F_{y}^{2}\,dy\leq C\mathbb{E}_{0}, the proof of the second assertion is complete. The first assertion is proved in the same way as the previous lemma and we omit the detail. ∎

Lemma 3.10.

There exists a constant c1(1)>0c_{1}^{(1)}>0 satisfying the following: for any η>0\eta^{\prime}>0, there exists a constant s1(1)>0s_{1}^{(1)}>0 such that for any ss1(1)s\geq s_{1}^{(1)}, we have

𝔼1(1)(s)C(y2fy2𝑑y+es2ay2fyy2𝑑y+r2es2ay2g2𝑑y+y2f2𝑑y)\displaystyle\mathbb{E}^{(1)}_{1}(s)\geq C\left(\int_{\mathbb{R}}y^{2}f_{y}^{2}\,dy+\frac{e^{-s}}{2a}\int_{\mathbb{R}}y^{2}f_{yy}^{2}\,dy+\frac{r^{2}e^{-s}}{2a}\int_{\mathbb{R}}y^{2}g^{2}\,dy+\int_{\mathbb{R}}y^{2}f^{2}\,dy\right) (3.128)

and

dds𝔼1(1)(s)+12𝔼1(1)(s)+14y2g2𝑑y\displaystyle\frac{d}{ds}\mathbb{E}_{1}^{(1)}(s)+\frac{1}{2}\mathbb{E}_{1}^{(1)}(s)+\frac{1}{4}\int_{\mathbb{R}}y^{2}g^{2}\,dy (3.129)
η𝔼1(1)(s)+C𝔼1(0)(s)4esayfyygy𝑑y+Ceδsg2𝑑y\displaystyle\leq\eta^{\prime}\mathbb{E}_{1}^{(1)}(s)+C\mathbb{E}_{1}^{(0)}(s)-4\frac{e^{-s}}{a}\int_{\mathbb{R}}yf_{yy}g_{y}\,dy+Ce^{-\delta s}\int_{\mathbb{R}}g^{2}dy (3.130)
+C(η)(yh(s)L22+e2sa2yy(N(esvy))L22).\displaystyle\quad+C(\eta^{\prime})\left(\|yh(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|y\partial_{y}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}\right). (3.131)
Proof.

Let η>0\eta^{\prime}>0 be arbitrary. By Lemmas 3.4 and 3.7, and the Schwarz inequality, we have

ddsE11(1)(s)+12E11(1)(s)+y2g2𝑑y\displaystyle\frac{d}{ds}E_{11}^{(1)}(s)+\frac{1}{2}E_{11}^{(1)}(s)+\int_{\mathbb{R}}y^{2}g^{2}\,dy (3.132)
E11(1)(s)+Cesay2fyy2𝑑y+Cesafyy2𝑑y+Cr2esay2g2𝑑y\displaystyle\leq E_{11}^{(1)}(s)+C\frac{e^{-s}}{a}\int_{\mathbb{R}}y^{2}f_{yy}^{2}\,dy+C\frac{e^{-s}}{a}\int_{\mathbb{R}}f_{yy}^{2}\,dy+C\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}y^{2}g^{2}\,dy (3.133)
+12y2g2𝑑y+Cfy2𝑑y+Ceδsg2𝑑y\displaystyle\quad+\frac{1}{2}\int_{\mathbb{R}}y^{2}g^{2}\,dy+C\int_{\mathbb{R}}f_{y}^{2}\,dy+Ce^{-\delta s}\int_{\mathbb{R}}g^{2}\,dy (3.134)
4esayfyygy𝑑y+C(yh(s)L22+e2sa2yy(N(esvy))L22),\displaystyle\quad-4\frac{e^{-s}}{a}\int_{\mathbb{R}}yf_{yy}g_{y}\,dy+C\left(\|yh(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|y\partial_{y}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}\right), (3.135)

which implies

ddsE11(1)(s)+12E11(1)(s)+12y2g2𝑑y\displaystyle\frac{d}{ds}E_{11}^{(1)}(s)+\frac{1}{2}E_{11}^{(1)}(s)+\frac{1}{2}\int_{\mathbb{R}}y^{2}g^{2}\,dy (3.136)
(1+C1)E11(1)(s)+C𝔼1(0)(s)+Ceδsg2𝑑y\displaystyle\leq(1+C_{1}^{\prime})E_{11}^{(1)}(s)+C\mathbb{E}_{1}^{(0)}(s)+Ce^{-\delta s}\int_{\mathbb{R}}g^{2}\,dy (3.137)
4esayfyygy𝑑y+C(yh(s)L22+e2sa2yy(N(esvy))L22)\displaystyle\quad-4\frac{e^{-s}}{a}\int_{\mathbb{R}}yf_{yy}g_{y}\,dy+C\left(\|yh(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|y\partial_{y}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}\right) (3.138)

with some constant C1>0C_{1}^{\prime}>0. Next, for E12(1)(s)E_{12}^{(1)}(s), Lemmas 3.4 and 3.7 and the Schwarz inequality imply

ddsE12(1)(s)+12E12(1)(s)+2E11(1)(s)\displaystyle\frac{d}{ds}E_{12}^{(1)}(s)+\frac{1}{2}E_{12}^{(1)}(s)+2E_{11}^{(1)}(s) (3.139)
=2r2esay2g2𝑑y2yffy𝑑y4esayfyfyy𝑑y2esaffyy𝑑y\displaystyle=\frac{2r^{2}e^{-s}}{a}\int_{\mathbb{R}}y^{2}g^{2}\,dy-2\int_{\mathbb{R}}yff_{y}\,dy-4\frac{e^{-s}}{a}\int_{\mathbb{R}}yf_{y}f_{yy}\,dy-2\frac{e^{-s}}{a}\int_{\mathbb{R}}ff_{yy}\,dy (3.140)
+(raraa2)y2fg𝑑y+y2f(esay(N(esvy))+h)𝑑y\displaystyle\quad+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)\int_{\mathbb{R}}y^{2}fg\,dy+\int_{\mathbb{R}}y^{2}f\left(\frac{e^{s}}{a}\partial_{y}(N(e^{-s}v_{y}))+h\right)\,dy (3.141)
η1y2f2𝑑y+E11(1)(s)+C2(η1)eδsy2g2𝑑y\displaystyle\leq\eta_{1}^{\prime}\int_{\mathbb{R}}y^{2}f^{2}\,dy+E_{11}^{(1)}(s)+C_{2}^{\prime}(\eta_{1}^{\prime})e^{-\delta s}\int_{\mathbb{R}}y^{2}g^{2}\,dy (3.142)
+Cfy2𝑑y+C(esa)2fyy2𝑑y+Cf2𝑑y\displaystyle\quad+C\int_{\mathbb{R}}f_{y}^{2}\,dy+C\left(\frac{e^{-s}}{a}\right)^{2}\int_{\mathbb{R}}f_{yy}^{2}\,dy+C\int_{\mathbb{R}}f^{2}\,dy (3.143)
+C(yh(s)L22+e2sa2yy(N(esvy))L22)\displaystyle\quad+C\left(\|yh(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|y\partial_{y}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}\right) (3.144)
η1y2f2𝑑y+E11(1)(s)+C2(η1)eδsy2g2𝑑y+C𝔼1(0)(s)\displaystyle\leq\eta_{1}^{\prime}\int_{\mathbb{R}}y^{2}f^{2}\,dy+E_{11}^{(1)}(s)+C_{2}^{\prime}(\eta_{1}^{\prime})e^{-\delta s}\int_{\mathbb{R}}y^{2}g^{2}\,dy+C\mathbb{E}_{1}^{(0)}(s) (3.145)
+C(yh(s)L22+e2sa2yy(N(esvy))L22)\displaystyle\quad+C\left(\|yh(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|y\partial_{y}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}\right) (3.146)

for arbitrary small η1>0\eta_{1}^{\prime}>0 determined later and some constant C2(η1)>0C_{2}^{\prime}(\eta_{1}^{\prime})>0. Therefore, taking c1(1)c_{1}^{(1)} and s1(1)s_{1}^{(1)} so that c1(1)(1+C1)12c_{1}^{(1)}-(1+C_{1}^{\prime})\geq\frac{1}{2} and c1(1)C2(η1)eδs14c_{1}^{(1)}C_{2}^{\prime}(\eta_{1}^{\prime})e^{-\delta s}\leq\frac{1}{4} holds for any ss1(1)s\geq s_{1}^{(1)}, we conclude

dds𝔼1(1)+12𝔼1(1)+14y2g2𝑑y\displaystyle\frac{d}{ds}\mathbb{E}_{1}^{(1)}+\frac{1}{2}\mathbb{E}_{1}^{(1)}+\frac{1}{4}\int_{\mathbb{R}}y^{2}g^{2}\,dy (3.147)
η1c1(1)y2f2𝑑y4esayfyygy𝑑y+Cfy2𝑑y+Ceδsg2𝑑y\displaystyle\leq\eta_{1}^{\prime}c_{1}^{(1)}\int_{\mathbb{R}}y^{2}f^{2}\,dy-4\frac{e^{-s}}{a}\int_{\mathbb{R}}yf_{yy}g_{y}\,dy+C\int_{\mathbb{R}}f_{y}^{2}\,dy+Ce^{-\delta s}\int_{\mathbb{R}}g^{2}\,dy (3.148)
+C𝔼1(0)(s)+C(yh(s)L22+e2sa2yy(N(esvy))L22).\displaystyle\quad+C\mathbb{E}_{1}^{(0)}(s)+C\left(\|yh(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|y\partial_{y}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}\right). (3.149)

Taking η1\eta_{1}^{\prime} so that the first term of the right-hand side is bounded by η𝔼1(1)(s)\eta^{\prime}\mathbb{E}_{1}^{(1)}(s) and using fy2𝑑yC𝔼1(0)(s)\int_{\mathbb{R}}f_{y}^{2}\,dy\leq C\mathbb{E}_{1}^{(0)}(s), we complete the proof of the second assertion. The first assertion is proved in the same way as before and we omit the detail. ∎

Next, we define

𝔼2(s):=E21(s)+c2E22(s),\displaystyle\mathbb{E}_{2}(s):=E_{21}(s)+c_{2}E_{22}(s), (3.150)

where c2c_{2} is a sufficiently large constant determined later.

Lemma 3.11.

There exist positive constants c2c_{2} and s2s_{2} such that for any ss2s\geq s_{2}, we have

𝔼2(s)C(fyy2𝑑y+es2afyyy2𝑑y+r2es2agy2𝑑y+fy2𝑑y)\displaystyle\mathbb{E}_{2}(s)\geq C\left(\int_{\mathbb{R}}f_{yy}^{2}\,dy+\frac{e^{-s}}{2a}\int_{\mathbb{R}}f_{yyy}^{2}\,dy+\frac{r^{2}e^{-s}}{2a}\int_{\mathbb{R}}g_{y}^{2}\,dy+\int_{\mathbb{R}}f_{y}^{2}\,dy\right) (3.151)

and

dds𝔼2(s)+12𝔼2(s)+14gy2𝑑y\displaystyle\frac{d}{ds}\mathbb{E}_{2}(s)+\frac{1}{2}\mathbb{E}_{2}(s)+\frac{1}{4}\int_{\mathbb{R}}g_{y}^{2}\,dy (3.152)
C𝔼1(0)(s)+C(yh(s)L22+e2sa2y2(N(esvy))L22).\displaystyle\leq C\mathbb{E}_{1}^{(0)}(s)+C\left(\|\partial_{y}h(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|\partial_{y}^{2}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}\right). (3.153)
Proof.

