This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymmetric Fuglede - Putnam theorem for Unbounded MM-Hyponormal operators

T. PRASAD, E. SHINE LAL AND P. RAMYA T. Prasad Department of MathematicsUniversity of CalicutMalapuram, Kerala, India - 673635. [email protected] E. Shine Lal Department of MathematicsUniversity College, ThiruvananthapuramKerala, India -695034. [email protected] P. Ramya Department of MathematicsN.S.S College, NemmaraKerala, India -678508. [email protected]
Abstract.

A closed densely defined operator TT on a Hilbert space \mathcal{H} is callled MM-hyponormal if 𝒟(T)𝒟(T)\mathcal{D}(T)\subset\mathcal{D}(T^{*}) and there exists M>0M>0 for which (TzI)xM(TzI)x\parallel(T-zI)^{*}x\parallel\leq M\parallel(T-zI)x\parallel for all zz\in\mathbb{C} and for all x𝒟(T)x\in\mathcal{D}(T). In this paper, we prove that if bounded linear operator A:𝒦A:\mathcal{H}\rightarrow\mathcal{K} is such that ABTAAB^{*}\subseteq TA, where BB is a closed subnormal (resp. a closed MM-hyponormal) on \mathcal{H}, TT is a closed MM-hyponormal (resp. a closed subnormal) on \mathcal{H}, then (i) ABTA,AB\subseteq T^{*}A, (ii) ran(A)¯{\overline{ran(A^{*})}} reduces BB to the normal operator B|ran(A)¯,B|_{{\overline{ran(A^{*})}}}, and (iii) ran(A)¯{\overline{ran(A)}} reduces TT to the normal operator T|ran(A)¯.T|_{{\overline{ran(A)}}}.

Key words and phrases:
Closed densely defined MM-hyponormal operator, Fuglede-Putnam Theorem, Riesz projection.
2010 Mathematics Subject Classification:
47A05, 47A10, 47B20

1. Introduction and Preliminaries

Let ,𝒦,\mathcal{H},\mathcal{K},\mathcal{L} be infinite dimensional complex Hilbert space. Let ()\mathcal{B}(\mathcal{H}) denotes the space of all bounded linear operators on \mathcal{H}. The famous Fuglede - Putnam theorem asserts that if T,N()T,N\in\mathcal{B}(\mathcal{H}) are normal operators and TX=XNTX=XN for some X()X\in\mathcal{B}(\mathcal{H}), then TX=XNT^{*}X=XN^{*} ([7, 11, 17, 21]). Several authors tried to relax the normality condition ([5, 1, 13, 14, 22]). But for subnormal operators, it does not hold. Asymmetric version of Fuglede - Putnam theorem for bounded subnormal operators, MM-hyponormal operators and dominant operators are studied by Furuta ([8, 9]) Moore ([14]) and Stampfli ([23]) respectively. The study of unbounded operators is one of the major research area in the field of operator theory. In most of the cases operators involved in quantum mechanics, differential equations are unbounded.

Let 𝒟(T),ker(T),ran(T)\mathcal{D}(T),~{}ker(T),~{}ran(T) and 𝒢(T)\mathcal{G}(T) denotes the domain, nullspace, range and graph of TT respectively. Let A=U|A|A=U~{}|A| be the polar decomposition of A()A\in\mathcal{B}(\mathcal{H}), where |A|=(AA)12|A|=(A^{*}A)^{\frac{1}{2}}. Let ()\mathcal{L}(\mathcal{H}) and 𝒞()\mathcal{C}(\mathcal{H}) denotes the space of all linear and closed linear operators on \mathcal{H} respectively. Let T|T|_{\mathcal{M}} denotes the restriction of TT in to the closed subspace \mathcal{M} of D(T)D(T). A closed subspace \mathcal{M} is said to be a core for TT if 𝒢(T)𝒢(T|)¯\mathcal{G}(T)\subseteq\overline{\mathcal{G}(T|_{\mathcal{M}})} ([25]).

An operator T()T\in\mathcal{L}(\mathcal{H}) is said to be densely defined if 𝒟(T)¯=.\overline{\mathcal{D}(T)}=\mathcal{H}. For example, T:l2()l2()T:l^{2}(\mathbb{N})\longrightarrow l^{2}(\mathbb{N}) be defined by

T(x1,x2,x3)=(2x1,3x2,4x3,5x4,6x5)\displaystyle T(x_{1},x_{2},x_{3}......)=(2x_{1},3x_{2},4x_{3},5x_{4},6x_{5}......)

with 𝒟(T)={(x1,x2..)l2():j=1|(j+1)xj|2<}\mathcal{D}(T)=\{(x_{1},x_{2}........)\in l^{2}(\mathbb{N}):\sum^{\infty}_{j=1}|(j+1)x_{j}|^{2}<\infty\}. Since C00𝒟(T)C_{00}\subseteq\mathcal{D}(T), and C00C_{00} is dense in l2()l^{2}(\mathbb{N}), we have 𝒟(T)\mathcal{D}(T) is dense in l2()l^{2}(\mathbb{N}).

