This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Arithmetic special cycles and Jacobi forms

Siddarth Sankaran
Abstract

We consider families of special cycles, as introduced by Kudla, on Shimura varieties attached to anisotropic quadratic spaces over totally real fields. By augmenting these cycles with Green currents, we obtain classes in the arithmetic Chow groups of the canonical models of these Shimura varieties (viewed as arithmetic varieties over their reflex fields). The main result of this paper asserts that generating series built from these cycles can be identified with the Fourier expansions of non-holomorphic Hilbert-Jacobi modular forms. This result provides evidence for an arithmetic analogue of Kudla’s conjecture relating these cycles to Siegel modular forms.

1 Introduction

The main result of this paper is a modularity result for certain generating series of “special” cycles that live in the arithmetic Chow groups of Shimura varieties of orthogonal type.

We begin by introducing the main players. Let FF be a totally real extension of \mathbb{Q} with d=[F:]d=[F:\mathbb{Q}], and let σ1,,σd\sigma_{1},\dots,\sigma_{d} denote the archimedean places of FF. Suppose VV is a quadratic space over FF that is of signature ((p,2),(p+2,0),(p+2,0),,(p+2,0))((p,2),(p+2,0),(p+2,0),\cdots,(p+2,0)) with p>0p>0. In other words, we assume that VF,σ1V\otimes_{F,\sigma_{1}}\mathbb{R} is a real quadratic space of signature (p,2)(p,2) and that VV is positive definite at all other real places.

We assume throughout that VV is anisotropic over F. Note that the signature condition guarantees that VV is anisotropic whenever d>1d>1.

Let H=ResF/GSpin(V)H=\mathrm{Res}_{F/\mathbb{Q}}\mathrm{GSpin}(V). The corresponding Hermitian symmetric space 𝔻\mathbb{D} has two connected components; fix one component 𝔻+\mathbb{D}^{+} and let H+()H^{+}(\mathbb{R}) denote its stabilizer in H()H(\mathbb{R}). For a neat compact open subgroup KfH(𝔸f)K_{f}\subset H(\mathbb{A}_{f}), let Γ:=H+()H()Kf\Gamma:=H^{+}(\mathbb{R})\cap H(\mathbb{Q})\cap K_{f}, and consider the quotient

X():=Γ\𝔻+.X(\mathbb{C})\ :=\ \Gamma\big{\backslash}\mathbb{D}^{+}. (1.1)

This space is a (connected) Shimura variety; in particular, it admits a canonical model XX over a number field EE\subset\mathbb{C} depending on KfK_{f}, see [Kud97] for details. Moreover, as VV is anisotropic, XX is a projective variety.

Fix a Γ\Gamma-invariant lattice LVL\subset V such that the restriction of the bilinear form ,,\langle\cdot,\cdot,\rangle to LL is valued in 𝒪F\mathcal{O}_{F}, and consider the dual lattice

L={𝐱L|𝐱,LF1}L^{\prime}=\{\mathbf{x}\in L\ |\ \langle\mathbf{x},L\rangle\subset\partial_{F}^{-1}\} (1.2)

where F1\partial_{F}^{-1} is the inverse different.

For an integer nn with 1np1\leq n\leq p, let S(V(𝔸f)n)S(V(\mathbb{A}_{f})^{n}) denote the Schwartz space of compactly supported, locally constant functions on V(𝔸f)nV(\mathbb{A}_{f})^{n}, and consider the subspace

S(Ln):={φS(V(𝔸f)n)Γ|supp(φ)(L^)n and φ(𝐱+l)=φ(𝐱) for all lLn}.S(L^{n})\ :=\ \{\varphi\in S(V(\mathbb{A}_{f})^{n})^{\Gamma}\ |\ \mathrm{supp}(\varphi)\subset(\widehat{L^{\prime}})^{n}\text{ and }\varphi(\mathbf{x}+l)=\varphi(\mathbf{x})\text{ for all }l\in L^{n}\}. (1.3)

For every TSymn(F)T\in\operatorname{Sym}_{n}(F) and Γ\Gamma-invariant Schwartz function φS(Ln)\varphi\in S(L^{n}), there is an EE-rational “special” cycle

Z(T,φ)Z(T,\varphi) (1.4)

of codimension nn on XX, defined originally by Kudla [Kud97]; this construction is reviewed in Section 2.3 below.

It was conjectured by Kudla that these cycles are closely connected to automorphic forms; more precisely, he conjectured that upon passing to the Chow group of XX, the generating series formed by the classes of these special cycles can be identified with the Fourier expansions of Hilbert-Siegel modular forms. When F=F=\mathbb{Q}, the codimension one case of this conjecture follows from results of Borcherds [Bor99], and the conjecture for higher codimension was established by Zhang and Bruinier-Raum [BWR15, Zha09]; when FF\neq\mathbb{Q}, conditional proofs have been given by Yuan-Zhang-Zhang [YZZ09] and Kudla [Kud19].

More recently, attention has shifted to the arithmetic analogues of this result, where one replaces the Chow groups with an “arithmetic” counterpart, attached to a model 𝒳\mathcal{X} of XX defined over a subring of the reflex field of EE; these arithmetic Chow groups were introduced by Gillet-Soulé [GS90] and subsequently generalized by Burgos-Kramer-Kühn [BGKK07]. Roughly speaking, in this framework cycles are represented by pairs (𝒵,g𝒵)(\mathcal{Z},g_{\mathcal{Z}}), where 𝒵\mathcal{Z} is a cycle on 𝒳\mathcal{X}, and g𝒵g_{\mathcal{Z}} is a Green object, a purely differential-geometric datum that encodes cohomological information about the archimedean fibres of 𝒵\mathcal{Z}.

In this paper, we consider the case where the model 𝒳\mathcal{X} is taken to be XX itself. In order to promote the special cycles to the arithmetic setting, we need to choose the Green objects: for this, we employ the results of [GS19], where a family {𝔤(T,φ;𝐯)}\{\mathfrak{g}(T,\varphi;\mathbf{v})\} of Green forms was constructed. Note that these forms depend on an additional parameter 𝐯Symn(F)0\mathbf{v}\in\operatorname{Sym}_{n}(F\otimes_{\mathbb{Q}}\mathbb{R})_{\gg 0}, which should be regarded as the imaginary part of a variable in the Hilbert-Siegel upper half space.

We thereby obtain classes

Z^(T,𝐯)CH^(X)nS(Ln),\widehat{Z}(T,\mathbf{v})\in\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X)\otimes_{\mathbb{C}}S(L^{n})^{\vee}, (1.5)

where CH^(X)n\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X) is the Gillet-Soulé arithmetic Chow group attached to XX, by the formula

Z^(T,𝐯)(φ)=(Z(T,φ),𝔤(T,φ;𝐯))CH^(X)n.\widehat{Z}(T,\mathbf{v})(\varphi)\ =\ \big{(}Z(T,\varphi),\,\mathfrak{g}(T,\varphi;\mathbf{v})\big{)}\ \in\ \widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X). (1.6)

For reasons that will emerge in the course of the proof our main theorem, we will also need to consider a larger arithmetic Chow group CH^(X,𝒟cur)n\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}}), constructed by Burgos-Kramer-Kühn [BGKK07]. This group appears as an example of their general cohomological approach to the theory of Gillet-Soulé. There is a natural injective map CH^(X)nCH^(X,𝒟cur)n\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X)\hookrightarrow\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}}); abusing notation, we identify the special cycle Z^(T,𝐯)\widehat{Z}(T,\mathbf{v}) with its image under this map.

Theorem 1.1.
  1. (i)

    Suppose 1<np1<n\leq p. Fix T2Symn1(F)T_{2}\in\operatorname{Sym}_{n-1}(F), and define the formal generating series

    FJ^T2(𝝉)=T=(T2)Z^(T,𝐯)qT\widehat{\mathrm{FJ}}_{T_{2}}(\bm{\tau})\ =\ \sum_{T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)}\widehat{Z}(T,\mathbf{v})\,q^{T} (1.7)

    where 𝝉nd\bm{\tau}\in\mathbb{H}_{n}^{d} lies in the Hilbert-Siegel upper half space of genus nn, and 𝐯=Im(τ)\mathbf{v}=\mathrm{Im}(\tau). Then FJ^T2(𝝉)\widehat{\mathrm{FJ}}_{T_{2}}(\bm{\tau}) is the qq-expansion of a (non-holomorphic) Hilbert-Jacobi modular form of weight p/2+1p/2+1 and index T2T_{2}, taking values in CH^(X,𝒟cur)nS(Ln)\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}})\otimes S(L^{n})^{\vee} via the Weil representation.

  2. (ii)

    When n=1n=1, the generating series

    ϕ^1(𝝉)=tFZ^(t,𝐯)qt\widehat{\phi}_{1}(\bm{\tau})\ =\ \sum_{t\in F}\widehat{Z}(t,\mathbf{v})q^{t} (1.8)

    is the qq-expansion of a (non-holomorphic) Hilbert modular form of weight p/2+1p/2+1, valued in CH^(X)1S(L)\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X)\otimes S(L)^{\vee}.

Some clarification is warranted in the interpretation of this theorem. The issue is that there is no apparent topology on the arithmetic Chow groups for which the series (1.7) and (1.8) can be said to converge in a reasonable sense; in a similar vein, the Green forms 𝔤(T,𝐯)\mathfrak{g}(T,\mathbf{v}) vary smoothly in the parameter 𝐯\mathbf{v}, but there does not appear to be a natural way in which the family of classes Z^(T,𝐯)\widehat{Z}(T,\mathbf{v}) can be said to vary smoothly. What is being asserted in the theorem is the existence of:

  1. (i)

    finitely many classes Z^1,Z^rCH^(X,𝒟cur)n\widehat{Z}_{1},\dots\widehat{Z}_{r}\in\widehat{\mathrm{CH}}{}^{n}(X,\mathcal{D}_{\mathrm{cur}}) (or in CH^(X)1\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X) when n=1n=1),

  2. (ii)

    finitely many Jacobi modular forms (in the usual sense) f1,,frf_{1},\dots,f_{r},

  3. (iii)

    and a Jacobi form g(𝝉)g(\bm{\tau}) valued in the space of currents on XX that is locally uniformly bounded in 𝝉\bm{\tau},

such that the TT’th coefficient of the Jacobi form ifi(𝝉)Z^i+a(g(𝝉))\sum_{i}f_{i}(\bm{\tau})\widehat{Z}_{i}+a(g(\bm{\tau})) coincides with Z^(T,𝐯)\widehat{Z}(T,\mathbf{v}). Here a(g(𝝉))CH^(X,𝒟cur)na(g(\bm{\tau}))\in\widehat{\mathrm{CH}}{}^{n}(X,\mathcal{D}_{\mathrm{cur}}) is an “archimedean class” associated to the current g(𝝉)g(\bm{\tau}). A more precise account may be found in Section 2.6.

To prove the theorem, we first prove the n=1n=1 case, using a modularity result due to Bruinier [Bru12] that involves a different set of Green functions; the theorem in this case follows from a comparison between his Green functions and ours.

For n>1n>1, we exhibit a decomposition

Z^(T,𝐯)=A^(T,𝐯)+B^(T,𝐯)\widehat{Z}(T,\mathbf{v})=\widehat{A}(T,\mathbf{v})+\widehat{B}(T,\mathbf{v}) (1.9)

in CH^(X,𝒟cur)nS(Ln)\widehat{\mathrm{CH}}{}^{n}(X,\mathcal{D}_{\mathrm{cur}})\otimes S(L^{n})^{\vee}; this decomposition is based on a mild generalization of the star product formula [GS19, Theorem 4.10]. The main theorem then follows from the modularity of the series

ϕ^A(𝝉):=T=(T2)A^(T,𝐯)qTandϕ^B(𝝉)=T=(T2)B^(T,𝐯)qT,\widehat{\phi}_{A}(\bm{\tau}):=\sum_{T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)}\widehat{A}(T,\mathbf{v})\,q^{T}\qquad\text{and}\qquad\widehat{\phi}_{B}(\bm{\tau})\ =\ \sum_{T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)}\widehat{B}(T,\mathbf{v})\,q^{T}, (1.10)

which are proved in Corollary 6.3 and Theorem 5.1 respectively. The classes A^(T,𝐯)\widehat{A}(T,\mathbf{v}) are expressed as linear combinations of pushforwards of special cycles along sub-Shimura varieties of XX, weighted by the Fourier coefficients of classical theta series; the modularity of ϕ^A(𝝉)\widehat{\phi}_{A}(\bm{\tau}) follows from this description and the n=1n=1 case. The classes B^(T,𝐯)\widehat{B}(T,\mathbf{v}) are purely archimedean, and the modularity of ϕ^B(𝝉)\widehat{\phi}_{B}(\bm{\tau}) follows from an explicit computation involving the Kudla-Millson Schwartz form, [KM90].

This result provides evidence for the arithmetic version of Kudla’s conjecture, namely that the generating series

ϕ^n(𝝉)=TSymn(F)Z^(T,𝐯)qT\widehat{\phi}_{n}(\bm{\tau})\ =\ \sum_{T\in\operatorname{Sym}_{n}(F)}\,\widehat{Z}(T,\mathbf{v})\,q^{T} (1.11)

is a Hilbert-Siegel modular form; indeed, the series FJ^T2(𝝉)\widehat{\mathrm{FJ}}_{T_{2}}(\bm{\tau}) is a formal Fourier-Jacobi coefficient of ϕ^n(𝝉)\widehat{\phi}_{n}(\bm{\tau}). Unfortunately, there does not seem to be an obvious path by which one can infer the more general result from the results in this paper; the decomposition Z^(T,𝐯)\widehat{Z}(T,\mathbf{v}) depends on the lower-right matrix T2T_{2}, and it is not clear how to compare the decompositions for various T2T_{2}.

Acknowledgements

The impetus for this paper emerged from discussions during an AIM SQuaRE workshop; I’d like to thank the participants – Jan Bruinier, Stephan Ehlen, Stephen Kudla and Tonghai Yang – for the stimulating discussion and insightful remarks, and AIM for the hospitality. I’d also like to thank Craig Cowan for a helpful discussion on the theory of currents. This work was partially supported by an NSERC Discovery grant.

2 Preliminaries

2.1 Notation

  • Throughout, we fix a totally real field FF with [F:]=d[F:\mathbb{Q}]=d. Let σ1,,σd\sigma_{1},\dots,\sigma_{d} denote the real embeddings. Using these embeddings, we identify FF\otimes_{\mathbb{Q}}\mathbb{R} with d\mathbb{R}^{d}, and denote by σi(𝐭)\sigma_{i}(\mathbf{t}) the ii’th component of 𝐭F\mathbf{t}\in F\otimes_{\mathbb{Q}}\mathbb{R} under this identification.

  • For any matrix AA, we denote the transpose by AA^{\prime}.

  • If AMatn(F)A\in\mathrm{Mat}_{n}(F\otimes_{\mathbb{Q}}\mathbb{R}), we write

    e(A):=i=1dexp(2πitr(σi(A)))e(A)\ :=\ \prod_{i=1}^{d}\,\exp\big{(}2\pi i\,\mathrm{tr}\left(\sigma_{i}(A)\right)\big{)} (2.1)
  • If (V,Q)(V,Q) is a quadratic space over FF, let 𝐱,𝐲\langle\mathbf{x},\mathbf{y}\rangle denote the corresponding bilinear form. Here we take the convention Q(𝐱)=𝐱,𝐱Q(\mathbf{x})=\langle\mathbf{x},\mathbf{x}\rangle. If 𝐱V\mathbf{x}\in V and 𝐲=(𝐲1,,𝐲n)Vn\mathbf{y}=(\mathbf{y}_{1},\dots,\mathbf{y}_{n})\in V^{n} , we set 𝐱,𝐲=(𝐱,𝐲1,,𝐱,𝐲n)Mat1,n(F)\langle\mathbf{x},\mathbf{y}\rangle=(\langle\mathbf{x},\mathbf{y}_{1}\rangle,\dots,\langle\mathbf{x},\mathbf{y}_{n}\rangle)\in\mathrm{Mat}_{1,n}(F).

  • For i=1,di=1,\dots d, we set Vi=VF,σiV_{i}=V\otimes_{F,\sigma_{i}}\mathbb{R}.

  • Let

    nd={𝝉=𝐮+i𝐯Symn(F)|𝐯0}\mathbb{H}_{n}^{d}=\{\bm{\tau}=\mathbf{u}+i\mathbf{v}\in\operatorname{Sym}_{n}(F\otimes_{\mathbb{Q}}\mathbb{R})\ |\ \mathbf{v}\gg 0\} (2.2)

    denote the Hilbert-Siegel upper half-space of genus nn attached to FF. Via the fixed embeddings σ1,,σd\sigma_{1},\dots,\sigma_{d}, we may identify Symn(F)Symn()d\operatorname{Sym}_{n}(F\otimes\mathbb{R})\simeq\operatorname{Sym}_{n}(\mathbb{R})^{d}; we let σi(𝝉)=σi(𝐮)+iσi(𝐯)\sigma_{i}(\bm{\tau})=\sigma_{i}(\mathbf{u})+i\sigma_{i}(\mathbf{v}) denote the corresponding component, so that, in particular, σi(𝐯)Symn()>0\sigma_{i}(\mathbf{v})\in\operatorname{Sym}_{n}(\mathbb{R})_{>0} for i=1,,di=1,\dots,d.

    If 𝝉nd\bm{\tau}\in\mathbb{H}_{n}^{d} and TSymn(F)T\in\operatorname{Sym}_{n}(F), we write

    qT=e(𝝉T).q^{T}=e(\bm{\tau}T). (2.3)

2.2 Arithmetic Chow groups

In this section, we recall the theory of arithmetic Chow groups CH^(X)n\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X), as conceived by Gillet and Soulé [GS90]; note here and throughout this paper, we work with complex coefficients. Recall that XX is defined over a number field EE endowed with a fixed complex embedding σ:E\sigma:E\to\mathbb{C}. We view XX as an arithmetic variety over the “arithmetic ring” (E,σ,complex conjugation)(E,\sigma,\text{complex conjugation}) in the terminology of [GS90, §3.1.1].

An arithmetic cycle is a pair (Z,g)(Z,g), where ZZ is a formal \mathbb{C}-linear combination of codimension nn subvarieties of XX, and gg is a Green current for ZZ; more precisely, gg is a current of degree (p1,p1)(p-1,p-1) on X()X(\mathbb{C}) such Green’s equation

ddcg+δZ()=ω\mathrm{dd^{c}}g\ +\ \delta_{Z(\mathbb{C})}=\omega (2.4)

holds, where the right hand side is the current defined by integration111Here and throughout this paper, we will abuse notation and write ω\omega both for the form and the current it defines. against some smooth form ω\omega. Given a codimension n1n-1 subvariety YY and a rational function fk(Y)×f\in k(Y)^{\times} on YY, let

div^(f):=(div(f),log|f|2δY)\widehat{\mathrm{div}}(f):=(\mathrm{div}(f),-\log|f|^{2}\,\delta_{Y}) (2.5)

denote the corresponding principal arithmetic divisor. The arithmetic Chow group CH^(X)n\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X) is quotient of the space of arithmetic cycles by the subspace spanned by (a) the principal arithmetic divisors and (b) classes of the form (0,η)(0,\eta) with ηim()+im(¯)\eta\in\mathrm{im}(\partial)+\mathrm{im}(\overline{\partial}). For more details, see [GS90, Sou92]

In their paper [BGKK07], Burgos, Kramer and Kühn give an abstract reformulation and generalization of this theory: their main results describe the construction of an arithmetic Chow group CH^(X,𝒞)\widehat{\mathrm{CH}}{}^{*}(X,\mathcal{C}) attached to a “Gillet complex” 𝒞\mathcal{C}. One of the examples they describe is the group attached to the complex of currents 𝒟cur\mathcal{D}_{\mathrm{cur}}; we will content ourselves with the superficial description of this group given below, which will suffice for our purposes, and the reader is invited to consult [BGKK07, §6.2] for a thorough treatment.