By Lemmas 3.5 and 3.7 and the Schwarz inequality, we have

ddsE21(s)+gy2𝑑y\displaystyle\frac{d}{ds}E_{21}(s)+\int_{\mathbb{R}}g_{y}^{2}\,dy 52E21(s)+C1esafyyy2𝑑y+C1r2esagy2𝑑y\displaystyle\leq\frac{5}{2}E_{21}(s)+C_{1}\frac{e^{-s}}{a}\int_{\mathbb{R}}f_{yyy}^{2}\,dy+C_{1}\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}g_{y}^{2}\,dy (3.154)
+12gy2𝑑y+C(hy(s)L22+e2sa2y2N(esvy)L22)\displaystyle\quad+\frac{1}{2}\int_{\mathbb{R}}g_{y}^{2}\,dy+C\left(\|h_{y}(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|\partial_{y}^{2}N(e^{-s}v_{y})\|_{L^{2}}^{2}\right) (3.155)
(52+2C1)E21(s)+12gy2𝑑y\displaystyle\leq\left(\frac{5}{2}+2C_{1}\right)E_{21}(s)+\frac{1}{2}\int_{\mathbb{R}}g_{y}^{2}\,dy (3.156)
+C(hy(s)L22+e2sa2y2N(esvy)L22).\displaystyle\quad+C\left(\|h_{y}(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|\partial_{y}^{2}N(e^{-s}v_{y})\|_{L^{2}}^{2}\right). (3.157)

with some C1>0C_{1}>0 and

ddsE22(s)+12E22(s)+2E21(s)\displaystyle\frac{d}{ds}E_{22}(s)+\frac{1}{2}E_{22}(s)+2E_{21}(s) (3.158)
2E22(s)+Cr2esagy2𝑑y+Cr2esafy2𝑑y\displaystyle\leq 2E_{22}(s)+C\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}g_{y}^{2}\,dy+C\frac{r^{2}e^{-s}}{a}\int_{\mathbb{R}}f_{y}^{2}\,dy (3.159)
+Cfy2𝑑y+C(hy(s)L22+e2sa2y2N(esvy)L22)\displaystyle\quad+C\int_{\mathbb{R}}f_{y}^{2}\,dy+C\left(\|h_{y}(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|\partial_{y}^{2}N(e^{-s}v_{y})\|_{L^{2}}^{2}\right) (3.160)
C2eδsgy2𝑑y+Cfy2𝑑y\displaystyle\leq C_{2}e^{-\delta s}\int_{\mathbb{R}}g_{y}^{2}\,dy+C\int_{\mathbb{R}}f_{y}^{2}\,dy (3.161)
+C(hy(s)L22+e2sa2y2N(esvy)L22)\displaystyle\quad+C\left(\|h_{y}(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|\partial_{y}^{2}N(e^{-s}v_{y})\|_{L^{2}}^{2}\right) (3.162)

with some C2>0C_{2}>0. We take c2c_{2} sufficiently large so that 2c2522C1122c_{2}-\frac{5}{2}-2C_{1}\geq\frac{1}{2}. Then, letting s2s_{2} sufficiently large so that c2C2eδs14c_{2}C_{2}e^{-\delta s}\leq\frac{1}{4} holds for any ss2s\geq s_{2}, we conclude

dds𝔼2(s)+12𝔼2(s)+14gy2𝑑y\displaystyle\frac{d}{ds}\mathbb{E}_{2}(s)+\frac{1}{2}\mathbb{E}_{2}(s)+\frac{1}{4}\int_{\mathbb{R}}g_{y}^{2}\,dy (3.163)
Cfy2𝑑y+C(hy(s)L22+e2sa2y2N(esvy)L22)\displaystyle\leq C\int_{\mathbb{R}}f_{y}^{2}\,dy+C\left(\|h_{y}(s)\|_{L^{2}}^{2}+\frac{e^{2s}}{a^{2}}\|\partial_{y}^{2}N(e^{-s}v_{y})\|_{L^{2}}^{2}\right) (3.164)

for any ss2s\geq s_{2}. This and fy2𝑑yC𝔼1(0)(s)\int_{\mathbb{R}}f_{y}^{2}\,dy\leq C\mathbb{E}_{1}^{(0)}(s) complete the proof of the second assertion. The first assertion is proved in the same way as before and we omit the detail. ∎

Finally, let us combine the estimates in Lemmas 3.83.11. Fix

λ(0,min{12,2(β+1)αβ+1,2αβ+1αβ+1})\displaystyle\lambda\in\left(0,\min\left\{\frac{1}{2},\frac{2(\beta+1)}{\alpha-\beta+1},\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right\}\right) (3.165)

and let s=max{s0,s1(0),s1(1),s2}s_{\ast}^{\prime}=\max\{s_{0},s_{1}^{(0)},s_{1}^{(1)},s_{2}\}. We first note that the Schwarz inequality and Lemma 3.7 imply

4esayfyygy𝑑y\displaystyle-4\frac{e^{-s}}{a}\int_{\mathbb{R}}yf_{yy}g_{y}\,dy η′′𝔼1(1)(s)+C(η′′)eδsgy2𝑑y\displaystyle\leq\eta^{\prime\prime}\mathbb{E}_{1}^{(1)}(s)+C(\eta^{\prime\prime})e^{-\delta s}\int_{\mathbb{R}}g_{y}^{2}\,dy (3.166)

for any η′′>0\eta^{\prime\prime}>0. We take η,η1\eta,\eta_{1}^{\prime} in Lemmas 3.8 and 3.10 and η′′\eta^{\prime\prime} above so that 12ηλ\frac{1}{2}-\eta\leq\lambda and η+η′′12λ\eta^{\prime}+\eta^{\prime\prime}\leq\frac{1}{2}-\lambda. Then, we take c~0c~1(0)c~1(1)1\tilde{c}_{0}\gg\tilde{c}_{1}^{(0)}\gg\tilde{c}_{1}^{(1)}\gg 1 and define

(s)\displaystyle\mathcal{E}(s) =c~0𝔼0(s)+c~1(0)𝔼1(0)(s)+c~1(1)𝔼1(1)(s)+𝔼2(s)+Em1(s),\displaystyle=\tilde{c}_{0}\mathbb{E}_{0}(s)+\tilde{c}_{1}^{(0)}\mathbb{E}_{1}^{(0)}(s)+\tilde{c}_{1}^{(1)}\mathbb{E}_{1}^{(1)}(s)+\mathbb{E}_{2}(s)+E_{m1}(s), (3.167)
𝒢(s)\displaystyle\mathcal{G}(s) =(c~0G2+c~1(0)g2+c~1(1)y2g2+gy2)𝑑y,\displaystyle=\int_{\mathbb{R}}\left(\tilde{c}_{0}G^{2}+\tilde{c}_{1}^{(0)}g^{2}+\tilde{c}_{1}^{(1)}y^{2}g^{2}+g_{y}^{2}\right)\,dy, (3.168)
~(s)\displaystyle\widetilde{\mathcal{E}}(s) =(s)+Em2(s).\displaystyle=\mathcal{E}(s)+E_{m2}(s). (3.169)

Then, adding the estimates in Lemmas 3.6 and 3.83.11, we conclude that

dds(s)+λ(s)+14𝒢(s)+ms(s)2\displaystyle\frac{d}{ds}\mathcal{E}(s)+\lambda\mathcal{E}(s)+\frac{1}{4}\mathcal{G}(s)+m_{s}(s)^{2} (3.170)
Ceδsg2𝑑y+Ceδsgy2𝑑y+(3r2es4ara2a2)ms(s)2\displaystyle\leq Ce^{-\delta s}\int_{\mathbb{R}}g^{2}\,dy+Ce^{-\delta s}\int_{\mathbb{R}}g_{y}^{2}\,dy+\left(\frac{3r^{2}e^{-s}}{4a}-\frac{ra^{\prime}}{2a^{2}}\right)m_{s}(s)^{2} (3.171)
+C(H(s)L22+h(s)H0,12+hy(s)L22)\displaystyle\quad+C\left(\|H(s)\|_{L^{2}}^{2}+\|h(s)\|_{H^{0,1}}^{2}+\|h_{y}(s)\|_{L^{2}}^{2}\right) (3.172)
+C(esa)2(N(esvy)L22+yN(esvy)H0,12+y2(N(esvy))L22)\displaystyle\quad+C\left(\frac{e^{s}}{a}\right)^{2}\left(\|N(e^{-s}v_{y})\|_{L^{2}}^{2}+\left\|\partial_{y}N\left(e^{-s}v_{y}\right)\right\|_{H^{0,1}}^{2}+\|\partial_{y}^{2}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}\right) (3.173)

holds for sss\geq s_{\ast}^{\prime}. Moreover, Lemma 3.7 leads to

(3r2es4ara2a2)Ceδs.\displaystyle\left(\frac{3r^{2}e^{-s}}{4a}-\frac{ra^{\prime}}{2a^{2}}\right)\leq Ce^{-\delta s}. (3.174)

Therefore, we finally reach the following energy estimate.

Proposition 3.12.

There exist constants s>0s_{\ast}>0 and C>0C>0 such that for any sss\geq s_{\ast}, we have

dds(s)+λ(s)+18(𝒢(s)+ms2)\displaystyle\frac{d}{ds}\mathcal{E}(s)+\lambda\mathcal{E}(s)+\frac{1}{8}\left(\mathcal{G}(s)+m_{s}^{2}\right) (3.175)
C(H(s)L22+h(s)H0,12+hy(s)L22)\displaystyle\leq C\left(\|H(s)\|_{L^{2}}^{2}+\|h(s)\|_{H^{0,1}}^{2}+\|h_{y}(s)\|_{L^{2}}^{2}\right) (3.176)
+C(esa)2(N(esvy)L22+yN(esvy)H0,12+y2(N(esvy))L22).\displaystyle\quad+C\left(\frac{e^{s}}{a}\right)^{2}\left(\|N(e^{-s}v_{y})\|_{L^{2}}^{2}+\left\|\partial_{y}N\left(e^{-s}v_{y}\right)\right\|_{H^{0,1}}^{2}+\|\partial_{y}^{2}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}\right). (3.177)

4. Estimates of remainder terms and the proof of a priori estimate

In this section, we give estimates of the right-hand side of Proposition 3.12, and complete the a priori estimate, which ensures the existence of the global solution.

4.1. Estimates of remainder terms

First, by the Hardy-type inequality in Lemma 3.2, we have

H(s)L224yh(s)L22,N(esvy)L224yyN(esvy)L22.\displaystyle\|H(s)\|_{L^{2}}^{2}\leq 4\|yh(s)\|_{L^{2}}^{2},\quad\|N(e^{-s}v_{y})\|_{L^{2}}^{2}\leq 4\|y\partial_{y}N(e^{-s}v_{y})\|_{L^{2}}^{2}. (4.1)

Hence, it suffices to estimate

h(s)H0,12,hy(s)L22,(esa)2yN(esvy)H0,12,(esa)2y2(N(esvy))L22.\displaystyle\|h(s)\|_{H^{0,1}}^{2},\quad\|h_{y}(s)\|_{L^{2}}^{2},\quad\left(\frac{e^{s}}{a}\right)^{2}\left\|\partial_{y}N\left(e^{-s}v_{y}\right)\right\|_{H^{0,1}}^{2},\quad\left(\frac{e^{s}}{a}\right)^{2}\|\partial_{y}^{2}(N(e^{-s}v_{y}))\|_{L^{2}}^{2}. (4.2)

First, from the definition of hh (see (2.13)) and Lemma 3.7, we easily obtain

h(s)H0,12+hy(s)L22\displaystyle\|h(s)\|_{H^{0,1}}^{2}+\|h_{y}(s)\|_{L^{2}}^{2} Ce2δs(m(s)2+ms(s)2)e2δs~(s).\displaystyle\leq Ce^{-2\delta s}\left(m(s)^{2}+m_{s}(s)^{2}\right)\leq e^{-2\delta s}\widetilde{\mathcal{E}}(s). (4.3)

Next, we estimate the nonlinear term. By Assumption (N), we see that

yN(esvy)\displaystyle\partial_{y}N(e^{-s}v_{y}) =2μe2svyvyy+N~(esvy)esvyy,\displaystyle=2\mu e^{-2s}v_{y}v_{yy}+\tilde{N}^{\prime}(e^{-s}v_{y})e^{-s}v_{yy}, (4.4)
y2N(esvy)\displaystyle\partial_{y}^{2}N(e^{-s}v_{y}) =2μe2s(vyy2+vyvyyy)+N~′′(esvy)e2svyy2+N~(esvy)esvyyy.\displaystyle=2\mu e^{-2s}(v_{yy}^{2}+v_{y}v_{yyy})+\tilde{N}^{\prime\prime}(e^{-s}v_{y})e^{-2s}v_{yy}^{2}+\tilde{N}^{\prime}(e^{-s}v_{y})e^{-s}v_{yyy}. (4.5)

