This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Arithmetical completeness for some extensions of the pure logic of necessitation

Haruka Kogure111Email:[email protected] 222Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
Abstract

We investigate the arithmetical completeness theorems of some extensions of Fitting, Marek, and Truszczyński’s pure logic of necessitation 𝐍\mathbf{N}. For m,nωm,n\in\omega, let 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n}, which was introduced by Kurahashi and Sato, be the logic obtained from 𝐍\mathbf{N} by adding the axiom scheme nAmA\Box^{n}A\to\Box^{m}A and the rule ¬A¬A\dfrac{\neg\Box A}{\neg\Box\Box A}. In this paper, among other things, we prove that for each m,n1m,n\geq 1, the logic 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} becomes a provability logic.

1 Introduction

Let TT denote a primitive recursively axiomatized consistent extension of Peano Arithmetic 𝖯𝖠\mathsf{PA}. We say that a formula PrT(x)\mathrm{Pr}_{T}(x) is a provability predicate of TT if PrT(x)\mathrm{Pr}_{T}(x) weakly represents the set of all theorems of TT in 𝖯𝖠\mathsf{PA}, that is, for any formula φ\varphi, TφT\vdash\varphi if and only if 𝖯𝖠PrT(φ)\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner). Here, φ\ulcorner\varphi\urcorner is the numeral of the Gödel number of φ\varphi. In a proof of the second incompleteness theorem, it is essential to construct a canonical Σ1\Sigma_{1} provability predicate ProvT(x)\mathrm{Prov}_{T}(x) of TT satisfying the following conditions:

  1. 𝐃𝟐\mathbf{D2}:

    TProvT(φψ)(ProvT(φ)ProvT(ψ))T\vdash\mathrm{Prov}_{T}(\ulcorner\varphi\to\psi\urcorner)\to(\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner)\to\mathrm{Prov}_{T}(\ulcorner\psi\urcorner)).

  2. 𝐃𝟑\mathbf{D3}:

    TProvT(φ)ProvT(ProvT(φ))T\vdash\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner)\to\mathrm{Prov}_{T}(\ulcorner\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner)\urcorner).

A provability predicate PrT(x)\mathrm{Pr}_{T}(x) can be considered as a modality. For example, the schemes (AB)(AB)\Box(A\to B)\to(\Box A\to\Box B) and AA\Box A\to\Box\Box A are modal counterparts of 𝐃𝟐\mathbf{D2} and 𝐃𝟑\mathbf{D3} respectively. An arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x) is a mapping from modal formulas to sentences of arithmetic, which maps \Box to PrT(x)\mathrm{Pr}_{T}(x). For each provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT, let 𝖯𝖫(PrT)\mathsf{PL}(\mathrm{Pr}_{T}) denote the set of all modal formulas AA satisfying Tf(A)T\vdash f(A) for all arithmetical interpretations ff based on PrT(x)\mathrm{Pr}_{T}(x). The set 𝖯𝖫(PrT)\mathsf{PL}(\mathrm{Pr}_{T}) is called the provability logic of PrT(x)\mathrm{Pr}_{T}(x). A well-known result for the study of provability logics is Solovay’s arithmetical completeness theorem [13] saying that if TT is Σ1\Sigma_{1}-sound, then 𝖯𝖫(ProvT)\mathsf{PL}(\mathrm{Prov}_{T}) is exactly the modal logic 𝐆𝐋\mathbf{GL}. For each non-standard provability predicate, which is not canonical provability predicate ProvT(x)\mathrm{Prov}_{T}(x), its provability logic may not be 𝐆𝐋\mathbf{GL}, and there has been recent research on provability logics in this direction. One goal of studies in this direction is to obtain an in-depth understanding of the following problem.

Problem 1.1 ([6, Problem 2.2]).

For which modal logic LL is there a provability predicate PrT(x)\mathrm{Pr}_{T}(x) such that L=𝖯𝖫(PrT)L=\mathsf{PL}(\mathrm{Pr}_{T})?

Kurahashi [7, 6, 9] proved that modal logics such as 𝐊\mathbf{K} and 𝐊𝐃\mathbf{KD} are provability logics, and Kogure and Kurahashi [5] proved that so are non-normal modal logics such as 𝐌𝐍\mathbf{MN} and 𝐌𝐍𝟒\mathbf{MN4}. Also, not all modal logics can be a provability logic of some provability predicate. It is known that each of modal logics 𝐊𝐓\mathbf{KT}, 𝐊𝟒\mathbf{K4}, 𝐁\mathbf{B}, and 𝐊𝟓\mathbf{K5} is not a provability logic of any provability predicate (cf. [12, 8]).

Fitting, Marek, and Truszczyński [2] introduced the pure logic of necessitation 𝐍\mathbf{N}, which is obtained by removing the distribution axiom (AB)(AB)\Box(A\to B)\to(\Box A\to\Box B) from the basic normal modal logic 𝐊\mathbf{K}, and Kurahashi proved that 𝐍\mathbf{N} is a provability logic of some provability predicate. Kurahashi [6] also introduced an extension 𝐍𝟒\mathbf{N4} of 𝐍\mathbf{N} and proved that 𝐍𝟒\mathbf{N4} has the finite frame property and 𝐍𝟒\mathbf{N4} is a provability logic of some provability predicate by using its finite frame property. The finite frame property of 𝐍𝟒\mathbf{N4} was generalized by Kurahashi and Sato [10]. For each natural numbers mm and nn, Kurahashi and Sato introduced the extension 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} obtained from 𝐍\mathbf{N} by adding the axiom scheme nAmA\Box^{n}A\to\Box^{m}A and the inference rule (Ros)(\mathrm{Ros}^{\Box}) ¬A¬A\dfrac{\neg\Box A}{\neg\Box\Box A}, and proved that 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} has the finite frame property.

In the viewpoint of Problem 1.1, it is natural to ask the following question: “For each m,nωm,n\in\omega, can the logic 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} be a provability logic?” In this paper, we clarify the situation on this problem. If m=nm=n, then 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} is exactly 𝐍\mathbf{N}, and Kurahashi proved that 𝐍\mathbf{N} is a provability logic of some Σ1\Sigma_{1} provability predicate, so it suffices to consider the case mnm\neq n. The following table summarizes the situation when mnm\neq n.

Table 1: Is there a Σ1\Sigma_{1} PrT(x)\mathrm{Pr}_{T}(x) of TT such that 𝖯𝖫(PrT)=𝐍+𝐀m,n\mathsf{PL}(\mathrm{Pr}_{T})=\mathbf{N}^{+}\mathbf{A}_{m,n}?
m,n1m,n\geq 1 m=0m=0 & n1n\geq 1 m1m\geq 1 & n=0n=0
TT is Σ1\Sigma_{1}-sound Yes (Theorems 4.2, 4.3) No (Proposition 3.4) No (Proposition 3.5)
TT is Σ1\Sigma_{1}-ill Yes (Theorems 4.3, 5.2) No (Proposition 3.4) Yes (Theorem 5.3)

The following shows the details of the theorems and propositions in the table.

  • If n>m1n>m\geq 1 and TT is Σ1\Sigma_{1}-sound, then 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} is a provability logic of some Σ1\Sigma_{1} provability predicate (Theorem 4.2).

  • If m>n1m>n\geq 1, then 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} is a provability logic of some Σ1\Sigma_{1} provability predicate (Theorem 4.3).

  • If n>m1n>m\geq 1 and TT is Σ1\Sigma_{1}-ill, then 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} is a provability logic of some Σ1\Sigma_{1} provability predicate (Theorem 5.2).

  • If m1m\geq 1 and TT is Σ1\Sigma_{1}-ill, then 𝐍+𝐀m,0\mathbf{N}^{+}\mathbf{A}_{m,0} is a provability logic of some Σ1\Sigma_{1} provability predicate (Theorem 5.3).

  • If n1n\geq 1, then 𝐍+𝐀0,n\mathbf{N}^{+}\mathbf{A}_{0,n} is not a provability logic of any provability predicate (Proposition 3.4).

  • If TT is Σ1\Sigma_{1}-sound and m1m\geq 1, then 𝐍+𝐀m,0\mathbf{N}^{+}\mathbf{A}_{m,0} is not a provability logic of any Σ1\Sigma_{1} provability predicate (Proposition 3.5).

2 Preliminaries and Background

Throughout this paper, let TT denote a primitive recursively axiomatized consistent extension of Peano arithmetic 𝖯𝖠\mathsf{PA} in the language A\mathcal{L}_{A} of first-order arithmetic. We say that TT is Σ1\Sigma_{1}-ill if TT is not Σ1\Sigma_{1}-sound. Let ω\omega be the set of all natural numbers. For each nωn\in\omega, n¯\overline{n} denotes the numeral of nn. In the present paper, we fix a natural Gödel numbering such that if α\alpha is a proper sub-expression of a finite sequence β\beta of A\mathcal{L}_{A}-symbols, then the Gödel number of α\alpha is less than that of β\beta. For each formula φ\varphi, let φ\ulcorner\varphi\urcorner be the numeral of the Gödel number of φ\varphi. Let {ξt}tω\{\xi_{t}\}_{t\in\omega} denote the repetition-free primitive recursive enumeration of all A\mathcal{L}_{A}-formulas in ascending order of Gödel numbers. We note that if ξu\xi_{u} is a proper subformula of ξv\xi_{v}, then u<vu<v.

We define the primitive recursive classes of formulas Δ0\Delta_{0}, Σ1\Sigma_{1} and Π1\Pi_{1}. Let Δ0\Delta_{0} be the set of all formulas whose every quantifier is bounded. The classes Σ1\Sigma_{1} and Π1\Pi_{1} are defined as the smallest classes satisfying the following conditions:

  • Δ0Σ1Π1\Delta_{0}\subseteq\Sigma_{1}\cap\Pi_{1}.

  • Σ1\Sigma_{1} (resp. Π1\Pi_{1}) is closed under conjunction, disjunction and existential (resp. universal) quantification.

  • If φ\varphi is Σ1\Sigma_{1} (resp. Π1\Pi_{1}), then ¬φ\neg\varphi is Π1\Pi_{1} (resp. Σ1\Sigma_{1}).

  • If φ\varphi is Σ1\Sigma_{1} (resp. Π1\Pi_{1}) and ψ\psi is Π1\Pi_{1} (resp. Σ1\Sigma_{1}), then φψ\varphi\to\psi is Π1\Pi_{1} (resp. Σ1\Sigma_{1}).

The classes Δ0\Delta_{0}, Σ1\Sigma_{1} and Π1\Pi_{1} are not closed under logical equivalence, and these classes are primitive recursive. We say that a formula φ\varphi is Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) if φ\varphi is Σ1\Sigma_{1} and φ\varphi is 𝖯𝖠\mathsf{PA}-equivalent to some Π1\Pi_{1} formula. Let FmlA(x)\mathrm{Fml}_{\mathcal{L}_{A}}(x) and Σ1(x)\Sigma_{1}(x) be Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) formulas naturally expressing that “xx is an A\mathcal{L}_{A} formula” and “xx is a Σ1\Sigma_{1} sentence”, respectively. Let TrueΣ1(x)\mathrm{True}_{\Sigma_{1}}(x) be a Σ1\Sigma_{1} formula naturally saying that “xx is a true Σ1\Sigma_{1} sentence” and we may assume that TrueΣ1(x)\mathrm{True}_{\Sigma_{1}}(x) is of the form yη(x,y)\exists y\eta(x,y) for some Δ0\Delta_{0} formula η(x,y)\eta(x,y). The formula TrueΣ1(x)\mathrm{True}_{\Sigma_{1}}(x) satisfies the condition that for any Σ1\Sigma_{1} sentence φ\varphi, 𝖯𝖠φTrueΣ1(φ)\mathsf{PA}\vdash\varphi\leftrightarrow\mathrm{True}_{\Sigma_{1}}(\ulcorner\varphi\urcorner) (see [3, 4]).

2.1 Provability predicate

We say that a formula PrT(x)\mathrm{Pr}_{T}(x) is a provability predicate of TT if for any formula φ\varphi, TφT\vdash\varphi if and only if 𝖯𝖠PrT(φ)\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner). Let \mathbb{N} be the standard model of arithmetic. We note that if PrT(x)\mathrm{Pr}_{T}(x) is a Σ1\Sigma_{1} formula, then the condition that PrT(x)\mathrm{Pr}_{T}(x) is a provability predicate of TT is equivalent to the condition that for any formula φ\varphi, TφT\vdash\varphi if and only if PrT(φ)\mathbb{N}\models\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner).

For each formula τ(v)\tau(v) representing the set of all axioms of TT in 𝖯𝖠\mathsf{PA}, we can construct a formula Prfτ(x,y)\mathrm{Prf}_{\tau}(x,y) naturally expressing that “yy is a proof of xx from the set of all sentences satisfying τ(v)\tau(v)”, and we can define a provability predicate Prτ(x)\mathrm{Pr}_{\tau}(x) as yPrfτ(x,y)\exists y\mathrm{Prf}_{\tau}(x,y) (see [1]). If τ(v)\tau(v) is a Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) formula, then we can define Prfτ(x,y)\mathrm{Prf}_{\tau}(x,y) as a Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) formula. Let Conτ\mathrm{Con}_{\tau} denote ¬Prτ(0=1)\neg\mathrm{Pr}_{\tau}(\ulcorner 0=1\urcorner). In this paper, we assume that Prfτ(x,y)\mathrm{Prf}_{\tau}(x,y) is a single-conclusion, that is, 𝖯𝖠y(xPrfτ(x,y)!xPrfτ(x,y))\mathsf{PA}\vdash\forall y\bigl{(}\exists x\mathrm{Prf}_{\tau}(x,y)\to\exists!x\mathrm{Prf}_{\tau}(x,y)\bigr{)} holds. We note that Prτ(x)\mathrm{Pr}_{\tau}(x) satisfies 𝖯𝖠x(Prτ(x)zy>zPrfτ(x,y))\mathsf{PA}\vdash\forall x\bigl{(}\mathrm{Pr}_{\tau}(x)\to\forall z\exists y>z\mathrm{Prf}_{\tau}(x,y)\bigr{)}. In addition, Prτ(x)\mathrm{Pr}_{\tau}(x) satisfies the following conditions:

  • 𝖯𝖠xy(Prτ(x˙y)(Prτ(x)Prτ(y)))\mathsf{PA}\vdash\forall x\forall y\bigl{(}\mathrm{Pr}_{\tau}(x\dot{\to}y)\to\bigl{(}\mathrm{Pr}_{\tau}(x)\to\mathrm{Pr}_{\tau}(y)\bigr{)}\bigr{)}.

  • If σ(x)\sigma(x) is a Σ1\Sigma_{1} formula, then 𝖯𝖠x(σ(x)Prτ(σ(x˙)))\mathsf{PA}\vdash\forall x\bigl{(}\sigma(x)\to\mathrm{Pr}_{\tau}(\ulcorner\sigma(\dot{x})\urcorner)\bigr{)}.

Here, x˙yx\dot{\to}y and σ(x˙)\ulcorner\sigma(\dot{x})\urcorner are primitive recursive terms corresponding to primitive recursive functions calculating the Gödel number of φψ\varphi\to\psi from those of φ\varphi and ψ\psi and calculating the Gödel number of σ(n¯)\sigma(\overline{n}) from nωn\in\omega, respectively. The first condition is a stronger version of the condition 𝐃𝟐\mathbf{D2}. If Prτ(x)\mathrm{Pr}_{\tau}(x) is Σ1\Sigma_{1}, then Prτ(x)\mathrm{Pr}_{\tau}(x) satisfies the condition 𝐃𝟑\mathbf{D3}. Here, the conditions 𝐃𝟐\mathbf{D2} and 𝐃𝟑\mathbf{D3} are introduced in Section 1. From now on, we fix a Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) formula τ(x)\tau(x) representing TT in 𝖯𝖠\mathsf{PA}. Let ProofT(x,y)\mathrm{Proof}_{T}(x,y) and ProvT(x)\mathrm{Prov}_{T}(x) be the Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) formula Prfτ(x,y)\mathrm{Prf}_{\tau}(x,y) and the Σ1\Sigma_{1} provability predicate Prτ(x)\mathrm{Pr}_{\tau}(x) respectively. Let ConT\mathrm{Con}_{T} denote ¬ProvT(0=1)\neg\mathrm{Prov}_{T}(\ulcorner 0=1\urcorner).

2.2 Provability logic

The language of modal propositional logic \mathcal{L}_{\Box} consists of propositional variables, the logical constant \bot, the logical connectives ¬,,,\neg,\wedge,\vee,\to, and the modal operator \Box. Let 𝖬𝖥\mathsf{MF} be the set of all \mathcal{L}_{\Box}-formulas. For each A𝖬𝖥A\in\mathsf{MF}, let 𝖲𝗎𝖻(A)\mathsf{Sub}(A) denote the set of all subformulas of AA. For each A𝖬𝖥A\in\mathsf{MF} and nωn\in\omega, we define nA\Box^{n}A inductively as follows: Let 0A\Box^{0}A be AA and let n+1A\Box^{n+1}A be nA\Box\Box^{n}A. The axioms of the basic modal logic 𝐊\mathbf{K} consists of propositional tautologies in the language \mathcal{L}_{\Box} and the distribution axiom scheme (AB)(AB)\Box(A\to B)\to(\Box A\to\Box B). The inference rules of modal logic 𝐊\mathbf{K} consists of Modus Ponens (MP)AABB(\mathrm{MP})\ \dfrac{A\quad A\to B}{B} and Necessitation (Nec)AA(\mathrm{Nec})\ \dfrac{A}{\Box A}.

