This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Artificial Relaxation in NMR Experiment

Shingo Kukita1) [email protected]    Haruki Kiya2) [email protected]    Yasushi Kondo2) [email protected] 1)Department of Computer Science, National Defence Academy of Japan, 1-10-20, Hashirimizu, Yokosuka, Japan 2)Department of Physics, Kindai University, Higashi-Osaka 577-8502, Japan
Abstract

Environmental noises cause the relaxation of quantum systems and decrease the precision of operations. Apprehending the relaxation mechanism via environmental noises is essential for building quantum technologies. Relaxations can be considered a process of information dissipation from the system into an environment with infinite degrees of freedom (DoF). According to this idea, a model of artificial relaxation has been proposed and demonstrated in NMR experiments. Although this model successfully understood the central idea of relaxation, we observed recursive behavior, which is non-ideal to describe relaxation, because of few DoF of the “artificial environment”. In this paper, we extend the approach of the artificial environment and discuss, theoretically and experimentally, how many DoF of the environment are necessary for realizing ideal relaxation behavior. Our approach will help us thoroughly understand the concept of relaxation.

I introduction

A quantum system suffering from environmental noises is an open system [1]. Realistic quantum devices, which are utilized in emerging technology such as quantum sensing [2, 3, 4], communication [5, 6, 7] and computation [8, 9, 10], are regarded as open systems. To improve quantum technologies, we desire to control the behaviors of such systems at will. Microscopic picture of open systems has also been studied in the context of thermodynamics[11, 12, 13, 14, 15, 16], which is of considerable interest since Maxwell’s era.n the thermodynamics of a system [17, 18]. Therefore, it is necessary from both viewpoints of science and technology to investigate behaviors of open systems. To deeply apprehend open systems, many efforts have been carried out, for example, utilizing optics [19], ultracold atoms [20], trapped ions [21], and cold electric circuits [22].

An open quantum system is a subsystem of a large system. The open system interacts with the other part of the large one, called an environment and the total dynamics is governed by unitary evolution. If we focus only on the subsystem, we witness the leakage of “information” from it to the environment owing to the interaction between them. As the total dynamics is unitary, this information will return to the subsystem someday. However, the environment’s degrees of freedom (DoF) are uncountable, and hence its backflow must only occur once the Universe dies. This is an interpretation of relaxation in an open system and leads us to the idea of an artificial open system by which we can intuitively understand the concept of open systems.

Refer to caption
Figure 1: The concept of the artificial open system. System I is surrounded by System II. Both systems weakly interact with an intrinsic environment. Due to their interaction, System I exhibits a relaxation-like behavior in a particular time scale.

A theoretical model of an artificial open system is schematically represented as follows [23, 24, 25, 26]. The model comprises System I and II (Fig. 1), both of which are well-controllable and weakly interact with an intrinsic environment. System I, whose dynamics we focus on, interacts with System II, representing the “artificial environment”. In a particular time scale, System I exhibits relaxation-like behavior due to the interaction with System II, although the information, which went away from System I by this behavior, will come back in a realistic time scale; controllability of System II usually implies few DoF. More DoF of System II will make a more plausible relaxation of System I. Reference [23, 25] provided an explicit form of this model using multiple qubits (two-level systems). System I is represented as a qubit, while System II consists of the other qubits that are coupled to the qubit of System I. Presuming a simple interaction between them and a particular initial state, we can explicitly solve this model. The expectation value σx\langle\sigma_{x}\rangle (σx\sigma_{x} is the xx component of the Pauli matrices) of System I exhibits relaxation-like behavior due to its interaction with System II, while we also witness its recursion as expected. This model was implemented in an NMR experiment using molecules of Tetramethylsilane (TMS, Fig. 2(a)). We can directly observe σx\langle\sigma_{x}\rangle as a Free Induction Decay (FID) signal.

In this paper, we consider a generalization of this model by adding more DoF to System II than the previous one. The expectation value σx\langle\sigma_{x}\rangle of System I also shows a relaxation-like behavior. However, the recursion is suppressed thanks to more DoF of System II while we can still analytically solve the dynamics. The dynamics of this model mimic environmental noises more plausibly than that of the previous one. A part of the corresponding experiments is implemented using molecules of Tetraethylsilane (TES, Fig. 2(b)).

Refer to caption
Refer to caption
Figure 2: Molecules to be considered. (a) Tetramethylsilane (TMS, Si(CH3)4). (b) Tetraethylsilane (TES, Si(C2H5)4)). In both panels, the central nucleus of Si works as System I, and the surrounding H nuclei are System II. The nuclei of C do not affect the FID signal of Si because they have no spin.

The remainder of this paper is organized as follows. Section II reviews the results in Refs. [25] and [26]. We introduce in Sec. III an extended proof-of-principle model of an open system and propose the corresponding NMR experiment using TES. Section IV is devoted to summarizing this work.

II review of “relaxation” in Tetramethylsilane

A theoretical model of an artificial open system and the corresponding NMR experiment have been proposed [23, 25]. The model is comprised of System I and II (Fig. 1). System I is a qubit, while System II is a composite system of multiple qubits. System I is regarded as the target whose dynamics we focus on. On the other hand, System II represents the “artificial environment”. The qubits in System II are coupled to System I via a simple interaction, but there is no interaction among them. The dynamics of System I is affected by “noise” due to this interaction. Despite the relatively many DoF in the total system, this dynamics can be solved analytically when we only focus on the phase dynamics or the expectation value σx\langle\sigma_{x}\rangle of System I. Reference [26] refines the theory in a more sophisticated way and sheds light on the extensibility of this model. An NMR experiment corresponding to the model is performed with molecules of TMS. A TMS molecule is comprised of Si, C, and H (Fig. 2(a)). In the experiment, the Si nucleus is System I, while the surrounding H nuclei represent System II. The C nuclei can be ignored because 99 % of them are 12C and have no spin. The expectation value σx\langle\sigma_{x}\rangle of System I in theory can experimentally be observed as a free induction decay (FID) signal of Si. As reviewed below, we see that this signal exhibits a relaxation-like behavior due to the interaction with H nuclei. The results of the theoretical model and the experiments have an excellent agreement when we take into account unavoidable real relaxation.

We introduce the mathematical description of FID dynamics of TMS and corresponding experiments. Consider a composite system consisting of (N+1)(N+1) qubits. The 0th qubit represents System I while the other NN qubits (k=1N)(k=1\sim N) do System II. The following Hamiltonian governs the dynamics:

H\displaystyle H =H0+k=1NHJ(k),\displaystyle=H_{0}+\sum^{N}_{k=1}H^{(k)}_{J},
H0\displaystyle H_{0} :=i=0Nωi2σz(i),HJ(k):=J4μ=x,y,zσμ(0)σμ(k),\displaystyle:=\sum^{N}_{i=0}\frac{\omega_{i}}{2}\sigma^{(i)}_{z},~{}~{}H^{(k)}_{J}:=\frac{J}{4}\sum_{\mu=x,y,z}\sigma^{(0)}_{\mu}\sigma^{(k)}_{\mu}, (1)

where σμ(i)\sigma^{(i)}_{\mu}(i=0,,Ni=0,\cdots,N, μ=x,y,z\mu=x,y,z) are the Pauli matrices acting on the relevant qubit; for instance, σz(0)\sigma^{(0)}_{z} is σzσ0σ0\sigma_{z}\otimes\sigma_{0}\otimes\cdots\sigma_{0}. The parameters ωi(i=0,1,,N)\omega_{i}~{}(i=0,1,\cdots,N) represent the resonance frequencies of the corresponding qubits while JJ is the coupling strength between the 0th qubit and the qubits in System II. Note that all the qubits in System II are coupled to the qubit of System I with the same interaction strength. Actually, even if JJ has kk-dependence, the dynamics discussed below can be solved analytically (Appendix A). We assume that there is no interaction among qubits in System II. Changing from the laboratory frame to the rotating one with respect to H0H_{0} provides

H~J4k=1Nσz(0)σz(k),\tilde{H}\approx\frac{J}{4}\sum^{N}_{k=1}\sigma^{(0)}_{z}\sigma^{(k)}_{z}, (2)

where we use the rotating wave approximation (RWA) with the assumption of |ω0ωk|J(k=1N)|\omega_{0}-\omega_{k}|\gg J~{}(\forall k=1\sim N).

