This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotic expected TT-functionals of random polytopes
with applications to LpL_{p} surface areas

Steven Hoehner Department of Mathematics & Computer Science, Longwood University, U.S.A. [email protected] Ben Li Department of Mathematical Methods in Physics, Warsaw University, Poland. [email protected] Michael Roysdon Institute for Computational and Experimental Research in Mathematics, U.S.A. and Department of Pure Mathematics, Tel Aviv University, Israel. [email protected]  and  Christoph Thäle Faculty of Mathematics, Ruhr University Bochum, Germany. [email protected]
Abstract.

An asymptotic formula is proved for the expected TT-functional of the convex hull of independent and identically distributed random points sampled from the Euclidean unit sphere in n\mathbb{R}^{n} according to an arbitrary positive continuous density. As an application, the approximation of the sphere by random polytopes in terms of LpL_{p} surface area differences is discussed.

Key words and phrases:
LpL_{p} surface area, random polytope, stochastic geometry, TT-functional
2020 Mathematics Subject Classification:
Primary: 52A22, 52A27, 60D05; Secondary: 52A20, 52B11

1. Introduction and main results

1.1. Introduction

Random polytopes are a cornerstone of stochastic and integral geometry. They connect convex geometry and probability, and have a number of applications in computer science, statistics and machine learning theory. There is a vast literature on the subject of random polytopes, and we refer the reader to the survey articles [2, 11, 22] and the references therein.

Random polytopes generated as the convex hull of independent and identically distributed (i.i.d.) points sampled from the Euclidean unit ball or the Euclidean unit sphere in n\mathbb{R}^{n} according to the respective uniform distribution are important models that have been studied extensively in stochastic geometry. For the Euclidean ball, Wieacker [27] extended the results of Rényi and Sulanke [23] to n\mathbb{R}^{n}. He obtained asymptotic formulas for the expected volume and expected surface area of a random polytope inscribed in a ball, and introduced what is known today as the TT-functional Ta,bn,k(Q)T_{a,b}^{n,k}(Q) of a polytope QQ in n\mathbb{R}^{n}. It is defined as

Ta,bn,k(Q):=Fk(Q)dist(o,aff(F))avolk(F)bT_{a,b}^{n,k}(Q):=\sum_{F\in\mathcal{F}_{k}(Q)}\operatorname{dist}(o,\operatorname{aff}(F))^{a}\operatorname{vol}_{k}(F)^{b}

where a,b0a,b\geq 0 are parameters, k(Q)\mathcal{F}_{k}(Q) stands for the set of kk-faces of QQ for k{0,1,,n}k\in\{0,1,\ldots,n\}, oo stands for the origin of n\mathbb{R}^{n} and dist(o,aff(F))=min{x:xaff(F)}\operatorname{dist}(o,\operatorname{aff}(F))=\min\{\|x\|:x\in\operatorname{aff}(F)\} is the Euclidean distance from oo to the affine hull aff(F)\operatorname{aff}(F) of FF. In particular, we notice that T0,0n,k(Q)T_{0,0}^{n,k}(Q) is the number of kk-dimensional faces of QQ and T0,1n,k(Q)T_{0,1}^{n,k}(Q) is the kk-content of the union of all kk-faces of QQ, whereas 1nT1,1n,n1(Q){1\over n}T_{1,1}^{n,n-1}(Q) coincides with the volume of QQ as long as QQ contains the origin in its interior. Later on, Affentranger [1] described for k=n1k=n-1 and general parameters a,b0a,b\geq 0, the asymptotic behavior, as NN\to\infty, of the expected TT-functional of the convex hull of NN i.i.d. random points distributed according to a so-called beta distribution in the nn-dimensional unit ball (so-called beta polytopes). We recall that the beta distribution with parameter β>1\beta>-1 in the nn-dimensional Euclidean unit ball BnB_{n} has Lebesgue density

fn,β(x):=cn,β(1x2)β𝟙{x:x<1},cn,β:=Γ(n2+β+1)πn2Γ(β+1).f_{n,\beta}(x):=c_{n,\beta}(1-\|x\|^{2})^{\beta}\mathbbm{1}_{\{x:\|x\|<1\}},\qquad c_{n,\beta}:={\Gamma({n\over 2}+\beta+1)\over\pi^{\frac{n}{2}}\Gamma(\beta+1)}.

For example, choosing β=0\beta=0 we obtain the uniform distribution on BnB_{n}, while the weak limit as β1+\beta\to-1^{+} corresponds to the uniform distribution on Bn\partial B_{n}, the (n1)(n-1)-dimensional unit sphere. An exact formula for the expected TT-functional 𝔼[Ta,bn,n1(Pn,Nβ)]\mathbb{E}[T_{a,b}^{n,n-1}(P_{n,N}^{\beta})] of a beta polytope Pn,NβP_{n,N}^{\beta}, defined as the convex hull of Nn+1N\geq n+1 i.i.d. random points distributed with respect to the density fn,βf_{n,\beta}, was provided by Kabluchko, Temesvari and Thäle [15]:

𝔼[Ta,bn,n1(Pn,Nβ)]=Cn,Nβ,b11|h|a(1h2)nβn12(n+b+1)F1,β(h)Nn𝑑h,\displaystyle\mathbb{E}[T_{a,b}^{n,n-1}(P_{n,N}^{\beta})]=C_{n,N}^{\beta,b}\int_{-1}^{1}|h|^{a}(1-h^{2})^{n\beta-{n-1\over 2}(n+b+1)}F_{1,\beta}(h)^{N-n}\,dh,

where

F1,β(h)\displaystyle F_{1,\beta}(h) :=1hf1,β(x)𝑑x,Cn,Nβ,b:=(Nn)n!voln(Bn)𝔼β[𝒱n,n1b+1](cn,βcn1,β)n\displaystyle:=\int_{-1}^{h}f_{1,\beta}(x)\,dx,\qquad C_{n,N}^{\beta,b}:={N\choose n}n!\operatorname{vol}_{n}(B_{n})\mathbb{E}_{\beta}[\mathcal{V}_{n,n-1}^{b+1}]\Big{(}{c_{n,\beta}\over c_{n-1,\beta}}\Big{)}^{n}

and 𝔼β[𝒱n,n1b+1]\mathbb{E}_{\beta}[\mathcal{V}_{n,n-1}^{b+1}] is the moment of order b+1b+1 of the volume of the (n1)(n-1)-dimensional random beta simplex Pn1,nβP_{n-1,n}^{\beta}, whose value can be expressed in terms of gamma functions (see [15, Proposition 2.8]). Formally putting β=1\beta=-1, this formula also covers the case of the convex hull of Nn+1N\geq n+1 i.i.d. uniform random points on the boundary Bn\partial B_{n} of BnB_{n}. The expected TT-functional has further been determined explicitly for beta’ polytopes [15] and Gaussian polytopes [13], as well as for beta-star polytopes [7] and convex hulls of Poisson point processes [14]. The corresponding results have also found applications to stochastic geometry models in spherical and hyperbolic spaces.

In this article, we determine precise asymptotic formulas for the expected TT-functional of an inscribed random polytope generated by i.i.d. points selected according to a general continuous positive density function on the Euclidean unit sphere or unit ball in n\mathbb{R}^{n}. We focus on the case k=n1k=n-1 of the TT-functional, in which case the summation in the definition ranges over the set of facets n1(Q)\mathcal{F}_{n-1}(Q) of QQ. For a polytope QQ in n\mathbb{R}^{n}, we thus denote Ta,b(Q):=Ta,bn,n1(Q)T_{a,b}(Q):=T_{a,b}^{n,n-1}(Q). As already pointed out above, the case k=n1k=n-1 gives rise to a number of important functionals of polytopes. For example:

  • T0,0(Q)=|n1(Q)|T_{0,0}(Q)=|\mathcal{F}_{n-1}(Q)| is the number of facets of QQ;

  • T0,1(Q)=μQ(Q)T_{0,1}(Q)=\mu_{\partial Q}(\partial Q) is the surface area (i.e., (n1)(n-1)-dimensional Hausdorff measure) of QQ;

  • 1nT1,1(Q)=voln(Q)\tfrac{1}{n}T_{1,1}(Q)=\operatorname{vol}_{n}(Q) is the volume of QQ, if QQ contains the origin in its interior.

To this list we can also add what is known as the LpL_{p} surface area of a polytope QQ containing the origin in its interior, which for pp\in\mathbb{R} is defined as

(1) Sp(Q):=T1p,1(Q)=Fn1(Q)dist(o,aff(F))1pvoln1(F).S_{p}(Q):=T_{1-p,1}(Q)=\sum_{F\in\mathcal{F}_{n-1}(Q)}\operatorname{dist}(o,\operatorname{aff}(F))^{1-p}\operatorname{vol}_{n-1}(F).

For p>1p>1, Lutwak [18] defined the LpL_{p} surface area measure of a general convex body in n\mathbb{R}^{n} which contains the origin in its interior, and formulated and studied the famous LpL_{p} Minkowski problem. This problem asks for necessary and sufficient conditions on a finite Borel measure μ\mu on the sphere Bn\partial B_{n} so that μ\mu is the LpL_{p} surface area of some convex body KK in n\mathbb{R}^{n}. The important special case when KK is a polytope is called the discrete LpL_{p} Minkowski problem, and for more background we refer the reader to [12, 25, 26, 29] and the references therein.

The remaining parts of this paper are structured as follows. In Section 1.2, we present our general result on the expected TT-functional. In Section 1.3, we discuss the special case of the LpL_{p} surface area, followed by an application to best approximation in Section 1.4. Section 2 collects some preliminary geometric lemmas, and in Section 3 we present the proof of our main result.

1.2. Main results for the expected TT-functional

Our main result is an asymptotic description of the expected TT-functional of the convex hull of NN i.i.d. random points distributed according to an arbitrary positive and continuous density function on the sphere, as NN\to\infty, for arbitrary parameter values a,b0a,b\geq 0. We would like to highlight that such a result is distinguished from those in [1, 15, 20] as we consider densities which are not necessarily rotationally invariant. In fact, choosing the uniform density, k=n1k=n-1 and a=b=1a=b=1, our result reduces to that of [20, Theorem 2] or [1, Theorem 5] (choosing i=0i=0 there), while the exact formula for the expected TT-functional of a random beta polytope with general parameters a,b0a,b\geq 0 can be found in [15, Theorem 2.13].

In what follows, for kk\in\mathbb{N} we shall use the notation μBk\mu_{\partial B_{k}} to denote the (k1)(k-1)-dimensional spherical Lebesgue measure on the (k1)(k-1)-dimensional unit sphere Bk\partial B_{k}, and we indicate the kk-dimensional Lebesgue measure by volk\operatorname{vol}_{k}.

Theorem 1.1.

Let Qn,NfQ_{n,N}^{f} denote the convex hull of Nn+1N\geq n+1 random points chosen independently according to a probability distribution, which has a positive continuous density function ff with respect to μBn\mu_{\partial B_{n}} on Bn\partial B_{n}. Then for any fixed a,b0a,b\geq 0,

𝔼[Ta,b(Qn,Nf)]=(n1)n1𝔼[𝒱n,n1b+1]nvoln1(Bn1)b1N(b1)\displaystyle\mathbb{E}[T_{a,b}(Q_{n,N}^{f})]=\frac{(n-1)^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]}{n\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}N^{-(b-1)} (c1(n,b,f)c2(n,a,b,f)N2n1)\displaystyle\left(c_{1}(n,b,f)-c_{2}(n,a,b,f)N^{-\frac{2}{n-1}}\right)
×(1+O(N2n1))\displaystyle\times\left(1+O\left(N^{-\frac{2}{n-1}}\right)\right)

as NN\to\infty, where

c1(n,b,f)\displaystyle c_{1}(n,b,f) :=Γ(n+b1)Bnf(x)1b𝑑μBn(x),\displaystyle:=\Gamma(n+b-1)\int_{\partial B_{n}}f(x)^{1-b}\,d\mu_{\partial B_{n}}(x),
c2(n,a,b,f)\displaystyle c_{2}(n,a,b,f) :=12(a+(n1)(n+b2)n+1)Γ(n+b1+2n1)Bnf(x)1b2n1𝑑μBn(x)voln1(Bn1)2n1\displaystyle:=\frac{1}{2}\left(a+\frac{(n-1)(n+b-2)}{n+1}\right)\Gamma\left(n+b-1+\tfrac{2}{n-1}\right)\frac{\int_{\partial B_{n}}f(x)^{1-b-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(x)}{\operatorname{vol}_{n-1}(B_{n-1})^{\frac{2}{n-1}}}

and 𝔼[𝒱n,n1b+1]\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}] is the (b+1)(b+1)st moment of the (n1)(n-1)-dimensional volume of the random simplex spanned by nn i.i.d. uniform random points on the (n2)(n-2)-dimensional unit sphere Bn1\partial B_{n-1}.