An operator B𝒞()B\in\mathcal{C}(\mathcal{H}) is said to be subnormal if there is a Hilbert space 𝒦\mathcal{K}\supseteq\mathcal{H} and a normal operator SS in 𝒦\mathcal{K} such that BSB\subseteq S. An operator T()T\in\mathcal{B}(\mathcal{H}) is said to be hyponormal if TTTTT^{*}T\geq TT^{*} and is said to be M-hyponormal if (TzI)xM(TzI)x\parallel(T-zI)^{*}x\parallel\leq M\parallel(T-zI)x\parallel for all zz\in\mathbb{C} and for all xx\in\mathcal{H}. It is evident that the following inclusion hold:

hyponormalMhyponormal.hyponormal\subset M-hyponormal.

A densely defined operator T𝒞()T\in\mathcal{C}(\mathcal{H}) is said to be MM-hyponormal if 𝒟(T)𝒟(T)\mathcal{D}(T)\subset\mathcal{D}(T^{*}) and there exists M>0M>0 for which (TzI)xM(TzI)x\parallel(T-zI)^{*}x\parallel\leq M\parallel(T-zI)x\parallel for all zz\in\mathbb{C} and for all x𝒟(T).x\in\mathcal{D}(T).
Now we give an example for closed densely defined MM- hyponormal opearator, which is not hyponormal.

Example 1.1.

Let T:l2()l2()T:l^{2}(\mathbb{N})\longrightarrow l^{2}(\mathbb{N}) be defined by

T(x1,x2,x3)\displaystyle T(x_{1},x_{2},x_{3}......) =(0,x1,2x2,x3,4x4,5x5)\displaystyle=(0,x_{1},2x_{2},x_{3},4x_{4},5x_{5}......)
=(0,α1x1,α2x2,α3x3,α4x4),\displaystyle=(0,\alpha_{1}x_{1},\alpha_{2}x_{2},\alpha_{3}x_{3},\alpha_{4}x_{4}.........),

where αj\alpha_{j} = {1ifj=1,3jifj=2 and j4\left\{\begin{array}[]{rcl}1&\mbox{if}&j=1,3\\ j&\mbox{if}&j=2$ $\rm{and}$ $j\geq 4\end{array}\right.
Let 𝒟(T)={(x1,x2..)l2():j=1|αjxj|2<}\mathcal{D}(T)=\{(x_{1},x_{2}........)\in l^{2}(\mathbb{N}):\sum^{\infty}_{j=1}|\alpha_{j}x_{j}|^{2}<\infty\}. Since C00𝒟(T)C_{00}\subseteq\mathcal{D}(T), and C00C_{00} is dense in l2()l^{2}(\mathbb{N}), 𝒟(T)\mathcal{D}(T) is dense in l2()l^{2}(\mathbb{N}). Since (αn)(\alpha_{n}) is eventually increasing, TT is MM-hyponormal ([12]). The adjoint of T,TT,T^{*} is given by

T(x1,x2,x3)=(x2,2x3,3x4,4x5,5x6).\displaystyle T^{*}(x_{1},x_{2},x_{3}......)=(x_{2},2x_{3},3x_{4},4x_{5},5x_{6}......).

Let ei=(0,0,.,1,0,0,..)e_{i}=(0,0,....,1,0,0,.....), where 1 occurs in the ithi^{th} place. Then

Te1=e2,Te2=2e3,Te3=e4,Tei=iei+1 for i4.Te_{1}=e_{2},Te_{2}=2e_{3},Te_{3}=e_{4},Te_{i}=ie_{i+1}\mbox{ for }i\geqslant 4.
Te1=0,Te2=e1,Te3=2e2,Te4=e3,Tei=(i1)ei1 for i5.T^{*}e_{1}=0,T^{*}e_{2}=e_{1},T^{*}e_{3}=2e_{2},T^{*}e_{4}=e_{3},T^{*}e_{i}=(i-1)e_{i-1}\mbox{ for }i\geqslant 5.

Since Te3=2\|T^{*}e_{3}\|=2 and Te3=1,\|Te_{3}\|=1, it follows that TT is not hyponormal.

Stochel ([25]) studied asymmetric Fuglede - Putnam theorem for closed hyponormal (resp. closed subnormal) and closed subnormal (resp. closed hyponormal) operators. Recently, Bensaid, Dehimi, Fuglede and Mortad([3]), studied new and classic version of Fuglede theorem in an unbounded setting. Assymmetric Fuglede - Putnam theorem for some class unbounded operators has been studied by Mortad ([15, 16]) and Paliogiannis ([18]). In this paper we study asymmetric Fuglede - Putnam theorem for closed MM-hyponormal (resp. closed subnormal) and subnormal (resp. closed MM-hyponormal) operators by the method of ([25]).

2. Fuglede-Putnam Theorem

A closed subspace \mathcal{M} of \mathcal{H} is said to be invariant under T()T\in\mathcal{L}(\mathcal{H}) if for any x𝒟(T)x\in\mathcal{D}(T)\cap\mathcal{M}, then TxTx\in\mathcal{M}. ie., if \mathcal{M} is a closed subspace of \mathcal{H}, we define T|T|_{\mathcal{M}} is an operator on \mathcal{M} with domain

𝒟(T|)={x𝒟(T):Tx}andT|x=Tx,x𝒟(T|).\mathcal{D}(T|_{\mathcal{M}})=\{x\in\mathcal{D}(T)\cap\mathcal{M}:Tx\in\mathcal{M}\}~{}~{}\mbox{and}~{}~{}T|_{\mathcal{M}}~{}~{}x=Tx,~{}~{}x\in\mathcal{D}(T|_{\mathcal{M}}).