Therefore, by |N~(z)|C|z|p1|\tilde{N}^{\prime}(z)|\leq C|z|^{p-1}, the Sobolev embedding theorem, and

fH2,12C(esa)1(𝔼1(0)(s)+𝔼1(1)(s))Ce2αβ+1αβ+1s~(s),\|f\|_{H^{2,1}}^{2}\leq C\left(\frac{e^{-s}}{a}\right)^{-1}\big{(}\mathbb{E}_{1}^{(0)}(s)+\mathbb{E}_{1}^{(1)}(s)\big{)}\leq Ce^{\frac{2\alpha-\beta+1}{\alpha-\beta+1}s}\widetilde{\mathcal{E}}(s),

we have

(esa)2yN(esvy)H0,12\displaystyle\left(\frac{e^{s}}{a}\right)^{2}\left\|\partial_{y}N\left(e^{-s}v_{y}\right)\right\|_{H^{0,1}}^{2} (4.6)
C(esa)2e4svyvyyH0,12+C(esa)2e2ps|vy|p1vyyH0,12\displaystyle\leq C\left(\frac{e^{s}}{a}\right)^{2}e^{-4s}\|v_{y}v_{yy}\|_{H^{0,1}}^{2}+C\left(\frac{e^{s}}{a}\right)^{2}e^{-2ps}\||v_{y}|^{p-1}v_{yy}\|_{H^{0,1}}^{2} (4.7)
Ce2(1+ααβ+1)svyL2vyyH0,12+Ce2(p2)se2(1+ααβ+1)svyL2(p1)vyyH0,12\displaystyle\leq Ce^{-2(1+\frac{\alpha}{\alpha-\beta+1})s}\|v_{y}\|_{L^{\infty}}^{2}\|v_{yy}\|_{H^{0,1}}^{2}+Ce^{-2(p-2)s}e^{-2(1+\frac{\alpha}{\alpha-\beta+1})s}\|v_{y}\|_{L^{\infty}}^{2(p-1)}\|v_{yy}\|_{H^{0,1}}^{2} (4.8)
Ce2(2αβ+1)αβ+1svyH12vyyH0,12+Ce2(p2)se2(2αβ+1)αβ+1svyH12(p1)vyyH0,12\displaystyle\leq Ce^{-\frac{2(2\alpha-\beta+1)}{\alpha-\beta+1}s}\|v_{y}\|_{H^{1}}^{2}\|v_{yy}\|_{H^{0,1}}^{2}+Ce^{-2(p-2)s}e^{-\frac{2(2\alpha-\beta+1)}{\alpha-\beta+1}s}\|v_{y}\|_{H^{1}}^{2(p-1)}\|v_{yy}\|_{H^{0,1}}^{2} (4.9)
C(e2(2αβ+1)αβ+1s(fH2,02+m(s)2)+e2(p2)se2(2αβ+1)αβ+1s(fH2,02+m(s)2)p1)\displaystyle\leq C\left(e^{-\frac{2(2\alpha-\beta+1)}{\alpha-\beta+1}s}(\|f\|_{H^{2,0}}^{2}+m(s)^{2})+e^{-2(p-2)s}e^{-\frac{2(2\alpha-\beta+1)}{\alpha-\beta+1}s}(\|f\|_{H^{2,0}}^{2}+m(s)^{2})^{p-1}\right) (4.10)
×(fH2,12+m(s)2)\displaystyle\quad\times(\|f\|_{H^{2,1}}^{2}+m(s)^{2}) (4.11)
Ce2αβ+1αβ+1s~(s)2+e[2(p2)+2αβ+1αβ+1]s~(s)p.\displaystyle\leq Ce^{-\frac{2\alpha-\beta+1}{\alpha-\beta+1}s}\widetilde{\mathcal{E}}(s)^{2}+e^{-\left[2(p-2)+\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right]s}\widetilde{\mathcal{E}}(s)^{p}. (4.12)

Similarly, by |N~′′(z)|C|z|p2|\tilde{N}^{\prime\prime}(z)|\leq C|z|^{p-2}, the Sobolev embedding theorem, and

fH3,02C(esa)1(𝔼1(0)(s)+E21(s))Ce2αβ+1αβ+1s~(s),\|f\|_{H^{3,0}}^{2}\leq C\left(\frac{e^{-s}}{a}\right)^{-1}\big{(}\mathbb{E}_{1}^{(0)}(s)+{E}_{21}(s)\big{)}\leq Ce^{\frac{2\alpha-\beta+1}{\alpha-\beta+1}s}\widetilde{\mathcal{E}}(s),

we obtain

(esa)2y2N(esvy)L22\displaystyle\left(\frac{e^{s}}{a}\right)^{2}\left\|\partial_{y}^{2}N\left(e^{-s}v_{y}\right)\right\|_{L^{2}}^{2} (4.13)
C(esa)2e4s(vyy2L22+vyvyyyL22)\displaystyle\leq C\left(\frac{e^{s}}{a}\right)^{2}e^{-4s}\left(\|v_{yy}^{2}\|_{L^{2}}^{2}+\|v_{y}v_{yyy}\|_{L^{2}}^{2}\right) (4.14)
+C(esa)2e2ps(|vy|p2vyy2L22+|vy|p1vyyyL22)\displaystyle\quad+C\left(\frac{e^{s}}{a}\right)^{2}e^{-2ps}\left(\||v_{y}|^{p-2}v_{yy}^{2}\|_{L^{2}}^{2}+\||v_{y}|^{p-1}v_{yyy}\|_{L^{2}}^{2}\right) (4.15)
Ce2(1+ααβ+1)s(vyyL2vyyL22+vyL2vyyyL22)\displaystyle\leq Ce^{-2(1+\frac{\alpha}{\alpha-\beta+1})s}(\|v_{yy}\|_{L^{\infty}}^{2}\|v_{yy}\|_{L^{2}}^{2}+\|v_{y}\|_{L^{\infty}}^{2}\|v_{yyy}\|_{L^{2}}^{2}) (4.16)
+Ce2(p2)se2(1+ααβ+1)s(vyL2(p2)vyyL2vyyL22+vyL2(p1)vyyyL22)\displaystyle\quad+Ce^{-2(p-2)s}e^{-2(1+\frac{\alpha}{\alpha-\beta+1})s}(\|v_{y}\|_{L^{\infty}}^{2(p-2)}\|v_{yy}\|_{L^{\infty}}^{2}\|v_{yy}\|_{L^{2}}^{2}+\|v_{y}\|_{L^{\infty}}^{2(p-1)}\|v_{yyy}\|_{L^{2}}^{2}) (4.17)
Ce2(2αβ+1)αβ+1)s(vyyH1,02vyyL22+vyH1,02vyyyL22)\displaystyle\leq Ce^{-\frac{2(2\alpha-\beta+1)}{\alpha-\beta+1})s}(\|v_{yy}\|_{H^{1,0}}^{2}\|v_{yy}\|_{L^{2}}^{2}+\|v_{y}\|_{H^{1,0}}^{2}\|v_{yyy}\|_{L^{2}}^{2}) (4.18)
+Ce2(p2)se2(2αβ+1)αβ+1)s(vyH1,02(p2)vyyL2vyyL22+vyH1,02(p1)vyyyL22)\displaystyle\quad+Ce^{-2(p-2)s}e^{-\frac{2(2\alpha-\beta+1)}{\alpha-\beta+1})s}(\|v_{y}\|_{H^{1,0}}^{2(p-2)}\|v_{yy}\|_{L^{\infty}}^{2}\|v_{yy}\|_{L^{2}}^{2}+\|v_{y}\|_{H^{1,0}}^{2(p-1)}\|v_{yyy}\|_{L^{2}}^{2}) (4.19)
C(e2(2αβ+1)αβ+1)s(fH2,02+m(s)2)+e2(p2)se2(2αβ+1)αβ+1)s(fH2,02+m(s)2)p1)\displaystyle\leq C\left(e^{-\frac{2(2\alpha-\beta+1)}{\alpha-\beta+1})s}(\|f\|_{H^{2,0}}^{2}+m(s)^{2})+e^{-2(p-2)s}e^{-\frac{2(2\alpha-\beta+1)}{\alpha-\beta+1})s}(\|f\|_{H^{2,0}}^{2}+m(s)^{2})^{p-1}\right) (4.20)
×(fH3,02+m(s)2)\displaystyle\quad\times(\|f\|_{H^{3,0}}^{2}+m(s)^{2}) (4.21)
Ce2αβ+1αβ+1s~(s)2+e[2(p2)+2αβ+1αβ+1]s~(s)p.\displaystyle\leq Ce^{-\frac{2\alpha-\beta+1}{\alpha-\beta+1}s}\widetilde{\mathcal{E}}(s)^{2}+e^{-\left[2(p-2)+\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right]s}\widetilde{\mathcal{E}}(s)^{p}. (4.22)

4.2. Proof of a priori estimate

Combining the energy estimates obtained in Proposition 3.12 with the estimates of remainder terms given in the previous subsection, we deduce

dds(s)+λ(s)+18(𝒢(s)+ms(s)2)\displaystyle\frac{d}{ds}\mathcal{E}(s)+\lambda\mathcal{E}(s)+\frac{1}{8}\left(\mathcal{G}(s)+m_{s}(s)^{2}\right) (4.23)
Ce2δs~(s)+Ce2αβ+1αβ+1s~(s)2+Ce[2(p2)+2αβ+1αβ+1]s~(s)p\displaystyle\leq Ce^{-2\delta s}\widetilde{\mathcal{E}}(s)+Ce^{-\frac{2\alpha-\beta+1}{\alpha-\beta+1}s}\widetilde{\mathcal{E}}(s)^{2}+Ce^{-\left[2(p-2)+\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right]s}\widetilde{\mathcal{E}}(s)^{p} (4.24)

From Lemmas 3.6 and 3.7, we see that

ddsEm2(s)\displaystyle\frac{d}{ds}E_{m2}(s) =2Em1(s)+(raraa2)m(s)ms(s)\displaystyle=2E_{m1}(s)+\left(\frac{r^{\prime}}{a}-\frac{ra^{\prime}}{a^{2}}\right)m(s)m_{s}(s) (4.25)
Ceδsms(s)2+116ms(s)2+Ce2δsm(s)2.\displaystyle\leq Ce^{-\delta s}m_{s}(s)^{2}+\frac{1}{16}m_{s}(s)^{2}+Ce^{-2\delta s}m(s)^{2}. (4.26)

Therefore, there exists constants smss_{m}\geq s_{\ast} and c>0c>0 such that for any ssms\geq s_{m}, we have

dds~(s)+λ~(s)+c(𝒢(s)+ms(s)2)\displaystyle\frac{d}{ds}\widetilde{\mathcal{E}}(s)+\lambda\widetilde{\mathcal{E}}(s)+c(\mathcal{G}(s)+m_{s}(s)^{2}) (4.27)
C3e2δs~(s)+C3(e2αβ+1αβ+1s~(s)2+e[2(p2)+2αβ+1αβ+1]s~(s)p)\displaystyle\leq C_{3}e^{-2\delta s}\widetilde{\mathcal{E}}(s)+C_{3}\left(e^{-\frac{2\alpha-\beta+1}{\alpha-\beta+1}s}\widetilde{\mathcal{E}}(s)^{2}+e^{-\left[2(p-2)+\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right]s}\widetilde{\mathcal{E}}(s)^{p}\right) (4.28)

with some C3>0C_{3}>0. Define

Λ(s)=exp(C3smse2δσ𝑑σ).\displaystyle\Lambda(s)=\exp\left(-C_{3}\int_{s_{m}}^{s}e^{-2\delta\sigma}\,d\sigma\right). (4.29)