Remark 1.2.

It is interesting to observe that the rate in NN only depends on bb and does not involve the parameter aa. The latter only appears in the second-order term.

Remark 1.3.

One can also derive an asymptotic formula for the expected TT-functional of a random polytope generated as the convex hull of Nn+1N\geq n+1 random points chosen independently according to a probability distribution which has a positive continuous density function with respect to the Lebesgue measure on BnB_{n}. Since the proof is a straightforward adaptation of that of Theorem 1.1, we refrain from presenting the details.

1.3. The LpL_{p} surface area difference

In this section, we specialize Theorem 1.1 to discuss the LpL_{p} surface area difference ΔSp(Bn,Qn,Nf)\Delta_{S_{p}}(B_{n},Q_{n,N}^{f}) of the ball and a random inscribed polytope Qn,NfQ_{n,N}^{f} that contains the origin in its interior. It is defined as

ΔSp(Bn,Qn,Nf):=μBn(Bn)Sp(Qn,Nf),\Delta_{S_{p}}(B_{n},Q_{n,N}^{f}):=\mu_{\partial B_{n}}(\partial B_{n})-S_{p}(Q_{n,N}^{f}),

where we recall the definition of the LpL_{p} surface area from (1). In fact, choosing a=1pa=1-p with p(,1]p\in(-\infty,1] and b=1b=1, we arrive at the following result.

Corollary 1.4.

Let Qn,NfQ_{n,N}^{f} denote the convex hull of Nn+1N\geq n+1 random points chosen independently according to a probability distribution, which has a positive continuous density function ff with respect to μBn\mu_{\partial B_{n}} on Bn\partial B_{n}. Then for every fixed p(,1]p\in(-\infty,1],

limNN2n1𝔼[ΔSp(Bn,Qn,Nf)]=12(1p+(n1)2n+1)Bnf(x)2n1𝑑μBn(x)voln1(Bn1)2n1Γ(n+2n1)(n1)!.\lim_{N\to\infty}N^{\frac{2}{n-1}}\mathbb{E}[\Delta_{S_{p}}(B_{n},Q_{n,N}^{f})]=\frac{1}{2}\left(1-p+\frac{(n-1)^{2}}{n+1}\right)\frac{\int_{\partial B_{n}}f(x)^{-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(x)}{\operatorname{vol}_{n-1}(B_{n-1})^{\frac{2}{n-1}}}\cdot\frac{\Gamma\left(n+\frac{2}{n-1}\right)}{(n-1)!}.
Remark 1.5.

When p[0,1]p\in[0,1], Corollary 1.4 may be viewed as an LpL_{p} interpolation of the classical results of Müller [20] on the expected volume difference and expected surface area difference (see also [21, 24]).

Let funif:=μBn(Bn)1𝟙Bnf_{\rm unif}:=\mu_{\partial B_{n}}(\partial B_{n})^{-1}\mathbbm{1}_{\partial B_{n}} denote the uniform density on Bn\partial B_{n}. Following [24], we show that the uniform density minimizes the constant in the right-hand side of Corollary 1.4, which we denote by cbd(n,p,f)c_{\rm bd}(n,p,f). Since Bnf(x)𝑑μBn(x)=1\int_{\partial B_{n}}f(x)\,d\mu_{\partial B_{n}}(x)=1, we can write

(Bnf(x)2n1𝑑μBn(x))n1n+1\displaystyle\left(\int_{\partial B_{n}}f(x)^{-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(x)\right)^{\frac{n-1}{n+1}} =(Bn(f(x)2n+1)n+1n1𝑑μBn(x))n1n+1\displaystyle=\left(\int_{\partial B_{n}}\left(f(x)^{-\frac{2}{n+1}}\right)^{\frac{n+1}{n-1}}\,d\mu_{\partial B_{n}}(x)\right)^{\frac{n-1}{n+1}}
×(Bn(f(x)2n+1)n+12𝑑μBn(x))2n+1.\displaystyle\qquad\qquad\times\left(\int_{\partial B_{n}}\left(f(x)^{\frac{2}{n+1}}\right)^{\frac{n+1}{2}}\,d\mu_{\partial B_{n}}(x)\right)^{\frac{2}{n+1}}.

Applying Hölder’s inequality to the functions f1(x)=f(x)2n+1f_{1}(x)=f(x)^{-\frac{2}{n+1}}, f2(x)=f(x)2n+1f_{2}(x)=f(x)^{\frac{2}{n+1}}, and with the exponents p=n+1n1p^{\prime}=\frac{n+1}{n-1} and q=n+12q^{\prime}=\frac{n+1}{2}, we derive that

(Bnf(x)2n1𝑑μBn(x))n1n+1μBn(Bn).\displaystyle\left(\int_{\partial B_{n}}f(x)^{-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(x)\right)^{\frac{n-1}{n+1}}\geq\mu_{\partial B_{n}}(\partial B_{n}).

Therefore,

Bnf(x)2n1𝑑μBn(x)\displaystyle\int_{\partial B_{n}}f(x)^{-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(x) μBn(Bn)n+1n1=Bnfunif(x)2n1𝑑μBn(x).\displaystyle\geq\mu_{\partial B_{n}}(\partial B_{n})^{\frac{n+1}{n-1}}=\int_{\partial B_{n}}f_{\rm unif}(x)^{-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(x).

It follows that for any density ff on the unit sphere Bn\partial B_{n} and any p(,1]p\in(-\infty,1],

(2) cbd(n,p,f)cbd(n,p,funif),c_{\rm bd}(n,p,f)\geq c_{\rm bd}(n,p,f_{\rm unif}),

which means that the minimizing density is the uniform one, independently of pp. Hence for every p(,1]p\in(-\infty,1] and any positive continuous density ff on Bn\partial B_{n}, we have

(3) 𝔼[Sp(Qn,Nf)]𝔼[Sp(Qn,Nfunif)]\mathbb{E}[S_{p}(Q_{n,N}^{f})]\leq\mathbb{E}[S_{p}(Q_{n,N}^{f_{\rm unif}})]

as NN\to\infty. In an asymptotic sense, this is a necessary condition for the random variable Sp(Qn,Nfunif)S_{p}(Q_{n,N}^{f_{\rm unif}}) to second-order stochastically dominate Sp(Qn,Nf)S_{p}(Q_{n,N}^{f}).

Remark 1.6.

We can rephrase the last inequality in terms of the expected TT-functional with b=1b=1 and arbitrary parameter a0a\geq 0, namely, 𝔼[Ta,1(Qn,Nf)]𝔼[Ta,1(Qn,Nfunif)]\mathbb{E}[T_{a,1}(Q_{n,N}^{f})]\leq\mathbb{E}[T_{a,1}(Q_{n,N}^{f_{\rm unif}})] as NN\to\infty.

1.4. Relation to best approximation

For Nn+1N\geq n+1, let 𝒫n,Nin\mathscr{P}_{n,N}^{\rm in} denote the set of all polytopes inscribed in BnB_{n} with at most NN vertices and which contain the origin in their interiors. It follows from a compactness argument that for any fixed p[0,1]p\in[0,1], there exists a best-approximating polytope which achieves the minimum LpL_{p} surface area difference

minQ𝒫n,NinΔSp(Bn,Q).\min_{Q\in\mathscr{P}_{n,N}^{\rm in}}\Delta_{S_{p}}(B_{n},Q).

Moreover, if Q𝒫n,NinQ\in\mathscr{P}_{n,N}^{\rm in} and p[0,1]p\in[0,1], then by the cone-volume formula we have

nvoln(Q)Sp(Q)μQ(Q),n\operatorname{vol}_{n}(Q)\leq S_{p}(Q)\leq\mu_{\partial Q}(\partial Q),

where μQ(Q)\mu_{\partial Q}(\partial Q) denotes the (n1)(n-1)-dimensional Hausdorff measure of Q\partial Q. Hence,

(4) μBn(Bn)μQ(Q)ΔSp(Bn,Q)nvoln(BnQ)\mu_{\partial B_{n}}(\partial B_{n})-\mu_{\partial Q}(\partial Q)\leq\Delta_{S_{p}}(B_{n},Q)\leq n\operatorname{vol}_{n}(B_{n}\triangle Q)

where BnQ=(BnQ)(BnQ)B_{n}\triangle Q=(B_{n}\cup Q)\setminus(B_{n}\cap Q) denotes the symmetric difference of BnB_{n} and QQ.

Interestingly, in high dimensions the random approximation of smooth convex bodies is asymptotically as good as the best approximation as NN\to\infty, up to absolute constants; see [1, 3, 4, 5, 6, 9, 10, 16, 17, 20, 21, 24]. Choosing the minimizing density f=funiff=f_{\rm unif} in Corollary 1.4, by Stirling’s inequality we derive

lim supNN2n1minQ𝒫n,NinΔSp(Bn,Q)\displaystyle\limsup_{N\to\infty}N^{\frac{2}{n-1}}\min_{Q\in\mathscr{P}_{n,N}^{\rm in}}\Delta_{S_{p}}(B_{n},Q) lim supNN2n1𝔼[ΔSp(Bn,Qn,Nfunif)]\displaystyle\leq\limsup_{N\to\infty}N^{\frac{2}{n-1}}\mathbb{E}[\Delta_{S_{p}}(B_{n},Q_{n,N}^{f_{\rm unif}})]
12(np)μBn(Bn)(1+O(lnnn)).\displaystyle\leq\frac{1}{2}(n-p)\mu_{\partial B_{n}}(\partial B_{n})\left(1+O\left(\frac{\ln n}{n}\right)\right).

An interesting open question is to determine the optimal lower constant c~bd(n,p,f)\tilde{c}_{\rm bd}(n,p,f) (up to some factor on(1)o_{n}(1)) in the asymptotic lower bound

lim infNN2n1minQ𝒫n,NinΔSp(Bn,Q)c~bd(n,p,f).\liminf_{N\to\infty}N^{\frac{2}{n-1}}\min_{Q\in\mathscr{P}_{n,N}^{\rm in}}\Delta_{S_{p}}(B_{n},Q)\geq\tilde{c}_{\rm bd}(n,p,f).

It follows from (4) and [4, Thm. 1 i)] that c~bd(n,p,f)12(n1)μBn(Bn)(1+O(lnnn))\tilde{c}_{\rm bd}(n,p,f)\geq\frac{1}{2}(n-1)\mu_{\partial B_{n}}(\partial B_{n})\left(1+O\left(\frac{\ln n}{n}\right)\right).

2. Preliminary geometric lemmas

2.1. Spherical Blaschke-Petkantschin formula

In this section, we collect a number of geometric lemmas which will be used in the proof of Theorem 1.1 below. The first ingredient we need is the spherical Blaschke-Petkantschin formula from [19, Theorem 4], which has later found a far-reaching extension in [28].

Lemma 2.1.

For n2n\geq 2, let g:(Bn)ng:(\partial B_{n})^{n}\to\mathbb{R} be a nonnegative measurable function. Then

BnBng(x1,,xn)𝑑μBn(x1)𝑑μBn(xn)\displaystyle\int_{\partial B_{n}}\cdots\int_{\partial B_{n}}g(x_{1},\ldots,x_{n})\,d\mu_{\partial B_{n}}(x_{1})\ldots d\mu_{\partial B_{n}}(x_{n})
=(n1)!Bn01BnHBnHg(x1,,xn)voln1([x1,,xn])\displaystyle=(n-1)!\int_{\partial B_{n}}\int_{0}^{1}\int_{\partial B_{n}\cap H}\cdots\int_{\partial B_{n}\cap H}g(x_{1},\ldots,x_{n})\operatorname{vol}_{n-1}([x_{1},\ldots,x_{n}])
×(1h2)n2dμBnH(x1)dμBnH(xn)dhdμBn(u),\displaystyle\qquad\qquad\qquad\qquad\qquad\times(1-h^{2})^{-{n\over 2}}\,d\mu_{\partial B_{n}\cap H}(x_{1})\ldots d\mu_{\partial B_{n}\cap H}(x_{n})\,dh\,d\mu_{\partial B_{n}}(u),

where H=H(u,h)={xn:x,u=h}H=H(u,h)=\{x\in\mathbb{R}^{n}:\langle x,u\rangle=h\} is the hyperplane orthogonal to uBnu\in\partial B_{n} at distance hh from the origin.