If \mathcal{M} reduce TT to an operator B,B, then B=T|B=T|_{\mathcal{M}}. Throughout the paper we present known result as proposition. In the following result we show that part of closed densely defined MM- hyponormal operator is again MM-hyponormal.

Lemma 2.1.

Let T𝒞()T\in\mathcal{C}(\mathcal{H}) be a densely defined MM-hyponormal operator and let \mathcal{M} be a closed subspace of \mathcal{H} which is invariant under T. Then T|T|_{\mathcal{M}} is a closed MM-hyponormal operator.

Proof.

We have 𝒟(T|)=𝒟(T)\mathcal{D}(T|_{\mathcal{M}})=\mathcal{D}(T)\cap\mathcal{M}. Let x𝒟(T|)x\in\mathcal{D}(T|_{\mathcal{M}}) and PP be an orthogonal projection on to \mathcal{M}. Then

(T|λI)x\displaystyle\parallel(T|_{\mathcal{M}}-\lambda I)^{*}x\parallel =P(TλI)x\displaystyle=\parallel P(T-\lambda I)^{*}x\parallel
M(TλI)x\displaystyle\leq M\parallel(T-\lambda I)x\parallel
=M(T|λI)x.\displaystyle=M\parallel(T|_{\mathcal{M}}-\lambda I)x\parallel.

Hence T|T|_{\mathcal{M}} is a closed MM-hyponormal operator. ∎

The next result for closed hyponormal operators has been studied in ([25]) by Stochel.

Lemma 2.2.

Let T𝒞()T\in\mathcal{C}(\mathcal{H}) be a densely defined MM-hyponormal operator. Then there exist a contraction Cλ()C_{\lambda}\in\mathcal{B}(\mathcal{H}) such that 1M(Tλ)(Tλ)Cλ\dfrac{1}{M}(T-\lambda)\subseteq(T-\lambda)^{*}C_{\lambda} for every λ\lambda\in\mathbb{C}.

Proof.

Define K:ran(Tλ)ran(Tλ¯)K:ran(T-\lambda)\rightarrow ran(T^{*}-\overline{\lambda}) by

K((Tλ)x)=1M(Tλ¯)x,for allx𝒟(T).\displaystyle K\left((T-\lambda)x\right)=\dfrac{1}{M}(T^{*}-\overline{\lambda})x,~{}~{}\mbox{for all}~{}~{}~{}x\in\mathcal{D}(T).

Since TT is MM-hyponormal, KK is a contraction with K(Tλ)1M(Tλ¯).K(T-\lambda)\subseteq\dfrac{1}{M}(T^{*}-\overline{\lambda}). Now we extend KK to K(ran(Tλ)¯,ran(Tλ¯)¯)K^{\prime}\in\mathcal{B}\left(\overline{ran(T-\lambda)},\overline{ran(T^{*}-\overline{\lambda})}\right) such that
K(Tλ)1M(Tλ¯)K^{\prime}(T-\lambda)\subseteq\dfrac{1}{M}(T^{*}-\overline{\lambda}). Then the contraction A()A\in\mathcal{B}(\mathcal{H}) defined by Ax=0Ax=0~{}~{} for all xran(Tλ)¯x\in{\overline{ran(T-\lambda)}}^{\perp} is an extension of KK^{\prime}. Hence

A(Tλ)1M(Tλ¯).A(T-\lambda)\subseteq\dfrac{1}{M}(T^{*}-\overline{\lambda}).

Therefore, we get

1M(Tλ)(Tλ)A.\dfrac{1}{M}(T-\lambda)\subseteq(T-\lambda)^{*}A^{*}.

If we put A=Cλ,A^{*}=C_{\lambda}, then 1M(Tλ)(Tλ)Cλ.\dfrac{1}{M}(T-\lambda)\subseteq(T-\lambda)^{*}C_{\lambda}.

A closed subspace \mathcal{M} of \mathcal{H} reduces T𝒞()T\in\mathcal{C}(\mathcal{H}) if \mathcal{M} and \mathcal{M^{\perp}} are invariant under TT. Stochel ([25]) proved if T𝒞()T\in\mathcal{C}(\mathcal{H}) is hyponormal and \mathcal{M} is a closed subspace of \mathcal{H} which is invariant under TT with T|T|_{\mathcal{M}} is normal, then \mathcal{M} reduces T.T. Now we prove the result for closed densely defined MM-hyponormal operators.

Theorem 2.3.

Suppose T𝒞()T\in\mathcal{C}(\mathcal{H}) is a densely defined MM-hyponormal operator. If \mathcal{M} is a closed subspace of \mathcal{H} which is invariant under TT with T|T|_{\mathcal{M}} is normal, then \mathcal{M} reduces T.T.

Proof.