We consider the following initial state at t=0t=0:

ρ(0)=\displaystyle\rho(0)= 12N+1(σ0(0)+σ+(0)+σ(0))SystemIk=1Nσ0(k)SystemII\displaystyle\frac{1}{2^{N+1}}\underbrace{\left(\sigma^{(0)}_{0}+\sigma^{(0)}_{+}+\sigma^{(0)}_{-}\right)}_{\rm System~{}I}\underbrace{\prod^{N}_{k=1}\sigma^{(k)}_{0}}_{\rm System~{}II}
=12N+1(σ0(0)+σ+(0)+σ(0)),\displaystyle=\frac{1}{2^{N+1}}\left(\sigma^{(0)}_{0}+\sigma^{(0)}_{+}+\sigma^{(0)}_{-}\right), (3)

in the rotating frame, where σ0\sigma_{0} denotes the 2×22\times 2 identity matrix and σ±=(σx±iσy)/2\sigma_{\pm}=(\sigma_{x}\pm i\sigma_{y})/2. Note that σ0(i)\sigma^{(i)}_{0} for any i=0,,Ni=0,\cdots,N is just the 2N×2N2^{N}\times 2^{N} identity matrix. The following Liouville-von Neumann equation describes the dynamics:

dρ(t)dt=i[H~,ρ(t)],\frac{d\rho(t)}{dt}=-i[\tilde{H},\rho(t)], (4)

where [,][\bullet,\bullet] represents the commutator of two operators. The solution of this equation is

ρ(t)\displaystyle\rho(t) =σ0(0)2N+1+σ+02k=1NA(k)(t)+σ(0)2k=1NA(k)(t),\displaystyle=\frac{\sigma^{(0)}_{0}}{2^{N+1}}+\frac{\sigma^{0}_{+}}{2}\prod^{N}_{k=1}A^{(k)}(t)+\frac{\sigma^{(0)}_{-}}{2}\prod^{N}_{k=1}A^{(k)}(t),
A(k)(t)\displaystyle A^{(k)}(t) =cos(Jt/2)σ0(k)2+sin(Jt/2)σz(k)2.\displaystyle=\cos(Jt/2)\frac{\sigma^{(k)}_{0}}{2}+\sin(Jt/2)\frac{\sigma^{(k)}_{z}}{2}. (5)

See Appendix A for the details.

In the case of the TMS molecule, the central Si nucleus corresponds to System I while the twelve H nuclei are System II, which means N=12N=12. The state of this composite system after applying a π/2\pi/2-pulse to Si is described by Eq. (3) up to normalization [27]. The parameter JJ is determined via experiments [25]. The expectation value σx\langle\sigma_{x}\rangle of System I is described by

STMS(t):=\displaystyle S^{\rm TMS}(t):= Tr(σx(0)ρ(t))=cosN(Jt/2),\displaystyle{\rm Tr}\left(\sigma^{(0)}_{x}\rho(t)\right)=\cos^{N}(Jt/2), (6)

which corresponds to the FID signal of Si in the experiment. Note that Tr(σy(0)ρ(t))=0{\rm Tr}\left(\sigma_{y}^{(0)}\rho(t)\right)=0, which should be taken to be 0 also in the experiment below.

Figure 3 compares STMS(t)S^{\rm TMS}(t) with experimental results. In the long time region shown in Fig. 3(a), STMS(t)S^{\rm TMS}(t) predicts recursive dynamics (the green line) because of the finite DoF in System II. Note, however, that STMS(t)S^{\rm TMS}(t) well reproduces a relaxation-like behavior in a short time scale, as shown in Fig. 3(b). If we stop observing this dynamics at 0.11 s, we cannot observe the recursive dynamics and may “experimentally” judge that System I has completely relaxed. It is very similar to the case that we cannot observe a recursive behavior in real relaxation because of the finite life of the Universe. The red dots show the FID signal of Si and agree very well with the green line at t[0,0.11]t\in[0,0.11] s. It implies that we successfully reproduce relaxation phenomena theoretically and experimentally with the NMR technique.

Refer to caption
Refer to caption
Figure 3: (color online) The dynamics of STMS(t)S^{\rm TMS}(t), STMS(t)S^{\rm TMS}_{\cal L}(t), and the corresponding experimental result in (a) a long-time region t[0,3.0]t\in[0,3.0] s, and (b) a short time region t[0,0.15]t\in[0,0.15] s. In both panels, the green line represents STMS(t)S^{\rm TMS}(t) while the blue line is STMS(t)S^{\rm TMS}_{\cal L}(t). The red dots are the experimental result of the (real part of) FID signal of Si. The black dots are the imaginary part of the FID signal, corresponding to the expectation value of σy\sigma_{y}, and should be taken 0 in this situation. We compare STMS(t)S^{\rm TMS}(t), STMS(t)S^{\rm TMS}_{\cal L}(t) and the red dots.

We can compare σx\langle\sigma_{x}\rangle of System I with an experimental FID signal of Si in the whole time region by considering effects from an intrinsic environment. In the case of liquid-state NMR, the origin of such effects is magnetic impurities in the solvent. They are described by the following GKSL term [28, 29] with infinite temperature approximation:

[ρ]\displaystyle{\cal L}[\rho] :=i=0N(i)[ρ],\displaystyle:=\sum^{N}_{i=0}{\cal L}^{(i)}[\rho],
(i)[ρ]\displaystyle{\cal L}^{(i)}[\rho] :=γi2(μ=±σ±(i)ρσ(i)ρ).\displaystyle:=\frac{\gamma_{i}}{2}\left(\sum_{\mu=\pm}\sigma^{(i)}_{\pm}\rho\sigma^{(i)}_{\mp}-\rho\right). (7)

We assume that γi\gamma_{i} for all k=1,,Nk=1,\cdots,N are identical: γi=γII\gamma_{i}=\gamma_{\rm II} for k=1,,Nk=1,\cdots,N while we let γI\gamma_{\rm I} denote γ0\gamma_{0}. As in the case of JJ, the kk dependence of γII\gamma_{\rm II} does not affect the analytical solvability of the model. We solve the following GKSL equation instead of Eq. (4),

dρ(t)dt=i[H~,ρ(t)]+[ρ(t)].\frac{d\rho(t)}{dt}=-i[\tilde{H},\rho(t)]+{\cal L}[\rho(t)]. (8)

The solution of the above equation still has a simple form (Appendix A),

ρ(t)\displaystyle\rho_{\cal L}(t) =σ0(0)2+eγIt/2σ+(0)2k=1NA(k)(t)\displaystyle=\frac{\sigma^{(0)}_{0}}{2}+e^{-\gamma_{\rm I}t/2}\frac{\sigma^{(0)}_{+}}{2}\prod^{N}_{k=1}A_{\cal L}^{(k)}(t)
+eγIt/2σ(0)2k=1NA(k)(t),\displaystyle+e^{-\gamma_{\rm I}t/2}\frac{\sigma^{(0)}_{-}}{2}\prod^{N}_{k=1}A_{\cal L}^{(k)\dagger}(t),
A(k)(t)\displaystyle A_{\cal L}^{(k)}(t) =eγIIt/2(γIIΩsin(Ωt/2)+cos(Ωt/2))σ0(k)2\displaystyle=e^{-\gamma_{\rm II}t/2}\bigg{(}\frac{\gamma_{\rm II}}{\Omega}\sin(\Omega t/2)+\cos(\Omega t/2)\bigg{)}\frac{\sigma^{(k)}_{0}}{2}
+eγIIt/2(iJΩsin(Ωt/2))σz(k)2,\displaystyle+e^{-\gamma_{\rm II}t/2}\bigg{(}\frac{-iJ}{\Omega}\sin(\Omega t/2)\bigg{)}\frac{\sigma^{(k)}_{z}}{2}, (9)

where Ω=J2γII2\Omega=\sqrt{J^{2}-\gamma^{2}_{\rm II}}. We assume J>γIIJ>\gamma_{\rm II} and thus Ω\Omega is real. The parameters (γI,γII)=(0.21,0.1)(\gamma_{{\rm I}},\gamma_{\rm II})=(0.21,0.1) s-1 are determined via experiments [25]. The expectation value σx\langle\sigma_{x}\rangle in this noisy case, STMS(t)S^{\rm TMS}_{\cal L}(t), is described by

STMS(t)\displaystyle S^{\rm TMS}_{\cal L}(t) :=Tr(σx(0)ρ(t))\displaystyle:={\rm Tr}\left(\sigma^{(0)}_{x}\rho_{{\cal L}}(t)\right)
=eγ0t/2(eγIIt/2(γIIΩsin(Ωt/2)+cos(Ωt/2)))N,\displaystyle=e^{-\gamma_{0}t/2}\left(e^{-\gamma_{\rm II}t/2}\bigg{(}\frac{\gamma_{\rm II}}{\Omega}\sin(\Omega t/2)+\cos(\Omega t/2)\bigg{)}\right)^{N}, (10)

and is shown with the blue curve in Fig. 3. We found that STMS(t)S^{\rm TMS}_{\cal L}(t) can reproduce the FID signal of Si in the whole time region up to 3.0 s. It implies that our model can well be realized in NMR experiments even with an intrinsic environment.

III More Degrees of Freedom of “artificial environment”

We propose an extension of the above theoretical model by increasing DoF of the artificial environment with experimental realization in mind. For this purpose, we add more qubits in the artificial environment like in Fig. 2(b) and call them System III. System II and III interact with System I in different coupling strengths and are coupled to each other. Similarly to the model in § II, the expectation value σx\langle\sigma_{x}\rangle of System I has a relaxation-like behaviour owing to its interaction with System II and III. The relaxation-like behavior is more plausible than in the previous model, thanks to the more DoF.

III.1 Case when Rotating Wave Approximation is valid

Consider a multiple-qubit model shown in Fig. 4. The central 0th qubit is System I. System II (III) comprises MM (NN) qubits. System II and III interact with each other, while there is no interaction among qubits in System II (III).

Refer to caption
Figure 4: (color online) The schematic picture of the proposed model. System I interacts with System II (black lines) and System III (green line). There are interactions between System II and III (red dotted lines).

