This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Associative submanifolds of the Berger space

Gavin Ball and Jesse Madnick
Abstract.

We study associative submanifolds of the Berger space SO(5)/SO(3)\mathrm{SO}(5)/\mathrm{SO}(3) endowed with its homogeneous nearly-parallel G2\mathrm{G}_{2}-structure. We focus on two geometrically interesting classes: the ruled associatives, and the associatives with special Gauss map.

We show that the associative submanifolds ruled by a certain special type of geodesic are in correspondence with pseudo-holomorphic curves in Gr2+(TS4).\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right). Using this correspondence, together with a theorem of Bryant on superminimal surfaces in S4,S^{4}, we prove the existence of infinitely many topological types of compact immersed associative 3-folds in SO(5)/SO(3)\mathrm{SO}(5)/\mathrm{SO}(3).

An associative submanifold of the Berger space is said to have special Gauss map if its tangent spaces have non-trivial SO(3)\mathrm{SO}(3)-stabiliser. We classify the associative submanifolds with special Gauss map in the cases where the stabiliser contains an element of order greater than 2. In particular, we find several homogeneous examples of this type.

1. Introduction

The Berger space is the compact homogeneous 77-manifold

B=SO(5)SO(3),B=\frac{\text{SO}(5)}{\text{SO}(3)},

where SO(3)SO(5)\text{SO}(3)\subset\text{SO}(5) is a non-standard embedding obtained from the SO(3)\text{SO}(3)-action on the space Sym02(3)=5\text{Sym}^{2}_{0}(\mathbb{R}^{3})=\mathbb{R}^{5} of harmonic quadratic forms in three variables. As an isotropy-irreducible space, BB carries a unique SO(5)\text{SO}(5)-invariant metric gg up to scale, and this metric is necessarily Einstein.

The space (B,g)(B,g) was first discovered by Berger [Berger61] in his classification of normal homogeneous metrics of positive curvature. In fact, homogeneous metrics of positive curvature (not necessarily normal) have been classified by Wallach [Wall72PosCurv] and Bérard-Bergery [BerBer76PosCurv], and the complete list is quite short. Aside from spheres and projective spaces, it consists of sporadic examples in dimensions 66, 77, 1212, 1313, and 2424.

Our interest in (B,g)(B,g), however, comes from the theory of special holonomy. Indeed, the first known explicit example of an 88-manifold with Spin(7)\text{Spin}(7) holonomy was X=+×BX=\mathbb{R}^{+}\times B equipped with the cone metric gX=dr2+r2gg_{X}=dr^{2}+r^{2}g [BryExcept]. Moreover, BB carries a G2\text{G}_{2}-structure φΩ3(B)\varphi\in\Omega^{3}(B) that satisfies

(1.1) dφ=4φφd\varphi=4\ast_{\varphi}\varphi

It was later realized [Bar93KSp] that this is an instance of a more general phenomenon. Namely, given a Riemannian 77-manifold (M,gM)(M,g_{M}), the 88-manifold X=+×MX=\mathbb{R}^{+}\times M equipped with the cone metric gX=dr2+r2gMg_{X}=dr^{2}+r^{2}g_{M} will have holonomy contained in Spin(7)SO(8)\text{Spin}(7)\subset\text{SO}(8) if and only if gMg_{M} is induced from a G2\text{G}_{2}-structure φΩ3(M)\varphi\in\Omega^{3}(M) satisfying (1.1). Such G2\text{G}_{2}-structures are said to be nearly-parallel [FrKaMoSe97], and serve as models for conical singularities of Spin(7)\text{Spin}(7)-manifolds.

From the point of view of G2\mathrm{G}_{2}-geometry, the most natural class of submanifolds of a nearly-parallel G2\mathrm{G}_{2}-manifold (M,φ)(M,\varphi) are the associative submanifolds. An associative submanifold is a 33-dimensional submanifold NMN\to M that satisfies the first-order PDE system

φ|N=volN.\varphi|_{N}=\text{vol}_{N}.

Although the nearly-parallel equation (1.1) shows that φ\varphi is not closed, and hence not a calibration, it is nevertheless the case that associative 33-folds in MM are minimal submanifolds. Indeed, if NMN\subset M is an associative 33-fold, then the 44-dimensional cone +×N\mathbb{R}^{+}\times N inside the 88-dimensional cone (+×M,dr2+r2gM)(\mathbb{R}^{+}\times M,dr^{2}+r^{2}g_{M}) will be a Cayley 44-fold, which is calibrated. In short, associative 33-folds in nearly-parallel G2\mathrm{G}_{2}-manifolds provide models for conically singular Cayley 44-folds in Spin(7)\text{Spin}(7)-manifolds.

Associative 3-folds in nearly parallel G2\mathrm{G}_{2}-manifolds have been studied by Lotay [LotAssoc], who considers the case of the 77-sphere endowed with the standard round metric, and by Kawai [KawAssoc], who considers the 77-sphere equipped with the so-called squashed metric.

Associative submanifolds in manifolds with torsion-free G2\mathrm{G}_{2}-structure play a fundamental role in efforts to define an invariant of G2\mathrm{G}_{2}-manifolds by counting G2\mathrm{G}_{2}-instantons, a certain type of gauge theoretical object [DonSeg, DonTho, Joyce18Count, Wal17G2Inst]. In order to deal with technical difficulties arising in this program, it is likely to be necessary to consider gauge theory and associative submanifolds for classes of G2\mathrm{G}_{2}-structures which satisfy conditions weaker than torsion-free. The coclosed G2\mathrm{G}_{2}-structures, i.e. those satisfying dφφ=0,d*_{\varphi}\varphi=0, are the most natural candidate for such a weaker class, and the nearly parallel G2\mathrm{G}_{2}-structures form a subclass of these structures.

Gauge theory on nearly parallel G2\mathrm{G}_{2}-manifolds has been studied by Ball and Oliveira [BaOlAloffWallach] in the case of the Aloff-Wallach manifolds SU(3)/Sk,l1,\mathrm{SU}(3)/\mathrm{S}^{1}_{k,l}, and by Waldron [Wal20] in the case of the round 7-sphere S7S^{7}.

1.1. Results and Methods

In this work, we study associative submanifolds of the Berger space BB. We adopt a novel point of view on the Berger space: we think of it as the space of Veronese surfaces in the 4-sphere S4S^{4} (see §2.3). Our main result is:

Theorem 1 (3.10).

There exist infinitely many topological types of compact (immersed, generically 1-1) 𝒞\mathcal{C}-ruled associative submanifolds of B.B.

Topologically, the associative submanifolds in Theorem 1 are circle bundles over genus gg surfaces, for every g0g\geq 0. In fact, they all ruled by a geometrically natural class of geodesics, which we call 𝒞\mathcal{C}-curves. The space of 𝒞\mathcal{C}-curves in BB may be identified with the 88-manifold Gr2+(TS4)\text{Gr}_{2}^{+}(TS^{4}), the Grassmannian of oriented tangent 22-planes to S4S^{4}. Consequently, we can view ruled 33-folds in BB as surfaces in Gr2+(TS4).\text{Gr}^{+}_{2}(TS^{4}). Conversely, given a surface SS in Gr2+(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) there is a corresponding ruled 3-fold Γ(S)\Gamma\!\left(S\right) in B.B. We then ask which surfaces in Gr2+(TS4)\text{Gr}_{2}^{+}(TS^{4}) correspond to ruled associatives in BB. The answer is given by:

Theorem 2 (3.4).

There is an SO(5)\mathrm{SO}(5)-invariant (non-integrable) almost complex structure JJ on Gr2+(TS4)\text{Gr}_{2}^{+}(TS^{4}) such that:

  1. (1)

    Any ruled associative submanifold of BB is locally of the form Γ(S)\Gamma\!\left(S\right) for some JJ-holomorphic curve SS in Gr2+(TS4)\mathrm{Gr}_{2}^{+}(TS^{4}).

  2. (2)

    For each JJ-holomorphic curve SS in Gr2+(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) not locally equivalent to the Gauss lift of a Veronese surface there is a dense subset SSS^{\circ}\subset S such that Γ(S)\Gamma\!\left(S^{\circ}\right) is a ruled associative submanifold of B.B.

The proof of Theorem 1 will follow from a construction using the correspondence in Theorem 2 together with a result of Bryant [Bry82] on superminimal surfaces in S4S^{4} and a result of Xu [Xu10] on holomorphic curves in the nearly-Kähler 3\mathbb{CP}^{3}. One subtlety we encounter is the need to show that the locus SSS\setminus S^{\circ} is empty in order to ensure immersion for the resulting associative submanifolds.

In §\S4, we turn to explicit examples. For this, we consider the (non-transitive) SO(3)\text{SO}(3)-action on the Grassmannian Grass(TpB)\text{Gr}_{\text{ass}}(T_{p}B) of associative 33-planes at pBp\in B induced by the isotropy action on TpBT_{p}B. While the generic associative 33-plane in TpBT_{p}B will have trivial stabiliser, larger stabilisers are also possible. We say that an associative submanifold NN in BB has special Gauss map if its tangent planes all have non-trivial stabiliser GSO(3)\mathrm{G}\leq\mathrm{SO}(3). The main result of §\S4 is the classification of associatives in BB with special Gauss map for which the stabiliser G\mathrm{G} contains an element of order greater than 22. We summarise the classification in the following theorem:

Theorem 3.

The stabiliser of an associative 33-plane, if it contains an element of order greater than 22, is one of:

O(2),A5,S4,5,4,3\mathrm{O}(2),\ \ \mathrm{A}_{5},\ \ \mathrm{S}_{4},\ \ \mathbb{Z}_{5},\ \ \mathbb{Z}_{4},\ \ \mathbb{Z}_{3}

Moreover, suppose that NN is an associative 3-fold in BB such that TpNT_{p}N has SO(3)\mathrm{SO}(3)-stabiliser equal to G\mathrm{G} for all pN.p\in N.

  • If G=O(2),\mathrm{G}=\mathrm{O}(2), there are three possibilities corresponding to three distinct SO(3)\mathrm{SO}(3)-orbits on Grass(TpB).\mathrm{Gr}_{\mathrm{ass}}\left(T_{p}B\right).

    • \circ

      NN is a ruled submanifold of BB that corresponds via Theorem 2 to the Gauss lift to Gr2+(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) of a superminimal surface in S4S^{4} or to a fibre of the map Gr2+(TS4)3.\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right)\to\mathbb{CP}^{3}.

    • \circ

      NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the associative submanifold described in Theorem 4.9. This associative is homogeneous under an action of SO(2)×SO(3)\mathrm{SO}(2)\times\mathrm{SO}(3) and diffeomorphic to SO(3)/2.\mathrm{SO}(3)/\mathbb{Z}_{2}.

    • \circ

      NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the associative submanifold described in Theorem 4.10. This associative is homogeneous under an action of U(2)\mathrm{U}(2) and diffeomorphic to S3.S^{3}.

  • If G=A5\mathrm{G}=\mathrm{A}_{5}, then NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the associative submanifold described in Theorem 4.11. This associative is homogeneous under an action of SO(3)\mathrm{SO}(3) and diffeomorphic to the Poincaré homology sphere SO(3)/A5.\mathrm{SO}(3)/\mathrm{A}_{5}.

  • If G=S4\mathrm{G}=\mathrm{S}_{4}, then NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) one of the two associative submanifolds described in Theorem 4.12. The first associative is homogeneous under an action of SO(3)\mathrm{SO}(3) and diffeomorphic to SO(3)/S4,\mathrm{SO}(3)/\mathrm{S}_{4}, while the second is homogeneous under a different action of SO(3)\mathrm{SO}(3) and diffeomorphic to SO(3)/D2\mathrm{SO}(3)/\mathrm{D}_{2}.

  • If G=5,\mathrm{G}=\mathbb{Z}_{5}, then NN is a ruled submanifold of BB that corresponds via Theorem 2 to the normal lift to Gr2+(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) of a superminimal surface in S4S^{4}.

  • If G=4,\mathrm{G}=\mathbb{Z}_{4}, then NN is a ruled submanifold of BB that corresponds via Theorem 2 to the lift of a pseudoholomorphic curve in the nearly-Kähler 3\mathbb{CP}^{3} to Gr2+(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) via Proposition 3.9.

  • There are no associative submanifolds NN with tangent spaces having SO(3)\mathrm{SO}(3)-stabiliser everywhere equal to 3.\mathbb{Z}_{3}.

In the above result, A5\text{A}_{5} and S4\text{S}_{4} are the symmetry groups of the icosahedron and octahedron, respectively.

1.2. Acknowledgments

We would like to thank Michael Albanese, Robert Bryant, and McKenzie Wang for helpful conversations related to this work. The first author also thanks the Simons Foundation for funding as a graduate student member of the Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics for the period during which a large part of this project was completed.

2. Geometry of the Berger space

2.1. Representation theory of SO(3)\mathrm{SO}(3)

Let the group SO(3)\mathrm{SO}(3) act on 3=span{x,y,z}\mathbb{R}^{3}=\text{span}\{x,y,z\} in the usual way. This action extends to an action of SO(3)\mathrm{SO}(3) on the polynomial ring [x,y,z]\mathbb{R}[x,y,z]. Let 𝒱n[x,y,z]\mathcal{V}_{n}\subset\mathbb{R}[x,y,z] be the SO(3)\mathrm{SO}(3)-submodule of homogeneous polynomials of degree nn, and let n𝒱n\mathcal{H}_{n}\subset\mathcal{V}_{n} denote the SO(3)\mathrm{SO}(3)-submodule of harmonic polynomials of degree nn, an irreducible SO(3)\mathrm{SO}(3)-module of dimension 2n+12n+1. Every finite dimensional irreducible SO(3)\mathrm{SO}(3)-module is isomorphic to n\mathcal{H}_{n} for some nn.

2.2. The Berger space

The irreducible representation 2\mathcal{H}_{2} of SO(3)\mathrm{SO}(3) has dimension 5, and thus gives rise to a non-standard embedding SO(3)SO(5).\mathrm{SO}(3)\subset\mathrm{SO}(5).

Definition 2.1.

The Berger space is the homogeneous space SO(5)/SO(3)\mathrm{SO}(5)/\mathrm{SO}(3) given by the quotient of SO(5)\mathrm{SO}(5) by the copy of SO(3)\mathrm{SO}(3) described above.

Topologically, the Berger space is a rational homology sphere with H4(B,)=10H^{4}\!\left(B,\mathbb{Z}\right)=\mathbb{Z}_{10} [Berger61] and is diffeomorphic to an S3S^{3}-bundle over S4S^{4} [GoKiSh04].

The Lie algebra 𝔰𝔬(5)\mathfrak{so}(5) decomposes under the action of SO(3)\mathrm{SO}(3) as

𝔰𝔬(5)=𝔰𝔬(3)3,\displaystyle\mathfrak{so}(5)=\mathfrak{so}(3)\oplus\mathcal{H}_{3},

and it follows that the Berger space is an isotropy irreducible space. Consequently, BB carries a unique SO(5)\mathrm{SO}(5)-invariant metric gg up to scale, and this metric is Einstein. In addition, it was shown by Berger [Berger61] that gg has positive curvature. It has been shown by Shankar [Sha01Isom] that the isometry group of (B,g)\left(B,g\right) is exactly SO(5).\mathrm{SO}(5).

2.3. Veronese surfaces in S4S^{4}

When working with a homogeneous space G/H\mathrm{G}/\mathrm{H} it is often advantageous to have an explicit geometric realisation of G/H\mathrm{G}/\mathrm{H} as a set acted on transitively by G\mathrm{G} with stabiliser H.\mathrm{H}. Such a description allows for a geometric understanding of the natural objects, for example distinguished submanifolds, associated to the homogeneous space. In this section we give such an an explicit geometric realisation of the Berger space, in terms of Veronese surfaces in the 4-sphere S4.S^{4}. This realisation will then be used to guide and interpret the calculations and results in the remainder of the paper.

The ring of invariant polynomials on the SO(3)\mathrm{SO}(3)-module 2\mathcal{H}_{2} has two generators: gSym2(2)g\in\text{Sym}^{2}\left(\mathcal{H}_{2}^{*}\right) and ΥSym3(2)\Upsilon\in\text{Sym}^{3}\left(\mathcal{H}_{2}^{*}\right). Let (e1,,e5)\left(e_{1},\ldots,e_{5}\right) be the basis for 25\mathcal{H}_{2}\cong\mathbb{R}^{5} given by

(2.1) e1=x212y212z2,\displaystyle e_{1}=x^{2}-\tfrac{1}{2}y^{2}-\tfrac{1}{2}z^{2},
e2=3xy,e3=3xz,\displaystyle e_{2}=\sqrt{3}xy,\>\>\>e_{3}=\sqrt{3}xz,
e4=32y232z2,e5=3yz.\displaystyle e_{4}=\tfrac{\sqrt{3}}{2}y^{2}-\tfrac{\sqrt{3}}{2}z^{2},\>\>\>e_{5}=\sqrt{3}yz.

In terms of this basis, we have

g(v,v)\displaystyle g\left(v,v\right) =v12+v22+v32+v42+v52,\displaystyle=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}+v_{5}^{2},
Υ(v,v,v)\displaystyle\Upsilon\left(v,v,v\right) =v1(v12+32v22+32v323v423v52)+332v4(v22v32)+33v2v3v5.\displaystyle=v_{1}\left(v_{1}^{2}+\tfrac{3}{2}v_{2}^{2}+\tfrac{3}{2}v_{3}^{2}-3v_{4}^{2}-3v_{5}^{2}\right)+\tfrac{3\sqrt{3}}{2}v_{4}\left(v_{2}^{2}-v_{3}^{2}\right)+3\sqrt{3}v_{2}v_{3}v_{5}.

Consider the subset Σ0\Sigma_{0} in S45S^{4}\subset\mathbb{R}^{5} defined by the equations

g(v,v)=1,Υ(v,v,v)=4.\displaystyle g\left(v,v\right)=1,\>\>\>\Upsilon\left(v,v,v\right)=-4.
Proposition 2.2.

The subset Σ0S4\Sigma_{0}\subset S^{4} is an embedded copy of 2\mathbb{R}\mathbb{P}^{2} invariant under the action of SO(3)SO(5).\mathrm{SO}(3)\subset\mathrm{SO}(5).

Proof.

Identify 2\mathcal{H}_{2} with the space of traceless symmetric 3×33\times 3 matrices by raising an index. In terms of the basis (2.1), this identification is

(2.2) i=15viei=12[2v13v23v33v2v1+3v43v53v33v5v13v4].\sum_{i=1}^{5}v_{i}e_{i}=\frac{1}{2}\left[\begin{array}[]{ccc}2v_{1}&\sqrt{3}v_{2}&\sqrt{3}v_{3}\\ \sqrt{3}v_{2}&-v_{1}+\sqrt{3}v_{4}&\sqrt{3}v_{5}\\ \sqrt{3}v_{3}&\sqrt{3}v_{5}&-v_{1}-\sqrt{3}v_{4}\end{array}\right].

The invariant polynomials gg and Υ\Upsilon correspond to elementary functions of the eigenvalues of the symmetric matrix. We have

Υ=σ3=4det,g=34σ2.\Upsilon=\sigma_{3}=4\det,\>\>\>g=\tfrac{3}{4}\sigma_{2}.

Thus, the subset Σ0\Sigma_{0} is the space of matrices with a repeated positive eigenvalue 1/2.1/2. The group SO(3)\mathrm{SO}(3) acts transitively on this space with stabiliser O(2).\mathrm{O}(2). Thus, Σ02.\Sigma_{0}\cong\mathbb{R}\mathbb{P}^{2}.

Remark 2.3.

The subset Σ0\Sigma_{0} may also be characterised as the set of elements of 2\mathcal{H}_{2} which are the harmonic parts of perfect squares (a1x+a2y+a3z)2\left(a_{1}x+a_{2}y+a_{3}z\right)^{2}.

Definition 2.4.

We shall call any embedded surface equivalent to Σ0\Sigma_{0} up to the action of SO(5)\mathrm{SO}(5) a Veronese surface in S4.S^{4}. We shall call Σ0\Sigma_{0} the standard Veronese surface in S4.S^{4}.

Each Veronese surface is an embedded minimal 2\mathbb{R}\mathbb{P}^{2} in S4S^{4} of constant curvature 1/3.1/3. The standard Veronese surface Σ0\Sigma_{0} is the image of the immersion S2S4,S^{2}\to S^{4},

(u1,u2,u3)(u1212u2212u32,3u1u2,3u1u3,32u2232u32,3u2u3),\left(u_{1},u_{2},u_{3}\right)\mapsto\left(u_{1}^{2}-\tfrac{1}{2}u_{2}^{2}-\tfrac{1}{2}u_{3}^{2},\sqrt{3}u_{1}u_{2},\sqrt{3}u_{1}u_{3},\tfrac{\sqrt{3}}{2}u_{2}^{2}-\tfrac{\sqrt{3}}{2}u_{3}^{2},\sqrt{3}u_{2}u_{3}\right),

described by Borůvka [Boruvka].

Proposition 2.5.

The Berger space BB is diffeomorphic to the space of Veronese surfaces in S4.S^{4}.

Proof.

By construction, the group SO(5)\mathrm{SO}(5) acts transitively on the space of Veronese surfaces. By proposition 2.2, the SO(5)\mathrm{SO}(5)-stabiliser of the standard Veronese surface contains SO(3).\mathrm{SO}(3). Since the embedding SO(3)SO(5)\mathrm{SO}(3)\subset\mathrm{SO}(5) is maximal, it follows that the stabiliser is in fact equal to SO(3).\mathrm{SO}(3).

2.4. Structure equations

Let Σ\Sigma be a Veronese surface in S4.S^{4}. Since Σ\Sigma is SO(5)\mathrm{SO}(5)-equivalent to the standard Veronese surface Σ0,\Sigma_{0}, there exists a gg-orthonormal basis (f1,,f5)\left(f_{1},\ldots,f_{5}\right) of 2\mathcal{H}_{2} for which

(2.3) Σ={wifiw12+w22+w32+w42+w52=1w1(w12+32w22+32w323w423w52)+332w4(w22w32)+33w2w3w5=4}.\Sigma=\left\{w_{i}f_{i}\ \vline\ \begin{aligned} &w_{1}^{2}+w_{2}^{2}+w_{3}^{2}+w_{4}^{2}+w_{5}^{2}=1\\ &w_{1}\!\left(w_{1}^{2}+\tfrac{3}{2}w_{2}^{2}+\tfrac{3}{2}w_{3}^{2}-3w_{4}^{2}-3w_{5}^{2}\right)+\tfrac{3\sqrt{3}}{2}w_{4}\!\left(w_{2}^{2}-w_{3}^{2}\right)+3\sqrt{3}w_{2}w_{3}w_{5}=-4\end{aligned}\right\}.
Definition 2.6.

Given a Veronese surface Σ,\Sigma, we shall say the frame (f1,,f5)SO(5)\left(f_{1},\ldots,f_{5}\right)\in\mathrm{SO}(5) is Σ\Sigma-adapted if (2.3) is satisfied.

The fibres of the coset projection SO(5)B\mathrm{SO}(5)\to B over a Veronese surface Σ\Sigma are exactly the Σ\Sigma-adapted frames and in this way we may think of SO(5)\mathrm{SO}(5) as a bundle of adapted frames over B.B.