2.2. Geometry of spherical caps

The next result is a useful estimate of Schütt and Werner from [24, Lemma 3.12] involving the surface area and radius of a cap of the Euclidean ball.

Lemma 2.2.

Let SS and rr denote the surface area and radius, respectively, of a cap of the Euclidean unit ball in n\mathbb{R}^{n}. There exists an absolute constant C>0C>0 such that

(Svoln1(Bn1))1n112(n+1)(Svoln1(Bn1))3n1C(Svoln1(Bn1))5n1r\displaystyle\left(\frac{S}{\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{1}{n-1}}-\frac{1}{2(n+1)}\left(\frac{S}{\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{3}{n-1}}-C\left(\frac{S}{\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{5}{n-1}}\leq r
(Svoln1(Bn1))1n112(n+1)(Svoln1(Bn1))3n1+C(Svoln1(Bn1))5n1.\displaystyle\leq\left(\frac{S}{\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{1}{n-1}}-\frac{1}{2(n+1)}\left(\frac{S}{\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{3}{n-1}}+C\left(\frac{S}{\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{5}{n-1}}.

Each pair of uBnu\in\partial B_{n} and h[0,1]h\in[0,1] determines two caps of the sphere, one for each halfspace determined by the hyperplane H=u+huH=u^{\perp}+hu. We select the halfspace HH^{-} that does not contain the polytope and focus on the cap BnH\partial B_{n}\cap H^{-}. Then we let

s:=f(BnH)=BnHf(x)𝑑μBn(x)s:=\mathbb{P}_{f}(\partial B_{n}\cap H^{-})=\int_{\partial B_{n}\cap H^{-}}f(x)\,d\mu_{\partial B_{n}}(x)

denote the weighted surface area of the cap. Note that f(BnH+)=1s\mathbb{P}_{f}(\partial B_{n}\cap H^{+})=1-s. We use [21, Equation (71)] to merge [21, Lemma 6] with Lemma 2.2 in the following result.

Lemma 2.3.

Fix uBnu\in\partial B_{n}, h[0,1]h\in[0,1], and let s:=BnHf(x)𝑑μBn(x)s:=\int_{\partial B_{n}\cap H^{-}}f(x)\,d\mu_{\partial B_{n}}(x) and rr denote the weighted surface area and radius, respectively, of the cap BnH\partial B_{n}\cap H^{-}. Let δ>0\delta>0 be chosen sufficiently small so that [21, Lemma 6] holds. Then for any yBnHy\in\partial B_{n}\cap H^{-}, there exists a spherical cap UyU_{y} centered at yy and an absolute constant C>0C>0 such that for all xUyx\in U_{y},

(1+δ)3n1[(sf(x)voln1(Bn1))1n1\displaystyle(1+\delta)^{\frac{3}{n-1}}\bigg{[}\left(\frac{s}{f(x)\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{1}{n-1}} 12(n+1)(sf(x)voln1(Bn1))3n1\displaystyle-\frac{1}{2(n+1)}\left(\frac{s}{f(x)\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{3}{n-1}}
C(sf(x)voln1(Bn1))5n1]\displaystyle\qquad\qquad-C\left(\frac{s}{f(x)\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{5}{n-1}}\bigg{]}
r\displaystyle\leq r\leq
(1+δ)1n1[(sf(x)voln1(Bn1))1n1\displaystyle(1+\delta)^{\frac{1}{n-1}}\bigg{[}\left(\frac{s}{f(x)\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{1}{n-1}} 12(n+1)(sf(x)voln1(Bn1))3n1\displaystyle-\frac{1}{2(n+1)}\left(\frac{s}{f(x)\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{3}{n-1}}
+C(sf(x)voln1(Bn1))5n1].\displaystyle\qquad\qquad+C\left(\frac{s}{f(x)\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{5}{n-1}}\bigg{]}.
Proof.

Consider the function g:n1g:\mathbb{R}^{n-1}\to\mathbb{R} whose graph describes Bn\partial B_{n} locally at x(u)x(u). Then

s\displaystyle s ={g(x)h}f(x)1+(g(x))2𝑑x\displaystyle=\int_{\{g(x)\geq h\}}f(x)\sqrt{1+(\nabla g(x))^{2}}\,dx
=Bn101h2f(ru)1+(g(ru))2rn2𝑑r𝑑μBn(u).\displaystyle=\int_{\partial B_{n-1}}\int_{0}^{\sqrt{1-h^{2}}}f(ru)\sqrt{1+(\nabla g(ru))^{2}}\,r^{n-2}\,dr\,d\mu_{\partial B_{n}}(u).

By [21, Lemma 6], for all sufficiently small δ>0\delta>0 and all xUyx\in U_{y},

(5) (1+δ)1f(x)μBn(BnH)s(1+δ)2f(x)μBn(BnH).\displaystyle(1+\delta)^{-1}f(x)\mu_{\partial B_{n}}(\partial B_{n}\cap H^{-})\leq s\leq(1+\delta)^{2}f(x)\mu_{\partial B_{n}}(\partial B_{n}\cap H^{-}).

Now we apply Lemma 2.2 with S=μBn(BnH)S=\mu_{\partial B_{n}}(\partial B_{n}\cap H^{-}) to derive that for all xUyx\in U_{y} and k1k\geq 1,

(1+δ)kn1(Svoln1(Bn1))kn1\displaystyle(1+\delta)^{-\frac{k}{n-1}}\left(\frac{S}{\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{k}{n-1}} (sf(x)voln1(Bn1))kn1\displaystyle\leq\left(\frac{s}{f(x)\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{k}{n-1}}
(1+δ)2kn1(Svoln1(Bn1))kn1.\displaystyle\leq(1+\delta)^{\frac{2k}{n-1}}\left(\frac{S}{\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{k}{n-1}}.

Simple computations finish the proof. ∎

The following lemma is also a special case of a result of Reitzner [21] (see also [8, Lemma 12]).

Lemma 2.4.

Let x(u)x(u) be the point on Bn\partial B_{n} with fixed outer unit normal vector uBnu\in\partial B_{n}, and let z=1hz=1-h be the distance from HH to the supporting hyperplane of Bn\partial B_{n} at x(u)x(u), so that z[0,1]z\in[0,1]. Then for all sufficiently small δ>0\delta>0, it holds that

(6) (1+δ)2(n+1)n12f(x(u))2n1voln1(Bn1)2n1s2n1z(1+δ)2nn12f(x(u))2n1voln1(Bn1)2n1s2n1\begin{split}&\frac{(1+\delta)^{-\frac{2(n+1)}{n-1}}}{2f(x(u))^{\frac{2}{n-1}}\operatorname{vol}_{n-1}(B_{n-1})^{\frac{2}{n-1}}}\,s^{\frac{2}{n-1}}\leq z\leq\frac{(1+\delta)^{\frac{2n}{n-1}}}{2f(x(u))^{\frac{2}{n-1}}\operatorname{vol}_{n-1}(B_{n-1})^{\frac{2}{n-1}}}\,s^{\frac{2}{n-1}}\end{split}

and

(1+δ)n2n32f(x(u))μBn1(Bn1)zn32dsdz(1+δ)n2+1n12n32f(x(u))μBn1(Bn1)zn32.\begin{split}&(1+\delta)^{-n}2^{\frac{n-3}{2}}f(x(u))\mu_{\partial B_{n-1}}(\partial B_{n-1})z^{\frac{n-3}{2}}\leq\frac{ds}{dz}\leq(1+\delta)^{\frac{n^{2}+1}{n-1}}2^{\frac{n-3}{2}}f(x(u))\mu_{\partial B_{n-1}}(\partial B_{n-1})z^{\frac{n-3}{2}}.\end{split}

2.3. Random simplices

The next result is due to Miles [19, Equation (72)] for integer moments, which was extended to moments of arbitrary nonnegative real order by Kabluchko, Temesvari and Thäle [15, Proposition 2.8] for general beta (and beta’) distributions in n\mathbb{R}^{n}. The following formulation is the special case β=1\beta=-1.

Lemma 2.5.

Let 𝒱n,n1\mathcal{V}_{n,n-1} denote the (n1)(n-1)-dimensional volume of the (n1)(n-1)-dimensional simplex with vertices X1,,XnX_{1},\ldots,X_{n} chosen independently and uniformly from Bn1\partial B_{n-1}, that is, 𝒱n,n1:=voln1([X1,,Xn])\mathcal{V}_{n,n-1}:=\operatorname{vol}_{n-1}([X_{1},\ldots,X_{n}]). For all real m0m\geq 0, the mmth moment of 𝒱n,n1\mathcal{V}_{n,n-1}, denoted 𝔼[𝒱n,n1m]\mathbb{E}[\mathcal{V}_{n,n-1}^{m}], is given by

𝔼[𝒱n,n1m]=((n1)!)mΓ(n2(n+m3)+1)Γ(n2(n3)+m(n1)2+1)(Γ(n12)Γ(n1+m2))ni=1n1Γ(i+m2)Γ(i2).\displaystyle\mathbb{E}[\mathcal{V}_{n,n-1}^{m}]=((n-1)!)^{-m}\frac{\Gamma\left(\frac{n}{2}(n+m-3)+1\right)}{\Gamma\left(\frac{n}{2}(n-3)+\frac{m(n-1)}{2}+1\right)}\left(\frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n-1+m}{2}\right)}\right)^{n}\prod_{i=1}^{n-1}\frac{\Gamma\left(\frac{i+m}{2}\right)}{\Gamma\left(\frac{i}{2}\right)}.

The next result gives estimates for moments of an (n1)(n-1)-dimensional random simplex with vertices distributed according to the restriction of the density ff to a great hypersphere of Bn\partial B_{n}. For the second moment, a more general result for all sufficiently smooth convex bodies in n\mathbb{R}^{n} is due to Grote and Werner [8, Lemma 3.3]. Our proof is tailored towards the case of the sphere and, as a result, is much simpler.

Lemma 2.6.

Fix h[0,1]h\in[0,1]. Let x(u)x(u) be the point on Bn\partial B_{n} with fixed outer unit normal vector uBnu\in\partial B_{n}, and let z=1hz=1-h be the distance from HH to the supporting hyperplane of Bn\partial B_{n} at x(u)x(u). Then for all sufficiently small δ>0\delta>0 and any m0m\geq 0,

(1+δ)n(2z)n2+n(m3)m2f(x(u))nμBn1(Bn1)n𝔼[𝒱n,n1m]\displaystyle(1+\delta)^{-n}(2z)^{\frac{n^{2}+n(m-3)-m}{2}}f(x(u))^{n}\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n}\mathbb{E}[\mathcal{V}_{n,n-1}^{m}]
BnHBnHvoln1([x1,,xn])m(1h2)n2dfBnH(x1)dfBnH(xn)\displaystyle\qquad\leq\int_{\partial B_{n}\cap H}\cdots\int_{\partial B_{n}\cap H}\operatorname{vol}_{n-1}([x_{1},\ldots,x_{n}])^{m}(1-h^{2})^{-{n\over 2}}\,d\mathbb{P}_{f_{\partial B_{n}\cap H}}(x_{1})\cdots d\mathbb{P}_{f_{\partial B_{n}\cap H}}(x_{n})
(1+δ)n(2z)n2+n(m3)m2f(x(u))nμBn1(Bn1)n𝔼[𝒱n,n1m].\displaystyle\qquad\qquad\leq(1+\delta)^{n}(2z)^{\frac{n^{2}+n(m-3)-m}{2}}f(x(u))^{n}\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n}\mathbb{E}[\mathcal{V}_{n,n-1}^{m}].
Proof.