For each provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT, we say that a mapping ff from 𝖬𝖥\mathsf{MF} to a set of A\mathcal{L}_{A}-sentences is an arithmetical interpretation based on PrT(x)\mathrm{Pr}_{T}(x) if ff satisfies the following clauses:

  • f()f(\bot) is 0=10=1,

  • f(¬A)f(\neg A) is ¬f(A)\neg f(A),

  • f(AB)f(A\circ B) is f(A)f(B)f(A)\circ f(B) for {,,}\circ\in\{\wedge,\vee,\to\}, and

  • f(A)f(\Box A) is PrT(f(A))\mathrm{Pr}_{T}(\ulcorner f(A)\urcorner).

For any provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT, let 𝖯𝖫(PrT)\mathsf{PL}(\mathrm{Pr}_{T}) denote the set of all \mathcal{L}_{\Box}-formulas AA such that for any arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x), Tf(A)T\vdash f(A). We call the set 𝖯𝖫(PrT)\mathsf{PL}(\mathrm{Pr}_{T}) provability logic of PrT(x)\mathrm{Pr}_{T}(x).

A well-known result in the study of provability logics is Solovay’s arithmetical completeness theorem. The modal logic 𝐆𝐋\mathbf{GL} is obtained by adding axiom scheme (AA)A\Box(\Box A\to A)\to\Box A to 𝐊\mathbf{K}.

Theorem 2.1 (Solovay [13]).

If TT is Σ1\Sigma_{1}-sound, then 𝖯𝖫(ProvT)=𝐆𝐋\mathsf{PL}(\mathrm{Prov}_{T})=\mathbf{GL}.

Fitting, Marek, and Truszczyński [2] introduced the pure logic of necessitation 𝐍\mathbf{N}, which is obtained by removing the distribution axiom (AB)(AB)\Box(A\to B)\to(\Box A\to\Box B) from 𝐊\mathbf{K}. In Kurahashi [6], it is proved that some extensions of 𝐍\mathbf{N} can be a provability logic of a provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT. The modal logics 𝐍𝟒\mathbf{N4} is obtained by adding the axiom scheme AA\Box A\to\Box\Box A. The following are obtained in [6].

  • For each L{𝐍,𝐍𝟒}L\in\{\mathbf{N},\mathbf{N4}\}, there exists a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that 𝖯𝖫(PrT)=L\mathsf{PL}(\mathrm{Pr}_{T})=L.

  • 𝐍={𝖯𝖫(PrT)PrT(x)\mathbf{N}=\bigcap\{\mathsf{PL}(\mathrm{Pr}_{T})\mid\mathrm{Pr}_{T}(x) is a provability predicate of T}T\}

  • 𝐍𝟒={𝖯𝖫(PrT)PrT(x)\mathbf{N4}=\bigcap\{\mathsf{PL}(\mathrm{Pr}_{T})\mid\mathrm{Pr}_{T}(x) is a provability predicate of TT satisfying 𝐃𝟑}\mathbf{D3}\}

2.3 The logic 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n}

Fitting, Marek, and Truszczyński introduced a relational semantics for 𝐍\mathbf{N}.

Definition 2.2 (𝐍\mathbf{N}-frames and 𝐍\mathbf{N}-models).
  • A tuple (W,{B}B𝖬𝖥)(W,\{\prec_{B}\}_{B\in\mathsf{MF}}) is called an 𝐍\mathbf{N}-frame if WW is non-empty set and B\prec_{B} is a binary relation on WW for every B𝖬𝖥B\in\mathsf{MF}.

  • An 𝐍\mathbf{N}-frame (W,{B}B𝖬𝖥)(W,\{\prec_{B}\}_{B\in\mathsf{MF}}) is finite if WW is finite.

  • A triple (W,{B}B𝖬𝖥,)(W,\{\prec_{B}\}_{B\in\mathsf{MF}},\Vdash) is called an 𝐍\mathbf{N}-model if (W,{B}B𝖬𝖥)(W,\{\prec_{B}\}_{B\in\mathsf{MF}}) is an 𝐍\mathbf{N}-frame and \Vdash is a binary relation between WW and 𝖬𝖥\mathsf{MF} satisfying the usual conditions for propositional connectives and the following condition:

    xByW(xByyB).x\Vdash\Box B\iff\forall y\in W(x\prec_{B}y\Longrightarrow y\Vdash B).
  • A formula AA is valid in an 𝐍\mathbf{N}-model (W,{B}B𝖬𝖥,)(W,\{\prec_{B}\}_{B\in\mathsf{MF}},\Vdash) if xAx\Vdash A for every xWx\in W.

  • A formula AA is valid in an 𝐍\mathbf{N}-frame =(W,{B}B𝖬𝖥)\mathcal{F}=(W,\{\prec_{B}\}_{B\in\mathsf{MF}}) if AA is valid in any 𝐍\mathbf{N}-model (,)(\mathcal{F},\Vdash) based on \mathcal{F}.

Fitting, Marek, and Truszczyński proved that 𝐍\mathbf{N} is sound and complete with respect to the above semantics. In addition, 𝐍\mathbf{N} has the finite frame property with respect to this semantics.

Theorem 2.3 ([2, Theorem 3.6 and Theorem 4.10]).

For any \mathcal{L}_{\Box}-formula AA, the following are equivalent:

  1. 1.

    𝐍A\mathbf{N}\vdash A.

  2. 2.

    AA is valid in all 𝐍\mathbf{N}-frames.

  3. 3.

    AA is valid in all finite 𝐍\mathbf{N}-frames.

For each m,nωm,n\in\omega, the logic 𝐍𝐀m,n\mathbf{N}\mathbf{A}_{m,n} is obtained by adding the axiom scheme

Accm,n:nAmA\mathrm{Acc}_{m,n}:\Box^{n}A\to\Box^{m}A

to 𝐍\mathbf{N}, and the logic 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} is obtained by adding the inference rule

(Ros)¬A¬A(\mathrm{Ros}^{\Box})\dfrac{\neg\Box A}{\neg\Box\Box A}

to 𝐍𝐀m,n\mathbf{N}\mathbf{A}_{m,n}. Extensions 𝐍𝐀m,n\mathbf{N}\mathbf{A}_{m,n} and 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} of 𝐍\mathbf{N} are introduced in Kurahashi and Sato [10]. It is known that 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} is exactly 𝐍𝐀m,n\mathbf{N}\mathbf{A}_{m,n} for m1m\geq 1 or n1n\leq 1.

Proposition 2.4 ([10, Proposition 4.2]).

Let m1m\geq 1 or n1n\leq 1. The Rule Ros\mathrm{Ros}^{\Box} is admissible in 𝐍𝐀m,n\mathbf{N}\mathbf{A}_{m,n}. Consequently, 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} is exactly 𝐍𝐀m,n\mathbf{N}\mathbf{A}_{m,n}.

Kurahashi and Sato also introduced the notion (m,n)(m,n)-accessibility.

Definition 2.5.

Let =(W,{B}B𝖬𝖥)\mathcal{F}=(W,\{\prec_{B}\}_{B\in\mathsf{MF}}) be an 𝐍\mathbf{N}-frame.

  • Let x,yWx,y\in W, B𝖬𝖥B\in\mathsf{MF} and kωk\in\omega. We define xBkyx\prec_{B}^{k}y as follows:

    xBky:{x=yifk=0wW(xk1AwAk1y)ifk1.x\prec_{B}^{k}y:\iff\begin{cases}x=y&\text{if}\ k=0\\ \exists w\in W(x\prec_{\Box^{k-1}A}w\prec_{A}^{k-1}y)&\text{if}\ k\geq 1.\end{cases}
  • We say that the frame \mathcal{F} is (m,n)(m,n)-accessible if for any x,yWx,y\in W, if xBmyx\prec_{B}^{m}y, then xBnyx\prec_{B}^{n}y for every mB𝖬𝖥\Box^{m}B\in\mathsf{MF}.

For m,nωm,n\in\omega, the logic 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} is sound and complete and has the finite frame property with respect to (m,n)(m,n)-accessible 𝐍\mathbf{N}-frames.

Fact 2.6 (The finite frame property of 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} [10, Theorem 5.1]).

Let A𝖬𝖥A\in\mathsf{MF} and m,nωm,n\in\omega. The following are equivalent:

  1. 1.

    𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A.

  2. 2.

    AA is valid in all (m,n)(m,n)-accessible 𝐍\mathbf{N}-frames.

  3. 3.

    AA is valid in all finite (m,n)(m,n)-accessible 𝐍\mathbf{N}-frames.

Fact 2.7 (The dicidability of 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} [10, Corollary 6.10]).

For each m,nωm,n\in\omega, the logic 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n} is decidable.

From the proof of [10, Theorem 5.1], it is obvious that we can primitive recursively construct a finite (m,n)(m,n)-accessible 𝐍\mathbf{N}-model which falsifies a formula AA such that 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\nvdash A.

3 Main results

The following is the main result of this paper:

Theorem 3.1.

Suppose mnm\neq n.

  • For each m,n1m,n\geq 1, there exists a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) such that 𝐍+𝐀m,n=𝖯𝖫(PrT)\mathbf{N}^{+}\mathbf{A}_{m,n}=\mathsf{PL}(\mathrm{Pr}_{T}).

  • Suppose TT is Σ1\Sigma_{1}-ill. For each m1m\geq 1, there exists a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) such that 𝐍+𝐀m,0=𝖯𝖫(PrT)\mathbf{N}^{+}\mathbf{A}_{m,0}=\mathsf{PL}(\mathrm{Pr}_{T}).

  • For each n1n\geq 1, there exists no provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that 𝐍+𝐀0,n𝖯𝖫(PrT)\mathbf{N}^{+}\mathbf{A}_{0,n}\subseteq\mathsf{PL}(\mathrm{Pr}_{T}).

  • Suppose TT is Σ1\Sigma_{1}-sound. For each m1m\geq 1, there exists no Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that 𝐍+𝐀m,0𝖯𝖫(PrT)\mathbf{N}^{+}\mathbf{A}_{m,0}\subseteq\mathsf{PL}(\mathrm{Pr}_{T}).

Table 1 in Section 1 summarizes the situation in Theorem 3.1. Our strategy to prove the first clause of Theorem 3.1 depends on whether TT is Σ1\Sigma_{1}-sound or not. In fact, we prove the following theorems.

Theorem 3.2.

Suppose mnm\neq n. If TT is Σ1\Sigma_{1}-sound and m,n1m,n\geq 1, then there exists a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that

  1. 1.

    for any A𝖬𝖥A\in\mathsf{MF} and arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x), if 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A, then Tf(A)T\vdash f(A), and

  2. 2.

    there exists an arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x) such that 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A if and only if Tf(A)T\vdash f(A).

Theorem 3.3.

Suppose mnm\neq n. If TT is Σ1\Sigma_{1}-ill, m1m\geq 1 and n0n\geq 0, then there exists a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that

  1. 1.

    for any A𝖬𝖥A\in\mathsf{MF} and arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x), if 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A, then Tf(A)T\vdash f(A), and

  2. 2.

    there exists an arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x) such that 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A if and only if Tf(A)T\vdash f(A).

Theorem 3.2 and 3.3 imply the first and second clauses of Theorem 3.1. In Section 4, we prove Theorem 3.2 by distinguishing the two more cases n>m1n>m\geq 1 and m>n1m>n\geq 1 and Theorem 3.3 with respect to the case m>n1m>n\geq 1. In Section 5, we prove Theorem 3.3 with respect to the cases n>m1n>m\geq 1 and m>n=0m>n=0.

We show the third clause of Theorem 3.1. For any nωn\in\omega, provability predicate PrT(x)\mathrm{Pr}_{T}(x), and formula φ\varphi, we define PrTn(φ)\mathrm{Pr}_{T}^{n}(\ulcorner\varphi\urcorner) inductively as follows: Let PrT0(φ)\mathrm{Pr}_{T}^{0}(\ulcorner\varphi\urcorner) be φ\varphi and PrTn+1(φ)\mathrm{Pr}_{T}^{n+1}(\ulcorner\varphi\urcorner) be PrT(PrTn(φ))\mathrm{Pr}_{T}(\ulcorner\mathrm{Pr}_{T}^{n}(\ulcorner\varphi\urcorner)\urcorner). The following proposition is a generalization of the fact 𝖯𝖫(PrT)𝐊𝐓(=𝐊+AA)\mathsf{PL}(\mathrm{Pr}_{T})\nsupseteq\mathbf{KT}\ (=\mathbf{K}+\Box A\to A) for any PrT(x)\mathrm{Pr}_{T}(x) (cf. [12]).

Proposition 3.4.

For each n1n\geq 1, there exists no provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that npp𝖯𝖫(PrT)\Box^{n}p\to p\in\mathsf{PL}(\mathrm{Pr}_{T}).

Proof.

Suppose that there is a provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT satisfying npp𝖯𝖫(PrT)\Box^{n}p\to p\in\mathsf{PL}(\mathrm{Pr}_{T}). By the fixed-point lemma, we have a sentence σ\sigma such that 𝖯𝖠¬PrTn(σ)σ\mathsf{PA}\vdash\neg\mathrm{Pr}_{T}^{n}(\ulcorner\sigma\urcorner)\leftrightarrow\sigma. Let ff be an arithmetical interpretation satisfying f(p)=σf(p)=\sigma. Then, it follows that Tf(np)f(p)T\vdash f(\Box^{n}p)\to f(p), that is, we obtain TPrTn(σ)σT\vdash\mathrm{Pr}_{T}^{n}(\ulcorner\sigma\urcorner)\to\sigma. By the law of excluded middle, TσT\vdash\sigma holds. We also have TPrTn(σ)T\vdash\mathrm{Pr}_{T}^{n}(\ulcorner\sigma\urcorner) and T¬PrTn(σ)T\vdash\neg\mathrm{Pr}_{T}^{n}(\ulcorner\sigma\urcorner), which is a contradiction. ∎

Proposition 3.4 implies the third clause of Theorem 3.1. Lastly, we prove the fourth clause of Theorem 3.1.

Proposition 3.5.

Let TT be Σ1\Sigma_{1}-sound. For each m1m\geq 1, there exists no Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that pmp𝖯𝖫(PrT)p\to\Box^{m}p\in\mathsf{PL}(\mathrm{Pr}_{T}).

Proof.

Suppose that there is a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that pmp𝖯𝖫(PrT)p\to\Box^{m}p\in\mathsf{PL}(\mathrm{Pr}_{T}). Let σ\sigma be a Π1\Pi_{1} sentence satisfying 𝖯𝖠σ¬PrT(σ)\mathsf{PA}\vdash\sigma\leftrightarrow\neg\mathrm{Pr}_{T}(\ulcorner\sigma\urcorner) and ff be an arithmetical interpretation such that f(p)=σf(p)=\sigma. We obtain TσPrTm(σ)T\vdash\sigma\to\mathrm{Pr}_{T}^{m}(\ulcorner\sigma\urcorner), and T¬PrT(σ)PrTm(σ)T\vdash\neg\mathrm{Pr}_{T}(\ulcorner\sigma\urcorner)\to\mathrm{Pr}_{T}^{m}(\ulcorner\sigma\urcorner). Since TT is Σ1\Sigma_{1}-sound, we have ¬PrT(σ)PrTm(σ)\mathbb{N}\models\neg\mathrm{Pr}_{T}(\ulcorner\sigma\urcorner)\to\mathrm{Pr}_{T}^{m}(\ulcorner\sigma\urcorner). We can easily prove that TσT\nvdash\sigma. Thus, we obtain ⊧̸PrT(σ)\mathbb{N}\not\models\mathrm{Pr}_{T}(\ulcorner\sigma\urcorner), and PrTm(σ)\mathbb{N}\models\mathrm{Pr}_{T}^{m}(\ulcorner\sigma\urcorner). Therefore, it follows from the Σ1\Sigma_{1}-soundness of TT that TσT\vdash\sigma. This contradicts TσT\nvdash\sigma. ∎

Proposition 3.5 implies the fourth clause of Theorem 3.1.

Also, Proposition 3.5 is only applicable to Σ1\Sigma_{1} provability predicates, so we do not know whether 𝐍+𝐀m,0\mathbf{N}^{+}\mathbf{A}_{m,0} becomes a provability logic of some PrT(x)\mathrm{Pr}_{T}(x) which is not Σ1\Sigma_{1} if TT is Σ1\Sigma_{1}-sound. We propose the following problem.

Problem 3.6.

Let TT be Σ1\Sigma_{1}-sound and m1m\geq 1. Is there a Σ2\Sigma_{2} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that 𝐍+𝐀m,0=𝖯𝖫(PrT)\mathbf{N}^{+}\mathbf{A}_{m,0}=\mathsf{PL}(\mathrm{Pr}_{T})?