Unwinding the formal definitions in [BGKK07], one finds that classes in CH^(X,𝒟cur)n\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}}) are represented by tuples (Z,[T,g])(Z,[T,g]), with ZZ as before, but now TT and gg are currents of degree (n,n)(n,n) and (n1,n1)(n-1,n-1) respectively such that222The reader is cautioned that in [BGKK07], the authors normalize delta currents and currents defined via integration by powers of 2πi2\pi i, resulting in formulas that look slightly different from those presented here; because we are working with \mathbb{C}-coefficients, the formulations are equivalent.

ddcg+δZ()=T+ddc(η)\mathrm{dd^{c}}g+\delta_{Z(\mathbb{C})}=T+\mathrm{dd^{c}}(\eta) (2.6)

for some current η\eta with support contained in Z()Z(\mathbb{C}); we can view this as a relaxation of the condition that the right hand side of (2.4) is smooth. A nice consequence of this description is that any codimension nn cycle ZZ on XX gives rise to a canonical class (see [BGKK07, Definition 6.37])

Z^can:=(Z,[δZ,0]).\widehat{Z}^{\mathrm{can}}\ :=\ \left(Z,[\delta_{Z},0]\right). (2.7)

By [BGKK07, Theorem 6.35], the natural map

CH^(X)nCH^(X,𝒟cur)n,(Z,g)(Z,[ω,g])\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X)\to\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}}),\qquad(Z,g)\mapsto(Z,[\omega,g]) (2.8)

is injective. Moreover while CH^(X,𝒟cur)\widehat{\mathrm{CH}}{}^{*}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}}) is not a ring in general, it is a module over CH^(X)\widehat{\mathrm{CH}}{}^{*}_{\mathbb{C}}(X). As a special case of this product, let (Z,g)CH^(X)1(Z,g)\in\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X) be an arithmetic divisor, where gg is a Green function with logarithmic singularities along the divisor ZZ. Suppose Y^canCH^(X,𝒟cur)m\widehat{Y}^{\mathrm{can}}\in\widehat{\mathrm{CH}}{}^{m}(X,\mathcal{D}_{\mathrm{cur}}) is the canonical class attached to a cycle YY that intersects ZZ properly; then by inspecting the proofs of [BGKK07, Theorem 6.23, Proposition 6.32] we find

(Z,g)Y^can=(ZY,[ωδY(),gδY()])CH^(X,𝒟cur)m+1.(Z,g)\cdot\widehat{Y}^{\mathrm{can}}\ =\ \left(Z\cdot Y,[\omega\wedge\delta_{Y(\mathbb{C})},g\wedge\delta_{Y(\mathbb{C})}]\right)\in\widehat{\mathrm{CH}}{}^{m+1}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}}). (2.9)
Remark 2.1.

One consequence of our setup is the vanishing of certain “archimedean rational” classes in CH^(X)n\widehat{\mathrm{CH}}{}^{n}(X) and CH^(X,𝒟cur)n\widehat{\mathrm{CH}}{}^{n}(X,\mathcal{D}_{\mathrm{cur}}). More precisely, if YY is a codimension n1n-1 subvariety, then

(0,δY())=0CH^(X)n.(0,\delta_{Y(\mathbb{C})})=0\ \in\ \widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X). (2.10)

To see this, let cc\in\mathbb{Q} be any rational number such that c0c\neq 0 or 11, and view cc as a rational function on YY; its divisor is trivial, and so

0=div^(c)=(0,log|c|2δY())=log|c|2(0,δY()).0=\widehat{\mathrm{div}}(c)\ =\ (0,-\log|c|^{2}\delta_{Y(\mathbb{C})})\ =\ -\log|c|^{2}\cdot(0,\delta_{Y(\mathbb{C})}). (2.11)

and hence (0,δY())=0(0,\delta_{Y(\mathbb{C})})=0. As a special case, we have (0,1)=0CH^(X)1(0,1)=0\in\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X).

2.3 Special cycles

Here we review Kudla’s construction of the family {Z(T)}\{Z(T)\} of special cycles on XX, [Kud97]. First, recall that the symmetric space 𝔻\mathbb{D} has a concrete realization

𝔻={z1(Vσ1,F)|z,z=0,z,z¯<0}\mathbb{D}=\{z\in\mathbb{P}^{1}(V\otimes_{\sigma_{1},F}\mathbb{C})\ |\ \langle z,z\rangle=0,\langle z,\overline{z}\rangle<0\} (2.12)

where ,\langle\cdot,\cdot\rangle is the \mathbb{C}-bilinear extension of the bilinear form on VV; the two connected components of 𝔻\mathbb{D} are interchanged by conjugation.

Given a collection of vectors 𝐱=(𝐱1,,𝐱n)Vn\mathbf{x}=(\mathbf{x}_{1},\dots,\mathbf{x}_{n})\in V^{n}, let

𝔻𝐱+:={z𝔻+|zσ1(𝐱i) for i=1,,n}.\mathbb{D}^{+}_{\mathbf{x}}\ :=\ \{z\in\mathbb{D}^{+}\ |\ z\perp\sigma_{1}(\mathbf{x}_{i})\ \text{ for }i=1,\dots,n\}. (2.13)

where, abusing notation, we denote by σ1:VV1=VF,σ1\sigma_{1}\colon V\to V_{1}=V\otimes_{F,\sigma_{1}}\mathbb{R} the map induced by inclusion in the first factor.

Let Γ𝐱\Gamma_{\mathbf{x}} denote the pointwise stabilizer of 𝐱\mathbf{x} in Γ\Gamma; then the inclusion 𝔻𝐱+𝔻+\mathbb{D}^{+}_{\mathbf{x}}\subset\mathbb{D}^{+} induces a map

Γ𝐱\𝔻𝐱+Γ\𝔻+=X,\Gamma_{\mathbf{x}}\big{\backslash}\mathbb{D}^{+}_{\mathbf{x}}\to\Gamma\big{\backslash}\mathbb{D}^{+}=X, (2.14)

which defines a complex algebraic cycle that we denote Z(𝐱)Z(\mathbf{x}). If the span of {𝐱1,,𝐱r}\{\mathbf{x}_{1},\dots,\mathbf{x}_{r}\} is not totally positive definite, then 𝔻𝐱+=\mathbb{D}^{+}_{\mathbf{x}}=\emptyset and Z(𝐱)=0Z(\mathbf{x})=0; otherwise, the codimension of Z(𝐱)Z(\mathbf{x}) is the dimension of this span.

Now suppose TSymn(F)T\in\operatorname{Sym}_{n}(F) and φS(Ln)\varphi\in S(L^{n}), and set

Z(T,φ):=𝐱Ω(T)mod Γφ(𝐱)Z(𝐱),Z(T,\varphi)^{\natural}\ :=\ \sum_{\begin{subarray}{c}\mathbf{x}\in\Omega(T)\\ \text{mod }\Gamma\end{subarray}}\varphi(\mathbf{x})\cdot Z(\mathbf{x}), (2.15)

where

Ω(T):={𝐱=(𝐱1,,𝐱n)Vn|𝐱i,𝐱j=Tij}.\Omega(T)\ :=\ \{\mathbf{x}=(\mathbf{x}_{1},\dots,\mathbf{x}_{n})\in V^{n}\ |\ \langle\mathbf{x}_{i},\mathbf{x}_{j}\rangle=T_{ij}\}. (2.16)

This cycle is rational over EE. If Z(T,φ)0Z(T,\varphi)^{\natural}\neq 0, then TT is necessarily totally positive semidefinite, and in this case Z(T,φ)Z(T,\varphi)^{\natural} has codimension equal to the rank of TT.

Finally, we define a S(Ln)S(L^{n})^{\vee}-valued cycle Z(T)Z(T)^{\natural} by the rule

Z(T):φZ(T,φ).Z(T)^{\natural}\colon\varphi\mapsto Z(T,\varphi)^{\natural}. (2.17)

for φS(Ln)\varphi\in S(L^{n}).

2.4 The cotautological bundle

Let X\mathcal{E}\to X denote the tautological bundle: over the complex points X()=Γ\𝔻+X(\mathbb{C})=\Gamma\backslash\mathbb{D}^{+}, the fibre z\mathcal{E}_{z} at a point z𝔻+z\in\mathbb{D}^{+} is simply the line corresponding to zz in the model (2.12). There is a natural Hermitian metric 2\|\cdot\|^{2}_{\mathcal{E}} on ()\mathcal{E}(\mathbb{C}), defined at a point z𝔻+z\in\mathbb{D}^{+} by the formula vz,z2=vz,vz\|v_{z}\|^{2}_{\mathcal{E},z}\ =\ -\langle v_{z},v_{z}\rangle for vzzv_{z}\in z.

Consider the arithmetic class

ω^=c^1(,)CH^(X)1;\widehat{\omega}=-\widehat{c}_{1}(\mathcal{E},\|\cdot\|_{\mathcal{E}})\ \in\ \widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X); (2.18)

concretely, ω^=(divs,logs2)\widehat{\omega}=-(\mathrm{div}s,-\log\|s\|_{\mathcal{E}}^{2}), where ss is any meromorphic section of \mathcal{E}. Finally, for future use, we set

Ω:=c1(,)A1,1(X())\Omega:=-c_{1}(\mathcal{E},\|\cdot\|_{\mathcal{E}})\in A^{1,1}(X(\mathbb{C})) (2.19)

where Ω=c1(,)-\Omega=c_{1}(\mathcal{E},\|\cdot\|_{\mathcal{E}}) is the first Chern form attached to (,)(\mathcal{E},\|\cdot\|_{\mathcal{E}}); here the Chern form is normalized as in [Sou92, §4.2]. Note that Ω-\Omega is a Kähler form, cf. [GS19, §2.2].

Remark 2.2.

Elsewhere in the literature, one often finds a different normalization (i.e. an overall multiplicative constant) for the metric \|\cdot\|_{\mathcal{E}} that is better suited to certain arithmetic applications; for example, see [KRY06, §3.3]. In our setting, however, Remark 2.1 implies that rescaling the metric does not change the Chern class in CH^(X)1\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X).

2.5 Green forms and arithmetic cycles

In this section, we sketch the construction of a family of Green forms for the special cycles, following [GS19].

We begin by recalling that for any tuple x=(x1,xn)V1n=(Vσ1,F)nx=(x_{1},\dots x_{n})\in V_{1}^{n}=(V\otimes_{\sigma_{1},F}\mathbb{R})^{n}, Kudla and Millson (see [KM90]) have defined a Schwartz form φKM(x)\varphi_{\mathrm{KM}}(x), which is valued in the space of closed (n,n)(n,n) forms on 𝔻+\mathbb{D}^{+}, and is of exponential decay in xx. Let T(x)Symn()T(x)\in\operatorname{Sym}_{n}(\mathbb{R}) denote the matrix of inner products, i.e. T(x)ij=xi,xjT(x)_{ij}=\langle x_{i},x_{j}\rangle, and consider the normalized form

φKMo(x):=φKM(x)e2πtrT(x).\varphi^{o}_{\mathrm{KM}}(x)\ :=\ \varphi_{\mathrm{KM}}(x)\,e^{2\pi\mathrm{tr}T(x)}. (2.20)

In [GS19, §2.2], another form νo(x)\nu^{o}(x), valued in the space of smooth (n1,n1)(n-1,n-1) forms on 𝔻+\mathbb{D}^{+}   is defined (this form is denoted by νo(x)[2n2]\nu^{o}(x)_{[2n-2]} there). It satisfies the relation

ddcνo(ux)=uuφKMo(ux),u>0.\mathrm{dd^{c}}\nu^{o}(\sqrt{u}x)\ =\ -u\frac{\partial}{\partial u}\varphi_{\mathrm{KM}}^{o}(\sqrt{u}x),\qquad u\in\mathbb{R}_{>0}. (2.21)

For a complex parameter ρ0\rho\gg 0, let

𝔤o(x;ρ):=1νo(ux)duu1+ρ;\mathfrak{g}^{o}(x;\rho)\ :=\ \int_{1}^{\infty}\nu^{o}(\sqrt{u}x)\frac{du}{u^{1+\rho}}; (2.22)

then 𝔤o(x,ρ)\mathfrak{g}^{o}(x,\rho) defines a smooth form for Re(ρ)0Re(\rho)\gg 0. The corresponding current admits a meromorphic continuation to a neighbourhood of ρ=0\rho=0 and we set

𝔤o(x):=CTρ=0𝔤o(x;ρ).\mathfrak{g}^{o}(x):=\mathop{CT}_{\rho=0}\,\mathfrak{g}^{o}(x;\rho). (2.23)

Note that, for example,

𝔤o(0)=νo(0)CTρ=01duu1+ρ=0.\mathfrak{g}^{o}(0)\ =\ \nu^{o}(0)\,\mathop{CT}_{\rho=0}\int_{1}^{\infty}\frac{du}{u^{1+\rho}}=0. (2.24)

In general, the current 𝔤o(x)\mathfrak{g}^{o}(x) satisfies the equation

ddc𝔤o(x)+δ𝔻𝐱+Ωnr(x)=φKMo(x)\mathrm{dd^{c}}\mathfrak{g}^{o}(x)+\delta_{\mathbb{D}^{+}_{\mathbf{x}}}\wedge\Omega^{n-r(x)}=\varphi^{o}_{\mathrm{KM}}(x) (2.25)

where r(x)=dimspan(x)=dimspan(x1,,xn)r(x)=\dim\mathrm{span}(x)=\dim\mathrm{span}(x_{1},\dots,x_{n}); for details regarding all these facts, see [GS19, §2.6].

Now suppose TSymn(F)T\in\operatorname{Sym}_{n}(F). Following [GS19, §4], we define an S(Ln)S(L^{n})^{\vee}-valued current 𝔤o(T,𝐯)\mathfrak{g}^{o}(T,\mathbf{v}), depending on a parameter 𝐯Symn(F)0\mathbf{v}\in\operatorname{Sym}_{n}(F\otimes_{\mathbb{Q}}\mathbb{R})_{\gg 0}, as follows: let v=σ1(𝐯)v=\sigma_{1}(\mathbf{v}) and choose any matrix aGLn()a\in\mathrm{GL}_{n}(\mathbb{R}) such that v=aav=aa^{\prime}. Then 𝔤o(T,𝐯)\mathfrak{g}^{o}(T,\mathbf{v}) is defined by the formula

𝔤o(T,𝐯)(φ):=𝐱Ω(T)φ(𝐱)𝔤o(σ1(𝐱)a),\mathfrak{g}^{o}(T,\mathbf{v})(\varphi)\ :=\ \sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\ \mathfrak{g}^{o}\left(\sigma_{1}(\mathbf{x})a\right), (2.26)

where σ1(𝐱)V1n\sigma_{1}(\mathbf{x})\in V_{1}^{n}; by [GS19, Proposition 2.12], this is independent of the choice of aGLn()a\in\mathrm{GL}_{n}(\mathbb{R}). Note that 𝔤o(T,𝐯)\mathfrak{g}^{o}(T,\mathbf{v}) is a Γ\Gamma-invariant current on 𝔻+\mathbb{D}^{+} and hence descends to X()=Γ\𝔻+X(\mathbb{C})=\Gamma\backslash\mathbb{D}^{+}.

Next, consider the S(Ln)S(L^{n})^{\vee}-valued differential form ω(T,𝐯)\omega(T,\mathbf{v}), defined by the formula

ω(T,𝐯)(φ):=𝐱Ω(T)φ(x)φKMo(σ1(𝐱)a),σ1(𝐯)=aa,\omega(T,\mathbf{v})(\varphi)\ :=\ \sum_{\mathbf{x}\in\Omega(T)}\varphi(x)\,\varphi_{\mathrm{KM}}^{o}(\sigma_{1}(\mathbf{x})a),\qquad\sigma_{1}(\mathbf{v})=aa^{\prime}, (2.27)

and which is a qq-coefficient of the Kudla-Millson theta series

ΘKM(𝝉)=TSymn(F)ω(T,𝐯)qT,\Theta_{\mathrm{KM}}(\bm{\tau})\ =\ \sum_{T\in\operatorname{Sym}_{n}(F)}\,\omega(T,\mathbf{v})\,q^{T},\qquad (2.28)

where τnd\tau\in\mathbb{H}^{d}_{n}, and 𝐯=Im(𝝉)\mathbf{v}=\mathrm{Im}(\bm{\tau}). We then have the equation of currents

ddc𝔤o(T,𝐯)+δZ(T)()ΩnrankT=ω(T,𝐯)\mathrm{dd^{c}}\mathfrak{g}^{o}(T,\mathbf{v})\ +\ \delta_{Z(T)(\mathbb{C})}\wedge\Omega^{n-\mathrm{rank}T}\ =\ \omega(T,\mathbf{v}) (2.29)

on XX, see [GS19, Proposition 4.4]

In particular, if TT is non-degenerate, then rank(T)=n\mathrm{rank}(T)=n and 𝔤o(T,𝐯)\mathfrak{g}^{o}(T,\mathbf{v}) is a Green current for the cycle Z(T)Z(T)^{\natural}; in this case, we obtain an arithmetic special cycle

Z^(T,𝐯):=(Z(T),𝔤o(T,𝐯))CH^(X)nS(Ln).\widehat{Z}(T,\mathbf{v}):=(Z(T)^{\natural},\mathfrak{g}^{o}(T,\mathbf{v}))\ \in\ \widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X)\otimes_{\mathbb{C}}S(L^{n})^{\vee}. (2.30)

Now suppose TSymn(F)T\in\operatorname{Sym}_{n}(F) is arbitrary, let r=rank(T)r=\mathrm{rank}(T), and fix φS(Ln)\varphi\in S(L^{n}). We may choose a pair (Z0,g0)(Z_{0},g_{0}) representing the class ω^nrCH^(X)n\widehat{\omega}^{n-r}\in\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X), such that Z0Z_{0} intersects Z(T,φ)Z(T,\varphi)^{\natural} properly and g0g_{0} has logarithmic type [Sou92, §II.2]. We then define

Z^(T,𝐯,φ):=(Z(T,φ)Z0,𝔤o(T,𝐯,φ)+g0δZ(T,φ)())CH^(X)n.\widehat{Z}(T,\mathbf{v},\varphi):=\left(Z(T,\varphi)^{\natural}\cdot Z_{0},\ \mathfrak{g}^{o}(T,\mathbf{v},\varphi)+g_{0}\wedge\delta_{Z(T,\varphi)(\mathbb{C})}\right)\ \in\ \widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X). (2.31)

The reader may consult [GS19, §5.4] for more detail on this construction, including the fact that it is independent of the choice of (Z0,g0)(Z_{0},g_{0}).