Let 𝐞i\mathbf{e}_{i} be the ith{}^{\textup{th}} column function on SO(5).\mathrm{SO}(5). We have the first structure equation on SO(5):\mathrm{SO}(5):

(2.4) d(𝐞1,,𝐞5)=(𝐞1,,𝐞5)μ,\displaystyle d\left(\mathbf{e}_{1},\ldots,\mathbf{e}_{5}\right)=\left(\mathbf{e}_{1},\ldots,\mathbf{e}_{5}\right)\mu,

where μ\mu is the 𝔰𝔬(5)\mathfrak{so}(5)-valued left-invariant Maurer-Cartan form on SO(5).\mathrm{SO}(5). Under the splitting 𝔰𝔬(5)=𝔰𝔬(3)3,\mathfrak{so}(5)=\mathfrak{so}(3)\oplus\mathcal{H}_{3}, we write

μ=γ+ω,\displaystyle\mu=\gamma+\omega,

where γ\gamma takes values in 𝔰𝔬(3)\mathfrak{so}(3) and ω\omega takes values in 3.\mathcal{H}_{3}. Explicitly,

(2.10) γ\displaystyle\gamma =[03γ33γ2003γ30γ1γ3γ23γ2γ10γ2γ30γ3γ202γ10γ2γ32γ10],\displaystyle=\left[\begin{array}[]{ccccc}0&-\sqrt{3}\gamma_{{3}}&\sqrt{3}\gamma_{{2}}&0&0\\ \sqrt{3}\gamma_{{3}}&0&-\gamma_{{1}}&-\gamma_{{3}}&\gamma_{{2}}\\ -\sqrt{3}\gamma_{{2}}&\gamma_{{1}}&0&-\gamma_{{2}}&-\gamma_{{3}}\\ 0&\gamma_{{3}}&\gamma_{{2}}&0&-2\gamma_{{1}}\\ 0&-\gamma_{{2}}&\gamma_{{3}}&2\gamma_{{1}}&0\end{array}\right],
(2.16) ω\displaystyle\omega =23[02ω22ω310ω410ω52ω2022ω13ω25ω63ω3+5ω72ω322ω103ω3+5ω73ω2+5ω610ω43ω2+5ω63ω35ω702ω110ω53ω35ω73ω25ω62ω10].\displaystyle=\frac{\sqrt{2}}{3}\left[\begin{array}[]{ccccc}0&-2\omega_{{2}}&2\omega_{{3}}&-\sqrt{10}\omega_{{4}}&\sqrt{10}\omega_{{5}}\\ 2\omega_{{2}}&0&-2\sqrt{2}\omega_{{1}}&\sqrt{3}\omega_{{2}}-\sqrt{5}\omega_{{6}}&-\sqrt{3}\omega_{{3}}+\sqrt{5}\omega_{{7}}\\ -2\omega_{{3}}&2\sqrt{2}\omega_{{1}}&0&\sqrt{3}\omega_{{3}}+\sqrt{5}\omega_{{7}}&\sqrt{3}\omega_{{2}}+\sqrt{5}\omega_{{6}}\\ \sqrt{10}\omega_{{4}}&-\sqrt{3}\omega_{{2}}+\sqrt{5}\omega_{{6}}&-\sqrt{3}\omega_{{3}}-\sqrt{5}\omega_{{7}}&0&\sqrt{2}\omega_{{1}}\\ -\sqrt{10}\omega_{{5}}&\sqrt{3}\omega_{{3}}-\sqrt{5}\omega_{{7}}&-\sqrt{3}\omega_{{2}}-\sqrt{5}\omega_{{6}}&-\sqrt{2}\omega_{{1}}&0\end{array}\right].

The 11-forms ω1,,ω7\omega_{{1}},\ldots,\omega_{{7}} are semi-basic for the projection SO(5)B,\mathrm{SO}(5)\to B, while the 11-forms γ1,γ2,γ3\gamma_{1},\gamma_{2},\gamma_{3} are the connection 11-forms for the homogeneous SO(3)\mathrm{SO}(3)-structure on BB.

The Maurer-Cartan equation dμ=μμd\mu=-\mu\wedge\mu implies

(2.38) d[ω1ω2ω3ω4ω5ω6ω7]=\displaystyle d\left[\begin{array}[]{c}\omega_{1}\\ \omega_{2}\\ \omega_{3}\\ \omega_{4}\\ \omega_{5}\\ \omega_{6}\\ \omega_{7}\end{array}\right]= [06γ26γ300006γ20γ1102γ3102γ2006γ3γ10102γ2102γ3000102γ3102γ202γ162γ362γ20102γ2102γ32γ1062γ262γ300062γ362γ203γ100062γ262γ33γ10][ω1ω2ω3ω4ω5ω6ω7]\displaystyle-\left[\begin{array}[]{ccccccc}0&\sqrt{6}\gamma_{{2}}&-\sqrt{6}\gamma_{{3}}&0&0&0&0\\ -\sqrt{6}\gamma_{{2}}&0&\gamma_{{1}}&-\tfrac{\sqrt{10}}{2}\gamma_{{3}}&-\tfrac{\sqrt{10}}{2}\gamma_{{2}}&0&0\\ \sqrt{6}\gamma_{{3}}&-\gamma_{{1}}&0&\tfrac{\sqrt{10}}{2}\gamma_{{2}}&-\tfrac{\sqrt{10}}{2}\gamma_{{3}}&0&0\\ 0&\tfrac{\sqrt{10}}{2}\gamma_{{3}}&-\tfrac{\sqrt{10}}{2}\gamma_{{2}}&0&2\gamma_{{1}}&-\tfrac{\sqrt{6}}{2}\gamma_{{3}}&-\tfrac{\sqrt{6}}{2}\gamma_{{2}}\\ 0&\tfrac{\sqrt{10}}{2}\gamma_{{2}}&\tfrac{\sqrt{10}}{2}\gamma_{{3}}&-2\gamma_{{1}}&0&\tfrac{\sqrt{6}}{2}\gamma_{{2}}&-\tfrac{\sqrt{6}}{2}\gamma_{{3}}\\ 0&0&0&\tfrac{\sqrt{6}}{2}\gamma_{{3}}&-\tfrac{\sqrt{6}}{2}\gamma_{{2}}&0&3\gamma_{{1}}\\ 0&0&0&\tfrac{\sqrt{6}}{2}\gamma_{{2}}&\tfrac{\sqrt{6}}{2}\gamma_{{3}}&-3\gamma_{{1}}&0\end{array}\right]\wedge\left[\begin{array}[]{c}\omega_{1}\\ \omega_{2}\\ \omega_{3}\\ \omega_{4}\\ \omega_{5}\\ \omega_{6}\\ \omega_{7}\end{array}\right]
(2.46) +23[ω2ω3ω4ω5+ω6ω7ω1ω3ω4ω6ω5ω7ω1ω2+ω5ω6ω4ω7ω1ω5+ω2ω6+ω3ω7ω1ω4+ω3ω6+ω2ω7ω1ω7ω2ω4+ω3ω5ω1ω6ω2ω5ω3ω4]\displaystyle+\frac{2}{3}\left[\begin{array}[]{c}-\omega_{2}\wedge\omega_{3}-\omega_{4}\wedge\omega_{5}+\omega_{6}\wedge\omega_{7}\\ \omega_{1}\wedge\omega_{3}-\omega_{4}\wedge\omega_{6}-\omega_{5}\wedge\omega_{7}\\ -\omega_{1}\wedge\omega_{2}+\omega_{5}\wedge\omega_{6}-\omega_{4}\wedge\omega_{7}\\ \omega_{1}\wedge\omega_{5}+\omega_{2}\wedge\omega_{6}+\omega_{3}\wedge\omega_{7}\\ -\omega_{1}\wedge\omega_{4}+\omega_{3}\wedge\omega_{6}+\omega_{2}\wedge\omega_{7}\\ -\omega_{1}\wedge\omega_{7}-\omega_{2}\wedge\omega_{4}+\omega_{3}\wedge\omega_{5}\\ \omega_{1}\wedge\omega_{6}-\omega_{2}\wedge\omega_{5}-\omega_{3}\wedge\omega_{4}\end{array}\right]

and

(2.53) [dγ1+γ2γ3dγ2+γ3γ1dγ3+γ1γ2]=29[2ω2ω3+4ω4ω5+6ω6ω726ω1ω210(ω2ω5ω3ω4)6(ω4ω7ω5ω6)26ω1ω310(ω2ω4+ω3ω5)6(ω4ω6+ω5ω7)],\displaystyle\left[\begin{array}[]{c}d\gamma_{1}+\gamma_{2}\wedge\gamma_{3}\\ d\gamma_{2}+\gamma_{3}\wedge\gamma_{1}\\ d\gamma_{3}+\gamma_{1}\wedge\gamma_{2}\end{array}\right]=\frac{2}{9}\left[\begin{array}[]{c}2\omega_{2}\wedge\omega_{3}+4\omega_{4}\wedge\omega_{5}+6\omega_{6}\wedge\omega_{7}\\ 2\sqrt{6}\omega_{1}\wedge\omega_{2}-\sqrt{10}\left(\omega_{2}\wedge\omega_{5}-\omega_{3}\wedge\omega_{4}\right)-\sqrt{6}\left(\omega_{4}\wedge\omega_{7}-\omega_{5}\wedge\omega_{6}\right)\\ -2\sqrt{6}\omega_{1}\wedge\omega_{3}-\sqrt{10}\left(\omega_{2}\wedge\omega_{4}+\omega_{3}\wedge\omega_{5}\right)-\sqrt{6}\left(\omega_{4}\wedge\omega_{6}+\omega_{5}\wedge\omega_{7}\right)\end{array}\right],

which we shall refer to as the structure equations of B.B.

2.4.1. The G2\mathrm{G}_{2}-structure on BB

Consider the 3-form φ~\tilde{\varphi} on SO(5)\mathrm{SO}(5) defined by

(2.54) φ~=ω123+ω145ω167+ω256+ω257+ω347ω356\displaystyle\tilde{\varphi}=\omega_{123}+\omega_{145}-\omega_{167}+\omega_{256}+\omega_{257}+\omega_{347}-\omega_{356}

By the structure equations (2.46), φ~\tilde{\varphi} is invariant under the action of SO(3)SO(5).\mathrm{SO}(3)\subset\mathrm{SO}(5). Consequently, φ~\tilde{\varphi} is the pullback to SO(5)\mathrm{SO}(5) of a 3-form φ\varphi on B.B. The 3-form φ\varphi defines a G2\mathrm{G}_{2}-structure on B.B. The induced metric gφg_{\varphi} and 4-form φφ*_{\varphi}\varphi on BB satisfy

π(gφ)\displaystyle\pi^{*}\left(g_{\varphi}\right) =ω12+ω22+ω32+ω42+ω52+ω62+ω72,\displaystyle=\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}+\omega_{4}^{2}+\omega_{5}^{2}+\omega_{6}^{2}+\omega_{7}^{2},
π(φφ)\displaystyle\pi^{*}\left(*_{\varphi}\varphi\right) =ω4567+ω2367ω2345+ω1357+ω1346+ω1256ω1247,\displaystyle=\omega_{4567}+\omega_{2367}-\omega_{2345}+\omega_{1357}+\omega_{1346}+\omega_{1256}-\omega_{1247},

where π\pi denotes the projection SO(5)B.\mathrm{SO}(5)\to B. The metric gφg_{\varphi} is SO(5)\mathrm{SO}(5)-invariant and, since BB is isotropy-irreducible, it agrees with the metric gg of §2.2 up to scale.

The structure equations (2.46) imply that φ\varphi satisfies

dφ=4φφ,\displaystyle d\varphi=4*_{\varphi}\varphi,

so φ\varphi defines a nearly parallel G2\mathrm{G}_{2}-structure on B.B. It follows that the metric gφg_{\varphi} is Einstein with scalar curvature 42, and that the metric cone over BB has holonomy contained in Spin(7).\mathrm{Spin}(7). In fact, the cone over BB was the first explicit example of a metric with Spin(7)\mathrm{Spin}(7)-holonomy [BryExcept]. For more details on nearly parallel G2\mathrm{G}_{2}-structures see [FrKaMoSe97].

2.5. Associative submanifolds

In this work, we will study a special class of 33-dimensional submanifolds of the Berger space known as associative submanifolds.

Definition 2.7.

Let M7M^{7} be an oriented 77-manifold equipped with a G2\text{G}_{2}-structure φΩ3(M)\varphi\in\Omega^{3}(M). An oriented 33-dimensional submanifold NMN\subset M is called an associative 33-fold if:

φ|N=volN.\varphi|_{N}=\text{vol}_{N}.

Two special cases are worth highlighting. First, if dφ=0d\varphi=0, then φ\varphi is a calibration [HarLawCali], and hence associative 33-folds in MM are area-minimizing. Second, if φ\varphi is nearly-parallel, meaning that dφ=4φφd\varphi=4\ast_{\varphi}\varphi, then associative 33-folds in MM are the links of Cayley cones in the metric cone over MM, and hence are also minimal submanifolds of MM. In fact, the two special cases just described are exactly the classes of G2\mathrm{G}_{2}-structures for which every associative 3-fold is minimal [BaMaExcept].

Associative 33-folds in 77-manifolds with nearly-parallel G2\text{G}_{2}-structures have been studied by Lotay [LotAssoc], who considers the round 77-sphere, and Kawai [KawAssoc], who considers the squashed 77-sphere.

2.6. Subgroups and Quotients of SO(5)\mathrm{SO}(5)

Several different homogeneous spaces of SO(5)\mathrm{SO}(5) will play a role in this work. As a guide to these, and to fix conventions, we indicate the connected subgroups H\mathrm{H} of SO(5)\mathrm{SO}(5) up to SO(5)\mathrm{SO}(5)-conjugacy in Figure 1. The corresponding diagram of homogeneous spaces SO(5)/H\mathrm{SO}(5)/\mathrm{H} is given in Figure 2.

Figure 1. Connected subgroups of SO(5)\mathrm{SO}(5) up to conjugacy
{e}{\{e\}}S(1,2)1{{\mathrm{S}^{1}_{(1,2)}}}S(1,1)1{{\mathrm{S}^{1}_{(1,1)}}}S(p,q)1{{\mathrm{S}^{1}_{(p,q)}}}S(1,0)1{{\mathrm{S}^{1}_{(1,0)}}}T2{\mathrm{T}^{2}}SO(3){\mathrm{SO}(3)}SU(2){\mathrm{SU}(2)}SO(3)std{\mathrm{SO}(3)_{\text{std}}}U(2){\mathrm{U}(2)}SO(3)std×SO(2){\ \ \,\mathrm{SO}(3)_{\text{std}}\times\mathrm{SO}(2)}SO(4){\mathrm{SO}(4)}
Figure 2. Homogeneous spaces of SO(5)\mathrm{SO}(5)
SO(5){\mathrm{SO}(5)}SO(5)/S(1,2)1{{\mathrm{SO}(5)/\mathrm{S}^{1}_{(1,2)}}}SO(5)/S(1,1)1{{\mathrm{SO}(5)/\mathrm{S}^{1}_{(1,1)}}}SO(5)/S(p,q)1{{\mathrm{SO}(5)/\mathrm{S}^{1}_{(p,q)}}}SO(5)/S(1,0)1{{\mathrm{SO}(5)/\mathrm{S}^{1}_{(1,0)}}}Gr2+(TS4){\text{Gr}_{2}^{+}(TS^{4})}B=SO(5)/SO(3){B=\mathrm{SO}(5)/\mathrm{SO}(3)}S7{S^{7}}T1(S4){T_{1}(S^{4})}3{\mathbb{CP}^{3}}Gr2+(5){\text{Gr}_{2}^{+}(\mathbb{R}^{5})}S4{S^{4}}

In Figure 1, for (p,q)2(p,q)\in\mathbb{Z}^{2}, (p,q)(0,0)(p,q)\neq(0,0), we let Sp,q1SO(5)\mathrm{S}^{1}_{p,q}\leq\mathrm{SO}(5) denote the circle subgroup given by

θ(e1,e2+ie3,e4+ie5)=(e1,eipθ(e2+ie3),eiqθ(e4+ie5)).\theta\cdot(e_{1},e_{2}+ie_{3},e_{4}+ie_{5})=(e_{1},e^{ip\theta}(e_{2}+ie_{3}),e^{iq\theta}(e_{4}+ie_{5})).

Each of these circles are subgroups of the maximal torus T2\mathrm{T}^{2} of SO(5)\mathrm{SO}(5) given by

(2.55) (θ,ϕ)(e1,e2+ie3,e4+ie5)=(e1,eiθ(e2+ie3),eiϕ(e4+ie5)).(\theta,\phi)\cdot(e_{1},e_{2}+ie_{3},e_{4}+ie_{5})=(e_{1},e^{i\theta}(e_{2}+ie_{3}),e^{i\phi}(e_{4}+ie_{5})).

We let O(2)p,q\mathrm{O}(2)_{p,q} denote the group generated by Sp,q1\mathrm{S}^{1}_{p,q} and the element diag(1,1,1,1,1).\mathrm{diag}\left(1,1,-1,1,-1\right).

The group SO(4)SO(5)\mathrm{SO}(4)\subset\mathrm{SO}(5) is defined to be the identity component of the group fixing the vector e1,e_{1}, and the subgroup U(2)SO(4)\mathrm{U}(2)\subset\mathrm{SO}(4) is the subgroup fixing the 2-form e23+e45.e^{23}+e^{45}. The subgroup SU(2)U(2)\mathrm{SU}(2)\subset\mathrm{U}(2) is the subgroup fixing (e2+ie3)(e4+ie5).\left(e_{2}+ie_{3}\right)\wedge\left(e_{4}+ie_{5}\right).

The subgroup SO(2)×SO(3)stdSO(5)\mathrm{SO}(2)\times\mathrm{SO}(3)_{\mathrm{std}}\subset\mathrm{SO}(5) is the identity component of the group preserving the 3-plane span(e3,e4,e5),\mathrm{span}\left(e_{3},e_{4},e_{5}\right), and the subgroup SO(3)stdSO(2)×SO(3)std\mathrm{SO}(3)_{\mathrm{std}}\subset\mathrm{SO}(2)\times\mathrm{SO}(3)_{\mathrm{std}} is the subgroup acting trivially on span(e1,e2).\mathrm{span}\left(e_{1},e_{2}\right).

In Figure 2, T1(S4)T_{1}(S^{4}) denotes the unit tangent bundle of S4S^{4}, while Gr2+(5)\text{Gr}_{2}^{+}(\mathbb{R}^{5}) denotes the Grassmannian of oriented 22-planes in 5\mathbb{R}^{5}, and Gr2+(TS4)\text{Gr}_{2}^{+}(TS^{4}) denotes the Grassmann bundle of oriented tangent 22-planes to S4S^{4}.

2.7. Cohomogeneity-one action of SO(4)\mathrm{SO}(4)

The action of the subgroup SO(4)SO(5)\mathrm{SO}(4)\subset\mathrm{SO}(5) on the Berger space BB is cohomogeneity-one, meaning that its principal orbits have codimension 1. This action was first described in the context of manifolds of positive curvature by Verdiani-Podestà [PoVe99], and appears in the classification of simply-connected positively curved cohomogeneity-one manifolds due to Grove-Wilking-Ziller [GWZ08]. Since the nearly parallel G2\mathrm{G}_{2}-structure φ\varphi on BB defined above is SO(5)\mathrm{SO}(5)-invariant, it is a fortiori invariant under this cohomogeneity-one action.

The SO(4)\mathrm{SO}(4)-orbit through the identity coset Id5SO(3)=Σ0\mathrm{Id}_{5}\,\mathrm{SO}(3)=\Sigma_{0} is a singular orbit. The curve u:SO(5),u:\mathbb{R}\to\mathrm{SO}(5),

u:s[cos253s00sin253s00000000000sin253s00cos253s000000],\displaystyle u:s\mapsto\small\left[\begin{array}[]{ccccc}\cos\frac{2\sqrt{5}}{3}s&0&0&-\sin\frac{2\sqrt{5}}{3}s&0\\ 0&0&0&0&0\\ 0&0&0&0&0\\ \sin\frac{2\sqrt{5}}{3}s&0&0&\cos\frac{2\sqrt{5}}{3}s&0\\ 0&0&0&0&0\end{array}\right],

projects under the map π:SO(5)B\pi:\mathrm{SO}(5)\to B to a geodesic orthogonal to all SO(4)\mathrm{SO}(4)-orbits, and the image of the map

[0,π/5]×SO(4)\displaystyle\left[0,\pi/\sqrt{5}\right]\times\mathrm{SO}(4) SO(5)\displaystyle\to\mathrm{SO}(5)
(s,A)\displaystyle(s,A) Au(s)\displaystyle\mapsto A\,u(s)

surjects onto B.B. The SO(4)\mathrm{SO}(4)-stabiliser of the point π(u(s))B\pi\left(u\left(s\right)\right)\in B is given by

(u(s)1SO(4)u(s))SO(3)=StabSO(3)(u(s)1e1){O(2)1,2ifs=0,π/5,2×2otherwise.\left(u(s)^{-1}\mathrm{SO}(4)u(s)\right)\cap\mathrm{SO}(3)=\mathrm{Stab}_{\mathrm{SO}(3)}\left(u(s)^{-1}e_{1}\right)\cong\begin{cases}\mathrm{O}(2)_{1,2}&\text{if}\>s=0,\pi/\sqrt{5},\\ \mathbb{Z}_{2}\times\mathbb{Z}_{2}&\text{otherwise}.\end{cases}

Thus, the group picture for the action of SO(4)\mathrm{SO}(4) on BB is

2×2{O(2)1,2,O(2)1,2}SO(4).\displaystyle\mathbb{Z}_{2}\times\mathbb{Z}_{2}\subset\left\{\mathrm{O}(2)_{1,2},\mathrm{O}(2)_{1,2}\right\}\subset\mathrm{SO}(4).