The Hamiltonian is given as

H\displaystyle H =H0+Hin+Hex,\displaystyle=H_{0}+H^{\rm in}+H^{\rm ex},
H0\displaystyle H_{0} =ωI2σz(0)+ωII2α=1Mσz(II,α)+ωIII2β=1Nσz(III,β),\displaystyle=\frac{\omega_{{\rm I}}}{2}\sigma_{z}^{(0)}+\frac{\omega_{{\rm II}}}{2}\sum^{M}_{\alpha=1}\sigma^{({\rm II},\alpha)}_{z}+\frac{\omega_{{\rm III}}}{2}\sum^{N}_{\beta=1}\sigma^{({\rm III},\beta)}_{z},
Hin\displaystyle H^{\rm in} =α,β=1M,Nμ=x,y,zJ23(α,β)4σμ(II,α)σμ(III,β),\displaystyle=\sum^{M,N}_{\alpha,\beta=1}\sum_{\mu=x,y,z}\frac{J^{(\alpha,\beta)}_{23}}{4}\sigma^{({\rm II},\alpha)}_{\mu}\sigma^{({\rm III},\beta)}_{\mu},
Hex\displaystyle H^{\rm ex} =α=1M(μ=x,y,zJ124σμ(0)σμ(II,α))\displaystyle=\sum^{M}_{\alpha=1}\left(\sum_{\mu=x,y,z}\frac{J_{12}}{4}\sigma^{(0)}_{\mu}\sigma^{({\rm II},\alpha)}_{\mu}\right)
+β=1N(μ=x,y,zJ134σμ(0)σμ(III,β)),\displaystyle+\sum^{N}_{\beta=1}\left(\sum_{\mu=x,y,z}\frac{J_{13}}{4}\sigma^{(0)}_{\mu}\sigma^{({\rm III},\beta)}_{\mu}\right), (11)

where σμ(II,α)\sigma^{({\rm II},\alpha)}_{\mu} (σμ(III,β)\sigma^{({\rm III},\beta)}_{\mu}) is the μ\mu component of the Pauli matrices that acts only on the α\alphath (β\betath) qubit in System II (III). Let us explain the terms in the above Hamiltonian. H0H_{0} makes the quantization axes with the resonance frequencies ωI\omega_{{\rm I}}, ωII\omega_{{\rm II}}, and ωIII\omega_{{\rm III}}. The qubits in System II{\rm II} (III{\rm III}) have the same resonance frequency ωII\omega_{{\rm II}} (ωIII\omega_{{\rm III}}). HinH^{\rm in} represents the interaction between qubits in Systems II and those in III; there is no interaction among qubits in System II (III). HexH^{\rm ex} is the interactions between System I and System II (III). The qubits in System II (III) are identically coupled to System I with the strength J12J_{12} (J13J_{13}). We define the initial state similarly to Eq. (3):

ρ(0)\displaystyle\rho(0) =12L+1(σ0(0)+σ+(0)+σ(0))SystemI(α=1Mσ0(II,α)β=1Nσ0(III,β))SystemIIandIII\displaystyle=\frac{1}{2^{L+1}}\underbrace{\left(\sigma^{(0)}_{0}+\sigma^{(0)}_{+}+\sigma^{(0)}_{-}\right)}_{\rm System~{}I}\underbrace{\left(\prod^{M}_{\alpha=1}\sigma^{({\rm II},\alpha)}_{0}\prod^{N}_{\beta=1}\sigma^{({\rm III},\beta)}_{0}\right)}_{{\rm System~{}II~{}and~{}III}}
=12L+1(σ0(0)+σ+(0)+σ(0)),\displaystyle=\frac{1}{2^{L+1}}\left(\sigma^{(0)}_{0}+\sigma^{(0)}_{+}+\sigma^{(0)}_{-}\right), (12)

where L=M+NL=M+N.

The RWA is applied by assuming that the differences in the resonance frequencies are significant: |ωIωII|J12|\omega_{{\rm I}}-\omega_{{\rm II}}|\gg J_{12}, |ωIIωIII|J23(α,β)|\omega_{{\rm II}}-\omega_{{\rm III}}|\gg J^{(\alpha,\beta)}_{23} and |ωIωIII|J13|\omega_{{\rm I}}-\omega_{{\rm III}}|\gg J_{13}. We obtain the approximated Hamiltonian in the rotating frame,

H~\displaystyle\tilde{H} H~in+H~ex,\displaystyle\approx\tilde{H}^{\rm in}+\tilde{H}^{\rm ex},
H~in\displaystyle\tilde{H}^{\rm in} =α,β=1M,NJ23(α,β)4σz(II,α)σz(III,β),\displaystyle=\sum^{M,N}_{\alpha,\beta=1}\frac{J^{(\alpha,\beta)}_{23}}{4}\sigma^{({\rm II},\alpha)}_{z}\sigma^{({\rm III},\beta)}_{z},
H~ex\displaystyle\tilde{H}^{\rm ex} =J124σz(0)α=1Mσz(II,α)+J134σz(0)β=1Nσz(III,β),\displaystyle=\frac{J_{12}}{4}\sigma^{(0)}_{z}\sum^{M}_{\alpha=1}\sigma^{({\rm II},\alpha)}_{z}+\frac{J_{13}}{4}\sigma^{(0)}_{z}\sum^{N}_{\beta=1}\sigma^{({\rm III},\beta)}_{z}, (13)

of which the corresponding dynamics from the initial state (12) is easily solved. The solution is derived in a quite similar way to Eq. (5) as

ρ(t)\displaystyle\rho(t) =σ0(0)2L+1+σ+(0)2α=1MA(II,α)β=1NA(III,β)\displaystyle=\frac{\sigma^{(0)}_{0}}{2^{L+1}}+\frac{\sigma^{(0)}_{+}}{2}\prod^{M}_{\alpha=1}A^{({\rm II},\alpha)}\prod^{N}_{\beta=1}A^{({\rm III},\beta)}
+σ(0)2α=1MA(II,α)β=1NA(III,β),\displaystyle+\frac{\sigma^{(0)}_{-}}{2}\prod^{M}_{\alpha=1}A^{({\rm II},\alpha)}\prod^{N}_{\beta=1}A^{({\rm III},\beta)},
A(II,α)\displaystyle A^{({\rm II},\alpha)} =cos(J12t/2)σ0(II,α)2+sin(J12t/2)σz(II,α)2,\displaystyle=\cos(J_{12}t/2)\frac{\sigma^{({\rm II},\alpha)}_{0}}{2}+\sin(J_{12}t/2)\frac{\sigma^{({\rm II},\alpha)}_{z}}{2},
A(III,β)\displaystyle A^{({\rm III},\beta)} =cos(J13t/2)σ0(III,β)2+sin(J13t/2)σz(III,β)2.\displaystyle=\cos(J_{13}t/2)\frac{\sigma^{({\rm III},\beta)}_{0}}{2}+\sin(J_{13}t/2)\frac{\sigma^{({\rm III},\beta)}_{z}}{2}. (14)

See Appendix A for the details. Note that J23J_{23} does not influence the dynamics of System I when the RWA is valid. We calculate the following value like STMS(t)S^{\rm TMS}(t) in Eq. (6),

STES(t):=\displaystyle S^{\rm TES}(t):= Tr(σx(0)ρ(t))=(cos(J12t/2))M(cos(J13t/2))N.\displaystyle{\rm Tr}\left(\sigma^{(0)}_{x}\rho(t)\right)=\left(\cos(J_{12}t/2)\right)^{M}\left(\cos(J_{13}t/2)\right)^{N}. (15)

We regard Si in the TES molecule as System I with experimental realization in mind. Correspondingly, STES(t)S^{\rm TES}(t) represents the FID signal of Si. As shown in Fig. 2(b), we identify the TES molecule with the case of (M,N)=(8,12)(M,N)=(8,12) by taking H spins in the four methyl groups as System III. The qubits in System II are the nearer H’s. We again ignore C spins because the natural abundance of 13C with a spin half is only 1 %. The parameters are experimentally determined as (J12,J13,J23)=(2π×6.42,2π×0.5,2π×8.02)(J_{12},J_{13},J_{23})=(2\pi\times 6.42,2\pi\times 0.5,2\pi\times 8.02) s-1 from measured spectra of H and Si. We plot STES(t)S^{\rm TES}(t) (solid green line) with these parameters in Fig. 5 (a). It shows less recursion than STMS(t)S^{\rm TMS}(t) as expected; the peaks of the oscillation with the frequency J12J_{12} (J13J_{13}) is suppressed due to the other oscillation with J13J_{13} (J12J_{12}).

Refer to caption
Refer to caption
Figure 5: (color online) Suppression of recursions. (a) STES(t)S^{\rm TES}(t) (green line) is plotted. For comparison, we also plot (cos(J12t/2))8\left(\cos(J_{12}t/2)\right)^{8} (dashed black line) and (cos(J13t/2)12\left(\cos(J_{13}t/2\right)^{12} (red line). The parameters are taken as J12=2π×6.42J_{12}=2\pi\times 6.42 s-1 J13=2π×0.5J_{13}=2\pi\times 0.5 s-1 with experimental realization via TES in mind. (b) The FID signal SvirtualTES(t)S^{\rm TES}_{\rm virtual}(t) of a virtual TES with 13C in the methyl group is plotted. The recursion is even more suppressed than STES(t)S^{\rm TES}(t).