Finally, we define a class Z^(T,𝐯)CH^(X)nS(Ln)\widehat{Z}(T,\mathbf{v})\in\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X)\otimes S(L^{n})^{\vee} by the rule

Z^(T,𝐯)(φ)=Z^(T,𝐯,φ).\widehat{Z}(T,\mathbf{v})(\varphi)=\widehat{Z}(T,\mathbf{v},\varphi). (2.32)
Remark 2.3.

In [GS19], the Green current 𝔤o(T,𝐯)\mathfrak{g}^{o}(T,\mathbf{v}) is augmented by an additional term, depending on log(det𝐯)\log(\det\mathbf{v}), when TT is degenerate see [GS19, Definition 4.5]. This term was essential in establishing the archimedean arithmetic Siegel-Weil formula in the degenerate case; however, in the setting of the present paper, Remark 2.1 implies that this additional term vanishes upon passing to CH^(X)n\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X), and can be omitted from the discussion without consequence. In particular, according to our definitions, we have

Z^(0n,𝐯)(φ)=φ(0)ω^n.\widehat{Z}(0_{n},\mathbf{v})(\varphi)=\varphi(0)\cdot\widehat{\omega}^{n}. (2.33)

2.6 Hilbert-Jacobi modular forms

In this section, we briefly review the basic definitions of vector-valued (Hilbert) Jacobi modular forms, mainly to fix notions. For convenience, we work in “classical” coordinates and only with parallel scalar weight. Throughout, we fix an integer n1.n\geq 1.

We begin by briefly recalling the theory of metaplectic groups and the Weil representation; a convenient summary for the facts mentioned here, in a form useful to us, is [JS07, §2]. For a place vv\leq\infty, let Sp~n(Fv)\operatorname{\widetilde{Sp}}_{n}(F_{v}) denote the metaplectic group, a two-fold cover of Spn(Fv)\operatorname{Sp}_{n}(F_{v}); as a set, Sp~n(Fv)=Spn(Fv)×{±1}\operatorname{\widetilde{Sp}}_{n}(F_{v})=\operatorname{Sp}_{n}(F_{v})\times\{\pm 1\}. When Fv=F_{v}=\mathbb{R}, the group Sp~n()\operatorname{\widetilde{Sp}}_{n}(\mathbb{R}) is isomorphic to the group of pairs (g,ϕ)(g,\phi), where g=(ABCD)Spn()g=\left(\begin{smallmatrix}A&B\\ C&D\end{smallmatrix}\right)\in\operatorname{Sp}_{n}(\mathbb{R}) and ϕ:n\phi\colon\mathbb{H}_{n}\to\mathbb{C} is a function such that ϕ(τ)2=det(Cτ+D)\phi(\tau)^{2}=\det(C\tau+D); in this model, multiplication is given by

(g,ϕ(τ))(g,ϕ(τ))=(gg,ϕ(gτ)ϕ(τ)).(g,\phi(\tau))\cdot(g^{\prime},\phi^{\prime}(\tau))=(gg^{\prime},\phi(g^{\prime}\tau)\phi^{\prime}(\tau)). (2.34)

At a non-dyadic finite place, there exists a canonical embedding Spn(𝒪v)Sp~n(Fv)\operatorname{Sp}_{n}(\mathcal{O}_{v})\to\operatorname{\widetilde{Sp}}_{n}(F_{v}). Consider the restricted product vSp~n(Fv)\prod^{\prime}_{v\leq\infty}\operatorname{\widetilde{Sp}}_{n}(F_{v}) with respect to these embeddings; the global double cover Sp~n,𝔸\operatorname{\widetilde{Sp}}_{n,\mathbb{A}} of Spn(𝔸)\operatorname{Sp}_{n}(\mathbb{A}) is the quotient vSp~n(Fv)/I\prod^{\prime}_{v\leq\infty}\operatorname{\widetilde{Sp}}_{n}(F_{v})/I of this restricted direct product by the subgroup

I:={(1,ϵv)v|vϵv=1,ϵv=1 for almost all v}.I:=\{(1,\epsilon_{v})_{v\leq\infty}\,|\,\prod_{v}\epsilon_{v}=1,\,\epsilon_{v}=1\text{ for almost all }v\}. (2.35)

Moreover, there is a splitting

ιF:Spn(F)Sp~n,𝔸,γv(γ,1)vI.\iota_{F}\colon\operatorname{Sp}_{n}(F)\hookrightarrow\operatorname{\widetilde{Sp}}_{n,\mathbb{A}},\qquad\gamma\mapsto\prod_{v}(\gamma,1)_{v}\cdot I. (2.36)

Let Γ~\widetilde{\Gamma}^{\prime} denote the full inverse image of Spn(𝒪F)\operatorname{Sp}_{n}(\mathcal{O}_{F}) under the covering map v|Sp~n(Fv)Spn(F)\prod_{v|\infty}\operatorname{\widetilde{Sp}}_{n}(F_{v})\to\operatorname{Sp}_{n}(F\otimes_{\mathbb{Q}}\mathbb{R}). We obtain an action ρ\rho of Γ~\widetilde{\Gamma}^{\prime} on the space S(V(𝔸f)n)S(V(\mathbb{A}_{f})^{n}) as follows. Let ω\omega denote the333Here we take the Weil representation for the standard additive character ψF:𝔸F/F\psi_{F}\colon\mathbb{A}_{F}/F\to\mathbb{C}, which we suppress from the notation. Weil representation of Sp~n,𝔸\operatorname{\widetilde{Sp}}_{n,\mathbb{A}} on S(V(𝔸)n)S(V(\mathbb{A})^{n}). Given γ~Γ~\widetilde{\gamma}\in\widetilde{\Gamma}^{\prime}, choose γ~fv<Sp~n(Fv)\widetilde{\gamma}_{f}\in\prod^{\prime}_{v<\infty}\operatorname{\widetilde{Sp}}_{n}(F_{v}) such that γ~γ~fim(ιF)\widetilde{\gamma}\widetilde{\gamma}_{f}\in\mathrm{im}(\iota_{F}) and set

ρ(γ~):=ω(γ~f).\rho(\widetilde{\gamma})\ :=\ \omega(\widetilde{\gamma}_{f}). (2.37)

Recall that we had fixed a lattice LVL\subset V. The subspace S(Ln)S(V(𝔸f)n)S(L^{n})\subset S(V(\mathbb{A}_{f})^{n}), as defined in (1.3), is stable under the action of Γ~\widetilde{\Gamma}^{\prime}; when we wish to emphasize this lattice, we denote the corresponding action by ρL\rho_{L}.

For a half-integer κ12\kappa\in\frac{1}{2}\mathbb{Z}, we define a (parallel, scalar) weight κ\kappa slash operator, for the group Γ~\widetilde{\Gamma}^{\prime} acting on the space of functions f:ndS(Ln)f\colon\mathbb{H}^{d}_{n}\to S(L^{n})^{\vee}, by the formula

f|κ[γ~](𝝉)=v|ϕv(σv(𝝉))2κρL(γ~1)f(g𝝉),γ~=(gv,ϕv(τ))v|f|_{\kappa}[\widetilde{\gamma}](\bm{\tau})\ =\ \prod_{v|\infty}\phi_{v}(\sigma_{v}(\bm{\tau}))^{-2\kappa}\rho_{L}^{\vee}(\widetilde{\gamma}^{-1})\cdot f(g\bm{\tau}),\qquad\widetilde{\gamma}=(g_{v},\phi_{v}(\tau))_{v|\infty} (2.38)

where g=(gv)vg=(g_{v})_{v}.

If n>1n>1, consider the Jacobi group GJ=Gn,n1JSpnG^{J}=G^{J}_{n,n-1}\subset\operatorname{Sp}_{n}; for any ring RR, its RR-points are given by

GJ(R):={g=(a0baμbλλt1n1μt0c0dcμdλ0001n1)|(abcd)SL2(R),μ,τM1,n1(R)}.G^{J}(R):=\left\{g=\left(\begin{array}[]{cc|cc}a&0&b&a\mu-b\lambda\\ \lambda^{t}&1_{n-1}&\mu^{t}&0\\ \hline\cr c&0&d&c\mu-d\lambda\\ 0&0&0&1_{n-1}\end{array}\right)\ |\ \begin{pmatrix}a&b\\ c&d\end{pmatrix}\in\mathrm{SL}_{2}(R),\ \mu,\tau\in M_{1,n-1}(R)\right\}. (2.39)

Define Γ~JΓ~\widetilde{\Gamma}^{J}\subset\widetilde{\Gamma}^{\prime} to be the inverse image of GJ(𝒪F)G^{J}(\mathcal{O}_{F}) in G~\widetilde{G}^{\prime}_{\mathbb{R}}.

Definition 2.4.

Suppose

f:ndS(Ln)f\colon\mathbb{H}_{n}^{d}\to S(L^{n})^{\vee} (2.40)

is a smooth function. Given T2Symn1(F)T_{2}\in\operatorname{Sym}_{n-1}(F), we say that f(𝝉)f(\bm{\tau}) transforms like a Jacobi modular form of genus nn, weight κ\kappa and index T2T_{2} if the following conditions hold.

  1. (a)

    For all 𝐮2Symn1(F)\mathbf{u}_{2}\in\operatorname{Sym}_{n-1}(F_{\mathbb{R}}),

    f(𝝉+(0𝐮2))=e(T2𝐮2)f(𝝉).f\left(\bm{\tau}+\left(\begin{smallmatrix}0&\\ &\mathbf{u}_{2}\end{smallmatrix}\right)\right)\ =\ e(T_{2}\mathbf{u}_{2})f(\bm{\tau}). (2.41)
  2. (b)

    For all γ~Γ~J\widetilde{\gamma}\in\widetilde{\Gamma}^{J},

    f|κ[γ~](𝝉)=f(𝝉).f|_{\kappa}[\widetilde{\gamma}](\bm{\tau})\ =\ f(\bm{\tau}). (2.42)

Let Aκ,T2(ρL)A_{\kappa,T_{2}}(\rho_{L}^{\vee}) denote the space of S(Ln)S(L^{n})^{\vee}-valued smooth functions that transform like a Jacobi modular form of weight κ\kappa and index T2T_{2}.

Remark 2.5.
  1. 1.

    If desired, one can impose further analytic properties of ff (holomorphic, real analytic, etc.).

  2. 2.

    If n=1n=1, then we simply say that a function f:1dS(L)f\colon\mathbb{H}^{d}_{1}\to S(L)^{\vee} transforms like a (Hilbert) modular form of weight κ\kappa if it satisfies f|κ[γ~](𝝉)=f(𝝉)f|_{\kappa}[\tilde{\gamma}](\bm{\tau})=f(\bm{\tau}) as usual.

  3. 3.

    An S(Ln)S(L^{n})^{\vee}-valued Jacobi modular form ff, in the above sense, has a Fourier expansion of the form

    f(𝝉):=T=(T2)cf(T,𝐯)qTf(\bm{\tau})\ :=\ \sum_{T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)}c_{f}(T,\mathbf{v})\,q^{T} (2.43)

    where the coefficients cf(T,𝐯)c_{f}(T,\mathbf{v}) are smooth functions cf(T,𝐯):Symn(F)0S(Vn)c_{f}(T,\mathbf{v})\colon\operatorname{Sym}_{n}(F\otimes_{\mathbb{Q}}{\mathbb{R}})_{\gg 0}\to S(V^{n})^{\vee}. The dependence on 𝐯\mathbf{v} arises from the natural expectation that the Fourier-Jacobi coefficients of non-holomorphic Siegel modular forms should be Jacobi forms.

We now clarify what it should mean for generating series with coefficients in arithmetic Chow groups, such as those appearing in Theorem 1.1, to be modular.

First, let Dn1(X)D^{n-1}(X) denote the space of currents on X()X(\mathbb{C}) of complex bidegree (n1,n1)(n-1,n-1), and note that there is a map

a:Dn1(X)CH^(X,𝒟cur)n,a(g)=(0,[ddcg,g]).a\colon D^{n-1}(X)\ \to\ \widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}}),\qquad a(g)=(0,\,[\mathrm{dd^{c}}g,g]). (2.44)
Definition 2.6.

Define the space Aκ,T2(ρ;Dn1(X))A_{\kappa,T_{2}}(\rho^{\vee};D^{n-1}(X)) of “Jacobi forms valued in S(Ln)Dn1(X)S(L^{n})^{\vee}\otimes_{\mathbb{C}}D^{n-1}(X)” as the space of functions

ξ:ndDn1(X)S(Ln)\xi\colon\mathbb{H}^{d}_{n}\to D^{n-1}(X)\otimes_{\mathbb{C}}S(L^{n})^{\vee} (2.45)

such that the following two conditions hold.

  1. (a)

    For every smooth form α\alpha on XX, the function ξ(𝝉)(α)\xi(\bm{\tau})(\alpha) is an element of Aκ,T2(ρL)A_{\kappa,T_{2}}(\rho_{L}^{\vee}), and in particular, is smooth in the variable 𝝉\bm{\tau}.

  2. (b)

    Fix an integer k0k\geq 0 and let k\|\cdot\|_{k} be an algebra seminorm, on the space of smooth differential forms on XX, such that given a sequence {αi}\{\alpha_{i}\}, we have αik0\|\alpha_{i}\|_{k}\to 0 if and only if αi\alpha_{i}, together with all partial derivatives of order k\leq k, tends uniformly to zero. We then require that for every compact subset CndC\subset\mathbb{H}^{d}_{n}, there exists a constant ck,Vc_{k,V} such that

    |ξ(𝝉)(α)|ck,Cαk|\xi(\bm{\tau})(\alpha)|\leq c_{k,C}\|\alpha\|_{k} (2.46)

    for all 𝝉C\bm{\tau}\in C and all smooth forms α\alpha.

The second condition ensures that any such function admits a Fourier expansion as in (2.43) whose coefficients are continuous in the sense of distributions, i.e. they are again S(Ln)S(L^{n})^{\vee}-valued currents.

Definition 2.7.

Given a collection of classes Y^(T,𝐯)CH^(X,𝒟cur)nS(Ln)\widehat{Y}(T,\mathbf{v})\in\widehat{\mathrm{CH}}{}^{n}(X,\mathcal{D}_{\mathrm{cur}})\otimes_{\mathbb{C}}S(L^{n})^{\vee}, consider the formal generating series

Φ^T2(𝝉):=T=(T2)Y^(T,𝐯)qT.\widehat{\Phi}_{T_{2}}(\bm{\tau})\ :=\ \sum_{\begin{subarray}{c}T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)\end{subarray}}\widehat{Y}(T,\mathbf{v})\,q^{T}. (2.47)

Roughly speaking, we say that Φ^T2(𝝉)\widehat{\Phi}_{T_{2}}(\bm{\tau}) is modular (of weight κ\kappa and index T2T_{2}) if there is an element

ϕ^(𝝉)Aκ,T2(ρL)CH^(X,𝒟cur)n+a(Aκ,T2(ρL;Dn1(X)))\widehat{\phi}(\bm{\tau})\in A_{\kappa,T_{2}}(\rho_{L}^{\vee})\otimes_{\mathbb{C}}\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}})\ +\ a\left(A_{\kappa,T_{2}}(\rho_{L}^{\vee};D^{n-1}(X))\right) (2.48)

whose Fourier expansion coincides with Φ^T2(𝝉)\widehat{\Phi}_{T_{2}}(\bm{\tau}). More precisely, we define the modularity of Φ^T2(𝝉)\widehat{\Phi}_{T_{2}}(\bm{\tau}) to mean that there are finitely many classes

Z^1,,Z^rCH^(X,𝒟cur)n\widehat{Z}_{1},\dots,\widehat{Z}_{r}\in\widehat{\mathrm{CH}}{}^{n}(X,\mathcal{D}_{\mathrm{cur}}) (2.49)

and Jacobi forms

f1,frAκ,T2(ρ),gAκ,T2(ρ;Dn1(X))f_{1},\dots f_{r}\in A_{\kappa,T_{2}}(\rho^{\vee}),\qquad g\in A_{\kappa,T_{2}}(\rho^{\vee};D^{n-1}(X)) (2.50)

such that

Y^(T,𝐯)=\displaystyle\widehat{Y}(T,\mathbf{v})= icfi(T,𝐯)Z^i+a(cg(T,𝐯))CH^(X,𝒟cur)nS(Ln)\displaystyle\sum_{i}c_{f_{i}}(T,\mathbf{v})\,\widehat{Z}_{i}+a\left(c_{g}(T,\mathbf{v})\right)\ \in\ \widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}})\otimes_{\mathbb{C}}S(L^{n})^{\vee} (2.51)

for all T=(T2)T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right) .

Remark 2.8.
  1. 1.

    If Z^1,,Z^rCH^(X)n\widehat{Z}_{1},\dots,\widehat{Z}_{r}\in\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X) and g(𝝉)g(\bm{\tau}) takes values in the space of (currents represented by) smooth differential forms on XX, then we say that Φ^T2(𝝉)\widehat{\Phi}_{T_{2}}(\bm{\tau}) is valued in CH^(X)nS(Ln)\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X)\otimes S(L^{n})^{\vee}; indeed, in this case, the right hand side of (2.51) lands in this latter group.

  2. 2.

    As before, one may also impose additional analytic conditions on the forms fi,gf_{i},g appearing above if desired.

  3. 3.

    Elsewhere in the literature (e.g.  [Bor99, Bru12, Zha09]), one finds a notion of modularity that amounts to omitting the second term in (2.48); this notion is well-adapted to the case that the generating series of interest are holomorphic, i.e. the coefficients are independent of the imaginary part of 𝝉\bm{\tau}.

    In contrast, the generating series that figure in our main theorem depend on these parameters in an essential way. Indeed, the Green forms 𝔤o(T,𝐯)\mathfrak{g}^{o}(T,\mathbf{v}) vary smoothly in 𝐯\mathbf{v}; however, to the best of the author’s knowledge, there is no natural topology on CH^(X)n\widehat{\mathrm{CH}}{}^{n}(X), or CH^(X,𝒟cur)n\widehat{\mathrm{CH}}{}^{n}(X,\mathcal{D}_{\mathrm{cur}}), for which the corresponding family Z^(T,𝐯)\widehat{Z}(T,\mathbf{v}) varies smoothly in vv. As we will see in the course of the proof of the main theorem, the additional term in (2.48) will allow us enough flexibility to reflect the non-holomorphic behaviour of the generating series. Similar considerations appear in [ES18] in the codimension one case.

3 The genus one case

In this section, we prove the main theorem in the case n=1n=1; later on, this will be a key step in the proof for general nn. The proof of this theorem amounts to a comparison with a generating series of special divisors equipped with a different family of Green functions, defined by Bruinier. A similar comparison appears in [ES18] for unitary groups over imaginary quadratic fields; in the case at hand, however, the compactness of XX allows us to apply spectral theory and simplify the argument considerably.