Note that

Λ(s)=exp(C32δ(e2δse2δsm))1andΛ(sm)=1.\displaystyle\Lambda(s)=\exp\left(\frac{C_{3}}{2\delta}\left(e^{-2\delta s}-e^{-2\delta s_{m}}\right)\right)\sim 1\quad\text{and}\quad\Lambda(s_{m})=1. (4.30)

Multiplying (4.28) by Λ(s)\Lambda(s), we deduce

dds[Λ(s)~(s)]+λΛ(s)(s)+cΛ(s)(𝒢(s)+ms(s)2)\displaystyle\frac{d}{ds}\left[\Lambda(s)\widetilde{\mathcal{E}}(s)\right]+\lambda\Lambda(s)\mathcal{E}(s)+c\Lambda(s)\left(\mathcal{G}(s)+m_{s}(s)^{2}\right) (4.31)
C3Λ(s)(e2αβ+1αβ+1s~(s)2+e[2(p2)+2αβ+1αβ+1]s~(s)p).\displaystyle\leq C_{3}\Lambda(s)\left(e^{-\frac{2\alpha-\beta+1}{\alpha-\beta+1}s}\widetilde{\mathcal{E}}(s)^{2}+e^{-\left[2(p-2)+\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right]s}\widetilde{\mathcal{E}}(s)^{p}\right). (4.32)

Integrating the above over [sm,s][s_{m},s], we have

Λ(s)~(s)\displaystyle\Lambda(s)\widetilde{\mathcal{E}}(s) ~(sm)+C3smsΛ(σ)(e2αβ+1αβ+1s~(σ)2+e[2(p2)+2αβ+1αβ+1]s~(σ)p)𝑑σ\displaystyle\leq\widetilde{\mathcal{E}}(s_{m})+C_{3}\int_{s_{m}}^{s}\Lambda(\sigma)\left(e^{-\frac{2\alpha-\beta+1}{\alpha-\beta+1}s}\widetilde{\mathcal{E}}(\sigma)^{2}+e^{-\left[2(p-2)+\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right]s}\widetilde{\mathcal{E}}(\sigma)^{p}\right)\,d\sigma (4.33)

Finally, we put

~max(s)=maxσ[sm,s]~(σ)\displaystyle\widetilde{\mathcal{E}}_{\max}(s)=\max_{\sigma\in[s_{m},s]}\widetilde{\mathcal{E}}(\sigma) (4.34)

for ssms\geq s_{m}. Then, the above estimate implies

~max(s)\displaystyle\widetilde{\mathcal{E}}_{\max}(s) C0~(sm)+C0(~max(s)2+~max(s)p)\displaystyle\leq C_{0}\widetilde{\mathcal{E}}(s_{m})+C_{0}^{\prime}\left(\widetilde{\mathcal{E}}_{\max}(s)^{2}+\widetilde{\mathcal{E}}_{\max}(s)^{p}\right) (4.35)

with some constants C0,C0>0C_{0},C_{0}^{\prime}>0, where we have used δ>0\delta>0 and p>β+1αβ+1p>\frac{-\beta+1}{\alpha-\beta+1} (see Remark 1.1). Thus, we conclude the a priori estimate

~max(s)2C0~(sm)\displaystyle\widetilde{\mathcal{E}}_{\max}(s)\leq 2C_{0}\widetilde{\mathcal{E}}(s_{m}) (4.36)

for all ssms\geq s_{m}, provided that ~(sm)\widetilde{\mathcal{E}}(s_{m}) is sufficiently small. From the local existence result (Proposition B.2), we see that, for sufficiently small initial data, the local solution uniquely exists over [0,sm][0,s_{m}], and it satisfies ~(sm)C(u0H2,1H3,0+u1H0,1H1,0)\widetilde{\mathcal{E}}(s_{m})\leq C(\|u_{0}\|_{H^{2,1}\cap H^{3,0}}+\|u_{1}\|_{H^{0,1}\cap H^{1,0}}) (for the detail, see the proof of Proposition B.2 (vi) ). Thus, ~(sm)\widetilde{\mathcal{E}}(s_{m}) can be controlled by the norm of initial data. This and Proposition B.2 (iii) (blow-up alternative) indicate the existence of the global solution if the initial data (u0,u1)(u_{0},u_{1}) is sufficiently small.

It remains to prove the asymptotic estimate. To this end, we go back to the estimate (4.24). By virtue of the a priori estimate (4.36), we have

dds(s)+λ(s)+18(𝒢(s)+ms(s)2)\displaystyle\frac{d}{ds}\mathcal{E}(s)+\lambda\mathcal{E}(s)+\frac{1}{8}\left(\mathcal{G}(s)+m_{s}(s)^{2}\right) Cemin{2δ,2αβ+1αβ+1,2(p2)+2αβ+1αβ+1}s~(sm)\displaystyle\leq Ce^{-\min\{2\delta,\frac{2\alpha-\beta+1}{\alpha-\beta+1},2(p-2)+\frac{2\alpha-\beta+1}{\alpha-\beta+1}\}s}\widetilde{\mathcal{E}}(s_{m}) (4.37)
=Cemin{2(β+1)αβ+1,2αβ+1αβ+1}s~(sm),\displaystyle=Ce^{-\min\{\frac{2(\beta+1)}{\alpha-\beta+1},\frac{2\alpha-\beta+1}{\alpha-\beta+1}\}s}\widetilde{\mathcal{E}}(s_{m}), (4.38)

where we have also used ~(sm)\widetilde{\mathcal{E}}(s_{m}), which can be assumed without loss of generality. Now, recall

λ(0,min{12,2(β+1)αβ+1,2αβ+1αβ+1}),\displaystyle\lambda\in\left(0,\min\left\{\frac{1}{2},\frac{2(\beta+1)}{\alpha-\beta+1},\frac{2\alpha-\beta+1}{\alpha-\beta+1}\right\}\right), (4.39)

and multiply the above estimate by eλse^{\lambda s}. Then, we obtain

dds[eλs(s)]+18eλs(𝒢(s)+ms(s)2)Ceλmin{2(β+1)αβ+1,2αβ+1αβ+1}s~(sm).\displaystyle\frac{d}{ds}\left[e^{\lambda s}\mathcal{E}(s)\right]+\frac{1}{8}e^{\lambda s}\left(\mathcal{G}(s)+m_{s}(s)^{2}\right)\leq Ce^{\lambda-\min\{\frac{2(\beta+1)}{\alpha-\beta+1},\frac{2\alpha-\beta+1}{\alpha-\beta+1}\}s}\widetilde{\mathcal{E}}(s_{m}). (4.40)

Integrating this over [sm,s][s_{m},s] implies

eλs(s)+18smseλσ(𝒢(σ)+ms(σ)2)𝑑σC~(sm).\displaystyle e^{\lambda s}\mathcal{E}(s)+\frac{1}{8}\int_{s_{m}}^{s}e^{\lambda\sigma}\left(\mathcal{G}(\sigma)+m_{s}(\sigma)^{2}\right)\,d\sigma\leq C\widetilde{\mathcal{E}}(s_{m}). (4.41)

Therefore, we have

(s)Ceλs~(sm)\displaystyle\mathcal{E}(s)\leq Ce^{-\lambda s}\widetilde{\mathcal{E}}(s_{m}) (4.42)

for all ssms\geq s_{m}. Moreover, we deduce

smseλσms(σ)2𝑑σC~(sm).\displaystyle\int_{s_{m}}^{s}e^{\lambda\sigma}m_{s}(\sigma)^{2}\,d\sigma\leq C\widetilde{\mathcal{E}}(s_{m}). (4.43)

This shows, for any sssms\geq s^{\prime}\geq s_{m},

|m(s)m(s)|\displaystyle|m(s)-m(s^{\prime})| =|ssms(σ)𝑑σ|\displaystyle=\left|\int_{s^{\prime}}^{s}m_{s}(\sigma)\,d\sigma\right| (4.44)
(sseλσ𝑑σ)1/2(sseλσms(σ)2𝑑σ)1/2\displaystyle\leq\left(\int_{s^{\prime}}^{s}e^{-\lambda\sigma}\,d\sigma\right)^{1/2}\left(\int_{s^{\prime}}^{s}e^{\lambda\sigma}m_{s}(\sigma)^{2}\,d\sigma\right)^{1/2} (4.45)
(1λ(eλseλs))1/2C~m(sm)1/2\displaystyle\leq\left(\frac{1}{\lambda}(e^{-\lambda s^{\prime}}-e^{-\lambda s})\right)^{1/2}C\widetilde{\mathcal{E}}_{m}(s_{m})^{1/2} (4.46)
0(s,s).\displaystyle\to 0\quad(s^{\prime},s\to\infty). (4.47)

This means that the limit m=limsm(s)m^{\ast}=\lim_{s\to\infty}m(s) exists and satisfies

|mm(s)|2C~(sm)eλs\displaystyle|m^{\ast}-m(s)|^{2}\leq C\widetilde{\mathcal{E}}(s_{m})e^{-\lambda s} (4.48)

for all ssms\geq s_{m}. Consequently, by the above estimate and (4.42), we have

v(s)mφL22\displaystyle\|v(s)-m^{\ast}\varphi\|_{L^{2}}^{2} =m(s)φ+f(s)mφL22\displaystyle=\|m(s)\varphi+f(s)-m^{\ast}\varphi\|_{L^{2}}^{2} (4.49)
C(|mm(s)|2φL22+f(s)L22)\displaystyle\leq C\left(|m^{\ast}-m(s)|^{2}\|\varphi\|_{L^{2}}^{2}+\|f(s)\|_{L^{2}}^{2}\right) (4.50)
Ceλs~(sm)\displaystyle\leq Ce^{-\lambda s}\widetilde{\mathcal{E}}(s_{m}) (4.51)
Ceλs(u0H2,1H3,02+u1H0,1H1,0)2\displaystyle\leq Ce^{-\lambda s}\left(\|u_{0}\|_{H^{2,1}\cap H^{3,0}}^{2}+\|u_{1}\|_{H^{0,1}\cap H^{1,0}}\right)^{2} (4.52)

for ssms\geq s_{m}, which implies

u(t)mG(R(t))L22\displaystyle\|u(t)-m^{\ast}G(R(t))\|_{L^{2}}^{2} C(R(t)+1)12λ(u0H2,1H3,02+u1H0,1H1,0)2\displaystyle\leq C(R(t)+1)^{-\frac{1}{2}-\lambda}\left(\|u_{0}\|_{H^{2,1}\cap H^{3,0}}^{2}+\|u_{1}\|_{H^{0,1}\cap H^{1,0}}\right)^{2} (4.53)

for ttm:=R1(es1)t\geq t_{m}:=R^{-1}(e^{s}-1). This completes the proof of the asymptotic estimate.

Appendix A A general lemma for the energy identity

In this appendix, we give a proof of Lemma 3.1. Actually, we give a slightly more general version of it and prove the following lemma. If we take k=12k=\frac{1}{2} and c3(s)1c_{3}(s)\equiv 1, then we have Lemma 3.1.

Lemma A.1.