To further investigate our idea, we consider a virtual TES molecule by replacing all C atoms in the methyl groups with 13C. Although the natural abundance of 13C is only 1 % and small, we could observe the Si spectra peaks caused by 13C’s in the normal TES spectrum when all H’s are decoupled. We found that the scalar coupling strength J14J_{14} between Si and 13C in the methyl group is 2π×2.22\pi\times 2.2 s-1 (The strength between Si and the other 13C was measured as 2π×50.82\pi\times 50.8 s-1). The corresponding model can be constructed by adding the following term to H~ex\tilde{H}^{\rm ex} in Eq. (13),

J144σz(0)η=14σz(IV,η),\frac{J_{14}}{4}\sigma^{(0)}_{z}\sum^{4}_{\eta=1}\sigma^{({\rm IV},\eta)}_{z}, (16)

where we let System IV represent 13C. As in the previous case, interactions between C’s and H’s do not affect the dynamics like J23J_{23}. We also solve the dynamics in this case and obtain

SvirtualTES(t)=(cos(J12t/2))8(cos(J13t/2))12(cos(J14t/2))4.S^{\rm TES}_{\rm virtual}(t)=\left(\cos(J_{12}t/2)\right)^{8}\left(\cos(J_{13}t/2)\right)^{12}\left(\cos(J_{14}t/2)\right)^{4}. (17)

As we can see in Fig. 5 (b), SvirtualTES(t)S^{\rm TES}_{\rm virtual}(t) shows even less recursive behaviour than STES(t)S^{\rm TES}(t). Note that this suppression of the recursion does not occur for STMS(t)S^{\rm TMS}(t) no matter how large NN we prepare: In such a case, each peak will get narrow, but the recursion always occurs at a particular time scale. This implies that interacting with ancillary DoF with different interaction strengths is essential for realizing a plausible relaxation. Instead of using labeled 13C, we can employ larger alkyl, such as propyl and butyl, groups. The corresponding model can be analytically solved even in these cases when the RWA is valid.

The dynamics with dissipation can analytically be solved as well. The following terms describe the dissipation:

[ρ]\displaystyle{\cal L}[\rho] :=(0)+α=1M(II,α)[ρ]+β=1N(III,β)[ρ],\displaystyle:={\cal L}^{(0)}+\sum^{M}_{\alpha=1}{\cal L}^{({\rm II},\alpha)}[\rho]+\sum^{N}_{\beta=1}{\cal L}^{({\rm III},\beta)}[\rho],
(0)[ρ]\displaystyle{\cal L}^{(0)}[\rho] :=γI2(μ=±σ±(0)ρσ(0)ρ),\displaystyle:=\frac{\gamma_{{\rm I}}}{2}\left(\sum_{\mu=\pm}\sigma^{(0)}_{\pm}\rho\sigma^{(0)}_{\mp}-\rho\right),
(II,α)[ρ]\displaystyle{\cal L}^{({\rm II},\alpha)}[\rho] :=γII2(μ=±σ±(II,α)ρσ(II,α)ρ),\displaystyle:=\frac{\gamma_{{\rm II}}}{2}\left(\sum_{\mu=\pm}\sigma^{({\rm II},\alpha)}_{\pm}\rho\sigma^{({\rm II},\alpha)}_{\mp}-\rho\right),
(III,β)[ρ]\displaystyle{\cal L}^{({\rm III},\beta)}[\rho] :=γIII2(μ=±σ±(III,β)ρσ(III,β)ρ).\displaystyle:=\frac{\gamma_{{\rm III}}}{2}\left(\sum_{\mu=\pm}\sigma^{({\rm III},\beta)}_{\pm}\rho\sigma^{({\rm III},\beta)}_{\mp}-\rho\right). (18)

The solution of the GKSL equation is

ρ(t)\displaystyle\rho(t) =12L+1σ0(0)+eγIt/2σ+(0)2α=1MA(II,α)β=1NA(III,β)+eγIt/2σ(0)2α=1MA(II,α)β=1NA(III,β),\displaystyle=\frac{1}{2^{L+1}}\sigma^{(0)}_{0}+e^{-\gamma_{{\rm I}}t/2}\frac{\sigma^{(0)}_{+}}{2}\prod^{M}_{\alpha=1}A_{\cal L}^{({\rm II},\alpha)}\prod^{N}_{\beta=1}A_{\cal L}^{({\rm III},\beta)}+e^{-\gamma_{{\rm I}}t/2}\frac{\sigma^{(0)}_{-}}{2}\prod^{M}_{\alpha=1}A_{\cal L}^{({\rm II},\alpha)\dagger}\prod^{N}_{\beta=1}A_{\cal L}^{({\rm III},\beta)\dagger},
A(II,α)\displaystyle A_{\cal L}^{({\rm II},\alpha)} =eγIIt/2(γIIΩIIsin(ΩIIt/2)+cos(ΩIIt/2))σ0(II,α)2+eγIIt/2(iJ12ΩIIsin(ΩIIt/2))σz(II,α)2,\displaystyle=e^{-\gamma_{{\rm II}}t/2}\bigg{(}\frac{\gamma_{{\rm II}}}{\Omega_{{\rm II}}}\sin(\Omega_{{\rm II}}t/2)+\cos(\Omega_{{\rm II}}t/2)\bigg{)}\frac{\sigma^{({\rm II},\alpha)}_{0}}{2}+e^{-\gamma_{{\rm II}}t/2}\bigg{(}\frac{-iJ_{12}}{\Omega_{{\rm II}}}\sin(\Omega_{{\rm II}}t/2)\bigg{)}\frac{\sigma^{({\rm II},\alpha)}_{z}}{2},
A(III,β)\displaystyle A^{({\rm III},\beta)} =eγIIIt/2(γIIIΩIIIsin(ΩIIIt/2)+cos(ΩIIIt/2))σ0(III,β)2+eγIIIt/2(iJ13ΩIIIsin(ΩIIIt/2))σz(III,β)2,\displaystyle=e^{-\gamma_{{\rm III}}t/2}\bigg{(}\frac{\gamma_{{\rm III}}}{\Omega_{{\rm III}}}\sin(\Omega_{{\rm III}}t/2)+\cos(\Omega_{{\rm III}}t/2)\bigg{)}\frac{\sigma^{({\rm III},\beta)}_{0}}{2}+e^{-\gamma_{{\rm III}}t/2}\bigg{(}\frac{-iJ_{13}}{\Omega_{{\rm III}}}\sin(\Omega_{{\rm III}}t/2)\bigg{)}\frac{\sigma^{({\rm III},\beta)}_{z}}{2}, (19)

where ΩII(III)=J12(13)2γII(III)2\Omega_{{\rm II}({\rm III})}=\sqrt{J^{2}_{12(13)}-\gamma^{2}_{{\rm II}({\rm III})}}. The expectation value of σx(0)\sigma^{(0)}_{x} of System I is given as

STES(t)\displaystyle S^{\rm TES}_{\cal L}(t) :=Tr(σx(0)ρ(t))\displaystyle:={\rm Tr}\left(\sigma^{(0)}_{x}\rho_{{\cal L}}(t)\right)
=eγIt/2(eγIIt/2(γIIΩIIsin(ΩIIt/2)+cos(ΩIIt/2)))M(eγIIIt/2(γIIIΩIIIsin(ΩIIIt/2)+cos(ΩIIIt/2)))N.\displaystyle=e^{-\gamma_{{\rm I}}t/2}\left(e^{-\gamma_{{\rm II}}t/2}\bigg{(}\frac{\gamma_{{\rm II}}}{\Omega_{{\rm II}}}\sin(\Omega_{{\rm II}}t/2)+\cos(\Omega_{{\rm II}}t/2)\bigg{)}\right)^{M}\left(e^{-\gamma_{{\rm III}}t/2}\bigg{(}\frac{\gamma_{{\rm III}}}{\Omega_{{\rm III}}}\sin(\Omega_{{\rm III}}t/2)+\cos(\Omega_{{\rm III}}t/2)\bigg{)}\right)^{N}. (20)

We observe the FID signal of Si in a TES molecule and compare it with the function (20). Figure 6 shows a qualitative agreement between the model and the corresponding experiment. In the long-time region, the plotted STES(t)S^{\rm TES}_{\cal L}(t) approximates the experimental result. In contrast, STES(t)S^{\rm TES}(t) has the revival behavior, which does not appear in the experiment. Meanwhile, in the short time region, both of STES(t)S^{\rm TES}(t) and STES(t)S^{\rm TES}_{\cal L}(t) well approximate the experimental dynamics; that is, the relaxation-like behavior of the signal in this region is governed by the interaction with the artificial environment (H’s) rather than the intrinsic one originated from magnetic impurities in solvent.

Refer to caption
Refer to caption
Figure 6: (color online) The dynamics of STES(t)S^{\rm TES}(t), STES(t)S^{\rm TES}_{\cal L}(t), and the corresponding experimental result in (a) a long time region t[0,2.5]t\in[0,2.5] s, and (b) a short time region t[0,0.4]t\in[0,0.4] s. In both panels, the green line represents STES(t)S^{\rm TES}(t) while the blue line STES(t)S^{\rm TES}_{\cal L}(t). The blue line in (a) is not visible because all lines overlap with each other. The red dots are the experimental result of the (real part of) FID signal of Si. The black dots are the imaginary part of the FID signal, which should be taken 0 in this situation. We need to compare STES(t)S^{\rm TES}(t), STES(t)S^{\rm TES}_{\cal L}(t) and the red dots.