Suppose t0t\gg 0. In [Bru12], Bruinier constructs an S(L)S(L)^{\vee}-valued Green function Φ(t)\Phi(t) for the divisor Z(t)=Z(t)Z(t)=Z(t)^{\natural}. To be a bit more precise about this, recall the Kudla-Millson theta function ΘKM(𝝉)\Theta_{\mathrm{KM}}(\bm{\tau}) from (2.28). As a function of 𝝉\bm{\tau}, the theta function ΘKM\Theta_{\mathrm{KM}} is non-holomorphic and transforms as a Hilbert modular form of parallel weight κ=p/2+1\kappa=p/2+1. It is moreover of moderate growth, [Bru12, Prop. 3.4] and hence can be paired, via the Petersson pairing, with cusp forms. Let ΛKM(𝝉)Sκ(ρL)\Lambda_{\mathrm{KM}}(\bm{\tau})\in S_{\kappa}(\rho_{L}) denote the cuspidal projection, defined by the property

ΘKM,gPet=ΛKM,gPet\langle\Theta_{\mathrm{KM}},g\rangle^{\mathrm{Pet}}=\langle\Lambda_{\mathrm{KM}},g\rangle^{\mathrm{Pet}} (3.1)

for all cusp forms gSκ(ρ)g\in S_{\kappa}(\rho).

Writing the Fourier expansion

ΛKM(𝝉)=tcΛ(t)qt,ΛKM,tA1,1(X)S(L)\Lambda_{\mathrm{KM}}(\bm{\tau})=\sum_{t}c_{\Lambda}(t)\ q^{t},\qquad\Lambda_{\mathrm{KM},t}\in A^{1,1}(X)\otimes S(L)^{\vee} (3.2)

it follows from [Bru12, Corollary 5.16, Theorem 6.4] that Φ(t)\Phi(t) satisfies the equation

ddc[Φ(t)]+δZ(t)=[cΛ(t)+B(t)Ω]\mathrm{dd^{c}}[\Phi(t)]\ +\ \delta_{Z(t)}\ =\ \left[c_{\Lambda}(t)+B(t)\cdot\Omega\right] (3.3)

of currents on XX, where

B(t):=deg(Z(t))vol(X,(Ω)p)S(L).B(t)\ :=\ -\frac{\deg(Z(t))}{\mathrm{vol}(X,(-\Omega)^{p})}\ \in\ S(L)^{\vee}. (3.4)

recall here that (Ω)p(-\Omega)^{p} induces a volume form on XX.

Finally, define classes Z^Br(t)CH^(X)1S(L)\widehat{Z}_{\mathrm{Br}}(t)\in\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X)\otimes S(L)^{\vee} as follows:

Z^Br(t)={(Z(t),Φ(t)),if t0ω^ev0,if t=0.0,otherwise,\widehat{Z}_{\mathrm{Br}}(t)\ =\ \begin{cases}\left(Z(t),\Phi(t)\right),&\text{if }t\gg 0\\ \widehat{\omega}\otimes\mathrm{ev}_{0},&\text{if }t=0.\\ 0,&\text{otherwise,}\end{cases} (3.5)

where ev0S(L)\mathrm{ev}_{0}\in S(L)^{\vee} is the functional φφ(0)\varphi\mapsto\varphi(0).

We then have the generating series

ϕ^Br(τ)=tZ^Br(t)qt.\widehat{\phi}_{\mathrm{Br}}(\tau)=\sum_{t}\widehat{Z}_{\mathrm{Br}}(t)\,q^{t}. (3.6)
Theorem 3.1 (Bruinier).

The generating series ϕ^Br(τ)\widehat{\phi}_{\mathrm{Br}}(\tau) is a (holomorphic) Hilbert modular form of parallel weight κ=p/2+1\kappa=p/2+1. More precisely, there are finitely many classes Z^1,Z^rCH^(X)1\widehat{Z}_{1},\dots\widehat{Z}_{r}\in\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X) and holomorphic Hilbert modular forms f1,,frf_{1},\dots,f_{r} such that Z^Br(t)=cfi(t)Z^i\widehat{Z}_{\mathrm{Br}}(t)=\sum c_{f_{i}}(t)\,\widehat{Z}_{i} for all tFt\in F.

Proof.

The proof follows the same argument as [Bru12, Theorem 7.1], whose main steps we recall here. Bruinier defines a space Mk!(ρL)M^{!}_{k}(\rho_{L}) of weakly holomorphic forms [Bru12, §4] of a certain“dual” weight kk; each fMk!(ρL)f\in M^{!}_{k}(\rho_{L}) is defined by a finite collection of vectors cf(m)S(L)c_{f}(m)\in S(L)^{\vee} indexed by mFm\in F. Applying Bruinier’s criterion for the modularity of a generating series, cf.  [Bru12, (7.1)], we need to show that

mcf(m)Z^Br(m)=0CH^(X)1\sum_{m}c_{f}(m)\widehat{Z}_{\mathrm{Br}}(m)=0\in\widehat{\mathrm{CH}}{}^{1}(X) (3.7)

for all fMk!(ρL)f\in M_{k}^{!}(\rho_{L}). Let c0=cf(0)(0)c_{0}=c_{f}(0)(0), and assume c0c_{0}\in\mathbb{Z}. By [Bru12, Theorem 6.8], after replacing ff by a sufficiently large integer multiple, there exists an analytic meromorphic section Ψan\Psi^{an} of (ωan)c0(\omega^{an})^{-c_{0}} such that

divΨan=m0cf(m)Z(m)an.\mathrm{div}\,\Psi^{an}=\sum_{m\neq 0}c_{f}(m)\cdot Z(m)^{an}. (3.8)

and with

logΨan2=m0cf(m)Φ(m).\mathrm{-}\log\|\Psi^{an}\|^{2}=\sum_{m\neq 0}c_{f}(m)\cdot\Phi(m). (3.9)

Recall that XX is projective; by GAGA and the fact that the Z(m)Z(m)’s are defined over EE, there is an EE-rational section ψ\psi of ωc0\omega^{-c_{0}} and a constant CC\in\mathbb{C} such that

div(ψ)=m0cf(m)Z(m),logψan2=logΨan2+C.\mathrm{div}(\psi)=\sum_{m\neq 0}c_{f}(m)Z(m),\qquad-\log\|\psi^{an}\|^{2}=-\log\|\Psi^{an}\|^{2}+C. (3.10)

Thus

c0ω^=div^(ψ)=m0cf(m)Z^Br(m)+(0,C)CH^(X)1.-c_{0}\cdot\widehat{\omega}\ =\ \widehat{\mathrm{div}}(\psi)=\sum_{m\neq 0}c_{f}(m)\cdot\widehat{Z}_{\mathrm{Br}}(m)\ +\ (0,C)\ \in\ \widehat{\mathrm{CH}}{}^{1}(X). (3.11)

However, as in Remark 2.1, the class (0,C)=0(0,C)=0, and thus we find

mcf(m)Z^Br(m)=c0ω^+m0cf(m)Z^Br(m)= 0\sum_{m}c_{f}(m)\widehat{Z}_{\mathrm{Br}}(m)\ =\ c_{0}\cdot\widehat{\omega}+\sum_{m\neq 0}c_{f}(m)\widehat{Z}_{\mathrm{Br}}(m)\ =\ 0 (3.12)

as required. ∎

Now we consider the difference

ϕ^1(𝝉)ϕ^Br(𝝉)=t(0,𝔤o(t,𝐯)Φ(t))qt\widehat{\phi}_{1}(\bm{\tau})-\widehat{\phi}_{\mathrm{Br}}(\bm{\tau})=\sum_{t}(0,\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t))\,q^{t} (3.13)

whose terms are classes represented by purely archimedean cycles. Comparing the Green equations (2.25) and (3.3), we have that for t0t\neq 0 and any smooth form η\eta,

ddc[𝔤o(t,v)Φ(t)](η)=X(𝔤o(t,𝐯)Φ(t))ddcη=X(ω(t,𝐯)cΛ(t)B(t)Ω)η\mathrm{dd^{c}}[\mathfrak{g}^{o}(t,v)-\Phi(t)](\eta)=\int_{X}\left(\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t)\right)\,\mathrm{dd^{c}}\eta=\int_{X}\left(\omega(t,\mathbf{v})-c_{\Lambda}(t)-B(t)\Omega\right)\wedge\eta (3.14)

where ω(t,𝐯)\omega(t,\mathbf{v}) is the tt’th qq-coefficient of ΘKM(𝝉)\Theta_{\mathrm{KM}}(\bm{\tau}); in particular, elliptic regularity implies that the difference 𝔤o(t,𝐯)Φ(t)\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t) is smooth on X()X(\mathbb{C}).

Theorem 3.2.

There exists a smooth S(L)S(L)^{\vee}-valued function s(𝛕,z)s(\bm{\tau},z) on 1d×X()\mathbb{H}_{1}^{d}\times X(\mathbb{C}) such that the following holds.

  1. (i)

    For each fixed zX()z\in X(\mathbb{C}), the function s(𝝉,z)s(\bm{\tau},z) transforms like a Hilbert modular form in 𝝉\bm{\tau}.

  2. (ii)

    Let

    s(𝝉,z)=tcs(t,𝐯,z)qts(\bm{\tau},z)=\sum_{t}c_{s}(t,\mathbf{v},z)\ q^{t} (3.15)

    denote its qq-expansion in 𝝉\bm{\tau}; then for each tt, we have

    (0,𝔤o(t,𝐯)Φ(t))=(0,cs(t,𝐯,z))CH^(X)1S(L)(0,\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t))\ =\ (0,c_{s}(t,\mathbf{v},z))\ \in\ \widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X)\otimes_{\mathbb{C}}S(L)^{\vee} (3.16)

Combining this theorem with Theorem 3.1, we obtain:

Corollary 3.3.

The generating series ϕ^1(𝛕)\widehat{\phi}_{1}(\bm{\tau}) is modular, valued in CH^(X)1S(L)\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X)\otimes S(L)^{\vee}, in the sense of Remark 2.8(i). ∎

Proof of Theorem 3.2.

Recall that the (1,1)(1,1) form Ω-\Omega is a Kähler form on XX. Let ΔX-\Delta_{X} denote the corresponding Laplacian; the eigenvalues of ΔX-\Delta_{X} are non-negative, discrete in 0\mathbb{R}_{\geq 0}, and each eigenspace is finite dimensional.

Write ΔX=2(+)\Delta_{X}=2(\partial\partial^{*}+\partial^{*}\partial) and let L:ηη(Ω)L\colon\eta\mapsto-\eta\wedge(-\Omega) denote the Lefschetz operator. From the Kähler identities [L,]=[L,¯]=[L,ΔS]=0[L,\partial]=[L,\overline{\partial}]=[L,\Delta_{S}]=0 and [L,]=i¯[L,\partial^{*}]=i\overline{\partial}, an easy induction argument shows that

Lk=Lkik¯Lk1\partial^{*}\circ L^{k}\ =\ L^{k}\circ\partial^{*}\ -\ ik\,\overline{\partial}\circ L^{k-1} (3.17)

for k1k\geq 1.

Thus, for a smooth function ϕ\phi on XX, we have

ΔX(ϕ)(Ω)p=ΔXLp(ϕ)\displaystyle\Delta_{X}(\phi)\cdot(-\Omega)^{p}=\Delta_{X}\circ L^{p}(\phi) =2Lp(ϕ)\displaystyle=2\partial\partial^{*}\circ L^{p}(\phi) (3.18)
= 2(Lpip¯Lp1)(ϕ)\displaystyle=\ 2\ \partial\circ\left(L^{p}\circ\partial^{*}-ip\overline{\partial}\circ L^{p-1}\right)(\phi) (3.19)
=2ip¯(ϕ(Ω)p1)\displaystyle=\ -2ip\ \partial\overline{\partial}\left(\phi\wedge(-\Omega)^{p-1}\right) (3.20)
=4πpddc(ϕ(Ω)p1);\displaystyle=\ -4\pi p\ \mathrm{dd^{c}}\left(\phi\wedge(-\Omega)^{p-1}\right); (3.21)

note here that p=dim(X).p=\dim_{\mathbb{C}}(X).

Consider the Hodge pairing

f,gL2=Xfg¯(Ω)p=(1)pXfg¯Ωp.\langle f,g\rangle_{L^{2}}=\int_{X}f\,\overline{g}\,(-\Omega)^{p}=(-1)^{p}\int_{X}f\,\overline{g}\,\Omega^{p}. (3.22)

If λ>0\lambda>0 and ϕλ\phi_{\lambda} is a Laplace eigenfunction, we have that for any t0t\neq 0,

𝔤o(t,𝐯)Φ(t),ϕλL2\displaystyle\langle\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t),\phi_{\lambda}\rangle_{L^{2}} =λ1𝔤o(t,𝐯)Φ(t),ΔXϕλL2\displaystyle=\lambda^{-1}\langle\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t),-\Delta_{X}\phi_{\lambda}\rangle_{L^{2}} (3.23)
=(1)pλ1X(𝔤o(t,𝐯)Φ(t))(ΔXϕλ¯)Ωp\displaystyle=(-1)^{p}\lambda^{-1}\int_{X}(\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t))\cdot(\overline{-\Delta_{X}\phi_{\lambda}})\cdot\Omega^{p} (3.24)
=(1)p+14πpλX(𝔤o(t,𝐯)Φ(t))ddc(ϕ¯λΩp1)\displaystyle=(-1)^{p+1}\frac{4\pi p}{\lambda}\int_{X}\left(\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t)\right)\cdot\mathrm{dd^{c}}\left(\overline{\phi}_{\lambda}\,\Omega^{p-1}\right) (3.25)
=(1)p+14πpλX(ω(t,𝐯)cΛ(t)B(t)Ω)ϕ¯λΩp1\displaystyle=(-1)^{p+1}\frac{4\pi p}{\lambda}\int_{X}\left(\omega(t,\mathbf{v})-c_{\Lambda}(t)-B(t)\Omega\right)\wedge\overline{\phi}_{\lambda}\Omega^{p-1} (3.26)

Note that Xϕ¯λΩp=1,ϕλL2=0\int_{X}\overline{\phi}_{\lambda}\Omega^{p}=\langle 1,\phi_{\lambda}\rangle_{L^{2}}=0, as λ>0\lambda>0 and so ϕλ\phi_{\lambda} is orthogonal to constants; thus the term involving B(m)ΩB(m)\Omega vanishes, and so

𝔤o(t,𝐯)Φ(t),ϕλL2=(1)p+14πpλX(ω(t,𝐯)cΛ(t))ϕ¯λΩp1\langle\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t),\phi_{\lambda}\rangle_{L^{2}}=(-1)^{p+1}\frac{4\pi p}{\lambda}\int_{X}\left(\omega(t,\mathbf{v})-c_{\Lambda}(t)\right)\wedge\overline{\phi}_{\lambda}\Omega^{p-1} (3.27)

for all t0t\neq 0. This equality also holds for t=0t=0, as both sides of this equation vanish. Indeed, for the left hand side we have 𝔤o(0,𝐯)=0\mathfrak{g}^{o}(0,\mathbf{v})=0, cf. (2.24), and Φ(0)=0\Phi(0)=0 by definition; on the right hand side, cΛ(0)=0c_{\Lambda}(0)=0 as ΛKM(𝝉)\Lambda_{\mathrm{KM}}(\bm{\tau}) is cuspidal, and the constant term of the Kudla-Millson theta function is given by

ω(0,𝐯)=Ωev0.\omega(0,\mathbf{v})=\Omega\otimes\mathrm{ev}_{0}. (3.28)

Now define

h(𝝉,z)=(L)p1(ΘKM(𝝉)ΛKM(𝝉))h(\bm{\tau},z)=(L^{*})^{p-1}\circ\ast\left(\Theta_{\mathrm{KM}}(\bm{\tau})-\Lambda_{\mathrm{KM}}(\bm{\tau})\right) (3.29)

where \ast is the Hodge star operator, and LL^{*} is the adjoint of the Lefschetz map LL. Then h(𝝉,z)h(\bm{\tau},z) is smooth, and transforms like a modular form in 𝝉\bm{\tau}, since both ΘKM(𝝉)\Theta_{\mathrm{KM}}(\bm{\tau}) and ΛKM(𝝉)\Lambda_{\mathrm{KM}}(\bm{\tau}) do; writing its Fourier expansion

h(𝝉,z)=tch(t,𝐯,z)qt,h(\bm{\tau},z)\ =\ \sum_{t}c_{h}(t,\mathbf{v},z)\,q^{t}, (3.30)

we have

ch(t,𝐯,z),ϕL2=(1)p1X(ω(t,𝐯)cΛ(t))ϕ¯Ωp1\langle c_{h}(t,\mathbf{v},z),\phi\rangle_{L^{2}}=(-1)^{p-1}\int_{X}\left(\omega(t,\mathbf{v})-c_{\Lambda}(t)\right)\wedge\overline{\phi}\,\Omega^{p-1} (3.31)

for any smooth function ϕ\phi.

Note that for any integer NN and L2L^{2} normalized eigenfunction ϕλ\phi_{\lambda} with λ0\lambda\neq 0,

h,ϕλL2=λNΔXN(h),φλλNΔXN(h)L22.\langle h,\phi_{\lambda}\rangle_{L^{2}}=\lambda^{-N}\langle-\Delta^{N}_{X}(h),\varphi_{\lambda}\rangle\leq\lambda^{-N}\|-\Delta^{N}_{X}(h)\|^{2}_{L^{2}}. (3.32)

Choose an orthonormal basis {ϕλ}\{\phi_{\lambda}\} of L2(X)L^{2}(X) consisting of eigenfunctions, and consider the sum

s(τ,z)=4πpλ>0λ1h,ϕλL2ϕλ;s(\tau,z)=4\pi p\sum_{\lambda>0}\lambda^{-1}\langle h,\phi_{\lambda}\rangle_{L^{2}}\,\phi_{\lambda}; (3.33)

by Weyl’s law, there are positive constants C1C_{1} and C2C_{2} such that

#{λ|λ<x}xC1\#\{\lambda\ |\ \lambda<x\}\sim x^{C_{1}} (3.34)

and ϕλL=O(λC2)\|\phi_{\lambda}\|_{L^{\infty}}=O(\lambda^{C_{2}}). Thus taking NN sufficiently large in (3.32), we conclude that the sum (3.33) converges uniformly, and hence defines a smooth function in (𝝉,z)(\bm{\tau},z). Writing its Fourier expanison as

s(𝝉,z)=tcs(t,𝐯,z)qt,s(\bm{\tau},z)=\sum_{t}c_{s}(t,\mathbf{v},z)q^{t}, (3.35)

we have

cs(t,𝐯,z),ϕλL2=𝔤o(t,𝐯)Φ(t),ϕλL2\langle c_{s}(t,\mathbf{v},z),\phi_{\lambda}\rangle_{L^{2}}=\langle\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t),\phi_{\lambda}\rangle_{L^{2}} (3.36)

for any eigenfunction ϕλ\phi_{\lambda} with λ0\lambda\neq 0. Thus cs(t,𝐯,z)c_{s}(t,\mathbf{v},z) and go(t,𝐯)Φ(t)g^{o}(t,\mathbf{v})-\Phi(t) differ by a function that is constant in zz; as (0,1)=0CH^(X)1(0,1)=0\in\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X), we have

(0,𝔤o(t,𝐯)Φ(t))=(0,cs(t,𝐯,z))CH^(X)1S(L),(0,\mathfrak{g}^{o}(t,\mathbf{v})-\Phi(t))=(0,c_{s}(t,\mathbf{v},z))\in\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X)\otimes_{\mathbb{C}}S(L)^{\vee}, (3.37)

which concludes the proof of the theorem.

4 Decomposing Green currents

We now suppose n>1n>1 and fix T2Symn1(F)T_{2}\in\operatorname{Sym}_{n-1}(F).