Kurahashi proved that if PrT(x)\mathrm{Pr}_{T}(x) satisfies 𝐃𝟐\mathbf{D2} and pmp𝖯𝖫(PrT)p\to\Box^{m}p\in\mathsf{PL}(\mathrm{Pr}_{T}), then m𝖯𝖫(PrT)\Box^{m}\bot\in\mathsf{PL}(\mathrm{Pr}_{T}) (cf. [8, Lemma 3.12]). Hence, PrT(x)\mathrm{Pr}_{T}(x) such that 𝐍+𝐀m,0=𝖯𝖫(PrT)\mathbf{N}^{+}\mathbf{A}_{m,0}=\mathsf{PL}(\mathrm{Pr}_{T}) does not satisfy 𝐃𝟐\mathbf{D2} because 𝐍+𝐀m,0m\mathbf{N}^{+}\mathbf{A}_{m,0}\nvdash\Box^{m}\bot.

4 Proof of Theorem 3.2

First, we introduce some notions, which are used in throughout of this paper. We call an A\mathcal{L}_{A}-formula propositionally atomic if it is either atomic or of the form QxψQx\psi, where Q{,}Q\in\{\forall,\exists\}. For each propositionally atomic formula φ\varphi, we prepare a propositional variable pφp_{\varphi}. Let II be a primitive recursive injection from A\mathcal{L}_{A}-formulas into propositional formulas, which is defined as follows:

  • I(φ)I(\varphi) is pφp_{\varphi} for each propositionally atomic formula φ\varphi,

  • I(¬φ)I(\neg\varphi) is ¬I(φ)\neg I(\varphi),

  • I(φψ)I(\varphi\circ\psi) is I(φ)I(ψ)I(\varphi)\circ I(\psi) for {,}\circ\in\{\wedge,\vee\to\}.

Let XX be a finite set of formulas. An A\mathcal{L}_{A}-formula is called a tautological consequence (t.c.) of XX if ψXI(ψ)I(φ)\bigwedge_{\psi\in X}I(\psi)\to I(\varphi) is a tautology. For each nωn\in\omega, let PT,n:={φyn¯ProofT(φ,y)}P_{T,n}:=\{\varphi\mid\mathbb{N}\models\exists y\leq\overline{n}\ \mathrm{Proof}_{T}(\ulcorner\varphi\urcorner,y)\}. We see that if φ\varphi is a t.c. of PT,nP_{T,n}, then φ\varphi is provable in TT. We can formalize the above notions in the language of 𝖯𝖠\mathsf{PA}.

Next, we prepare a 𝖯𝖠\mathsf{PA}-provably recursive function hh, which is originally introduced in [9]. The function hh is defined by the recursion theorem as follows:

  • h(0)=0h(0)=0.

  • h(s+1)={iifh(s)=0&i=min{jω{0}¬S(j¯)is a t.c. ofPT,s},h(s)otherwise.h(s+1)=\begin{cases}i&\text{if}\ h(s)=0\\ &\quad\&\ i=\min\{j\in\omega\setminus\{0\}\mid\neg S(\overline{j})\ \text{is a t.c.~{}of}\ P_{T,s}\},\\ h(s)&\text{otherwise}.\end{cases}

Here, S(x)S(x) is the Σ1\Sigma_{1} formula y(h(y)=x)\exists y(h(y)=x). The function hh satisfies the property that for each ss and ii, h(s+1)=ih(s+1)=i implies is+1i\leq s+1, which guarantees that the function hh is 𝖯𝖠\mathsf{PA}-provably recursive (See [9], p. 603). The following proposition holds for hh.

Proposition 4.1 (Cf. [9, Lemma 3.2.]).
  1. 1.

    𝖯𝖠xy(0<x<yS(x)¬S(y))\mathsf{PA}\vdash\forall x\forall y(0<x<y\land S(x)\to\neg S(y)).

  2. 2.

    𝖯𝖠¬ConTx(S(x)x0)\mathsf{PA}\vdash\neg\mathrm{Con}_{T}\leftrightarrow\exists x(S(x)\land x\neq 0).

  3. 3.

    For each iω{0}i\in\omega\setminus\{0\}, T¬S(i¯)T\nvdash\neg S(\overline{i}).

  4. 4.

    For each lωl\in\omega, 𝖯𝖠xy(h(x)=0h(x+1)=yy0xl¯)\mathsf{PA}\vdash\forall x\forall y(h(x)=0\land h(x+1)=y\land y\neq 0\to x\geq\overline{l}).

We are ready to prove Theorem 3.2.

4.1 The case n>m1n>m\geq 1

In this subsection, we prove the following theorem, which is Theorem 3.2 with respect to the case n>m1n>m\geq 1.

Theorem 4.2.

Suppose that TT is Σ1\Sigma_{1}-sound and n>m1n>m\geq 1. There exists a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that

  1. 1.

    for any A𝖬𝖥A\in\mathsf{MF} and arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x), if 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A, then Tf(A)T\vdash f(A), and

  2. 2.

    there exists an arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x) such that 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A if and only if Tf(A)T\vdash f(A).

Proof.

Let TT be Σ1\Sigma_{1}-sound and n>m1n>m\geq 1. First, we prepare the Σ1\Sigma_{1} formula ProvTΣ(x)ProvT(x)(Σ1(x)TrueΣ1(x))\mathrm{Prov}_{T}^{\Sigma}(x)\equiv\mathrm{Prov}_{T}(x)\wedge\bigr{(}\Sigma_{1}(x)\to\mathrm{True}_{\Sigma_{1}}(x)\bigl{)}. Here, Σ1(x)\Sigma_{1}(x) is a Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) formula and TrueΣ1(x)\mathrm{True}_{\Sigma_{1}}(x) is a Σ1\Sigma_{1} formula, and they are introduced in Section 2. We show that the Σ1\Sigma_{1} formula ProvTΣ(x)\mathrm{Prov}_{T}^{\Sigma}(x) is a Σ1\Sigma_{1} provability predicate of TT proving Σ1\Sigma_{1}-reflection principle of ProvTΣ(x)\mathrm{Prov}_{T}^{\Sigma}(x).

Claim 4.1.

For any formula φ\varphi, TφT\vdash\varphi if and only if 𝖯𝖠ProvTΣ(φ)\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner).

Proof.

()(\Leftarrow): Suppose 𝖯𝖠ProvTΣ(φ)\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner). Then, 𝖯𝖠ProvT(φ)\mathsf{PA}\vdash\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner), and we get TφT\vdash\varphi. ()(\Rightarrow): Assume TφT\vdash\varphi. Then, 𝖯𝖠ProvT(φ)\mathsf{PA}\vdash\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner) holds. If φ\varphi is a Σ1\Sigma_{1} sentence, TφT\vdash\varphi implies φ\mathbb{N}\models\varphi by the Σ1\Sigma_{1} soundness of TT, and we get 𝖯𝖠φ\mathsf{PA}\vdash\varphi. Then, we obtain 𝖯𝖠TrueΣ1(φ)\mathsf{PA}\vdash\mathrm{True}_{\Sigma_{1}}(\ulcorner\varphi\urcorner). If φ\varphi is not a Σ1\Sigma_{1} sentence, then 𝖯𝖠¬Σ1(φ)\mathsf{PA}\vdash\neg\Sigma_{1}(\ulcorner\varphi\urcorner) holds. In either case, it follows that 𝖯𝖠ProvTΣ(φ)\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner). ∎

Claim 4.2.

For any Σ1\Sigma_{1} sentence σ\sigma, 𝖯𝖠ProvTΣ(σ)σ\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\sigma\urcorner)\to\sigma.

Proof.

Let σ\sigma be a Σ1\Sigma_{1} sentence. Since 𝖯𝖠Σ1(σ)\mathsf{PA}\vdash\Sigma_{1}(\ulcorner\sigma\urcorner), we obtain 𝖯𝖠ProvTΣ(σ)TrueΣ1(σ)\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\sigma\urcorner)\to\mathrm{True}_{\Sigma_{1}}(\ulcorner\sigma\urcorner). It follows that 𝖯𝖠ProvTΣ(σ)σ\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\sigma\urcorner)\to\sigma. ∎

Let Akkω\langle A_{k}\rangle_{k\in\omega} denote a primitive recursive enumeration of all 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n}-unprovable formulas. For each kωk\in\omega, we can primitive recursively construct a finite (m,n)(m,n)-accessible 𝐍\mathbf{N}-model (Wk,{k,B}B𝖬𝖥,k)\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)} which falsifies AkA_{k} (see Fact 2.6 and Fact 2.7). We may assume that the sets {Wk}kω\{W_{k}\}_{k\in\omega} are pairwise disjoint subsets of ω\omega and kωWk=ω{0}\bigcup_{k\in\omega}W_{k}=\omega\setminus\{0\}. We may also assume that for each iω{0}i\in\omega\setminus\{0\}, we can primitive recursively find a unique kωk\in\omega satisfying iWki\in W_{k}. We define a (m,n)(m,n)-accessible 𝐍\mathbf{N}-model =(W,{B}B𝖬𝖥,)\mathcal{M}=\bigl{(}W,\{\prec_{B}\}_{B\in\mathsf{MF}},\Vdash\bigr{)} as follows:

  • WW is kωWk=ω{0}\bigcup_{k\in\omega}W_{k}=\omega\setminus\{0\},

  • xByx\prec_{B}y if and only if x,yWkx,y\in W_{k} and xk,Byx\prec_{k,B}y for some kωk\in\omega,

  • xpx\Vdash p if and only if xWkx\in W_{k} and xkpx\Vdash_{k}p for some kωk\in\omega.

We may assume that each (Wk,{k,B}B𝖬𝖥,k)\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)} is Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) represented in 𝖯𝖠\mathsf{PA} and we see that basic properties of \mathcal{M} are proved in 𝖯𝖠\mathsf{PA}.

Next, we define a 𝖯𝖠\mathsf{PA}-provably recursive function g0g_{0} outputting all TT-provable formulas step by step. The definition of g0g_{0} consists of Procedure 1 and Procedure 2, and starts with Procedure 1. In Procedure 1, we define the values g0(0),g0(1),g_{0}(0),g_{0}(1),\ldots by referring to the values h(0),h(1),h(0),h(1),\ldots and TT-proofs based on ProofT(x,y)\mathrm{Proof}_{T}(x,y). At the first time h(s+1)0h(s+1)\neq 0, the definition of g0g_{0} switches to Procedure 2 at Stage ss.

We define the 𝖯𝖠\mathsf{PA}-provably recursive function g0g_{0} by using the recursion theorem. In the definition of g0g_{0}, we use the Σ1\Sigma_{1} formula Prg0(x)\mathrm{Pr}_{g_{0}}(x)\equiv y(g0(y)=xFmlA(x))\exists y(g_{0}(y)=x\wedge\mathrm{Fml}_{\mathcal{L}_{A}}(x)) and the arithmetical interpretation f0f_{0} based on Prg0(x)\mathrm{Pr}_{g_{0}}(x) such that f0(p)x(S(x)x0xp)f_{0}(p)\equiv\exists x(S(x)\wedge x\neq 0\wedge x\Vdash p). Here, for each A𝖬𝖥A\in\mathsf{MF}, f0(A)f_{0}(A) is 𝖯𝖠\mathsf{PA}-provably recursively computed from AA. Also, AA is 𝖯𝖠\mathsf{PA}-provably recursively computed from f0(A)f_{0}(A) because f0f_{0} is injection. The definition of g0g_{0} is as follows:

Procedure 1.

Stage s:

  • If h(s+1)=0h(s+1)=0, then we consider the following cases:

    Case A:

    ss is a TT-proof of a formula φ\varphi.

    Case A-1:

    If φ\varphi is not a Σ1\Sigma_{1} sentence, then g0(s)=φg_{0}(s)=\varphi.

    Case A-2:

    φ\varphi is a Σ1\Sigma_{1} sentence and φ\varphi is not of the form Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for any ψ\psi.

    Case A-2-1:

    If there exists an l<sl<s such that ll is a witness of TrueΣ1(φ)\mathrm{True}_{\Sigma_{1}}(\ulcorner\varphi\urcorner), then g0(s)=φg_{0}(s)=\varphi.

    Case A-2-2:

    Otherwise. g0(s)=0g_{0}(s)=0.

    Case A-3:

    φ\varphi is a Σ1\Sigma_{1} sentence and φ\varphi is of the form Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for some ψ\psi.

    We can find a formula ρ\rho and r1r\geq 1 such that φPrg0r(ρ)\varphi\equiv\mathrm{Pr}_{g_{0}}^{r}(\ulcorner\rho\urcorner), where ρ\rho is not of the form of Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for any ψ\psi. Here, rr denotes the maximum number of outermost consecutive applications of Prg0(x)\mathrm{Pr}_{g_{0}}(x) in φ\varphi.

    Case A-3-1:

    If for each 0ir10\leq i\leq r-1, there exists an li<sl_{i}<s such that g0(li)=Prg0i(ρ)g_{0}(l_{i})=\mathrm{Pr}_{g_{0}}^{i}(\ulcorner\rho\urcorner), then g0(s)=φg_{0}(s)=\varphi.

    Case A-3-2:

    Otherwise. Let g0(s)=0g_{0}(s)=0.

    Case B:

    ss is not a TT-proof of any formula φ\varphi. Let g0(s)=0g_{0}(s)=0.

    Then, go to Stage s+1s+1.

  • If h(s+1)0h(s+1)\neq 0, then go to Procedure 2.

Procedure 2. Suppose ss and i0i\neq 0 satisfy h(s)=0h(s)=0 and h(s+1)=ih(s+1)=i. Let kk be a number such that iWki\in W_{k}. Let {ξt}tω\{\xi_{t}\}_{t\in\omega} denote the primitive recursive enumeration of all A\mathcal{L}_{A}-formulas introduced in Section 2. Define

g0(s+t)={ξtifξtf0(B)&ikBfor someB𝖲𝗎𝖻(Ak),0otherwise.g_{0}(s+t)=\begin{cases}\xi_{t}&\text{if}\ \xi_{t}\equiv f_{0}(B)\ \&\ i\Vdash_{k}\Box B\ \text{for some}\ \Box B\in\mathsf{Sub}(A_{k}),\\ 0&\text{otherwise}.\end{cases}

We have completed the definition of g0g_{0}.

Claim 4.3.

For any formula φ\varphi, 𝖯𝖠+ConTPrg0(φ)ProvTΣ(φ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{0}}(\ulcorner\varphi\urcorner)\leftrightarrow\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner).

Proof.

We distinguish the following two cases.

Case 1:

φ\varphi is not a Σ1\Sigma_{1} sentence.

Since 𝖯𝖠¬Σ1(φ)\mathsf{PA}\vdash\neg\Sigma_{1}(\ulcorner\varphi\urcorner), we obtain

𝖯𝖠ProvTΣ(φ)ProvT(φ).\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner)\leftrightarrow\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner). (1)

We argue in 𝖯𝖠+ConT\mathsf{PA}+\mathrm{Con}_{T}: By Proposition 4.1, the definition of g0g_{0} never goes to Procedure 2. By the definition of Procedure 1 of g0g_{0}, it follows that Prg0(φ)\mathrm{Pr}_{g_{0}}(\ulcorner\varphi\urcorner) if and only if ProvT(φ)\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner). Then, it concludes that Prg0(φ)\mathrm{Pr}_{g_{0}}(\ulcorner\varphi\urcorner) if and only if ProvTΣ(φ)\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner) by (1).

Case 2:

φ\varphi is a Σ1\Sigma_{1} sentence.

We argue in 𝖯𝖠+ConT\mathsf{PA}+\mathrm{Con}_{T}: By Proposition 4.1, the construction of g0g_{0} never switches to Procedure 2.

()(\to): Suppose Prg0(φ)\mathrm{Pr}_{g_{0}}(\ulcorner\varphi\urcorner). Then, g0(s)=φg_{0}(s)=\varphi for some ss. Since the definition of g0g_{0} at Stage ss is in Procedure 1, ProvT(φ)\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner) holds. We consider the following two cases.

  • φ\varphi is output in Case A-2-1:

    There exists an l<sl<s such that ll is a witness of TrueΣ1(φ)\mathrm{True}_{\Sigma_{1}}(\ulcorner\varphi\urcorner). Hence, we have proved that ProvTΣ(φ)\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner) holds.

  • φ\varphi is output in Case A-3-1: Let ρ\rho and r1r\geq 1 be such that φPrg0r(ρ)\varphi\equiv\mathrm{Pr}_{g_{0}}^{r}(\ulcorner\rho\urcorner), where ρ\rho is not of the form of Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for any ψ\psi. It follows that for each ir1i\leq r-1, there exists an li<sl_{i}<s such that g0(li)=Prg0i(ρ)g_{0}(l_{i})=\mathrm{Pr}_{g_{0}}^{i}(\ulcorner\rho\urcorner). In particular, since g0(lr1)=Prg0r1(ρ)g_{0}(l_{r-1})=\mathrm{Pr}_{g_{0}}^{r-1}(\ulcorner\rho\urcorner), it follows that Prg0r(ρ)\mathrm{Pr}_{g_{0}}^{r}(\ulcorner\rho\urcorner) holds. Hence, TrueΣ1(Prg0r(ρ))\mathrm{True}_{\Sigma_{1}}(\ulcorner\mathrm{Pr}_{g_{0}}^{r}(\ulcorner\rho\urcorner)\urcorner) holds. Therefore, we obtain ProvTΣ(φ)\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner).