III.2 Case when Rotating Wave Approximation is not applicable

Connecting larger alkyl groups to Si than TES will make a more plausible artificial environment. Its dynamics can be solved easily with the method discussed in Appendix A. However, it is not easy to prepare the corresponding molecule. they are not usually available. In this subsection, instead, we introduce another way to increase the environmental DoF; we implement complicated interactions by quitting to apply the RWA (weak coupling limit \rightarrow strong coupling region [30]), or equivalently, by decreasing an applied magnetic field in the case of NMR experiments.

We reconsider the Hamiltonian (11). For later convenience, we decompose both of System II and III into identical PP parts: System IIp and IIIp (p=1,,Pp=1,\cdots,P), see Fig. 7. Each System IIp (IIIp) is comprised of mm (nn) qubits; accordingly, System II (III) has M=PmM=Pm (N=PnN=Pn) qubits in total. The qubits in System IIp and IIIp have an interaction with the identical interaction strength J23J_{23} while there is no interaction among qubits in System IIp (IIIp). Also, we assume that System  IIp (IIIp) does not interact with System  IIp{}_{p^{\prime}} (IIIp{}_{p^{\prime}}) for ppp^{\prime}\neq p.

Refer to caption
Figure 7: (color online) System I interacts with System II and III, divided into identical PP parts. One of them is shown here. System I interacts with System IIp (black thin lines) and with System IIIp (green thick lines). Also, qubits in System II and III interact with each other (red thin dotted lines). There is neither interaction among qubits in System IIp (IIIp) nor inter-parts ones.

The Hamiltonian is rearranged as

H\displaystyle H =H0+p=1P(Hpin+Hpex),\displaystyle=H_{0}+\sum^{P}_{p=1}\left(H^{\rm in}_{p}+H^{\rm ex}_{p}\right),
H0\displaystyle H_{0} =ωI2σz(0)+ωII2p=1Pα=1mσz(IIp,α)\displaystyle=\frac{\omega_{{\rm I}}}{2}\sigma_{z}^{(0)}+\frac{\omega_{{\rm II}}}{2}\sum_{p=1}^{P}\sum^{m}_{\alpha=1}\sigma^{({\rm II}_{p},\alpha)}_{z}
+ωIII2p=1Pβ=1nσz(IIIp,β),\displaystyle+\frac{\omega_{{\rm III}}}{2}\sum_{p=1}^{P}\sum^{n}_{\beta=1}\sigma^{({\rm III}_{p},\beta)}_{z},
Hpin\displaystyle H^{\rm in}_{p} =α,β=1m,nμ=x,y,zJ234σμ(IIp,α)σμ(IIIp,β),\displaystyle=\sum^{m,n}_{\alpha,\beta=1}\sum_{\mu=x,y,z}\frac{J_{23}}{4}\sigma^{({\rm II}_{p},\alpha)}_{\mu}\sigma^{({\rm III}_{p},\beta)}_{\mu},
Hpex\displaystyle H^{\rm ex}_{p} =α=1m(μ=x,y,zJ124σμ(0)σμ(IIp,α))\displaystyle=\sum^{m}_{\alpha=1}\left(\sum_{\mu=x,y,z}\frac{J_{12}}{4}\sigma^{(0)}_{\mu}\sigma^{({\rm II}_{p},\alpha)}_{\mu}\right)
+β=1n(μ=x,y,zJ134σμ(0)σμ(IIIp,β)),\displaystyle+\sum^{n}_{\beta=1}\left(\sum_{\mu=x,y,z}\frac{J_{13}}{4}\sigma^{(0)}_{\mu}\sigma^{({\rm III}_{p},\beta)}_{\mu}\right), (21)

where σμ(IIp,α)\sigma^{({\rm II}_{p},\alpha)}_{\mu} (σμ(IIIp,β)\sigma^{({\rm III}_{p},\beta)}_{\mu}) is the μ\mu component of the Pauli matrices that acts only on the α\alphath (β\betath) qubit in System IIp (IIIp).

We also rearrange the initial state (12) as

ρ(0)\displaystyle\rho(0) =12L+1(σ0(0)+σ+(0)+σ(0))SystemI\displaystyle=\frac{1}{2^{L+1}}\underbrace{\left(\sigma^{(0)}_{0}+\sigma^{(0)}_{+}+\sigma^{(0)}_{-}\right)}_{\rm System~{}I}
×p=1P(α=1mσ0(IIp,α)β=1nσ0(IIIp,β))pthpartofSystemIIandIII\displaystyle\times\prod^{P}_{p=1}\underbrace{\left(\prod^{m}_{\alpha=1}\sigma^{({\rm II}_{p},\alpha)}_{0}\prod^{n}_{\beta=1}\sigma^{({\rm III}_{p},\beta)}_{0}\right)}_{p{\rm th~{}part~{}of~{}System~{}II~{}and~{}III}}
=12L+1(σ0(0)+σ+(0)+σ(0)),\displaystyle=\frac{1}{2^{L+1}}\left(\sigma^{(0)}_{0}+\sigma^{(0)}_{+}+\sigma^{(0)}_{-}\right), (22)

where LL denotes P(m+n)P(m+n).

In the case of the TES molecule, the parameters are taken as (P,m,n)=(4,2,3)(P,m,n)=(4,2,3).Each pp part corresponds to an alkyl group out of four (a part has no interaction with the other three parts).If we take the RWA for all interactions, the Hamiltonian (13) is reproduced.Note that |ωIIωIII|/J2326|\omega_{{\rm II}}-\omega_{{\rm III}}|/J_{23}\sim 26 in the experiments at 11.7 T of the magnetic field strength, shown in § III.1, and thus we can employ the RWA for them (Fig. 8).

Refer to caption
Figure 8: The spectrum of H of TES at 1.4 T. The inset spectrum is taken at 11.7 T. The peaks corresponding to H’s in System II and those in System III are well separated at 11.7 T, but they are not at 1.4 T.

In NMR, the resonance frequencies ωI\omega_{{\rm I}}, ωII\omega_{{\rm II}}, and ωIII\omega_{{\rm III}} are proportional to a common magnetic field BB, where the coefficients are different gyromagnetic ratios. Remembering the case of the TES molecule, the difference between the gyromagnetic ratios in ωII\omega_{{\rm II}} and ωIII\omega_{{\rm III}} will not be so large because the qubits in System II and III are homonuclear (H). Thus, the RWA for HpinH^{\rm in}_{p} will be valid only when BB is sufficiently large as in the case of the experiments in § III.1. On the other hand, the RWA for HpexH^{\rm ex}_{p} does not require a large BB because it is an interaction between heteronuclear Si and H’s. Summarizing, we can consider the situation where ωI,ωII,ωIII0\omega_{{\rm I}},\omega_{{\rm II}},\omega_{{\rm III}}\gg 0, |ωIωII|J12|\omega_{{\rm I}}-\omega_{{\rm II}}|\gg J_{12} and |ωIωIII|J13|\omega_{{\rm I}}-\omega_{{\rm III}}|\gg J_{13}, but δω:=|ωIIωIII|J23\delta\omega:=|\omega_{{\rm II}}-\omega_{{\rm III}}|\sim J_{23}. By adjusting the strength of BB, we can implement the following Hamiltonian in the case of the TES molecule:

H~\displaystyle\tilde{H}^{\prime} p=1P(H~pin+H~pex),\displaystyle\approx\sum^{P}_{p=1}\left(\tilde{H}^{\rm in}_{p}+\tilde{H}^{\rm ex}_{p}\right),
H~pin(t)\displaystyle\tilde{H}^{\rm in}_{p}(t) =α,β=1m,n(J234σz(IIp,α)σz(IIIp,β)+J232(eiδωtσ+(IIp,α)σ(IIIp,β)+eiδωtσ(IIp,α)σ+(IIIp,β))),\displaystyle=\sum^{m,n}_{\alpha,\beta=1}\left(\frac{J_{23}}{4}\sigma^{({\rm II}_{p},\alpha)}_{z}\sigma^{({\rm III}_{p},\beta)}_{z}+\frac{J_{23}}{2}\left(e^{i\delta\omega t}\sigma^{({\rm II}_{p},\alpha)}_{+}\sigma^{({\rm III}_{p},\beta)}_{-}+e^{-i\delta\omega t}\sigma^{({\rm II}_{p},\alpha)}_{-}\sigma^{({\rm III}_{p},\beta)}_{+}\right)\right),
H~pex=\displaystyle\tilde{H}^{\rm ex}_{p}= α=1mJ124σz(0)σz(IIp,α)+β=1nJ134σz(0)σz(IIIp,β).\displaystyle\sum^{m}_{\alpha=1}\frac{J_{12}}{4}\sigma^{(0)}_{z}\sigma^{({\rm II}_{p},\alpha)}_{z}+\sum^{n}_{\beta=1}\frac{J_{13}}{4}\sigma^{(0)}_{z}\sigma^{({\rm III}_{p},\beta)}_{z}. (23)