The aim of this section is to establish a decomposition Z^(T,𝐯)=A^(T,𝐯)+B^(T,𝐯)\widehat{Z}(T,\mathbf{v})=\widehat{A}(T,\mathbf{v})+\widehat{B}(T,\mathbf{v}), where T=(T2)T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right). Our first step is to decompose Green forms in a useful way; the result can be seen as an extension of the star product formula [GS19, Theorem 4.10] to the degenerate case.

Let x=(x1,,xn)(V1)n=(VF,σ1)nx=(x_{1},\dots,x_{n})\in(V_{1})^{n}=(V\otimes_{F,\sigma_{1}}\mathbb{R})^{n} and set y=(x2,,xn)V1n1y=(x_{2},\dots,x_{n})\in V_{1}^{n-1} . By [GS19, Proposition 2.6.(a)], we may decompose

𝔤o(x,ρ)=1νo(tx1)φKMo(ty)dtt1+ρ+1φKMo(tx1)νo(ty)dtt1+ρ\mathfrak{g}^{o}(x,\rho)=\int_{1}^{\infty}\nu^{o}(\sqrt{t}\,x_{1})\wedge\varphi^{o}_{\mathrm{KM}}(\sqrt{t}\,y)\ \frac{dt}{t^{1+\rho}}\ +\ \int_{1}^{\infty}\varphi_{\mathrm{KM}}^{o}(\sqrt{t}\,x_{1})\wedge\nu^{o}(\sqrt{t}\,y)\ \frac{dt}{t^{1+\rho}} (4.1)

for Re(ρ)0Re(\rho)\gg 0.

By the transgression formula (2.21), we may rewrite the second term in (4.1) as

1\displaystyle\int_{1}^{\infty} φKMo(tx1)νo(ty)dtt1+ρ\displaystyle\varphi_{\mathrm{KM}}^{o}(\sqrt{t}\,x_{1})\wedge\nu^{o}(\sqrt{t}\,y)\ \frac{dt}{t^{1+\rho}} (4.2)
=1(1tuφKMo(ux1)𝑑u)νo(ty)dtt1+ρ+φKMo(x1)1νo(ty)dtt1+ρ\displaystyle=\int_{1}^{\infty}\left(\int_{1}^{t}\,\frac{\partial}{\partial u}\varphi_{\mathrm{KM}}^{o}(\sqrt{u}\,x_{1})\,du\right)\wedge\nu^{o}(\sqrt{t}\,y)\ \frac{dt}{t^{1+\rho}}+\varphi_{\mathrm{KM}}^{o}(x_{1})\wedge\int_{1}^{\infty}\nu^{o}(\sqrt{t}\,y)\frac{dt}{t^{1+\rho}} (4.3)
=1(1tddcνo(ux1)duu)νo(ty)dtt1+ρ+φKMo(x1)𝔤o(y,ρ).\displaystyle=\int_{1}^{\infty}\left(\int_{1}^{t}\,-\mathrm{dd^{c}}\nu^{o}(\sqrt{u}\,x_{1})\,\frac{du}{u}\right)\wedge\nu^{o}(\sqrt{t}\,y)\ \frac{dt}{t^{1+\rho}}+\varphi_{\mathrm{KM}}^{o}(x_{1})\wedge\mathfrak{g}^{o}(y,\rho). (4.4)

For t>1t>1, define smooth forms

αt(x1,y):=1t¯νo(ux1)duuνo(ty)\alpha_{t}(x_{1},y):=\int_{1}^{t}\overline{\partial}\nu^{o}(\sqrt{u}\,x_{1})\,\frac{du}{u}\wedge\nu^{o}(\sqrt{t}\,y) (4.5)

and

βt(x1,y):=1tνo(ux1)duuνo(ty)\beta_{t}(x_{1},y):=\int_{1}^{t}\nu^{o}(\sqrt{u}\,x_{1})\,\frac{du}{u}\wedge\partial\nu^{o}(\sqrt{t}y) (4.6)

so that

(4.4)=i2π1\displaystyle\eqref{eqn: g0 second piece}=\frac{i}{2\pi}\int_{1}^{\infty}\partial αt(x1,y)+¯βt(x1,y)dtt1+ρ1[1tνo(ux1)duu]ddcνo(ty)dtt1+ρ\displaystyle\alpha_{t}(x_{1},y)+\overline{\partial}\beta_{t}(x_{1},y)\,\frac{dt}{t^{1+\rho}}\ -\ \int_{1}^{\infty}\left[\int_{1}^{t}\nu^{o}(\sqrt{u}\,x_{1})\,\frac{du}{u}\right]\wedge\mathrm{dd^{c}}\nu^{o}(\sqrt{t}\,y)\,\frac{dt}{t^{1+\rho}}
+φKMo(x1)𝔤o(y,ρ).\displaystyle+\varphi_{\mathrm{KM}}^{o}(x_{1})\wedge\mathfrak{g}^{o}(y,\rho). (4.7)

Finally, we consider the second integral above; as Re(ρ)Re(\rho) is large, we may interchange the order of integration and obtain

1\displaystyle\int_{1}^{\infty} (1tνo(ux1)duu)ddcνo(ty)dtt1+ρ\displaystyle\left(\int_{1}^{t}\nu^{o}(\sqrt{u}\,x_{1})\,\frac{du}{u}\right)\wedge\mathrm{dd^{c}}\nu^{o}(\sqrt{t}\,y)\,\frac{dt}{t^{1+\rho}} (4.8)
=1νo(ux1)(uddcνo(ty)dtt1+ρ)duu\displaystyle=\int_{1}^{\infty}\nu^{o}(\sqrt{u}x_{1})\wedge\left(\int_{u}^{\infty}\mathrm{dd^{c}}\nu^{o}(\sqrt{t}y)\frac{dt}{t^{1+\rho}}\right)\frac{du}{u} (4.9)
=1νo(ux1)(utφKMo(ty)dttρ)duu\displaystyle=\int_{1}^{\infty}\nu^{o}(\sqrt{u}x_{1})\wedge\left(\int_{u}^{\infty}-\frac{\partial}{\partial t}\varphi_{\mathrm{KM}}^{o}(\sqrt{t}y)\frac{dt}{t^{\rho}}\right)\frac{du}{u} (4.10)
=1νo(ux1)φKMo(uy)duu1+ρρ1νo(ux1)(uφKMo(ty)dtt1+ρ)duu\displaystyle=\int_{1}^{\infty}\nu^{o}(\sqrt{u}\,x_{1})\wedge\varphi_{\mathrm{KM}}^{o}(\sqrt{u}\,y)\,\frac{du}{u^{1+\rho}}-\rho\int_{1}^{\infty}\nu^{o}(\sqrt{u}\,x_{1})\wedge\left(\int_{u}^{\infty}\varphi_{\mathrm{KM}}^{o}(\sqrt{t}\,y)\frac{dt}{t^{1+\rho}}\right)\,\frac{du}{u} (4.11)

Note that the first term here coincides with the first term in (4.1). Combining these computations, it follows that

𝔤o(x,ρ)\displaystyle\mathfrak{g}^{o}(x,\rho) =φKMo(x1)𝔤o(y,ρ)+i2π1αt(x1,y)+¯βt(x1,y)dtt1+ρ\displaystyle=\varphi^{o}_{\mathrm{KM}}(x_{1})\wedge\mathfrak{g}^{o}(y,\rho)+\frac{i}{2\pi}\int_{1}^{\infty}\partial\alpha_{t}(x_{1},y)+\overline{\partial}\beta_{t}(x_{1},y)\,\frac{dt}{t^{1+\rho}}
+ρ1νo(ux1)(uφKMo(ty)dtt1+ρ)duu.\displaystyle\qquad\qquad+\rho\int_{1}^{\infty}\nu^{o}(\sqrt{u}\,x_{1})\wedge\left(\int_{u}^{\infty}\varphi_{\mathrm{KM}}^{o}(\sqrt{t}\,y)\frac{dt}{t^{1+\rho}}\right)\,\frac{du}{u}. (4.12)

This identity holds for arbitrary x=(x1,y)V1nx=(x_{1},y)\in V_{1}^{n} and Re(ρ)0Re(\rho)\gg 0, and is an identity of smooth differential forms on 𝔻\mathbb{D}.

To continue, we view the above line as an identity of currents, and consider meromorphic continuation.444More precisely, we mean that for every smooth form α\alpha, the function [𝔤o(x,ρ)](α)=X𝔤o(x,ρ)α[\mathfrak{g}^{o}(x,\rho)](\alpha)=\int_{X}\mathfrak{g}^{o}(x,\rho)\wedge\alpha admits a meromorphic continuation in ρ\rho, such that the Laurent coefficients are continuous in α\alpha in the sense of currents. Note that (as currents)

ρ1\displaystyle\rho\int_{1}^{\infty} νo(ux1)(uφKMo(ty)dtt1+ρ)duu\displaystyle\nu^{o}(\sqrt{u}\,x_{1})\wedge\left(\int_{u}^{\infty}\varphi_{\mathrm{KM}}^{o}(\sqrt{t}\,y)\frac{dt}{t^{1+\rho}}\right)\,\frac{du}{u} (4.13)
=ρ1νo(ux1)u(φKMo(ty)δ𝔻y+Ωn1r(y))dtt1+ρduu\displaystyle=\rho\int_{1}^{\infty}\nu^{o}(\sqrt{u}\,x_{1})\wedge\int_{u}^{\infty}\left(\varphi_{\mathrm{KM}}^{o}(\sqrt{t}\,y)-\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-1-r(y)}\right)\frac{dt}{t^{1+\rho}}\frac{du}{u}
+1νo(ux1)δ𝔻y+Ωn1r(y)duu1+ρ\displaystyle\qquad+\int_{1}^{\infty}\nu^{o}(\sqrt{u}x_{1})\wedge\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-1-r(y)}\ \frac{du}{u^{1+\rho}}\ (4.14)

where r(y)=dimspan(y)r(y)=\dim\,\mathrm{span}(y). The first term vanishes at ρ=0\rho=0; indeed, the double integral in the first term is holomorphic at ρ=0\rho=0, as can easily seen by by Bismut’s asymptotic [Bis90, Theorem 3.2]

φKMo(ty)δ𝔻y+Ωn1r(y)=O(t1/2)\varphi_{\mathrm{KM}}^{o}(\sqrt{t}y)-\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-1-r(y)}\ =\ O(t^{-1/2}) (4.15)

as tt\to\infty.

Next, let

α(x1,y;ρ):=1αt(x1,y)dtt1+ρ,β(x1,y;ρ):=1βt(x,y)dtt1+ρ.\alpha(x_{1},y;\rho)\ :=\ \int_{1}^{\infty}\,\alpha_{t}(x_{1},y)\frac{dt}{t^{1+\rho}},\qquad\qquad\beta(x_{1},y;\rho)\ :=\ \int_{1}^{\infty}\,\beta_{t}(x,y)\frac{dt}{t^{1+\rho}}. (4.16)

A straightforward modification of the proof of [GS19, Proposition 2.12.(iii)] can be used to show that α(x1,y;ρ)\alpha(x_{1},y;\rho) and β(x1,y;ρ)\beta(x_{1},y;\rho) have meromorphic extensions, as currents, to a neighbourhood of ρ=0\rho=0. We denote the constant terms in the Laurent expansion at ρ=0\rho=0 by α(x1,y)\alpha(x_{1},y) and β(x1,y)\beta(x_{1},y) respectively. Thus, as currents on 𝔻\mathbb{D}, we have

𝔤o(x1,y)\displaystyle\mathfrak{g}^{o}(x_{1},y) =φKMo(x1)𝔤o(y)+dα(x1,y)+dcβ(x1,y)\displaystyle=\varphi_{\mathrm{KM}}^{o}(x_{1})\wedge\mathfrak{g}^{o}(y)+d\alpha(x_{1},y)+d^{c}\beta(x_{1},y) (4.17)
+CTρ=01νo(ux1)δ𝔻y+Ωn1r(y)duu1+ρ\displaystyle\qquad\qquad+CT_{\rho=0}\int_{1}^{\infty}\nu^{o}(\sqrt{u}x_{1})\wedge\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-1-r(y)}\ \frac{du}{u^{1+\rho}} (4.18)

for all x1V1x_{1}\in V_{1} and y(V1)n1y\in(V_{1})^{n-1}.

As a final observation, note that if x1span(y)x_{1}\in\mathrm{span}(y), then νo(ux1)δ𝔻y+=δ𝔻y+\nu^{o}(\sqrt{u}x_{1})\wedge\delta_{\mathbb{D}^{+}_{y}}=\delta_{\mathbb{D}^{+}_{y}}, see [GS19, Lemma 2.4]. Thus

γ(x1,y)\displaystyle\gamma(x_{1},y) :=CTρ=01νo(ux1)δ𝔻y+Ωn1r(y)duu1+ρ\displaystyle:=CT_{\rho=0}\int_{1}^{\infty}\nu^{o}(\sqrt{u}x_{1})\wedge\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-1-r(y)}\ \frac{du}{u^{1+\rho}} (4.19)
={𝔤o(x1)δ𝔻y+Ωn1r(y),if x1span(y)0,if x1span(y).\displaystyle=\begin{cases}\mathfrak{g}^{o}(x_{1})\wedge\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-1-r(y)},&\text{if }x_{1}\notin\mathrm{span}(y)\\ 0,&\text{if }x_{1}\in\mathrm{span}(y).\end{cases} (4.20)

In the case that the components of x=(x1,y)=(x1,,xn)x=(x_{1},y)=(x_{1},\dots,x_{n}) are linearly independent, we recover the star product formula from [GS19, Theorem 2.16].

Now we discuss a decomposition of the global Green current 𝔤o(T,𝐯)\mathfrak{g}^{o}(T,\mathbf{v}), for 𝐯Symn(F)0\mathbf{v}\in\operatorname{Sym}_{n}(F_{\mathbb{R}})_{\gg 0}. Write

v:=σ1(𝐯)=(v1v12v12v2)v:=\sigma_{1}(\mathbf{v})=\begin{pmatrix}v_{1}&v_{12}\\ v_{12}^{\prime}&v_{2}\end{pmatrix} (4.21)

with v1>0v_{1}\in\mathbb{R}_{>0} and v12M1,n1()v_{12}\in M_{1,n-1}(\mathbb{R}); recall that σ1:F\sigma_{1}\colon F\to\mathbb{R} is the distinguished real embedding. Set

v2:=v2v12v12/v1Symn1()>0,v_{2}^{*}:=v_{2}-v^{\prime}_{12}v_{12}/v_{1}\in\operatorname{Sym}_{n-1}(\mathbb{R})_{>0}, (4.22)

and fix a matrix a2GLn1()a_{2}^{*}\in\mathrm{GL}_{n-1}(\mathbb{R}) such that v2=a2(a2)v_{2}^{*}=a_{2}^{*}\cdot(a_{2}^{*})^{\prime}.

Proposition 4.1.

Let TSymn(F)T\in\operatorname{Sym}_{n}(F) and 𝐯Symn(F)0\mathbf{v}\in\operatorname{Sym}_{n}(F_{\mathbb{R}})_{\gg 0} as above, and define S(L)S(L)^{\vee}-valued currents 𝔞(T,𝐯)\mathfrak{a}(T,\mathbf{v}) and 𝔟(T,𝐯)\mathfrak{b}(T,\mathbf{v}) on XX by the formulas

𝔞(T,𝐯)(φ):=𝐱Ω(T)φ(𝐱)γ(v1x1,y),\mathfrak{a}(T,\mathbf{v})(\varphi):=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\gamma(\sqrt{v_{1}}x_{1},y), (4.23)

where we have written σ1(𝐱)=(x1,y)V1(V1)n1\sigma_{1}(\mathbf{x})=(x_{1},y)\in V_{1}\oplus(V_{1})^{n-1}, and

𝔟(T,𝐯)(φ)=𝐱Ω(T)φ(𝐱)φKMo(v1x1+yv12v1)𝔤o(ya2).\mathfrak{b}(T,\mathbf{v})(\varphi)=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\varphi^{o}_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\cdot v_{12}^{\prime}}{\sqrt{v_{1}}}\right)\wedge\mathfrak{g}^{o}(ya_{2}^{*}). (4.24)

Then

𝔤o(T,𝐯)(φ)𝔞(T,𝐯)(φ)+𝔟(T,𝐯)(φ)(modim+im¯).\mathfrak{g}^{o}(T,\mathbf{v})(\varphi)\equiv\mathfrak{a}(T,\mathbf{v})(\varphi)+\mathfrak{b}(T,\mathbf{v})(\varphi)\pmod{\mathrm{im}\,\partial\,+\,\mathrm{im}\,\overline{\partial}}. (4.25)
Proof.

First, the fact that the sums defining 𝔞(T,𝐯)\mathfrak{a}(T,\mathbf{v}) and 𝔟(T,𝐯)\mathfrak{b}(T,\mathbf{v}) converge to currents on XX follows from the same argument as [GS19, Proposition 4.3].