():(\leftarrow): Suppose ProvTΣ(φ)\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner). Then, we obtain ProvT(φ)\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner) and TrueΣ1(φ)\mathrm{True}_{\Sigma_{1}}(\ulcorner\varphi\urcorner). We consider the following two cases.

  • φ\varphi is not of the form Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for any ψ\psi.

    Let ll be a witness of TrueΣ1(φ)\mathrm{True}_{\Sigma_{1}}(\ulcorner\varphi\urcorner). Since we have ProvT(φ)\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner), there exists some s>ls>l such that ss is a TT-proof of φ\varphi. The number ss satisfies g0(s)=φg_{0}(s)=\varphi.

  • φ\varphi is of the form Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for some ψ\psi.

    Let ρ\rho and r1r\geq 1 be such that φPrg0r(ρ)\varphi\equiv\mathrm{Pr}_{g_{0}}^{r}(\ulcorner\rho\urcorner), where ρ\rho is not of the form of Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for any ψ\psi. Since Prg0r(φ)\mathrm{Pr}_{g_{0}}^{r}(\ulcorner\varphi\urcorner) is true, there exists some lr1l_{r-1} such that

    g0(lr1)=Prg0r1(ρ).g_{0}(l_{r-1})=\mathrm{Pr}_{g_{0}}^{r-1}(\ulcorner\rho\urcorner). (2)

    We show that φ\varphi is output by g0g_{0} in Case A-3-1. If r1=0r-1=0, then φ\varphi is Prg0(ρ)\mathrm{Pr}_{g_{0}}(\ulcorner\rho\urcorner) and g0(lr1)=ρg_{0}(l_{r-1})=\rho by (2). Since ProvT(φ)\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner), there exists a TT-proof ss of φ\varphi such that s>lr1s>l_{r-1}. Since ρ\rho is not of the form Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for any ψ\psi, we obtain g0(s)=Prg0(ρ)=φg_{0}(s)=\mathrm{Pr}_{g_{0}}(\ulcorner\rho\urcorner)=\varphi. Suppose r1>0r-1>0. Since Prg0r1(ρ)\mathrm{Pr}_{g_{0}}^{r-1}(\ulcorner\rho\urcorner) is of the form Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for some ψ\psi, Prg0r1(ρ)\mathrm{Pr}_{g_{0}}^{r-1}(\ulcorner\rho\urcorner) is output in Case A-3-1. Then, for each il2i\leq l-2 there exists an lil_{i} such that g0(li)=Prg0i(ρ)g_{0}(l_{i})=\mathrm{Pr}_{g_{0}}^{i}(\ulcorner\rho\urcorner). By (2), for each il1i\leq l-1 there exists an lil_{i} satisfying g0(li)=Prg0i(ρ)g_{0}(l_{i})=\mathrm{Pr}_{g_{0}}^{i}(\ulcorner\rho\urcorner). Since we obtain ProvT(φ)\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner), there is a TT-proof ss of Prg0r(ρ)\mathrm{Pr}_{g_{0}}^{r}(\ulcorner\rho\urcorner) such that s>lis>l_{i} for all ir1i\leq r-1. Hence, we obtain g0(s)=Prg0r(ρ)φg_{0}(s)=\mathrm{Pr}_{g_{0}}^{r}(\ulcorner\rho\urcorner)\equiv\varphi.

∎ By Claim 4.3, for any φ\varphi, we obtain Prg0(φ)ProvTΣ(φ)\mathbb{N}\models\mathrm{Pr}_{g_{0}}(\ulcorner\varphi\urcorner)\leftrightarrow\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\varphi\urcorner). Since ProvTΣ(x)\mathrm{Prov}_{T}^{\Sigma}(x) is a Σ1\Sigma_{1} provability predicate of TT by Claim 4.1, so is Prg0(x)\mathrm{Pr}_{g_{0}}(x).

Claim 4.4.

For any formula φ\varphi, 𝖯𝖠Prg0n(φ)Prg0m(φ)\mathsf{PA}\vdash\mathrm{Pr}_{g_{0}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{0}}^{m}(\ulcorner\varphi\urcorner).

Proof.

For each k1k\geq 1, we obtain 𝖯𝖠ProvTΣ(Prg0k(φ))Prg0k(φ)\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\Sigma}(\ulcorner\mathrm{Pr}_{g_{0}}^{k}(\ulcorner\varphi\urcorner)\urcorner)\to\mathrm{Pr}_{g_{0}}^{k}(\ulcorner\varphi\urcorner) by Claim 4.2. By Claim 4.3, 𝖯𝖠+ConTPrg0k+1(φ)Prg0k(φ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{0}}^{k+1}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{0}}^{k}(\ulcorner\varphi\urcorner). Since n>m1n>m\geq 1, it follows that 𝖯𝖠+ConTPrg0n(φ)Prg0m(φ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{0}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{0}}^{m}(\ulcorner\varphi\urcorner).

Next, we show that 𝖯𝖠+¬ConTPrg0n(φ)Prg0m(φ)\mathsf{PA}+\neg\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{0}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{0}}^{m}(\ulcorner\varphi\urcorner). We argue in 𝖯𝖠+¬ConT\mathsf{PA}+\neg\mathrm{Con}_{T}: By Proposition 4.1.2, there exists some i0i\neq 0 satisfying S(i¯)S(\overline{i}). Let ss and kk be such that h(s)=0h(s)=0 and h(s+1)=iWkh(s+1)=i\in W_{k}. Then, the definition of g0g_{0} switches to Procedure 2 at Stage ss. Suppose that Prg0n(φ)\mathrm{Pr}_{g_{0}}^{n}(\ulcorner\varphi\urcorner) holds, namely, Prg0n1(φ)\mathrm{Pr}_{g_{0}}^{n-1}(\ulcorner\varphi\urcorner) is output by g0g_{0}. We show that Prg0m(φ)\mathrm{Pr}_{g_{0}}^{m}(\ulcorner\varphi\urcorner) holds, that is, Prg0m1(φ)\mathrm{Pr}_{g_{0}}^{m-1}(\ulcorner\varphi\urcorner) is output by g0g_{0}. We distinguish the following two cases.

  • Prg0n1(φ)\mathrm{Pr}_{g_{0}}^{n-1}(\ulcorner\varphi\urcorner) is output in Procedure 1:

    Since n>m1n>m\geq 1, Prg0n1(φ)\mathrm{Pr}_{g_{0}}^{n-1}(\ulcorner\varphi\urcorner) is of the form Prg0(ψ)\mathrm{Pr}_{g_{0}}(\ulcorner\psi\urcorner) for some ψ\psi and is output at Case A-3-1 in Procedure 1. Hence, for each in1i\leq n-1, there exists an lil_{i} such that g0(li)=Prg0i(φ)g_{0}(l_{i})=\mathrm{Pr}_{g_{0}}^{i}(\ulcorner\varphi\urcorner). Since 0m1<n10\leq m-1<n-1 holds, we obtain g0(lm1)=Prg0m1(φ)g_{0}(l_{m-1})=\mathrm{Pr}_{g_{0}}^{m-1}(\ulcorner\varphi\urcorner).

  • Prg0n1(φ)\mathrm{Pr}_{g_{0}}^{n-1}(\ulcorner\varphi\urcorner) is output in Procedure 2:

    Let ξuPrg0m1(φ)\xi_{u}\equiv\mathrm{Pr}_{g_{0}}^{m-1}(\ulcorner\varphi\urcorner). It follows that Prg0n1(φ)f0(B)\mathrm{Pr}_{g_{0}}^{n-1}(\ulcorner\varphi\urcorner)\equiv f_{0}(B) and ikBi\Vdash_{k}\Box B for some B𝖲𝗎𝖻(Ak)\Box B\in\mathsf{Sub}(A_{k}). Then, by Prg0n1(φ)f0(B)\mathrm{Pr}_{g_{0}}^{n-1}(\ulcorner\varphi\urcorner)\equiv f_{0}(B), we obtain some C𝖲𝗎𝖻(Ak)C\in\mathsf{Sub}(A_{k}) such that f0(C)=φf_{0}(C)=\varphi and Bn1CB\equiv\Box^{n-1}C. Since ikBi\Vdash_{k}\Box B and iknCmCi\Vdash_{k}\Box^{n}C\to\Box^{m}C, we get ikmCi\Vdash_{k}\Box^{m}C. It follows from mn1m\leq n-1 and B𝖲𝗎𝖻(Ak)B\in\mathsf{Sub}(A_{k}) that mC𝖲𝗎𝖻(Ak)\Box^{m}C\in\mathsf{Sub}(A_{k}) holds. Also, we have f0(m1C)Prg0m1(f0(C))ξuf_{0}(\Box^{m-1}C)\equiv\mathrm{Pr}_{g_{0}}^{m-1}(\ulcorner f_{0}(C)\urcorner)\equiv\xi_{u}. It concludes g0(s+u)=ξuPrg0m1(φ)g_{0}(s+u)=\xi_{u}\equiv\mathrm{Pr}_{g_{0}}^{m-1}(\ulcorner\varphi\urcorner).

Therefore, we obtain 𝖯𝖠+¬ConTPrg0n(φ)Prg0m(φ)\mathsf{PA}+\neg\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{0}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{0}}^{m}(\ulcorner\varphi\urcorner). By the law of excluded middle, it concludes that 𝖯𝖠Prg0n(φ)Prg0m(φ)\mathsf{PA}\vdash\mathrm{Pr}_{g_{0}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{0}}^{m}(\ulcorner\varphi\urcorner). ∎

Claim 4.5.

Let iWki\in W_{k} and B𝖲𝗎𝖻(Ak)B\in\mathsf{Sub}(A_{k}).

  1. 1.

    If ikBi\Vdash_{k}B, then 𝖯𝖠S(i¯)f0(B)\mathsf{PA}\vdash S(\overline{i})\to f_{0}(B).

  2. 2.

    If ikBi\nVdash_{k}B, then 𝖯𝖠S(i¯)¬f0(B)\mathsf{PA}\vdash S(\overline{i})\to\neg f_{0}(B).

Proof.

We prove Clauses 1 and 2 simultaneously by induction on the construction of B𝖲𝗎𝖻(Ak)B\in\mathsf{Sub}(A_{k}). We prove the base case of the induction. When BB is \bot, Clauses 1 and 2 trivially hold. Suppose that BpB\equiv p.

  1. 1.

    If ikpi\Vdash_{k}p, then 𝖯𝖠S(i¯)x(S(x)x0xp)\mathsf{PA}\vdash S(\overline{i})\to\exists x\bigl{(}S(x)\wedge x\neq 0\wedge x\Vdash p\bigr{)} holds. Hence, we get 𝖯𝖠S(i¯)f0(p)\mathsf{PA}\vdash S(\overline{i})\to f_{0}(p).

  2. 2.

    Suppose ikpi\nVdash_{k}p. By Proposition 4.1.1, 𝖯𝖠S(i¯)x(S(x)x0x=i¯)\mathsf{PA}\vdash S(\overline{i})\to\forall x(S(x)\wedge x\neq 0\to x=\overline{i}). Thus, we obtain 𝖯𝖠S(i¯)x(S(x)x0xp)\mathsf{PA}\vdash S(\overline{i})\to\forall x(S(x)\wedge x\neq 0\to x\nVdash p) and 𝖯𝖠S(i¯)¬f0(p)\mathsf{PA}\vdash S(\overline{i})\to\neg f_{0}(p) is proved.

Next, we prove the induction cases. Since the cases of ¬,,\neg,\ \wedge,\ \vee and \to are easily proved, we only consider the case BCB\equiv\Box C.

  1. 1.

    Suppose ikCi\Vdash_{k}\Box C. We argue in 𝖯𝖠+S(i¯)\mathsf{PA}+S(\overline{i}): Let ss be such that h(s)=0h(s)=0 and h(s+1)=ih(s+1)=i. Let ξtf0(C)\xi_{t}\equiv f_{0}(C). Since C𝖲𝗎𝖻(Ak)\Box C\in\mathsf{Sub}(A_{k}) and ikCi\Vdash_{k}\Box C hold, we obtain g0(s+t)=ξtg_{0}(s+t)=\xi_{t}. Thus, Prg0(f0(C))\mathrm{Pr}_{g_{0}}(\ulcorner f_{0}(C)\urcorner) holds, that is, it follows that f0(C)f_{0}(\Box C).

  2. 2.

    Suppose ikCi\nVdash_{k}\Box C. Then, there exists a jWkj\in W_{k} such that ik,Cji\prec_{k,C}j and jkCj\nVdash_{k}C. By the induction hypothesis, we obtain 𝖯𝖠S(j¯)¬f0(C)\mathsf{PA}\vdash S(\overline{j})\to\neg f_{0}(C). Let pp be a proof of S(j¯)¬f0(C)S(\overline{j})\to\neg f_{0}(C) in TT. We argue in 𝖯𝖠+S(i¯)\mathsf{PA}+S(\overline{i}): Let ss be such that h(s)=0h(s)=0 and h(s+1)=ih(s+1)=i. Suppose, towards a contradiction, that f0(C)f_{0}(C) is output by g0g_{0}.

    1. (i)

      f0(C)f_{0}(C) is output in Procedure 1:

      There exists an l<sl<s such that ll is a proof of f0(C)f_{0}(C) in TT. Hence, f0(C)PT,s1f_{0}(C)\in P_{T,s-1} holds. By Proposition 4.1.4, p<sp<s holds, and we obtain S(j¯)¬f0(C)PT,s1S(\overline{j})\to\neg f_{0}(C)\in P_{T,s-1}. Since f0(C)¬S(j¯)f_{0}(C)\to\neg S(\overline{j}) is a t.c. of PT,s1P_{T,s-1}, it follows that ¬S(j¯)\neg S(\overline{j}) is a t.c. of PT,s1P_{T,s-1}. We obtain h(s)0h(s)\neq 0, which is a contradiction.

    2. (ii)

      f0(C)f_{0}(C) is output in Procedure 2:

      Then, f0(C)f0(C)andikCfor someC𝖲𝗎𝖻(Ak)f_{0}(C)\equiv f_{0}(C^{\prime})\ \text{and}\ i\Vdash_{k}\Box C^{\prime}\ \text{for some}\ \Box C^{\prime}\in\mathsf{Sub}(A_{k}) holds. Since f0(C)f0(C)f_{0}(C)\equiv f_{0}(C^{\prime}) and f0f_{0} is an injection, we obtain CCC\equiv C^{\prime}. Hence, ikCi\Vdash_{k}\Box C holds. This is a contradiction.

We have shown that 𝖯𝖠+S(i¯)\mathsf{PA}+S(\overline{i}) proves f0(C)f_{0}(C) is never output by g0g_{0}. Therefore, we obtain 𝖯𝖠+S(i¯)¬f0(C)\mathsf{PA}+S(\overline{i})\vdash\neg f_{0}(\Box C). ∎

We complete our proof of Theorem 4.2. The implication ()(\Rightarrow) is obvious from Claim 4.4. We prove the implication ()(\Leftarrow). Suppose 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\nvdash A. Then, AAkA\equiv A_{k} for some kωk\in\omega and ikAi\nVdash_{k}A for some iWki\in W_{k}. Hence, we obtain 𝖯𝖠S(i¯)¬f0(A)\mathsf{PA}\vdash S(\overline{i})\to\neg f_{0}(A) by Claim 4.5. Thus, it follows from Proposition 4.1.3 that Tf0(A)T\nvdash f_{0}(A). ∎

4.2 The case m>n1m>n\geq 1

In this subsection, we verify Theorem 4.3, which is Theorem 3.2 and Theorem 3.3 with respect to the case m>n1m>n\geq 1. In a proof of Theorem 4.3, we need not suppose that TT is Σ1\Sigma_{1}-sound. However, the proof of Theorem 4.3 is not applicable to the case m>n=0m>n=0 when TT is Σ1\Sigma_{1}-ill, so we prove this case in Section 5.

Theorem 4.3.

Suppose that m>n1m>n\geq 1. There exists a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that

  1. 1.

    for any A𝖬𝖥A\in\mathsf{MF} and arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x), if 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A, then Tf(A)T\vdash f(A), and

  2. 2.

    there exists an arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x) such that 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A if and only if Tf(A)T\vdash f(A).

Proof.

Let m>n1m>n\geq 1. Let Akkω\langle A_{k}\rangle_{k\in\omega} be a primitive recursive enumeration of all 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n}-unprovable formulas. For each kωk\in\omega, we can primitive recursively construct a finite (m,n)(m,n)-accessible 𝐍\mathbf{N}-model (Wk,{k,B}B𝖬𝖥,k)\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)} falsifying AkA_{k}. As in Subsection 4.1, let =(W,{B}B𝖬𝖥,)\mathcal{M}=\bigl{(}W,\{\prec_{B}\}_{B\in\mathsf{MF}},\Vdash\bigr{)} be the (m,n)(m,n)-accessible 𝐍\mathbf{N}-model defined as a disjoint union of these finite (m,n)(m,n)-accessible 𝐍\mathbf{N}-models.