Writing the Maurer-Cartan form of SO(4)SO(5)\mathrm{SO}(4)\subset\mathrm{SO}(5) in a manner adapted to the splitting 𝔰𝔬(4)𝔰𝔲(2)𝔰𝔲(2)\mathfrak{so}(4)\cong\mathfrak{su}(2)\oplus\mathfrak{su}(2) as

12[0000000μ1+ν1μ2+ν2μ3+ν30μ1ν10μ3ν3μ2+ν20μ2ν2μ3+ν30μ1ν10μ3ν3μ2ν2μ1+ν10],\displaystyle\frac{1}{2}\left[\begin{array}[]{ccccc}0&0&0&0&0\\ 0&0&-\mu_{{1}}+\nu_{{1}}&-\mu_{{2}}+\nu_{{2}}&-\mu_{{3}}+\nu_{{3}}\\ 0&\mu_{{1}}-\nu_{{1}}&0&-\mu_{{3}}-\nu_{{3}}&\mu_{{2}}+\nu_{{2}}\\ 0&\mu_{{2}}-\nu_{{2}}&\mu_{{3}}+\nu_{{3}}&0&-\mu_{{1}}-\nu_{{1}}\\ 0&\mu_{{3}}-\nu_{{3}}&-\mu_{{2}}-\nu_{{2}}&\mu_{{1}}+\nu_{{1}}&0\end{array}\right],

the pullback of the Maurer-Cartan form of SO(5)\mathrm{SO}(5) to [0,π/3]×SO(4)\left[0,\pi/3\right]\times\mathrm{SO}(4) is given by

12[0sin253s(μ2ν2)sin253s(μ3+ν3)253dssin253s(μ1+ν1)sin253s(μ2+ν2)0μ1+ν1cos253s(μ2+ν2)μ3+ν3sin253s(μ3+ν3)μ1ν10cos253s(μ3+ν3)μ2+ν2253dscos253s(μ2ν2)cos253s(μ3+ν3)0cos253s(μ1ν1)sin253s(μ1+ν1)μ3ν3μ2ν2cos253s(μ1+ν1)0].\displaystyle\frac{1}{2}\left[\begin{array}[]{ccccc}0&\sin\frac{2\sqrt{5}}{3}s\left(\mu_{2}-\nu_{2}\right)&\sin\frac{2\sqrt{5}}{3}s\left(\mu_{{3}}+\nu_{{3}}\right)&-\frac{2\sqrt{5}}{3}\,ds&-\sin\frac{2\sqrt{5}}{3}s\left(\mu_{{1}}+\nu_{{1}}\right)\\ \sin\frac{2\sqrt{5}}{3}s\left(-\mu_{{2}}+\nu_{2}\right)&0&-\mu_{{1}}+\nu_{{1}}&\cos\frac{2\sqrt{5}}{3}s\left(-\mu_{{2}}+\nu_{{2}}\right)&-\mu_{{3}}+\nu_{{3}}\\ -\sin\frac{2\sqrt{5}}{3}s\left(\mu_{{3}}+\nu_{{3}}\right)&\mu_{{1}}-\nu_{{1}}&0&-\cos\frac{2\sqrt{5}}{3}s\left(\mu_{{3}}+\nu_{{3}}\right)&\mu_{{2}}+\nu_{{2}}\\ \frac{2\sqrt{5}}{3}ds&\cos\frac{2\sqrt{5}}{3}s\left(\mu_{{2}}-\nu_{{2}}\right)&\cos\frac{2\sqrt{5}}{3}s\left(\mu_{{3}}+\nu_{{3}}\right)&0&\cos\frac{2\sqrt{5}}{3}s\left(-\mu_{{1}}-\nu_{{1}}\right)\\ \sin\frac{2\sqrt{5}}{3}s\left(\mu_{{1}}+\nu_{{1}}\right)&\mu_{{3}}-\nu_{{3}}&-\mu_{{2}}-\nu_{{2}}&\cos\frac{2\sqrt{5}}{3}s\left(\mu_{{1}}+\nu_{{1}}\right)&0\end{array}\right].

Reparametrising s=(35/10)ts=(3\sqrt{5}/10)t, on [0,π/3]×SO(4),\left[0,\pi/3\right]\times\mathrm{SO}(4), we have that

(2.56) ω1\displaystyle\omega_{{1}} =320((2cost)μ1(2+cost)ν1),\displaystyle=\tfrac{3}{20}\left(\left(2-\cos t\right)\mu_{1}-\left(2+\cos t\right)\nu_{1}\right),
ω2\displaystyle\omega_{{2}} =3240((37cos(tϕ))μ2+(3+7cos(tϕ))ν2),\displaystyle=\tfrac{3\sqrt{2}}{40}\left(\left(\sqrt{3}-\sqrt{7}\cos\left(t-\phi\right)\right)\mu_{2}+\left(\sqrt{3}+\sqrt{7}\cos\left(t-\phi\right)\right)\nu_{2}\right),
ω3\displaystyle\omega_{{3}} =3240((37cos(t+ϕ))μ3(3+7cos(t+ϕ))ν3),\displaystyle=\tfrac{3\sqrt{2}}{40}\left(\left(\sqrt{3}-\sqrt{7}\cos\left(t+\phi\right)\right)\mu_{3}-\left(\sqrt{3}+\sqrt{7}\cos\left(t+\phi\right)\right)\nu_{3}\right),
ω4\displaystyle\omega_{4} =3510dt,\displaystyle=\tfrac{3\sqrt{5}}{10}dt,
ω5\displaystyle\omega_{5} =3520sint(μ1ν1)\displaystyle=-\tfrac{3\sqrt{5}}{20}\sin t\left(\mu_{1}-\nu_{1}\right)
ω6\displaystyle\omega_{6} =31040((1+cost)μ2+(1cost)ν2)\displaystyle=\tfrac{3\sqrt{10}}{40}\left(\left(1+\cos t\right)\mu_{2}+\left(1-\cos t\right)\nu_{2}\right)
ω7\displaystyle\omega_{7} =31040((1cost)μ3+(1cost)ν3),\displaystyle=\tfrac{3\sqrt{10}}{40}\left(\left(-1-\cos t\right)\mu_{3}+\left(1-\cos t\right)\nu_{3}\right),

where ϕ=arctan(2/3).\phi=\arctan\left({2}/{\sqrt{3}}\right). Pulling back equation (2.54) and using the above formulas gives an explicit expression for the nearly parallel G2\mathrm{G}_{2}-structure φ\varphi on BB as a curve in the space of invariant 3-forms on the principal orbits SO(4)/22.\mathrm{SO}(4)/\mathbb{Z}^{2}_{2}.

2.7.1. SU(3)\mathrm{SU}(3)-structure on principal orbits

The group G2\mathrm{G}_{2} acts transitively on the 6-sphere S6S^{6} with stabiliser SU(3),\mathrm{SU}(3), and thus any hypersurface X6X^{6} in a manifold MM with G2\mathrm{G}_{2}-structure has an induced SU(3)\mathrm{SU}(3) structure (Ω,ReΥ)Ω2(X)Ω3(X),\left(\Omega,\operatorname{Re}\Upsilon\right)\in\Omega^{2}\left(X\right)\oplus\Omega^{3}\left(X\right), given explicitly by

Ω=vφ,ReΥ=φ|X,\Omega=v\lrcorner\varphi,\>\>\>\operatorname{Re}\Upsilon=\varphi|_{X},

where vv is a unit normal vector field to X.X.

The torsion of the induced SU(3)\mathrm{SU}(3)-structure on the XX is determined by the torsion of the ambient G2\mathrm{G}_{2}-structure and the second fundamental form of the inclusion XMX\subset M. When the ambient G2\mathrm{G}_{2}-structure is nearly parallel, the induced SU(3)\mathrm{SU}(3)-structure on a hypersurface is of a type called nearly half-flat [FIMU08], meaning that dReΥ=2ΩΩ.d\operatorname{Re}\Upsilon=-2\Omega\wedge\Omega. Thus, the principal orbits SO(4)/22\mathrm{SO}(4)/\mathbb{Z}_{2}^{2} of the SO(4)\mathrm{SO}(4)-action on BB all carry nearly half-flat SU(3)\mathrm{SU}(3)-structures. Explicitly, the SU(3)\mathrm{SU}(3)-structure on a principal orbit {s=const.}\left\{s=\mathrm{const.}\right\} is given by the forms

(2.57) Ω\displaystyle\Omega =ω15ω26ω37,\displaystyle=-\omega_{15}-\omega_{26}-\omega_{37},
ReΥ\displaystyle\operatorname{Re}\Upsilon =ω123ω167+ω257ω356,\displaystyle=\omega_{123}-\omega_{167}+\omega_{257}-\omega_{356},

restricted to this orbit.

Proposition 2.8.

Any special Lagrangian submanifold (of phase 0) of a principal orbit SO(4)/22B\mathrm{SO}(4)/\mathbb{Z}_{2}^{2}\subset B is an associative submanifold of B.B.

Proof.

This is true for any special Lagrangian submanifold in a hypersurface of a manifold with G2\mathrm{G}_{2}-structure, as we now show. An oriented 3-dimensional submanifold NN of a 6-manifold XX with SU(3)\mathrm{SU}(3)-structure (Ω,ReΥ)\left(\Omega,\operatorname{Re}\Upsilon\right) is special Lagrangian (of phase 0) if and only if ReΥ|N=vol|N.\operatorname{Re}\Upsilon|_{N}=\mathrm{vol}|_{N}. If the SU(3)\mathrm{SU}(3)-structure on XX is induced from an inclusion XMX\subset M of XX as a hypersurface in a 7-manifold MM with G2\mathrm{G}_{2}-structure φ,\varphi, then ReΥ=φ|X.\operatorname{Re}\Upsilon=\varphi|_{X}. Thus, φ|N=volN,\varphi|_{N}=\mathrm{vol}_{N}, so NN is an associative submanifold of M.M.

Proposition 2.8 is not of direct use in constructing associative submanifolds of B,B, as typically there will be obstructions to the existence of special Lagrangian submanifolds in the principal orbits arising from the torsion of the induced SU(3)\mathrm{SU}(3)-structure [BaMaSLag]. In particular, it is possible to compute from equations (2.56) and (2.57) that the induced SU(3)\mathrm{SU}(3)-structure on a principal orbit is never nearly Kähler.

3. Ruled associative submanifolds

A natural condition on a submanifold is that it be ruled by some special class of curves in the ambient space. In the context of calibrated geometry, special Lagrangian submanifolds of 3\mathbb{C}^{3} ruled by lines have been studied by Bryant [Bry06] and Joyce [Joyce02Ruled]. Fox considers coassociative cones in 7\mathbb{R}^{7} and Cayley cones in 8\mathbb{R}^{8} ruled by 2-planes [Fox2008Cayley, Fox2007ConesPlanes]. Lotay has also studied coassociative submanifolds of 7\mathbb{R}^{7} and Cayley submanifolds of 8\mathbb{R}^{8} ruled by 2-planes, as well as special Lagrangians in S6S^{6} and associative submanifolds of S7S^{7} ruled by circles [LotAssoc, LotLag11]. In this section, we shall apply similar techniques to the Berger space B.B.

Unlike in the cases described above, where the ambient manifold is a Euclidean space or a sphere, it is not obvious what the appropriate class of ruling curves should be. Our first step is then to describe the ruling curves we shall consider. Consider the distribution 𝒟\mathcal{D} on SO(5)\mathrm{SO}(5) given by

𝒟=ker(ω2,ω3,,ω7,γ2,γ3).\displaystyle\mathcal{D}=\text{ker}\left(\omega_{2},\omega_{3},\ldots,\omega_{7},\gamma_{2},\gamma_{3}\right).

By the structure equations (2.46), 𝒟\mathcal{D} is a Frobenius system. In fact, using the structure equation (2.4), we can explicitly describe the integral surface of 𝒟\mathcal{D} passing through the frame (f1,,f5)SO(5)\left(f_{1},\ldots,f_{5}\right)\in\mathrm{SO}(5): it is the image of the map T2SO(5)T^{2}\to\mathrm{SO}(5) given by

(3.1) (θ,ϕ)(f1,cos(θ+2ϕ)f2+sin(θ+2ϕ)f3,sin(θ+2ϕ)f2+cos(θ+2ϕ)f3,\displaystyle\left(\theta,\phi\right)\mapsto\left(f_{1},\cos(\theta+2\phi)f_{2}+\sin(\theta+2\phi)f_{3},-\sin(\theta+2\phi)f_{2}+\cos(\theta+2\phi)f_{3},\right.
cos(2θϕ)f4+sin(2θϕ)f5,sin(2θϕ)f4+cos(2θϕ)f5).\displaystyle\left.\cos(2\theta-\phi)f_{4}+\sin(2\theta-\phi)f_{5},-\sin(2\theta-\phi)f_{4}+\cos(2\theta-\phi)f_{5}\right).

In particular, we see that the (connected, maximal) integral surfaces of 𝒟\mathcal{D} in SO(5)\mathrm{SO}(5) (hereafter called 𝒟\mathcal{D}-surfaces) are precisely the cosets of the maximal torus T2\mathrm{T}^{2} in SO(5)\mathrm{SO}(5) chosen in (2.55). Said another way, the 𝒟\mathcal{D}-surfaces are precisely the fibers of the map

(3.2) λ:SO(5)\displaystyle\lambda\colon\mathrm{SO}(5) Gr2+(TS4)SO(5)/T2\displaystyle\to\text{Gr}_{2}^{+}(TS^{4})\cong\mathrm{SO}(5)/\mathrm{T}^{2}
λ(f1,,f5)\displaystyle\lambda(f_{1},\ldots,f_{5}) =(f1,span(f2,f3))\displaystyle=(f_{1},\text{span}(f_{2},f_{3}))

The 𝒟\mathcal{D}-surfaces in SO(5)\mathrm{SO}(5) project to curves in the Berger space BB that we shall call 𝒞\mathcal{C}-curves. We will consider 𝒞\mathcal{C}-curves as oriented. We will see shortly (Proposition 3.3) that the 𝒞\mathcal{C}-curve given by the projection of the 𝒟\mathcal{D}-surface (3.1), for example, is the family of Veronese surfaces Σ\Sigma that satisfy f1Σf_{1}\in\Sigma and Tf1Σ=span(f2,f3)T_{f_{1}}\Sigma=\text{span}(f_{2},f_{3}). We also note that every 𝒞\mathcal{C}-curve is an orbit of the subgroup S(2,1)1SO(5)S^{1}_{(-2,1)}\leq\mathrm{SO}(5), or of one of its conjugates.

Definition 3.1.

An associative submanifold of BB is said to be ruled if it is foliated by 𝒞\mathcal{C}-curves.

Remark 3.2.

The SO(3)\mathrm{SO}(3)-structure on BB naturally identifies each tangent space of BB with the SO(3)\mathrm{SO}(3)-module 3.\mathcal{H}_{3}. The action of SO(3)\mathrm{SO}(3) on 3\mathcal{H}_{3} preserves the 3-dimensional cone of harmonic cubics that are the harmonic parts of a perfect cube (a1x+a2y+a3)3(a_{1}x+a_{2}y+a_{3})^{3}. Explicitly, these are the harmonic cubics of the form

(3.3) (a1x+a2y+a3z)335(a12+a22+a32)(a1x+a2y+a3z)(x2+y2+z2)\left(a_{1}x+a_{2}y+a_{3}z\right)^{3}-\tfrac{3}{5}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(a_{1}x+a_{2}y+a_{3}z\right)\left(x^{2}+y^{2}+z^{2}\right)

for (a1,a2,a3)3.\left(a_{1},a_{2},a_{3}\right)\in\mathbb{R}^{3}. Thus, the tangent bundle TBTB contains an SO(5)\mathrm{SO}(5)-invariant subset 𝒞\mathcal{C} consisting of the tangent vectors identified with the elements of the form (3.3). The 𝒞\mathcal{C}-curves in BB are simply the geodesics that are everywhere tangent to 𝒞.\mathcal{C}.

Proposition 3.3.

The space of 𝒞\mathcal{C}-curves in BB is diffeomorphic to the flag manifold SO(5)/T2Gr2+(TS4)\mathrm{SO}(5)/\mathrm{T}^{2}\cong\text{Gr}_{2}^{+}\!\left(TS^{4}\right). An explicit SO(5)\mathrm{SO}(5)-equivariant diffeomorphism is given by the map

Γ:Gr2+(TS4)\displaystyle\Gamma\colon\text{Gr}_{2}^{+}(TS^{4}) {𝒞-curves in B}\displaystyle\to\{\mathcal{C}\text{-curves in }B\}
Γ(p,E)\displaystyle\Gamma(p,E) ={ΣBpΣ,TpΣ=E}.\displaystyle=\left\{\Sigma\in B\mid p\in\Sigma,\>T_{p}\Sigma=E\right\}.
Proof.

The space of 𝒞\mathcal{C}-curves in BB is in bijection with the space of 𝒟\mathcal{D}-surfaces in SO(5)\mathrm{SO}(5), which in turn is parametrized by SO(5)/T2\mathrm{SO}(5)/\mathrm{T}^{2}.

We now show that each Γ(p,E)\Gamma(p,E) is a 𝒞\mathcal{C}-curve. Let

L={(Σ,p,o)B×S4×𝕊(Λ2(TS4))pΣ,o𝕊(Λ2(TpΣ))}.L=\{(\Sigma,p,\mathrm{o})\in B\times S^{4}\times\mathbb{S}\left(\Lambda^{2}\left(T^{*}S^{4}\right)\right)\mid p\in\Sigma,\>\>\mathrm{o}\in\mathbb{S}\left(\Lambda^{2}\left(T^{*}_{p}\Sigma\right)\right)\}.

Note that SO(5)\mathrm{SO}(5) acts transitively on LL with stabiliser S(1,2)1\mathrm{S}^{1}_{(1,2)}. Letting q1:LBq_{1}\colon L\to B denote q1(Σ,p,o)=Σq_{1}(\Sigma,p,\mathrm{o})=\Sigma and q2:LGr2+(TS4)q_{2}\colon L\to\text{Gr}_{2}^{+}(TS^{4}) denote q2(Σ,p,o)=(TpΣ,o)q_{2}(\Sigma,p,\mathrm{o})=\left(T_{p}\Sigma,\mathrm{o}\right), we have a commutative diagram:

(3.4) SO(5){\mathrm{SO}(5)}L{L}B{B}Gr2+(TS4){\text{Gr}_{2}^{+}(TS^{4})}π\scriptstyle{\pi}λ\scriptstyle{\lambda}q1\scriptstyle{q_{1}}q2\scriptstyle{q_{2}}

For each (p,E)Gr2+(TS4)(p,E)\in\text{Gr}_{2}^{+}(TS^{4}), we now see that

Γ(p,E)={ΣBpΣ,TpΣ=E}\displaystyle\Gamma(p,E)=\left\{\Sigma\in B\mid p\in\Sigma,\>T_{p}\Sigma=E\right\} =(q1q21)(p,E)=(πλ1)(p,E).\displaystyle=(q_{1}\circ q_{2}^{-1})(p,E)=(\pi\circ\lambda^{-1})(p,E).

Thus, Γ(p,E)\Gamma(p,E) is the π\pi-image of the λ\lambda-fiber over (p,E)(p,E), hence is a 𝒞\mathcal{C}-curve in BB. By construction, the correspondence (p,E)Γ(p,E)(p,E)\mapsto\Gamma(p,E) is bijective. ∎

To study associatives in BB ruled by 𝒞\mathcal{C}-curves, we consider the double fibration of SO(5)\mathrm{SO}(5) given in (3.4). In view of Proposition 3.3, we expect that if SS is a generic immersed surface in Gr2+(TS4)\text{Gr}_{2}^{+}\!\left(TS^{4}\right), then (πλ1)(S)(\pi\circ\lambda^{-1})(S) will be a ruled immersed 3-submanifold of BB. We now clarify this point and fix notation.

Let SGr2+(TS4)S\to\text{Gr}_{2}^{+}\!\left(TS^{4}\right) be an immersed surface. Recall the map λ:SO(5)SO(5)/T2\lambda:\mathrm{SO}(5)\to\mathrm{SO}(5)/\mathrm{T}^{2} defined in (3.2). The structure equation (2.4) gives

d𝐞1=\displaystyle d\mathbf{e}_{1}= μ12𝐞2μ13𝐞3μ14𝐞4μ15𝐞5,\displaystyle-\mu_{12}\mathbf{e}_{2}-\mu_{13}\mathbf{e}_{3}-\mu_{14}\mathbf{e}_{4}-\mu_{15}\mathbf{e}_{5},
d(𝐞2𝐞3)=\displaystyle d\left(\mathbf{e}_{2}\wedge\mathbf{e}_{3}\right)= μ13𝐞1𝐞2+μ12𝐞1𝐞3μ34𝐞2𝐞4μ35𝐞2𝐞5\displaystyle-\mu_{13}\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mu_{12}\mathbf{e}_{1}\wedge\mathbf{e}_{3}-\mu_{34}\mathbf{e}_{2}\wedge\mathbf{e}_{4}-\mu_{35}\mathbf{e}_{2}\wedge\mathbf{e}_{5}
+μ24𝐞3𝐞4+μ25𝐞3𝐞5,\displaystyle+\mu_{24}\mathbf{e}_{3}\wedge\mathbf{e}_{4}+\mu_{25}\mathbf{e}_{3}\wedge\mathbf{e}_{5},

so the eight 1-forms that appear on the right-hand-side of these equations are λ\lambda-semibasic. Let gSg_{S} denote the restriction of the SO(5)\mathrm{SO}(5)-invariant metric on Gr2+(TS4)\text{Gr}_{2}^{+}(TS^{4}) given by

12(μ122+μ132+μ142+μ152+μ242+μ252+μ342+μ352)\textstyle\frac{1}{2}\left(\mu_{12}^{2}+\mu_{13}^{2}+\mu_{14}^{2}+\mu_{15}^{2}+\mu_{24}^{2}+\mu_{25}^{2}+\mu_{34}^{2}+\mu_{35}^{2}\right)

to SS. Let (S)\mathcal{F}(S) denote the S1\mathrm{S}^{1}-bundle of gSg_{S}-orthonormal frames on SS, let (S)\mathcal{B}(S) denote the pullback of the T2\mathrm{T}^{2}-bundle SO(5)Gr2+(TS4)\mathrm{SO}(5)\to\text{Gr}_{2}^{+}\!\left(TS^{4}\right) to SS, and denote (S)×S(S)\mathcal{F}(S)\times_{S}\mathcal{B}(S) by 𝒢(S).\mathcal{G}(S). Then 𝒢(S)\mathcal{G}(S) is a principal T3\mathrm{T}^{3}-bundle over SS.

It is straightforward to check that the image of natural map 𝒢(S)B\mathcal{G}(S)\to B is exactly (πλ1)(S)(\pi\circ\lambda^{-1})(S), and is a 3-dimensional 𝒞\mathcal{C}-ruled submanifold on the locus of points pp where the linear map (ω1,,ω7):Tp𝒢(S)7\left(\omega_{{1}},\ldots,\omega_{{7}}\right):T_{p}\mathcal{G}(S)\to\mathbb{R}^{7} is injective.

𝒢(S){\mathcal{G}(S)}(S){\mathcal{B}(S)}SO(5){\text{SO}(5)}S{S}S{S}Gr2+(TS4){\text{Gr}_{2}^{+}(TS^{4})}B{B}λ\scriptstyle{\lambda}π\scriptstyle{\pi}

We now describe a sort of inverse to this construction. Let NBN\to B be a ruled 33-submanifold of BB. Let ON(N)\mathcal{F}_{\text{ON}}(N) be the orthonormal coframe bundle of NN with respect to the induced metric on N,N, and denote the tautological 3\mathbb{R}^{3}-valued 1-form on ON(N)\mathcal{F}_{\text{ON}}(N) by (α1,α2,α3)(\alpha_{1},\alpha_{2},\alpha_{3}). Let (N)\mathcal{B}(N) denote the pullback of the SO(3)\mathrm{SO}(3)-bundle π:SO(5)B\pi:\mathrm{SO}(5)\to B to NN.

Since NN is ruled, there is a 𝒞\mathcal{C}-curve through each point ΣN\Sigma\in N that remains in NN. Let VV denote the unit vector field on NN that is tangent to the 𝒞\mathcal{C}-ruling. Define a subbundle (N)\mathcal{F}^{\prime}(N) of ON(N)×N(N)\mathcal{F}_{\text{ON}}(N)\times_{N}\mathcal{B}(N) by letting the fibre over ΣN\Sigma\in N be

(N)Σ={(u,(f1,,f5))ON(N)Σ×π1(Σ)u(V)=(1,0,0),the ruling curve through Σ is given byΓ(f1,span(f2,f3))}.\mathcal{F}^{\prime}(N)_{\Sigma}=\left\{\left(u,\left(f_{1},\ldots,f_{5}\right)\right)\in\mathcal{F}_{\text{ON}}(N)_{\Sigma}\times\pi^{-1}\left(\Sigma\right)\mid u_{*}\left(V\right)=\left(1,0,0\right),\>\right.\\ \left.\text{the ruling curve through $\Sigma$ is given by}\>\>\Gamma\!\left(f_{1},\text{span}(f_{2},f_{3})\right)\right\}.