We start by recalling from [21, Lemma 6] that for all sufficiently small δ>0\delta>0, there exists some λ>0\lambda>0 such that

(1+δ)1f(x(u))f(p)(1+δ)f(x(u))(1+\delta)^{-1}f(x(u))\leq f(p)\leq(1+\delta)f(x(u))

for all points pp in a spherical cap of radius λ\lambda around an arbitrary boundary point x(u)Bnx(u)\in\partial B_{n}. Thus,

(1+δ)nf(x(u))n\displaystyle(1+\delta)^{-n}f(x(u))^{n}\,\mathcal{I}
BnHBnHvoln1([x1,,xn])m(1h2)n2dfBnH(x1)dfBnH(xn)\displaystyle\qquad\leq\int_{\partial B_{n}\cap H}\cdots\int_{\partial B_{n}\cap H}\operatorname{vol}_{n-1}([x_{1},\ldots,x_{n}])^{m}(1-h^{2})^{-{n\over 2}}\,d\mathbb{P}_{f_{\partial B_{n}\cap H}}(x_{1})\cdots d\mathbb{P}_{f_{\partial B_{n}\cap H}}(x_{n})
(1+δ)nf(x(u))n\displaystyle\qquad\qquad\leq(1+\delta)^{n}f(x(u))^{n}\,\mathcal{I}

with

:=BnHBnHvoln1([x1,,xn])m(1h2)n2dμBnH(x1)dμBnH(xn).\mathcal{I}:=\int_{\partial B_{n}\cap H}\cdots\int_{\partial B_{n}\cap H}\operatorname{vol}_{n-1}([x_{1},\ldots,x_{n}])^{m}(1-h^{2})^{-{n\over 2}}\,d\mu_{\partial B_{n}\cap H}(x_{1})\cdots d\mu_{\partial B_{n}\cap H}(x_{n}).

Next, we observe that BnH\partial B_{n}\cap H is an (n2)(n-2)-dimensional sphere of radius 1h2\sqrt{1-h^{2}}. So, substituting yi=xi/1h2y_{i}=x_{i}/\sqrt{1-h^{2}} for i=1,,ni=1,\ldots,n, we obtain

\displaystyle\mathcal{I} =Bn1Bn1voln1([1h2y1,,1h2yn])m\displaystyle=\int_{\partial B_{n-1}}\cdots\int_{\partial B_{n-1}}\operatorname{vol}_{n-1}([\sqrt{1-h^{2}}\,y_{1},\ldots,\sqrt{1-h^{2}}\,y_{n}])^{m}
×(1h2)n2(1h2)n(n2)2dμBn1(y1)dμBn1(yn)\displaystyle\qquad\qquad\qquad\times(1-h^{2})^{-{n\over 2}}\,(1-h^{2})^{n(n-2)\over 2}\,d\mu_{\partial B_{n-1}}(y_{1})\cdots d\mu_{\partial B_{n-1}}(y_{n})
=(1h2)(n1)m2n2+n(n2)2Bn1Bn1voln1([y1,,yn])m\displaystyle=(1-h^{2})^{{(n-1)m\over 2}-{n\over 2}+{n(n-2)\over 2}}\int_{\partial B_{n-1}}\cdots\int_{\partial B_{n-1}}\operatorname{vol}_{n-1}([y_{1},\ldots,y_{n}])^{m}
×dμBn1(y1)dμBn1(yn)\displaystyle\hskip 227.62204pt\times d\mu_{\partial B_{n-1}}(y_{1})\cdots d\mu_{\partial B_{n-1}}(y_{n})
=(1h2)n2+n(m3)m2μBn1(Bn1)n𝔼[𝒱n,n1m],\displaystyle=(1-h^{2})^{n^{2}+n(m-3)-m\over 2}\,\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n}\mathbb{E}[\mathcal{V}_{n,n-1}^{m}],

where the equality in the last line follows from the definition of 𝔼[𝒱n,n1m]\mathbb{E}[\mathcal{V}_{n,n-1}^{m}]. Since we have assumed δ\delta to be small, hh is close to 11, which implies that 1h21-h^{2} is asymptotically equivalent to 2z2z. The result thus follows. ∎

3. Proof of Theorem 1.1

3.1. Step 1: Integral representation

Choose i.i.d. random points X1,X2,X_{1},X_{2},\ldots on Bn\partial B_{n} according to the density ff, and for Nn+1N\geq n+1 define the random polytope Qn,Nf:=[X1,,XN]Q_{n,N}^{f}:=[X_{1},\ldots,X_{N}] as the convex hull of X1,,XNX_{1},\ldots,X_{N}. Since Qn,NfQ_{n,N}^{f} is simplicial with probability one, we have

𝔼[Ta,b(Qn,Nf)]=BnBnTa,b([x1,,xN])𝟙An,N,f(x1,,xN)𝑑f(x1)𝑑f(xN)\displaystyle\mathbb{E}[T_{a,b}(Q_{n,N}^{f})]=\int_{\partial B_{n}}\cdots\int_{\partial B_{n}}T_{a,b}([x_{1},\ldots,x_{N}])\mathbbm{1}_{A_{n,N,f}}(x_{1},\ldots,x_{N})\,d\mathbb{P}_{f}(x_{1})\cdots d\mathbb{P}_{f}(x_{N})

where

An,N,f:={(x1,,xN)(Bn)N:[x1,,xN] is simplicial}A_{n,N,f}:=\{(x_{1},\dotsc,x_{N})\in(\partial B_{n})^{N}:\,[x_{1},\dotsc,x_{N}]\text{ is simplicial}\}

and (Bn)m=i=1mBn(\partial B_{n})^{m}=\prod_{i=1}^{m}\partial B_{n} for mm\in\mathbb{N}. Let n,N,f\mathcal{E}_{n,N,f} denote the event that the origin oo lies in the interior of Qn,NfQ_{n,N}^{f}. As in [24, Lemma 4.3 (ii)] (see also the proof of Corollary 1 in [1]), we find that

(n,N,fc)\displaystyle\mathbb{P}(\mathcal{E}_{n,N,f}^{c}) =({oint[X1,,XN]})\displaystyle=\mathbb{P}(\{o\not\in\operatorname{int}[X_{1},\ldots,X_{N}]\})
=fN({(x1,,xN)(Bn)N:oint[x1,,xN]})ec~0(n,f)N\displaystyle=\mathbb{P}_{f}^{N}(\{(x_{1},\ldots,x_{N})\in(\partial B_{n})^{N}:\,o\not\in\operatorname{int}[x_{1},\ldots,x_{N}]\})\leq e^{-\tilde{c}_{0}(n,f)N}

for some positive constant c~0(n,f)\tilde{c}_{0}(n,f). Furthermore, every simplicial polytope Q=[x1,,xN]Q=[x_{1},\ldots,x_{N}] satisfies |n1(Q)|(Nn)|\mathcal{F}_{n-1}(Q)|\leq{N\choose n} since each facet of QQ has nn vertices. Since en=k=0nkk!nnn!e^{n}=\sum_{k=0}^{\infty}\frac{n^{k}}{k!}\geq\frac{n^{n}}{n!}, we have n!(n/e)nn!\geq(n/e)^{n}. Using this and the elementary estimate N!(Nn)!Nn\frac{N!}{(N-n)!}\leq N^{n}, for any simplicial polytope QQ we have |n1(Q)|(eN/n)n|\mathcal{F}_{n-1}(Q)|\leq(eN/n)^{n}. Hence, by the law of total expectation,

𝔼[Ta,b(Qn,Nf)]\displaystyle\mathbb{E}[T_{a,b}(Q_{n,N}^{f})] =𝔼[Ta,b(Qn,Nf)|n,N,f](n,N,f)+𝔼[Ta,b(Qn,Nf)|n,N,fc](n,N,fc)\displaystyle=\mathbb{E}[T_{a,b}(Q_{n,N}^{f})|\mathcal{E}_{n,N,f}]\mathbb{P}(\mathcal{E}_{n,N,f})+\mathbb{E}[T_{a,b}(Q_{n,N}^{f})|\mathcal{E}_{n,N,f}^{c}]\mathbb{P}(\mathcal{E}_{n,N,f}^{c})
(7) 𝔼[Ta,b(Qn,Nf)|n,N,f](n,N,f)+(eNn)nvoln1(Bn1)bec~0(n,f)N.\displaystyle\leq\mathbb{E}[T_{a,b}(Q_{n,N}^{f})|\mathcal{E}_{n,N,f}]\mathbb{P}(\mathcal{E}_{n,N,f})+\left(\frac{eN}{n}\right)^{n}\operatorname{vol}_{n-1}(B_{n-1})^{b}e^{-\tilde{c}_{0}(n,f)N}.

Inequality (7) follows from the fact that Qn,NfBnQ_{n,N}^{f}\subset B_{n} is simplicial with probability 1 and since for a,b0a,b\geq 0, the inequality

Ta,b(Qn,Nf)\displaystyle T_{a,b}(Q_{n,N}^{f}) =Fn1(Qn,Nf)dist(o,aff(F))avoln1(F)b\displaystyle=\sum_{F\in\mathcal{F}_{n-1}(Q_{n,N}^{f})}\operatorname{dist}(o,\operatorname{aff}(F))^{a}\operatorname{vol}_{n-1}(F)^{b}
|n1(Qn,Nf)|voln1(Bn1)b(eNn)nvoln1(Bn1)b\displaystyle\leq|\mathcal{F}_{n-1}(Q_{n,N}^{f})|\operatorname{vol}_{n-1}(B_{n-1})^{b}\leq\left(\frac{eN}{n}\right)^{n}\operatorname{vol}_{n-1}(B_{n-1})^{b}

holds with probability 1. Therefore, the second term in (7) is exponentially decreasing in NN, while, as we shall see, the first term is essentially of the order N(b1)(c1(n,b,f)c2(n,a,b,f)N2n1)N^{-(b-1)}(c_{1}(n,b,f)-c_{2}(n,a,b,f)N^{-\frac{2}{n-1}}). Thus, the second term is negligible and we will ignore it in the subsequent computations.

Next, set

En,N,f:={(x1,,xN)(Bn)N:oint[x1,,xN] and [x1,,xn] is simplicial}.E_{n,N,f}:=\{(x_{1},\dotsc,x_{N})\in(\partial B_{n})^{N}:o\in\operatorname{int}[x_{1},\dotsc,x_{N}]\text{ and $[x_{1},\dotsc,x_{n}]$ is simplicial}\}.

For points (x1,,xN)En,N,f(x_{1},\ldots,x_{N})\in E_{n,N,f}, we can decompose n\mathbb{R}^{n} into the following union of cones with pairwise disjoint interiors:

n=[xj1,,xjn]n1(Qn,Nf)cone(xj1,,xjn),\mathbb{R}^{n}=\bigcup_{[x_{j_{1}},\ldots,x_{j_{n}}]\in\mathcal{F}_{n-1}(Q_{n,N}^{f})}{\rm cone}(x_{j_{1}},\ldots,x_{j_{n}}),

where cone(y1,,ym):={i=1maiyi:ai0,i=1,,m}{\rm cone}(y_{1},\ldots,y_{m}):=\{\sum_{i=1}^{m}a_{i}y_{i}:\,a_{i}\geq 0,i=1,\ldots,m\} denotes the cone spanned by a set of vectors y1,,ymny_{1},\ldots,y_{m}\in\mathbb{R}^{n}. For points y1,,ynny_{1},\ldots,y_{n}\in\mathbb{R}^{n} whose affine hull is an (n1)(n-1)-dimensional hyperplane H(y1,,yn)H(y_{1},\ldots,y_{n}), let H+(y1,,yn)H^{+}(y_{1},\ldots,y_{n}) denote the halfspace bounded by H(y1,,yn)H(y_{1},\ldots,y_{n}) which contains the origin.