By the recursion theorem, we define a 𝖯𝖠\mathsf{PA}-provably recursive function g1g_{1} corresponding to the case m>n1m>n\geq 1. In the definition of g1g_{1}, we use the Σ1\Sigma_{1} formula Prg1(x)\mathrm{Pr}_{g_{1}}(x)\equiv y(g1(y)=xFmlA(x))\exists y(g_{1}(y)=x\wedge\mathrm{Fml}_{\mathcal{L}_{A}}(x)) and the arithmetical interpretation f1f_{1} based on Prg1(x)\mathrm{Pr}_{g_{1}}(x) such that f1(p)x(S(x)x0xp)f_{1}(p)\equiv\exists x(S(x)\wedge x\neq 0\wedge x\Vdash p). In Procedure 1, g1g_{1} outputs all TT-provable formulas. In Procedure 2, to ensure the condition 𝖯𝖠Prg1n(φ)Prg1m(φ)\mathsf{PA}\vdash\mathrm{Pr}_{g_{1}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{1}}^{m}(\ulcorner\varphi\urcorner), g1g_{1} outputs Prg1m1(φ)\mathrm{Pr}_{g_{1}}^{m-1}(\ulcorner\varphi\urcorner) if g1g_{1} already outputs Prg1n1(φ)\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner).

Procedure 1.

Stage ss:

  • If h(s+1)=0h(s+1)=0,

    g1(s)={φifsis aT-proof ofφ,0otherwise.g_{1}(s)=\begin{cases}\varphi&\text{if}\ s\ \text{is a}\ T\text{-proof of}\ \varphi,\\ 0&\text{otherwise}.\end{cases}

    Then, go to Stage s+1s+1.

  • If h(s+1)0h(s+1)\neq 0, go to Procedure 2.

Procedure 2.

Suppose ss and i0i\neq 0 satisfy h(s)=0h(s)=0 and h(s+1)=ih(s+1)=i. Let kk be such that iWki\in W_{k}. Define

g1(s+t)={ξtifξtf1(B)&ikBfor someB𝖲𝗎𝖻(Ak)orξtPrg1m1(φ)&g1(l)=Prg1n1(φ)for someφandl<s+t,0otherwise.g_{1}(s+t)=\begin{cases}\xi_{t}&\text{if}\ \xi_{t}\equiv f_{1}(B)\ \&\ i\Vdash_{k}\Box B\ \text{for some}\ \Box B\in\mathsf{Sub}(A_{k})\\ &\quad\text{or}\ \xi_{t}\equiv\mathrm{Pr}_{g_{1}}^{m-1}(\ulcorner\varphi\urcorner)\ \&\ g_{1}(l)=\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner)\\ &\quad\quad\quad\text{for some}\ \varphi\ \text{and}\ l<s+t,\\ 0&\text{otherwise}.\end{cases}

We have finished the definition of g1g_{1}.

Claim 4.6.

𝖯𝖠+ConTxy(FmlA(x)(ProofT(x,y)g1(y)=x))\mathsf{PA}+\mathrm{Con}_{T}\vdash\forall x\forall y\Bigl{(}\mathrm{Fml}_{\mathcal{L}_{A}}(x)\to\bigl{(}\mathrm{Proof}_{T}(x,y)\leftrightarrow g_{1}(y)=x\bigr{)}\Bigr{)}.

Proof.

We argue in 𝖯𝖠+ConT\mathsf{PA}+\mathrm{Con}_{T}: By Proposition 4.1.2, we have h(s)=0h(s)=0 for any number ss, and the definition of g1g_{1} continues to be in Procedure 1. Thus, it follows that for any formula φ\varphi and any number pp, g1(p)=φg_{1}(p)=\varphi if and only if pp is a TT-proof of φ\varphi. ∎

By Claim 4.6, for any formula φ\varphi, we obtain Prg1(φ)ProvT(φ)\mathbb{N}\models\mathrm{Pr}_{g_{1}}(\ulcorner\varphi\urcorner)\leftrightarrow\mathrm{Prov}_{T}(\ulcorner\varphi\urcorner), and we see that Prg1(x)\mathrm{Pr}_{g_{1}}(x) is a Σ1\Sigma_{1} provability predicate of TT.

Claim 4.7.

For any A\mathcal{L}_{A}-formula φ\varphi, 𝖯𝖠Prg1n(φ)Prg1m(φ)\mathsf{PA}\vdash\mathrm{Pr}_{g_{1}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{1}}^{m}(\ulcorner\varphi\urcorner).

Proof.

First, we show 𝖯𝖠+ConTPrg1n(φ)Prg1m(φ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{1}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{1}}^{m}(\ulcorner\varphi\urcorner). For any formula ψ\psi, Prg1(ψ)\mathrm{Pr}_{g_{1}}(\ulcorner\psi\urcorner) is a Σ1\Sigma_{1} sentence. Then, 𝖯𝖠Prg1(ψ)ProvT(Prg1(ψ))\mathsf{PA}\vdash\mathrm{Pr}_{g_{1}}(\ulcorner\psi\urcorner)\to\mathrm{Prov}_{T}(\ulcorner\mathrm{Pr}_{g_{1}}(\ulcorner\psi\urcorner)\urcorner). By Claim 4.6, 𝖯𝖠+ConTProvT(ψ)Prg1(ψ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Prov}_{T}(\ulcorner\psi\urcorner)\leftrightarrow\mathrm{Pr}_{g_{1}}(\ulcorner\psi\urcorner). Hence, we obtain 𝖯𝖠+ConTPrg1(ψ)Prg1(Prg1(ψ))\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{1}}(\ulcorner\psi\urcorner)\to\mathrm{Pr}_{g_{1}}(\ulcorner\mathrm{Pr}_{g_{1}}(\ulcorner\psi\urcorner)\urcorner). In particular, it follows from m>n1m>n\geq 1 that 𝖯𝖠+ConTPrg1n(φ)Prg1m(φ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{1}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{1}}^{m}(\ulcorner\varphi\urcorner).

Next, we show that 𝖯𝖠+¬ConTPrg1n(φ)Prg1m(φ)\mathsf{PA}+\neg\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{1}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{1}}^{m}(\ulcorner\varphi\urcorner). We argue in 𝖯𝖠+¬ConT+Prg1n(φ)\mathsf{PA}+\neg\mathrm{Con}_{T}+\mathrm{Pr}_{g_{1}}^{n}(\ulcorner\varphi\urcorner): By Proposition 4.1, h(s)=0h(s)=0 and h(s+1)=ih(s+1)=i hold for some i0i\neq 0 and number ss, and the definition of g1g_{1} swithches to Procedure 2 at Stage ss. Let ξvPrg1m1(φ)\xi_{v}\equiv\mathrm{Pr}_{g_{1}}^{m-1}(\ulcorner\varphi\urcorner) and we prove that ξv\xi_{v} is output by g1g_{1} in Procedure 2. Since Prg1n(φ)\mathrm{Pr}_{g_{1}}^{n}(\ulcorner\varphi\urcorner) holds, Prg1n1(φ)\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner) is output by g1g_{1}. We consider the following two cases.

  • Prg1n1(φ)\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner) is output in Procedure 1:

    Then, g1(l)=Prg1n1(φ)g_{1}(l)=\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner) holds for some l<sl<s. Since l<s+vl<s+v, g1(s+v)g_{1}(s+v) = ξv\xi_{v} holds by the definition of g2g_{2} in Procedure 2.

  • Prg1n1(φ)\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner) is output in Procedure 2:

    Then, g1(s+u)=Prg1n1(φ)g_{1}(s+u)=\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner), where ξuPrg1n1(φ)\xi_{u}\equiv\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner). Since m1>n1m-1>n-1, the Gödel number of Prg1m1(φ)\mathrm{Pr}_{g_{1}}^{m-1}(\ulcorner\varphi\urcorner) is larger than that of Prg1n1(φ)\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner). Hence, v>uv>u holds by the definition of {ξt}tω\{\xi_{t}\}_{t\in\omega}. Then, we obtain g1(s+v)=ξvg_{1}(s+v)=\xi_{v}.

Thus, it follows that 𝖯𝖠+¬ConTPrg1n(φ)Prg1m(φ)\mathsf{PA}+\neg\mathrm{Con}_{T}\vdash\mathrm{Pr}_{g_{1}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{1}}^{m}(\ulcorner\varphi\urcorner). By the law of excluded middle, it concludes that 𝖯𝖠Prg1n(φ)Prg1m(φ)\mathsf{PA}\vdash\mathrm{Pr}_{g_{1}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{1}}^{m}(\ulcorner\varphi\urcorner).

Claim 4.8.

Let iWki\in W_{k} and B𝖲𝗎𝖻(Ak)B\in\mathsf{Sub}(A_{k}).

  1. 1.

    If ikBi\Vdash_{k}B, then 𝖯𝖠S(i¯)f1(B)\mathsf{PA}\vdash S(\overline{i})\to f_{1}(B).

  2. 2.

    If ikBi\nVdash_{k}B, then 𝖯𝖠S(i¯)¬f1(B)\mathsf{PA}\vdash S(\overline{i})\to\neg f_{1}(B).

Proof.

We prove Clauses 1 and 2 simultaneously by induction on the construction of B𝖲𝗎𝖻(Ak)B\in\mathsf{Sub}(A_{k}). We only give a proof of the case BCB\equiv\Box C. We can prove Clause 1 similarly as in the proof of Claim 4.5. We prove Clause 2.

Suppose ikCi\nVdash_{k}\Box C. Then, there exists a jWkj\in W_{k} such that ik,Cji\prec_{k,C}j and jkCj\nVdash_{k}C. By the induction hypothesis, we obtain 𝖯𝖠S(j¯)¬f1(C)\mathsf{PA}\vdash S(\overline{j})\to\neg f_{1}(C). Let pp be a proof of S(j¯)¬f1(C)S(\overline{j})\to\neg f_{1}(C) in TT. Let m0m^{\prime}\geq 0 and a formula D𝖲𝗎𝖻(C)D\in\mathsf{Sub}(C) be such that CmDC\equiv\Box^{m^{\prime}}D, where DD is not of the form G\Box G for any GG. Here, if CC is a boxed formula, mm^{\prime} is the maximum number of the outermost consecutive boxes of CC, and otherwise m=0m^{\prime}=0. We show that 𝖯𝖠+S(i¯)\mathsf{PA}+S(\overline{i}) proves that f1(C)f_{1}(C) is never output by g1g_{1}. We distinguish the following two cases.

Case 1:

mm1m^{\prime}\geq m-1.

It follows from mm1m^{\prime}\geq m-1 that we can find E𝖲𝗎𝖻(C)E\in\mathsf{Sub}(C) such that Cm1EC\equiv\Box^{m-1}E. Since ikCi\nVdash_{k}\Box C, we obtain ikmEi\nVdash_{k}\Box^{m}E. Thus, iknEi\nVdash_{k}\Box^{n}E holds by iknEmEi\Vdash_{k}\Box^{n}E\to\Box^{m}E. Since nm1n\leq m-1, by the induction hypothesis

𝖯𝖠S(i¯)¬f1(nE).\mathsf{PA}\vdash S(\overline{i})\to\neg f_{1}(\Box^{n}E). (3)

We argue in 𝖯𝖠+S(i¯)\mathsf{PA}+S(\overline{i}): Let ss be such that h(s)=0h(s)=0 and h(s+1)=ih(s+1)=i. Suppose, towards a contradiction, that f1(C)f_{1}(C) is output by g1g_{1}. We consider the following three cases.

  1. (i)

    f1(C)f_{1}(C) is output in Procedure 1:

    For some l<sl<s, ll is a proof of f1(C)f_{1}(C) in TT and f1(C)PT,s1f_{1}(C)\in P_{T,s-1} holds. By Proposition 4.1.4, we obtain p<sp<s. Thus, S(j¯)¬f1(C)PT,s1S(\overline{j})\to\neg f_{1}(C)\in P_{T,s-1} holds, which implies that ¬S(j¯)\neg S(\overline{j}) is a t.c. of PT,s1P_{T,s-1}. Hence, it follws that h(s)0h(s)\neq 0. This is a contradiction.

  2. (ii)

    f1(C)f1(C)andikCfor someC𝖲𝗎𝖻(Ak)f_{1}(C)\equiv f_{1}(C^{\prime})\ \text{and}\ i\Vdash_{k}\Box C^{\prime}\ \text{for some}\ \Box C^{\prime}\in\mathsf{Sub}(A_{k}) holds:

    Since f1f_{1} is an injection, we obtain CCC\equiv C^{\prime}. Then, ikCi\Vdash_{k}\Box C. This contradicts ikCi\nVdash_{k}\Box C.

  3. (iii)

    f1(C)Prg1m1(φ)f_{1}(C)\equiv\mathrm{Pr}_{g_{1}}^{m-1}(\ulcorner\varphi\urcorner) and g1(l)=Prg1n1(φ)g_{1}(l)=\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner) for some φ\varphi and ll : Since Cm1EC\equiv\Box^{m-1}E, we obtain f1(C)Prg1m1(f(E))f_{1}(C)\equiv\mathrm{Pr}_{g_{1}}^{m-1}(\ulcorner f(E)\urcorner), so Prg1m1(φ)Prg1m1(f1(E))\mathrm{Pr}_{g_{1}}^{m-1}(\ulcorner\varphi\urcorner)\equiv\mathrm{Pr}_{g_{1}}^{m-1}(\ulcorner f_{1}(E)\urcorner) holds. Then, f1(E)φf_{1}(E)\equiv\varphi and f1(n1E)Prg1n1(f1(E))Prg1n1(φ)f_{1}(\Box^{n-1}E)\equiv\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner f_{1}(E)\urcorner)\equiv\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner). Since g1(l)=f1(n1E)g_{1}(l)=f_{1}(\Box^{n-1}E), it follows that Prg1(f1(n1E))\mathrm{Pr}_{g_{1}}(\ulcorner f_{1}(\Box^{n-1}E)\urcorner) holds. Hence, we obtain f1(nE)f_{1}(\Box^{n}E), which contradicts (3).

Case2:

m<m1m^{\prime}<m-1

We argue in 𝖯𝖠+S(i¯)\mathsf{PA}+S(\overline{i}): Let ss be such that h(s)=0h(s)=0 and h(s+1)=ih(s+1)=i. Suppose, towards a contradiction, that f1(C)f_{1}(C) is output by g1g_{1}. If f1(C)f_{1}(C) is output at the cases corresponding to (i) and (ii) in the proof of Case 1, then we can obtain a contradiction similarly. If f1(C)Prg1m1(φ)f_{1}(C)\equiv\mathrm{Pr}_{g_{1}}^{m-1}(\ulcorner\varphi\urcorner) and g1(l)=Prg1n1(φ)g_{1}(l)=\mathrm{Pr}_{g_{1}}^{n-1}(\ulcorner\varphi\urcorner) for some φ\varphi and ll, then CC must be of the form m1F\Box^{m-1}F for some FF. Since m<m1m^{\prime}<m-1, this is a contradiction.

∎ We finish our proof of Theorem 4.3. By Claim 4.7, we obtain the first clause. By Proposition 4.1.3 and Claim 4.8, the second clause holds.

5 Proof of Theorem 3.3

In Theorem 4.3, we have proved Theorem 3.3 with respect to the case m>n1m>n\geq 1. In this section, we prove Theorem 3.3 for the remaining cases n>m1n>m\geq 1 and m>n=0m>n=0. Before proving Theorem 3.3, we introduce a Σ1\Sigma_{1} provability predicate Prσ(x)\mathrm{Pr}_{\sigma}(x) and a 𝖯𝖠\mathsf{PA}-provably recursive function hh^{\prime} in stead of the function hh defined in Section 4. Throughout this section, we assume that TT is a Σ1\Sigma_{1}-ill theory.

Since TT is Σ1\Sigma_{1}-ill, it is well-known that we obtain a Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) formula σ(x)\sigma(x) representing TT in 𝖯𝖠\mathsf{PA} such that x(τ(x)σ(x))\mathbb{N}\models\forall x(\tau(x)\leftrightarrow\sigma(x)) and T¬ConσT\vdash\neg\mathrm{Con}_{\sigma} (cf. [11, Theorem 8 (b)]). Remark that we get x(PrT(x)Prσ(x))\mathbb{N}\models\forall x\bigl{(}\mathrm{Pr}_{T}(x)\leftrightarrow\mathrm{Pr}_{\sigma}(x)\bigr{)}. In particular, since TT is consistent, Conσ\mathbb{N}\models\mathrm{Con}_{\sigma} holds. The set of sentences defined by σ(x)\sigma(x) in \mathbb{N} is exactly TT. On the other hand, the behaviors of σ(x)\sigma(x) and τ(x)\tau(x) may be different in 𝖯𝖠\mathsf{PA}, so let TσT_{\sigma} denote the set of sentences defined by σ(x)\sigma(x) in 𝖯𝖠\mathsf{PA}. For each nωn\in\omega, let Pσ,n:={φyn¯Prfσ(φ,y)}P_{\sigma,n}:=\{\varphi\mid\mathbb{N}\models\exists y\leq\overline{n}\ \mathrm{Prf}_{\sigma}(\ulcorner\varphi\urcorner,y)\}. In 𝖯𝖠\mathsf{PA}, we can see that if φ\varphi is a t.c. of Pσ,nP_{\sigma,n}, then φ\varphi is provable from TσT_{\sigma}.