Now recall that

𝔤o(T,𝐯)(φ)=𝐱Ω(T)φ(𝐱)𝔤o(xa)\mathfrak{g}^{o}(T,\mathbf{v})(\varphi)=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\mathfrak{g}^{o}(xa) (4.26)

where x=σ1(𝐱)x=\sigma_{1}(\mathbf{x}), and aGLn()a\in\mathrm{GL}_{n}(\mathbb{R}) is any matrix satisfying v=aav=aa^{\prime}. Note that

v=(v1v12v12v2)=θ(v1v2)θ, where θ=(1v12/v11n1).v=\begin{pmatrix}v_{1}&v_{12}\\ v_{12}^{\prime}&v_{2}\end{pmatrix}=\theta\begin{pmatrix}v_{1}&\\ &v_{2}^{*}\end{pmatrix}\theta^{\prime},\qquad\text{ where }\theta=\begin{pmatrix}1&\\ v_{12}^{\prime}/v_{1}&1_{n-1}\end{pmatrix}. (4.27)

Thus, we may take

a=θ(v1a2),a=\theta\cdot\left(\begin{smallmatrix}\sqrt{v_{1}}&\\ &a_{2}^{*}\end{smallmatrix}\right), (4.28)

and so, applying (4.18) , we find

𝔤o(T,𝐯)(φ)\displaystyle\mathfrak{g}^{o}(T,\mathbf{v})(\varphi) =𝐱Ω(T)φ(𝐱)𝔤o((x1,y)θ(v1a2))x=(x1,y)\displaystyle=\sum_{\mathbf{x}\in\Omega(T)}\,\varphi(\mathbf{x})\,\mathfrak{g}^{o}\left((x_{1},y)\theta\left(\begin{smallmatrix}\sqrt{v_{1}}&\\ &a_{2}^{*}\end{smallmatrix}\right)\right)\qquad\qquad x=(x_{1},y) (4.29)
=𝐱Ω(T)φ(𝐱)𝔤o(v1x1+yv12v1,ya2)\displaystyle=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\mathfrak{g}^{o}\left(\sqrt{v_{1}}x_{1}+\frac{y\cdot v_{12}^{\prime}}{\sqrt{v_{1}}},\,ya_{2}^{*}\right) (4.30)
=𝐱Ω(T)φ(𝐱)(φKMo(v1x1+yv12v1)𝔤o(ya2)+α(v1x1+yv12v1,ya2)\displaystyle=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\Big{(}\varphi^{o}_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\cdot v_{12}^{\prime}}{\sqrt{v_{1}}}\right)\wedge\mathfrak{g}^{o}(ya_{2}^{*})+\partial\alpha(\sqrt{v_{1}}x_{1}+\frac{y\cdot v_{12}^{\prime}}{\sqrt{v_{1}}},ya_{2}^{*})
+¯β(v1x1+yv12v1,ya2)+γ(v1x1+yv12v1,ya2)).\displaystyle\qquad\qquad\qquad\qquad\qquad\ +\overline{\partial}\beta(\sqrt{v_{1}}x_{1}+\frac{y\cdot v_{12}^{\prime}}{\sqrt{v_{1}}},ya_{2}^{*})+\gamma(\sqrt{v_{1}}x_{1}+\frac{y\cdot v_{12}^{\prime}}{\sqrt{v_{1}}},ya_{2}^{*})\Big{)}. (4.31)

Again, an argument as in [GS19, Proposition 4.3] shows that the sums

η1:=𝐱Ω(T)φ(𝐱)α(v1x1+yv12v1,ya2)\eta_{1}:=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\alpha(\sqrt{v_{1}}x_{1}+\frac{y\cdot v_{12}^{\prime}}{\sqrt{v_{1}}},ya_{2}^{*}) (4.32)

and

η2:=𝐱Ω(T)φ(𝐱)β(v1x1+yv12v1,ya2)\eta_{2}:=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\beta(\sqrt{v_{1}}x_{1}+\frac{y\cdot v_{12}^{\prime}}{\sqrt{v_{1}}},ya_{2}^{*}) (4.33)

converge to Γ\Gamma-invariant currents on 𝔻\mathbb{D}, and hence define currents on XX. Moreover, it follows easily from the definitions that

γ(v1x1+yv12v1,ya2)=γ(v1x1,y).\gamma(\sqrt{v_{1}}x_{1}+\frac{y\cdot v_{12}^{\prime}}{\sqrt{v_{1}}},ya_{2}^{*})=\gamma(\sqrt{v_{1}}x_{1},y). (4.34)

Thus, we find

𝔤o(T,𝐯)(φ)=𝔞(T,𝐯)(φ)+𝔟(T,𝐯)(φ)+η1+¯η2,\mathfrak{g}^{o}(T,\mathbf{v})(\varphi)=\mathfrak{a}(T,\mathbf{v})(\varphi)+\mathfrak{b}(T,\mathbf{v})(\varphi)+\partial\eta_{1}+\overline{\partial}\eta_{2}, (4.35)

as required. ∎

Next, we define an S(Ln)S(L^{n})^{\vee}-valued current ψ(T,𝐯)\psi(T,\mathbf{v}) as follows. For 𝐱Ω(T)\mathbf{x}\in\Omega(T), write σ1(𝐱)=x=(x1,y)V1V1n1\sigma_{1}(\mathbf{x})=x=(x_{1},y)\in V_{1}\oplus V_{1}^{n-1} as above; then

ψ(T,𝐯)(φ)\displaystyle\psi(T,\mathbf{v})(\varphi)\ :=𝐱Ω(T)φ(𝐱)φKMo(v1x1)δ𝔻y+Ωn1r(y)\displaystyle:=\ \sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\varphi^{o}_{\mathrm{KM}}(\sqrt{v_{1}}x_{1})\wedge\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-1-r(y)} (4.36)

defines a Γ\Gamma-equivariant current on 𝔻+\mathbb{D}^{+}, and hence descends to a current (also denoted ψ(T,𝐯)\psi(T,\mathbf{v})) on X()X(\mathbb{C}).

Lemma 4.2.
  1. (i)

    Let ω(T,𝐯)\omega(T,\mathbf{v}) be the TTth coefficient of the Kudla-Millson theta function, as in (2.27); then

    ddc𝔟(T,𝐯)=ω(T,𝐯)ψ(T,𝐯).\mathrm{dd^{c}}\mathfrak{b}(T,\mathbf{v})\ =\ \omega(T,\mathbf{v})-\psi(T,\mathbf{v}). (4.37)
  2. (ii)

    We have

    ddc𝔞(T,𝐯)+δZ(T)()Ωnr(T)=ψ(T,𝐯),\mathrm{dd^{c}}\,\mathfrak{a}(T,\mathbf{v})+\delta_{Z(T)(\mathbb{C})}\wedge\Omega^{n-r(T)}\ =\ \psi(T,\mathbf{v}), (4.38)

    where r(T)=rank(T)r(T)=\mathrm{rank}(T).

Proof.

With v=σ1(𝐯)v=\sigma_{1}(\mathbf{v}) and taking a=θ(v1a2)a=\theta\cdot\left(\begin{smallmatrix}\sqrt{v_{1}}&\\ &a_{2}^{*}\end{smallmatrix}\right) as (4.28), we have

ω(T,𝐯)(φ)\displaystyle\omega(T,\mathbf{v})(\varphi)\ =𝐱Ω(T)φ(𝐱)φKMo(xa)\displaystyle=\ \sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\varphi^{o}_{\mathrm{KM}}(xa) (4.39)
=𝐱Ω(T)φ(𝐱)φKMo(v1x1+yv12v1,ya2)\displaystyle=\ \sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\varphi^{o}_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\,v_{12}^{\prime}}{\sqrt{v_{1}}},\ ya_{2}^{*}\right) (4.40)
=𝐱Ω(T)φ(𝐱)φKMo(v1x1+yv12v1)φKMo(ya2)\displaystyle=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\varphi^{o}_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{yv_{12}^{\prime}}{\sqrt{v_{1}}}\right)\wedge\varphi^{o}_{\mathrm{KM}}\left(ya_{2}^{*}\right) (4.41)

for φS(Ln)\varphi\in S(L^{n}), where the last line follows from [KM90, Theorem 5.2(i)]. Therefore,

ddc𝔟(T,𝐯)(φ)\displaystyle\mathrm{dd^{c}}\mathfrak{b}(T,\mathbf{v})(\varphi) =𝐱Ω(T)φ(𝐱)φKMo(v1x1+yv12v1)ddc𝔤o(ya2)\displaystyle=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\varphi^{o}_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\,v_{12}^{\prime}}{\sqrt{v_{1}}}\right)\wedge\mathrm{dd^{c}}\mathfrak{g}^{o}(ya_{2}^{*}) (4.42)
=𝐱Ω(T)φ(𝐱)φKMo(v1x1+yv12v1){δ𝔻y+Ωn1r(y)+φKMo(ya2)}\displaystyle=\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\varphi^{o}_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\,v_{12}^{\prime}}{\sqrt{v_{1}}}\right)\wedge\Big{\{}-\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-1-r(y)}+\varphi^{o}_{\mathrm{KM}}(ya_{2}^{*})\Big{\}} (4.43)
=𝐱Ω(T)φ(𝐱)φKMo(v1x1+yv12v1)δ𝔻y+Ωn1r(y)+ω(T,𝐯)(φ).\displaystyle=-\sum_{\mathbf{x}\in\Omega(T)}\varphi(\mathbf{x})\,\varphi^{o}_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\,v_{12}^{\prime}}{\sqrt{v_{1}}}\right)\wedge\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-1-r(y)}+\omega(T,\mathbf{v})(\varphi). (4.44)

For vV1v\in V_{1}, the restriction φKMo(v)δ𝔻y+\varphi^{o}_{\mathrm{KM}}(v)\wedge\delta_{\mathbb{D}^{+}_{y}} depends only on the orthogonal projection of vv onto span(y)\mathrm{span}(y)^{\perp}; see, for example, [GS19, Lemma 2.4]. In particular,

φKMo(v1x1+yv12v1)δ𝔻y+=φKMo(v1x1)δ𝔻y+.\varphi^{o}_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\,v_{12}^{\prime}}{\sqrt{v_{1}}}\right)\wedge\delta_{\mathbb{D}^{+}_{y}}=\varphi^{o}_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}\right)\wedge\delta_{\mathbb{D}^{+}_{y}}. (4.45)

The first part of the lemma follows upon applying the definition of γ(T,𝐯)\gamma(T,\mathbf{v}) in (4.36).

The second part then follows from the first, together with Proposition 4.1 and (2.29). ∎

We finally arrived at the promised decomposition of Z^(T,𝐯)\widehat{Z}(T,\mathbf{v}). Recall that in defining the cycle Z^(T,𝐯)\widehat{Z}(T,\mathbf{v}) in Section 2.5, we fixed a representative (Z0,g0)(Z_{0},g_{0}) for ω^nr(T)\widehat{\omega}^{n-r(T)} such that Z0Z_{0} intersects Z(T)Z(T) properly. By the previous proposition,

ddc(𝔞(T,𝐯)+g0δZ(T)())+δZ(T)Z0()=ψ(T,𝐯);\mathrm{dd^{c}}\left(\mathfrak{a}(T,\mathbf{v})+g_{0}\wedge\delta_{Z(T)(\mathbb{C})}\right)+\delta_{Z(T)\cap Z_{0}(\mathbb{C})}\ =\ \psi(T,\mathbf{v}); (4.46)

we then obtain classes in CH^(X,𝒟cur)nS(Ln)\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}})\otimes_{\mathbb{C}}S(L^{n}) by setting

A^(T,𝐯):=(Z(T)Z0,[ψ(T,𝐯),𝔞(T,𝐯)+g0δZ(T)()])\widehat{A}(T,\mathbf{v})\ :=\ \left(Z(T)\cdot Z_{0},\,[\psi(T,\mathbf{v}),\,\mathfrak{a}(T,\mathbf{v})+g_{0}\wedge\delta_{Z(T)(\mathbb{C})}]\right) (4.47)

and

B^(T,𝐯):=(0,[ω(T,𝐯)ψ(T,𝐯),𝔟(T,𝐯)]),\widehat{B}(T,\mathbf{v})\ :=\ \left(0,\,[\omega(T,\mathbf{v})-\psi(T,\mathbf{v}),\,\mathfrak{b}(T,\mathbf{v})]\right), (4.48)

so that

Z^(T,𝐯)=A^(T,𝐯)+B^(T,𝐯)CH^(X,𝒟cur)nS(L)\widehat{Z}(T,\mathbf{v})=\widehat{A}(T,\mathbf{v})+\widehat{B}(T,\mathbf{v})\ \in\ \widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}})\otimes_{\mathbb{C}}S(L)^{\vee} (4.49)
Remark 4.3.

Suppose T=(T2)T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right) as above; if T2T_{2} is not totally positive semidefinite, then 𝔻y+=\mathbb{D}^{+}_{y}=\emptyset for any 𝐲Ω(T2)\mathbf{y}\in\Omega(T_{2}), and hence A^(T,𝐯)=0\widehat{A}(T,\mathbf{v})=0.

5 Modularity I

In this section, we establish the modularity of the generating series

ϕ^B(𝝉)=T=(T2)B^(T,𝐯)qT.\widehat{\phi}_{B}(\bm{\tau})=\sum_{T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)}\,\widehat{B}(T,\mathbf{v})\,q^{T}. (5.1)

Note that

B^(T,𝐯)=(0,[ddc𝔟(T,𝐯),𝔟(T,𝐯)])=a(𝔟(T,v));\widehat{B}(T,\mathbf{v})=(0,[\mathrm{dd^{c}}\mathfrak{b}(T,\mathbf{v}),\mathfrak{b}(T,\mathbf{v})])=a(\mathfrak{b}(T,v)); (5.2)

thus in light of Definition 2.7, it suffices to establish the following theorem.

Theorem 5.1.

Fix T2Symn1(F)T_{2}\in\operatorname{Sym}_{n-1}(F), and consider the generating series

ξ(𝝉)=T=(T2)𝔟(T,𝐯)qT,\xi(\bm{\tau})=\sum_{T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)}\mathfrak{b}(T,\mathbf{v})\,q^{T}, (5.3)

Then ξ(𝛕)\xi(\bm{\tau}) is an element of Aκ,T2(ρL;D(X))A_{\kappa,T_{2}}(\rho_{L}^{\vee};D^{*}(X)), see Definition 2.6.

Proof.

We begin by showing the convergence of the series (5.3). By definition,

T=(T1T12T12T2)𝔟(T,𝐯)(φ)qT=T(𝐱1,𝐲)Ω(T)φ(𝐱1,𝐲)φKMo(v1x1+yv12v1)𝔤o(ya2)qT\sum_{T=\left(\begin{smallmatrix}T_{1}&T_{12}\\ T_{12}^{\prime}&T_{2}\end{smallmatrix}\right)}\,\mathfrak{b}(T,\mathbf{v})(\varphi)\,q^{T}=\sum_{T}\sum_{(\mathbf{x}_{1},\mathbf{y})\in\Omega(T)}\varphi(\mathbf{x}_{1},\mathbf{y})\,\varphi_{\mathrm{KM}}^{o}\left(\sqrt{v_{1}}x_{1}+\frac{y\cdot v^{\prime}_{12}}{\sqrt{v_{1}}}\right)\wedge\mathfrak{g}^{o}(ya_{2}^{*})\ q^{T} (5.4)

where x1=σ1(𝐱1)x_{1}=\sigma_{1}(\mathbf{x}_{1}) and y=σ1(𝐲)y=\sigma_{1}(\mathbf{y}), and here we are working with Γ\Gamma-equivariant currents on 𝔻+\mathbb{D}^{+}. For vV1v\in V_{1}, consider the normalized Kudla-Millson form

φKM(v):=e2πv,vφKMo(v)\varphi_{\mathrm{KM}}(v)\ :=\ e^{-2\pi\langle v,v\rangle}\,\varphi^{o}_{\mathrm{KM}}(v) (5.5)

which is a Schwartz form on V1V_{1}, valued in closed forms on 𝔻+\mathbb{D}^{+}; more precisely, for any integer kk and relatively compact open subset U𝔻+U\subset\mathbb{D}^{+}, there exists a positive definite quadratic form QUQ_{U} on V1V_{1} such that

φKM(v)k,U¯eQU(v)\|\varphi_{\mathrm{KM}}(v)\|_{k,\overline{U}}\ll e^{-Q_{U}(v)} (5.6)

where k,U¯\|\cdot\|_{k,\overline{U}} is an algebra seminorm measuring uniform convergence of all derivatives of order k\leq k on the space of smooth forms supported on U¯\overline{U}, and the implied constant depends on kk and U¯\overline{U}. Similarly, for yV1n1y\in V_{1}^{n-1}, write

𝔤(y)=e2πyi,yi𝔤o(y);\mathfrak{g}(y)=e^{-2\pi\sum\langle y_{i},y_{i}\rangle}\mathfrak{g}^{o}(y); (5.7)

if 𝔻y+U¯=\mathbb{D}^{+}_{y}\cap\overline{U}=\emptyset, then 𝔤(y)\mathfrak{g}(y) is smooth on UU, and the form QUQ_{U} may be chosen so that

𝔤(y)k,U¯ei=1n1QU(yi),y=(y1,,yn1)V1n1,\|\mathfrak{g}(y)\|_{k,\overline{U}}\ \ll\ e^{-\sum_{i=1}^{n-1}Q_{U}(y_{i})},\qquad y=(y_{1},\dots,y_{n-1})\in V_{1}^{n-1}, (5.8)

see [GS19, §2.1.5].

Finally, for the remaining real embeddings σ2,σd\sigma_{2},\dots\sigma_{d}, let φiS(Vin)\varphi_{\infty_{i}}\in S(V_{i}^{n}) denote the standard Gaussian on the positive definite space Vi=VF,σiV_{i}=V\otimes_{F,\sigma_{i}}\mathbb{R}, defined by φi(x1,,xn)=e2πxi,xi\varphi_{\infty_{i}}(x_{1},\dots,x_{n})=e^{-2\pi\sum\langle x_{i},x_{i}\rangle}. Then a brief calculation gives

ξ(𝝉)(φ)=T(𝐱1,𝐲)Ω(T)φ(𝐱1,𝐲)φKM(v1x1+yv12v1)𝔤(ya2)i=2dφi(σi(𝐱1,𝐲)ai)e(T𝐮)\xi(\bm{\tau})(\varphi)=\sum_{T}\sum_{(\mathbf{x}_{1},\mathbf{y})\in\Omega(T)}\varphi(\mathbf{x}_{1},\mathbf{y})\varphi_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\cdot v^{\prime}_{12}}{\sqrt{v_{1}}}\right)\wedge\mathfrak{g}(ya_{2}^{*})\cdot\prod_{i=2}^{d}\varphi_{\infty_{i}}(\sigma_{i}(\mathbf{x}_{1},\mathbf{y})a_{i})\ e(T\mathbf{u}) (5.9)

where we have chosen matrices aiGLn()a_{i}\in GL_{n}(\mathbb{R}) for i=2,,di=2,\dots,d, such that σi(𝐯)=aiai\sigma_{i}(\mathbf{v})=a_{i}\cdot a_{i}^{\prime}. Let

S1:={𝐲(L)n1|𝐲,𝐲=T2 and 𝔻y+U¯}S_{1}:=\{\mathbf{y}\in(L^{\prime})^{n-1}\ |\langle\mathbf{y},\mathbf{y}\rangle=T_{2}\text{ and }\mathbb{D}^{+}_{y}\cap\overline{U}\neq\emptyset\} (5.10)

which is a finite set, and let

S2:={𝐲(L)n1|𝐲,𝐲=T2 and 𝔻y+U¯=}.S_{2}:=\{\mathbf{y}\in(L^{\prime})^{n-1}\ |\langle\mathbf{y},\mathbf{y}\rangle=T_{2}\text{ and }\mathbb{D}^{+}_{y}\cap\overline{U}=\emptyset\}. (5.11)

Using the estimates (5.6) and (5.8), and standard arguments for convergence of theta series, it follows that the sum

T=(T2)(𝐱1,𝐲)Ω(T)𝐲S2φ(𝐱1,𝐲)φKM(v1x1+yv12v1)𝔤(ya2)i=2dφi(σi(𝐱1,𝐲)ai)e(T𝐮)\sum_{T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)}\sum_{\begin{subarray}{c}(\mathbf{x}_{1},\mathbf{y})\in\Omega(T)\\ \mathbf{y}\in S_{2}\end{subarray}}\varphi(\mathbf{x}_{1},\mathbf{y})\varphi_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\cdot v^{\prime}_{12}}{\sqrt{v_{1}}}\right)\wedge\mathfrak{g}(ya_{2}^{*})\prod_{i=2}^{d}\varphi_{\infty_{i}}(\sigma_{i}(\mathbf{x}_{1},\mathbf{y})a_{i})\ e(T\mathbf{u}) (5.12)

converges absolutely to a smooth form on nd×U\mathbb{H}^{d}_{n}\times U. The (finitely many) remaining terms, corresponding to 𝐲S1\mathbf{y}\in S_{1}, can be written as

𝐲S1f𝐲(𝝉)(φ)𝔤(ya2)\sum_{\mathbf{y}\in S_{1}}f_{\mathbf{y}}(\bm{\tau})(\varphi)\wedge\mathfrak{g}(ya_{2}^{*}) (5.13)

where, for any 𝐲Vn1\mathbf{y}\in V^{n-1} and φS(Ln)\varphi\in S(L^{n}), we set

f𝐲(𝝉)(φ)=𝐱1Vφ(𝐱1,𝐲)φKM(v1x1+yv12v1)i=2dφi(σi(𝐱1,𝐲)ai)e(T(𝐱1,𝐲)𝐮),f_{\mathbf{y}}(\bm{\tau})(\varphi)\ =\ \sum_{\mathbf{x}_{1}\in V}\varphi(\mathbf{x}_{1},\mathbf{y})\varphi_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\cdot v^{\prime}_{12}}{\sqrt{v_{1}}}\right)\prod_{i=2}^{d}\varphi_{\infty_{i}}(\sigma_{i}(\mathbf{x}_{1},\mathbf{y})a_{i})\ e(T(\mathbf{x}_{1},\mathbf{y})\mathbf{u}), (5.14)

where T(𝐱1,𝐲)=(𝐱1,𝐱1𝐱1,𝐲𝐱1,𝐲𝐲,𝐲)T(\mathbf{x}_{1},\mathbf{y})=\left(\begin{smallmatrix}\langle\mathbf{x}_{1},\mathbf{x}_{1}\rangle&\langle\mathbf{x}_{1},\mathbf{y}\rangle\\ \langle\mathbf{x}_{1},\mathbf{y}\rangle^{\prime}&\langle\mathbf{y},\mathbf{y}\rangle\end{smallmatrix}\right). Again, the estimate (5.6) shows that the series defining f𝐲(𝝉)f_{\mathbf{y}}(\bm{\tau}) converges absolutely to a smooth form on dn×𝔻+\mathbb{H}_{d}^{n}\times\mathbb{D}^{+}. Moreover, for a fixed yV1n1y\in V_{1}^{n-1} and any compactly supported test form α\alpha on 𝔻+\mathbb{D}^{+}, the value of the current 𝔤o(ya2)[α]\mathfrak{g}^{o}(ya_{2}^{*})[\alpha] varies smoothly in the entries of a2a_{2}^{*} (this fact follows easily from the discussion in [GS19, §2.1.4]).