For points x1,,xNnx_{1},\ldots,x_{N}\in\mathbb{R}^{n} and a subset of indices {j1,,jn}{1,,N}\{j_{1},\ldots,j_{n}\}\subset\{1,\ldots,N\}, we define a functional Φj1,,jna,b:(n)N[0,)\Phi_{j_{1},\ldots,j_{n}}^{a,b}:(\mathbb{R}^{n})^{N}\to[0,\infty) by

Φj1,,jna,b(x1,,xN):=dist(o,aff([xj1,,xjn]))avoln1([xj1,,xjn])b\Phi_{j_{1},\ldots,j_{n}}^{a,b}(x_{1},\ldots,x_{N}):=\operatorname{dist}(o,\operatorname{aff}([x_{j_{1}},\ldots,x_{j_{n}}]))^{a}\operatorname{vol}_{n-1}([x_{j_{1}},\ldots,x_{j_{n}}])^{b}

if oint[x1,,xN]o\in\operatorname{int}[x_{1},\ldots,x_{N}] and dim([xj1,,xjn])=n1\dim([x_{j_{1}},\ldots,x_{j_{n}}])=n-1, and set Φj1,,jna,b(x1,,xN):=0\Phi_{j_{1},\ldots,j_{n}}^{a,b}(x_{1},\ldots,x_{N}):=0 otherwise. Hence, we obtain

𝔼[Ta,b(Qn,Nf)\displaystyle\mathbb{E}[T_{a,b}(Q_{n,N}^{f}) |n,N,f](n,N,f)\displaystyle|\mathcal{E}_{n,N,f}]\mathbb{P}(\mathcal{E}_{n,N,f})
=BnBnTa,b([x1,,xN])𝟙En,N,f(x1,,xN)𝑑f(x1)𝑑f(xN)\displaystyle=\int_{\partial B_{n}}\cdots\int_{\partial B_{n}}T_{a,b}([x_{1},\ldots,x_{N}])\mathbbm{1}_{E_{n,N,f}}(x_{1},\ldots,x_{N})\,d\mathbb{P}_{f}(x_{1})\cdots d\mathbb{P}_{f}(x_{N})
=BnBn{j1,,jn}{1,,N}Φj1,,jna,b(x1,,xN)df(x1)df(xN)\displaystyle=\int_{\partial B_{n}}\cdots\int_{\partial B_{n}}\sum_{\{j_{1},\ldots,j_{n}\}\subset\{1,\ldots,N\}}\Phi_{j_{1},\ldots,j_{n}}^{a,b}(x_{1},\ldots,x_{N})\,d\mathbb{P}_{f}(x_{1})\cdots d\mathbb{P}_{f}(x_{N})
=(Nn)BnBnΦ1,,na,b(x1,,xN)𝑑f(x1)𝑑f(xN).\displaystyle={N\choose n}\int_{\partial B_{n}}\cdots\int_{\partial B_{n}}\Phi_{1,\ldots,n}^{a,b}(x_{1},\ldots,x_{N})\,d\mathbb{P}_{f}(x_{1})\cdots d\mathbb{P}_{f}(x_{N}).

Applying Lemma 2.1, we get

(8) 𝔼[Ta,b(Qn,Nf)|n,N,f](n,N,f)=(n1)!(Nn)Bn01BnHBnH[BnBnΦ1,,na,b(x1,,xN)df(xn+1)df(xN)]××voln1([x1,,xn])(1h2)n2dμBnH(x1)dμBnH(xn)dhdμBn(u).\begin{split}\mathbb{E}[T_{a,b}(Q_{n,N}^{f})&|\mathcal{E}_{n,N,f}]\mathbb{P}(\mathcal{E}_{n,N,f})=(n-1)!{N\choose n}\int_{\partial B_{n}}\int_{0}^{1}\int_{\partial B_{n}\cap H}\cdots\int_{\partial B_{n}\cap H}\\ &\left[\int_{\partial B_{n}}\cdots\int_{\partial B_{n}}\Phi_{1,\ldots,n}^{a,b}(x_{1},\ldots,x_{N})\,d\mathbb{P}_{f}(x_{n+1})\cdots d\mathbb{P}_{f}(x_{N})\right]\times\\ &\times\operatorname{vol}_{n-1}([x_{1},\ldots,x_{n}])(1-h^{2})^{-{n\over 2}}\,d\mu_{\partial B_{n}\cap H}(x_{1})\cdots d\mu_{\partial B_{n}\cap H}(x_{n})\,dh\,d\mu_{\partial B_{n}}(u).\end{split}

By definition, Φ1,,na,b(x1,,xN)0\Phi^{a,b}_{1,\dotsc,n}(x_{1},\dotsc,x_{N})\neq 0 if x1,,xnx_{1},\dotsc,x_{n} spans a hyperplane HH and [x1,xn]n1([x1,,xN])[x_{1}\dotsc,x_{n}]\in\mathcal{F}_{n-1}([x_{1},\dotsc,x_{N}]) and oint[x1,,xN]o\in\operatorname{int}[x_{1},\dotsc,x_{N}]. In this case, the value of Φ1,,na,b(x1,,xN)\Phi^{a,b}_{1,\dotsc,n}(x_{1},\dotsc,x_{N}) only depends on x1,,xnx_{1},\dotsc,x_{n}. Since

{(xn+1,,xN)\displaystyle\big{\{}(x_{n+1},\ldots,x_{N}) (Bn)Nn:[x1,,xn]n1([x1,,xN]) and oint[x1,,xN]}\displaystyle\in(\partial B_{n})^{N-n}:[x_{1},\ldots,x_{n}]\in\mathcal{F}_{n-1}([x_{1},\dotsc,x_{N}])\text{ and }o\in\operatorname{int}[x_{1},\dotsc,x_{N}]\big{\}}
(9) {(xn+1,,xN)(Bn)Nn:xn+1,,xNH+(x1,,xn)}\displaystyle\subset\big{\{}(x_{n+1},\ldots,x_{N})\in(\partial B_{n})^{N-n}:x_{n+1},\ldots,x_{N}\in H^{+}(x_{1},\ldots,x_{n})\big{\}}
=(BnH+(x1,,xn))Nn,\displaystyle=(\partial B_{n}\cap H^{+}(x_{1},\dotsc,x_{n}))^{N-n},

we obtain

fNn({(xn+1,,xN)(Bn)Nn\displaystyle\mathbb{P}_{f}^{N-n}\big{(}\{(x_{n+1},\ldots,x_{N})\in(\partial B_{n})^{N-n} :[x1,,xn]n1([x1,,xN]) and oint[x1,,xN]})\displaystyle:[x_{1},\ldots,x_{n}]\in\mathcal{F}_{n-1}([x_{1},\dotsc,x_{N}])\text{ and }o\in\operatorname{int}[x_{1},\dotsc,x_{N}]\}\big{)}
(10) (BnH+f(x)dμBn(x))Nn=:fNn(BnH+).\displaystyle\leq\left(\int_{\partial B_{n}\cap H^{+}}f(x)\,d\mu_{\partial B_{n}}(x)\right)^{N-n}=:\mathbb{P}_{f}^{N-n}(\partial B_{n}\cap H^{+}).

Hence,

BnBnΦ1,,na,b(x1,,xN)𝑑f(xn+1)𝑑f(xN)\displaystyle\int_{\partial B_{n}}\cdots\int_{\partial B_{n}}\Phi^{a,b}_{1,\ldots,n}(x_{1},\ldots,x_{N})\,d\mathbb{P}_{f}(x_{n+1})\cdots d\mathbb{P}_{f}(x_{N})
dist(o,aff([xj1,,xjn]))avoln1([xj1,,xjn])bfNn(BnH+).\displaystyle\qquad\qquad\qquad\qquad\leq\operatorname{dist}(o,\operatorname{aff}([x_{j_{1}},\ldots,x_{j_{n}}]))^{a}\operatorname{vol}_{n-1}([x_{j_{1}},\ldots,x_{j_{n}}])^{b}\,\mathbb{P}_{f}^{N-n}(\partial B_{n}\cap H^{+}).

By Lemma 2.6 and the substitution z=1hz=1-h where h=dist(o,H(x1,,xn))h=\operatorname{dist}(o,H(x_{1},\dotsc,x_{n})), we have

𝔼[Ta,b(Qn,Nf)\displaystyle\mathbb{E}[T_{a,b}(Q_{n,N}^{f}) |n,N,f](n,N,f)(1+δ)n2n2+(n1)(b2)32(Nn)(n1)!μBn1(Bn1)n𝔼[𝒱n,n1b+1]\displaystyle|\mathcal{E}_{n,N,f}]\mathbb{P}(\mathcal{E}_{n,N,f})\leq(1+\delta)^{n}2^{\frac{n^{2}+(n-1)(b-2)-3}{2}}{N\choose n}(n-1)!\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]
×Bn01(1z)azn2+(n1)(b2)32fNn(BnH+)f(x(u))ndzdμBn(u).\displaystyle\qquad\times\int_{\partial B_{n}}\int_{0}^{1}(1-z)^{a}z^{\frac{n^{2}+(n-1)(b-2)-3}{2}}\mathbb{P}_{f}^{N-n}(\partial B_{n}\cap H^{+})f(x(u))^{n}\,dz\,d\mu_{\partial B_{n}}(u).

For uBnu\in\partial B_{n} and z[0,1]z\in[0,1], set

ϕf(u,z):=s(BnHz(u))\phi_{f}(u,z):=s(\partial B_{n}\cap H_{z}(u)^{-})

where Hz(u):=u+(1z)uH_{z}(u):=u^{\perp}+(1-z)u. Then by Lemma 2.4 we get

𝔼[Ta,b(Qn,Nf)\displaystyle\mathbb{E}[T_{a,b}(Q_{n,N}^{f}) |n,N,f](n,N,f)(1+δ)n2n2+(n1)(b2)32(Nn)(n1)!μBn1(Bn1)n𝔼[𝒱n,n1b+1]\displaystyle|\mathcal{E}_{n,N,f}]\mathbb{P}(\mathcal{E}_{n,N,f})\leq(1+\delta)^{n}2^{\frac{n^{2}+(n-1)(b-2)-3}{2}}{N\choose n}(n-1)!\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]
×Bnϕf(u,0)ϕf(u,1)(1z(u,s))az(u,s)n2+(n1)(b2)32(1s)Nn\displaystyle\qquad\times\int_{\partial B_{n}}\int_{\phi_{f}(u,0)}^{\phi_{f}(u,1)}(1-z(u,s))^{a}z(u,s)^{\frac{n^{2}+(n-1)(b-2)-3}{2}}(1-s)^{N-n}
×f(x(u))n(1+δ)n2n32f(x(u))μBn1(Bn1)z(u,s)n32dsdμBn(u)\displaystyle\qquad\times f(x(u))^{n}\frac{(1+\delta)^{n}2^{-\frac{n-3}{2}}}{f(x(u))\mu_{\partial B_{n-1}}(\partial B_{n-1})}z(u,s)^{-\frac{n-3}{2}}\,ds\,d\mu_{\partial B_{n}}(u)
=(1+δ)2n2(n1)(n+b2)2(Nn)(n1)!μBn1(Bn1)n1𝔼[𝒱n,n1b+1]\displaystyle=(1+\delta)^{2n}2^{\frac{(n-1)(n+b-2)}{2}}{N\choose n}(n-1)!\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]
×Bn0ϕf(u,1)(1z(u,s))az(u,s)(n1)(n+b2)2(1s)Nn\displaystyle\qquad\times\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}(1-z(u,s))^{a}z(u,s)^{\frac{(n-1)(n+b-2)}{2}}(1-s)^{N-n}
×f(x(u))n1dsdμBn(u),\displaystyle\qquad\times f(x(u))^{n-1}\,ds\,d\mu_{\partial B_{n}}(u),

where we have used ϕf(u,0)=0\phi_{f}(u,0)=0 for any uBnu\in\partial B_{n}.

To simplify our estimates, we express the cap height zz in terms of its radius r=r(u,s)r=r(u,s). Then (1z)2=1r2(1-z)^{2}=1-r^{2}, so (1z)a=(1r2)a2(1-z)^{a}=(1-r^{2})^{\frac{a}{2}}, and applying the inequality 1x2x221x1x21-\frac{x}{2}-\frac{x^{2}}{2}\leq\sqrt{1-x}\leq 1-\frac{x}{2} for x1x\leq 1 with x=r2x=r^{2} we get

r22zr22+r42.\frac{r^{2}}{2}\leq z\leq\frac{r^{2}}{2}+\frac{r^{4}}{2}.