Consider noiseless dynamics from the initial state (22). Let us take an ansatz that the solution has the following form:

ρ(t)=\displaystyle\rho(t)= σ0(0)2L+1+σ+(0)2p=1PCp(t)+σ(0)2p=1PCp(t).\displaystyle\frac{\sigma^{(0)}_{0}}{2^{L+1}}+\frac{\sigma^{(0)}_{+}}{2}\prod^{P}_{p=1}C_{p}(t)+\frac{\sigma^{(0)}_{-}}{2}\prod^{P}_{p=1}C^{\dagger}_{p}(t). (24)

We easily justify the above ansatz and obtain the dynamical equation for Cp(t)C_{p}(t) as

dCp(t)dt=i{J124α=1mσz(IIp,α)+J134β=1nσz(IIIp,β),Cp(t)}i[H~pin(t),Cp(t)].\frac{dC_{p}(t)}{dt}=-i\Bigl{\{}\frac{J_{12}}{4}\sum^{m}_{\alpha=1}\sigma^{\rm(II_{p},\alpha)}_{z}+\frac{J_{13}}{4}\sum^{n}_{\beta=1}\sigma^{\rm(III_{p},\beta)}_{z},C_{p}(t)\Bigr{\}}-i\Bigl{[}\tilde{H}^{\rm in}_{p}(t),C_{p}(t)\Bigr{]}. (25)

The operation {,}\{\bullet,\bullet\} represents an anti-commutator, which comes from the relation σzσ+=σ+σz=σ+\sigma_{z}\sigma_{+}=-\sigma_{+}\sigma_{z}=\sigma_{+}. Similarly, dynamics with the intrinsic environment can be considered with the following ansatz:

ρ(t)=\displaystyle\rho_{\cal L}(t)= σ0(0)2L+1+eγIt/2σ+(0)2p=1PCp(t)+eγIt/2σ(0)2p=1PCp(t).\displaystyle\frac{\sigma^{(0)}_{0}}{2^{L+1}}+e^{-\gamma_{{\rm I}}t/2}\frac{\sigma^{(0)}_{+}}{2}\prod^{P}_{p=1}C^{\cal L}_{p}(t)+e^{-\gamma_{{\rm I}}t/2}\frac{\sigma^{(0)}_{-}}{2}\prod^{P}_{p=1}C^{{\cal L}\dagger}_{p}(t). (26)

The corresponding equation is

dCp(t)dt=\displaystyle\frac{dC^{\cal L}_{p}(t)}{dt}= i{J124α=1mσz(IIp,α)+J134β=1nσz(IIIp,β),Cp(t)}i[H~pin(t),Cp(t)]+α=1m(IIp,α)[Cp(t)]+β=1n(IIIp,β)[Cp(t)].\displaystyle-i\Bigl{\{}\frac{J_{12}}{4}\sum^{m}_{\alpha=1}\sigma^{\rm(II_{p},\alpha)}_{z}+\frac{J_{13}}{4}\sum^{n}_{\beta=1}\sigma^{\rm(III_{p},\beta)}_{z},C^{\cal L}_{p}(t)\Bigr{\}}-i\Bigl{[}\tilde{H}^{\rm in}_{p}(t),C^{\cal L}_{p}(t)\Bigr{]}+\sum^{m}_{\alpha=1}{\cal L}^{({\rm II}_{p},\alpha)}[C^{\cal L}_{p}(t)]+\sum^{n}_{\beta=1}{\cal L}^{({\rm III}_{p},\beta)}[C^{\cal L}_{p}(t)]. (27)

According to the above equations (25) and (27), Cp(t)C_{p}(t) (Cp(t)C^{\cal L}_{p}(t)) are identical for any p=1,,Pp=1,\cdots,P, and thus we let C(t)C(t) (C(t)C^{\cal L}(t)) be the solution of the above equations. Unlike in § III.1, H~pin\tilde{H}^{\rm in}_{p} does not allow us to represent the solution in a simple form. The expectation value of σx(0)\sigma^{(0)}_{x} is given as

STES(t)\displaystyle S^{\rm TES^{\prime}}(t) :=Tr(σx(0)ρ(t))=(Tr(ReC(t)))P,\displaystyle:={\rm Tr}\left(\sigma^{(0)}_{x}\rho(t)\right)=\left({\rm Tr}\left({\rm Re}~{}C(t)\right)\right)^{P},
STES(t)\displaystyle S^{\rm TES^{\prime}}_{\cal L}(t) :=Tr(σx(0)ρ(t))=(Tr(ReC(t)))P.\displaystyle:={\rm Tr}\left(\sigma^{(0)}_{x}\rho_{\cal L}(t)\right)=\left({\rm Tr}\left({\rm Re}~{}C^{\cal L}(t)\right)\right)^{P}. (28)

The solution C(t)C(t) has more DoF than the model in the RWA, although it is difficult to solve the dynamical equation analytically. This large freedom leads to faster relaxation-like behavior and less recursive behavior.

We first compare STES(t)S^{\rm TES}(t) and STES(t)S^{\rm TES^{\prime}}(t) (Fig. 9). The parameter δω\delta\omega is taken to be 2π×24.82\pi\times 24.8 s-1 in order to compare the results with the corresponding experiment later. In Fig. 9(a), we see that the recursive behaviour in STES(t)S^{\rm TES}(t) is suppressed in STES(t)S^{\rm TES^{\prime}}(t). The additional interaction in H~pin\tilde{H}^{\rm in}_{p} increases effective DoF during the dynamics and results in this suppression. As shown in Fig. 9(b), the relaxation-like behaviour in STES(t)S^{\rm TES^{\prime}}(t) is quite faster than that in STES(t)S^{\rm TES}(t). Even the third peak can hardly be observed in STES(t)S^{\rm TES^{\prime}}(t). Note that these behaviors originate from the interaction with the H nuclei because the dissipation term is not considered now.

Refer to caption
Refer to caption
Figure 9: (color online) The comparison of STES(t)S^{\rm TES}(t) and STES(t)S^{\rm TES^{\prime}}(t) for the noiseless case in (a) the long time region t[0,3.0]t\in[0,3.0] s and (b) short time region t[0,1.0]t\in[0,1.0] s. The red line represents STES(t)S^{\rm TES^{\prime}}(t), the blue one STES(t)S^{\rm TES}(t).

We observed the FID signal of Si in TES under a small magnetic field |B|=1.4|B|=1.4 T (60 MHz of H resonance frequency, Fig. 8), which gives δω:=|ωIIωIII|=2π×24.8\delta\omega:=|\omega_{{\rm II}}-\omega_{{\rm III}}|=2\pi\times 24.8 s-1, as shown in Fig. 10 (a) with the theoretically predicted signal STES(t)S^{\rm TES^{\prime}}_{\cal L}(t). The FID signal is consistent with our calculation in t[0,0.1]t\in[0,0.1] although it is noisy: The sensitivity of a FID signal is known to be proportional to B23B^{2\sim 3}[30, 31]. On the other hand, we observe no recursive behavior theoretically predicted in t[0.1,0.2]t\in[0.1,0.2]. We confirmed that this behavior is not caused by γI\gamma_{{\rm I}}, which represents direct relaxation due to the intrinsic environment, by observing the FID signal when the DoF of HH is decoupled. We used a standard NMR technique [30, 31] to perform this procedure. In Fig. 10(b), we observed that γI\gamma_{{\rm I}} is not large, therefore the no-recursive behavior in Fig. 10(a) cannot be explained by the effect of γI\gamma_{\rm I}.

It seems that the model may be over-simplified: The model includes two assumptions, (1) there is no interaction among qubits in System IIp (IIIp) and (2) System  IIp (IIIp) does not interact with System  IIp{}_{p^{\prime}} (IIIp{}_{p^{\prime}}) for ppp^{\prime}\neq p. Therefore, the FID signal exhibited more plausible “relaxation-like” behavior than we calculated because of unexpected more DoF.

Refer to caption
Refer to caption
Figure 10: (color online) Measured FID signal (a) without and (b) with decoupling all H’s in TES molecules. The red dots are the experimental result of the (real part of) the FID signal of the Si. The black dots are the imaginary part of the FID signal, which should be taken 0 in this situation. From (b), we find that γI21\gamma_{{\rm I}}\sim 2^{-1} s-1, which cannot explain the faster experimental relaxation in (a).

IV summary

We have extended the open system model [25] to apprehend the concept of open systems. This model comprises System I (a single qubit), System II (qubits interacting with System I), and an intrinsic environment that weakly interacts with System I and II. We focus on the phase dynamics of System I, which is described with the GKSL equation. This dynamics is influenced by the intrinsic environment in a long time scale, but is approximately isolated from it in a short time scale: The dynamics in the short time scale is almost determined by the only interaction between System I and II, and exhibits a relaxation-like behavior. Therefore, System II acts as an artificial environment for System I in the short time scale. The dynamics exhibits a recursive behavior because System II’s degrees of freedom (DoF) are few. However, we observe “the more DoF, the less recursive behavior”. This model is easily implemented with a proper molecule, such as Tetramethylsilane (TMS) and Tetraethylsilane (TES), using standard high precision NMR equipment for chemical analysis. The experimental results have a good agreement with the theoretical ones.