Taken together, the above considerations imply that the series ξ(𝝉)(φ)\xi(\bm{\tau})(\varphi) converges absolutely to a Γ\Gamma-invariant current on 𝔻+\mathbb{D}^{+}, and therefore descends to a current on XX that satisfies part (b) of Definition 2.6 as 𝝉\bm{\tau} varies. In addition, this discussion shows that given any test form α\alpha, the value of the current ξ(𝝉)[α]\xi(\bm{\tau})[\alpha] is smooth in 𝝉\bm{\tau}.

It remains to show that ξ(𝝉)\xi(\bm{\tau}) transforms like a Jacobi modular form, i.e. is invariant under the slash operators (2.38). Recall that the form φKM\varphi_{\mathrm{KM}} is of weight p/2+1p/2+1; more precisely, let U~(1)Sp~1()\widetilde{U}(1)\subset\operatorname{\widetilde{Sp}}_{1}(\mathbb{R}) denote the inverse image of U(1)U(1), which admits a genuine character χ\chi whose square is the identity on U(1)U(1). Then ω(k~)φKM=(χ(k~))p+2φKM\omega(\widetilde{k})\varphi_{\mathrm{KM}}=(\chi(\widetilde{k}))^{p+2}\varphi_{\mathrm{KM}} for all k~U~(1)\widetilde{k}\in\widetilde{U}(1), where ω\omega is the Weil representation attached to V1V_{1}, cf. [KM90, Theorem 5.2].

To show that ξ(𝝉)\xi(\bm{\tau}) transforms like a Jacobi form, note that (by Vaserstein’s theorem), every element of Γ~J\widetilde{\Gamma}^{J} can be written as a product of the following elements.

  1. (i)

    For each i=1,,di=1,\dots,d, let

    ϵ~(i)=(ϵ~(i))vv|Sp~n(Fv)\widetilde{\epsilon}(i)=(\widetilde{\epsilon}(i))_{v}\in\prod_{v|\infty}\operatorname{\widetilde{Sp}}_{n}(F_{v}) (5.15)

    be the element whose vv’th component is (Id,1)(\mathrm{Id},1) if vσiv\neq\sigma_{i}, and (Id,1)(\mathrm{Id},-1) if v=σiv=\sigma_{i}.

  2. (ii)

    For μ,λM1,n1(𝒪F)\mu,\lambda\in\mathrm{M}_{1,n-1}(\mathcal{O}_{F}), let

    γλ,μ=(100μλ1n1μ0001λ0001n1)GJ(𝒪F).\gamma_{\lambda,\mu}=\left(\begin{array}[]{cc|cc}1&0&0&\mu\\ \lambda^{\prime}&1_{n-1}&\mu^{\prime}&0\\ \hline\cr 0&0&1&-\lambda\\ 0&0&0&1_{n-1}\end{array}\right)\in G^{J}(\mathcal{O}_{F}). (5.16)

    Let ιF(γλ,μ)Sp~n,𝔸\iota_{F}(\gamma_{\lambda,\mu})\in\operatorname{\widetilde{Sp}}_{n,\mathbb{A}} denote its image under the splitting (2.36); we choose γ~λ,μΓ~J\widetilde{\gamma}_{\lambda,\mu}\in\widetilde{\Gamma}^{J} to be the archimedean part of a representative ιF(γλ,μ)=γ~λ,μγ~f\iota_{F}(\gamma_{\lambda,\mu})=\widetilde{\gamma}_{\lambda,\mu}\cdot\widetilde{\gamma}_{f}.

  3. (iii)

    For r𝒪Fr\in\mathcal{O}_{F}, let

    γr=(10r001n10000100001n1)GJ(𝒪F),\gamma_{r}=\left(\begin{array}[]{cc|cc}1&0&r&0\\ 0&1_{n-1}&0&0\\ \hline\cr 0&0&1&0\\ 0&0&0&1_{n-1}\end{array}\right)\in G^{J}(\mathcal{O}_{F}), (5.17)

    and choose an element γ~r\widetilde{\gamma}_{r} as the archimedean part of a representative of ιF(γr)\iota_{F}(\gamma_{r}), as before.

  4. (iv)

    Finally, let

    S=(001001n10010000001n1)S=\left(\begin{array}[]{cc|cc}0&0&-1&0\\ 0&1_{n-1}&0&0\\ \hline\cr 1&0&0&0\\ 0&0&0&1_{n-1}\end{array}\right) (5.18)

    and take S~Γ~J\widetilde{S}\in\widetilde{\Gamma}^{J} to be the archimedean part of a representative of ιF(S)\iota_{F}(S).

Now, rearranging the absolutely convergent sum (5.12), we may write

ξ(𝝉)=𝐲Ω(T2)f𝐲(𝝉)𝔤(ya2).\xi(\bm{\tau})\ =\ \sum_{\mathbf{y}\in\Omega(T_{2})}f_{\mathbf{y}}(\bm{\tau})\wedge\mathfrak{g}(ya_{2}^{*}). (5.19)

Using the aforementioned generators, a direct computation shows that 𝐯2=𝐯2𝐯12𝐯12/𝐯1\mathbf{v}_{2}^{*}=\mathbf{v}_{2}-\mathbf{v}^{\prime}_{12}\mathbf{v}_{12}/\mathbf{v}_{1}, viewed as a function on nd\mathbb{H}^{d}_{n}, is invariant under the action of Γ~J\widetilde{\Gamma}^{J}; it therefore suffices to show that for a fixed 𝐲\mathbf{y}, the S(Ln)S(L^{n})^{\vee}-valued function f𝐲(𝝉)f_{\mathbf{y}}(\bm{\tau}) transforms like a Jacobi form.

It is a straightforward verification to check that f𝐲(𝝉)f_{\mathbf{y}}(\bm{\tau}) is invariant under the action of ϵ~(i)\widetilde{\epsilon}(i), γ~λ,μ\tilde{\gamma}_{\lambda,\mu}, and γ~r\tilde{\gamma}_{r}. For example, the element γ~λ,μ1\widetilde{\gamma}_{\lambda,\mu}^{-1} acts on S(Ln)S(L^{n}) by the formula

ρ(γ~λ,μ1)(φ)(𝐱1,𝐲)=e(2𝐱1,𝐲μ𝐲λ,𝐲μ)φ(𝐱1𝐲λ,𝐲)\rho(\widetilde{\gamma}_{\lambda,\mu}^{-1})(\varphi)\left(\mathbf{x}_{1},\mathbf{y}\right)\ =\ e\big{(}2\langle\mathbf{x}_{1},\mathbf{y}\rangle\mu^{\prime}-\langle\mathbf{y}\lambda^{\prime},\mathbf{y}^{\prime}\rangle\mu^{\prime}\big{)}\,\varphi(\mathbf{x}_{1}-\mathbf{y}\lambda^{\prime},\,\mathbf{y}) (5.20)

and γλ,μ\gamma_{\lambda,\mu} acts on nd\mathbb{H}_{n}^{d} by the formula

γλ,μ𝝉=(𝝉1𝝉12+𝝉1λ+μ𝝉12+𝝉1λ+μ𝝉2+(λ𝝉12+𝝉12λ)+μλ)\gamma_{\lambda,\mu}\cdot\bm{\tau}=\begin{pmatrix}\bm{\tau}_{1}&\bm{\tau}_{12}+\bm{\tau}_{1}\lambda+\mu\\ \bm{\tau}_{12}^{\prime}+\bm{\tau}_{1}\lambda^{\prime}+\mu^{\prime}&\bm{\tau}_{2}+\left(\lambda^{\prime}\cdot\bm{\tau}_{12}+\bm{\tau}_{12}^{\prime}\cdot\lambda\right)+\mu^{\prime}\cdot\lambda\end{pmatrix} (5.21)

where 𝝉=(𝝉1𝝉12𝝉12𝝉2)\bm{\tau}=\left(\begin{smallmatrix}\bm{\tau}_{1}&\bm{\tau}_{12}\\ \bm{\tau}_{12}^{\prime}&\bm{\tau}_{2}\end{smallmatrix}\right). Moreover, writing γ~λ,μ=(γλ,μ,(ϕv))v\widetilde{\gamma}_{\lambda,\mu}=(\gamma_{\lambda,\mu},(\phi_{v}))_{v} as in Section 2.6, we have ϕv(τ)=1\prod\phi_{v}(\tau)=1. For 𝐱1V\mathbf{x}_{1}\in V and 𝐲Vn1\mathbf{y}\in V^{n-1}, a direct computation gives

tr(T(𝐱1,𝐲)Re(γλ,μ𝝉))=tr(T(𝐱1+𝐲λ,𝐲)𝐮)+2𝐱1,𝐲μ+𝐲λ,𝐲μ;\mathrm{tr}\Big{(}T(\mathbf{x}_{1},\mathbf{y})\cdot\mathrm{Re}(\gamma_{\lambda,\mu}\cdot\bm{\tau})\Big{)}=\mathrm{tr}\Big{(}T(\mathbf{x}_{1}+\mathbf{y}\lambda^{\prime},\mathbf{y})\mathbf{u}\Big{)}+2\langle\mathbf{x}_{1},\mathbf{y}\rangle\mu^{\prime}+\langle\mathbf{y}\lambda^{\prime},\mathbf{y}\rangle\mu^{\prime}; (5.22)

therefore, applying the above identity and the change of variables 𝐱1𝐱1𝐲λ\mathbf{x}_{1}\mapsto\mathbf{x}_{1}-\mathbf{y}\cdot\lambda^{\prime}, we find

f𝐲(γλ,μ𝝉)(φ)\displaystyle f_{\mathbf{y}}(\gamma_{\lambda,\mu}\cdot\bm{\tau})(\varphi) =𝐱1Vφ(𝐱1,𝐲)φKM(v1(x1+yλ)+yv12v1)\displaystyle=\sum_{\mathbf{x}_{1}\in V}\varphi(\mathbf{x}_{1},\mathbf{y})\varphi_{\mathrm{KM}}\left(\sqrt{v_{1}}(x_{1}+y\cdot\lambda^{\prime})+\frac{y\cdot v^{\prime}_{12}}{\sqrt{v_{1}}}\right)
×{i=2dφi(σi(𝐱1,𝐲)(1λ1)ai)}e(T(𝐱1,𝐲)Re(γλ,μ𝝉))\displaystyle\qquad\qquad\times\left\{\prod_{i=2}^{d}\varphi_{\infty_{i}}\left(\sigma_{i}(\mathbf{x}_{1},\mathbf{y})\left(\begin{smallmatrix}1&\\ \lambda^{\prime}&1\end{smallmatrix}\right)a_{i}\right)\right\}\,e\Big{(}T(\mathbf{x}_{1},\mathbf{y})\mathrm{Re}(\gamma_{\lambda,\mu}\bm{\tau})\Big{)} (5.23)
=𝐱1V{φ(𝐱1𝐲𝝀)e(2𝐱1,𝐲μ𝐲λ,𝐲μ)}φKM(v1x1+yv12v1)\displaystyle=\sum_{\mathbf{x}_{1}\in V}\left\{\varphi(\mathbf{x}_{1}-\mathbf{y}\bm{\lambda}^{\prime})\,e(2\langle\mathbf{x}_{1},\mathbf{y}\rangle\mu^{\prime}-\langle\mathbf{y}\lambda^{\prime},\mathbf{y}\rangle\mu^{\prime})\right\}\varphi_{\mathrm{KM}}\left(\sqrt{v_{1}}x_{1}+\frac{y\cdot v^{\prime}_{12}}{\sqrt{v_{1}}}\right)
×i=2dφi(σi(𝐱1,𝐲)ai)e(T(𝐱1,𝐲)𝐮)\displaystyle\qquad\qquad\times\prod_{i=2}^{d}\varphi_{\infty_{i}}(\sigma_{i}(\mathbf{x}_{1},\mathbf{y})a_{i})\ e(T(\mathbf{x}_{1},\mathbf{y})\mathbf{u}) (5.24)
=f𝐲(𝝉)(ρ(γ~λ,μ)φ)\displaystyle=f_{\mathbf{y}}(\bm{\tau})\left(\rho(\widetilde{\gamma}_{\lambda,\mu})\varphi\right) (5.25)

as required.

As for S~\widetilde{S}, recall that ιF(S)\iota_{F}(S) acts on S(V(𝔸)n)S(V(\mathbb{A})^{n}) by the partial Fourier transform in the first variable; the desired invariance follows from Poisson summation on 𝐱1\mathbf{x}_{1} and straightforward identities for the behaviour of the Fourier transform under translations and dilations. ∎

6 Modularity II

In this section, we prove the modularity of the generating series ϕ^A(𝝉)\widehat{\phi}_{A}(\bm{\tau}). By Remark 4.3, we only need to consider totally positive semidefinite matrices T2T_{2}; assume that this is case throughout this section.

We begin by fixing an element 𝐲=(𝐲1,,𝐲n1)Ω(T2)\mathbf{y}=(\mathbf{y}_{1},\dots,\mathbf{y}_{n-1})\in\Omega(T_{2}), and setting y=σ1(𝐲)y=\sigma_{1}(\mathbf{y}). Let

U𝐲=span(𝐲1,,𝐲n1)V,U_{\mathbf{y}}=\mathrm{span}(\mathbf{y}_{1},\dots,\mathbf{y}_{n-1})\subset V, (6.1)

so that U𝐲U_{\mathbf{y}} is totally positive definite. Let

Λ𝐲:=U𝐲L,andΛ𝐲:=U𝐲L\Lambda_{\mathbf{y}}:=U_{\mathbf{y}}\cap L,\qquad\text{and}\qquad\Lambda_{\mathbf{y}}^{\perp}:=U_{\mathbf{y}}^{\perp}\cap L (6.2)

and set

Λ:=Λ𝐲Λ𝐲L,\Lambda:=\Lambda_{\mathbf{y}}\oplus\Lambda_{\mathbf{y}}^{\perp}\subset L, (6.3)

so that

ΛLLΛ.\Lambda\subset L\subset L^{\prime}\subset\Lambda^{\prime}. (6.4)

In light of the definition (1.3), we have a natural inclusion S(Ln)S(Λn)S(L^{n})\to S(\Lambda^{n}), and the composition

S(Ln)S(Λn)S(Λ𝐲n)S((Λ𝐲)n).S(L^{n})\to S(\Lambda^{n})\stackrel{{\scriptstyle\sim}}{{\to}}S(\Lambda_{\mathbf{y}}^{n})\otimes S((\Lambda_{\mathbf{y}}^{\perp})^{n}). (6.5)

is equivariant for the action of Γ~J\widetilde{\Gamma}^{J}, via ρL\rho_{L} on the left hand side, and via ρΛ𝐲ρΛ𝐲\rho_{\Lambda_{\mathbf{y}}}\otimes\rho_{\Lambda_{\mathbf{y}}^{\perp}} on the right; this latter fact can be deduced from explicit formulas for the Weil representation, cf. [Kud96, Proposition II.4.3].

Note that U𝐲U_{\mathbf{y}}^{\perp} is a quadratic space of signature ((p,2),(p+2,0),(p+2,0))((p^{\prime},2),(p^{\prime}+2,0),\dots(p^{\prime}+2,0)) with p=prank(T2)p^{\prime}=p-\mathrm{rank}(T_{2}), so the constructions in Section 2 apply equally well in this case. In particular, let X𝐲()=Γ𝐲\𝔻y+X_{\mathbf{y}}(\mathbb{C})=\Gamma_{\mathbf{y}}\big{\backslash}\mathbb{D}^{+}_{y}. Then for mFm\in F and 𝐯1(F)0\mathbf{v}_{1}\in(F\otimes_{\mathbb{R}}{\mathbb{R}})_{\gg 0}, we have a special divisor

Z^U𝐲(m,𝐯1)CH^(X𝐲)1S(Λ𝐲),\widehat{Z}_{U_{\mathbf{y}}^{\perp}}(m,\mathbf{v}_{1})\in\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X_{\mathbf{y}})\otimes S(\Lambda_{\mathbf{y}}^{\perp})^{\vee}, (6.6)

where we introduce the subscript U𝐲U_{\mathbf{y}}^{\perp} in the notation to emphasize the underlying quadratic space being considered.

Let

π𝐲:X𝐲X\pi_{\mathbf{y}}\colon X_{\mathbf{y}}\to X (6.7)

denote the natural embedding, whose image is the cycle Z(𝐲)Z(\mathbf{y}) of codimension rank(T2)\mathrm{rank}(T_{2}), and define a class

Z^𝐲(m,𝐯1)CH^(X,𝒟cur)rk(T2)+1S((Λ𝐲)n)\widehat{Z}_{\mathbf{y}}(m,\mathbf{v}_{1})\in\widehat{\mathrm{CH}}{}^{{\mathrm{rk}(T_{2})+1}}(X,\mathcal{D}_{\mathrm{cur}})\otimes_{\mathbb{C}}S((\Lambda_{\mathbf{y}}^{\perp})^{n}) (6.8)

as follows: suppose φS((Λ𝐲)n)\varphi\in S((\Lambda_{\mathbf{y}}^{\perp})^{n}) is of the form φ1φ2\varphi_{1}\otimes\varphi_{2} with φ1S(Λ𝐲)\varphi_{1}\in S(\Lambda_{\mathbf{y}}^{\perp}) and φ2S((Λ𝐲)n1)\varphi_{2}\in S((\Lambda_{\mathbf{y}}^{\perp})^{n-1}). Then, using the pushforward π𝐲,\pi_{\mathbf{y},*}, set

Z^𝐲(m,𝐯1)(φ1φ2):=φ2(0)π𝐲,(Z^U𝐲(m,𝐯1,φ1))CH^(X,𝒟cur)rk(T2)+1,\widehat{Z}_{\mathbf{y}}(m,\mathbf{v}_{1})(\varphi_{1}\otimes\varphi_{2}):=\varphi_{2}(0)\cdot\pi_{\mathbf{y},*}\left(\widehat{Z}_{U_{\mathbf{y}}^{\perp}}(m,\mathbf{v}_{1},\varphi_{1})\right)\ \in\ \widehat{\mathrm{CH}}{}^{\mathrm{rk}(T_{2})+1}(X,\mathcal{D}_{\mathrm{cur}}), (6.9)

and extend this definition to arbitrary φ\varphi by linearity. Observe that the pushforward is an element of CH^(X,𝒟cur)n\widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}}); the existence of pushforward maps along arbitrary proper morphisms, which are not available in general for the Gillet-Soulé Chow groups, are an essential feature of the extended version, [BGKK07, §6.2].