The bundle (N)\mathcal{F}^{\prime}(N) is a principal T2\mathrm{T}^{2}-bundle over NN. One can check that the image of the natural map (N)SO(5)\mathcal{F}^{\prime}(N)\to\mathrm{SO}(5) is the λ\lambda-preimage of a surface SGr2+(TS4)S\subset\text{Gr}_{2}^{+}(TS^{4}), and hence N=(πλ1)(S)N=(\pi\circ\lambda^{-1})(S).

(N){\mathcal{F}^{\prime}(N)}ON(N)×N(N){\mathcal{F}_{\text{ON}}(N)\times_{N}\mathcal{B}(N)}(N){\mathcal{B}(N)}SO(5){\text{SO}(5)}N{N}N{N}N{N}B{B}Gr2+(TS4){\text{Gr}_{2}^{+}(TS^{4})}π\scriptstyle{\pi}λ\scriptstyle{\lambda}

The following theorem gives conditions on the surface SGr2+(TS4)S\to\text{Gr}_{2}^{+}(TS^{4}) that ensure the corresponding ruled 33-submanifold NBN\to B is associative.

Theorem 3.4.

There is an SO(5)\mathrm{SO}(5)-invariant (non-integrable) almost complex structure JJ on Gr2+(TS4)\mathrm{Gr}_{2}^{+}(TS^{4}) such that:

  1. (1)

    Any ruled associative submanifold of BB is locally the πλ1\pi\circ\lambda^{-1}-image of a JJ-holomorphic curve γ:SGr2+(TS4)\gamma:S\to\mathrm{Gr}_{2}^{+}(TS^{4}).

  2. (2)

    For each JJ-holomorphic curve γ:SGr2+(TS4)\gamma:S\to\mathrm{Gr}_{2}^{+}(TS^{4}) not locally equivalent to the Gauss lift of a Veronese surface, there is a dense subset SSS^{\circ}\subset S such that πλ1γ(S)\pi\circ\lambda^{-1}\circ\gamma\left(S^{\circ}\right) is a 𝒞\mathcal{C}-ruled associative submanifold of B.B.

Proof.

We begin by defining the almost complex structure JJ on Gr2+(TS4)\text{Gr}_{2}^{+}(TS^{4}). Define \mathbb{C}-valued 1-forms on SO(5)\mathrm{SO}(5) by

ζ1\displaystyle\zeta_{1} =12(μ12iμ13),\displaystyle=\textstyle\frac{1}{\sqrt{2}}\left(\mu_{12}-i\mu_{13}\right), ζ3\displaystyle\zeta_{3} =12[(μ24μ35)+i(μ25+μ34)],\displaystyle\textstyle=\frac{1}{2}\left[(\mu_{24}-\mu_{35})+i(\mu_{25}+\mu_{34})\right],
ζ2\displaystyle\zeta_{2} =12(μ14iμ15),\displaystyle=\textstyle\frac{1}{\sqrt{2}}\left(\mu_{14}-i\mu_{15}\right), ζ4\displaystyle\zeta_{4} =12[(μ24+μ35)i(μ25μ34)].\displaystyle\textstyle=\frac{1}{2}\left[(\mu_{24}+\mu_{35})-i(\mu_{25}-\mu_{34})\right].

These forms are λ\lambda-semibasic and satisfy the equations

(3.5) dζ1ζ¯2ζ¯3dζ2ζ¯3ζ¯1dζ3ζ¯1ζ¯2dζ40}modζ1,ζ2,ζ3,ζ4.\left.\begin{aligned} d\zeta_{1}&\equiv\overline{\zeta}_{2}\wedge\overline{\zeta}_{3}\\ d\zeta_{2}&\equiv\overline{\zeta}_{3}\wedge\overline{\zeta}_{1}\\ d\zeta_{3}&\equiv\overline{\zeta}_{1}\wedge\overline{\zeta}_{2}\\ d\zeta_{4}&\equiv 0\end{aligned}\>\>\>\right\}\>\>\text{mod}\>\>\>\zeta_{1},\zeta_{2},\zeta_{3},\zeta_{4}.

Since the fibres of λ\lambda are connected, it follows that there is a unique almost complex structure JJ on SO(5)/T2\mathrm{SO}(5)/\mathrm{T}^{2} so that the (1,0)(1,0)-forms on SO(5)/T2\mathrm{SO}(5)/\mathrm{T}^{2} pull back to be linear combinations of ζ1,ζ2,ζ3,ζ4.\zeta_{1},\zeta_{2},\zeta_{3},\zeta_{4}. Equations (3.5) imply that JJ is non-integrable. For future use, we remark that

(3.6) [ω2+iω3ω4+iω5ω6iω7γ2iγ3]=110(6003603100000310026i004i)[ζ1ζ2ζ3ζ4].\begin{bmatrix}\omega_{2}+i\omega_{3}\\ \omega_{4}+i\omega_{5}\\ \omega_{6}-i\omega_{7}\\ \gamma_{2}-i\gamma_{3}\end{bmatrix}=\frac{1}{10}\begin{pmatrix}-6&0&0&3\sqrt{6}\\ 0&-3\sqrt{10}&0&0\\ 0&0&-3\sqrt{10}&0\\ 2\sqrt{6}\,i&0&0&4i\end{pmatrix}\begin{bmatrix}\zeta_{1}\\ \zeta_{2}\\ \zeta_{3}\\ \zeta_{4}\end{bmatrix}.

We now prove statement (1). Let NBN\to B be a ruled associative submanifold. As above, we let VV denote the unit vector field on NN that is tangent to the 𝒞\mathcal{C}-ruling, and perform computations on (N)\mathcal{F}^{\prime}(N). Since VV is tangent to a 𝒞\mathcal{C}-curve, we have ω1=α1\omega_{1}=\alpha_{1} and

d𝐞10modα2,α3,\displaystyle d\mathbf{e}_{1}\equiv 0\>\>\>\text{mod}\>\>\>\alpha_{2},\alpha_{3},
d(𝐞2𝐞3)0modα2,α3.\displaystyle d\left(\mathbf{e}_{2}\wedge\mathbf{e}_{3}\right)\equiv 0\>\>\>\text{mod}\>\>\>\alpha_{2},\alpha_{3}.

on (N).\mathcal{F}^{\prime}(N). Let σ=α2+iα3.\sigma=\alpha_{2}+i\alpha_{3}. It follows from (2.4) that there exist \mathbb{C}-valued functions A,B,C,F,G,X,Y,ZA,B,C,F,G,X,Y,Z on (N)\mathcal{F}^{\prime}(N) so that

ω2+iω3\displaystyle\omega_{2}+i\omega_{3} =Aσ+Xσ¯,\displaystyle=A\sigma+X\overline{\sigma}, γ2iγ3\displaystyle\gamma_{2}-i\gamma_{3} =Fσ+Gσ¯,\displaystyle=F\sigma+G\overline{\sigma},
ω4+iω5\displaystyle\omega_{4}+i\omega_{5} =Bσ+Yσ¯,\displaystyle=B\sigma+Y\overline{\sigma},
ω6iω7\displaystyle\omega_{6}-i\omega_{7} =Cσ+Zσ¯,\displaystyle=C\sigma+Z\overline{\sigma},

on (N)\mathcal{F}^{\prime}(N). Pulling back to (N)\mathcal{F}^{\prime}(N) we have

φ|N\displaystyle\varphi|_{N} =i2(|A|2+|B|2+|C|2|X|2|Y|2|Z|2)α1σσ¯,\displaystyle=\frac{i}{2}\left(\left\lvert A\right\rvert^{2}+\left\lvert B\right\rvert^{2}+\left\lvert C\right\rvert^{2}-\left\lvert X\right\rvert^{2}-\left\lvert Y\right\rvert^{2}-\left\lvert Z\right\rvert^{2}\right)\alpha_{1}\wedge\sigma\wedge\overline{\sigma},
g|N\displaystyle g|_{N} =α12+Re((AX¯+BY¯+CZ¯)σ2)+(|A|2+|B|2+|C|2+|X|2+|Y|2+|Z|2)σσ¯\displaystyle=\alpha_{1}^{2}+\operatorname{Re}\left(\left(A\overline{X}+B\overline{Y}+C\overline{Z}\right)\sigma^{2}\right)+\left(\left\lvert A\right\rvert^{2}+\left\lvert B\right\rvert^{2}+\left\lvert C\right\rvert^{2}+\left\lvert X\right\rvert^{2}+\left\lvert Y\right\rvert^{2}+\left\lvert Z\right\rvert^{2}\right)\sigma\circ\overline{\sigma}
volN\displaystyle\text{vol}_{N} =i2((|A|2+|B|2+|C|2+|X|2+|Y|2+|Z|2)24|AX¯+BY¯+CZ¯|2)1/2α1σσ¯,\displaystyle=\frac{i}{2}\left(\left(\left\lvert A\right\rvert^{2}+\left\lvert B\right\rvert^{2}+\left\lvert C\right\rvert^{2}+\left\lvert X\right\rvert^{2}+\left\lvert Y\right\rvert^{2}+\left\lvert Z\right\rvert^{2}\right)^{2}-4\left\lvert A\overline{X}+B\overline{Y}+C\overline{Z}\right\rvert^{2}\right)^{1/2}\alpha_{1}\wedge\sigma\wedge\overline{\sigma},

Now, NN is associative, so φ|N=volN.\varphi|_{N}=\text{vol}_{N}. It follows from the above formulas, and an application of the Cauchy-Schwarz inequality, that the vectors (A,B,C),(X,Y,Z)3\left(A,B,C\right),\left(X,Y,Z\right)\in\mathbb{C}^{3} are parallel. That is, there are \mathbb{C}-valued functions uu and vv on (N)\mathcal{F}^{\prime}(N) so that uX=vA,uY=vB,uZ=vC.uX=vA,uY=vB,uZ=vC. So, the following equations hold on (N)\mathcal{F}^{\prime}(N):

(ω2+iω3)(ω4+iω5)=0,\displaystyle\left(\omega_{2}+i\omega_{3}\right)\wedge\left(\omega_{4}+i\omega_{5}\right)=0,
(ω4+iω5)(ω6iω7)=0,\displaystyle\left(\omega_{4}+i\omega_{5}\right)\wedge\left(\omega_{6}-i\omega_{7}\right)=0,
(ω6iω7)(ω2+iω3)=0.\displaystyle\left(\omega_{6}-i\omega_{7}\right)\wedge\left(\omega_{2}+i\omega_{3}\right)=0.

Differentiating these equations using the structure equations (2.46) we find

B(uGvF)α1σσ¯=0,C(uGvF)α1σσ¯=0,\displaystyle B\left(uG-vF\right)\,\alpha_{1}\wedge\sigma\wedge\overline{\sigma}=0,\>\>\>\>\>C\left(uG-vF\right)\,\alpha_{1}\wedge\sigma\wedge\overline{\sigma}=0,

so the functions B(uGvF)B\left(uG-vF\right) and C(uGvF)C\left(uG-vF\right) vanish identically on (N).\mathcal{F}^{\prime}(N). If the function uGvFuG-vF vanishes identically on (N),\mathcal{F}^{\prime}(N), then (ω2+iω3)(γ2iγ3)=0\left(\omega_{2}+i\omega_{3}\right)\wedge\left(\gamma_{2}-i\gamma_{3}\right)=0 on (N).\mathcal{F}^{\prime}(N). If GG does not vanish identically on (N),\mathcal{F}^{\prime}(N), we may restrict to the dense open set on which B=C=0.B=C=0. On this set we have ω4=ω5=ω6=ω7=0.\omega_{4}=\omega_{5}=\omega_{6}=\omega_{7}=0. The structure equations (2.46) imply that in this case too we have

(ω2+iω3)(γ2iγ3)=0.\left(\omega_{2}+i\omega_{3}\right)\wedge\left(\gamma_{2}-i\gamma_{3}\right)=0.

By (3.6), on SO(5)\mathrm{SO}(5) we have

ω2+iω3ω4+iω5ω6iω7γ2iγ30modζ1,ζ2,ζ3,ζ4.\displaystyle\omega_{2}+i\omega_{3}\equiv\omega_{4}+i\omega_{5}\equiv\omega_{6}-i\omega_{7}\equiv\gamma_{2}-i\gamma_{3}\equiv 0\>\>\>\text{mod}\>\>\>\zeta_{1},\zeta_{2},\zeta_{3},\zeta_{4}.

It follows that the image of the natural map (N)Gr2+(TS4)\mathcal{F}^{\prime}(N)\to\text{Gr}_{2}^{+}(TS^{4}) is a JJ-holomorphic curve. This proves statement (1).

We now prove statement (2). Let SGr2+(TS4)S\to\text{Gr}_{2}^{+}(TS^{4}) be a JJ-holomorphic curve. Since SS is JJ-holomorphic, there exist \mathbb{C}-valued functions W1,W2,W3,W4W_{1},W_{2},W_{3},W_{4} on 𝒢(S)\mathcal{G}(S) so that

(3.7) ζ1=W1σ,ζ2=W2σ,ζ3=W3σ,ζ4=W4σ,\displaystyle\zeta_{1}=W_{1}\sigma,\>\>\zeta_{2}=W_{2}\sigma,\>\>\zeta_{3}=W_{3}\sigma,\>\>\zeta_{4}=W_{4}\sigma,
(3.8) |W1|2+|W2|2+|W3|2+|W4|2=1,\displaystyle|W_{1}|^{2}+|W_{2}|^{2}+|W_{3}|^{2}+|W_{4}|^{2}=1,

on 𝒢(S)\mathcal{G}(S). Using (3.6) and (3.7), one can check that the natural map 𝒢(S)B\mathcal{G}(S)\to B is a 𝒞\mathcal{C}-ruled associative immersion on the locus where the functions 2W16W4,W2,W32W_{1}-\sqrt{6}W_{4},W_{2},W_{3} do not simultaneously vanish.

Now, the functions |W1|2,|W2|2,|W3|2,|W4|2|W_{1}|^{2},|W_{2}|^{2},|W_{3}|^{2},|W_{4}|^{2} on 𝒢(S)\mathcal{G}(S) descend to well-defined functions on SS, and we may consider the locus

Z={2|W1|2=3|W4|2 and |W2|2=0 and |W3|2=0}S.Z=\{2|W_{1}|^{2}=3|W_{4}|^{2}\text{ and }|W_{2}|^{2}=0\text{ and }|W_{3}|^{2}=0\}\subset S.

With respect to the complex structure on SS induced by the JJ-holomorphic map SGr2+(TS4)S\to\text{Gr}_{2}^{+}(TS^{4}), one can compute that

¯W1\displaystyle\overline{\partial}W_{1} =W2W¯4σ¯\displaystyle=W_{2}\overline{W}_{4}\,\overline{\sigma} ¯W3\displaystyle\overline{\partial}W_{3} =0\displaystyle=0
¯W2\displaystyle\overline{\partial}W_{2} =0\displaystyle=0 ¯W4\displaystyle\overline{\partial}W_{4} =W¯1W2σ¯\displaystyle=\overline{W}_{1}W_{2}\,\overline{\sigma}

In particular, W2W_{2} and W3W_{3} are holomorphic. If W2W_{2} is not identically zero, then its zero set is discrete, and hence ZZ is discrete. The same reasoning applies to W3.W_{3}. If both W2W_{2} and W3W_{3} are identically zero, then W1W_{1} and W4W_{4} are holomorphic, and the set ZZ is the vanishing locus of a real analytic function. Defining S=SZS^{\circ}=S\setminus Z, we see that the open set SS^{\circ} is either dense or empty.

If SS^{\circ} is empty, we have 2|W1|2=3|W4|22|W_{1}|^{2}=3|W_{4}|^{2} and |W2|=|W3|=0|W_{2}|=|W_{3}|=0 on S,S, and hence by (3.8), |W1|2=3/5\left\lvert W_{1}\right\rvert^{2}=3/5 and |W4|2=2/5\left\lvert W_{4}\right\rvert^{2}=2/5 on S.S. Define a subbundle 𝒢(S)𝒢(S)\mathcal{G}^{\prime}(S)\subset\mathcal{G}(S) by the condition W1=3/5,W4=2/5.W_{1}=\sqrt{3/5},W_{4}=\sqrt{2/5}. By (3.6), on this subbundle, ω1==ω7=0,\omega_{{1}}=\ldots=\omega_{{7}}=0, and the Maurer-Cartan form of SO(5)\mathrm{SO}(5) restricts to be

μ=[03γ33γ2003γ30γ1γ3γ23γ2γ10γ2γ30γ3γ202γ10γ2γ32γ10].\mu=\left[\begin{array}[]{ccccc}0&-\sqrt{3}\gamma_{{3}}&\sqrt{3}\gamma_{{2}}&0&0\\ \sqrt{3}\gamma_{{3}}&0&-\gamma_{{1}}&-\gamma_{{3}}&\gamma_{{2}}\\ -\sqrt{3}\gamma_{{2}}&\gamma_{{1}}&0&-\gamma_{{2}}&-\gamma_{{3}}\\ 0&\gamma_{{3}}&\gamma_{{2}}&0&-2\gamma_{{1}}\\ 0&-\gamma_{{2}}&\gamma_{{3}}&2\gamma_{{1}}&0\end{array}\right].

Thus, SS is the Gauss lift of a Veronese surface to Gr2+(TS4).\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right). This proves statement (2). ∎

Corollary 3.5.

Ruled associative submanifolds of BB exist locally and depend on 6 functions of 1 variable.

Remark 3.6.

Theorem 3.4 may be thought of as an analogue of theorems of Bryant [Bry06] and Fox [Fox2007ConesPlanes, Fox2008Cayley] characterising the ruled submanifolds under consideration as pseudo-holomorphic curves in the respective spaces of rulings.

Remark 3.7.

For a JJ-holomorphic curve in Gr2+(TS4)\text{Gr}_{2}^{+}(TS^{4}) we may think of the locus SSS\setminus S^{\circ} as the set of points where SS osculates to second order with the lift of a Veronese surface. In light of the fact that the 𝒞\mathcal{C}-ruled associative submanifold associated to SS is defined as the set of Veronese surfaces sharing first order contact with S,S, it is not surprising that issues occur at SS.S\setminus S^{\circ}. A similar phenomenon occurs in the theory of curves in the plane: if a plane curve has a vertex (a point where the derivative of its curvature function is zero), then its evolute (the curve traced out by the centres of the osculating circles) has a cusp.

From the proof of Theorem 3.4, the ruled associative corresponding to SS^{\circ} is given by the image of the natural map 𝒢(S)B\mathcal{G}(S^{\circ})\to B. However, the locus on 𝒢(S)\mathcal{G}(S) where the functions 2W16W4,W2,W32W_{1}-\sqrt{6}W_{4},W_{2},W_{3} do not simultaneously vanish is strictly larger than 𝒢(S)\mathcal{G}(S^{\circ}): if pSSp\in S\setminus S^{\circ} then the locus in the fibre 𝒢(S)p\mathcal{G}(S)_{p} with 2W16W4=0,W2=0,W3=02W_{1}-\sqrt{6}W_{4}=0,W_{2}=0,W_{3}=0 has positive codimension. Thus, the image of the map 𝒢(S){2W16W4=0,W2=0,W3=0}B\mathcal{G}(S)\setminus\left\{2W_{1}-\sqrt{6}W_{4}=0,W_{2}=0,W_{3}=0\right\}\to B is an associative submanifold extending the ruled associative corresponding to S.S^{\circ}.

We now proceed to study the JJ-holomorphic curves in Gr2+(TS4)\text{Gr}_{2}^{+}(TS^{4}). The structure equations of Gr2+(TS4)\text{Gr}_{2}^{+}(TS^{4}) written in terms of the basis ζi\zeta_{i} defined in the proof of Theorem 3.4 are

(3.9) dζ1\displaystyle d\zeta_{1} =i(ρ1ρ2)ζ1+ζ2ζ4¯+ζ2¯ζ3¯,\displaystyle=-i\left(\rho_{1}-\rho_{2}\right)\wedge\zeta_{1}+\zeta_{2}\wedge\overline{\zeta_{4}}+\overline{\zeta_{2}}\wedge\overline{\zeta_{3}}, dρ1\displaystyle d\rho_{1} =i2(ζ1ζ1¯+ζ2ζ2¯2ζ3ζ3¯),\displaystyle=-\tfrac{i}{2}\left(\zeta_{1}\wedge\overline{\zeta_{1}}+\zeta_{2}\wedge\overline{\zeta_{2}}-2\zeta_{3}\wedge\overline{\zeta_{3}}\right),
dζ2\displaystyle d\zeta_{2} =i(ρ1+ρ2)ζ2ζ1ζ4+ζ3¯ζ1¯,\displaystyle=-i\left(\rho_{1}+\rho_{2}\right)\wedge\zeta_{2}-\zeta_{1}\wedge{\zeta_{4}}+\overline{\zeta_{3}}\wedge\overline{\zeta_{1}}, dρ2\displaystyle d\rho_{2} =i2(ζ1ζ1¯+ζ2ζ2¯+2ζ4ζ4¯),\displaystyle=-\tfrac{i}{2}\left(-\zeta_{1}\wedge\overline{\zeta_{1}}+\zeta_{2}\wedge\overline{\zeta_{2}}+2\zeta_{4}\wedge\overline{\zeta_{4}}\right),
dζ3\displaystyle d\zeta_{3} =2iρ1ζ3+ζ1¯ζ2¯,\displaystyle=2i\rho_{1}\wedge\zeta_{3}+\overline{\zeta_{1}}\wedge\overline{\zeta_{2}},
dζ4\displaystyle d\zeta_{4} =2iρ2ζ4+ζ1¯ζ2,\displaystyle=-2i\rho_{2}\wedge\zeta_{4}+\overline{\zeta_{1}}\wedge{\zeta_{2}},

where ρ1=12(μ23+μ45),ρ2=12(μ23μ45)\rho_{1}=\tfrac{1}{2}\left(\mu_{23}+\mu_{45}\right),\rho_{2}=-\tfrac{1}{2}\left(\mu_{23}-\mu_{45}\right) are connection forms for the T2\mathrm{T}^{2}-structure on SO(5)/T2.\mathrm{SO}(5)/\mathrm{T}^{2}.

Remark 3.8.

The space SO(5)/T2Gr2+(TS4)\mathrm{SO}(5)/\mathrm{T}^{2}\cong\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right) carries two tautological 2\mathbb{R}^{2}-bundles, corresponding to the projections

Gr2+(TS4)(p,E)EGr2(5),\displaystyle\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right)\ni\left(p,E\right)\mapsto E\in\mathrm{Gr}_{2}(\mathbb{R}^{5}),
Gr2+(TS4)(p,E)(span(p)E)Gr2(5).\displaystyle\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right)\ni\left(p,E\right)\mapsto\left(\textrm{span}(p)\oplus E\right)^{\perp}\in\mathrm{Gr}_{2}(\mathbb{R}^{5}).

Let P1P_{1} and P2P_{2} denote the associated circle bundles. The forms ρ1+ρ2,ρ1ρ2\rho_{1}+\rho_{2},\rho_{1}-\rho_{2} are connection forms for P1,P2P_{1},P_{2} respectively. If SGr2+(TS4)S\to\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right) is a JJ-holomorphic curve, then one sees from the proof of Theorem 3.4 that the 𝒞\mathcal{C}-ruled associative submanifold NN corresponding to SS is topologically the total space of the circle subbundle of the pullback of P1×Gr2+(TS4)P2Gr2+(TS4)P_{1}\times_{\text{Gr}_{2}^{+}(TS^{4})}P_{2}\to\text{Gr}_{2}^{+}(TS^{4}) to SS with connection form ρ1+3ρ2.-\rho_{1}+3\rho_{2}.