Thus, with these substitutions we obtain

𝔼[Ta,b(Qn,Nf)|n,N,f](n,N,f)\displaystyle\mathbb{E}[T_{a,b}(Q_{n,N}^{f})|\mathcal{E}_{n,N,f}]\mathbb{P}(\mathcal{E}_{n,N,f})
(1+δ)2n2(n1)(n+b2)2(Nn)(n1)!μBn1(Bn1)n1𝔼[𝒱n,n1b+1]\displaystyle\leq(1+\delta)^{2n}2^{\frac{(n-1)(n+b-2)}{2}}{N\choose n}(n-1)!\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]
×Bn0ϕf(u,1)(1s)Nn(1r2)a2(r22+r42)(n1)(n+b2)2f(x(u))n1dsdμBn(u)\displaystyle\times\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}(1-s)^{N-n}(1-r^{2})^{\frac{a}{2}}\left(\frac{r^{2}}{2}+\frac{r^{4}}{2}\right)^{\frac{(n-1)(n+b-2)}{2}}f(x(u))^{n-1}\,ds\,d\mu_{\partial B_{n}}(u)
=(1+δ)2n(Nn)(n1)!μBn1(Bn1)n1𝔼[𝒱n,n1b+1]\displaystyle=(1+\delta)^{2n}{N\choose n}(n-1)!\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]
×Bn0ϕf(u,1)(1s)Nn(1r2)a2r(n1)(n+b2)(1+r22)(n1)(n+b2)2f(x(u))n1dsdμBn(u).\displaystyle\times\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}(1-s)^{N-n}(1-r^{2})^{\frac{a}{2}}r^{(n-1)(n+b-2)}\left(1+\frac{r^{2}}{2}\right)^{\frac{(n-1)(n+b-2)}{2}}f(x(u))^{n-1}\,ds\,d\mu_{\partial B_{n}}(u).

By the inequalities 1+x(1+xk)kex1+x\leq\left(1+\frac{x}{k}\right)^{k}\leq e^{x} for k1k\geq 1 and |x|k|x|\leq k, and ex<1+x+x2e^{x}<1+x+x^{2} for x<1.79x<1.79, we have

1+14(n1)(n+b2)r2\displaystyle 1+\frac{1}{4}(n-1)(n+b-2)r^{2} (1+r22)(n1)22\displaystyle\leq\left(1+\frac{r^{2}}{2}\right)^{\frac{(n-1)^{2}}{2}}
er2(n1)24<1+14(n1)(n+b2)r2+116(n1)2(n+b2)2r4.\displaystyle\leq e^{\frac{r^{2}(n-1)^{2}}{4}}<1+\frac{1}{4}(n-1)(n+b-2)r^{2}+\frac{1}{16}(n-1)^{2}(n+b-2)^{2}r^{4}.

Now we split the previous upper bound for the expectation into two parts as

𝔼[Ta,b(Qn,Nf)|n,N,f](n,N,f)I1+I2,\mathbb{E}[T_{a,b}(Q_{n,N}^{f})|\mathcal{E}_{n,N,f}]\mathbb{P}(\mathcal{E}_{n,N,f})\leq I_{1}+I_{2},

where I1I_{1} and I2I_{2} are defined by

I1\displaystyle I_{1} :=(1+δ)2n(Nn)(n1)!μBn1(Bn1)n1𝔼[𝒱n,n1b+1]Bn0ϕf(u,1)(1s)Nn\displaystyle:=(1+\delta)^{2n}{N\choose n}(n-1)!\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}(1-s)^{N-n}
×(1r2)a2r(n1)(n+b2)(1+(n1)(n+b2)4r2)f(x(u))n1dsdμBn(u)\displaystyle\times(1-r^{2})^{\frac{a}{2}}r^{(n-1)(n+b-2)}\left(1+\frac{(n-1)(n+b-2)}{4}r^{2}\right)f(x(u))^{n-1}\,ds\,d\mu_{\partial B_{n}}(u)
and
I2\displaystyle I_{2} :=116(1+δ)2n(Nn)(n1)2(n+b2)2(n1)!μBn1(Bn1)n1𝔼[𝒱n,n1b+1]\displaystyle:=\frac{1}{16}(1+\delta)^{2n}{N\choose n}(n-1)^{2}(n+b-2)^{2}(n-1)!\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]
×Bn0ϕf(u,1)(1s)Nn(1r2)a2r(n1)(n+b2)+4f(x(u))n1dsdμBn(u).\displaystyle\times\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}(1-s)^{N-n}(1-r^{2})^{\frac{a}{2}}r^{(n-1)(n+b-2)+4}f(x(u))^{n-1}\,ds\,d\mu_{\partial B_{n}}(u).

We will see later that I2I_{2} is of negligible order, so for now we will focus on I1I_{1}.

3.2. Step 2: Breaking I1I_{1} into further terms

Next, we use Lemma 2.3 to estimate the terms in the integrand of I1I_{1} which directly involve the radius rr. As we shall see from the proof that follows, the term involving r(n1)2+2r^{(n-1)^{2}+2} is of a smaller order in NN than N(b1+2n1)N^{-(b-1+\frac{2}{n-1})}, so we will focus only on the first term involving r(n1)2r^{(n-1)^{2}}. We have

I1\displaystyle I_{1} (1+δ)2n(Nn)(n1)!μBn1(Bn1)n1𝔼[𝒱n,n1b+1]×\displaystyle\leq(1+\delta)^{2n}{N\choose n}(n-1)!\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]\times
×Bn0ϕf(u,1){(1+δ)1n1[(sf(x(u))voln1(Bn1))1n1\displaystyle\times\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}\bigg{\{}(1+\delta)^{\frac{1}{n-1}}\bigg{[}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{1}{n-1}}
12(n+1)(sf(x(u))voln1(Bn1))3n1+C(sf(x(u))voln1(Bn1))5n1]}(n1)(n+b2)\displaystyle-\frac{1}{2(n+1)}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{3}{n-1}}+C\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{5}{n-1}}\bigg{]}\bigg{\}}^{(n-1)(n+b-2)}
×[1{(1+δ)3n1((sf(x(u))voln1(Bn1))1n112(n+1)(sf(x(u))voln1(Bn1))3n1\displaystyle\times\bigg{[}1-\bigg{\{}(1+\delta)^{\frac{3}{n-1}}\bigg{(}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{1}{n-1}}-\frac{1}{2(n+1)}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{3}{n-1}}
C(sf(x(u))voln1(Bn1))5n1)}2]a2(1s)Nnf(x(u))n1dsdμBn(u).\displaystyle-C\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{5}{n-1}}\bigg{)}\bigg{\}}^{2}\bigg{]}^{\frac{a}{2}}(1-s)^{N-n}f(x(u))^{n-1}\,ds\,d\mu_{\partial B_{n}}(u).

Writing

μBn1(Bn1)n1voln1(Bn1)n+b2\displaystyle{\mu_{\partial B_{n-1}}(\partial B_{n-1})^{n-1}\over\operatorname{vol}_{n-1}(B_{n-1})^{n+b-2}} =(μBn1(Bn1)voln1(Bn1))n11voln1(Bn1)b1\displaystyle=\left({\mu_{\partial B_{n-1}}(\partial B_{n-1})\over\operatorname{vol}_{n-1}(B_{n-1})}\right)^{n-1}{1\over\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}
=((n1)voln1(Bn1)voln1(Bn1))n11voln1(Bn1)b1\displaystyle=\left({(n-1)\operatorname{vol}_{n-1}(B_{n-1})\over\operatorname{vol}_{n-1}(B_{n-1})}\right)^{n-1}{1\over\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}
=(n1)n1voln1(Bn1)b1,\displaystyle={(n-1)^{n-1}\over\operatorname{vol}_{n-1}(B_{n-1})^{b-1}},

we see that the previous expression is equal to

(1+δ)3n+b2(Nn)(n1)!(n1)n1𝔼[𝒱n,n1b+1]voln1(Bn1)b1Bn0ϕf(u,1)sn+b2(1s)Nn\displaystyle(1+\delta)^{3n+b-2}{N\choose n}\frac{(n-1)!(n-1)^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]}{\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}s^{n+b-2}(1-s)^{N-n}
×[112(n+1)(sf(x(u))voln1(Bn1))2n1+C(sf(x(u))voln1(Bn1))4n1](n1)(n+b2)\displaystyle\times\left[1-\frac{1}{2(n+1)}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{2}{n-1}}+C\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{4}{n-1}}\right]^{(n-1)(n+b-2)}
×[1(1+δ)6n1{(sf(x(u))voln1(Bn1))1n112(n+1)(sf(x(u))voln1(Bn1))3n1\displaystyle\times\bigg{[}1-(1+\delta)^{\frac{6}{n-1}}\bigg{\{}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{1}{n-1}}-\frac{1}{2(n+1)}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{3}{n-1}}
C(sf(x(u))voln1(Bn1))5n1}2]a2f(x(u))1bdsdμBn(u).\displaystyle-C\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{5}{n-1}}\bigg{\}}^{2}\bigg{]}^{\frac{a}{2}}f(x(u))^{1-b}\,ds\,d\mu_{\partial B_{n}}(u).

This can be estimated from above by

I1\displaystyle I_{1} (1+δ)3n+b2(Nn)(n1)!(n1)n1𝔼[𝒱n,n1b+1]voln1(Bn1)b1×\displaystyle\leq(1+\delta)^{3n+b-2}{N\choose n}\frac{(n-1)!(n-1)^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]}{\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}\times
×Bn0ϕf(u,1)sn+b2(1s)Nn[1(n1)(n+b2)2(n+1)(sf(x(u))voln1(Bn1))2n1\displaystyle\qquad\times\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}s^{n+b-2}(1-s)^{N-n}\bigg{[}1-\frac{(n-1)(n+b-2)}{2(n+1)}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{2}{n-1}}
+C1(n1)(n+b2)(sf(x(u))voln1(Bn1))4n1]×\displaystyle\qquad\qquad\qquad+C_{1}(n-1)(n+b-2)\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{4}{n-1}}\bigg{]}\times
×[1a2{(sf(x(u))voln1(Bn1))2n1C2n+1(sf(x(u))voln1(Bn1))4n1}]×\displaystyle\qquad\times\left[1-\frac{a}{2}\left\{\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{2}{n-1}}-\frac{C_{2}}{n+1}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{4}{n-1}}\right\}\right]\times
×f(x(u))1bdsdμBn(u)\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\times f(x(u))^{1-b}ds\,d\mu_{\partial B_{n}}(u)

for some new absolute constants C1,C2>0C_{1},C_{2}>0. Hence, with a new absolute constant C3>0C_{3}>0 we obtain

(1+δ)(3n+b2)I1(Nn)(n1)!(n1)n1𝔼[𝒱n,n1b+1]voln1(Bn1)b1×\displaystyle(1+\delta)^{-(3n+b-2)}I_{1}\leq{N\choose n}\frac{(n-1)!(n-1)^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]}{\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}\times
×Bn0ϕf(u,1)sn+b2(1s)Nn×\displaystyle\qquad\times\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}s^{n+b-2}(1-s)^{N-n}\times
×[1(n1)(n+b2)+a(n+1)2(n+1)(sf(x(u))voln1(Bn1))2n1\displaystyle\qquad\times\bigg{[}1-\frac{(n-1)(n+b-2)+a(n+1)}{2(n+1)}\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{2}{n-1}}
+C3(n+b2)(a+n)(sf(x(u))voln1(Bn1))4n1]f(x(u))1bdsdμBn(u).\displaystyle\qquad+C_{3}(n+b-2)\left(a+n\right)\left(\frac{s}{f(x(u))\operatorname{vol}_{n-1}(B_{n-1})}\right)^{\frac{4}{n-1}}\bigg{]}f(x(u))^{1-b}\,ds\,d\mu_{\partial B_{n}}(u).