Acknowledgment

We are grateful to Hiroyuki Sugihara in JASCO INTERNATIONAL CO., LTD., who performed the experiment shown in § III.2. This work was supported by JSPS Grants-in-Aid for Scientific Research (21K03423) and CREST (JPMJCR1774).

Appendix A Derivation of Eqs. (5), (9), (14), and (19)

To derive the analytical solutions (5), (9), (14), and (19), it is enough to consider the dynamics with the following Hamiltonian and dissipation terms:

H\displaystyle H =k=1NJk4σz(0)σz(k)+k,k=1NJk,k4σz(k)σz(k)\displaystyle=\sum^{N}_{k=1}\frac{J_{k}}{4}\sigma^{(0)}_{z}\sigma^{(k)}_{z}+\sum^{N}_{k,k^{\prime}=1}\frac{J_{k,k^{\prime}}}{4}\sigma^{(k)}_{z}\sigma^{(k^{\prime})}_{z}
=k=1NHkex+k,k=1NHk,kin,\displaystyle=\sum^{N}_{k=1}H^{\rm ex}_{k}+\sum^{N}_{k,k^{\prime}=1}H^{\rm in}_{k,k^{\prime}},
[ρ]=\displaystyle{\cal L}[\rho]= i=0N(i)[ρ]=i=0Nγi2(μ=±σ±(i)ρσ(i)ρ)\displaystyle\sum^{N}_{i=0}{\cal L}^{(i)}[\rho]=\sum^{N}_{i=0}\frac{\gamma_{i}}{2}\left(\sum_{\mu=\pm}\sigma^{(i)}_{\pm}\rho\sigma^{(i)}_{\mp}-\rho\right) (29)

with the initial state (3). The parameters JkJ_{k} (k=1,,Nk=1,\cdots,N) and γi\gamma_{i} (i=0,1,,Ni=0,1,\cdots,N) can be different depending on the qubit. The latter term in the Hamiltonian represents an interaction between System II and III in the main text or, in general, interactions among them. By taking appropriate parameters (Jk,γi,Jk,k)(J_{k},\gamma_{i},J_{k,k^{\prime}}), we reproduce the Hamiltonian and dissipation terms (2), (7), (13), and (18).

We set an ansatz that the state during the dynamics has the form,

ρ(t)=\displaystyle\rho_{\cal L}(t)= σ0(0)2N+1+eγ0t/2σ+(0)2k=1ND(k)(t)+eγ0t/2σ(0)2k=1ND(k)(t),\displaystyle\frac{\sigma^{(0)}_{0}}{2^{N+1}}+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{+}}{2}\prod^{N}_{k=1}D_{\cal L}^{(k)}(t)+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{-}}{2}\prod^{N}_{k=1}D_{\cal L}^{(k)\dagger}(t),
D(k)(t)=\displaystyle D_{\cal L}^{(k)}(t)= d0(k)(t)σ0(k)2+dz(k)(t)σz(k)2.\displaystyle d^{(k)}_{0}(t)\frac{\sigma^{(k)}_{0}}{2}+d^{(k)}_{z}(t)\frac{\sigma^{(k)}_{z}}{2}. (30)

The initial state (3) corresponds to (d0(k)(0),dz(k)(t))=(1,0)\left(d^{(k)}_{0}(0),d^{(k)}_{z}(t)\right)=(1,0). Assuming this initial state, we can easily show that the above ansatz is justified. Therefore, the dynamical variables are now {d0(k)(t),dz(k)(0)}k=1N\{d^{(k)}_{0}(t),d^{(k)}_{z}(0)\}^{N}_{k=1}. As the ansatz is justified, the latter part Hk,kinH^{\rm in}_{k,k^{\prime}} in the Hamiltonian does not affect the dynamics: ρ(t)\rho_{\cal L}(t) always commutes with this interaction Hamiltonian during the dynamics. The GKSL equation is evaluated as

𝒢[ρ(t)]\displaystyle{\cal G}[\rho_{\cal L}(t)] :=i[H,ρ(t)]+[ρ(t)]\displaystyle:=-i[H,\rho_{\cal L}(t)]+{\cal L}[\rho_{\cal L}(t)]
=eγ0t/2k=1ND(1)(t)(i[Hkex,σ+(0)2D(k)(t)])D(N)(t)\displaystyle=e^{-\gamma_{0}t/2}\sum^{N}_{k=1}D_{\cal L}^{(1)}(t)\cdots\left(-i\left[H^{\rm ex}_{k},\frac{\sigma^{(0)}_{+}}{2}D_{\cal L}^{(k)}(t)\right]\right)\cdots D_{\cal L}^{(N)}(t)
+eγ0t/2k=1ND(1)(t)(i[Hkex,σ(0)2D(k)(t)])D(N)(t)\displaystyle+e^{-\gamma_{0}t/2}\sum^{N}_{k=1}D_{\cal L}^{(1)\dagger}(t)\cdots\left(-i\left[H^{\rm ex}_{k},\frac{\sigma^{(0)}_{-}}{2}D_{\cal L}^{(k)\dagger}(t)\right]\right)\cdots D_{\cal L}^{(N)\dagger}(t)
+eγ0t/2(0)[σ+(0)2]k=1ND(k)(t)+eγ0t/2(0)[σ(0)2]k=1ND(k)(t)\displaystyle+e^{-\gamma_{0}t/2}{\cal L}^{(0)}\left[\frac{\sigma^{(0)}_{+}}{2}\right]\prod^{N}_{k=1}D_{\cal L}^{(k)}(t)+e^{-\gamma_{0}t/2}{\cal L}^{(0)}\left[\frac{\sigma^{(0)}_{-}}{2}\right]\prod^{N}_{k=1}D_{\cal L}^{(k)\dagger}(t)
+eγ0t/2σ+(0)2k=1ND(1)(t)(k)[D(k)(t)]D(N)(t)\displaystyle+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{+}}{2}\sum^{N}_{k=1}D_{\cal L}^{(1)}(t)\cdots{\cal L}^{(k)}[D_{\cal L}^{(k)}(t)]\cdots D_{\cal L}^{(N)}(t)
+eγ0t/2σ(0)2k=1ND(1)(t)(k)[D(k)(t)]D(N)(t)\displaystyle+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{-}}{2}\sum^{N}_{k=1}D_{\cal L}^{(1)\dagger}(t)\cdots{\cal L}^{(k)}[D_{\cal L}^{(k)\dagger}(t)]\cdots D_{\cal L}^{(N)\dagger}(t)
=γ02(eγ0t/2σ+(0)2k=1ND(k)(t)+eγ0t/2σ(0)2k=1ND(k)(t))\displaystyle=-\frac{\gamma_{0}}{2}\left(e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{+}}{2}\prod^{N}_{k=1}D_{\cal L}^{(k)}(t)+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{-}}{2}\prod^{N}_{k=1}D_{\cal L}^{(k)\dagger}(t)\right)
+eγ0t/2σ+(0)2k=1ND(1)(t)(iJk2dz(k)(t)σ0(k)2(iJk2d0(k)(t)+γkdz(k)(t))σz(k)2)D(N)(t)\displaystyle+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{+}}{2}\sum^{N}_{k=1}D_{\cal L}^{(1)}(t)\cdots\left(\uline{-i\frac{J_{k}}{2}d^{(k)}_{z}(t)\frac{\sigma^{(k)}_{0}}{2}-\left(i\frac{J_{k}}{2}d^{(k)}_{0}(t)+\gamma_{k}d^{(k)}_{z}(t)\right)\frac{\sigma^{(k)}_{z}}{2}}\right)\cdots D_{\cal L}^{(N)}(t)
+eγ0t/2σ(0)2k=1ND(1)(t)(iJk2dz(k)(t)σ0(k)2+(iJk2d0(k)(t)γkdz(k)(t))σz(k)2)D(N)(t),\displaystyle+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{-}}{2}\sum^{N}_{k=1}D_{\cal L}^{(1)\dagger}(t)\cdots\left(\uuline{i\frac{J_{k}}{2}d^{(k)\dagger}_{z}(t)\frac{\sigma^{(k)}_{0}}{2}+\left(i\frac{J_{k}}{2}d^{(k)\dagger}_{0}(t)-\gamma_{k}d^{(k)\dagger}_{z}(t)\right)\frac{\sigma^{(k)}_{z}}{2}}\right)\cdots D_{\cal L}^{(N)\dagger}(t), (31)

where we use 𝒢[σ0(0)]=0{\cal G}[\sigma^{(0)}_{0}]=0 and [Hk,kin,D(k′′)(t)]=0[H^{\rm in}_{k,k^{\prime}},D_{\cal L}^{(k^{\prime\prime})}(t)]=0 for any kk, kk^{\prime}, and k′′k^{\prime\prime}. Meanwhile, the derivative of the state is given as

dρ(t)dt=\displaystyle\frac{d\rho_{{\cal L}}(t)}{dt}= γ02(eγ0t/2σ+(0)2k=1ND(k)(t)+eγ0t/2σ(0)2k=1ND(k)(t))\displaystyle-\frac{\gamma_{0}}{2}\left(e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{+}}{2}\prod^{N}_{k=1}D_{\cal L}^{(k)}(t)+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{-}}{2}\prod^{N}_{k=1}D_{\cal L}^{(k)\dagger}(t)\right)
+eγ0t/2σ+(0)2k=1ND(1)(t)(d˙0(k)(t)σ0(k)2+d˙z(k)(t)σz(k)2)D(N)(t)\displaystyle+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{+}}{2}\sum^{N}_{k=1}D_{\cal L}^{(1)}(t)\cdots\left(\uline{\dot{d}^{(k)}_{0}(t)\frac{\sigma^{(k)}_{0}}{2}+\dot{d}^{(k)}_{z}(t)\frac{\sigma^{(k)}_{z}}{2}}\right)\cdots D_{\cal L}^{(N)}(t)
+eγ0t/2σ(0)2k=1ND(1)(t)(d˙0(k)(t)σ0(k)2+d˙z(k)(t)σz(k)2)D(N)(t).\displaystyle+e^{-\gamma_{0}t/2}\frac{\sigma^{(0)}_{-}}{2}\sum^{N}_{k=1}D_{\cal L}^{(1)\dagger}(t)\cdots\left(\uuline{\dot{d}^{(k)\dagger}_{0}(t)\frac{\sigma^{(k)}_{0}}{2}+\dot{d}^{(k)\dagger}_{z}(t)\frac{\sigma^{(k)}_{z}}{2}}\right)\cdots D_{\cal L}^{(N)\dagger}(t). (32)