It follows from the structure equations (3.9) that the subspace of 𝔰𝔬(5)\mathfrak{so}(5) spanned by the dual vectors to ζ4,ζ4¯,ρ1,ρ2\zeta_{4},\overline{\zeta_{4}},\rho_{1},\rho_{2} defines a subalgebra isomorphic to 𝔲(2),\mathfrak{u}(2), which exponentiates to a subgroup U(2)SO(5)\mathrm{U}(2)\subset\mathrm{SO}(5). The forms ζ1,ζ2,ζ3\zeta_{1},\zeta_{2},\zeta_{3} are semi-basic for the projection SO(5)SO(5)/U(2)\mathrm{SO}(5)\to\mathrm{SO}(5)/\mathrm{U}(2). From the structure equations (3.9) we see that the forms

i2(ζ1ζ1¯+ζ2ζ2¯+ζ3ζ3¯)andζ1ζ2ζ3\tfrac{i}{2}\left(\zeta_{1}\wedge\overline{\zeta_{1}}+\zeta_{2}\wedge\overline{\zeta_{2}}+\zeta_{3}\wedge\overline{\zeta_{3}}\right)\>\>\>\text{and}\>\>\>\zeta_{1}\wedge\zeta_{2}\wedge\zeta_{3}

define an SO(5)\mathrm{SO}(5)-invariant nearly Kähler structure on SO(5)/U(2).\mathrm{SO}(5)/\mathrm{U}(2). In fact, SO(5)/U(2)\mathrm{SO}(5)/\mathrm{U}(2) is diffeomorphic to 3,\mathbb{CP}^{3}, and the nearly Kähler structure just described is exactly the well-known homogeneous nearly Kähler structure arising from the twistor fibration 3S4\mathbb{CP}^{3}\to S^{4}. Let JNKJ_{\text{NK}} denote the almost complex structure associated to this nearly Kähler structure on SO(5)/U(2).\mathrm{SO}(5)/\mathrm{U}(2).

The (1,0)(1,0)-forms on (3,JNK)(\mathbb{CP}^{3},J_{\text{NK}}) are exactly the 1-forms whose pullbacks to SO(5)\mathrm{SO}(5) are linear combinations of ζ1,ζ2,ζ3\zeta_{1},\zeta_{2},\zeta_{3}. It follows that the projection of a JJ-holomorphic curve in Gr2+(TS4)\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right) is a JNKJ_{\text{NK}}-holomorphic curve in 3.\mathbb{CP}^{3}. The next proposition provides a converse to this construction.

Proposition 3.9.

Any JNKJ_{\text{NK}}-holomorphic curve in 3\mathbb{CP}^{3} has a unique lift to a JJ-holomorphic curve in Gr2+(TS4)\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right) satisfying ζ2=0.\zeta_{2}=0.

Proof.

The isotropy representation of 3SO(5)/U(2)\mathbb{CP}^{3}\cong\mathrm{SO}(5)/\mathrm{U}(2) splits the cotangent space T3T^{*}\mathbb{CP}^{3} into a direct sum of bundles

T3=𝒱,T^{*}\mathbb{CP}^{3}=\mathcal{H}^{*}\oplus\mathcal{V}^{*},

where the pullback of \mathcal{H}^{*} to SO(5)\mathrm{SO}(5) is spanned by ζ1,ζ2,\zeta_{1},\zeta_{2}, and the pullback of 𝒱\mathcal{V}^{*} is spanned by ζ3.\zeta_{3}. The bundle \mathcal{H} is modeled on the U(2)\mathrm{U}(2)-representation 2\mathbb{C}^{2}.

Let SS be a JNKJ_{\text{NK}}-holomorphic curve in 3.\mathbb{CP}^{3}. Since U(2)\mathrm{U}(2) acts transitively on the complex lines in 2,\mathbb{C}^{2}, we may adapt frames so that ζ2=0\zeta_{2}=0 on SS. Let (S)\mathcal{E}(S) denote the bundle of frames adapted in this way. The structure equations (3.9) then imply that ζ1ζ4=0\zeta_{1}\wedge\zeta_{4}=0 on (S)\mathcal{E}(S). The map (S)Gr2+(TS4)\mathcal{E}(S)\to\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right) given by composing the natural map (S)SO(5)\mathcal{E}(S)\to\mathrm{SO}(5) with the coset projection λ:SO(5)Gr2+(TS4)\lambda:\mathrm{SO}(5)\to\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right) does not depend on the choice of coframe, so provides a JJ-holomorphic lift SGr2+(TS4)S\to\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right). ∎

The JNKJ_{\text{NK}}-holomorphic curves in 3\mathbb{CP}^{3} have been studied by Xu [Xu10]. There are two classes of curves of particular interest. A JNKJ_{\text{NK}}-holomorphic curve in 3\mathbb{CP}^{3} is called horizontal if it is horizontal for the twistor projection 31S4,\mathbb{CP}^{3}\to\mathbb{HP}^{1}\cong S^{4}, i.e. if ζ3=0\zeta_{3}=0 on the curve. A JNKJ_{\text{NK}}-holomorphic curve in 3\mathbb{CP}^{3} is called null-torsion if, after adapting frames so that ζ2=0\zeta_{2}=0, one has ζ4=0\zeta_{4}=0 on the adapted coframe bundle.

By work of Bryant [Bry82], the horizontal curves in 3\mathbb{CP}^{3} are the twistor lifts of superminimal surfaces in S4S^{4} of positive spin. Xu shows that the the null-torsion curves in 3\mathbb{CP}^{3} are the lifts of superminimal surfaces in S4S^{4} of negative spin (note that the antipodal map in S4S^{4} maps superminimal surfaces of positive spin to ones of negative spin and vice versa). In both cases the resulting JJ-holomorphic curve in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) is simply the Gauss lift of the original surface in S4.S^{4}. Superminimal surfaces in S4S^{4} admit a Weierstrass formula [Bry82], and using this formula it is possible in principle to write down a formula giving the associated ruled associative submanifolds of BB for both of these cases.

Theorem 3.10.

There exist infinitely many topological types of compact (immersed, generically 1-1) 𝒞\mathcal{C}-ruled associative submanifolds of B.B.

Proof.

Bryant has proven [Bry82] that every compact Riemann surface may be conformally immersed as a superminimal surface in S4S^{4} which is generically 1-1. By the work of Xu [Xu10] described above, any superminimal surface of negative spin in S4S^{4} gives rise to a null-torsion JNKJ_{\text{NK}}-holomorphic curve in 3,\mathbb{CP}^{3}, and from Proposition 3.9 this further lifts to a JJ-holomorphic curve SS in SO(5)/T2\mathrm{SO}(5)/\mathrm{T}^{2}.

On such a lift SS we have ζ2=ζ4=0,\zeta_{2}=\zeta_{4}=0, but ζ10,\zeta_{1}\neq 0, since the induced metric on the superminimal surface in S4S^{4} is given by ζ1ζ1¯.\zeta_{1}\circ\overline{\zeta_{1}}. Thus we have S=S,S^{\circ}=S, and Theorem 3.4 associates to SS a 𝒞\mathcal{C}-ruled associative submanifold NN of B.B. The associative submanifold NN is topologically a circle bundle over S,S, and so Bryant’s result provides infinitely many topological types of such associative submanifolds. ∎

Remark 3.11.

If one begins with an embedded superminimal surface in S4S^{4} then the lift SGr2+(TS4)S\to\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right) described in the proof will also be embedded. The non-embedded points of the associative submanifold NN can then only arise from intersections in Gr2+(TS4)\mathrm{Gr}_{2}^{+}\!\left(TS^{4}\right) of the lift SS with lifts of the Veronese surfaces comprising NN and one expects that in the generic case the set of such intersections is empty.

4. Associative submanifolds with special Gauss map

Let NBN\to B be an associative submanifold. The Gauss map of NN is the map

N\displaystyle N Grass(B)\displaystyle\to\text{Gr}_{\textup{ass}}\!\left(B\right)
p\displaystyle p TpN\displaystyle\mapsto T_{p}N

where Grass(B)\text{Gr}_{\textup{ass}}\left(B\right) denotes the Grassmann bundle of associative 3-planes over BB. The fibres of Grass(B)B\text{Gr}_{\textup{ass}}\!\left(B\right)\to B are diffeomorphic to the 88-dimensional homogeneous space G2/SO(4)Grass(7)\mathrm{G}_{2}/\mathrm{SO}(4)\cong\text{Gr}_{\textup{ass}}\!\left(\mathbb{R}^{7}\right).

Since BB is a homogeneous space, we may translate each tangent plane TpNT_{p}N by an ambient motion gSO(5)g\in\mathrm{SO}(5) to lie in a fixed TqB7T_{q}B\simeq\mathbb{R}^{7}, and thereby obtain a well-defined map

N\displaystyle N Grass(7)/SO(3)\displaystyle\to\text{Gr}_{\textup{ass}}\!\left(\mathbb{R}^{7}\right)/\mathrm{SO}(3)
p\displaystyle p SO(3)[g1TpN]\displaystyle\mapsto\mathrm{SO}(3)\cdot[g_{*}^{-1}T_{p}N]

Here, Grass(7)/SO(3)\text{Gr}_{\textup{ass}}\!\left(\mathbb{R}^{7}\right)/\mathrm{SO}(3) denotes the orbit space for the action of SO(3)\mathrm{SO}(3) on Grass(7)\text{Gr}_{\textup{ass}}\!\left(\mathbb{R}^{7}\right) that is induced by the SO(3)\mathrm{SO}(3)-action on 7\mathbb{R}^{7}. One difficulty in the study of associative submanifolds of the Berger space is the complicated nature of the SO(3)\mathrm{SO}(3)-action on Grass(7)\text{Gr}_{\text{ass}}(\mathbb{R}^{7}). While the generic SO(3)\text{SO}(3)-orbit has trivial stabiliser, there also exist both singular orbits (whose stabiliser is a continuous group) and exceptional orbits (whose stabiliser is a finite group).

In this section, we shall classify the associative submanifolds of BB with Gauss map of special type, i.e., those associative submanifolds NBN\subset B all of whose tangent spaces TpNT_{p}N have non-trivial SO(3)\mathrm{SO}(3)-stabiliser. To that end, the main technical tool we will use is the following classical result, known as Cartan’s Theorem on Maps into Lie Groups:

Theorem 4.1.

[IvLaSecond, EDSBook] Let G\mathrm{G} be a Lie group with Lie algebra 𝔤\mathfrak{g}, and let ωΩ1(G;𝔤)\omega\in\Omega^{1}(\mathrm{G};\mathfrak{g}) be the Maurer-Cartan form on G\mathrm{G}. Let PP be a connected, simply-connected manifold admitting a 11-form μΩ1(P;𝔤)\mu\in\Omega^{1}(P;\mathfrak{g}) satisfying dμ=μμd\mu=-\mu\wedge\mu. Then there exists a map F:PGF\colon P\to\mathrm{G}, unique up to composition with left-translation in G\mathrm{G}, such that Fω=μF^{*}\omega=\mu.

4.1. Associative stabilisers in SO(3)\mathrm{SO}(3)

As the first step, we classify the subgroups of SO(3)\mathrm{SO}(3) that stabilise an associative plane. The classification of subgroups of SO(3)\mathrm{SO}(3) up to conjugacy is well-known: the subgroups are

O(2),SO(2),A5,S4,A4,Dn,n.\mathrm{O}(2),\ \mathrm{SO}(2),\ \mathrm{A}_{5},\ \mathrm{S}_{4},\ \mathrm{A}_{4},\ \mathrm{D}_{n},\ \mathbb{Z}_{n}.

Let G\mathrm{G} be a group on this list. If G\mathrm{G} stabilises an associative 3-plane, then this 3-plane must be a three-dimensional subrepresentation of 7,\mathbb{R}^{7}, where 7\mathbb{R}^{7} is viewed as a G\mathrm{G}-representation by restriction of the SO(3)\mathrm{SO}(3) representation. For each group G\mathrm{G} on the list we will determine the fixed associative 3-planes by first finding all three dimensional G\mathrm{G}-subrepresentations of 7\mathbb{R}^{7} and checking which are associative.

For our calculations, we identify the irreducible SO(3)\mathrm{SO}(3)-representation 7\mathbb{R}^{7} with the space 3\mathcal{H}_{3} of harmonic cubic polynomials in three variables x,y,x,y, and zz. We use the following basis of 3\mathcal{H}_{3}:

e1=15x\displaystyle e_{1}=\tfrac{1}{5}x (2x23y23z2)\displaystyle\left(2x^{2}-3y^{2}-3z^{2}\right)
e2=610z(4x2y2z2),\displaystyle e_{2}=\tfrac{\sqrt{6}}{10}z\left(4x^{2}-y^{2}-z^{2}\right),\>\>\> e3=610y(4x2y2z2),\displaystyle e_{3}=\tfrac{\sqrt{6}}{10}y\left(4x^{2}-y^{2}-z^{2}\right),
e4=2155xyz,\displaystyle e_{4}=\tfrac{2\sqrt{15}}{5}xyz,\>\>\> e5=155x(y2z2),\displaystyle e_{5}=\tfrac{\sqrt{15}}{5}x\left(y^{2}-z^{2}\right),
e6=1010z(3y2z2),\displaystyle e_{6}=\tfrac{\sqrt{10}}{10}z\left(3y^{2}-z^{2}\right),\>\>\> e7=1010y(y23z2),\displaystyle e_{7}=\tfrac{\sqrt{10}}{10}y\left(y^{2}-3z^{2}\right),

which agrees with our conventions for ω1,,ω7\omega_{1},\ldots,\omega_{7} (2.16).

4.1.1. Continuous stabiliser

Let G\mathrm{G} be a continuous subgroup of SO(3).\mathrm{SO}(3). The identity component of G\mathrm{G} is a closed 1-dimensional subgroup, and hence is conjugate to the group SO(2)SO(3)\mathrm{SO}(2)\subset\mathrm{SO}(3) consisting of the rotations about the xx-axis. Let RαSO(2)R_{\alpha}\in\mathrm{SO}(2) be the element representing rotation of an angle α\alpha about the xx-axis. Then RαR_{\alpha} fixes span(e1),\text{span}(e_{1}), acts as rotation by α\alpha on span(e2,e3),\text{span}(e_{2},e_{3}), acts as rotation by 2α2\alpha on span(e4,e5),\text{span}(e_{4},e_{5}), and acts as rotation by 3α3\alpha on span(e6,e7).\text{span}(e_{6},e_{7}). Thus, there are exactly three 33-dimensional subrepresentations of 7\mathbb{R}^{7} under this action of SO(2)\mathrm{SO}(2):

A123=span(e1,e2,e3),\displaystyle A_{123}=\text{span}(e_{1},e_{2},e_{3}), A145=span(e1,e4,e5),\displaystyle A_{145}=\text{span}(e_{1},e_{4},e_{5}), A167=span(e1,e7,e6).\displaystyle A_{167}=\text{span}(e_{1},e_{7},e_{6}).

It is easy to check that each of these spaces are preserved by the action of O(2)\mathrm{O}(2), and are in fact associative 3-planes.

Proposition 4.2.

The SO(3)\mathrm{SO}(3)-stabiliser of an associative 3-plane EGrass(3)E\in\mathrm{Gr}_{\mathrm{ass}}\!\left(\mathcal{H}_{3}\right) is isomorphic to a continuous subgroup of SO(3)\mathrm{SO}(3) if and only if EE lies in the SO(3)\mathrm{SO}(3)-orbit of one of the following associative 3-planes.

  1. (1)

    The associative 3-plane A123A_{123} with stabiliser O(2).\mathrm{O}(2).

  2. (2)

    The associative 3-plane A145A_{145} with stabiliser O(2).\mathrm{O}(2).

  3. (3)

    The associative 3-plane A167A_{167} with stabiliser O(2).\mathrm{O}(2).

Definition 4.3.

Let 𝒪123,𝒪145,\mathcal{O}_{123},\mathcal{O}_{145}, and 𝒪167\mathcal{O}_{167} denote the SO(3)\mathrm{SO}(3)-orbits of span(e1,e2,e3),span(e1,e4,e5),\text{span}(e_{1},e_{2},e_{3}),\text{span}(e_{1},e_{4},e_{5}), and span(e1,e6,e7)\text{span}(e_{1},e_{6},e_{7}) respectively in the Grassmannian of 3-planes in 7.\mathbb{R}^{7}.

4.1.2. Icosahedral stabiliser

Let IcoA5\mathrm{Ico}\cong A_{5} denote the subgroup of SO(3)\mathrm{SO}(3) generated by

[100010001],[001100010],12[1τ1ττ1τ11τ1τ],\displaystyle\left[\begin{array}[]{ccc}-1&0&0\\ 0&-1&0\\ 0&0&1\end{array}\right],\left[\begin{array}[]{ccc}0&0&1\\ 1&0&0\\ 0&1&0\end{array}\right],\frac{1}{2}\left[\begin{array}[]{ccc}1&-\tau&\tfrac{1}{\tau}\\ \tau&\tfrac{1}{\tau}&-1\\ \tfrac{1}{\tau}&1&\tau\end{array}\right],

where τ=1+52.\tau=\tfrac{1+\sqrt{5}}{2}. The group Ico\mathrm{Ico} is the symmetry group of the icosahedron with vertices

(4.1) (0,±τ,±1),(±1,0,±τ),(±τ,±1,0).(0,\pm\tau,\pm 1),\>\>\>(\pm 1,0,\pm\tau),\>\>\>(\pm\tau,\pm 1,0).

A computation yields that the irreducible decomposition of 7\mathbb{R}^{7} under the action of Ico\mathrm{Ico} is given by

7=AIcoC,\displaystyle\mathbb{R}^{7}=A_{\mathrm{Ico}}\oplus C,

where

AIco\displaystyle A_{\mathrm{Ico}} =span(e1+3e5,3(1+5)e2(3+5)e6,3(1+5)e3(3+5)e7),\displaystyle=\text{span}\left(e_{1}+\sqrt{3}e_{5},\sqrt{3}\left(-1+\sqrt{5}\right)e_{2}-\left(3+\sqrt{5}\right)e_{6},\sqrt{3}\left(1+\sqrt{5}\right)e_{3}-\left(-3+\sqrt{5}\right)e_{7}\right),
C\displaystyle C =span(e4,3e1e5,(3+5)e2+3(1+5)e6,(3+5)e3+3(1+5)e7).\displaystyle=\text{span}\left(e_{4},\sqrt{3}e_{1}-e_{5},\left(3+\sqrt{5}\right)e_{2}+\sqrt{3}\left(-1+\sqrt{5}\right)e_{6},\left(-3+\sqrt{5}\right)e_{3}+\sqrt{3}\left(1+\sqrt{5}\right)e_{7}\right).

The 3-plane AIcoA_{\mathrm{Ico}} is associative. We denote the SO(3)\mathrm{SO}(3)-orbit of AIcoA_{\mathrm{Ico}} in the Grassmannian of 3-planes by 𝒪Ico.\mathcal{O}_{\mathrm{Ico}}. Note that CC is equal to the space of cubics vanishing on the vertices (4.1) of the icosahedron [Hit09].

4.1.3. Octahedral stabiliser

Let OctS4\mathrm{Oct}\cong S_{4} denote the subgroup of SO(3)\mathrm{SO}(3) generated by

[010100001],[001100010],[100001010],\displaystyle\left[\begin{array}[]{ccc}0&-1&0\\ 1&0&0\\ 0&0&1\end{array}\right],\left[\begin{array}[]{ccc}0&0&1\\ 1&0&0\\ 0&1&0\end{array}\right],\left[\begin{array}[]{ccc}-1&0&0\\ 0&0&1\\ 0&1&0\end{array}\right],

the symmetry group of the octahedron with vertices

(4.2) (±1,0,0),(0,±1,0),(0,0,±1).(\pm 1,0,0),\>\>\>(0,\pm 1,0),\>\>\>(0,0,\pm 1).

A computation yields that the irreducible decomposition of 7\mathbb{R}^{7} under the action of Oct\mathrm{Oct} is given by

(4.3) 7=AOctspan(e4)W,\displaystyle\mathbb{R}^{7}=A_{\mathrm{Oct}}\oplus\text{span}\left(e_{4}\right)\oplus W,

where

AOct=span(e1,3e2+5e6,3e35e7),\displaystyle A_{\mathrm{Oct}}=\text{span}\left(e_{1},\sqrt{3}e_{2}+\sqrt{5}e_{6},\sqrt{3}e_{3}-\sqrt{5}e_{7}\right),
W=span(e5,5e23e6,5e3+3e7).\displaystyle W=\text{span}\left(e_{5},\sqrt{5}e_{2}-\sqrt{3}e_{6},\sqrt{5}e_{3}+\sqrt{3}e_{7}\right).

The representations AOctA_{\mathrm{Oct}} and WW of Oct\mathrm{Oct} are not isomorphic, so a three dimensional subrepresentation of 7\mathbb{R}^{7} is either AOctA_{\mathrm{Oct}} or W.W. The 3-plane AOctA_{\mathrm{Oct}} is associative, while the 3-plane WW is not. We denote the SO(3)\mathrm{SO}(3)-orbit of AOctA_{\mathrm{Oct}} in the Grassmannian of 3-planes by 𝒪Oct.\mathcal{O}_{\mathrm{Oct}}. Note that AOctA_{\mathrm{Oct}} is the 3-plane spanned by the harmonic parts of the perfect cubes x3,y3,z3.x^{3},y^{3},z^{3}.

4.1.4. Tetrahedral stabiliser

The tetrahedral group TetA4\mathrm{Tet}\cong A_{4} is the subgroup of SO(3)\mathrm{SO}(3) generated by

[100010001],[001100010].\displaystyle\left[\begin{array}[]{ccc}-1&0&0\\ 0&-1&0\\ 0&0&1\end{array}\right],\left[\begin{array}[]{ccc}0&0&1\\ 1&0&0\\ 0&1&0\end{array}\right].

Since Tet\mathrm{Tet} is a subgroup of both Ico\mathrm{Ico} and Oct,\mathrm{Oct}, the associative 3-planes AIcoA_{\mathrm{Ico}} and AOctA_{\mathrm{Oct}} are Tet\mathrm{Tet}-invariant. The irreducible decomposition of 7\mathbb{R}^{7} under Tet\mathrm{Tet} is the same as the decomposition (4.3) under Oct.\mathrm{Oct}. The spaces AOctA_{\mathrm{Oct}} and WW are isomorphic as Tet\mathrm{Tet} representations, and thus any 3-plane invariant under Tet\mathrm{Tet} is of the form

Pθ=span\displaystyle P_{\theta}=\text{span} (cosθe1+sinθe5,cosθ(3e2+5e6)+sinθ(5e23e6),\displaystyle\left(\cos\theta e_{1}+\sin\theta e_{5},\cos\theta\left(\sqrt{3}e_{2}+\sqrt{5}e_{6}\right)+\sin\theta\left(\sqrt{5}e_{2}-\sqrt{3}e_{6}\right),\right.
cosθ(3e35e7)+sinθ(5e3+3e7)).\displaystyle\left.\cos\theta\left(\sqrt{3}e_{3}-\sqrt{5}e_{7}\right)+\sin\theta\left(\sqrt{5}e_{3}+\sqrt{3}e_{7}\right)\right).