Let =12,\mathcal{H}=\mathcal{H}_{1}\oplus\mathcal{H}_{2}, where 1=\mathcal{H}_{1}=\mathcal{M} and 2=.\mathcal{H}_{2}=\mathcal{M}^{\perp}. Then TT has the block matrix representation

T=[T11T12T21T22],T=\begin{bmatrix}T_{11}&T_{12}\\ T_{21}&T_{22}\end{bmatrix},

where Tij:D(T)jiT_{ij}:D(T)\cap\mathcal{H}_{j}\rightarrow\mathcal{H}_{i} is defined by Tij=PiTPj|D(T)jT_{ij}=P_{\mathcal{H}_{i}}TP_{\mathcal{H}_{j}}|_{D(T)\cap\mathcal{H}_{j}} for j=1,2.j=1,2. Here, PiP_{\mathcal{H}_{i}} denotes the orthogonal projection onto i.\mathcal{H}_{i}. Since \mathcal{M} is invariant under TT, we have

T=[T11T120T22].T=\begin{bmatrix}T_{11}&T_{12}\\ 0&T_{22}\end{bmatrix}.

Let yD(T).y\in D(T)\cap\mathcal{M}^{\perp}. By Lemma 2.2, we have

1M(Tλ)(Tλ)Cλ\dfrac{1}{M}(T-\lambda)\subseteq(T-\lambda)^{*}C_{\lambda}

for every λ\lambda\in\mathbb{C}. Thus, ran(Tλ)ran(Tλ)ran(T-\lambda)\subseteq ran(T-\lambda)^{*} for every λ.\lambda\in\mathbb{C}. Then there exist a densely defined operator BB such that (Tλ)=(Tλ)B(T-\lambda)=(T-\lambda)^{*}B ( see [6]). Hence, T12(y)=(T11λ)uT_{12}(y)=(T_{11}-\lambda)^{*}u for some u.u\in\mathcal{M}. We can choose vv such that (T11λ)u=(T11λ)v.(T_{11}-\lambda)^{*}u=(T_{11}-\lambda)v. Therefore, T12(y)=(T11λ)vT_{12}(y)=(T_{11}-\lambda)v for every λ.\lambda\in\mathbb{C}. Hence,

T12(y)λran(T11λ).T_{12}(y)\in\bigcap\limits_{\lambda\in\mathbb{C}}ran(T_{11}-\lambda).

Thus, T12(y)=0T_{12}(y)=0 ([20]) and so T12=0T_{12}=0. ∎

Proposition 2.4.

([25]) Let \mathcal{M} be a core for T𝒞()T\in\mathcal{C}(\mathcal{H}) and A()A\in\mathcal{B}(\mathcal{H}) be a selfadjoint operator with ker(A)={0}.ker(A)=\{0\}. If ATTAAT\subseteq TA, then A()A(\mathcal{M}) is a core for TT.

Now we extend the Theorem 2.3 of ([25]) from closed hyponormal to closed MM-hyponormal operator by the similar argument as in the proof of ([25, Theorem 2.3]).

Theorem 2.5.

Let S𝒞()S\in\mathcal{C}(\mathcal{H}) be normal. Let T𝒞(𝒦)T\in\mathcal{C}(\mathcal{K}) be MM-hyponormal. If A(,𝒦)A\in\mathcal{B}(\mathcal{H},\mathcal{K}) be such that ASTAAS\subseteq TA. Then
(i) |A|SS|A||A|S\subseteq S|A|
(ii) If A0,ker(A)={0}A\geq 0,ker(A)=\{0\} and 𝒦=\mathcal{K}=\mathcal{H}, then S=TS=T.

Proof.

(i) Suppose TT is MM-hyponormal. Then by Lemma 2.2, we have

1M(Tλ)(Tλ)Cλfor allλ.\dfrac{1}{M}(T-\lambda)\subseteq(T-\lambda)^{*}C_{\lambda}~{}~{}\mbox{for all}~{}~{}\lambda\in\mathbb{C}. (2.1)

Let EE be the spectral measure of SS and let Ω\Omega be a compact subset of .\mathbb{C}. Since EE is regular, it is sufficient to prove that |A|E(Ω)=E(Ω)|A||A|E(\Omega)=E(\Omega)|A| for every compact set Ω\Omega of .\mathbb{C}. Since SS is normal, we have ran(E(Ω))ran(E(\Omega)) reduces SλS-\lambda and ran(E(Ω))𝒟(Sλ)ran(E(\Omega))\subset\mathcal{D}(S-\lambda) for every λ\lambda\in\mathbb{C}.
For λΩ,\lambda\notin\Omega, define the function ψ(λ)=Ω1(zλ)E(dz)x\psi(\lambda)=\int_{\Omega}\dfrac{1}{(z-\lambda)}E(dz)x
Then Ax=A(Sλ)ψ(λ),forλΩ.Ax=A(S-\lambda)\psi(\lambda),~{}\mbox{for}~{}~{}\lambda\notin\Omega. Since ASTA,AS\subseteq TA, we have Ax=(Tλ)Aψ(λ),forλΩ.Ax=(T-\lambda)A\psi(\lambda),~{}\mbox{for}~{}~{}\lambda\notin\Omega. Hence by equation (2.1), AAx=AM(Tλ)CλAψ(λ).A^{*}Ax=A^{*}M(T-\lambda)^{*}C_{\lambda}A\psi(\lambda). Since A(Sλ)(Tλ)A,A(S-\lambda)\subseteq(T-\lambda)A, for λ,\lambda\in\mathbb{C}, AAx=(Sλ)MACλAψ(λ),forλΩA^{*}Ax=(S-\lambda)^{*}MA^{*}C_{\lambda}A\psi(\lambda),~{}\mbox{for}~{}~{}\lambda\notin\Omega and hence AAxzΩran(Sz),A^{*}Ax\in\bigcap\limits_{z\in\mathbb{C}\setminus\Omega^{*}}ran(S^{*}-z), where Ω={z:z¯Ω}.\Omega^{*}=\{z:\overline{z}\in\Omega\}. Then E(Ω)AAx=0E(\mathbb{C}\setminus\Omega)A^{*}Ax=0 ([25, Theorem 2.2]). Therefore, AAx=E(Ω)AAx.A^{*}Ax=E(\Omega)A^{*}Ax. Since xran(E(Ω))x\in ran(E(\Omega)) is arbitrary,