Let k,l,mk,l,m\in\mathbb{R}, n{0}n\in\mathbb{N}\cup\{0\}, and let cj=cj(s)(j=1,2,3,4)c_{j}=c_{j}(s)\ (j=1,2,3,4) be smooth functions defined on [0,)[0,\infty). We consider a system for two functions f=f(s,y)f=f(s,y) and g=g(s,y)g=g(s,y) given by

{fskyfylf=g,c1(s)(gskygymg)+c2(s)g+g=c3(s)fyyc4(s)fyyyy+h(s,y)(0,)×,\displaystyle\left\{\begin{aligned} &f_{s}-kyf_{y}-lf=g,\\ &c_{1}(s)\left(g_{s}-kyg_{y}-mg\right)+c_{2}(s)g+g=c_{3}(s)f_{yy}-c_{4}(s)f_{yyyy}+h\end{aligned}\right.\quad(s,y)\in(0,\infty)\times\mathbb{R}, (A.1)

where h=h(s,y)h=h(s,y) is a given smooth function belonging to C([0,);H0,n())C([0,\infty);H^{0,n}(\mathbb{R})). We define the energies

E1(s)\displaystyle E_{1}(s) =12y2n(c3(s)fy2+c4(s)fyy2+c1(s)g2)𝑑y,\displaystyle=\frac{1}{2}\int_{\mathbb{R}}y^{2n}\left(c_{3}(s)f_{y}^{2}+c_{4}(s)f_{yy}^{2}+c_{1}(s)g^{2}\right)\,dy, (A.2)
E2(s)\displaystyle E_{2}(s) =y2n(12f2+c1(s)fg)𝑑y.\displaystyle=\int_{\mathbb{R}}y^{2n}\left(\frac{1}{2}f^{2}+c_{1}(s)fg\right)\,dy. (A.3)

Then, we have

ddsE1(s)\displaystyle\frac{d}{ds}E_{1}(s) =y2ng2𝑑y+(2n12k+l)c3(s)y2nfy2𝑑y+(2n32k+l)c4(s)y2nfyy2𝑑y\displaystyle=-\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\left(-\frac{2n-1}{2}k+l\right)c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy+\left(-\frac{2n-3}{2}k+l\right)c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy (A.4)
+(2n+12k+m)c1(s)y2ng2𝑑yc2(s)y2ng2𝑑y\displaystyle\quad+\left(-\frac{2n+1}{2}k+m\right)c_{1}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy-c_{2}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy (A.5)
2nc3(s)y2n1fyg𝑑y2n(2n1)c4(s)y2n2fyyg𝑑y4nc4(s)y2n1fyygy𝑑y\displaystyle\quad-2nc_{3}(s)\int_{\mathbb{R}}y^{2n-1}f_{y}g\,dy-2n(2n-1)c_{4}(s)\int_{\mathbb{R}}y^{2n-2}f_{yy}g\,dy-4nc_{4}(s)\int_{\mathbb{R}}y^{2n-1}f_{yy}g_{y}\,dy (A.6)
+c3(s)2y2nfy2𝑑y+c4(s)2y2nfyy2𝑑y+c1(s)2y2ng2𝑑y+y2ngh𝑑y\displaystyle\quad+\frac{c_{3}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy+\frac{c_{4}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy+\frac{c_{1}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\int_{\mathbb{R}}y^{2n}gh\,dy (A.7)

and

ddsE2(s)\displaystyle\frac{d}{ds}E_{2}(s) =c3(s)y2nfy2𝑑yc4(s)y2nfyy2𝑑y+(2n+12k+l)y2nf2𝑑y\displaystyle=-c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy-c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy+\left(-\frac{2n+1}{2}k+l\right)\int_{\mathbb{R}}y^{2n}f^{2}\,dy (A.8)
+c1(s)y2ng2𝑑y+((2n+1)k+l+m)c1(s)y2nfg𝑑yc2(s)y2nfg𝑑y\displaystyle\quad+c_{1}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\left(-(2n+1)k+l+m\right)c_{1}(s)\int_{\mathbb{R}}y^{2n}fg\,dy-c_{2}(s)\int_{\mathbb{R}}y^{2n}fg\,dy (A.9)
2nc3(s)y2n1ffy𝑑y4nc4(s)y2n1fyfyy𝑑y2n(2n1)c4(s)y2n2ffyy𝑑y\displaystyle\quad-2nc_{3}(s)\int_{\mathbb{R}}y^{2n-1}ff_{y}\,dy-4nc_{4}(s)\int_{\mathbb{R}}y^{2n-1}f_{y}f_{yy}\,dy-2n(2n-1)c_{4}(s)\int_{\mathbb{R}}y^{2n-2}ff_{yy}\,dy (A.10)
+c1(s)y2nfg𝑑y+y2nfh𝑑y.\displaystyle\quad+c_{1}^{\prime}(s)\int_{\mathbb{R}}y^{2n}fg\,dy+\int_{\mathbb{R}}y^{2n}fh\,dy. (A.11)
Proof of Lemma A.1.

We calculate

ddsE1(s)\displaystyle\frac{d}{ds}E_{1}(s) =dds[12y2n(c3(s)fy2+c4(s)fyy2+c1(s)g2)𝑑y]\displaystyle=\frac{d}{ds}\left[\frac{1}{2}\int_{\mathbb{R}}y^{2n}\left(c_{3}(s)f_{y}^{2}+c_{4}(s)f_{yy}^{2}+c_{1}(s)g^{2}\right)\,dy\right] (A.12)
=c3(s)y2nfyfys𝑑y+c3(s)2y2nfy2𝑑y\displaystyle=c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}f_{ys}\,dy+\frac{c_{3}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy (A.13)
+c4(s)y2nfyyfyys𝑑y+c4(s)2y2nfyy2𝑑y\displaystyle\quad+c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}f_{yys}\,dy+\frac{c_{4}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy (A.14)
+c1(s)y2nggs𝑑y+c1(s)2y2ng2𝑑y.\displaystyle\quad+c_{1}(s)\int_{\mathbb{R}}y^{2n}gg_{s}\,dy+\frac{c_{1}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}g^{2}\,dy. (A.15)

Using the equation (A.1), we rewrite the above identity as

ddsE1(s)\displaystyle\frac{d}{ds}E_{1}(s) =c3(s)y2nfy(kyfy+lf+g)y𝑑y+c3(s)2y2nfy2𝑑y\displaystyle=c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}(kyf_{y}+lf+g)_{y}\,dy+\frac{c_{3}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy (A.16)
+c4(s)y2nfyy(kyfy+lf+g)yy𝑑y+c4(s)2y2nfyy2𝑑y\displaystyle\quad+c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}(kyf_{y}+lf+g)_{yy}\,dy+\frac{c_{4}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy (A.17)
+c1(s)y2ng(kygy+mg)𝑑yc2(s)y2ng2𝑑yy2ng2𝑑y\displaystyle\quad+c_{1}(s)\int_{\mathbb{R}}y^{2n}g(kyg_{y}+mg)\,dy-c_{2}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy-\int_{\mathbb{R}}y^{2n}g^{2}\,dy (A.18)
+c3(s)y2ngfyy𝑑yc4(s)y2ngfyyyy𝑑y+y2ngh𝑑y\displaystyle\quad+c_{3}(s)\int_{\mathbb{R}}y^{2n}gf_{yy}\,dy-c_{4}(s)\int_{\mathbb{R}}y^{2n}gf_{yyyy}\,dy+\int_{\mathbb{R}}y^{2n}gh\,dy (A.19)
+c1(s)2y2ng2𝑑y.\displaystyle\quad+\frac{c_{1}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}g^{2}\,dy. (A.20)

By noting the relations

y2nfy(yfy)y\displaystyle y^{2n}f_{y}(yf_{y})_{y} =(y2n+12fy2)y2n12y2nfy2,\displaystyle=\left(\frac{y^{2n+1}}{2}f_{y}^{2}\right)_{y}-\frac{2n-1}{2}y^{2n}f_{y}^{2}, (A.21)
y2nfyy(yfy)yy\displaystyle y^{2n}f_{yy}(yf_{y})_{yy} =(y2n+12fyy2)y2n32y2nfyy2,\displaystyle=\left(\frac{y^{2n+1}}{2}f_{yy}^{2}\right)_{y}-\frac{2n-3}{2}y^{2n}f_{yy}^{2}, (A.22)
y2ng(ygy)\displaystyle y^{2n}g(yg_{y}) =(y2n+12g2)y2n+12y2ng2,\displaystyle=\left(\frac{y^{2n+1}}{2}g^{2}\right)_{y}-\frac{2n+1}{2}y^{2n}g^{2}, (A.23)
y2ngfyy\displaystyle y^{2n}gf_{yy} =(y2ngfy)yy2nfygy2ny2n1fyg,\displaystyle=\left(y^{2n}gf_{y}\right)_{y}-y^{2n}f_{y}g_{y}-2ny^{2n-1}f_{y}g, (A.24)
y2ngfyyyy\displaystyle y^{2n}gf_{yyyy} =(y2ngfyyy)y((y2ng)yfyy)y\displaystyle=\left(y^{2n}gf_{yyy}\right)_{y}-\left((y^{2n}g)_{y}f_{yy}\right)_{y} (A.25)
+(2n(2n1)y2n2g+4ny2n1gy+y2ngyy)fyy,\displaystyle\quad+\left(2n(2n-1)y^{2n-2}g+4ny^{2n-1}g_{y}+y^{2n}g_{yy}\right)f_{yy}, (A.26)

we have

ddsE1(s)\displaystyle\frac{d}{ds}E_{1}(s) =(2n12k+l)c3(s)y2nfy2𝑑y+c3(s)y2nfygy𝑑y+c3(s)2y2nfy2𝑑y\displaystyle=\left(-\frac{2n-1}{2}k+l\right)c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy+c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}g_{y}\,dy+\frac{c_{3}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy (A.27)
+(2n32k+l)c4(s)y2nfyy2𝑑y+c4(s)y2nfyygyy𝑑y+c4(s)2y2nfyy2𝑑y\displaystyle\quad+\left(-\frac{2n-3}{2}k+l\right)c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy+c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}g_{yy}\,dy+\frac{c_{4}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy (A.28)
+(2n+12k+m)c1(s)y2ng2𝑑yc2(s)y2ng2𝑑yy2ng2𝑑y\displaystyle\quad+\left(-\frac{2n+1}{2}k+m\right)c_{1}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy-c_{2}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy-\int_{\mathbb{R}}y^{2n}g^{2}\,dy (A.29)
c3(s)y2nfygy𝑑y2nc3(s)y2n1fyg𝑑y\displaystyle\quad-c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}g_{y}\,dy-2nc_{3}(s)\int_{\mathbb{R}}y^{2n-1}f_{y}g\,dy (A.30)
2n(2n1)c4(s)y2n2fyyg𝑑y4nc4(s)y2n1fyygy𝑑yc4(s)y2nfyygyy𝑑y\displaystyle\quad-2n(2n-1)c_{4}(s)\int_{\mathbb{R}}y^{2n-2}f_{yy}g\,dy-4nc_{4}(s)\int_{\mathbb{R}}y^{2n-1}f_{yy}g_{y}\,dy-c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}g_{yy}\,dy (A.31)
+y2ngh𝑑y+c1(s)2y2ng2𝑑y.\displaystyle\quad+\int_{\mathbb{R}}y^{2n}gh\,dy+\frac{c_{1}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}g^{2}\,dy. (A.32)

Thus, we conclude

ddsE1(s)\displaystyle\frac{d}{ds}E_{1}(s) =y2ng2𝑑y+(2n12k+l)c3(s)y2nfy2𝑑y+(2n32k+l)c4(s)y2nfyy2𝑑y\displaystyle=-\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\left(-\frac{2n-1}{2}k+l\right)c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy+\left(-\frac{2n-3}{2}k+l\right)c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy (A.33)
+(2n+12k+m)c1(s)y2ng2𝑑yc2(s)y2ng2𝑑y\displaystyle\quad+\left(-\frac{2n+1}{2}k+m\right)c_{1}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy-c_{2}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy (A.34)
2nc3(s)y2n1fyg𝑑y2n(2n1)c4(s)y2n2fyyg𝑑y4nc4(s)y2n1fyygy𝑑y\displaystyle\quad-2nc_{3}(s)\int_{\mathbb{R}}y^{2n-1}f_{y}g\,dy-2n(2n-1)c_{4}(s)\int_{\mathbb{R}}y^{2n-2}f_{yy}g\,dy-4nc_{4}(s)\int_{\mathbb{R}}y^{2n-1}f_{yy}g_{y}\,dy (A.35)
+c3(s)2y2nfy2𝑑y+c4(s)2y2nfyy2𝑑y+c1(s)2y2ng2𝑑y+y2ngh𝑑y.\displaystyle\quad+\frac{c_{3}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy+\frac{c_{4}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy+\frac{c_{1}^{\prime}(s)}{2}\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\int_{\mathbb{R}}y^{2n}gh\,dy. (A.36)