Comparing the underlined parts corresponding to the basis σ+(0)2σ0,z(k)2\frac{\sigma^{(0)}_{+}}{2}\frac{\sigma^{(k)}_{0,z}}{2} (or double-underlined parts corresponding to σ(0)2σ0,z(k)2\frac{\sigma^{(0)}_{-}}{2}\frac{\sigma^{(k)}_{0,z}}{2}) in the above two equations, we obtain the dynamical equation for {d0(k)(t),dz(k)(0)}k=1N\{d^{(k)}_{0}(t),d^{(k)}_{z}(0)\}^{N}_{k=1} as

ddt(d0(k)(t)dz(k)(t))=12(0iJkiJk2γk)(d0(k)(t)dz(k)(t)),k=1,,N.\frac{d}{dt}\begin{pmatrix}d^{(k)}_{0}(t)\\ d^{(k)}_{z}(t)\end{pmatrix}=\frac{1}{2}\begin{pmatrix}0&-iJ_{k}\\ -iJ_{k}&-2\gamma_{k}\end{pmatrix}\begin{pmatrix}d^{(k)}_{0}(t)\\ d^{(k)}_{z}(t)\end{pmatrix},~{}\forall k=1,\cdots,N. (33)

Each kk component can be solved independently of k(k)k^{\prime}(\neq k) components. This is easily solved, and its solution is

d0(k)(t)\displaystyle d^{(k)}_{0}(t) =eγkt/2(γkΩksin(Ωkt/2)+cos(Ωkt/2)),\displaystyle=e^{-\gamma_{k}t/2}\bigg{(}\frac{\gamma_{k}}{\Omega_{k}}\sin(\Omega_{k}t/2)+\cos(\Omega_{k}t/2)\bigg{)},
dz(k)(t)\displaystyle d^{(k)}_{z}(t) =eγkt/2(iJkΩksin(Ωkt/2)),\displaystyle=e^{-\gamma_{k}t/2}\bigg{(}\frac{-iJ_{k}}{\Omega_{k}}\sin(\Omega_{k}t/2)\bigg{)}, (34)

where Ωk=Jk2γk2\Omega_{k}=\sqrt{J^{2}_{k}-\gamma_{k}^{2}}. See Ref. [26] for further details of the derivation of the above solution. Taking appropriate parameters allows us to reproduce the solutions (5), (9), (14), and (19). For example, when taking Jk=JJ_{k}=J (k=1,,N\forall k=1,\cdots,N), γ0=γI\gamma_{0}=\gamma_{{\rm I}}, γk=γII\gamma_{k}=\gamma_{{\rm II}} (k=1,,N\forall k=1,\cdots,N), and Jk,k=0J_{k,k^{\prime}}=0 (k,k\forall k,k^{\prime}), we reproduce Eqs.  (5) and (9). When we decompose NN qubits into System II and III, and take Jk,k=0J_{k,k^{\prime}}=0 for k,kk,k^{\prime} in the same system, Eqs. (14) and (19) are obtained.

References

  • Weiss [1999] U. Weiss, Quantum Dissipative Systems, Series in Modern Condenced Matter Physics (World Scientific Publishing Company, 1999).
  • Helstrom [1976] C. W. Helstrom, Quantum detection and estimation theory, Mathematics in Science and Engeneering, Vol. 123 (Academic press New York, 1976).
  • Caves [1981] C. M. Caves, Quantum-mechanical noise in an interferometer, Physical Review D 23, 1693 (1981).
  • Holevo [2011] A. S. Holevo, Probabilistic and statistical aspects of quantum theory, Vol. 1 (Springer Science & Business Media, 2011).
  • Ekert [1991] A. K. Ekert, Quantum cryptography based on bell’s theorem, Physical review letters 67, 661 (1991).
  • Gisin and Thew [2007] N. Gisin and R. Thew, Quantum communication, Nature photonics 1, 165 (2007).
  • Chen et al. [2021] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. Zhang, K. Chen, J. Yin, J.-G. Ren, Z. Chen, et al., An integrated space-to-ground quantum communication network over 4,600 kilometres, Nature 589, 214 (2021).
  • Bennett and DiVincenzo [2000] C. H. Bennett and D. P. DiVincenzo, Quantum information and computation, nature 404, 247 (2000).
  • Nielsen and Chuang [2000] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge University Press, 2000).
  • Nakahara [2008] M. Nakahara, Quantum computing: from linear algebra to physical realizations (CRC press, 2008).
  • Rau [1963] J. Rau, Relaxation phenomena in spin and harmonic oscillator systems, Phys. Rev. 129, 1880 (1963).
  • Srednicki [1994] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  • Zurek [2007] W. H. Zurek, Decoherence and the transition from quantum to classical — revisited, in Quantum Decoherence: Poincaré Seminar 2005, edited by B. Duplantier, J.-M. Raimond, and V. Rivasseau (Birkhäuser Basel, Basel, 2007) pp. 1–31.
  • Linden et al. [2009] N. Linden, S. Popescu, A. J. Short, and A. Winter, Quantum mechanical evolution towards thermal equilibrium, Phys. Rev. E 79, 061103 (2009).
  • Gogolin et al. [2011] C. Gogolin, M. P. Müller, and J. Eisert, Absence of thermalization in nonintegrable systems, Phys. Rev. Lett. 106, 040401 (2011).
  • Iyoda et al. [2017] E. Iyoda, K. Kaneko, and T. Sagawa, Fluctuation theorem for many-body pure quantum states, Phys. Rev. Lett. 119, 100601 (2017).
  • Žnidarič et al. [2010] M. Žnidarič, T. c. v. Prosen, G. Benenti, G. Casati, and D. Rossini, Thermalization and ergodicity in one-dimensional many-body open quantum systems, Phys. Rev. E 81, 051135 (2010).
  • Lorenzo et al. [2015] S. Lorenzo, R. McCloskey, F. Ciccarello, M. Paternostro, and G. M. Palma, Landauer’s principle in multipartite open quantum system dynamics, Phys. Rev. Lett. 115, 120403 (2015).
  • Liu et al. [2011] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, Experimental control of the transition from markovian to non-markovian dynamics of open quantum systems, Nature Physics 7, 931 (2011).
  • Polkovnikov et al. [2011] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863 (2011).
  • Leibfried et al. [2003] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single trapped ions, Rev. Mod. Phys. 75, 281 (2003).
  • Pekola [2015] J. P. Pekola, Towards quantum thermodynamics in electronic circuits, Nature physics 11, 118 (2015).
  • Iwakura et al. [2017] A. Iwakura, Y. Matsuzaki, and Y. Kondo, Engineered noisy environment for studying decoherence, Phys. Rev. A 96, 032303 (2017).
  • Kondo and Matsuzaki [2018] Y. Kondo and M. Matsuzaki, Study of open systems with molecules in isotropic liquids, Modern Physics Letters B 32, 1830002 (2018).
  • Ho et al. [2019] L. B. Ho, Y. Matsuzaki, M. Matsuzaki, and Y. Kondo, Realization of controllable open system with NMR, New Journal of Physics 21, 093008 (2019).
  • Kukita et al. [2020] S. Kukita, Y. Kondo, and M. Nakahara, Controllable non-markovianity in phase relaxation, New Journal of Physics 22, 103048 (2020).
  • Kondo et al. [2016] Y. Kondo, Y. Matsuzaki, K. Matsushima, and J. G. Filgueiras, Using the quantum zeno effect for suppression of decoherence, New Journal of Physics 18, 013033 (2016).
  • Gorini et al. [1976] V. Gorini, A. Kossakowski, and E. Sudarshan, Completely positive dynamical semigroups on nn-level systems, Journal of Mathematical Physics 17, 821 (1976).
  • Lindblad [1976] G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical Physics 48, 119 (1976).
  • Levitt [2008] M. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2008).
  • Claridge [2009] T. D. W. Claridge, High-Resolution NMR Techniques in Organic Chemistry, 2nd ed., TETRAHEDRON ORGANIC CHEMISTRY SERIES, Vol. 27 (Elsevier, 2009).