In our proofs presented in this section, we use a 𝖯𝖠\mathsf{PA}-provably recursive function hh^{\prime} instead of the function hh introduced in a previous section. Let {(Wk,{k,B}B𝖬𝖥,k)}kω\bigl{\{}\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)}\bigr{\}}_{k\in\omega} be a primitive recursive enumeration of 𝐍\mathbf{N}-models such that the sets {Wk}kω\{W_{k}\}_{k\in\omega} are pairwise disjoint subsets of ω\omega and kωWk=ω{0}\bigcup_{k\in\omega}W_{k}=\omega\setminus\{0\}. Let {Ak}kω\{A_{k}\}_{k\in\omega} be a primitive recursive enumeration of \mathcal{L}_{\Box}-formulas. We construct the function hh^{\prime} by using the enumerations {(Wk,{k,B}B𝖬𝖥,k)}kω\bigl{\{}\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)}\bigr{\}}_{k\in\omega} and {Ak}kω\{A_{k}\}_{k\in\omega}. The function hh^{\prime} is defined by using the recursion theorem as follows:

  • h(0)=0h^{\prime}(0)=0.

  • h(s+1)={iifh(s)=0&i=min{jω{0}¬S(j¯)is a t.c. ofPσ,sorkB[jWk&B𝖲𝗎𝖻(Ak)s.t.xφB(x)andφB(j¯)¬S(j¯)are a t.c.’s ofPσ,s]}h(s)otherwise.h^{\prime}(s+1)=\begin{cases}i&\text{if}\ h^{\prime}(s)=0\\ &\quad\&\ i=\min\{j\in\omega\setminus\{0\}\mid\neg S^{\prime}(\overline{j})\ \text{is a t.c.~{}of}\ P_{\sigma,s}\\ &\quad\quad\text{or}\ \exists k\exists B[j\in W_{k}\ \&\ B\in\mathsf{Sub}(A_{k})\ \text{s.t.}\\ &\quad\quad\quad\forall x\varphi_{B}(x)\ \text{and}\ \varphi_{B}(\overline{j})\to\neg S^{\prime}(\overline{j})\ \text{are a t.c.'s~{}of}\ P_{\sigma,s}]\}\\ h^{\prime}(s)&\text{otherwise}.\end{cases}

Here, S(x)S^{\prime}(x) and φB(x)\varphi_{B}(x) are formulas

y(h(y)=x)and(x0y(xWyB𝖲𝗎𝖻(Ay)xyB))¬S(x),\exists y\bigl{(}h^{\prime}(y)=x\bigr{)}\ \text{and}\ \bigl{(}x\neq 0\wedge\exists y(x\in W_{y}\wedge B\in\mathsf{Sub}(A_{y})\wedge x\nVdash_{y}B)\bigr{)}\to\neg S^{\prime}(x),

respectively. We have finished the definition of hh^{\prime}.

𝖯𝖠\mathsf{PA}-provably recursiveness of the function hh^{\prime} is guaranteed by the following claim.

Claim 5.1.

For any j0j\neq 0, if h(s)=0h^{\prime}(s)=0 and h(s+1)=jh^{\prime}(s+1)=j, then js+1j\leq s+1.

Proof.

Suppose h(s)=0h^{\prime}(s)=0 and h(s+1)=jWkh^{\prime}(s+1)=j\in W_{k} for some kk. If Pσ,sP_{\sigma,s} is not propositionally satisfiable, then ¬S(1¯)\neg S^{\prime}(\overline{1}) is a t.c. of Pσ,sP_{\sigma,s}. Hence, j=1s+1j=1\leq s+1 holds.

Then, we assume that Pσ,sP_{\sigma,s} is propositionally satisfiable. We distinguish the following two cases.

  • ¬S(j¯)\neg S^{\prime}(\overline{j}) is a t.c. of Pσ,sP_{\sigma,s}:

    Since S(j¯)S^{\prime}(\overline{j}) is propositionally atomic, S(j¯)S^{\prime}(\overline{j}) is a subformula of a formula contained in Pσ,sP_{\sigma,s}. Thus, we obtain jsj\leq s.

  • φB(j¯)¬S(j¯)\varphi_{B}(\overline{j})\to\neg S^{\prime}(\overline{j}) is a t.c. of Pσ,sP_{\sigma,s} for some B𝖲𝗎𝖻(Ak)B\in\mathsf{Sub}(A_{k}):

    Then, we further consider the following two cases.

    • ¬S(j¯)\neg S^{\prime}(\overline{j}) is a t.c. of Pσ,sP_{\sigma,s}:

      Since S(j¯)S^{\prime}(\overline{j}) is a subformula of a formula contained in Pσ,sP_{\sigma,s}, we obtain jsj\leq s.

    • ¬S(j¯)\neg S^{\prime}(\overline{j}) is not a t.c. of Pσ,sP_{\sigma,s}:

      Since j=0φB(j¯)j=0\to\varphi_{B}(\overline{j}) is a tautology, j=0¬S(j¯)j=0\to\neg S^{\prime}(\overline{j}) is a t.c. of Pσ,sP_{\sigma,s}. If j=0j=0 were not a subformula of any formula contained in Pσ,sP_{\sigma,s}, then ¬S(j¯)\neg S^{\prime}(\overline{j}) would be a t.c. of Pσ,sP_{\sigma,s} because j=0j=0 is distinct from S(j¯)S^{\prime}(\overline{j}). Thus, j=0j=0 is a subformula of a formula which is in Pσ,sP_{\sigma,s}, and we obtain jsj\leq s.

    In either case, js+1j\leq s+1 holds.

We obtain the following proposition corresponding to Proposition 4.1.

Proposition 5.1.
  1. 1.

    𝖯𝖠xy(0<x<yS(x)¬S(y))\mathsf{PA}\vdash\forall x\forall y\bigl{(}0<x<y\wedge S^{\prime}(x)\to\neg S^{\prime}(y)\bigr{)}.

  2. 2.

    𝖯𝖠¬Conσx(S(x)x0)\mathsf{PA}\vdash\neg\mathrm{Con}_{\sigma}\leftrightarrow\exists x\bigl{(}S^{\prime}(x)\wedge x\neq 0\bigr{)}.

  3. 3.

    For each iω{0}i\in\omega\setminus\{0\}, T¬S(i¯)T\nvdash\neg S^{\prime}(\overline{i}).

  4. 4.

    For each lωl\in\omega, 𝖯𝖠xy(h(x)=0h(x+1)=yy0xl)\mathsf{PA}\vdash\forall x\forall y\bigl{(}h^{\prime}(x)=0\wedge h^{\prime}(x+1)=y\wedge y\neq 0\to x\geq l\bigr{)}.

Proof.
  1. 1.

    Immediate from the definition hh^{\prime}.

  2. 2.

    We work in 𝖯𝖠\mathsf{PA}: ()(\leftarrow): Let i0i\neq 0 be such that S(i¯)S^{\prime}(\overline{i}). Let kk and ss be such that iWki\in W_{k}, h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i. We distinguish the following two cases.

    • ¬S(i¯)\neg S^{\prime}(\overline{i}) is a t.c. of Pσ,sP_{\sigma,s}:

      Then, ¬S(i¯)\neg S^{\prime}(\overline{i}) is provable in TσT_{\sigma}. Since S(i¯)S^{\prime}(\overline{i}) is a true Σ1\Sigma_{1} sentence, S(i¯)S^{\prime}(\overline{i}) is provable in TσT_{\sigma} by the Σ1\Sigma_{1}-completeness. It follows that TσT_{\sigma} is inconsistent.

    • xφB(x)\forall x\varphi_{B}(x) and φB(i¯)¬S(i¯)\varphi_{B}(\overline{i})\to\neg S^{\prime}(\overline{i}) are t.c.’s of Pσ,sP_{\sigma,s} for some B𝖲𝗎𝖻(Ak)B\in\mathsf{Sub}(A_{k}): Then, xφB(x)\forall x\varphi_{B}(x) and φB(i¯)¬S(i¯)\varphi_{B}(\overline{i})\to\neg S^{\prime}(\overline{i}) are provable in TσT_{\sigma}. Hence, φB(i¯)\varphi_{B}(\overline{i}) is provable in TσT_{\sigma}, and so is ¬S(i¯)\neg S^{\prime}(\overline{i}). Since S(i¯)S^{\prime}(\overline{i}) is a true Σ1\Sigma_{1} sentence, S(i¯)S^{\prime}(\overline{i}) is provable in TσT_{\sigma}. It concludes that TσT_{\sigma} is inconsistent.

    In all cases, we obtain that TσT_{\sigma} is inconsistent.

    ()(\to): If TσT_{\sigma} is inconsistent, then ¬S(i¯)\neg S^{\prime}(\overline{i}) is TσT_{\sigma}-provable for some i0i\neq 0. Let ss be a proof of ¬S(i¯)\neg S^{\prime}(\overline{i}). Then, ¬S(i¯)\neg S^{\prime}(\overline{i}) is a t.c. of Pσ,sP_{\sigma,s}, and we obtain h(s+1)0h^{\prime}(s+1)\neq 0.

  3. 3.

    Suppose that there exists an iω{0}i\in\omega\setminus\{0\} such that T¬S(i¯)T\vdash\neg S^{\prime}(\overline{i}). Let pp be a proof of ¬S(i¯)\neg S^{\prime}(\overline{i}) in TT. Then, ¬S(i¯)\neg S^{\prime}(\overline{i}) is a t.c. of Pσ,pP_{\sigma,p} and we obtain x(S(x)x0)\mathbb{N}\models\exists x\bigl{(}S^{\prime}(x)\wedge x\neq 0\bigr{)}. By clause 2, we obtain ¬Conσ\mathbb{N}\models\neg\mathrm{Con}_{\sigma}. This contradicts the consistency of TT.

  4. 4.

    Since Conσ\mathbb{N}\models\mathrm{Con}_{\sigma}, for any lωl\in\omega, we obtain h(l¯)=0\mathbb{N}\models h^{\prime}(\overline{l})=0. Thus, 𝖯𝖠h(l¯)=0\mathsf{PA}\vdash h^{\prime}(\overline{l})=0, and clause 4 is easily obtained.

We are ready to prove Theorem 3.3.

5.1 The case n>m1n>m\geq 1

In this subsection, we verify the following theorem, which is Theorem 3.3 with respect to the case n>m1n>m\geq 1.

Theorem 5.2.

Suppose that TT is Σ1\Sigma_{1}-ill and n>m1n>m\geq 1. There exists a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that

  1. 1.

    for any A𝖬𝖥A\in\mathsf{MF} and arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x), if 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A, then Tf(A)T\vdash f(A), and

  2. 2.

    there exists an arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x) such that 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash A if and only if Tf(A)T\vdash f(A).

Proof.

Let n>m1n>m\geq 1. Let Akkω\langle A_{k}\rangle_{k\in\omega} denote a primitive recursive enumeration of all 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n}-unprovable formulas. As in the proof of Theorem 3.2, for each kωk\in\omega, we obtain a primitive recursively constructed finite (m,n)(m,n)-accessible 𝐍\mathbf{N}-model (Wk,{k,B}B𝖬𝖥,k)\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)} falsifying AkA_{k} and let =(W,{B}B𝖬𝖥,)\mathcal{M}=\bigl{(}W,\{\prec_{B}\}_{B\in\mathsf{MF}},\Vdash\bigr{)} be the (m,n)(m,n)-accessible 𝐍\mathbf{N}-model defined as a disjoint union of these models. We prepare the 𝖯𝖠\mathsf{PA}-provably recursive function hh^{\prime} constructed from the enumerations Akkω\langle A_{k}\rangle_{k\in\omega} and {(Wk,{k,B}B𝖬𝖥,k)}kω\bigl{\{}\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)}\bigr{\}}_{k\in\omega}.

By the recursion theorem, we define a 𝖯𝖠\mathsf{PA}-provably recursive function g2g_{2} corresponding to Theorem 3.3 with respect to the case n>m1n>m\geq 1. In the definition of g2g_{2}, we use the Σ1\Sigma_{1} formula Prg2(x)\mathrm{Pr}_{g_{2}}(x)\equiv y(g2(y)=xFmlA(x))\exists y(g_{2}(y)=x\wedge\mathrm{Fml}_{\mathcal{L}_{A}}(x)) and the arithmetical interpretation f2f_{2} based on Prg2(x)\mathrm{Pr}_{g_{2}}(x) such that f2(p)x(S(x)x0xp)f_{2}(p)\equiv\exists x(S^{\prime}(x)\wedge x\neq 0\wedge x\Vdash p). In Procedure 1, g2g_{2} outputs all formulas which are provable from TσT_{\sigma}. Also, if g2g_{2} does not output Prg2m1(f2(B))\mathrm{Pr}_{g_{2}}^{m-1}(\ulcorner f_{2}(B)\urcorner) in Procedure 2, then Prg2n1(f2(B))\mathrm{Pr}_{g_{2}}^{n-1}(\ulcorner f_{2}(B)\urcorner) is not output by g2g_{2} in Procedure 2.

Procedure 1.

Stage ss:

  • If h(s+1)=0h^{\prime}(s+1)=0,

    g2(s)={φifsis aTσ-proof ofφ,0otherwise.g_{2}(s)=\begin{cases}\varphi&\text{if}\ s\ \text{is a}\ T_{\sigma}\text{-proof of}\ \varphi,\\ 0&\text{otherwise}.\end{cases}

    Then, go to Stage s+1s+1.

  • If h(s+1)0h^{\prime}(s+1)\neq 0, go to Procedure 2.

Procedure 2.

Suppose ss and i0i\neq 0 satisfy h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i. Let kk be a number such that iWki\in W_{k}. Define

g2(s+t)={0ifξtf2(B)&ikBfor someB𝖲𝗎𝖻(Ak)orξtPrg2n1(f2(B))&g2(s+u)=0,whereξuPrg2m1(f2(B))for someB𝖬𝖥andu<t,ξtotherwise.g_{2}(s+t)=\begin{cases}0&\text{if}\ \xi_{t}\equiv f_{2}(B)\ \&\ i\nVdash_{k}\Box B\ \text{for some}\ \Box B\in\mathsf{Sub}(A_{k})\\ &\quad\text{or}\ \xi_{t}\equiv\mathrm{Pr}_{g_{2}}^{n-1}(\ulcorner f_{2}(B)\urcorner)\ \&\ \ g_{2}(s+u)=0,\\ &\quad\quad\text{where}\ \xi_{u}\equiv\mathrm{Pr}_{g_{2}}^{m-1}(\ulcorner f_{2}(B)\urcorner)\ \text{for some}\ B\in\mathsf{MF}\ \text{and}\ u<t,\\ \xi_{t}&\text{otherwise}.\end{cases}

The construction of g2g_{2} has been finished.

The following claim guarantees that Prg2(x)\mathrm{Pr}_{g_{2}}(x) is a Σ1\Sigma_{1} provability predicate of TT.

Claim 5.2.

For any formula φ\varphi, 𝖯𝖠+ConσPrg2(φ)Prσ(φ)\mathsf{PA}+\mathrm{Con}_{\sigma}\vdash\mathrm{Pr}_{g_{2}}(\ulcorner\varphi\urcorner)\leftrightarrow\mathrm{Pr}_{\sigma}(\ulcorner\varphi\urcorner).

Proof.

We work in 𝖯𝖠+Conσ\mathsf{PA}+\mathrm{Con}_{\sigma}: By Proposition 5.1.2, the definition of g2g_{2} never switches to Procedure 2. Hence, for any ss, g2(s)=φg_{2}(s)=\varphi if and only if ss is a proof of φ\varphi in TσT_{\sigma}. ∎

Claim 5.3.

For any C𝖬𝖥C\in\mathsf{MF},

𝖯𝖠x(x0S(x)y(xWyxyC))f2(C).\mathsf{PA}\vdash\exists x\bigl{(}x\neq 0\wedge S^{\prime}(x)\wedge\exists y(x\in W_{y}\wedge x\Vdash_{y}\Box C)\bigr{)}\to f_{2}(\Box C).
Proof.

Let m1m^{\prime}\geq 1 and DD be such that CmD\Box C\equiv\Box^{m^{\prime}}D, where DD is not a boxed formula. Here, m1m^{\prime}\geq 1 denotes the maximum number of the outermost consecutive boxes of C\Box C. We distinguish the following two cases.

Case 1:

m<nm^{\prime}<n.

We work in 𝖯𝖠\mathsf{PA}: Let i0i\neq 0 and kk be such that S(i¯)S^{\prime}(\overline{i}), iWki\in W_{k}, and ikCi\Vdash_{k}\Box C. Let ss be such that h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i. Then, the definition of g2g_{2} goes to Procedure 2 at Stage ss. We show that f2(C)f_{2}(C) is output by g2g_{2} in Procedure 2. Suppose, towards a contradiction, that f2(C)f_{2}(C) is not output by g2g_{2} in Procedure 2. Let ξtf2(C)\xi_{t}\equiv f_{2}(C). Then, g2(s+t)=0g_{2}(s+t)=0. We consider the following two cases.