This gives the desired identity for E1(s)E_{1}(s). Next, we compute

ddsE2(s)\displaystyle\frac{d}{ds}E_{2}(s) =dds[y2n(12f2+c1(s)fg)𝑑y]\displaystyle=\frac{d}{ds}\left[\int_{\mathbb{R}}y^{2n}\left(\frac{1}{2}f^{2}+c_{1}(s)fg\right)\,dy\right] (A.37)
=y2nffs𝑑y+c1(s)y2nfsg𝑑y+c1(s)y2nfgs𝑑y+c1(s)y2nfg𝑑y.\displaystyle=\int_{\mathbb{R}}y^{2n}ff_{s}\,dy+c_{1}(s)\int_{\mathbb{R}}y^{2n}f_{s}g\,dy+c_{1}(s)\int_{\mathbb{R}}y^{2n}fg_{s}\,dy+c_{1}^{\prime}(s)\int_{\mathbb{R}}y^{2n}fg\,dy. (A.38)

Using the equation (A.1), we rewrite the above identity as

ddsE2(s)\displaystyle\frac{d}{ds}E_{2}(s) =y2nf(kyfy+lf+g)𝑑y+c1(s)y2n(kyfy+lf+g)g𝑑y\displaystyle=\int_{\mathbb{R}}y^{2n}f(kyf_{y}+lf+g)\,dy+c_{1}(s)\int_{\mathbb{R}}y^{2n}(kyf_{y}+lf+g)g\,dy (A.39)
+c1(s)y2nf(kygy+mg)𝑑yc2(s)y2nfg𝑑yy2nfg𝑑y\displaystyle\quad+c_{1}(s)\int_{\mathbb{R}}y^{2n}f(kyg_{y}+mg)\,dy-c_{2}(s)\int_{\mathbb{R}}y^{2n}fg\,dy-\int_{\mathbb{R}}y^{2n}fg\,dy (A.40)
+c3(s)y2nffyy𝑑yc4(s)y2nffyyyy𝑑y\displaystyle\quad+c_{3}(s)\int_{\mathbb{R}}y^{2n}ff_{yy}\,dy-c_{4}(s)\int_{\mathbb{R}}y^{2n}ff_{yyyy}\,dy (A.41)
+y2nfh𝑑y+c1(s)y2nfg𝑑y.\displaystyle\quad+\int_{\mathbb{R}}y^{2n}fh\,dy+c_{1}^{\prime}(s)\int_{\mathbb{R}}y^{2n}fg\,dy. (A.42)

By noting the relations

y2nf(yfy)\displaystyle y^{2n}f(yf_{y}) =(y2n+12f2)y2n+12y2nf2,\displaystyle=\left(\frac{y^{2n+1}}{2}f^{2}\right)_{y}-\frac{2n+1}{2}y^{2n}f^{2}, (A.43)
y2nf(ygy)\displaystyle y^{2n}f(yg_{y}) =(y2n+1fg)yy2n+1fyg(2n+1)y2nfg,\displaystyle=\left(y^{2n+1}fg\right)_{y}-y^{2n+1}f_{y}g-(2n+1)y^{2n}fg, (A.44)
y2nffyy\displaystyle y^{2n}ff_{yy} =(y2nffy)yy2nfy22ny2n1ffy,\displaystyle=\left(y^{2n}ff_{y}\right)_{y}-y^{2n}f_{y}^{2}-2ny^{2n-1}ff_{y}, (A.45)
y2nffyyyy\displaystyle y^{2n}ff_{yyyy} =(y2nffyyy)y((y2nf)yfyy)y\displaystyle=\left(y^{2n}ff_{yyy}\right)_{y}-\left((y^{2n}f)_{y}f_{yy}\right)_{y} (A.46)
+(2n(2n1)y2n2f+4ny2n1fy+y2nfyy)fyy,\displaystyle\quad+(2n(2n-1)y^{2n-2}f+4ny^{2n-1}f_{y}+y^{2n}f_{yy})f_{yy}, (A.47)

we have

ddsE2(s)\displaystyle\frac{d}{ds}E_{2}(s) =(2n+12k+l)y2nf2𝑑y+y2nfg𝑑y\displaystyle=\left(-\frac{2n+1}{2}k+l\right)\int_{\mathbb{R}}y^{2n}f^{2}\,dy+\int_{\mathbb{R}}y^{2n}fg\,dy (A.48)
+kc1(s)y2n+1fyg𝑑y+lc1(s)y2nfg𝑑y+c1(s)y2ng2𝑑y\displaystyle\quad+kc_{1}(s)\int_{\mathbb{R}}y^{2n+1}f_{y}g\,dy+lc_{1}(s)\int_{\mathbb{R}}y^{2n}fg\,dy+c_{1}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy (A.49)
kc1(s)y2n+1fyg𝑑y+((2n+1)k+m)c1(s)y2nfg𝑑y\displaystyle\quad-kc_{1}(s)\int_{\mathbb{R}}y^{2n+1}f_{y}g\,dy+\left(-(2n+1)k+m\right)c_{1}(s)\int_{\mathbb{R}}y^{2n}fg\,dy (A.50)
c2(s)y2nfg𝑑yy2nfg𝑑y\displaystyle\quad-c_{2}(s)\int_{\mathbb{R}}y^{2n}fg\,dy-\int_{\mathbb{R}}y^{2n}fg\,dy (A.51)
c3(s)y2nfy2𝑑y2nc3(s)y2n1ffy𝑑y\displaystyle\quad-c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy-2nc_{3}(s)\int_{\mathbb{R}}y^{2n-1}ff_{y}\,dy (A.52)
2n(2n1)c4(s)y2n2ffyy𝑑y4nc4(s)y2n1fyfyy𝑑yc4(s)y2nfyy2𝑑y\displaystyle\quad-2n(2n-1)c_{4}(s)\int_{\mathbb{R}}y^{2n-2}ff_{yy}\,dy-4nc_{4}(s)\int_{\mathbb{R}}y^{2n-1}f_{y}f_{yy}\,dy-c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy (A.53)
+y2nfh𝑑y+c1(s)y2nfg𝑑y.\displaystyle\quad+\int_{\mathbb{R}}y^{2n}fh\,dy+c_{1}^{\prime}(s)\int_{\mathbb{R}}y^{2n}fg\,dy. (A.54)

Thus, we conclude

ddsE2(s)\displaystyle\frac{d}{ds}E_{2}(s) =c3(s)y2nfy2𝑑yc4(s)y2nfyy2𝑑y+(2n+12k+l)y2nf2𝑑y\displaystyle=-c_{3}(s)\int_{\mathbb{R}}y^{2n}f_{y}^{2}\,dy-c_{4}(s)\int_{\mathbb{R}}y^{2n}f_{yy}^{2}\,dy+\left(-\frac{2n+1}{2}k+l\right)\int_{\mathbb{R}}y^{2n}f^{2}\,dy (A.55)
+c1(s)y2ng2𝑑y+((2n+1)k+l+m)c1(s)y2nfg𝑑yc2(s)y2nfg𝑑y\displaystyle\quad+c_{1}(s)\int_{\mathbb{R}}y^{2n}g^{2}\,dy+\left(-(2n+1)k+l+m\right)c_{1}(s)\int_{\mathbb{R}}y^{2n}fg\,dy-c_{2}(s)\int_{\mathbb{R}}y^{2n}fg\,dy (A.56)
2nc3(s)y2n1ffy𝑑y4nc4(s)y2n1fyfyy𝑑y2n(2n1)c4(s)y2n2ffyy𝑑y\displaystyle\quad-2nc_{3}(s)\int_{\mathbb{R}}y^{2n-1}ff_{y}\,dy-4nc_{4}(s)\int_{\mathbb{R}}y^{2n-1}f_{y}f_{yy}\,dy-2n(2n-1)c_{4}(s)\int_{\mathbb{R}}y^{2n-2}ff_{yy}\,dy (A.57)
+c1(s)y2nfg𝑑y+y2nfh𝑑y.\displaystyle\quad+c_{1}^{\prime}(s)\int_{\mathbb{R}}y^{2n}fg\,dy+\int_{\mathbb{R}}y^{2n}fh\,dy. (A.58)

This completes the proof. ∎

Appendix B Local existence

We discuss the local existence and basic properties of solutions to (1.1). Let X=H3,0()×H1,0()X=H^{3,0}(\mathbb{R})\times H^{1,0}(\mathbb{R}) and

U:=(utu),U0:=(u0u1).U:=\begin{pmatrix}u\\ \partial_{t}u\end{pmatrix},\quad U_{0}:=\begin{pmatrix}u_{0}\\ u_{1}\end{pmatrix}.

Let D(A)=H5,0()×H3,0()D(A)=H^{5,0}(\mathbb{R})\times H^{3,0}(\mathbb{R}) and define

A=(01x40),𝒯(t)=exp(tA).A=\begin{pmatrix}0&1\\ -\partial_{x}^{4}&0\end{pmatrix},\quad\mathcal{T}(t)=\exp(tA).

We also define

K(σ;U(s))=(0b(σ)tu(s)+a(σ)x2u(s)+xN(xu(s))),K(\sigma;U(s))=\begin{pmatrix}0\\ -b(\sigma)\partial_{t}u(s)+a(\sigma)\partial_{x}^{2}u(s)+\partial_{x}N(\partial_{x}u(s))\end{pmatrix},

namely, σ\sigma and ss denote the variables for the coefficients a(t),b(t)a(t),b(t) and the unknown uu, respectively.

Now, we introduce the definition of the strong solution and the mild solution.

Definition B.1.

Let I=[0,T]I=[0,T] with some T>0T>0 or I=[0,)I=[0,\infty). We say that a function uu (or U=(u,tu)tU={}^{t}(u,\partial_{t}u)) is a strong solution to (1.1) on II if

{UC(I;D(A))C1(I;X),ddtU(t)=AU(t)+K(t;U(t))onI,U(0)=U0.\left\{\begin{aligned} &U\in C(I;D(A))\cap C^{1}(I;X),\\ &\dfrac{d}{dt}U(t)=AU(t)+K(t;U(t))\quad\text{on}\ I,\\ &U(0)=U_{0}.\end{aligned}\right.

Also, we say that a function uu (or U=(u,tu)tU={}^{t}(u,\partial_{t}u)) is a mild solution to (1.1) on II if

{UC(I;X),U(t)=𝒯(t)U0+0t𝒯(ts)K(s;U(s))𝑑sinC(I;X).\left\{\begin{aligned} &U\in C(I;X),\\ &U(t)=\mathcal{T}(t)U_{0}+\int_{0}^{t}\mathcal{T}(t-s)K(s;U(s))\,ds\quad\text{in}\ C(I;X).\\ \end{aligned}\right.
Proposition B.2.

(i) (Local existence) For any U0XU_{0}\in X, there exists T>0T>0 such that there exists a mild solution to (1.1) on [0,T][0,T].

(ii) (Uniqueness) Let T>0T>0. If UU and VV are mild solutions in C([0,T];X)C([0,T];X) with the same initial condition U(0)=V(0)=U0U(0)=V(0)=U_{0}, then U=VU=V.

(iii) (Blow-up alternative) Let Tmax=Tmax(U0)T_{\max}=T_{\max}(U_{0}) be

Tmax=sup{T(0,];UC([0,T];X):a mild solution to (1.1)}.T_{\max}=\sup\{T\in(0,\infty];\,\exists U\in C([0,T];X):\text{a mild solution to \eqref{eq:ndb}}\}.

If Tmax<T_{\max}<\infty, then limtTmax0U(t)X=\lim_{t\to T_{\max-0}}\|U(t)\|_{X}=\infty.