Set c0(n,a,b):=(n1)(n+b2)+a(n+1)2(n+1)c_{0}(n,a,b):=\frac{(n-1)(n+b-2)+a(n+1)}{2(n+1)} and C0(n,a,b):=C3(n+b2)(a+n)C_{0}(n,a,b):=C_{3}(n+b-2)(a+n). Expanding the integrals and using the fact that the function sst1(1s)t2s\mapsto s^{t_{1}}(1-s)^{t_{2}} with t1,t2>0t_{1},t_{2}>0 is nonnegative for s[0,1]s\in[0,1], we derive that

(1+δ)(3n+b2)I1(Nn)(n1)!(n1)n1𝔼[𝒱n,n1b+1]voln1(Bn1)b1×\displaystyle(1+\delta)^{-(3n+b-2)}I_{1}\leq{N\choose n}\frac{(n-1)!(n-1)^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]}{\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}\times
×{Bn0ϕf(u,1)sn+b2(1s)Nnf(x(u))1bdsdμBn(u)\displaystyle\qquad\times\bigg{\{}\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}s^{n+b-2}(1-s)^{N-n}f(x(u))^{1-b}\,ds\,d\mu_{\partial B_{n}}(u)
c0(n,a,b)voln1(Bn1)2n1[Bn01sn+b2+2n1(1s)Nnf(x(u))1b2n1dsdμBn(u)\displaystyle\qquad-\frac{c_{0}(n,a,b)}{\operatorname{vol}_{n-1}(B_{n-1})^{\frac{2}{n-1}}}\bigg{[}\int_{\partial B_{n}}\int_{0}^{1}s^{n+b-2+\frac{2}{n-1}}(1-s)^{N-n}f(x(u))^{1-b-\frac{2}{n-1}}\,ds\,d\mu_{\partial B_{n}}(u)
Bnϕf(u,1)1sn+b2+2n1(1s)Nnf(x(u))1b2n1dsdμBn(u)]\displaystyle\qquad-\int_{\partial B_{n}}\int_{\phi_{f}(u,1)}^{1}s^{n+b-2+\frac{2}{n-1}}(1-s)^{N-n}f(x(u))^{1-b-\frac{2}{n-1}}\,ds\,d\mu_{\partial B_{n}}(u)\bigg{]}
+C0(n,a,b)voln1(Bn1)4n1Bn0ϕf(u,1)sn+b2+4n1(1s)Nnf(x(u))1b4n1dsdμBn(u)}.\displaystyle\qquad+\frac{C_{0}(n,a,b)}{\operatorname{vol}_{n-1}(B_{n-1})^{\frac{4}{n-1}}}\int_{\partial B_{n}}\int_{0}^{\phi_{f}(u,1)}s^{n+b-2+\frac{4}{n-1}}(1-s)^{N-n}f(x(u))^{1-b-\frac{4}{n-1}}\,ds\,d\mu_{\partial B_{n}}(u)\bigg{\}}.

This can be estimated from above by

(1+δ)(3n+b2)I1(Nn)(n1)!(n1)n1𝔼[𝒱n,n1b+1]voln1(Bn1)b1×\displaystyle(1+\delta)^{-(3n+b-2)}I_{1}\leq{N\choose n}\frac{(n-1)!(n-1)^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]}{\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}\times
×{Bnf(x)1bdμBn(x)01sn+b2(1s)NndsdμBn(u)\displaystyle\qquad\times\bigg{\{}\int_{\partial B_{n}}f(x)^{1-b}\,d\mu_{\partial B_{n}}(x)\int_{0}^{1}s^{n+b-2}(1-s)^{N-n}\,ds\,d\mu_{\partial B_{n}}(u)
c0(n,a,b)voln1(Bn1)2n1[Bnf(x(u))1b2n101sn+b2+2n1(1s)NndsdμBn(u)\displaystyle\qquad-\frac{c_{0}(n,a,b)}{\operatorname{vol}_{n-1}(B_{n-1})^{\frac{2}{n-1}}}\bigg{[}\int_{\partial B_{n}}f(x(u))^{1-b-\frac{2}{n-1}}\int_{0}^{1}s^{n+b-2+\frac{2}{n-1}}(1-s)^{N-n}\,ds\,d\mu_{\partial B_{n}}(u)
Bnf(x(u))1b2n1ϕf(u,1)1sn+b2+2n1(1s)NndsdμBn(u)]\displaystyle\qquad-\int_{\partial B_{n}}f(x(u))^{1-b-\frac{2}{n-1}}\int_{\phi_{f}(u,1)}^{1}s^{n+b-2+\frac{2}{n-1}}(1-s)^{N-n}\,ds\,d\mu_{\partial B_{n}}(u)\bigg{]}
+C0(n,a,b)voln1(Bn1)4n1Bnf(x(u))1b4n101sn+b2+4n1(1s)NndsdμBn(u)}.\displaystyle\qquad+\frac{C_{0}(n,a,b)}{\operatorname{vol}_{n-1}(B_{n-1})^{\frac{4}{n-1}}}\int_{\partial B_{n}}f(x(u))^{1-b-\frac{4}{n-1}}\int_{0}^{1}s^{n+b-2+\frac{4}{n-1}}(1-s)^{N-n}\,ds\,d\mu_{\partial B_{n}}(u)\bigg{\}}.

3.3. Step 3: Dealing with the third integral

Since ff is continuous and positive on the compact set Bn\partial B_{n}, it attains a positive minimum value cmin(f):=minuBnf(x(u))>0c_{\min}(f):=\min_{u\in\partial B_{n}}f(x(u))>0 which may depend on nn but not on NN. This implies that for any uBnu\in\partial B_{n},

ϕf(u,1)\displaystyle\phi_{f}(u,1) =BnH(u,1)f(x)𝑑μBn(x)\displaystyle=\int_{\partial B_{n}\cap H(u,1)^{-}}f(x)\,d\mu_{\partial B_{n}}(x)
cmin(f)voln1(BnH(u,1))\displaystyle\geq c_{\min}(f)\operatorname{vol}_{n-1}(\partial B_{n}\cap H(u,1)^{-})
=12cmin(f)μBn(Bn).\displaystyle=\frac{1}{2}c_{\min}(f)\mu_{\partial B_{n}}(\partial B_{n}).

Hence, the integral in the third summand can be estimated from above by

Bnf(x(u))1b2n1\displaystyle\int_{\partial B_{n}}f(x(u))^{1-b-\frac{2}{n-1}} ϕf(u,1)1sn+b2+2n1(1s)Nn𝑑s𝑑μBn(u)\displaystyle\int_{\phi_{f}(u,1)}^{1}s^{n+b-2+\frac{2}{n-1}}(1-s)^{N-n}\,ds\,d\mu_{\partial B_{n}}(u)
Bnf(x(u))1b2n1ϕf(u,1)1(1s)Nn𝑑s𝑑μBn(u)\displaystyle\leq\int_{\partial B_{n}}f(x(u))^{1-b-\frac{2}{n-1}}\int_{\phi_{f}(u,1)}^{1}(1-s)^{N-n}\,ds\,d\mu_{\partial B_{n}}(u)
=Bnf(x(u))1b2n1(1ϕf(u,1))Nn+1Nn+1𝑑μBn(u)\displaystyle=\int_{\partial B_{n}}f(x(u))^{1-b-\frac{2}{n-1}}\cdot\frac{(1-\phi_{f}(u,1))^{N-n+1}}{N-n+1}\,d\mu_{\partial B_{n}}(u)
(112cmin(f)μBn(Bn))Nn+1Nn+1Bnf(x(u))1b2n1𝑑μBn(u).\displaystyle\leq\frac{\left(1-\frac{1}{2}c_{\min}(f)\mu_{\partial B_{n}}(\partial B_{n})\right)^{N-n+1}}{N-n+1}\int_{\partial B_{n}}f(x(u))^{1-b-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(u).

Necessarily, cmin(f)(0,(μBn(Bn))1]c_{\min}(f)\in(0,(\mu_{\partial B_{n}}(\partial B_{n}))^{-1}], for otherwise

Bnf(x)𝑑μBn(x)Bncmin(f)𝑑μBn(x)>1,\int_{\partial B_{n}}f(x)\,d\mu_{\partial B_{n}}(x)\geq\int_{\partial B_{n}}c_{\min}(f)\,d\mu_{\partial B_{n}}(x)>1,

a contradiction. Therefore,

112cmin(f)μBn(Bn)[12,1).1-\tfrac{1}{2}c_{\min}(f)\mu_{\partial B_{n}}(\partial B_{n})\in\left[\tfrac{1}{2},1\right).

Since the function s(1s)Nns\mapsto(1-s)^{N-n} is decreasing for s[0,1]s\in[0,1], this implies that

Bnϕf(u,1)1\displaystyle\int_{\partial B_{n}}\int_{\phi_{f}(u,1)}^{1} sn+b2+2n1(1s)Nnf(x(u))1b2n1dsdμBn(u)\displaystyle s^{n+b-2+\frac{2}{n-1}}(1-s)^{N-n}f(x(u))^{1-b-\frac{2}{n-1}}\,ds\,d\mu_{\partial B_{n}}(u)
2(Nn+1)Nn+1Bnf(x(u))1b2n1𝑑μBn(u).\displaystyle\leq\frac{2^{-(N-n+1)}}{N-n+1}\int_{\partial B_{n}}f(x(u))^{1-b-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(u).

3.4. Step 4: Putting the bounds together

Setting

C1(n,a,b)\displaystyle C_{1}(n,a,b) :=(n1)!(n1)n1𝔼[𝒱n,n1b+1]voln1(Bn1)b1+2n1c0(n,a,b)\displaystyle:=\frac{(n-1)!(n-1)^{n-1}\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]}{\operatorname{vol}_{n-1}(B_{n-1})^{b-1+\frac{2}{n-1}}}c_{0}(n,a,b)
C2(n,a,b,f)\displaystyle C_{2}(n,a,b,f) :=C1(n,a,b)Bnf(x)1b2n1𝑑μBn(x)\displaystyle:=C_{1}(n,a,b)\int_{\partial B_{n}}f(x)^{1-b-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(x)

and using the definition B(v,w)=01tv1(1t)w1𝑑tB(v,w)=\int_{0}^{1}t^{v-1}(1-t)^{w-1}\,dt of the beta function, we obtain

(1+δ)(3n+b2)I1\displaystyle(1+\delta)^{-(3n+b-2)}I_{1}
(Nn)(n1)!(n1)n1𝔼[𝒱n,n1b+1]Bnf(x)1b𝑑μBn(x)voln1(Bn1)b1B(Nn+1,n+b1)\displaystyle\leq{N\choose n}(n-1)!(n-1)^{n-1}\cdot\frac{\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]\int_{\partial B_{n}}f(x)^{1-b}\,d\mu_{\partial B_{n}}(x)}{\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}\cdot B(N-n+1,n+b-1)
(Nn)C2(n,a,b,f)B(Nn+1,n+b1+2n1)\displaystyle\qquad-{N\choose n}C_{2}(n,a,b,f)B(N-n+1,n+b-1+\tfrac{2}{n-1})
+(Nn)2(Nn+1)Nn+1C1(n,a,b)Bnf(x(u))1b2n1𝑑μBn(u)\displaystyle\qquad+{N\choose n}\frac{2^{-(N-n+1)}}{N-n+1}C_{1}(n,a,b)\int_{\partial B_{n}}f(x(u))^{1-b-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(u)
+(Nn)(n1)!(n1)n1C0(n,a,b)𝔼[𝒱n,n1b+1]Bnf(x)1b4n1𝑑μBn(x)voln1(Bn1)b1+4n1\displaystyle\qquad+{N\choose n}(n-1)!(n-1)^{n-1}C_{0}(n,a,b)\frac{\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]\int_{\partial B_{n}}f(x)^{1-b-\frac{4}{n-1}}\,d\mu_{\partial B_{n}}(x)}{\operatorname{vol}_{n-1}(B_{n-1})^{b-1+\frac{4}{n-1}}}
×B(Nn+1,n+b1+4n1).\displaystyle\qquad\qquad\qquad\times B\left(N-n+1,n+b-1+\tfrac{4}{n-1}\right).

From the fact that B(v,w)=Γ(v)Γ(w)Γ(v+w)B(v,w)=\frac{\Gamma(v)\Gamma(w)}{\Gamma(v+w)} and by using the asymptotics of the ratio of gamma functions, we find that

limNB(N+v,w)Γ(w)Nw=1.\lim_{N\to\infty}{B(N+v,w)\over\Gamma(w)N^{-w}}=1.