AA(ran(E(Ω)))ran(E(Ω)).A^{*}A(ran(E(\Omega)))\subseteq ran(E(\Omega)).

Since AAA^{*}A is selfadjoint, AAE(Ω)=E(Ω)AA.A^{*}AE(\Omega)=E(\Omega)A^{*}A. This completes the proof.

(ii) Since A0,A\geq 0, from (i) we have SAx=ASx=TAxSAx=ASx=TAx for x𝒟(S).x\in\mathcal{D}(S). Thus, S|A𝒟(S)T.S|_{A\mathcal{D}(S)}\subseteq T. Since 𝒟\mathcal{D} is a core for S,S, A𝒟(S)A\mathcal{D}(S) is a core for SS from Proposition 2.4. Hence,

𝒢(S)𝒢(S|A𝒟(S))¯𝒢(T)¯=𝒢(T).\mathcal{G}(S)\subseteq\overline{\mathcal{G}(S|_{A\mathcal{D}(S)})}\subseteq\overline{\mathcal{G}(T)}=\mathcal{G}(T).

Therefore, STS\subseteq T. Since D(T)D(T)D(T)\subseteq D(T^{*}), we have D(T)D(T)D(S)=D(S).D(T)\subseteq D(T^{*})\subseteq D(S^{*})=D(S). Hence, S=T.S=T.

Let A(,𝒦),A\in\mathcal{B}(\mathcal{H},\mathcal{K}), we denotes (A):=ran(A)¯=ran(|A|)¯\mathcal{R}(A^{*}):=\overline{ran(A^{*})}=\overline{ran(|A|)} and (A):=ran(A)¯.\mathcal{R}(A):=\overline{ran(A)}. Let A=U|A|A=U~{}~{}|A| be the polar decomposition of A,A, where |A|=(AA)12|A|=(A^{*}A)^{\frac{1}{2}}, U(,𝒦)U\in\mathcal{B}(\mathcal{H},\mathcal{K}) is partial isometry with initial space (A)\mathcal{R}(A^{*}) and final space (A)\mathcal{R}(A). Also ker(U)=ker(A)ker(U)=ker(A) and U|(A),A|(A)U|_{\mathcal{R}(A^{*})},A|_{\mathcal{R}(A^{*})} are in ((A),(A))\mathcal{B}(\mathcal{R}(A^{*}),\mathcal{R}(A)). Also U|(A)U|_{\mathcal{R}(A^{*})} is a bounded unique unitary isomorphism from (A)\mathcal{R}(A^{*}) into (A)\mathcal{R}(A) with

U|(A)|A|x=Ax,x.U|_{\mathcal{R}(A^{*})}~{}~{}|A|\,x~{}=~{}A\,x,x\in\mathcal{H}.
Proposition 2.6.

([25],Theorem 3.2)

Let TT and BB be a closed densely defined operators in ,\mathcal{H}, and 𝒦\mathcal{K} respectively, and let A(,𝒦)A\in\mathcal{B}(\mathcal{H},\mathcal{K}) be such that ATBA.AT^{*}\subseteq BA.
(i) If (A)\mathcal{R}(A^{*}) reduces T,T, then B|(A)B|_{\mathcal{R}(A)} is closed densely defined operator in (A)\mathcal{R}(A) and

A|(A)(T|(A))B|(A)A|(A).A|_{\mathcal{R}(A^{*})}~{}~{}(T|_{\mathcal{R}(A^{*})})^{*}\subseteq B|_{\mathcal{R}(A)}~{}~{}A|_{\mathcal{R}(A^{*})}.

(ii) If (A)\mathcal{R}(A^{*}) and (A)\mathcal{R}(A) reduces TT and BB to normal operators respectively, then

ATBA,|A|TT|A|,|A|BB|A|,AT\subseteq B^{*}A,~{}~{}|A|T\subseteq T|A|,~{}~{}|A^{*}|B\subseteq B|A^{*}|,
(T|(A))=(U|(A))B|(A)U|(A).(T|_{\mathcal{R}(A^{*})})^{*}=(U|_{\mathcal{R}(A^{*})})^{*}B|_{\mathcal{R}(A)}~{}~{}U|_{\mathcal{R}(A^{*})}.