(iv) (Continuous dependence on the initial data) Let U0XU_{0}\in X and {U0(j)}j=1\{U_{0}^{(j)}\}_{j=1}^{\infty} a sequence in XX satisfying limjU0(j)U0X=0\lim_{j\to\infty}\|U_{0}^{(j)}-U_{0}\|_{X}=0. Let UU and U(j)U^{(j)} be the corresponding mild solutions to the initial data U0U_{0} and U0(j)U_{0}^{(j)}, respectively. Then, for any fixed T(0,Tmax(U0))T\in(0,T_{\max}(U_{0})), we have Tmax(U0(j))>TT_{\max}(U_{0}^{(j)})>T for sufficiently large jj and

limjsupt[0,T]U(j)(t)U(t)X=0.\lim_{j\to\infty}\sup_{t\in[0,T]}\|U^{(j)}(t)-U(t)\|_{X}=0.

(v) (Regularity) Let T>0T>0. If U0D(A)U_{0}\in D(A), then the mild solution in (i) on [0,T][0,T] becomes a strong solution on [0,T][0,T].

(vi) (Small data almost global existence) For any T>0T>0, there exists ε0>0\varepsilon_{0}>0 such that if U0X<ε0\|U_{0}\|_{X}<\varepsilon_{0}, then the corresponding mild solution UU can be extended to [0,T][0,T].

(vii) (Boundedness of weighted norm) Let T>0T>0 and Y:=H2,1()×H0,1()Y:=H^{2,1}(\mathbb{R})\times H^{0,1}(\mathbb{R}). If U0XYU_{0}\in X\cap Y, then the corresponding mild solution UU on [0,T][0,T] belongs to C([0,T];XY)C([0,T];X\cap Y).

Proof.

Let T0>0T_{0}>0 be fixed. Then, a(t),b(t)a(t),b(t) are positive, and they and their first derivatives are bounded by some constant CT0>0C_{T_{0}}>0 on [0,T0][0,T_{0}]. Let T(0,T0]T\in(0,T_{0}]. Then, for any U=(u,v)tXU={}^{t}(u,v)\in X and t[0,T]t\in[0,T], we have

K(t;U)X\displaystyle\|K(t;U)\|_{X} =b(t)tu+a(t)x2u+xN(xu)H1\displaystyle=\left\|-b(t)\partial_{t}u+a(t)\partial_{x}^{2}u+\partial_{x}N(\partial_{x}u)\right\|_{H^{1}} (B.1)
CT0(tuH1+x2uH1)\displaystyle\leq C_{T_{0}}\left(\|\partial_{t}u\|_{H^{1}}+\|\partial_{x}^{2}u\|_{H^{1}}\right) (B.2)
+C(xuW1,+xuW1,p1)x2uH1<,\displaystyle\quad+C\left(\|\partial_{x}u\|_{W^{1,\infty}}+\|\partial_{x}u\|_{W^{1,\infty}}^{p-1}\right)\|\partial_{x}^{2}u\|_{H^{1}}<\infty, (B.3)

that is, K(t;):XXK(t;\cdot):X\to X. Moreover, for M>0M>0 and U=(u,v)t,W=(w,z)tBM={UX;UXM}U={}^{t}(u,v),W={}^{t}(w,z)\in B_{M}=\{U\in X;\|U\|_{X}\leq M\}, we calculate

K(t;U)K(t;W)X\displaystyle\|K(t;U)-K(t;W)\|_{X} CT0(vzH1+uwH3)\displaystyle\leq C_{T_{0}}\left(\|v-z\|_{H^{1}}+\|u-w\|_{H^{3}}\right) (B.4)
+C(uW2,+wW2,)uwH3\displaystyle\quad+C\left(\|u\|_{W^{2,\infty}}+\|w\|_{W^{2,\infty}}\right)\|u-w\|_{H^{3}} (B.5)
+C(|uW2,+wW2,)p1uwH3\displaystyle\quad+C\left(|u\|_{W^{2,\infty}}+\|w\|_{W^{2,\infty}}\right)^{p-1}\|u-w\|_{H^{3}} (B.6)
CT0,MUWX.\displaystyle\leq C_{T_{0},M}\|U-W\|_{X}. (B.7)

Therefore, K(t;)K(t;\cdot) is locally Lipschitz continuous in XX. Therefore, from the proofs of [3, Lemmas 4.3.2, Proposition 4.3.3], there exist T>0T>0 and a unique mild solution uu on I=[0,T]I=[0,T]. Also, [3, Theorem 4.3.4] shows the property (iii). Moreover, by [3, Proposition 4.3.7], the continuous dependence on the initial data. This proves (i)–(iv).

Next, we prove (iv) along with the argument of [3, Lemma 4.3.9]. Take U0D(A)U_{0}\in D(A) and T(0,Tmax)T\in(0,T_{\max}). Let h>0h>0, t[0,Th]t\in[0,T-h], and M:=sups[0,T]U(s)XM:=\sup_{s\in[0,T]}\|U(s)\|_{X}. Consider

U(t+h)U(t)\displaystyle U(t+h)-U(t) =𝒯(h)𝒯(t)U0𝒯(t)U0\displaystyle=\mathcal{T}(h)\mathcal{T}(t)U_{0}-\mathcal{T}(t)U_{0} (B.8)
+0t𝒯(s){K(t+hs;U(t+hs))K(ts;U(ts)))}ds\displaystyle\quad+\int_{0}^{t}\mathcal{T}(s)\left\{K(t+h-s;U(t+h-s))-K(t-s;U(t-s))\right)\}\,ds (B.9)
+0h𝒯(t+s)K(hs;U(hs))𝑑s\displaystyle\quad+\int_{0}^{h}\mathcal{T}(t+s)K(h-s;U(h-s))\,ds (B.10)
=:J1+J2+J3.\displaystyle=:J_{1}+J_{2}+J_{3}. (B.11)

For J1,J2J_{1},J_{2}, we estimate

J1X\displaystyle\|J_{1}\|_{X} 𝒯(h)U0U0X=0h𝒯(s)AU0𝑑sXhAU0X,\displaystyle\leq\|\mathcal{T}(h)U_{0}-U_{0}\|_{X}=\left\|\int_{0}^{h}\mathcal{T}(s)AU_{0}\,ds\right\|_{X}\leq h\|AU_{0}\|_{X}, (B.12)
J3X\displaystyle\|J_{3}\|_{X} hsups[0,T]K(s;U(s))X.\displaystyle\leq h\sup_{s\in[0,T]}\|K(s;U(s))\|_{X}. (B.13)

For J2J_{2}, using the Lipschitz continuity of a,b:[0,T]a,b:[0,T]\to\mathbb{R} and K(s:):XXK(s:\cdot):X\to X, we can show

J2X\displaystyle\|J_{2}\|_{X} 0tK(t+hs;U(t+hs))K(t+hs;U(ts))X𝑑s\displaystyle\leq\int_{0}^{t}\|K(t+h-s;U(t+h-s))-K(t+h-s;U(t-s))\|_{X}\,ds (B.14)
+0tK(t+hs;U(ts))K(ts;U(ts))X𝑑s\displaystyle\quad+\int_{0}^{t}\|K(t+h-s;U(t-s))-K(t-s;U(t-s))\|_{X}\,ds (B.15)
CT0,Mh+CT0,M0tU(s+h)U(s)X𝑑s.\displaystyle\leq C_{T_{0},M}h+C_{T_{0},M}\int_{0}^{t}\|U(s+h)-U(s)\|_{X}\,ds. (B.16)

Then, the Gronwall inequality implies

U(t+h)U(t)XCT0,Mh,\|U(t+h)-U(t)\|_{X}\leq C_{T_{0},M}h,

that is, U:[0,T]XU:[0,T]\to X is Lipschitz continuous. This further leads to

K(t;U(t))K(s;U(s))X\displaystyle\|K(t;U(t))-K(s;U(s))\|_{X} K(t;U(t))K(s;U(t))X+K(s;U(t))K(s;U(s))X\displaystyle\leq\|K(t;U(t))-K(s;U(t))\|_{X}+\|K(s;U(t))-K(s;U(s))\|_{X} (B.17)
CT0,M|ts|,\displaystyle\leq C_{T_{0},M}|t-s|, (B.18)

i.e., K(;U()):[0,T]XK(\cdot;U(\cdot)):[0,T]\to X is Lipschitz continuous, and hence, K(;U())W1,1((0,T);X)K(\cdot;U(\cdot))\in W^{1,1}((0,T);X). This enables us to apply [3, Lemma 4.16] and uu becomes a strong solution. This proves (v).

Next, we prove (vi). Let T>0T>0 be arbitrary fixed, I:=[0,T]I:=[0,T], and

CT,a,b:=0T(|a(s)|+|b(s)|)𝑑s.C_{T,a,b}:=\int_{0}^{T}(|a(s)|+|b(s)|)\,ds.

Let ε>0\varepsilon>0 be sufficiently small so that 2(1+CT,a,b)ε<12(1+C_{T,a,b})\varepsilon<1 and let ε={UC([0,T];X);supt[0,T]U(t)X2(1+CT,a,b)ε}\mathcal{B}_{\varepsilon}=\{U\in C([0,T];X);\,\sup_{t\in[0,T]}\|U(t)\|_{X}\leq 2(1+C_{T,a,b})\varepsilon\}. Define a map Φ:C(I:X)C(I;X)\Phi:C(I:X)\to C(I;X) by

Φ[U](t):=𝒯(t)U0+0t𝒯(ts)K(s;U(s))𝑑s.\Phi[U](t):=\mathcal{T}(t)U_{0}+\int_{0}^{t}\mathcal{T}(t-s)K(s;U(s))\,ds.

Then, for U0U_{0} satisfying U0Xε\|U_{0}\|_{X}\leq\varepsilon and U=(u,v)tεU={}^{t}(u,v)\in\mathcal{B}_{\varepsilon}, we see that

Φ[U](t)X\displaystyle\|\Phi[U](t)\|_{X} 𝒯(t)U0X+0t𝒯(ts)K(s;U(s))X𝑑s\displaystyle\leq\|\mathcal{T}(t)U_{0}\|_{X}+\int_{0}^{t}\|\mathcal{T}(t-s)K(s;U(s))\|_{X}\,ds (B.19)
U0X+0t(|b(s)|v(s)H1+|a(s)|x2u(s)H1)𝑑s\displaystyle\leq\|U_{0}\|_{X}+\int_{0}^{t}\left(|b(s)|\|v(s)\|_{H^{1}}+|a(s)|\|\partial_{x}^{2}u(s)\|_{H^{1}}\right)\,ds (B.20)
+0txN(xu(s))H1𝑑s\displaystyle\quad+\int_{0}^{t}\|\partial_{x}N(\partial_{x}u(s))\|_{H^{1}}\,ds (B.21)
(1+CT,a,b)ε+TCN(2(1+CT,a,b)ε)2,\displaystyle\leq(1+C_{T,a,b})\varepsilon+TC_{N}(2(1+C_{T,a,b})\varepsilon)^{2}, (B.22)

where CN>0C_{N}>0 is a constant depending only on the nonlinearity NN. Similarly, we have, for U,VεU,V\in\mathcal{B}_{\varepsilon},

Φ[U](t)Φ[V](t)X\displaystyle\|\Phi[U](t)-\Phi[V](t)\|_{X} 0tK(s;U(s))K(s;V(s))X𝑑s\displaystyle\leq\int_{0}^{t}\|K(s;U(s))-K(s;V(s))\|_{X}\,ds (B.23)
TC~N(2(1+CT,a,b)ε)sups[0,T]U(s)V(s)X,\displaystyle\leq T\tilde{C}_{N}(2(1+C_{T,a,b})\varepsilon)\sup_{s\in[0,T]}\|U(s)-V(s)\|_{X}, (B.24)

C~N>0\tilde{C}_{N}>0 is a constant depending only on the nonlinearity NN. Therefore, taking ε\varepsilon further small so that

TCN(2(1+CT,a,b)ε)1,TC~N(2(1+CT,a,b)ε)12,TC_{N}(2(1+C_{T,a,b})\varepsilon)\leq 1,\quad T\tilde{C}_{N}(2(1+C_{T,a,b})\varepsilon)\leq\frac{1}{2},

we see that Φ\Phi is a contraction mapping on ε\mathcal{B}_{\varepsilon}. This and the uniqueness of mild solution imply that the mild solution obtained in (i) can be extended to [0,T][0,T].