Applying this to v=n+1v=-n+1 and w=n+b1w=n+b-1 in the first line of the previous estimate, w=n+b1+2n1w=n+b-1+{2\over n-1} in the second line and w=n+b1+4n1w=n+b-1+{4\over n-1} in the last line, we derive that the previous estimate is asymptotically equal to

(1+δ)(3n+b2)I1\displaystyle(1+\delta)^{-(3n+b-2)}I_{1} n1(n1)n1Γ(n+b1)𝔼[𝒱n,n1b+1]Bnf(x)1b𝑑μBn(x)voln1(Bn1)b1N(b1)\displaystyle\leq n^{-1}(n-1)^{n-1}\Gamma(n+b-1)\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]\frac{\int_{\partial B_{n}}f(x)^{1-b}\,d\mu_{\partial B_{n}}(x)}{\operatorname{vol}_{n-1}(B_{n-1})^{b-1}}N^{-(b-1)}
Γ(n+b1+2n1)n!C2(n,a,b,f)N(b1+2n1)\displaystyle\qquad-{\Gamma(n+b-1+{2\over n-1})\over n!}C_{2}(n,a,b,f)N^{-(b-1+{2\over n-1})}
+Nnn!2(Nn+1)Nn+1C1(n,a,b)Bnf(x)1b2n1𝑑μBn(x)\displaystyle\qquad+{N^{n}\over n!}\frac{2^{-(N-n+1)}}{N-n+1}C_{1}(n,a,b)\int_{\partial B_{n}}f(x)^{1-b-\frac{2}{n-1}}\,d\mu_{\partial B_{n}}(x)
+C0(n,a,b)𝔼[𝒱n,n1b+1]n1(n1)n1Γ(n+b1+4n1)×\displaystyle\qquad+C_{0}(n,a,b)\mathbb{E}[\mathcal{V}_{n,n-1}^{b+1}]n^{-1}(n-1)^{n-1}\Gamma\left(n+b-1+{4\over n-1}\right)\times
×Bnf(x)1b4n1𝑑μBn(x)voln1(Bn1)n+4n1N(b1+4n1),\displaystyle\qquad\qquad\qquad\times\frac{\int_{\partial B_{n}}f(x)^{1-b-\frac{4}{n-1}}\,d\mu_{\partial B_{n}}(x)}{\operatorname{vol}_{n-1}(B_{n-1})^{n+\frac{4}{n-1}}}N^{-(b-1+{4\over n-1})},

where we also used that (Nn){N\choose n} is asymptotically equivalent to Nn/n!N^{n}/n!. Now, observe that the last two summands are of negligible order compared to N(b1+2n1)N^{-(b-1+\frac{2}{n-1})}. Finally, we send δ\delta to 0, which establishes the upper bound for I1I_{1}. The upper bound for I2I_{2} is handled in the very same way, and it turns out that I2I_{2} is of the order N(b1+4n1)N^{-(b-1+\frac{4}{n-1})}. This proves one direction of Theorem 1.1.

The lower bound for 𝔼[Ta,b(Qn,Nf)]\mathbb{E}[T_{a,b}(Q_{n,N}^{f})] is provided by almost exactly the same method. The main difference is that we must obtain an inclusion in the opposite direction of that in (3.1). Using the same notation as there, we note that

{(xn+1,,xN)(Bn)Nn:[x1,,xn]n1([x1,,xN]) and oint[x1,,xN]}\displaystyle\phantom{=}\{(x_{n+1},\ldots,x_{N})\in(\partial B_{n})^{N-n}:\,[x_{1},\ldots,x_{n}]\in\mathcal{F}_{n-1}([x_{1},\ldots,x_{N}])\text{ and }o\in\operatorname{int}[x_{1},\ldots,x_{N}]\}
={(xn+1,,xN)(Bn)Nn:[x1,,xn]n1([x1,,xN])}\displaystyle=\{(x_{n+1},\ldots,x_{N})\in(\partial B_{n})^{N-n}:\,[x_{1},\ldots,x_{n}]\in\mathcal{F}_{n-1}([x_{1},\ldots,x_{N}])\}
{(xn+1,,xN)(Bn)Nn:[x1,,xn]n1([x1,,xN]) and oint[x1,,xN]}\displaystyle\setminus\{(x_{n+1},\ldots,x_{N})\in(\partial B_{n})^{N-n}:\,[x_{1},\ldots,x_{n}]\in\mathcal{F}_{n-1}([x_{1},\ldots,x_{N}])\text{ and }o\not\in\operatorname{int}[x_{1},\ldots,x_{N}]\}
{(xn+1,,xN)(Bn)Nn:[x1,,xn]n1([x1,,xN])}\displaystyle\supset\{(x_{n+1},\ldots,x_{N})\in(\partial B_{n})^{N-n}:\,[x_{1},\ldots,x_{n}]\in\mathcal{F}_{n-1}([x_{1},\ldots,x_{N}])\}
{(xn+1,,xN)(Bn)Nn:oint[x1,,xN]}\displaystyle\setminus\{(x_{n+1},\ldots,x_{N})\in(\partial B_{n})^{N-n}:\,o\not\in\operatorname{int}[x_{1},\ldots,x_{N}]\}
(BnH+)Nn{(xn+1,,xN)(Bn)Nn:oint[x1,,xN]}.\displaystyle\supset(\partial B_{n}\cap H^{+})^{N-n}\setminus\{(x_{n+1},\ldots,x_{N})\in(\partial B_{n})^{N-n}:\,o\not\in\operatorname{int}[x_{1},\ldots,x_{N}]\}.

Therefore, using the general inequality (AB)=(A)(AB)(A)(B)\mathbb{P}(A\setminus B)=\mathbb{P}(A)-\mathbb{P}(A\cap B)\geq\mathbb{P}(A)-\mathbb{P}(B), which holds for any probability measure \mathbb{P} and any events AA and BB, we obtain

fNn({(xn+1,,xN)\displaystyle\mathbb{P}_{f}^{N-n}\big{(}\{(x_{n+1},\ldots,x_{N}) (Bn)Nn:[x1,,xn]n1([x1,,xN]) and oint[x1,,xN]})\displaystyle\in(\partial B_{n})^{N-n}:\,[x_{1},\ldots,x_{n}]\in\mathcal{F}_{n-1}([x_{1},\ldots,x_{N}])\text{ and }o\in\operatorname{int}[x_{1},\ldots,x_{N}]\}\big{)}
fNn(BnH+)ec^0(n,f)(Nn)\displaystyle\geq\mathbb{P}_{f}^{N-n}(\partial B_{n}\cap H^{+})-e^{-\hat{c}_{0}(n,f)(N-n)}

for some positive constant c^0(n,f)\hat{c}_{0}(n,f). The rest of the proof of the lower bound now proceeds in the same fashion as before, but this time using the opposite inequalities provided in the preliminary geometric lemmas. ∎

Acknowledgments

BL was supported in part by National Natural Science Foundation of China (51202480). MR was supported in part by the Zuckerman STEM Leadership Program. Part of this work was completed while third named author was in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Harmonic Analysis and Convexity program; this residency was supported by the National Science Foundation under Grant DMS-1929284. CT was supported by the DFG priority program SPP 2265 Random Geometric Systems.

We would like to thank the referee for valuable comments that helped to improve the quality of the article.

References

  • [1] F. Affentranger. The convex hull of random points with spherically symmetric distributions. Rendiconti del Seminario Matematico - Politecnico di Torino, 49:359–383, 1991.
  • [2] I. Bárány. Random polytopes, convex bodies, and approximation. In Stochastic geometry, volume 1892 of Lecture Notes in Mathematics, pages 77–118. Springer, Berlin, 2007.
  • [3] F. Besau and S. Hoehner. An intrinsic volume metric for the class of convex bodies in n\mathbb{R}^{n}. Communications in Contemporary Mathematics (to appear), 2023.
  • [4] F. Besau, S. Hoehner, and G. Kur. Intrinsic and Dual Volume Deviations of Convex Bodies and Polytopes. International Mathematics Research Notices, 2021(22):17456–17513, 2021.
  • [5] K. J. Böröczky and B. Csikós. Approximation of smooth convex bodies by circumscribed polytopes with respect to the surface area. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 79:229–264, 2009.
  • [6] K. J. Böröczky and M. Reitzner. Approximation of smooth convex bodies by random polytopes. The Annals of Applied Probability, 14:239–273, 2004.
  • [7] T. Godland, Z. Kabluchko, and C. Thäle. Beta-star polytopes and hyperbolic stochastic geometry. Advances in Mathematics, 404(part A):Paper No. 108382, 69, 2022.
  • [8] J. Grote and E. Werner. Approximation of smooth convex bodies by random polytopes. Electronic Journal of Probability, 23:1–21, 2018.
  • [9] S. Hoehner and G. Kur. A Concentration Inequality for Random Polytopes, Dirichlet-Voronoi Tiling Numbers and the Geometric Balls and Bins Problem. Discrete & Computational Geometry, 65(3):730–763, 2021.
  • [10] S. Hoehner, C. Schütt, and E. Werner. The Surface Area Deviation of the Euclidean Ball and a Polytope. Journal of Theoretical Probability, 31:244–267, 2018.
  • [11] D. Hug. Random polytopes. In Stochastic geometry, spatial statistics and random fields, volume 2068 of Lecture Notes in Mathematics, pages 205–238. Springer, Heidelberg, 2013.
  • [12] D. Hug, E. Lutwak, D. Yang, and G. Zhang. On the Lp{L}_{p} Minkowski Problem for Polytopes. Discrete & Computational Geometry, 33(4):699–715, 2005.
  • [13] D. Hug, G. O. Munsonius, and M. Reitzner. Asymptotic mean values of Gaussian polytopes. Beiträge zur Algebra und Geometrie, 45(2):531–548, 2004.
  • [14] Z. Kabluchko, A. Marynych, D. Temesvari, and C. Thäle. Cones generated by random points on half-spheres and convex hulls of poisson point processes. Probability Theory and Related Fields, 175:1021–1061, 2019.
  • [15] Z. Kabluchko, D. Temesvari, and C. Thäle. Expected intrinsic volumes and facet numbers of random beta-polytopes. Mathematische Nachrichten, 292(1):79–105, 2019.
  • [16] G. Kur. Approximation of the Euclidean ball by polytopes with a restricted number of facets. Studia Mathematica, 251(2):111–133, 2020.
  • [17] M. Ludwig, C. Schütt, and E. M. Werner. Approximation of the Euclidean ball by polytopes. Studia Mathematica, 173:1–18, 2006.
  • [18] E. Lutwak. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. Journal of Differential Geometry, 38(1):131 – 150, 1993.
  • [19] R. E. Miles. Isotropic random simplices. Advances in Applied Probability, 3:353–382, 1971.
  • [20] J. S. Müller. Approximation of a Ball by Random Polytopes. Journal of Approximation Theory, 63:198–209, 1990.
  • [21] M. Reitzner. Random points on the boundary of smooth convex bodies. Transactions of the American Mathematical Society, 354:2243–2278, 2002.
  • [22] M. Reitzner. Random polytopes. In New perspectives in stochastic geometry, pages 45–76. Oxford University Press, Oxford, 2010.
  • [23] A. Rényi and R. Sulanke. Über die konvexe Hülle von nn zufällig gewählten Punkten. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2:75–84 (1963), 1963.
  • [24] C. Schütt and E. Werner. Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body, volume 1807 of Lecture Notes in Mathematics, pages 241–422. Springer, Berlin, Heidelberg, 2003.
  • [25] A. Stancu. On the discrete planar L0{L}_{0}-Minkowski problem. Advances in Mathematics, 167:160–174, 2002.
  • [26] A. Stancu. On the number of solutions to the discrete two-dimensional L0{L}_{0}-Minkowski problem. Advances in Mathematics, 180(1):290–323, 2003.
  • [27] J. A. Wieacker. Einige Probleme der polyedrischen Approximation. PhD thesis, Albert-Ludwigs-Universität, Freiburg im Breisgau, 1978.
  • [28] M. Zähle. A kinematic formula and moment measures of random sets. Mathematische Nachrichten, 149:325–340, 1990.
  • [29] G. Zhu. The Lp{L}_{p} Minkowski Problem for Polytopes for p<0p<0. Indiana University Mathematics Journal, 66(4):1333–1350, 2017.