  • ξtf2(E)\xi_{t}\equiv f_{2}(E) and ikEi\nVdash_{k}\Box E for some E𝖲𝗎𝖻(Ak)\Box E\in\mathsf{Sub}(A_{k}): Then, we obtain CEC\equiv E. Hence, iCi\nVdash\Box C holds, which is a contradiction.

  • ξtPrg2n1(f2(E))\xi_{t}\equiv\mathrm{Pr}_{g_{2}}^{n-1}(\ulcorner f_{2}(E)\urcorner) and g2(s+u)=0g_{2}(s+u)=0, where ξuPrg2m1(f2(E))\xi_{u}\equiv\mathrm{Pr}_{g_{2}}^{m-1}(\ulcorner f_{2}(E)\urcorner) for some E𝖬𝖥E\in\mathsf{MF} and u<tu<t: Since f2(C)Prg2n1(f2(E))f_{2}(C)\equiv\mathrm{Pr}_{g_{2}}^{n-1}(\ulcorner f_{2}(E)\urcorner), we obtain Cn1EC\equiv\Box^{n-1}E. Since CnE\Box C\equiv\Box^{n}E, this contradicts the assumption that m<nm^{\prime}<n.

Therefore, f2(C)f_{2}(C) is output by g2g_{2} in Procedure 2.

Case 2:

mnm^{\prime}\geq n.

Since mmnmm^{\prime}-m\geq n-m, we can uniquely find numbers r<nmr<n-m and q1q\geq 1 such that mm=q(nm)+rm^{\prime}-m=q(n-m)+r. Hence, mDmq(nm)rD\Box^{m^{\prime}}D\equiv\Box^{m}\Box^{q(n-m)}\Box^{r}D. Let rDE\Box^{r}D\equiv E. Then, it follows that mDq(nm)mE\Box^{m^{\prime}}D\equiv\Box^{q(n-m)}\Box^{m}E.

We work in 𝖯𝖠\mathsf{PA}: Let i0i\neq 0 and kk be such that S(i¯)S^{\prime}(\overline{i}), iWki\in W_{k}, and ikCi\Vdash_{k}\Box C. Let ss be such that h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i. Then, the definition of g2g_{2} switches to Procedure 2 on Stage ss. We prove the following subclaims.

Subclaim 1.

For each 0jq0\leq j\leq q, we have ik(qj)(nm)mEi\Vdash_{k}\Box^{(q-j)(n-m)}\Box^{m}E.

Proof.

We prove the statement by induction on jqj\leq q. If j=0j=0, then we obtain ikq(nm)mEi\Vdash_{k}\Box^{q(n-m)}\Box^{m}E by ikCmDi\Vdash_{k}\Box C\equiv\Box^{m^{\prime}}D. We prove on j+1qj+1\leq q. By the induction hypothesis, we obtain ik(qj)(nm)mEi\Vdash_{k}\Box^{(q-j)(n-m)}\Box^{m}E, and we get ikn(qj1)(nm)Ei\Vdash_{k}\Box^{n}\Box^{(q-j-1)(n-m)}E. Then, it follows from Accm,n\mathrm{Acc}_{m,n} that ikm(q(j+1))(nm)Ei\Vdash_{k}\Box^{m}\Box^{(q-(j+1))(n-m)}E.

Subclaim 2.

For each 0jq0\leq j\leq q, f2(j(nm)m1E)f_{2}(\Box^{j(n-m)}\Box^{m-1}E) is output by g2g_{2} in Procedure 2.

Proof.

For each 0jq0\leq j\leq q, let tjt_{j} be such that ξtjf2(j(nm)m1E)\xi_{t_{j}}\equiv f_{2}(\Box^{j(n-m)}\Box^{m-1}E). We prove g2(s+tj)=ξtjg_{2}(s+t_{j})=\xi_{t_{j}} by induction on jqj\leq q. We prove the base case j=0j=0. Suppose, towards a contradiction, that g2(s+t0)=0g_{2}(s+t_{0})=0. Since r<nmr<n-m, we have m1+r<n1m-1+r<n-1. Then, ξt0Prg2m1(f2(E))\xi_{t_{0}}\equiv\mathrm{Pr}_{g_{2}}^{m-1}(\ulcorner f_{2}(E)\urcorner) is not of the form Prg2n1(f2(G))\mathrm{Pr}_{g_{2}}^{n-1}(\ulcorner f_{2}(G)\urcorner) for any GG. Hence, by g2(s+t0)=0g_{2}(s+t_{0})=0, it follows that ξt0f2(F)\xi_{t_{0}}\equiv f_{2}(F) and ikFi\nVdash_{k}\Box F for some F𝖲𝗎𝖻(Ak)\Box F\in\mathsf{Sub}(A_{k}). Since f2(m1E)f2(F)f_{2}(\Box^{m-1}E)\equiv f_{2}(F), it follows that m1EF\Box^{m-1}E\equiv F. Hence, we obtain ikmEi\nVdash_{k}\Box^{m}E. This contradicts Subclaim 1. Thus, we get g2(s+t0)=ξt0g_{2}(s+t_{0})=\xi_{t_{0}}.

Next, we prove the induction case j+1qj+1\leq q. By the induction hypothesis, we obtain g2(s+tj)=ξtjg_{2}(s+t_{j})=\xi_{t_{j}}. Suppose, towards a contradiction, that g2(s+tj+1)=0g_{2}(s+t_{j+1})=0. We consider the following two cases.

  • ξtj+1f2(F)\xi_{t_{j+1}}\equiv f_{2}(F) and ikFi\nVdash_{k}\Box F hold for some F𝖲𝗎𝖻(Ak)\Box F\in\mathsf{Sub}(A_{k}): We get (j+1)(nm)m1EF\Box^{(j+1)(n-m)}\Box^{m-1}E\equiv F. Thus, we obtain ik(j+1)(nm)mEi\nVdash_{k}\Box^{(j+1)(n-m)}\Box^{m}E, which contradicts Subclaim 1.

  • ξtj+1Prg2n1(f2(F))\xi_{t_{j+1}}\equiv\mathrm{Pr}_{g_{2}}^{n-1}(\ulcorner f_{2}(F)\urcorner) and g2(s+u)=0g_{2}(s+u)=0, where ξuPrg2m1(f2(F))\xi_{u}\equiv\mathrm{Pr}_{g_{2}}^{m-1}(\ulcorner f_{2}(F)\urcorner) for some F𝖬𝖥F\in\mathsf{MF} and u<tj+1u<t_{j+1}:

    Then, we obtain n1F(j+1)(nm)m1E\Box^{n-1}F\equiv\Box^{(j+1)(n-m)}\Box^{m-1}E. It follows that m1Fj(nm)m1E\Box^{m-1}F\equiv\Box^{j(n-m)}\Box^{m-1}E, so we obtain ξuξtj\xi_{u}\equiv\xi_{t_{j}} and u=tju=t_{j}. Hence, we obtain g2(s+tj)=g2(s+u)=0g_{2}(s+t_{j})=g_{2}(s+u)=0. This contradicts g2(s+tj)=ξtjg_{2}(s+t_{j})=\xi_{t_{j}}.

We have proved g2(s+tj+1)=ξtj+1g_{2}(s+t_{j+1})=\xi_{t_{j+1}}. ∎

By Subclaim 2, we obtain f2(C)f_{2}(C) is output by g2g_{2}, that is, f2(C)f_{2}(\Box C) holds.

Claim 5.4.

Let B𝖬𝖥B\in\mathsf{MF}.

  1. 1.

    𝖯𝖠x(x0S(x)y(xWyB𝖲𝗎𝖻(Ay)xyB))f2(B)\mathsf{PA}\vdash\exists x\bigl{(}x\neq 0\wedge S^{\prime}(x)\wedge\exists y(x\in W_{y}\wedge B\in\mathsf{Sub}(A_{y})\wedge x\Vdash_{y}B)\bigr{)}\to f_{2}(B).

  2. 2.

    𝖯𝖠x(x0S(x)y(xWyB𝖲𝗎𝖻(Ay)xyB))¬f2(B)\mathsf{PA}\vdash\exists x\bigl{(}x\neq 0\wedge S^{\prime}(x)\wedge\exists y(x\in W_{y}\wedge B\in\mathsf{Sub}(A_{y})\wedge x\nVdash_{y}B)\bigr{)}\to\neg f_{2}(B).

Proof.

We prove Clauses 1 and 2 simultaneously by induction on the construction of B𝖲𝗎𝖻(Ak)B\in\mathsf{Sub}(A_{k}). First, we prove the base step of the induction. In the case BB\equiv\bot, Clauses 1 and 2 are easily proved. Suppose BpB\equiv p. Clause 1 holds trivially. We only give a proof of Clause 2.

  1. 2.

    By Proposition 5.1.1, we obtain

    𝖯𝖠x0S(x)xWyxyp\displaystyle\mathsf{PA}\vdash x\neq 0\wedge S^{\prime}(x)\wedge x\in W_{y}\wedge x\nVdash_{y}p (S(z)z0z=x)\displaystyle\to\bigl{(}S^{\prime}(z)\wedge z\neq 0\to z=x\bigr{)}
    z(S(z)z0zp).\displaystyle\to\forall z\bigl{(}S^{\prime}(z)\wedge z\neq 0\to z\nVdash p\bigr{)}.

    Then, we get

    𝖯𝖠x(x0S(x)y(xWyp𝖲𝗎𝖻(Ay)xyp))¬f2(p).\mathsf{PA}\vdash\exists x\bigl{(}x\neq 0\wedge S^{\prime}(x)\wedge\exists y(x\in W_{y}\wedge p\in\mathsf{Sub}(A_{y})\wedge x\nVdash_{y}p)\bigr{)}\to\neg f_{2}(p).

Next, we prove the induction step. The cases of ¬\neg, \wedge, \vee, and \to are easily proved. We prove the case BCB\equiv\Box C.

  1. 1.

    We obtain Clause 1 by Claim 5.3.

  2. 2.

    If 𝐍+𝐀m,nC\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash\Box C, then 𝖯𝖠xy(xWyxyC)\mathsf{PA}\vdash\forall x\forall y(x\in W_{y}\to x\Vdash_{y}\Box C) holds by formalizing the soundness of 𝐍+𝐀m,n\mathbf{N}^{+}\mathbf{A}_{m,n}. Hence, Clause 2 trivially holds.

    Therefore, we may assume that 𝐍+𝐀m,nC\mathbf{N}^{+}\mathbf{A}_{m,n}\nvdash\Box C. Then, there exists a jωj\in\omega such that CAj\Box C\equiv A_{j}. Let (Wj,{j,D}D𝖬𝖥,j)\bigl{(}W_{j},\{\prec_{j,D}\}_{D\in\mathsf{MF}},\Vdash_{j}\bigr{)} be a countermodel of AjA_{j} and rWjr\in W_{j} be such that rjCr\nVdash_{j}\Box C. Then, there exists an lWjl\in W_{j} such that rj,Clr\prec_{j,C}l and ljCl\nVdash_{j}C. Thus, we obtain

    𝖯𝖠l¯0y(l¯WyC𝖲𝗎𝖻(Ay)l¯yC),\mathsf{PA}\vdash\overline{l}\neq 0\wedge\exists y(\overline{l}\in W_{y}\wedge C\in\mathsf{Sub}(A_{y})\wedge\overline{l}\nVdash_{y}C),

    which implies that 𝖯𝖠φC(l¯)¬S(l¯)\mathsf{PA}\vdash\varphi_{C}(\overline{l})\to\neg S^{\prime}(\overline{l}). Also, since

    𝖯𝖠x¬φC(x)x(x0S(x)y(xWyC𝖲𝗎𝖻(Ay)xyC)),\mathsf{PA}\vdash\exists x\neg\varphi_{C}(x)\leftrightarrow\exists x\bigl{(}x\neq 0\wedge S^{\prime}(x)\wedge\exists y(x\in W_{y}\wedge C\in\mathsf{Sub}(A_{y})\wedge x\nVdash_{y}C)\bigr{)},

    it follows from the induction hypothesis that 𝖯𝖠x¬φC(x)¬f2(C)\mathsf{PA}\vdash\exists x\neg\varphi_{C}(x)\to\neg f_{2}(C). Let pp and qq be TT-proofs of φC(l¯)¬S(l¯)\varphi_{C}(\overline{l})\to\neg S^{\prime}(\overline{l}) and x¬φC(x)¬f2(C)\exists x\neg\varphi_{C}(x)\to\neg f_{2}(C) respectively.

    We work in 𝖯𝖠\mathsf{PA}: Let i0i\neq 0 and kk be such that S(i¯)S^{\prime}(\overline{i}), iWki\in W_{k}, C𝖲𝗎𝖻(Ak)\Box C\in\mathsf{Sub}(A_{k}) and ikCi\nVdash_{k}\Box C. Let ss be such that h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i. Suppose, towards a contradiction, that f2(C)f_{2}(C) is output by g2g_{2}. We consider the following two cases.

    • f2(C)f_{2}(C) is output in Procedure 1:

      Then, we obtain f2(C)Pσ,s1f_{2}(C)\in P_{\sigma,s-1} and it follows from Proposition 5.1 that qs1q\leq s-1. Hence, x¬φC(x)¬f2(C)Pσ,s1\exists x\neg\varphi_{C}(x)\to\neg f_{2}(C)\in P_{\sigma,s-1} holds, which implies that xφC(x)\forall x\varphi_{C}(x) is a t.c. of Pσ,s1P_{\sigma,s-1}. Since ps1p\leq s-1 by Proposition 5.1, φC(l¯)¬S(l¯)\varphi_{C}(\overline{l})\to\neg S^{\prime}(\overline{l}) is a t.c. of Pσ,s1P_{\sigma,s-1}. We also have lWjl\in W_{j} and C𝖲𝗎𝖻(Aj)C\in\mathsf{Sub}(A_{j}). Hence, it follows that h(s)0h^{\prime}(s)\neq 0, which is a contradiction.

    • f2(C)f_{2}(C) is output in Procedure 2:

      Let ξuf2(C)\xi_{u}\equiv f_{2}(C). Since C𝖲𝗎𝖻(Ak)\Box C\in\mathsf{Sub}(A_{k}), ξuf2(C)\xi_{u}\equiv f_{2}(C) and ikCi\nVdash_{k}\Box C, we obtain g2(s+u)g_{2}(s+u)=0, which means that f2(C)f_{2}(C) is never output in Procedure 2. This is a contradiction.

    Therefore, f2(C)f_{2}(C) is not output by g2g_{2}, that is, ¬f2(C)\neg f_{2}(\Box C) holds.

Claim 5.5.

For any formula φ\varphi, TPrg2n(φ)Prg2m(φ)T\vdash\mathrm{Pr}_{g_{2}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{2}}^{m}(\ulcorner\varphi\urcorner).

Proof.

We consider the following two cases.

Case 1:

φ\varphi is not of the form f2(A)f_{2}(A) for any A𝖬𝖥A\in\mathsf{MF}.

We work in TT: By the definition of σ(x)\sigma(x), ¬Conσ\neg\mathrm{Con}_{\sigma} holds. Then, there exist some i0i\neq 0 and ss such that h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i by Proposition 5.1.2. Let ξuPrg2m1(φ)\xi_{u}\equiv\mathrm{Pr}_{g_{2}}^{m-1}(\ulcorner\varphi\urcorner). Then, ξu\xi_{u} is not of the form f2(B)f_{2}(B) for any B𝖬𝖥B\in\mathsf{MF}. Thus, we obtain g2(s+u)=ξug_{2}(s+u)=\xi_{u}. It follows that Prg2m(φ)\mathrm{Pr}_{g_{2}}^{m}(\ulcorner\varphi\urcorner) holds.

Case 2:

φ\varphi is of the form f2(A)f_{2}(A) for some A𝖬𝖥A\in\mathsf{MF}.

We further distinguish the following two cases.

  • 𝐍+𝐀m,nnA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash\Box^{n}A:

    Then, we obtain 𝐍+𝐀m,nmA\mathbf{N}^{+}\mathbf{A}_{m,n}\vdash\Box^{m}A by Accm,n\mathrm{Acc}_{m,n}. This implies

    𝖯𝖠xy(xWyxymA).\mathsf{PA}\vdash\forall x\forall y(x\in W_{y}\to x\Vdash_{y}\Box^{m}A). (4)

    We work in TT: Since ¬Conσ\neg\mathrm{Con}_{\sigma} holds, we get S(i¯)S^{\prime}(\overline{i}) for some i0i\neq 0. Let iWki\in W_{k}. Then, ikmAi\Vdash_{k}\Box^{m}A holds by (4). Hence, it follows from Claim 5.3 that f2(mA)f_{2}(\Box^{m}A) holds, which means that Prg2m(f2(A))\mathrm{Pr}_{g_{2}}^{m}(\ulcorner f_{2}(A)\urcorner) holds.