Calculation shows that the 3-plane PθP_{\theta} is associative if and only if θ{0,2π/3,4π/3}.\theta\in\{0,2\pi/3,4\pi/3\}. When θ=0,\theta=0, P0=AOctP_{0}=A_{\mathrm{Oct}} and when θ=2π/3,4π/3\theta=2\pi/3,4\pi/3 we find that PθP_{\theta} lies in the orbit 𝒪Ico.\mathcal{O}_{\mathrm{Ico}}. Thus, there are no associative 3-planes in 3\mathcal{H}_{3} with stabiliser exactly equal to Tet.\mathrm{Tet}.

Proposition 4.4.

The SO(3)\mathrm{SO}(3)-stabiliser of an associative 3-plane EGrass(3)E\in\mathrm{Gr}_{\mathrm{ass}}\left(\mathcal{H}_{3}\right) is isomorphic to an irreducibly acting subgroup of SO(3)\mathrm{SO}(3) if and only if EE lies in the SO(3)\mathrm{SO}(3)-orbit of one of the following associative 3-planes.

  1. (1)

    The associative 3-plane AIcoA_{\mathrm{Ico}} with stabiliser Ico.\mathrm{Ico}.

  2. (2)

    The associative 3-plane AOctA_{\mathrm{Oct}} with stabiliser Oct.\mathrm{Oct}.

4.1.5. Dihedral and cyclic stabiliser

Every cyclic subgroup of SO(3)\mathrm{SO}(3) of order nn is conjugate to the group nSO(2)\mathbb{Z}_{n}\subset\mathrm{SO}(2) generated by the element R2π/nR_{2\pi/n} representing rotation of 2π/n2\pi/n about the xx-axis. Under the irreducible representation SO(3)SO(7)\mathrm{SO}(3)\to\mathrm{SO}(7), R2π/nR_{2\pi/n} fixes e1,e_{1}, acts as rotation by 2π/n2\pi/n on span(e2,e3),\text{span}(e_{2},e_{3}), acts as rotation by 4π/n4\pi/n on span(e4,e5),\text{span}(e_{4},e_{5}), and acts as rotation by 6π/n6\pi/n on span(e6,e7).\text{span}(e_{6},e_{7}). The dihedral group DnSO(3)\mathrm{D}_{n}\subset\mathrm{SO}(3) is generated by the elements of n\mathbb{Z}_{n} together with the reflection C=diag(1,1,1).C=\mathrm{diag}\left(-1,-1,1\right).

We restrict attention to the cases n>2,n>2, as the description of the associative planes stabilised by 2\mathbb{Z}_{2} and D2\mathrm{D}_{2} is more complicated than in the other cases.

If n>6,n>6, the irreducible decomposition under the action of n\mathbb{Z}_{n} is

(4.4) 7=e1span(e2,e3)span(e4,e5)span(e6,e7),\mathbb{R}^{7}=\mathbb{R}e_{1}\oplus\textrm{span}\left(e_{2},e_{3}\right)\oplus\textrm{span}\left(e_{4},e_{5}\right)\oplus\textrm{span}\left(e_{6},e_{7}\right),

with the summands mutually non-isomorphic. It follows that any 3-plane fixed by the action of n\mathbb{Z}_{n} for n>6n>6 is equal to one of the associative 3-planes fixed by O(2)\mathrm{O}(2) described in §4.1.1.

If n=6,n=6, the summand span(e6,e7)\textrm{span}(e_{6},e_{7}) in the decomposition (4.4) reduces further to e6e7,\mathbb{R}e_{6}\oplus\mathbb{R}e_{7}, while the other summands remain irreducible and are mutually non-isomorphic. The generator Rπ/3R_{\pi/3} acts trivially on e1\mathbb{R}\cdot e_{1} and acts by 1-1 on e6\mathbb{R}e_{6} and e7.\mathbb{R}e_{7}. Thus, a 3-plane fixed by 6\mathbb{Z}_{6} must be equal to one of the associative 3-planes fixed by O(2)\mathrm{O}(2) described in §4.1.1, or one of the 3-planes

span(e2,e3,e6),span(e2,e3,e7),span(e4,e5,e6),span(e4,e5,e7).\textrm{span}(e_{2},e_{3},e_{6}),\>\>\>\textrm{span}(e_{2},e_{3},e_{7}),\>\>\>\textrm{span}(e_{4},e_{5},e_{6}),\>\>\>\textrm{span}(e_{4},e_{5},e_{7}).

Only the 3-planes fixed by O(2)\mathrm{O}(2) are associative.

If n=5,n=5, the decomposition (4.4) is irreducible, but the summands span(e4,e5)\textrm{span}\left(e_{4},e_{5}\right) and span(e6,e7)\textrm{span}\left(e_{6},e_{7}\right) are isomorphic as 5\mathbb{Z}_{5}-modules via the map (e4,e5)(e7,e6).(e_{4},e_{5})\mapsto(e_{7},e_{6}). Thus, a 3-plane fixed by the action of 5\mathbb{Z}_{5} must be equal to either span(e1,e2,e3)\textrm{span}(e_{1},e_{2},e_{3}) or of the form

P(5)(a,b)=span(e1,(a1+ia2)(e4+ie5)+(b1+ib2)(e6ie7)),P^{(5)}(a,b)=\mathrm{span}\left(e_{1},\left(a_{1}+ia_{2}\right)\left(e_{4}+ie_{5}\right)+\left(b_{1}+ib_{2}\right)\left(e_{6}-ie_{7}\right)\right),

for complex numbers a=a1+ia2,b=b1+ib2.a=a_{1}+ia_{2},b=b_{1}+ib_{2}. The 3-planes P(a,b)P(a,b) and P(e2ψa,e3ψb)P(e^{2\psi}a,e^{-3\psi}b) are SO(3)\mathrm{SO}(3)-equivalent, and simultaneously scaling aa and bb by a complex parameter does not change P(a,b).P(a,b). The element diag(1,1,1)SO(3)\mathrm{diag}(1,-1,-1)\in\mathrm{SO}(3) acts trivially on span(e4,e5),\mathrm{span}(e_{4},e_{5}), and by 1-1 on span(e6,e7).\mathrm{span}(e_{6},e_{7}). Thus, every 5\mathbb{Z}_{5}-invariant 3-plane is SO(3)\mathrm{SO}(3)-equivalent to a plane of the form

Q(5)(θ)=span(e1,cosθe4+sinθe7,cosθe5+sinθe6),Q^{(5)}({\theta})=\textrm{span}\left(e_{1},\cos\theta e_{4}+\sin\theta e_{7},\cos\theta e_{5}+\sin\theta e_{6}\right),

for 0θ<π.0\leq\theta<\pi. Calculation shows that all of these 3-planes are associative.

If n=4,n=4, the summand span(e4,e5)\textrm{span}(e_{4},e_{5}) in the decomposition (4.4) reduces further to e4e5.\mathbb{R}e_{4}\oplus\mathbb{R}e_{5}. The other summands are irreducible. The generator Rπ/2R_{\pi/2} acts trivially on e1\mathbb{R}e_{1} and acts by 1-1 on e4\mathbb{R}e_{4} and e5.\mathbb{R}e_{5}. The irreducible summands span(e2,e3)\textrm{span}(e_{2},e_{3}) and span(e6,e7)\textrm{span}(e_{6},e_{7}) are isomorphic as 4\mathbb{Z}_{4}-modules via the map (e2,e3)(e7,e6).(e_{2},e_{3})\mapsto(e_{7},e_{6}). Thus, by reasoning similar to the case n=5,n=5, a 3-plane fixed by the action of 4\mathbb{Z}_{4} must be equal to span(e1,e4,e5)\textrm{span}(e_{1},e_{4},e_{5}) or lie in the SO(3)\mathrm{SO}(3) orbit of one of the 3-planes

Q(4a)(θ)\displaystyle Q^{(4\textrm{a})}(\theta) =span(e1,cosθe2+sinθe7,cosθe3+sinθe6),\displaystyle=\textrm{span}\left(e_{1},\cos\theta\,e_{2}+\sin\theta\,e_{7},\cos\theta\,e_{3}+\sin\theta\,e_{6}\right),
Q(4b)(ψ,θ)\displaystyle Q^{(4\textrm{b})}\left(\psi,\theta\right) =span(cosψe4+sinψe5,cosθe2+sinθe7,cosθe3+sinθe6),\displaystyle=\textrm{span}\left(\cos\psi\,e_{4}+\sin\psi\,e_{5},\cos\theta\,e_{2}+\sin\theta\,e_{7},\cos\theta\,e_{3}+\sin\theta\,e_{6}\right),

for 0ψ,θ<π.0\leq\psi,\theta<\pi. Calculation shows that all of the 3-planes Q(4a)(θ)Q^{(4\textrm{a})}(\theta) are associative, but none of the planes Q(4b)(ψ,θ)Q^{(4\textrm{b})}\left(\psi,\theta\right) are.

If n=3,n=3, the summand span(e6,e7)\textrm{span}(e_{6},e_{7}) in the decomposition (4.4) reduces further to e6e7.\mathbb{R}e_{6}\oplus\mathbb{R}e_{7}. The other summands are irreducible. The irreducible summands span(e2,e3)\textrm{span}(e_{2},e_{3}) and span(e4,e5)\textrm{span}(e_{4},e_{5}) are isomorphic as 3\mathbb{Z}_{3}-modules via the map (e2,e3)(e5,e4)\left(e_{2},e_{3}\right)\mapsto\left(e_{5},e_{4}\right). The generator R2π/3R_{2\pi/3} acts trivially on e1,e6,\mathbb{R}e_{1},\mathbb{R}e_{6}, and e7.\mathbb{R}e_{7}. By similar reasoning to the previous two cases, a 3-plane fixed by the action of 3\mathbb{Z}_{3} must be equal to the associative 3-plane span(e1,e7,e6)\textrm{span}(e_{1},e_{7},e_{6}) with stabiliser O(2),\mathrm{O}(2), or one of the planes

Q(3)(θ,a)=span(a1e1+a6e6+a7e7,cosθe2+sinθe5,cosθe3+sinθe4),Q^{(3)}(\theta,a)=\textrm{span}\left(a_{1}e_{1}+a_{6}e_{6}+a_{7}e_{7},\cos\theta e_{2}+\sin\theta e_{5},\cos\theta e_{3}+\sin\theta e_{4}\right),

here a=(a1,a6,a7)a=(a_{1},a_{6},a_{7}) is an element of S2,S^{2}, and 0θ<2π.0\leq\theta<2\pi. Calculation shows that the 3-plane Q(3)(θ,a)Q^{(3)}(\theta,a) is associative if and only if (a1,a6,a7)=(cos2θ,sin2θ,0).(a_{1},a_{6},a_{7})=(\cos 2\theta,\sin 2\theta,0).

Proposition 4.5.

An associative 3-plane EGrass(3)E\in\mathrm{Gr}_{\mathrm{ass}}\left(\mathcal{H}_{3}\right) is stabilised by a cyclic or dihedral subgroup of SO(3)\mathrm{SO}(3) with n>2n>2 if and only if EE lies in the SO(3)\mathrm{SO}(3)-orbit of:

  1. (1)

    An associative 3-plane of the form

    Q(5)(θ)=span(e1,cosθe4+sinθe7,cosθe5+sinθe6),Q^{(5)}(\theta)=\mathrm{span}\left(e_{1},\cos\theta e_{4}+\sin\theta e_{7},\cos\theta e_{5}+\sin\theta e_{6}\right),

    with θ(0,π){arccos3/5,π/2},\theta\in\left(0,\pi\right)\setminus\left\{\arccos\sqrt{3/5},\pi/2\right\}, which has stabiliser 5.\mathbb{Z}_{5}.

  2. (2)

    An associative 3-plane of the form

    Q(4a)(θ)=span(e1,cosθe2+sinθe7,cosθe3+sinθe6),Q^{(4\textrm{a})}(\theta)=\mathrm{span}\left(e_{1},\cos\theta e_{2}+\sin\theta e_{7},\cos\theta e_{3}+\sin\theta e_{6}\right),

    with θ(0,π){arccos6/4,π/2},\theta\in\left(0,\pi\right)\setminus\left\{\arccos\sqrt{6}/4,\pi/2\right\}, which has stabiliser 4.\mathbb{Z}_{4}.

  3. (3)

    An associative 3-plane of the form

    Q(3)(θ)=span(cos2θe1+sin2θe6,cosθe2+sinθe5,cosθe3+sinθe4),Q^{(3)}(\theta)=\mathrm{span}\left(\cos 2\theta e_{1}+\sin 2\theta e_{6},\cos\theta e_{2}+\sin\theta e_{5},\cos\theta e_{3}+\sin\theta e_{4}\right),

    with θ(0,π){arccos6/3,π/2},\theta\in\left(0,\pi\right)\setminus\left\{\arccos\sqrt{6}/3,\pi/2\right\}, which has stabiliser 3.\mathbb{Z}_{3}.

Proof.

The bulk of the proof has been completed above. The only remaining task is to verify that the restrictions on θ\theta in each case ensure that the SO(3)\mathrm{SO}(3)-stabiliser of each member of the families is exactly equal to the claimed group. We leave this to the reader. ∎

4.2. Continuous stabiliser

In this section we classify the associative submanifolds of BB whose tangent space has SO(3)\mathrm{SO}(3)-stabiliser isomorphic to a continuous subgroup G.\mathrm{G}. By the results of §4.1, G=O(2)\mathrm{G}=\mathrm{O}(2) are there are three cases to consider: one for each of the orbits 𝒪123,𝒪145,\mathcal{O}_{123},\mathcal{O}_{145}, and 𝒪167.\mathcal{O}_{167}.

Remark 4.6.

The SO(3)\mathrm{SO}(3)-module 3\mathcal{H}_{3} endows 7\mathbb{R}^{7} with a natural SO(3)\mathrm{SO}(3)-structure, which may be viewed as the flat analogue of the SO(3)\mathrm{SO}(3)-structure on BB underlying the nearly parallel G2\mathrm{G}_{2}-structure φ.\varphi. Landsberg [LandsbergMin] has studied minimal submanifolds of 2n+1=n\mathbb{R}^{2n+1}=\mathcal{H}_{n} with Gauss map taking values in an orbit of SO(3)\mathrm{SO}(3) with continuous stabiliser. The results in this section may be thought of as a non-flat analogue of Landsberg’s work in the case n=3.n=3.

4.2.1. Case I

Let f:NBf:N\to B be an associative 3-fold whose Gauss map lies in 𝒪123\mathcal{O}_{123} for all pN.p\in N. Thus, we may adapt frames on NN so that ω4=ω5=ω6=ω7=0.\omega_{4}=\omega_{{5}}=\omega_{{6}}=\omega_{{7}}=0. Let 𝒫123(N)\mathcal{P}_{123}(N) denote the O(2)\mathrm{O}(2)-subbundle of fSO(5)f^{*}\mathrm{SO}(5) corresponding to this frame adaptation,

𝒫123(N)={(p,e)fSO(5)ω4=ω5=ω6=ω7=0}.\displaystyle\mathcal{P}_{123}(N)=\left\{\left(p,e\right)\in f^{*}\mathrm{SO}(5)\mid\omega_{4}=\omega_{{5}}=\omega_{{6}}=\omega_{{7}}=0\right\}.

On 𝒫123(N),\mathcal{P}_{123}(N), the forms ω1,ω2,ω3\omega_{1},\omega_{2},\omega_{3} are semi-basic, while the form γ1\gamma_{1} is a connection form. The equations

d[ω4ω5ω6ω7]=[0000]=102[0γ3γ20γ2γ3000000][ω1ω2ω3]\displaystyle d\left[\begin{array}[]{c}\omega_{4}\\ \omega_{5}\\ \omega_{6}\\ \omega_{7}\end{array}\right]=\left[\begin{array}[]{c}0\\ 0\\ 0\\ 0\end{array}\right]=-\frac{\sqrt{10}}{2}\left[\begin{array}[]{ccc}0&\gamma_{3}&-\gamma_{2}\\ 0&\gamma_{2}&\gamma_{3}\\ 0&0&0\\ 0&0&0\end{array}\right]\wedge\left[\begin{array}[]{c}\omega_{{1}}\\ \omega_{2}\\ \omega_{{3}}\end{array}\right]

imply that there exist functions a2a_{2} and a3a_{3} on 𝒫123(N)\mathcal{P}_{123}(N) with

γ2=16(a2ω2+a3ω3),γ3=16(a3ω2a2ω3).\gamma_{2}=\tfrac{1}{\sqrt{6}}\left(a_{2}\omega_{2}+a_{3}\omega_{3}\right),\>\>\>\gamma_{3}=\tfrac{1}{\sqrt{6}}\left(a_{3}\omega_{2}-a_{2}\omega_{3}\right).

The structure equations (2.46) and (2.53) restricted to 𝒫123(N)\mathcal{P}_{123}(N) imply

(4.5) dω1\displaystyle d\omega_{1} =(2a323)ω2ω3,\displaystyle=\left(2a_{3}-\tfrac{2}{3}\right)\omega_{2}\wedge\omega_{3},
dω2\displaystyle d\omega_{2} =γ1ω3a2ω1ω2+(a3+23)ω1ω3,\displaystyle=-\gamma_{1}\wedge\omega_{3}-a_{2}\omega_{1}\wedge\omega_{2}+\left(-a_{3}+\tfrac{2}{3}\right)\omega_{1}\wedge\omega_{3},
dω3\displaystyle d\omega_{3} =γ1ω2+(a323)ω1ω2a2ω1ω3,\displaystyle=\gamma_{1}\wedge\omega_{2}+\left(a_{3}-\tfrac{2}{3}\right)\omega_{1}\wedge\omega_{2}-a_{2}\omega_{1}\wedge\omega_{3},
dγ1\displaystyle d\gamma_{1} =(16a22+16a32+49)ω2ω3.\displaystyle=\left(\tfrac{1}{6}a_{2}^{2}+\tfrac{1}{6}a_{3}^{2}+\tfrac{4}{9}\right)\omega_{2}\wedge\omega_{3}.

The exterior derivatives of (4.5) together with the structure equations (2.53) imply that there exist functions b2,b3b_{2},b_{3} on 𝒫123(N)\mathcal{P}_{123}(N) such that

(4.6) da2\displaystyle da_{2} =(a22a32+23a3+83)ω1+b2ω2+b3ω3,\displaystyle=\left(a_{2}^{2}-a_{3}^{2}+\tfrac{2}{3}a_{3}+\tfrac{8}{3}\right)\omega_{1}+b_{2}\omega_{2}+b_{3}\omega_{3},
da3\displaystyle da_{3} =2a2(a313)ω1+b3ω2b2ω3.\displaystyle=2a_{2}\left(a_{3}-\tfrac{1}{3}\right)\omega_{1}+b_{3}\omega_{2}-b_{2}\omega_{3}.

It follows that the functions a2,a3a_{2},a_{3} descend to give well-defined functions on N.N.

The structure equations (4.5) imply that the differential system =ω2,ω3\mathcal{R}=\left\langle\omega_{2},\omega_{3}\right\rangle on 𝒫123(N)\mathcal{P}_{123}(N) is a Frobenius system. Thus the 4-manifold 𝒫123(N)\mathcal{P}_{123}(N) is foliated by the integral surfaces of .\mathcal{R}. The equations ω2=ω3=ω4==ω7=0\omega_{2}=\omega_{3}=\omega_{4}=\ldots=\omega_{7}=0 hold on the integral surfaces on ,\mathcal{R}, so it follows that the integral surfaces of \mathcal{R} are 𝒟\mathcal{D}-surfaces (see §3), and their projections to NN are 𝒞\mathcal{C}-curves. Thus, NN is foliated by 𝒞\mathcal{C}-curves, i.e. it is a ruled associative in the sense of Definition 3.1, and Theorem 3.4 applies.

Let SS denote the JJ-holomorphic curve in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) corresponding to N.N. By equations (3.6), the condition ω4==ω7=0\omega_{4}=\ldots=\omega_{7}=0 on 𝒫123(N)\mathcal{P}_{123}(N) implies that ζ2=ζ3=0\zeta_{2}=\zeta_{3}=0 on 𝒢(S).\mathcal{G}(S). It follows from Proposition 3.9 and the discussion following it that SS is the Gauss lift of a superminimal surface in S4S^{4} or is a fibre of the map Gr+2(TS4)3.\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right)\to\mathbb{CP}^{3}. This proves the following theorem.

Theorem 4.7.

Let NBN\to B be an associative submanifold of the Berger space such that the Gauss map of NN has image contained in 𝒪123.\mathcal{O}_{123}. Then NN is a ruled associative submanifold which is locally the πλ1\pi\circ\lambda^{-1}-image of the Gauss lift to Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) of a superminimal surface in S4S^{4} or of a fibre of the map Gr+2(TS4)3.\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right)\to\mathbb{CP}^{3}.

We now classify the homogeneous examples of this type.

Theorem 4.8.

Let NBN\to B be a homogeneous associative submanifold of the Berger space such that the Gauss map of NN has image contained in 𝒪123.\mathcal{O}_{123}. Then either:

  1. (1)

    NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the orbit of the Veronese surface h1Σ0h^{-1}\cdot\Sigma_{0} under the action of the group SO(2)×SO(3)std,\mathrm{SO}(2)\times\mathrm{SO}(3)_{\mathrm{std}}, where

    h=[0010000010000011000001000].h=\small\left[\begin{array}[]{ccccc}0&0&1&0&0\\ 0&0&0&1&0\\ 0&0&0&0&1\\ 1&0&0&0&0\\ 0&1&0&0&0\end{array}\right].
  2. (2)

    NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the orbit of the standard Veronese surface Σ0\Sigma_{0} under the action of the group U(2).\mathrm{U}(2).

Proof.

Since NN is homogeneous, the functions a2a_{2} and a3a_{3} are constant on NN. It follows from equations (4.6) that a2=0a_{2}=0 and a3a_{3} is equal to either 4/3-4/3 or 2.2.

First, suppose a3=4/3.a_{3}=-4/3. Let

κ\displaystyle\kappa =23ω12γ1,\displaystyle=\tfrac{2}{3}\omega_{1}-2\gamma_{1}, χ2\displaystyle\chi_{2} =523ω3,\displaystyle=\tfrac{5\sqrt{2}}{3}\,\omega_{3},
χ1\displaystyle\chi_{1} =43ω1γ1,\displaystyle=-\tfrac{4}{3}\omega_{1}-\gamma_{1}, χ3\displaystyle\chi_{3} =523ω2.\displaystyle=\tfrac{5\sqrt{2}}{3}\,\omega_{2}.

Then the Maurer-Cartan form of SO(5)\mathrm{SO}(5) restricted to 𝒫123(N)\mathcal{P}_{123}(N) satisfies

h1μ|𝒫123(N)h=[0κ000κ0000000χ3χ200χ30χ100χ2χ10].h^{-1}\,\mu|_{\mathcal{P}_{123}(N)}\,h=\small\left[\begin{array}[]{ccccc}0&\kappa&0&0&0\\ -\kappa&0&0&0&0\\ 0&0&0&\chi_{{3}}&-\chi_{{2}}\\ 0&0&-\chi_{{3}}&0&\chi_{{1}}\\ 0&0&\chi_{{2}}&-\chi_{{1}}&0\end{array}\right].

It follows from Cartan’s Theorem 4.1 that NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the homogeneous submanifold described in part 1 of the theorem.

Next, suppose a3=2.a_{3}=2. Let

ν\displaystyle\nu =13ω132γ1,\displaystyle=-\tfrac{1}{3}\omega_{1}-\tfrac{3}{2}\gamma_{1}, ξ2\displaystyle\xi_{2} =569ω2,\displaystyle=\tfrac{5\sqrt{6}}{9}\,\omega_{2},
ξ1\displaystyle\xi_{1} =ω1+12γ1,\displaystyle=-\omega_{1}+\tfrac{1}{2}\gamma_{1}, ξ3\displaystyle\xi_{3} =569ω3.\displaystyle=-\tfrac{5\sqrt{6}}{9}\,\omega_{3}.