Now we prove the asymmetric Fuglede-Putnam theorem for closed densely defined MM-hyponormal and normal operators. The following result is the motivated by ([25],Proposition 4.1).

Theorem 2.7.

Suppose S𝒞()S\in\mathcal{C}(\mathcal{H}) is a normal operator and T𝒞(𝒦)T\in\mathcal{C}(\mathcal{K}) is MM-hyponormal. If A(,𝒦)A\in\mathcal{B}(\mathcal{H},\mathcal{K}) is such that ASTA.AS\subseteq TA. Then (A)\mathcal{R}(A^{*}) reduces SS and T|(A),S|(A)T|_{\mathcal{R}(A)},~{}S|_{\mathcal{R}(A^{*})} are unitarily equivalent normal operators.

Proof.

Let Ω\Omega be a Borel subset of \mathbb{C} and let EE be the spectral measure of SS. We have E(Ω)E(\Omega) is an orthogonal projection. To prove (A)\mathcal{R}(A^{*}) reduces S,S, it is sufficient to prove that (A)=ran(|A|)¯\mathcal{R}(A^{*})=\overline{ran(|A|)} is invariant under E(Ω)E(\Omega).

Let yran(|A|)¯y\in\overline{ran(|A|)}. Then there exist a sequence (yn)ran(|A|)(y_{n})\in ran(|A|) such that yny_{n} converges to yy. Since E(Ω)E(\Omega) is bounded, E(Ω)ynE(\Omega)y_{n} converges to E(Ω)yE(\Omega)y . Since (yn)ran(|A|)(y_{n})\in ran(|A|), there exist xn𝒟(|A|)x_{n}\in\mathcal{D}(|A|) such that yn=|A|xn.y_{n}=|A|x_{n}. Therefore, E(Ω)|A|xnE(\Omega)|A|x_{n} converges to E(Ω)y.E(\Omega)y. From Theorem 2.5 (i), |A|E(Ω)=E(Ω)|A|.|A|E(\Omega)=E(\Omega)|A|. Hence, |A|E(Ω)xn|A|E(\Omega)x_{n} converges to E(Ω)y.E(\Omega)y. Thus, (A)\mathcal{R}(A^{*}) reduces SS.

Since ASTAAS\subseteq TA and (A)\mathcal{R}(A^{*}) reduces S,S, we have T|(A)T|_{\mathcal{R}(A)} is a closed densely defined operator in (A)\mathcal{R}(A) and

A|(A)S|(A)T|(A)A|(A).A|_{\mathcal{R}(A^{*})}~{}~{}S|_{\mathcal{R}(A^{*})}\subseteq T|_{\mathcal{R}(A)}~{}~{}A|_{\mathcal{R}(A^{*})}. (2.2)

by Proposition 2.6 (i). Since TT is MM-hyponormal, T|(A)T|_{\mathcal{R}(A)} is a closed MM-hyponormal operator in (A)\mathcal{R}(A) by Lemma 2.1. From ([25, Lemma 3.1(v)]), we have

|A|(A)|S|(A)(U|(A))T|(A)U|(A)|A|(A)|.|~{}A|_{\mathcal{R}(A^{*})}~{}|~{}~{}~{}S|_{\mathcal{R}(A^{*})}\subseteq(U|_{\mathcal{R}(A^{*})})^{*}~{}~{}T|_{\mathcal{R}(A)}~{}~{}U|_{\mathcal{R}(A^{*})}~{}~{}|A|_{\mathcal{R}(A^{*})}|.

Let W=U|(A)W=U|_{\mathcal{R}(A^{*})}, and V=WT|(A)W.V=W^{*}~{}~{}T|_{\mathcal{R}(A)}~{}~{}W. Also we have WW is unitary isomorphism and T|(A)T|_{\mathcal{R}(A)} is MM-hyponormal. Then for x(A),x\in\mathcal{R}(A^{*}),

(VzI)x\displaystyle\parallel(V-zI)x\parallel =W(T|(A)zI)Wx\displaystyle=\parallel W^{*}(~{}~{}T|_{\mathcal{R}(A)}~{}-zI)^{*}~{}~{}Wx\parallel
=(T|(A)zI)Wx\displaystyle=\parallel(~{}~{}T|_{\mathcal{R}(A)}~{}-zI)^{*}~{}~{}Wx\parallel
M(T|(A)zI)Wx\displaystyle\leq M\parallel(~{}~{}T|_{\mathcal{R}(A)}~{}-zI)Wx\parallel
=MW(T|(A)zI)Wx\displaystyle=M\parallel W^{*}(~{}~{}T|_{\mathcal{R}(A)}~{}-zI)Wx\parallel~{}~{}~{}
=M(VzI)x.\displaystyle=M\parallel(V-zI)x\parallel.