  • 𝐍+𝐀m,nnA\mathbf{N}^{+}\mathbf{A}_{m,n}\nvdash\Box^{n}A:

    Let jj be such that nAAj\Box^{n}A\equiv A_{j} and (Wj,{j,B}B𝖬𝖥,j)\bigl{(}W_{j},\{\prec_{j,B}\}_{B\in\mathsf{MF}},\Vdash_{j}\bigr{)} be a countermodel of AjA_{j}. Thus we obtain rjnAr\nVdash_{j}\Box^{n}A for some rWjr\in W_{j}, and ljn1Al\nVdash_{j}\Box^{n-1}A holds for some lWjl\in W_{j}. As in the proof of Claim 5.4, we obtain 𝖯𝖠φn1A(l¯)¬S(l¯)\mathsf{PA}\vdash\varphi_{\Box^{n-1}A}(\overline{l})\to\neg S^{\prime}(\overline{l}). From Claim 5.4.2, it follows that 𝖯𝖠x¬φn1A(l¯)¬f2(n1A)\mathsf{PA}\vdash\exists x\neg\varphi_{\Box^{n-1}A}(\overline{l})\to\neg f_{2}(\Box^{n-1}A). Let pp and qq be TT-proofs of φn1A(l¯)¬S(l¯)\varphi_{\Box^{n-1}A}(\overline{l})\to\neg S^{\prime}(\overline{l}) and x¬φn1A(l¯)¬f2(n1A)\exists x\neg\varphi_{\Box^{n-1}A}(\overline{l})\to\neg f_{2}(\Box^{n-1}A) respectively. We prove T¬Prg2m(f2(A))¬Prg2n(f2(A))T\vdash\neg\mathrm{Pr}_{g_{2}}^{m}(\ulcorner f_{2}(A)\urcorner)\to\neg\mathrm{Pr}_{g_{2}}^{n}(\ulcorner f_{2}(A)\urcorner).

    We work in TT: It follows that ¬Conσ\neg\mathrm{Con}_{\sigma} holds. Let i0i\neq 0 and ss be such that h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i. Set ξtf2(n1A)\xi_{t}\equiv f_{2}(\Box^{n-1}A) and ξuf2(m1A)\xi_{u}\equiv f_{2}(\Box^{m-1}A) for u<tu<t. Suppose, towards a contradiction, that ¬Prg2(f2(m1A))\neg\mathrm{Pr}_{g_{2}}(\ulcorner f_{2}(\Box^{m-1}A)\urcorner) and Prg2(f2(n1A))\mathrm{Pr}_{g_{2}}(\ulcorner f_{2}(\Box^{n-1}A)\urcorner) hold. Then, f2(n1A)f_{2}(\Box^{n-1}A) is output by g2g_{2}. Since ξu\xi_{u} is not output by g2g_{2}, we obtain g2(s+u)g_{2}(s+u)=0. Thus, we get g2(s+t)=0g_{2}(s+t)=0. Therefore, f2(n1A)f_{2}(\Box^{n-1}A) is output by g2g_{2} in Procedure 1, and f2(n1A)Pσ,s1f_{2}(\Box^{n-1}A)\in P_{\sigma,s-1} holds. Also, since qs1q\leq s-1, we obtain x¬φn1A(x)¬f2(n1A)Pσ,s1\exists x\neg\varphi_{\Box^{n-1}A}(x)\to\neg f_{2}(\Box^{n-1}A)\in P_{\sigma,s-1}. Thus, xφn1A(x)\forall x\varphi_{\Box^{n-1}A}(x) is a t.c. of Pσ,s1P_{\sigma,s-1}. By ps1p\leq s-1, φn1A(l¯)¬S(l¯)\varphi_{\Box^{n-1}A}(\overline{l})\to\neg S^{\prime}(\overline{l}) is a t.c. of Pσ,s1P_{\sigma,s-1}. Hence, it follows from n1A𝖲𝗎𝖻(Aj)\Box^{n-1}A\in\mathsf{Sub}(A_{j}) and lWjl\in W_{j} that h(s)0h^{\prime}(s)\neq 0. This is a contradiction. It concludes that ¬Prg2m(f2(A))\neg\mathrm{Pr}_{g_{2}}^{m}(\ulcorner f_{2}(A)\urcorner) implies ¬Prg2n(f2(A))\neg\mathrm{Pr}_{g_{2}}^{n}(\ulcorner f_{2}(A)\urcorner).

In either case, we have proved TPrg2n(φ)Prg2m(φ)T\vdash\mathrm{Pr}_{g_{2}}^{n}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{g_{2}}^{m}(\ulcorner\varphi\urcorner). ∎ We finish our proof of Theorem 5.2. Clause 1 and the implication ()(\Rightarrow) of Clause 2 trivially hold by Claim 5.2 and Claim 5.5.

We prove the implication ()(\Leftarrow) of Clause 2. Suppose 𝐍+𝐀m,nA\mathbf{N}^{+}\mathbf{A}_{m,n}\nvdash A. Then, there exists a kωk\in\omega such that AAkA\equiv A_{k}. Let (Wk,{k,B}B𝖬𝖥,k)\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)} be a countermodel of AkA_{k} and jWkj\in W_{k} be jkAkj\nVdash_{k}A_{k}. Hence, we obtain

𝖯𝖠j¯0y(j¯WyA𝖲𝗎𝖻(Ay)j¯yA)\mathsf{PA}\vdash\overline{j}\neq 0\wedge\exists y\bigl{(}\overline{j}\in W_{y}\wedge A\in\mathsf{Sub}(A_{y})\wedge\overline{j}\nVdash_{y}A\bigr{)}

and it follows that 𝖯𝖠φA(j¯)¬S(j¯)\mathsf{PA}\vdash\varphi_{A}(\overline{j})\to\neg S^{\prime}(\overline{j}). By using the contrapositive of Claim 5.4.2, we get 𝖯𝖠f2(A)xφA(x)\mathsf{PA}\vdash f_{2}(A)\to\forall x\varphi_{A}(x), which implies 𝖯𝖠f2(A)φA(j¯)\mathsf{PA}\vdash f_{2}(A)\to\varphi_{A}(\overline{j}). Then, we obtain 𝖯𝖠f2(A)¬S(j¯)\mathsf{PA}\vdash f_{2}(A)\to\neg S^{\prime}(\overline{j}). From Proposition 5.1.3, Tf2(A)T\nvdash f_{2}(A) holds. ∎

5.2 The case m1m\geq 1 and n=0n=0

In this subsection, we verify the following theorem, which is Theorem 3.3 with respect to the case m>n=0m>n=0.

Theorem 5.3.

Suppose that TT is Σ1\Sigma_{1}-ill and m1m\geq 1. There exists a Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT such that

  1. 1.

    for any A𝖬𝖥A\in\mathsf{MF} and arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x), if 𝐍+𝐀m,0A\mathbf{N}^{+}\mathbf{A}_{m,0}\vdash A, then Tf(A)T\vdash f(A), and

  2. 2.

    there exists an arithmetical interpretation ff based on PrT(x)\mathrm{Pr}_{T}(x) such that 𝐍+𝐀m,0A\mathbf{N}^{+}\mathbf{A}_{m,0}\vdash A if and only if Tf(A)T\vdash f(A).

In fact, we can prove Theorem 3.3 with respect to the more general case m>n0m>n\geq 0 in the same way as the proof of Theorem 5.3.

Proof.

Let m1m\geq 1. We prepare a primitive recursive enumeration of all 𝐍+𝐀m,0\mathbf{N}^{+}\mathbf{A}_{m,0}-unprovable formulas Akkω\langle A_{k}\rangle_{k\in\omega}. As in the proof of Theorem 3.2, for each kωk\in\omega, we can primitive recursively construct a finite (m,0)(m,0)-accessible 𝐍\mathbf{N}-model (Wk,{k,B}B𝖬𝖥,k)\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)} which falsifies AkA_{k} and let =(W,{B}B𝖬𝖥,)\mathcal{M}=\bigl{(}W,\{\prec_{B}\}_{B\in\mathsf{MF}},\Vdash\bigr{)} be the (m,0)(m,0)-accessible 𝐍\mathbf{N}-model defined as a disjoint union of these models. We prepare the 𝖯𝖠\mathsf{PA}-provably recursive function hh^{\prime} constructed from the enumerations Akkω\langle A_{k}\rangle_{k\in\omega} and {(Wk,{k,B}B𝖬𝖥,k)}kω\bigl{\{}\bigl{(}W_{k},\{\prec_{k,B}\}_{B\in\mathsf{MF}},\Vdash_{k}\bigr{)}\bigr{\}}_{k\in\omega}.

By the recursion theorem, we define a 𝖯𝖠\mathsf{PA}-provably recursive function g3g_{3} corresponding to the case m1m\geq 1 and n=0n=0. In the definition of g3g_{3}, we use the Σ1\Sigma_{1}-formula Prg3(x)\mathrm{Pr}_{g_{3}}(x)\equiv y(g3(y)=xFmlA(x))\exists y(g_{3}(y)=x\wedge\mathrm{Fml}_{\mathcal{L}_{A}}(x)) and the arithmetical interpretation f3f_{3} based on Prg3(x)\mathrm{Pr}_{g_{3}}(x) such that f3(p)x(S(x)x0xp)f_{3}(p)\equiv\exists x(S^{\prime}(x)\wedge x\neq 0\wedge x\Vdash p). The function g3g_{3} is defined as follows:

Procedure 1.

Stage ss:

  • If h(s+1)=0h^{\prime}(s+1)=0,

    g3(s)={φifsis aTσ-proof ofφ0otherwise.g_{3}(s)=\begin{cases}\varphi&\text{if}\ s\ \text{is a}\ T_{\sigma}\text{-proof of}\ \varphi\\ 0&\text{otherwise}.\end{cases}

    Then, go to Stage s+1s+1.

  • If h(s+1)0h^{\prime}(s+1)\neq 0, go to Procedure 2.

Procedure 2.

Suppose ss and i0i\neq 0 satisfy h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i. Let kk be a number such that iWki\in W_{k}. Define

g3(s+t)={0ifξtf3(B)&ikBfor someB𝖲𝗎𝖻(Ak)ξtotherwise.g_{3}(s+t)=\begin{cases}0&\text{if}\ \xi_{t}\equiv f_{3}(B)\ \&\ i\nVdash_{k}\Box B\ \text{for some}\ \Box B\in\mathsf{Sub}(A_{k})\\ \xi_{t}&\text{otherwise}.\end{cases}

We finish the construction of g3g_{3}.

Claim 5.6.

For any formula φ\varphi, 𝖯𝖠+ConσPrg3(φ)Prσ(φ)\mathsf{PA}+\mathrm{Con}_{\sigma}\vdash\mathrm{Pr}_{g_{3}}(\ulcorner\varphi\urcorner)\leftrightarrow\mathrm{Pr}_{\sigma}(\ulcorner\varphi\urcorner).

Proof.

This is proved as in the proof of Claim 5.2. ∎

Claim 5.6 guarantees that Prσ(x)\mathrm{Pr}_{\sigma}(x) is a Σ1\Sigma_{1} provability predicate.

Claim 5.7.

Let B𝖬𝖥B\in\mathsf{MF}.

  1. 1.

    𝖯𝖠x(x0S(x)y(xWyB𝖲𝗎𝖻(Ay)xyB))f3(B)\mathsf{PA}\vdash\exists x\bigl{(}x\neq 0\wedge S^{\prime}(x)\wedge\exists y(x\in W_{y}\wedge B\in\mathsf{Sub}(A_{y})\wedge x\Vdash_{y}B)\bigr{)}\to f_{3}(B).

  2. 2.

    𝖯𝖠x(x0S(x)y(xWyB𝖲𝗎𝖻(Ay)xyB))¬f3(B)\mathsf{PA}\vdash\exists x\bigl{(}x\neq 0\wedge S^{\prime}(x)\wedge\exists y(x\in W_{y}\wedge B\in\mathsf{Sub}(A_{y})\wedge x\nVdash_{y}B)\bigr{)}\to\neg f_{3}(B).

Proof.

By induction on the construction of B𝖲𝗎𝖻(Ak)B\in\mathsf{Sub}(A_{k}), we prove clauses 1 and 2 simultaneously. We only give a proof of the case BCB\equiv\Box C for some C𝖬𝖥C\in\mathsf{MF}.

  1. 1.

    We work in 𝖯𝖠\mathsf{PA}: Let i0i\neq 0 and kk be such that S(i¯)S^{\prime}(\overline{i}), iWki\in W_{k}, C𝖲𝗎𝖻(Ak)\Box C\in\mathsf{Sub}(A_{k}) and ikCi\Vdash_{k}\Box C. Let ss^{\prime} be such that h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i. Set ξtf3(C)\xi_{t}\equiv f_{3}(C). Since f3f_{3} is injective, we obtain g3(s+t)=ξtg_{3}(s+t)=\xi_{t}, so f3(C)f_{3}(\Box C) holds.

  2. 2.

    This is verified as in the proof of clause 2 in Claim 5.4.

Claim 5.8.

For any formula φ\varphi, TφPrg3m(φ)T\vdash\varphi\to\mathrm{Pr}_{g_{3}}^{m}(\ulcorner\varphi\urcorner).

Proof.

We prove the contrapositive T¬Prg3m(φ)¬φT\vdash\neg\mathrm{Pr}_{g_{3}}^{m}(\ulcorner\varphi\urcorner)\to\neg\varphi. We work in TT: Suppose ¬Prg3m(φ)\neg\mathrm{Pr}_{g_{3}}^{m}(\ulcorner\varphi\urcorner) holds. Since we obtain Prσ(0=1)\mathrm{Pr}_{\sigma}(\ulcorner 0=1\urcorner), there exists an i0i\neq 0 such that S(i¯)S^{\prime}(\overline{i}). Let kk and ss be such that iWki\in W_{k}, h(s)=0h^{\prime}(s)=0 and h(s+1)=ih^{\prime}(s+1)=i. Set ξtPrg3m1(φ)\xi_{t}\equiv\mathrm{Pr}_{g_{3}}^{m-1}(\ulcorner\varphi\urcorner). Since ξt\xi_{t} is not output by g3g_{3} in Procedure 2, we get g3(s+t)=0g_{3}(s+t)=0. Hence, it follows that ξtf3(B)\xi_{t}\equiv f_{3}(B) and ikBi\nVdash_{k}\Box B for some B𝖲𝗎𝖻(Ak)\Box B\in\mathsf{Sub}(A_{k}). Since f3(B)Prg3m1(φ)f_{3}(B)\equiv\mathrm{Pr}_{g_{3}}^{m-1}(\ulcorner\varphi\urcorner), there exists a C𝖲𝗎𝖻(Ak)C\in\mathsf{Sub}(A_{k}) such that Bm1CB\equiv\Box^{m-1}C and f3(C)φf_{3}(C)\equiv\varphi. Thus, we obtain ikmCi\nVdash_{k}\Box^{m}C, which implies ikCi\nVdash_{k}C by Accm,0\mathrm{Acc}_{m,0}. It follows from clause 2 of Claim 5.7 that ¬f3(C)\neg f_{3}(C) holds. Hence, it concludes ¬φ\neg\varphi holds.

We complete our proof of Theorem 5.3. By Claim 5.8, we obtain the first clause. Also, the second clause is proved from Proposition 5.1.3 and Claim 5.7 as in the proof of Theorem 5.2. ∎

Acknowledgement

The author would like to thank Taishi Kurahashi for his valuable comments.

References

  • [1] Solomon Feferman. Arithmetization of metamathematics in a general setting. Journal of Symbolic Logic, 31(2):269–270, 1960.
  • [2] Melvin C. Fitting, V. Wiktor Marek, and Miroslaw Truszczyński. The pure logic of necessitation. Journal of Logic and Computation, 2(3):349–373, 1992.
  • [3] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic. Perspectives in Mathematical Logic. Berlin: Springer-Verlag, 1993.
  • [4] Richard Kaye. Models of Peano arithmetic, volume 15 of Oxford Logic Guides. Oxford: Clarendon Press, 1991.
  • [5] Haruka Kogure and Taishi Kurahashi. Arithmetical completeness theorems for monotonic modal logics. Annals of Pure and Applied Logic, 174(7):Paper No. 103271, 2023.
  • [6] Taishi Kurahashi. The provability logic of all provability predicates. Journal of Logic and Computation. to appear.
  • [7] Taishi Kurahashi. Arithmetical completeness theorem for modal logic 𝖪\mathsf{K}. Studia Logica, 106(2):219–235, 2018.
  • [8] Taishi Kurahashi. Arithmetical soundness and completeness for Σ2\Sigma_{2} numerations. Studia Logica, 106(6):1181–1196, 2018.
  • [9] Taishi Kurahashi. Rosser provability and normal modal logics. Studia Logica, 108(3):597–617, 2020.
  • [10] Taishi Kurahashi and Yuta Sato. The finite frame property of some extensions of the pure logic of necessitation. 2023. arXiv:2305.14762.
  • [11] Per Lindström. Aspects of incompleteness., volume 10 of Lect. Notes Log. Natick, MA: Association for Symbolic Logic, 2nd ed. edition, 2003.
  • [12] Richard Montague. Syntactical treatments of modality, with corollaries on reflexion principles and finite axiomatizability. Journal of Symbolic Logic, 40(4):600–601, 1963.
  • [13] Robert M. Solovay. Provability interpretations of modal logic. Journal of Symbolic Logic, 46(3):661–662, 1981.