Then the Maurer-Cartan form of SO(5)\mathrm{SO}(5) restricted to 𝒫123(N)\mathcal{P}_{123}(N) satisfies

μ|𝒫123(N)=[0000000ν+ξ1ξ2ξ30νξ10ξ3ξ20ξ2ξ30νξ10ξ3ξ2ν+ξ10],\mu|_{\mathcal{P}_{123}(N)}=\left[\begin{array}[]{ccccc}0&0&0&0&0\\ 0&0&\nu+\xi_{{1}}&\xi_{{2}}&\xi_{{3}}\\ 0&-\nu-\xi_{{1}}&0&-\xi_{{3}}&\xi_{{2}}\\ 0&-\xi_{{2}}&\xi_{{3}}&0&\nu-\xi_{{1}}\\ 0&-\xi_{{3}}&-\xi_{{2}}&-\nu+\xi_{{1}}&0\end{array}\right],

and it follows from Cartan’s Theorem 4.1 that NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the homogeneous submanifold described in part 2 of the theorem. ∎

The topology of the example homogeneous under SO(2)×SO(3)std\mathrm{SO}(2)\times\mathrm{SO}(3)_{\mathrm{std}} is given by the quotient SO(2)×SO(3)std/O(2)1,2,\mathrm{SO}(2)\times\mathrm{SO}(3)_{\mathrm{std}}/\mathrm{O}(2)_{1,2}, which is diffeomorphic to SO(3)/2\mathrm{SO}(3)/\mathbb{Z}_{2}. As a ruled associative, it corresponds via Theorem 3.4 to the tangent lift of a totally geodesic S2S4.S^{2}\subset S^{4}.

The topology of the example homogeneous under U(2)\mathrm{U}(2) is given by the quotient U(2)/O(2)1,2,\mathrm{U}(2)/\mathrm{O}(2)_{1,2}, which is diffeomorphic to S3.S^{3}. As a ruled associative it corresponds via Theorem 3.4 to a fibre of the map Gr+2(TS4)3.\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right)\to\mathbb{CP}^{3}.

4.2.2. Case II

Define a differential ideal 145\mathcal{I}_{145} with independence condition Ω145\Omega_{145} on SO(5)\mathrm{SO}(5) by

145=ω2,ω3,ω6,ω7,Ω145=ω1ω4ω5γ1.\displaystyle\mathcal{I}_{145}=\left\langle\omega_{2},\omega_{3},\omega_{6},\omega_{7}\right\rangle,\>\>\>\Omega_{145}=\omega_{1}\wedge\omega_{4}\wedge\omega_{5}\wedge\gamma_{1}.

By construction, the integral manifolds of (145,Ω145)\left(\mathcal{I}_{145},\Omega_{145}\right) are in bijection with O(2)\mathrm{O}(2)-adapted coframe bundles of associative submanifolds of BB whose Gauss map has image contained in 𝒪145.\mathcal{O}_{145}.

Using the structure equations of SO(5),\mathrm{SO}(5), we compute

d[ω2ω3ω6ω7]2[3γ252γ352γ23γ352γ252γ3032γ332γ2032γ232γ3][ω1ω4ω5]modI145\displaystyle d\left[\begin{array}[]{c}\omega_{2}\\ \omega_{3}\\ \omega_{6}\\ \omega_{7}\end{array}\right]\equiv-\sqrt{2}\left[\begin{array}[]{ccc}-\sqrt{3}\gamma_{2}&-\tfrac{\sqrt{5}}{2}\gamma_{3}&-\tfrac{\sqrt{5}}{2}\gamma_{2}\\ \sqrt{3}\gamma_{3}&\tfrac{\sqrt{5}}{2}\gamma_{2}&-\tfrac{\sqrt{5}}{2}\gamma_{3}\\ 0&\tfrac{\sqrt{3}}{2}\gamma_{3}&-\tfrac{\sqrt{3}}{2}\gamma_{2}\\ 0&\tfrac{\sqrt{3}}{2}\gamma_{2}&\tfrac{\sqrt{3}}{2}\gamma_{3}\end{array}\right]\wedge\left[\begin{array}[]{c}\omega_{1}\\ \omega_{4}\\ \omega_{5}\end{array}\right]\>\>\>\textup{mod}\>\>I_{145}

It follows that on an integral manifold of (145,Ω145)\left(\mathcal{I}_{145},\Omega_{145}\right) we have γ2=γ3=0.\gamma_{2}=\gamma_{3}=0.

Theorem 4.9.

Let N3BN^{3}\to B be an associative submanifold of the Berger space such that the Gauss map of NN has image contained in 𝒪145.\mathcal{O}_{145}. Then NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the orbit of the Veronese surface h1Σ0h^{-1}\cdot\Sigma_{0} under the action of the group SO(2)×SO(3)std,{\mathrm{SO}(2)\times\mathrm{SO}(3)_{\mathrm{std}}}, where

h=[0010010000010000001000001]SO(5).\displaystyle h=\small\left[\begin{array}[]{ccccc}0&0&1&0&0\\ 1&0&0&0&0\\ 0&1&0&0&0\\ 0&0&0&1&0\\ 0&0&0&0&1\end{array}\right]\in\mathrm{SO}(5).
Proof.

Let PP be an integral manifold of (145,Ω145)\left(\mathcal{I}_{145},\Omega_{145}\right). Let

κ\displaystyle\kappa =43ω1+γ1\displaystyle=\textstyle\frac{4}{3}\omega_{1}+\gamma_{1} χ4\displaystyle\chi_{4} =253ω4\displaystyle=\textstyle\frac{2\sqrt{5}}{3}\,\omega_{4}
χ1\displaystyle\chi_{1} =23ω1+2γ1\displaystyle=\textstyle-\frac{2}{3}\omega_{1}+2\gamma_{1} χ5\displaystyle\chi_{5} =253ω5\displaystyle=\textstyle\frac{2\sqrt{5}}{3}\,\omega_{5}

Then the Maurer-Cartan form μ\mu, restricted to PP, satisfies

hμ|Ph1=[0κ000κ0000000χ4χ500χ40χ100χ5χ10].h\mu|_{P}h^{-1}=\small\begin{bmatrix}0&-\kappa&0&0&0\\ \kappa&0&0&0&0\\ 0&0&0&-\chi_{4}&\chi_{5}\\ 0&0&\chi_{4}&0&-\chi_{1}\\ 0&0&-\chi_{5}&\chi_{1}&0\end{bmatrix}.

An application of Cartan’s Theorem 4.1 concludes the proof. ∎

A calculation shows that the associative 33-fold of Theorem 4.9 is totally geodesic and has Ricci curvature given by 29(ω12+9ω42+9ω52)\frac{2}{9}\!\left(\omega_{1}^{2}+9\omega_{4}^{2}+9\omega_{5}^{2}\right). Its topology is given by the quotient SO(2)×SO(3)std/O(2)1,2,\mathrm{SO}(2)\times\mathrm{SO}(3)_{\mathrm{std}}/\mathrm{O}(2)_{1,2}, which is diffeomorphic to SO(3)/2.\mathrm{SO}(3)/\mathbb{Z}_{2}. This associative is ruled, and corresponds under Theorem 3.4 to the normal lift of a totally geodesic S2S4.S^{2}\subset S^{4}. This construction is generalised in §4.4.2.

4.2.3. Case III

Define a differential ideal 167\mathcal{I}_{167} with independence condition Ω167\Omega_{167} on SO(5)\mathrm{SO}(5) by

167=ω2,ω3,ω4,ω5,Ω167=ω1ω6ω7γ1.\displaystyle\mathcal{I}_{167}=\left\langle\omega_{2},\omega_{3},\omega_{4},\omega_{5}\right\rangle,\>\>\>\Omega_{167}=\omega_{1}\wedge\omega_{6}\wedge\omega_{7}\wedge\gamma_{1}.

By construction, the integral manifolds of (167,Ω167)\left(\mathcal{I}_{167},\Omega_{167}\right) are in bijection with O(2)\mathrm{O}(2)-adapted coframe bundles of associative submanifolds of BB whose Gauss map has image contained in 𝒪167.\mathcal{O}_{167}.

Using the structure equations of SO(5),\mathrm{SO}(5), we compute

d[ω2ω3ω4ω5]6[γ200γ300012γ212γ3012γ312γ2][ω1ω6ω7]modI167\displaystyle d\left[\begin{array}[]{c}\omega_{2}\\ \omega_{3}\\ \omega_{4}\\ \omega_{5}\end{array}\right]\equiv-\sqrt{6}\left[\begin{array}[]{ccc}-\gamma_{2}&0&0\\ \gamma_{3}&0&0\\ 0&-\tfrac{1}{2}\gamma_{2}&-\tfrac{1}{2}\gamma_{3}\\ 0&-\tfrac{1}{2}\gamma_{3}&\tfrac{1}{2}\gamma_{2}\end{array}\right]\wedge\left[\begin{array}[]{c}\omega_{1}\\ \omega_{6}\\ \omega_{7}\end{array}\right]\>\>\>\textup{mod}\>\>I_{167}

It follows that on an integral manifold of (167,Ω167)\left(\mathcal{I}_{167},\Omega_{167}\right) we have γ2=γ3=0.\gamma_{2}=\gamma_{3}=0.

Theorem 4.10.

Let N3BN^{3}\to B be an associative submanifold of the Berger space such that the Gauss map of NN has image contained in 𝒪167\mathcal{O}_{167}. Then NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the orbit of the Veronese surface h1Σ0h^{-1}\cdot\Sigma_{0} under the action of the group U(2)\mathrm{U}(2), where

h=[1000001000001000001000001]SO(5).h=\small\left[\begin{array}[]{ccccc}-1&0&0&0&0\\ 0&1&0&0&0\\ 0&0&1&0&0\\ 0&0&0&-1&0\\ 0&0&0&0&1\end{array}\right]\in\mathrm{SO}(5).
Proof.

Let PP be an integral manifold of (167,Ω167)\left(\mathcal{I}_{167},\Omega_{167}\right). Define

κ\displaystyle\kappa =2ω1γ1\displaystyle=2\omega_{1}-\gamma_{1} χ6\displaystyle\chi_{6} =2103ω6\displaystyle=\textstyle\frac{2\sqrt{10}}{3}\omega_{6}
χ1\displaystyle\chi_{1} =23ω1γ1\displaystyle=\textstyle\frac{2}{3}\omega_{1}-\gamma_{1} χ7\displaystyle\chi_{7} =2103ω7\displaystyle=\textstyle\frac{2\sqrt{10}}{3}\omega_{7}

Then the Maurer-Cartan form restricted to PP satisfies

h1μ|Ph=12[0000000κχ1χ6χ70κ+χ10χ7χ60χ6χ70κχ10χ7χ6κ+χ10]h^{-1}\,\mu|_{P}\,h=\frac{1}{2}\small\begin{bmatrix}0&0&0&0&0\\ 0&0&-\kappa-\chi_{1}&\chi_{6}&\chi_{7}\\ 0&\kappa+\chi_{1}&0&-\chi_{7}&\chi_{6}\\ 0&-\chi_{6}&-\chi_{7}&0&\kappa-\chi_{1}\\ 0&\chi_{7}&-\chi_{6}&-\kappa+\chi_{1}&0\end{bmatrix}

As above, we conclude via Cartan’s Theorem 4.1. ∎

A calculation shows that the associative 33-fold of Theorem 4.10 is totally geodesic and has Ricci curvature given by 29(ω12+19ω62+19ω72)\frac{2}{9}\!\left(\omega_{1}^{2}+19\omega_{6}^{2}+19\omega_{7}^{2}\right). Its topology is given by the quotient U(2)/O(2)1,2,\mathrm{U}(2)/\mathrm{O}(2)_{1,2}, which is diffeomorphic to S3.S^{3}. This associative is ruled and corresponds under Theorem 3.4 to the lift to Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) of a fibre of the twistor map 3S4\mathbb{CP}^{3}\to S^{4} via Proposition 3.9.

4.3. Irreducibly acting stabiliser

In this section, we classify the associative submanifolds of BB whose tangent space has SO(3)\mathrm{SO}(3)-stabiliser isomorphic to a subgroup G\mathrm{G} acting irreducibly on 3.\mathbb{R}^{3}. By the results of §4.1 there are two subcases: G=Ico\mathrm{G}=\mathrm{Ico} and G=Oct.\mathrm{G}=\mathrm{Oct}.

4.3.1. Icosahedral case

Define 1-forms κ1,κ2,κ3,β1,,β4\kappa_{1},\kappa_{2},\kappa_{3},\beta_{1},\ldots,\beta_{4} on SO(5)\mathrm{SO}(5) by

κ1\displaystyle\kappa_{1} =12ω1+32ω5,\displaystyle=\tfrac{1}{2}\omega_{1}+\tfrac{\sqrt{3}}{2}\omega_{5}, β1\displaystyle\beta_{1} =ω4,\displaystyle=\omega_{4},
κ2\displaystyle\kappa_{2} =6(1+5)8ω3+2(3+5)8ω7,\displaystyle=-\tfrac{\sqrt{6}\left(1+\sqrt{5}\right)}{8}\omega_{3}+\tfrac{\sqrt{2}\left(-3+\sqrt{5}\right)}{8}\omega_{7}, β2\displaystyle\beta_{2} =32ω112ω5,\displaystyle=\tfrac{\sqrt{3}}{2}\omega_{1}-\tfrac{1}{2}\omega_{5},
κ3\displaystyle\kappa_{3} =6(1+5)8ω22(3+5)8ω6,\displaystyle=\tfrac{\sqrt{6}\left(-1+\sqrt{5}\right)}{8}\omega_{2}-\tfrac{\sqrt{2}\left(3+\sqrt{5}\right)}{8}\omega_{6}, β3\displaystyle\beta_{3} =2(3+5)8ω2+6(1+5)8ω6,\displaystyle=\tfrac{\sqrt{2}\left(3+\sqrt{5}\right)}{8}\omega_{2}+\tfrac{\sqrt{6}\left(-1+\sqrt{5}\right)}{8}\omega_{6},
β4\displaystyle\beta_{4} =2(3+5)8ω3+6(1+5)8ω7.\displaystyle=\tfrac{\sqrt{2}\left(-3+\sqrt{5}\right)}{8}\omega_{3}+\tfrac{\sqrt{6}\left(1+\sqrt{5}\right)}{8}\omega_{7}.

Define a differential ideal Ico\mathcal{I}_{\mathrm{Ico}} with independence condition ΩIco\Omega_{\mathrm{Ico}} on SO(5)\mathrm{SO}(5) by

(4.7) Ico=β1,β2,β3,β4,ΩIco=κ1κ2κ3.\displaystyle\mathcal{I}_{\mathrm{Ico}}=\left\langle\beta_{1},\beta_{2},\beta_{3},\beta_{4}\right\rangle,\>\>\>\>\Omega_{\mathrm{Ico}}=\kappa_{1}\wedge\kappa_{2}\wedge\kappa_{3}.

By construction, the integral manifolds of (Ico,ΩIco)\left(\mathcal{I}_{\mathrm{Ico}},\Omega_{\mathrm{Ico}}\right) are in bijection with Ico\mathrm{Ico}-adapted coframe bundles of associative submanifolds of BB whose Gauss map has image contained in 𝒪Ico.\mathcal{O}_{\mathrm{Ico}}.

Using the structure equations of SO(5),\mathrm{SO}(5), we may compute

d[β1β2β3β4]3[γ1γ2γ301+52γ2152γ31+52γ21+52γ10152γ301+52γ1][κ1κ2κ3]modIIco.\displaystyle d\left[\begin{array}[]{c}\beta_{1}\\ \beta_{2}\\ \beta_{3}\\ \beta_{4}\end{array}\right]\equiv\sqrt{3}\left[\begin{array}[]{ccc}\gamma_{1}&\gamma_{2}&\gamma_{3}\\ 0&\tfrac{-1+\sqrt{5}}{2}\gamma_{2}&\tfrac{-1-\sqrt{5}}{2}\gamma_{3}\\ \tfrac{1+\sqrt{5}}{2}\gamma_{2}&\tfrac{-1+\sqrt{5}}{2}\gamma_{1}&0\\ \tfrac{1-\sqrt{5}}{2}\gamma_{3}&0&\tfrac{1+\sqrt{5}}{2}\gamma_{1}\end{array}\right]\wedge\left[\begin{array}[]{c}\kappa_{1}\\ \kappa_{2}\\ \kappa_{3}\end{array}\right]\>\>\>\>\text{mod}\>\>{I_{\mathrm{Ico}}}.

It follows that on an integral manifold of Ico\mathcal{I}_{\mathrm{Ico}} we have γ1=γ2=γ3=0.\gamma_{1}=\gamma_{2}=\gamma_{3}=0.

Theorem 4.11.

Let N3BN^{3}\to B be an associative submanifold of the Berger space such that for all pN,p\in N, TpNT_{p}N has SO(3)\mathrm{SO}(3)-stabiliser conjugate to IcoSO(3).\mathrm{Ico}\subset\mathrm{SO}(3). Then NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the orbit of the Veronese surface h1Σ0h^{-1}\cdot\Sigma_{0} under the action of the group SO(3),{\mathrm{SO}(3)}, where

h=[1400154001000001001540014000001]SO(5).\displaystyle h=\small\left[\begin{array}[]{ccccc}-\tfrac{1}{4}&0&0&-\tfrac{\sqrt{15}}{4}&0\\ 0&1&0&0&0\\ 0&0&1&0&0\\ \tfrac{\sqrt{15}}{4}&0&0&-\tfrac{1}{4}&0\\ 0&0&0&0&1\end{array}\right]\in\mathrm{SO}(5).
Proof.

Let PP be an integral manifold of (Ico,ΩIco)\left(\mathcal{I}_{\mathrm{Ico}},\Omega_{\mathrm{Ico}}\right) projecting to N.N. By the work above, we have β1==β4=γ1=γ2=γ3=0\beta_{1}=\cdots=\beta_{4}=\gamma_{1}=\gamma_{2}=\gamma_{3}=0 on P.P. Thus, the Maurer-Cartan form μ\mu of SO(5)\mathrm{SO}(5) restricts to PP to read

μ|P=[03(1+5)6κ33(1+5)6κ20153κ13(1+5)6κ3023κ11+352κ323κ23(1+5)6κ223κ101352κ223κ301+352κ31+352κ2013κ1153κ123κ223κ313κ10],\displaystyle\mu|_{P}=\small\left[\begin{array}[]{ccccc}0&-\tfrac{\sqrt{3}\left(-1+\sqrt{5}\right)}{6}\kappa_{3}&-\tfrac{\sqrt{3}\left(1+\sqrt{5}\right)}{6}\kappa_{2}&0&\tfrac{\sqrt{15}}{3}\kappa_{1}\\ \tfrac{\sqrt{3}\left(-1+\sqrt{5}\right)}{6}\kappa_{3}&0&-\tfrac{2}{3}\kappa_{1}&\tfrac{1+3\sqrt{5}}{2}\kappa_{3}&\tfrac{2}{3}\kappa_{2}\\ \tfrac{\sqrt{3}\left(1+\sqrt{5}\right)}{6}\kappa_{2}&\tfrac{2}{3}\kappa_{1}&0&\tfrac{1-3\sqrt{5}}{2}\kappa_{2}&-\tfrac{2}{3}\kappa_{3}\\ 0&-\tfrac{1+3\sqrt{5}}{2}\kappa_{3}&\tfrac{-1+3\sqrt{5}}{2}\kappa_{2}&0&\tfrac{1}{3}\kappa_{1}\\ -\tfrac{\sqrt{15}}{3}\kappa_{1}&-\tfrac{2}{3}\kappa_{2}&\tfrac{2}{3}\kappa_{3}&-\tfrac{1}{3}\kappa_{1}&0\end{array}\right],

and the structure equations of SO(5)\mathrm{SO}(5) imply that, on P,P,

dκ1\displaystyle d\kappa_{1} =23κ2κ3,\displaystyle=-\tfrac{2}{3}\kappa_{2}\wedge\kappa_{3}, dκ2\displaystyle d\kappa_{2} =23κ3κ1,\displaystyle=-\tfrac{2}{3}\kappa_{3}\wedge\kappa_{1}, dκ3\displaystyle d\kappa_{3} =23κ1κ2.\displaystyle=-\tfrac{2}{3}\kappa_{1}\wedge\kappa_{2}.

It follows that NN is (an open subset of) a homogeneous submanifold of B.B. To determine this submanifold explicitly, note that, for hh defined as above, we have

(4.13) h1μ|Nh=23[03κ33κ2003κ30κ1κ3κ23κ2κ10κ2κ30κ3κ202κ10κ2κ32κ10],\displaystyle h^{-1}\mu|_{N}h=\small\frac{2}{3}\left[\begin{array}[]{ccccc}0&-\sqrt{3}\kappa_{{3}}&\sqrt{3}\kappa_{{2}}&0&0\\ \sqrt{3}\kappa_{{3}}&0&-\kappa_{{1}}&-\kappa_{{3}}&\kappa_{{2}}\\ -\sqrt{3}\kappa_{{2}}&\kappa_{{1}}&0&-\kappa_{{2}}&-\kappa_{{3}}\\ 0&\kappa_{{3}}&\kappa_{{2}}&0&-2\kappa_{{1}}\\ 0&-\kappa_{{2}}&\kappa_{{3}}&2\kappa_{{1}}&0\end{array}\right],

and the right-hand-side is exactly our standard presentation (2.10) of the Lie algebra 𝔰𝔬(3)𝔰𝔬(5)\mathfrak{so}(3)\subset\mathfrak{so}(5). The result now follows from an application of Cartan’s Theorem 4.1. ∎

In order to determine the topology of the manifold described in Theorem 4.11, it is necessary to determine the intersection of the groups SO(3)\mathrm{SO}(3) and hSO(3)h1,h\mathrm{SO}(3)h^{-1}, where the element hh is as defined in the statement of the theorem. The group SO(3)\mathrm{SO}(3) preserves the standard Veronese surface Σ0\Sigma_{0} in S4S^{4} defined by the equation

(4.14) v1(v12+32v22+32v323v423v52)+332v4(v22v32)+33v2v3v5=1,v_{1}\left(v_{1}^{2}+\tfrac{3}{2}v_{2}^{2}+\tfrac{3}{2}v_{3}^{2}-3v_{4}^{2}-3v_{5}^{2}\right)+\tfrac{3\sqrt{3}}{2}v_{4}\left(v_{2}^{2}-v_{3}^{2}\right)+3\sqrt{3}v_{2}v_{3}v_{5}=1,

while the group hSO(3)h1h\mathrm{SO}(3)h^{-1} preserves the Veronese surface hΣ0S4h\cdot\Sigma_{0}\subset S^{4} defined by the equation

(4.15) 116v1(11v12+915v1v4+(6+185)v22+(6185)v3233v42+12v52)\displaystyle\tfrac{1}{16}v_{1}\left(11v_{1}^{2}+9\sqrt{15}v_{1}v_{4}+\left(-6+18\sqrt{5}\right)v_{2}^{2}+\left(-6-18\sqrt{5}\right)v_{3}^{2}-33v_{4}^{2}+12v_{5}^{2}\right)
+334v4(152v22+152v32145v42+5v52)+33v2v3v5=1.\displaystyle+\tfrac{3\sqrt{3}}{4}v_{4}\left(\tfrac{-1-\sqrt{5}}{2}v_{2}^{2}+\tfrac{1-\sqrt{5}}{2}v_{3}^{2}-\tfrac{1}{4}\sqrt{5}v_{4}^{2}+\sqrt{5}v_{5}^{2}\right)+3\sqrt{3}v_{2}v_{3}v_{5}=1.