Hence (U|(A))T|(A)U|(A)(U|_{\mathcal{R}(A^{*})})^{*}~{}~{}T|_{\mathcal{R}(A)}~{}~{}U|_{\mathcal{R}(A^{*})} is a closed MM-hyponormal operator.
From Theorem 2.5 (ii), we get S|(A)=(UA|(A))T|(A)UA|(A)S|_{\mathcal{R}(A^{*})}=(U_{A}|_{\mathcal{R}(A^{*})})^{*}~{}~{}T|_{\mathcal{R}(A)}~{}~{}U_{A}|_{\mathcal{R}(A^{*})} because ker(|A|(A)|)=ker(A|(A))={0}ker(|~{}A|_{\mathcal{R}(A^{*})}~{}|)=ker(A|_{\mathcal{R}(A^{*})})=\{0\}. Thus, T|(A),S|(A)T|_{\mathcal{R}(A)},~{}S|_{\mathcal{R}(A^{*})} are unitarily equivalent normal operators.

Stochel ([25]) proved the following result for closed hyponormal and closed subnormal operators. Now we extend the result to closed MM-hyponormal and closed subnormal operators using the method of ([25, Theorem 4.2])

Theorem 2.8.

Let B𝒞()B\in\mathcal{C}(\mathcal{H}) be subnormal (resp. a closed MM-hyponormal operator in \mathcal{H} ), T𝒞(𝒦)T\in\mathcal{C}(\mathcal{K}) be MM-hyponormal (resp. a closed subnormal operator in 𝒦\mathcal{K} ) and A(,𝒦)A\in\mathcal{B}(\mathcal{H},\mathcal{K}) is such that ABTA.AB^{*}\subseteq TA. Then
(i) ABTA.AB\subseteq T^{*}A.
(ii) (A)\mathcal{R}(A^{*}) reduces BB to the normal operator B|(A).B|_{\mathcal{R}(A^{*})}.
(iii) (A)\mathcal{R}(A) reduces TT to the normal operator T|(A).T|_{\mathcal{R}(A)}.

Proof.

First assume that B𝒞()B\in\mathcal{C}(\mathcal{H}) is subnormal and T𝒞(𝒦)T\in\mathcal{C}(\mathcal{K}) is MM-hyponormal. Since BB is subnormal, there exist a normal extension SS on the Hilbert space .\mathcal{L}\supseteq\mathcal{H}. Define Y(𝒦,)Y\in\mathcal{B}(\mathcal{K},\mathcal{L}) by Yx=Ax,x𝒦.Yx=A^{*}x,x\in\mathcal{K}. From ([25, Theorem 3.8]), we have (Y)=(A).\mathcal{R}(Y^{*})=\mathcal{R}(A).
Since ABTA,AB^{*}\subseteq TA, we have

ATBA.A^{*}T^{*}\subseteq BA^{*}. (2.3)

Since from equation (2.3) and Yx=Ax,Yx=A^{*}x, we have

YTx\displaystyle YT^{*}x =ATx\displaystyle=A^{*}T^{*}x
=BAx\displaystyle=BA^{*}x
=SAx\displaystyle=SA^{*}x
=SYx,x𝒟(T).\displaystyle=SYx,~{}x\in\mathcal{D}(T^{*}).

Thus YTSY.YT^{*}\subseteq SY. Hence YSTY.Y^{*}S^{*}\subseteq TY^{*}. Since (Y)=(A)\mathcal{R}(Y^{*})=\mathcal{R}(A), we have T|(A)T|_{\mathcal{R}(A)} and S|(A)S|_{\mathcal{R}(A^{*})} are unitarily equivalent normal operators by Theorem 2.7. Thus, (A)\mathcal{R}(A) reduces TT to the normal operator T|(A)T|_{\mathcal{R}(A)}.
Since ATBAand(A)A^{*}T^{*}\subseteq BA^{*}~{}\mbox{and}~{}\mathcal{R}(A) reduces TT, we have B|(A)B|_{\mathcal{R}(A^{*})} is closed densely defined in (A)\mathcal{R}(A^{*}) and

(A|(A))(T|(A))B|(A)(A|(A))(A|_{\mathcal{R}(A^{*})})^{*}~{}~{}(T|_{\mathcal{R}(A)})^{*}\subseteq B|_{\mathcal{R}(A^{*})}~{}~{}(A|_{\mathcal{R}(A^{*})})^{*} (2.4)

by Proposition 2.6 (i) and ([25, Lemma 3.1(iii)]). Since B|(A)BS,B|_{\mathcal{R}(A^{*})}\subseteq B\subseteq S, B|(A)B|_{\mathcal{R}(A^{*})} is subnormal. Then B|(A)B|_{\mathcal{R}(A^{*})} is MM-hyponormal. Thus, (A|(A))=(A)\mathcal{R}(A|_{\mathcal{R}(A^{*})})^{*}=\mathcal{R}(A^{*}) reduces B|(A)B|_{\mathcal{R}(A^{*})} to the normal operator from equation (2.4) and Theorem 2.7. Hence by Theorem 2.3, (A)\mathcal{R}(A^{*}) reduces BB to the normal operator B|(A).B|_{\mathcal{R}(A^{*})}. The result (i) follows from Proposition 2.6 (ii).
Next we assume that B𝒞()B\in\mathcal{C}(\mathcal{H}) is MM-hyponormal and T𝒞(𝒦)T\in\mathcal{C}(\mathcal{K}) is subnormal. Since ATBA,A^{*}T^{*}\subseteq BA^{*}, (A)\mathcal{R}(A) and (A)\mathcal{R}(A^{*}) are reducing subspace for TT and BB respectively. Also the part T|(A)T|_{\mathcal{R}(A)} and B|(A)B|_{\mathcal{R}(A^{*})} are normal. By Proposition 2.6 (ii), we have ABTA.AB\subseteq T^{*}A.