Finally, we prove (vii). Let T>0T>0, I=[0,T]I=[0,T], U0YU_{0}\in Y, and let UU be the corresponding mild solution on [0,T][0,T] to the initial data U0U_{0}. We put M:=suptIU(t)XM:=\sup_{t\in I}\|U(t)\|_{X}. In order to justify the following energy method, we take a sequence {U0(j)}j=1\{U_{0}^{(j)}\}_{j=1}^{\infty} from [C0()]2[C_{0}^{\infty}(\mathbb{R})]^{2} such that limjU0(j)=U0\lim_{j\to\infty}U_{0}^{(j)}=U_{0} in XYX\cap Y. Then, the corresponding strong solution U(j)C(I;D(A))C1(I;X)U^{(j)}\in C(I;D(A))\cap C^{1}(I;X) to the data U0(j)U_{0}^{(j)} satisfies limjU(j)=U\lim_{j\to\infty}U^{(j)}=U in C(I;X)C(I;X) by the continuous dependence on the initial data. In particular, taking sufficiently large jj, we may suppose that supj,tIU(j)(t)X2M\sup_{j\in\mathbb{N},t\in I}\|U^{(j)}(t)\|_{X}\leq 2M.

Let

χC0(),0χ1,χ(x)={1(|x|1),0(|x|2),\displaystyle\chi\in C_{0}^{\infty}(\mathbb{R}),\quad 0\leq\chi\leq 1,\quad\chi(x)=\begin{cases}1&(|x|\leq 1),\\ 0&(|x|\geq 2),\end{cases}
χn(x):=χ(xn)(n).\displaystyle\chi_{n}(x):=\chi\left(\frac{x}{n}\right)\quad(n\in\mathbb{N}).

By suppχn[2n,2n]\mathrm{supp}\,\chi_{n}\subset[-2n,2n], we easily see that

|x(x2χn(x)2)|\displaystyle|\partial_{x}(x^{2}\chi_{n}(x)^{2})| =|2xχn(x)2+2x2nχ(xn)χn(x)|C|x|χn(x),\displaystyle=\left|2x\chi_{n}(x)^{2}+2\frac{x^{2}}{n}\chi^{\prime}\left(\frac{x}{n}\right)\chi_{n}(x)\right|\leq C|x|\chi_{n}(x), (B.25)
|x2(x2χn(x)2)|\displaystyle|\partial_{x}^{2}(x^{2}\chi_{n}(x)^{2})| =|2χn(x)2+4xnχ(xn)χn(x)+2x2n2((χ(xn))2+χ′′(xn)χn(x))|\displaystyle=\left|2\chi_{n}(x)^{2}+4\frac{x}{n}\chi^{\prime}\left(\frac{x}{n}\right)\chi_{n}(x)+2\frac{x^{2}}{n^{2}}\left(\left(\chi^{\prime}\left(\frac{x}{n}\right)\right)^{2}+\chi^{\prime\prime}\left(\frac{x}{n}\right)\chi_{n}(x)\right)\right| (B.26)
C\displaystyle\leq C (B.27)

with some constant C>0C>0. Denote U=(u,tu)tU={}^{t}(u,\partial_{t}u), U(j)=(u(j),tu(j))tU^{(j)}={}^{t}(u^{(j)},\partial_{t}u^{(j)}), and consider

En(t;u)\displaystyle E_{n}(t;u) :=x2χn(x)2(|tu(t,x)|2+a(t)|xu(x)|2+|x2u(t,x)|2+|u(t,x)|2)𝑑x,\displaystyle:=\int_{\mathbb{R}}x^{2}\chi_{n}(x)^{2}\left(|\partial_{t}u(t,x)|^{2}+a(t)|\partial_{x}u(x)|^{2}+|\partial_{x}^{2}u(t,x)|^{2}+|u(t,x)|^{2}\right)\,dx,
E(t;u)\displaystyle E(t;u) :=x2(|tu(t,x)|2+a(t)|xu(x)|2+|x2u(t,x)|2+|u(t,x)|2)𝑑x.\displaystyle:=\int_{\mathbb{R}}x^{2}\left(|\partial_{t}u(t,x)|^{2}+a(t)|\partial_{x}u(x)|^{2}+|\partial_{x}^{2}u(t,x)|^{2}+|u(t,x)|^{2}\right)\,dx.

Note that En(t;u(j))E_{n}(t;u^{(j)}) is finite thanks to χn\chi_{n}. Differentiating it, we have

ddtEn(t;u(j))\displaystyle\frac{d}{dt}E_{n}(t;u^{(j)}) =2x2χn(x)2(tu(j)t2u(j)+a(t)xu(j)txu(j)+x2u(j)tx2u(j))𝑑x\displaystyle=2\int_{\mathbb{R}}x^{2}\chi_{n}(x)^{2}\left(\partial_{t}u^{(j)}\partial_{t}^{2}u^{(j)}+a(t)\partial_{x}u^{(j)}\partial_{t}\partial_{x}u^{(j)}+\partial_{x}^{2}u^{(j)}\partial_{t}\partial_{x}^{2}u^{(j)}\right)\,dx (B.28)
+2x2χn(x)2u(j)tu(j)dx+x2χn(x)2a(t)|xu(j)|2𝑑x.\displaystyle\quad+2\int_{\mathbb{R}}x^{2}\chi_{n}(x)^{2}u^{(j)}\partial_{t}u^{(j)}\,dx+\int_{\mathbb{R}}x^{2}\chi_{n}(x)^{2}a^{\prime}(t)|\partial_{x}u^{(j)}|^{2}\,dx. (B.29)

By the integration by parts and using the equation (1.1), the right-hand side can be written as

2x2χn(x)2tu(j)(b(t)tu(j)+xN(xu(j)))dx\displaystyle 2\int_{\mathbb{R}}x^{2}\chi_{n}(x)^{2}\partial_{t}u^{(j)}\left(-b(t)\partial_{t}u^{(j)}+\partial_{x}N(\partial_{x}u^{(j)})\right)\,dx (B.30)
2x(x2χn(x)2)a(t)xu(j)tu(j)dx\displaystyle\quad-2\int_{\mathbb{R}}\partial_{x}(x^{2}\chi_{n}(x)^{2})a(t)\partial_{x}u^{(j)}\partial_{t}u^{(j)}\,dx (B.31)
+4x(x2χn(x)2)a(t)x3u(j)tu(j)dx+2x2(x2χn(x)2)a(t)x2u(j)tu(j)dx\displaystyle\quad+4\int_{\mathbb{R}}\partial_{x}(x^{2}\chi_{n}(x)^{2})a(t)\partial_{x}^{3}u^{(j)}\partial_{t}u^{(j)}\,dx+2\int_{\mathbb{R}}\partial_{x}^{2}(x^{2}\chi_{n}(x)^{2})a(t)\partial_{x}^{2}u^{(j)}\partial_{t}u^{(j)}\,dx (B.32)
+2x2χn(x)2u(j)tu(j)dx+x2χn(x)2a(t)|xu(j)|2𝑑x.\displaystyle\quad+2\int_{\mathbb{R}}x^{2}\chi_{n}(x)^{2}u^{(j)}\partial_{t}u^{(j)}\,dx+\int_{\mathbb{R}}x^{2}\chi_{n}(x)^{2}a^{\prime}(t)|\partial_{x}u^{(j)}|^{2}\,dx. (B.33)

The above quantity can be further estimated by

C(2M)2+CT,a,b,MEn(t;u(j))C(2M)^{2}+C_{T,a,b,M}E_{n}(t;u^{(j)})

with some constants C,CT,a,b,M>0C,C_{T,a,b,M}>0. Hence, the Gronwall inequality implies

En(t;u(j))C~T,a,b,M,E_{n}(t;u^{(j)})\leq\tilde{C}_{T,a,b,M},

where the constant C~T,a,b,M\tilde{C}_{T,a,b,M} is independent of nn and jj. Letting jj\to\infty first and using the continuous dependence on the initial data, we have

x2χn(x)2(|tu(t,x)|2+a(t)|xu(x)|2+|x2u(t,x)|2+|u(t,x)|2)𝑑xC~T,a,b,M.\int_{\mathbb{R}}x^{2}\chi_{n}(x)^{2}\left(|\partial_{t}u(t,x)|^{2}+a(t)|\partial_{x}u(x)|^{2}+|\partial_{x}^{2}u(t,x)|^{2}+|u(t,x)|^{2}\right)\,dx\leq\tilde{C}_{T,a,b,M}.

Then, letting nn\to\infty, we conclude

x2(|tu(t,x)|2+a(t)|xu(x)|2+|x2u(t,x)|2+|u(t,x)|2)𝑑xC~T,a,b,M,\int_{\mathbb{R}}x^{2}\left(|\partial_{t}u(t,x)|^{2}+a(t)|\partial_{x}u(x)|^{2}+|\partial_{x}^{2}u(t,x)|^{2}+|u(t,x)|^{2}\right)\,dx\leq\tilde{C}_{T,a,b,M},

which shows U(t)YU(t)\in Y for any t[0,T]t\in[0,T]. The continuity of U(t)Y\|U(t)\|_{Y} in tt follows from the estimate

|En(t;u(j))En(s;u(j))|\displaystyle|E_{n}(t;u^{(j)})-E_{n}(s;u^{(j)})| st|ddσEn(σ;u(j))|𝑑σCT,a,b,M(ts)\displaystyle\leq\int_{s}^{t}\left|\frac{d}{d\sigma}E_{n}(\sigma;u^{(j)})\right|\,d\sigma\leq C_{T,a,b,M}(t-s) (B.34)

for s<ts<t and taking the limits jj\to\infty and nn\to\infty.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP18H01132, JP20K14346.

References

  • [1] J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399–418.
  • [2] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.
  • [3] Th. Cazenave, A. Haraux, An introduction to semilinear evolution equations, Oxford University Press, 1998.
  • [4] M. D’Abbicco, M.-R. Ebert, Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients, Asymptotic Analysis 123 (2021), 1–40.
  • [5] Th. Gallay, G. Raugel, Scaling variables and asymptotic expansions in damped wave equations, J. Differential Equations, 150 (1998), 42–97.
  • [6] C. Lizama, M. Murillo-Arcila, On the dynamics of the damped extensible beam 1D-equation, J. Math. Anal. Appl., 522 (2023), Paper No. 126954, 10 pp.
  • [7] P. Marcati, K. Nishihara, The LpL^{p}-LqL^{q} estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differential Equations, 191 (2003), 445–469.
  • [8] K. Mochizuki, Scattering theory for wave equations with dissipative terms, Publ. Res. Inst. Math. Sci., 12 (1976), 383–390.
  • [9] K. Nishihara, Asymptotic profile of solutions for 1-D wave equation with time-dependent damping and absorbing semilinear term, Asymptot. Anal., 71 (2011), 185–205.
  • [10] R. Racke, S. Yoshikawa, Singular limits in the Cauchy problem for the damped extensible beam equation, J. Differential Equations, 259 (2015), 1297–1322.
  • [11] T. Suzuki, S. Yoshikawa, Stability of the steady state for the Falk model system of shape memory alloys, Math. Methods Appl. Sci., 30 (2007), 2233–2245.
  • [12] H. Takeda, S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II: asymptotic profiles, J. Differential Equations, 253 (2012), 3061–3080.
  • [13] Y. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients, J. Math. Anal. Appl., 447 (2017), 452–487.
  • [14] J. Wirth, Wave equations with time-dependent dissipation I. Non-effective dissipation, J. Differential Equations, 222 (2006), 487–514.
  • [15] J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation, J. Differential Equations, 232 (2007), 74–103.
  • [16] S. Woinovsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35–36.
  • [17] S. Yoshikawa, Y. Wakasugi, Classification of asymptotic profiles for the Cauchy problem of damped beam equation with two variable coefficients: Effective damping case, J. Differential Equations 272 (2021), 938–957.