Note that the standard Veronese surface Σ0\Sigma_{0} may be described as the image of the SO(3)\mathrm{SO}(3)-equivariant map ν:S2S4\nu:S^{2}\to S^{4} given by

(4.16) ν:(x,y,z)(x212y212z2,3xy,3xz,32y232z2,3yz).\nu:\left(x,y,z\right)\mapsto\left(x^{2}-\tfrac{1}{2}y^{2}-\tfrac{1}{2}z^{2},\sqrt{3}xy,\sqrt{3}xz,\tfrac{\sqrt{3}}{2}y^{2}-\tfrac{\sqrt{3}}{2}z^{2},\sqrt{3}yz\right).

The map ν\nu is a double cover of Σ0.\Sigma_{0}.

Any element of the intersection SO(3)hSO(3)h1\mathrm{SO}(3)\cap h\mathrm{SO}(3)h^{-1} must preserve the intersection Σ0hΣ0.\Sigma_{0}\cap h\cdot\Sigma_{0}. Computation yields that Σ0hΣ0\Sigma_{0}\cap h\cdot\Sigma_{0} is given by the ν\nu-image of the 20 points

(±13,±13,±13),(0,±τ,±1τ),(±1τ,0,±τ),(±τ,±1τ,0),(\pm\tfrac{1}{\sqrt{3}},\pm\tfrac{1}{\sqrt{3}},\pm\tfrac{1}{\sqrt{3}}),\>\>(0,\pm\tau,\pm\tfrac{1}{\tau}),\>\>(\pm\tfrac{1}{\tau},0,\pm\tau),\>\>(\pm\tau,\pm\tfrac{1}{\tau},0),

where, as in §4.1.2, we have τ=1+52,\tau=\tfrac{1+\sqrt{5}}{2}, the golden ratio. These points form the vertices of a regular dodecahedron in S2.S^{2}. Thus, the intersection SO(3)hSO(3)h1\mathrm{SO}(3)\cap h\mathrm{SO}(3)h^{-1} is a subgroup of the group of symmetries of this dodecahedron. This group is generated by the matrices

[100010001],[001100010],12[11ττ1ττ1τ11τ].\displaystyle\left[\begin{array}[]{ccc}-1&0&0\\ 0&-1&0\\ 0&0&1\end{array}\right],\left[\begin{array}[]{ccc}0&0&1\\ 1&0&0\\ 0&1&0\end{array}\right],\frac{1}{2}\left[\begin{array}[]{ccc}1&-\tfrac{1}{\tau}&-{\tau}\\ -\tfrac{1}{\tau}&\tau&-1\\ {\tau}&1&-\tfrac{1}{\tau}\end{array}\right].

In fact, it is possible to verify by explicit calculation (using, for example, Euler angles) that SO(3)hSO(3)h1\mathrm{SO}(3)\cap h\mathrm{SO}(3)h^{-1} is equal to the symmetry group of the dodecahedron. Thus, the associative group orbit described in Theorem 4.11 is diffeomorphic to the Poincaré homology sphere SO(3)/Ico.\mathrm{SO}(3)/\mathrm{Ico}.

The induced metric on the associative of Theorem 4.11 has constant curvature.

4.3.2. Octahedral case

Define 1-forms κ1,κ2,κ3,β1,χ1,χ2,χ3\kappa_{1},\kappa_{2},\kappa_{3},\beta_{1},\chi_{1},\chi_{2},\chi_{3} on SO(5)\mathrm{SO}(5) by

κ1\displaystyle\kappa_{1} =ω1,\displaystyle=\omega_{1}, χ1\displaystyle\chi_{1} =ω5,\displaystyle=\omega_{5},
κ2\displaystyle\kappa_{2} =64ω3+104ω7,\displaystyle=-\tfrac{\sqrt{6}}{4}\omega_{3}+\tfrac{\sqrt{10}}{4}\omega_{7}, χ2\displaystyle\chi_{2} =104ω364ω7,\displaystyle=-\tfrac{\sqrt{10}}{4}\omega_{3}-\tfrac{\sqrt{6}}{4}\omega_{7},
κ3\displaystyle\kappa_{3} =64ω2104ω6,\displaystyle=-\tfrac{\sqrt{6}}{4}\omega_{2}-\tfrac{\sqrt{10}}{4}\omega_{6}, χ3\displaystyle\chi_{3} =104ω264ω6,\displaystyle=\tfrac{\sqrt{10}}{4}\omega_{2}-\tfrac{\sqrt{6}}{4}\omega_{6},
β1\displaystyle\beta_{1} =ω4.\displaystyle=\omega_{4}.

Define a differential ideal Oct\mathcal{I}_{\mathrm{Oct}} with independence condition ΩOct\Omega_{\mathrm{Oct}} on SO(5)\mathrm{SO}(5) by

Oct=β1,χ1,χ2,χ3,ΩOct=κ1κ2κ3.\displaystyle\mathcal{I}_{\mathrm{Oct}}=\left\langle\beta_{1},\chi_{1},\chi_{2},\chi_{3}\right\rangle,\>\>\>\Omega_{\mathrm{Oct}}=\kappa_{1}\wedge\kappa_{2}\wedge\kappa_{3}.

By construction, the integral manifolds of (Oct,ΩOct)\left(\mathcal{I}_{\mathrm{Oct}},\Omega_{\mathrm{Oct}}\right) are in bijection with Oct\mathrm{Oct}-adapted coframe bundles of associative submanifolds of BB whose Gauss maps have image contained in 𝒪Oct.\mathcal{O}_{\mathrm{Oct}}.

Theorem 4.12.

Let N3BN^{3}\to B be an associative submanifold of the Berger space such that for all pN,p\in N, TpNT_{p}N has SO(3)\mathrm{SO}(3)-stabiliser conjugate to OctSO(3).\mathrm{Oct}\subset\mathrm{SO}(3). Then either:

  1. (1)

    NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the orbit of the Veronese surface h1Σ0h^{-1}\cdot\Sigma_{0} under the action of the group SO(3),{\mathrm{SO}(3)}, where

    h=[1000001000001000001000001]SO(5).\displaystyle h=\small\left[\begin{array}[]{ccccc}-1&0&0&0&0\\ 0&1&0&0&0\\ 0&0&1&0&0\\ 0&0&0&-1&0\\ 0&0&0&0&1\end{array}\right]\in\mathrm{SO}(5).
  2. (2)

    NN is SO(5)\mathrm{SO}(5)-equivalent to (an open subset of) the orbit of the standard Veronese-Borůvka surface k1Σ0k^{-1}\cdot\Sigma_{0} under the action of the group SO(3)std,{\mathrm{SO}(3)}_{\textup{std}}, where

    k=[1000000001000100100000100]SO(5).\displaystyle k=\small\left[\begin{array}[]{ccccc}-1&0&0&0&0\\ 0&0&0&0&1\\ 0&0&0&1&0\\ 0&1&0&0&0\\ 0&0&1&0&0\end{array}\right]\in\mathrm{SO}(5).
Proof.

The structure equations of SO(5)\mathrm{SO}(5) imply

d[β1χ1χ2χ3]152[0000γ3γ2γ30γ1γ2γ10][κ1κ2κ3]modIOct.\displaystyle d\left[\begin{array}[]{c}\beta_{1}\\ \chi_{1}\\ \chi_{2}\\ \chi_{3}\end{array}\right]\equiv\frac{\sqrt{15}}{2}\left[\begin{array}[]{ccc}0&0&0\\ 0&\gamma_{3}&\gamma_{2}\\ \gamma_{3}&0&\gamma_{1}\\ \gamma_{2}&\gamma_{1}&0\end{array}\right]\wedge\left[\begin{array}[]{c}\kappa_{1}\\ \kappa_{2}\\ \kappa_{3}\end{array}\right]\>\>\>\>\text{mod}\>\>{I_{\mathrm{Oct}}}.

It follows that on an an integral manifold PP of Oct\mathcal{I}_{\mathrm{Oct}} we must have γi=aκi,i=1,2,3,\gamma_{i}=a\kappa_{i},\>i=1,2,3, for some function aa on P.P. The structure equations (2.53) restricted to PP then imply 6a2+a1=0,6a^{2}+a-1=0, so that either a=1/2a=-1/2 or a=1/3.a=1/3.

Suppose first that PP is an integral manifold of Oct\mathcal{I}_{\mathrm{Oct}} with a=1/2a=-1/2 on P.P. The Maurer-Cartan form μ\mu of SO(5)\mathrm{SO}(5) restricted to PP satisfies

h1μ|Ph=56[03κ33κ2003κ30κ1κ3κ23κ2κ10κ2κ30κ3κ202κ10κ2κ32κ10],\displaystyle h^{-1}\mu|_{P}h=\frac{5}{6}\left[\begin{array}[]{ccccc}0&-\sqrt{3}\kappa_{{3}}&\sqrt{3}\kappa_{{2}}&0&0\\ \sqrt{3}\kappa_{{3}}&0&-\kappa_{{1}}&-\kappa_{{3}}&\kappa_{{2}}\\ -\sqrt{3}\kappa_{{2}}&\kappa_{{1}}&0&-\kappa_{{2}}&-\kappa_{{3}}\\ 0&\kappa_{{3}}&\kappa_{{2}}&0&-2\kappa_{{1}}\\ 0&-\kappa_{{2}}&\kappa_{{3}}&2\kappa_{{1}}&0\end{array}\right],

where hSO(5)h\in\mathrm{SO}(5) is the element defined in the statement of the theorem. It follows from Cartan’s Theorem 4.1 that N=π(P)N=\pi\left(P\right) is SO(5)\mathrm{SO}(5)-equivalent to (an open subset) of the homogeneous submanifold described in part 1 of the theorem.

Suppose now that PP is an integral manifold of Oct\mathcal{I}_{\mathrm{Oct}} with a=1/3a=1/3 on P.P. The Maurer-Cartan form μ\mu of SO(5)\mathrm{SO}(5) restricted to PP satisfies

k1μ|Pk=53[0000000000000κ3κ200κ30κ100κ2κ10],\displaystyle k^{-1}\mu|_{P}k=\frac{5}{3}\small\left[\begin{array}[]{ccccc}0&0&0&0&0\\ 0&0&0&0&0\\ 0&0&0&\kappa_{{3}}&-\kappa_{{2}}\\ 0&0&-\kappa_{{3}}&0&\kappa_{{1}}\\ 0&0&\kappa_{{2}}&-\kappa_{{1}}&0\end{array}\right],

where kSO(5)k\in\mathrm{SO}(5) is the element defined in the statement of the theorem. As above, it follows that N=π(P)N=\pi\left(P\right) is SO(5)\mathrm{SO}(5)-equivalent to (an open subset) of the homogeneous submanifold described in part 2 of the theorem. ∎

One can check that the intersection SO(3)hSO(3)h1\mathrm{SO}(3)\cap h\mathrm{SO}(3)h^{-1} is equal to the group Oct.\mathrm{Oct}. It follows that the topology of the first example is SO(3)/Oct.\mathrm{SO}(3)/\mathrm{Oct}. The intersection SO(3)kSO(3)stdk1\mathrm{SO}(3)\cap k\mathrm{SO}(3)_{\textup{std}}k^{-1} is equal to the dihedral group D2,\textrm{D}_{2}, and so the topology of the second example is SO(3)/D2.\mathrm{SO}(3)/\mathrm{D}_{2}. Both examples have constant curvature.

4.4. Cyclic and dihedral stabiliser

In this section we classify the associative submanifolds of BB whose tangent space has SO(3)\mathrm{SO}(3)-stabiliser isomorphic to a cyclic subgroup or dihedral subgroup G\mathrm{G} having an element of order greater than 2. By the results of §4.1, there are three subcases to consider: G=5,G=4,\mathrm{G}=\mathbb{Z}_{5},\mathrm{G}=\mathbb{Z}_{4}, and G=3.\mathrm{G}=\mathbb{Z}_{3}.

4.4.1. The case G=5\mathrm{G}=\mathbb{Z}_{5}

Let f:NBf:N\to B be an associative 3-fold whose tangent space has SO(3)\mathrm{SO}(3)-stabilier everywhere equal to 5.\mathbb{Z}_{5}. By Proposition 4.5, we may adapt frames on NN so that ω2=ω3=0\omega_{2}=\omega_{3}=0 and

(4.17) sinθω4+cosθω7=0,sinθω5+cosθω6=0,-\sin\theta\,\omega_{4}+\cos\theta\,\omega_{7}=0,\>\>\>-\sin\theta\,\omega_{5}+\cos\theta\,\omega_{6}=0,

for some function θ.\theta. Let 𝒫5(N)\mathcal{P}_{5}(N) denote the 5\mathbb{Z}_{5}-subbundle of fSO(5)f^{*}\mathrm{SO}(5) corresponding to this frame adaptation. The function θ\theta is well-defined on 𝒫5(N).\mathcal{P}_{5}(N). Define 1-forms κ1,κ2,κ3\kappa_{1},\kappa_{2},\kappa_{3} on 𝒫5(N)\mathcal{P}_{5}(N) by

(4.18) κ1\displaystyle\kappa_{1} =ω1,\displaystyle=\omega_{1},
κ2\displaystyle\kappa_{2} =cosθω4+sinθω7,\displaystyle=\cos\theta\,\omega_{4}+\sin\theta\,\omega_{7},
κ3\displaystyle\kappa_{3} =cosθω5+sinθω6.\displaystyle=\cos\theta\,\omega_{5}+\sin\theta\,\omega_{6}.

These forms are a basis for the semibasic forms on 𝒫5(N),\mathcal{P}_{5}(N), and the induced metric on NN pulls back to 𝒫5(N)\mathcal{P}_{5}(N) as

gN=κ12+κ22+κ32.g_{N}=\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}.

On 𝒫5(N),\mathcal{P}_{5}(N), the exterior derivatives of the equations ω2=ω3=0\omega_{2}=\omega_{3}=0 and equations (4.17) imply that there exist functions t2,t3t_{2},t_{3} on 𝒫5(N)\mathcal{P}_{5}(N) such that

(4.19) dθ\displaystyle d\theta =t2κ2+t3κ3,\displaystyle=t_{2}\kappa_{2}+t_{3}\kappa_{3}, γ2\displaystyle\gamma_{2} =0,\displaystyle=0,
γ1\displaystyle\gamma_{1} =15sinθcosθ(t3κ2+t2κ3),\displaystyle=\tfrac{1}{5\sin\theta\cos\theta}\left(-t_{3}\kappa_{2}+t_{2}\kappa_{3}\right), γ3\displaystyle\gamma_{3} =0.\displaystyle=0.

Substituting these equations in to the structure equation (2.46) yields the equations

(4.20) dκ1\displaystyle d\kappa_{1} =23κ2κ3,\displaystyle=-\tfrac{2}{3}\kappa_{2}\wedge\kappa_{3},
dκ2\displaystyle d\kappa_{2} =23κ3κ1+5cos2θ35sinθcosθt3κ2κ3,\displaystyle=-\tfrac{2}{3}\kappa_{3}\wedge\kappa_{1}+\tfrac{5\cos^{2}\theta-3}{5\sin\theta\cos\theta}t_{3}\kappa_{2}\wedge\kappa_{3},
dκ3\displaystyle d\kappa_{3} =23κ1κ25cos2θ35sinθcosθt2κ2κ3.\displaystyle=-\tfrac{2}{3}\kappa_{1}\wedge\kappa_{2}-\tfrac{5\cos^{2}\theta-3}{5\sin\theta\cos\theta}t_{2}\kappa_{2}\wedge\kappa_{3}.

The structure equations (4.20) imply that the differential system =κ2,κ3\mathcal{R}=\langle\kappa_{2},\kappa_{3}\rangle on 𝒫5(N)\mathcal{P}_{5}(N) is a Frobenius system. Thus, the 3-manifold 𝒫5(N)\mathcal{P}_{5}(N) is foliated by the integral curves of .\mathcal{R}. In fact, from (4.18) and the definition of 𝒫5(N),\mathcal{P}_{5}(N), the integral curves of \mathcal{R} project to NN to be 𝒞\mathcal{C}-curves in B.B. Thus, NN is foliated by 𝒞\mathcal{C}-curves, i.e. it is a ruled associative in the sense of Definition 3.1.

Proposition 4.13.

Let NBN\to B be an associative submanifold of the Berger space such that the tangent space of NN has SO(3)\mathrm{SO}(3)-stabiliser everywhere equal to 5.\mathbb{Z}_{5}. Then NN is a ruled associative submanifold which is locally the πλ1\pi\circ\lambda^{-1} image of a JJ-holomorphic curve in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) satisfying ζ1=ζ4=0.\zeta_{1}=\zeta_{4}=0. Conversely, any JJ-holomorphic curve in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) satisfying ζ1=ζ4=0\zeta_{1}=\zeta_{4}=0 gives rise to such an associative submanifold via Theorem 3.4.

Proof.

The fact that NN is ruled has been demonstrated above. Theorem 3.4 guarantees that NN is locally the πλ1\pi\circ\lambda^{-1} image of a JJ-holomorphic curve in Gr+2(TS4),\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right), and the conditions ζ1=ζ4\zeta_{1}=\zeta_{4} follow from the frame adaptation ω2=ω3=0\omega_{2}=\omega_{3}=0 and the equations γ2=γ3=0\gamma_{2}=\gamma_{3}=0 (4.19), together with equation (3.6).

To prove the converse, note that on a JJ-holomorphic curve SS with ζ1=ζ4=0\zeta_{1}=\zeta_{4}=0 we have |W2|2+|W3|2=1,\left\lvert W_{2}\right\rvert^{2}+\left\lvert W_{3}\right\rvert^{2}=1, and we may adapt frames so that

(4.21) W2=cosθ,W3=isinθ.W_{2}=\cos\theta,\>\>\>W_{3}=-i\sin\theta.

It follows that the tangent spaces of the corresponding ruled associative have SO(3)\mathrm{SO}(3)-stabiliser everywhere isomorphic to 5.\mathbb{Z}_{5}.

Theorem 4.14.

Let SS be a JJ-holomorphic curve in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) with ζ1=ζ4=0.\zeta_{1}=\zeta_{4}=0. Then SS is locally the normal lift of a superminimal surface in S4.S^{4}. Conversely, the normal lift of a superminimal surface in S4S^{4} gives a JJ-holomorphic curve in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) satisfying ζ1=ζ4=0.\zeta_{1}=\zeta_{4}=0.

Proof.

Let SS be a holomorphic curve in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) with ζ1=ζ4=0.\zeta_{1}=\zeta_{4}=0. Using the notation of §3, the Maurer-Cartan form of SO(5)\mathrm{SO}(5) restricted to 𝒢(S)\mathcal{G}(S) is

(4.22) [0002Reζ22Imζ200ρ1ρ2Reζ3Imζ30ρ1+ρ20Imζ3Reζ32Reζ2Reζ3Imζ30ρ1+ρ22Imζ2Imζ3Reζ3ρ1ρ20].\left[\begin{array}[]{ccccc}0&0&0&\sqrt{2}\operatorname{Re}\zeta_{2}&-\sqrt{2}\operatorname{Im}\zeta_{2}\\ 0&0&\rho_{1}-\rho_{2}&\operatorname{Re}\zeta_{3}&\operatorname{Im}\zeta_{3}\\ 0&-\rho_{1}+\rho_{2}&0&\operatorname{Im}\zeta_{3}&-\operatorname{Re}\zeta_{3}\\ -\sqrt{2}\operatorname{Re}\zeta_{2}&-\operatorname{Re}\zeta_{3}&-\operatorname{Im}\zeta_{3}&0&\rho_{1}+\rho_{2}\\ \sqrt{2}\operatorname{Im}\zeta_{2}&-\operatorname{Im}\zeta_{3}&\operatorname{Re}\zeta_{3}&-\rho_{1}-\rho_{2}&0\end{array}\right].

Now let h:US4h:U\to S^{4} be a superminimal surface in S4,S^{4}, and define an adapted coframe bundle 𝒜(U)hSO(5)\mathcal{A}(U)\subset h^{*}\mathrm{SO}(5) by letting the fibre of 𝒜(U)\mathcal{A}(U) at pUp\in U be

𝒜(U)p={(𝐞1,,𝐞5)SO(5)𝐞1=p,TpU=span(𝐞4,𝐞5)}.\mathcal{A}(U)_{p}=\left\{\left(\mathbf{e}_{1},\ldots,\mathbf{e}_{5}\right)\in\mathrm{SO}(5)\mid\mathbf{e}_{1}=p,\>\>T_{p}U=\mathrm{span}\left(\mathbf{e}_{4},\mathbf{e}_{5}\right)\right\}.

The nature of the frame adaptation and the superminimality condition on UU together imply that the pullback of Maurer-Cartan form of SO(5)\mathrm{SO}(5) to 𝒜(U)\mathcal{A}(U) may be written (with a judicious choice of notation) identically to (4.22). The result then follows from Cartan’s Theorem 4.1. ∎

4.4.2. The case G=4\mathrm{G}=\mathbb{Z}_{4}

Reasoning similar to the previous section implies that associative 3-folds whose tangent space has SO(3)\mathrm{SO}(3)-stabiliser everywhere equal to 4\mathbb{Z}_{4} are ruled associative submanifolds. The proof of the following proposition is then straightforward.

Proposition 4.15.

Let NBN\to B be an associative submanifold of the Berger space such that the tangent space of NN has SO(3)\mathrm{SO}(3)-stabiliser everywhere equal to 4.\mathbb{Z}_{4}. Then NN is a ruled associative submanifold which is locally the πλ1\pi\circ\lambda^{-1} image of a JJ-holomorphic curve in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) satisfying ζ2=0.\zeta_{2}=0. Conversely, any JJ-holomorphic curve in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) satisfying ζ2=0\zeta_{2}=0 gives rise via Theorem 3.4 to an associative submanifold whose tangent space is fixed by 4\mathbb{Z}_{4}.

By Proposition 3.9 and the surrounding discussion, the JJ-holomorphic curves in Gr+2(TS4)\mathrm{Gr}^{+}_{2}\!\left(TS^{4}\right) with ζ2=0\zeta_{2}=0 are exactly the lifts of JNKJ_{\mathrm{NK}}-holomorphic curves in 3.\mathbb{CP}^{3}.

4.4.3. The case G=3\mathrm{G}=\mathbb{Z}_{3}

By repeatedly applying the identity d2=0d^{2}=0 to the structure equations of an associative submanifold NN whose tangent spaces are everywhere fixed by the action of 3,\mathbb{Z}_{3}, it is possible to show that the tangent spaces of NN are in fact stabilised by a group strictly larger than 3.\mathbb{Z}_{3}. The details of this calculation are routine but long, so we do not include them.

Proposition 4.16.

There are no associative submanifolds of BB whose tangent spaces have SO(3)\mathrm{SO}(3)-stabiliser everywhere exactly equal to 3.\mathbb{Z}_{3}.

References


Université du Québec à Montréal

Département de mathématiques

Case postale 8888, succursale centre-ville, Montréal (Québec), H3C 3P8, Canada

E-mail address: [email protected]


McMaster University

Department of Mathematics & Statistics

Hamilton, ON, Canada, L8S 4K1

E-mail address: [email protected]