Corollary 2.9.

Let B𝒞()B\in\mathcal{C}(\mathcal{H}) be subnormal (resp. a closed MM-hyponormal operator in \mathcal{H} ), T𝒞(𝒦)T\in\mathcal{C}(\mathcal{K}) be MM-hyponormal (resp. a closed subnormal operator in 𝒦\mathcal{K} ) and A(,𝒦)A\in\mathcal{B}(\mathcal{H},\mathcal{K}) is such that ABTA.AB^{*}\subseteq TA. Then
(i) If ker(A)={0},ker(A)=\{0\}, then BB is normal.
(ii) If ker(A)={0},ker(A^{*})=\{0\}, then TT is normal.

References

  • [1] A. Bachir and F. Lombarkia, Fuglede-Putanam theorem for w-hyponormal operators, Math. Inequal. Appl. 15, (2012), 777-786.
  • [2] N. Bala and G.Ramesh, Weyl’s theorm for paranormal closed operators , Ann. Funct. Anal. 11, (2020), 567-582. 2020.
  • [3] I. F. Z. Bensaid, S. Dehimi, B. Fuglede and M. H. Mortad, The Fuglede theorem and some intertwining relations, Advan. Oper. Theory. 6, 2021. https://doi.org/10.1007/s43036-020-00110-5.
  • [4] M. Cho and Y. M. Han, Riesz idempotent and algebraically M-hyponormal operators, Integr. Eqn. Oper. Theory. 53, (2005), 311-320.
  • [5] M. Cho, T. Prasad, M. H. M. Rashid, K. Tanahashi and A. Uchiyama, Fuglede-Putnam theorem and quasisimilarity of class p-wA(s,t) operators, Oper. and Matrices. 13, (2019), 293-299.
  • [6] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17, (1966), 413-415.
  • [7] B. Fuglede, A commutativity theorm for Normal operators, Proc. Nati. Acad. Sci. 36, (1950), 35-40.
  • [8] T. Furuta, Relaxation of normality in the Fuglede-Putnam theorem, Proc. Amer. Math. Soc. 77, (1979), 324-328.
  • [9] T. Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc. 81, (1981), 240-242.
  • [10] I. Gohberg, S. Goldberg and M. A. Kaashoek, Classes of linear operator, Vol I Operator Theorey: Advances and Applications, 49, Birkhauser Verlag Basel 1990.
  • [11] P.R. Halmos, A Hilbert Space Problem Book, Second Ed., Springer-Verlag, New York, 1982.
  • [12] J. S. Ham, S. H. Lee and W. Y. Lee On M-hyponormal weighted shifts, J. Math. Anal. Appl. 286, (2003), 116-124.
  • [13] S. Mecheri, Fuglede-Putnam theorem for class A operators, Colloq. Mathematicum. 138, (2015), 183-191.
  • [14] R. L. Moore, D. D. Rogers and T. T. Trent, A note on intertwining MM- hyponormal operators, Proc. Amer. Math. Soc. 83, (1981), 514-516.
  • [15] M. H. Mortad, An application of the Putnam-Fuglede theorm to normal products of selfadjoint operators , Proc. Amer. Math. Soc. 131, (2003), 3135-3141.
  • [16] M. H. Mortad, An all-unbounded-operator version of Fuglede-Putnam theorem, complex Anal. Oper. Theory. 6, (2012), 1269-1273.
  • [17] M. H. Mortad, An operator theory problem book, World scientific publishing Co., 2018.
  • [18] F. C. Paliogiannis, A generalization of the Fuglede-Putnam theorem to unbounded operators, J. Oper. 2015 , art.ID 804353.
  • [19] T. Prasad, Spectral properties for some extensions of isometric operators, Ann. Funct. Anal. 11,(2020), 626-633.
  • [20] C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J. 18, (1971), 33-36.
  • [21] C. R. Putnam, On the normal operators on Hilbert space, Am. Math. J. 73, (1951), 357-362.
  • [22] M. Radjabalipour, An extension of Putnam–Fuglede theorem for hyponormal operators, Math. Zeit. 194, (1987), 117–120.
  • [23] J. G. Stampfli and B. L. Wadhwa, On dominant operators, Mh. Math. 84, (1977),143-153.
  • [24] J. G.Stampfli, hyponormal operators and spectral density, Trans. Am. Math. Soc. 117, (1965), 469-476.
  • [25] J. Stochel, An asymmetric Putnam-Fuglede theorem for unbounded operators, Proc. Amer Math. Soc. 8, (2001), 2261-2271.
  • [26] A. E Taylor and D. C Lay Introduction to Functional Analysis, reprint of second Edition, Robert E. Krieger Publishing Co, Inc. Melbourne, Fl, 1986.