Finally, for 𝝉=(𝝉1𝝉12𝝉12𝝉2)dn\bm{\tau}=\left(\begin{smallmatrix}\bm{\tau}_{1}&\bm{\tau}_{12}\\ \bm{\tau}_{12}^{\prime}&\bm{\tau}_{2}\end{smallmatrix}\right)\in\mathbb{H}_{d}^{n}, we define the generating series

ϕ^𝐲(𝝉1):=mFZ^𝐲(m,𝐯1)q1m\widehat{\phi}_{\mathbf{y}}(\bm{\tau}_{1})\ :=\ \sum_{m\in F}\widehat{Z}_{\mathbf{y}}(m,\mathbf{v}_{1})\,q_{1}^{m} (6.10)

where 𝝉11d\bm{\tau}_{1}\in\mathbb{H}_{1}^{d} with 𝐯1=Im(𝝉1)\mathbf{v}_{1}=\mathrm{Im}(\bm{\tau}_{1}), and q1m=e(m𝝉1)q_{1}^{m}=e(m\bm{\tau}_{1}).

There is also a classical theta function attached to the totally positive definite space U𝐲U_{\mathbf{y}}, defined as follows: let φS(Λ𝐲n)\varphi\in S(\Lambda_{\mathbf{y}}^{n}) and suppose φ=φ1φ2\varphi=\varphi_{1}\otimes\varphi_{2} with φ1S(Λ𝐲)\varphi_{1}\in S(\Lambda_{\mathbf{y}}) and φ2S(Λ𝐲n1)\varphi_{2}\in S(\Lambda_{\mathbf{y}}^{n-1}). Then we set

θ𝐲(𝝉)(φ1φ2):=φ2(𝐲)λU𝐲φ1(λ)e(λ,λ𝝉1+2λ,𝐲𝝉12)e(T2𝝉2),\theta_{\mathbf{y}}(\bm{\tau})(\varphi_{1}\otimes\varphi_{2})\ :=\ \varphi_{2}(\mathbf{y})\sum_{\lambda\in U_{\mathbf{y}}}\varphi_{1}(\lambda)\ e\left(\langle\lambda,\lambda\rangle\bm{\tau}_{1}+2\langle\lambda,\mathbf{y}\rangle\bm{\tau}_{12}^{\prime}\right)\,e(T_{2}\cdot\bm{\tau}_{2}), (6.11)

and again, extend to all φS(Λ𝐲n)\varphi\in S(\Lambda_{\mathbf{y}}^{n}) by linearity. It is well-known that θ𝐲(𝝉)\theta_{\mathbf{y}}(\bm{\tau}) is a holomorphic Jacobi modular form of weight dimU𝐲/2=rk(T2)/2\dim U_{\mathbf{y}}/2=\mathrm{rk}(T_{2})/2 and index T2T_{2}, see e.g. [EZ85, §II.7].

The Fourier expansion of θ𝐲(𝝉)(φ)\theta_{\mathbf{y}}(\bm{\tau})(\varphi) can be written, for φ=φ1φ2\varphi=\varphi_{1}\otimes\varphi_{2} as above, as

θ𝐲(𝝉)(φ1φ2)=φ2(𝐲)T=(T2)r𝐲(T,φ1)qT,\theta_{\mathbf{y}}(\bm{\tau})(\varphi_{1}\otimes\varphi_{2})\ =\ \varphi_{2}(\mathbf{y})\sum_{T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)}r_{\mathbf{y}}(T,\varphi_{1})\ q^{T}, (6.12)

where r𝐲(T)S(Λ𝐲)r_{\mathbf{y}}(T)\in S(\Lambda_{\mathbf{y}})^{\vee} is given by the formula

r𝐲((T1T12T12T2),φ1)=λU𝐲λ,λ=T1λ,𝐲=T12φ1(λ)r_{\mathbf{y}}\left(\left(\begin{smallmatrix}T_{1}&T_{12}\\ T_{12}^{\prime}&T_{2}\end{smallmatrix}\right),\varphi_{1}\right)=\sum_{\begin{subarray}{c}\lambda\in U_{\mathbf{y}}\\ \langle\lambda,\lambda\rangle=T_{1}\\ \langle\lambda,\mathbf{y}\rangle=T_{12}\end{subarray}}\,\varphi_{1}(\lambda) (6.13)

Finally, note that given TT as above, we must have either rank(T)=rank(T2)+1\mathrm{rank}(T)=\mathrm{rank}(T_{2})+1, or rank(T)=rank(T2)\mathrm{rank}(T)=\mathrm{rank}(T_{2}).

Lemma 6.1.

Suppose rank(T)=rank(T2)+1\mathrm{rank}(T)=\mathrm{rank}(T_{2})+1. Then for any 𝐲Ω(T2)\mathbf{y}\in\Omega(T_{2}), we have r𝐲(T)=0.r_{\mathbf{y}}(T)=0.

Proof.

Suppose r𝐲(T)0r_{\mathbf{y}}(T)\neq 0; then there exists a tuple (λ,𝐲)Ω(T)(\lambda,\mathbf{y})\in\Omega(T) with span(λ,𝐲)=span(𝐲)\mathrm{span}(\lambda,\mathbf{y})=\mathrm{span}(\mathbf{y}), which contradicts the assumption on rank(T)\mathrm{rank}(T).

Proposition 6.2.

As formal generating series, we have

ϕ^A(𝝉)=T=(T2)A^(T,𝐯)qT=𝐲Ω(T2)modΓϕ^𝐲(𝝉)ω^nr(T2)1θ𝐲(𝝉),\widehat{\phi}_{A}(\bm{\tau})=\sum_{T=\left(\begin{smallmatrix}*&*\\ *&T_{2}\end{smallmatrix}\right)}\widehat{A}(T,\mathbf{v})\,q^{T}=\sum_{\begin{subarray}{c}\mathbf{y}\in\Omega(T_{2})\\ \mod{\Gamma}\end{subarray}}\widehat{\phi}_{\mathbf{y}}(\bm{\tau})\cdot\widehat{\omega}^{n-r(T_{2})-1}\otimes\theta_{\mathbf{y}}(\bm{\tau}), (6.14)

where

ϕ^𝐲(𝝉)ω^nr(T2)1:=mFZ^𝐲(m,𝐯1)ω^nr(T2)1q1m;\widehat{\phi}_{\mathbf{y}}(\bm{\tau})\cdot\widehat{\omega}^{n-r(T_{2})-1}\ :=\ \sum_{m\in F}\widehat{Z}_{\mathbf{y}}(m,\mathbf{v}_{1})\cdot\widehat{\omega}^{n-r(T_{2})-1}\,q_{1}^{m}; (6.15)

here, we view the right hand side of (6.14) as valued in S(Ln)S(L^{n})^{\vee} by dualizing (6.5).

Proof.

By linearity, it suffices to evaluate both sides of the desired relation at a Schwartz function φS(Ln)\varphi\in S(L^{n}) of the form φ=φ1φ2\varphi=\varphi_{1}\otimes\varphi_{2} for φ1S(L)\varphi_{1}\in S(L) and φ2S(Ln1)\varphi_{2}\in S(L^{n-1}).

Then we may write

Z(T)(φ1φ2)\displaystyle Z(T)(\varphi_{1}\otimes\varphi_{2})\ =𝐱Ω(T)mod Γ(φ1φ2)(𝐱)Z(𝐱)\displaystyle=\ \sum_{\begin{subarray}{c}\mathbf{x}\in\Omega(T)\\ \text{mod }\Gamma\end{subarray}}(\varphi_{1}\otimes\varphi_{2})(\mathbf{x})\,Z(\mathbf{x}) (6.16)
=𝐲Ω(T2)mod Γφ2(𝐲)𝐱1Ω(T1)𝐱1,𝐲=T12mod Γ𝐲φ1(𝐱1)Γ(𝐱1,𝐲)\𝔻(𝐱1,𝐲).\displaystyle=\sum_{\begin{subarray}{c}\mathbf{y}\in\Omega(T_{2})\\ \text{mod }\Gamma\end{subarray}}\varphi_{2}(\mathbf{y})\sum_{\begin{subarray}{c}\mathbf{x}_{1}\in\Omega(T_{1})\\ \langle\mathbf{x}_{1},\mathbf{y}\rangle=T_{12}\\ \text{mod }\Gamma_{\mathbf{y}}\end{subarray}}\varphi_{1}(\mathbf{x}_{1})\Gamma_{(\mathbf{x}_{1},\mathbf{y})}\big{\backslash}\mathbb{D}_{(\mathbf{x}_{1},\mathbf{y})}. (6.17)

We may further assume that

φ1=φ1φ1′′S(U𝐲)S(U𝐲) and φ2=φ2φ2′′S(Λ𝐲n1)S((Λ𝐲)n1);\varphi_{1}=\varphi_{1}^{\prime}\otimes\varphi_{1}^{\prime\prime}\in S(U_{\mathbf{y}})\otimes S(U_{\mathbf{y}}^{\perp})\qquad\text{ and }\qquad\varphi_{2}=\varphi_{2}^{\prime}\otimes\varphi_{2}^{\prime\prime}\in S(\Lambda_{\mathbf{y}}^{n-1})\otimes S((\Lambda_{\mathbf{y}}^{\perp})^{n-1}); (6.18)

in this case, φ2(𝐲)=φ2(𝐲)φ2′′(0)\varphi_{2}(\mathbf{y})=\varphi_{2}^{\prime}(\mathbf{y})\varphi_{2}^{\prime\prime}(0).

For a vector 𝐱1V\mathbf{x}_{1}\in V as above, write its orthogonal decomposition as

𝐱1=𝐱1+𝐱1′′U𝐲U𝐲,\mathbf{x}_{1}=\mathbf{x}_{1}^{\prime}\ +\ \mathbf{x}_{1}^{\prime\prime}\ \in\ U_{\mathbf{y}}\oplus U_{\mathbf{y}}^{\perp}, (6.19)

and note that 𝔻(x1,y)+=𝔻(x1′′,y)+\mathbb{D}^{+}_{(x_{1},y)}=\mathbb{D}^{+}_{(x_{1}^{\prime\prime},y)}, where x1=σ1(𝐱1)x_{1}=\sigma_{1}(\mathbf{x}_{1}), etc., and Γ(𝐱1,𝐲)=Γ(𝐱1′′,𝐲)\Gamma_{(\mathbf{x}_{1},\mathbf{y})}=\Gamma_{(\mathbf{x}_{1}^{\prime\prime},\mathbf{y})}.

Thus, decomposing the sum on 𝐱1\mathbf{x}_{1} as above and writing T=(T1T12T12T2)T=\left(\begin{smallmatrix}T_{1}&T_{12}\\ T_{12}^{\prime}&T_{2}\end{smallmatrix}\right), we have

Z(T)\displaystyle Z(T) (φ1φ2)\displaystyle(\varphi_{1}\otimes\varphi_{2})
=𝐲Ω(T2)mod Γφ2(𝐲)mF(𝐱1′′U𝐲𝐱1′′,𝐱1′′=mmod Γ𝐲φ1′′(𝐱1′′)Γ(𝐱1′′,𝐲)\𝔻(𝐱1′′,𝐲).)(𝐱1U𝐲𝐱1,𝐱1=T1m𝐱1,𝐲=T12φ1(𝐱1))\displaystyle=\sum_{\begin{subarray}{c}\mathbf{y}\in\Omega(T_{2})\\ \text{mod }{\Gamma}\end{subarray}}\varphi_{2}(\mathbf{y})\,\sum_{m\in F}\left(\sum_{\begin{subarray}{c}\mathbf{x}_{1}^{\prime\prime}\in U_{\mathbf{y}}^{\perp}\\ \langle\mathbf{x}_{1}^{\prime\prime},\mathbf{x}_{1}^{\prime\prime}\rangle=m\\ \text{mod }\Gamma_{\mathbf{y}}\end{subarray}}\varphi_{1}^{\prime\prime}(\mathbf{x}_{1}^{\prime\prime})\Gamma_{(\mathbf{x}_{1}^{\prime\prime},\mathbf{y})}\big{\backslash}\mathbb{D}_{(\mathbf{x}_{1}^{\prime\prime},\mathbf{y})}.\right)\cdot\left(\sum_{\begin{subarray}{c}\mathbf{x}_{1}^{\prime}\in U_{\mathbf{y}}\\ \langle\mathbf{x}_{1}^{\prime},\mathbf{x}_{1}^{\prime}\rangle=T_{1}-m\\ \langle\mathbf{x}_{1}^{\prime},\mathbf{y}\rangle=T_{12}\end{subarray}}\varphi^{\prime}_{1}(\mathbf{x}_{1}^{\prime})\right)
=𝐲Ω(T2)mod Γφ2(𝐲)mF(𝐱1′′U𝐲𝐱1′′,𝐱1′′=mmod Γ𝐲φ1′′(𝐱1′′)Γ(𝐱1′′,𝐲)\𝔻(𝐱1′′,𝐲).)r𝐲((T1mT12T12T2),φ1).\displaystyle=\sum_{\begin{subarray}{c}\mathbf{y}\in\Omega(T_{2})\\ \text{mod }{\Gamma}\end{subarray}}\varphi_{2}(\mathbf{y})\,\sum_{m\in F}\left(\sum_{\begin{subarray}{c}\mathbf{x}_{1}^{\prime\prime}\in U_{\mathbf{y}}^{\perp}\\ \langle\mathbf{x}_{1}^{\prime\prime},\mathbf{x}_{1}^{\prime\prime}\rangle=m\\ \text{mod }\Gamma_{\mathbf{y}}\end{subarray}}\varphi_{1}^{\prime\prime}(\mathbf{x}_{1}^{\prime\prime})\Gamma_{(\mathbf{x}_{1}^{\prime\prime},\mathbf{y})}\big{\backslash}\mathbb{D}_{(\mathbf{x}_{1}^{\prime\prime},\mathbf{y})}.\right)\cdot r_{\mathbf{y}}\left(\left(\begin{smallmatrix}T_{1}-m&T_{12}\\ T_{12^{\prime}}&T_{2}\end{smallmatrix}\right),\varphi_{1}^{\prime}\right). (6.20)

which we may rewrite as

Z(T)(φ1φ2)\displaystyle Z(T)\left(\varphi_{1}\otimes\varphi_{2}\right) =𝐲Ω(T2)mod Γφ2′′(0)φ2(𝐲)mπ𝐲,(ZU𝐲(m)(φ1′′))r((T1mT12T12T2),φ1)\displaystyle=\sum_{\begin{subarray}{c}\mathbf{y}\in\Omega(T_{2})\\ \text{mod }\Gamma\end{subarray}}\varphi_{2}^{\prime\prime}(0)\varphi_{2}^{\prime}(\mathbf{y})\sum_{m}\pi_{\mathbf{y},*}\left(Z_{U_{\mathbf{y}}^{\perp}}(m)(\varphi_{1}^{\prime\prime})\right)\cdot r\left(\left(\begin{smallmatrix}T_{1}-m&T_{12}\\ T_{12^{\prime}}&T_{2}\end{smallmatrix}\right),\varphi_{1}^{\prime}\right) (6.21)
=𝐲Ω(T2)mod ΓmZ𝐲(m)(φ1′′φ2′′){φ2(𝐲)r((T1mT12T12T2),φ1)}\displaystyle=\sum_{\begin{subarray}{c}\mathbf{y}\in\Omega(T_{2})\\ \text{mod }\Gamma\end{subarray}}\sum_{m}Z_{\mathbf{y}}(m)(\varphi_{1}^{\prime\prime}\otimes\varphi_{2}^{\prime\prime})\cdot\left\{\varphi_{2}^{\prime}(\mathbf{y})\,r\left(\left(\begin{smallmatrix}T_{1}-m&T_{12}\\ T_{12^{\prime}}&T_{2}\end{smallmatrix}\right),\varphi_{1}^{\prime}\right)\right\} (6.22)

where in the second line, Z𝐲(m)Z_{\mathbf{y}}(m) denotes the S((Λ𝐲)n)S((\Lambda_{\mathbf{y}}^{\perp})^{n})^{\vee}-valued cycle

Z𝐲(m):φ′′φ2′′(0)π𝐲,ZU𝐲(m,φ1′′).Z_{\mathbf{y}}(m)\colon\varphi^{\prime\prime}\mapsto\varphi_{2}^{\prime\prime}(0)\,\pi_{\mathbf{y},*}Z_{U_{\mathbf{y}}^{\perp}}(m,\varphi_{1}^{\prime\prime}). (6.23)

Now suppose that rk(T)=rk(T2)+1\mathrm{rk}(T)=\mathrm{rk}(T_{2})+1. Then, by Lemma 6.1, the term m=0m=0 does not contribute to (6.21), and so all the terms ZU𝐲(m)Z_{U_{\mathbf{y}}^{\perp}}(m) that do contribute are divisors. To incorporate Green currents in the discussion, note that, at the level of arithmetic Chow groups, the pushforward is given by the formula

Z^𝐲(m,𝐯1)(φ′′)\displaystyle\widehat{Z}_{\mathbf{y}}(m,\mathbf{v}_{1})(\varphi^{\prime\prime}) =φ2′′(0)π𝐲,Z^U𝐲(m,𝐯1,φ1′′)\displaystyle=\varphi_{2}^{\prime\prime}(0)\ \pi_{\mathbf{y},*}\widehat{Z}_{U^{\perp}_{\mathbf{y}}}(m,\mathbf{v}_{1},\varphi_{1}^{\prime\prime}) (6.24)
=(π𝐲,ZU𝐲(m,φ1′′),[ωU𝐲(m,𝐯1,φ1′′)δZ(𝐲),𝔤U𝐲o(m,𝐯1,φ1′′)δZ(𝐲)]),\displaystyle=\left(\pi_{\mathbf{y},*}Z_{U^{\perp}_{\mathbf{y}}}(m,\varphi_{1}^{\prime\prime}),\ \left[\omega_{U_{\mathbf{y}}^{\perp}}(m,\mathbf{v}_{1},\varphi_{1}^{\prime\prime})\wedge\delta_{Z(\mathbf{y})},\mathfrak{g}^{o}_{U_{\mathbf{y}}^{\perp}}(m,\mathbf{v}_{1},\varphi_{1}^{\prime\prime})\wedge\delta_{Z(\mathbf{y})}\right]\right), (6.25)

where, as before, we use the subscript U𝐲U_{\mathbf{y}}^{\perp} to denote objects defined with respect to that space.

This may be rewritten as

Z^𝐲(m,𝐯1)(φ′′)\displaystyle\widehat{Z}_{\mathbf{y}}(m,\mathbf{v}_{1})(\varphi^{\prime\prime}) =Z^𝐲(m)can(φ′′)\displaystyle=\widehat{Z}_{\mathbf{y}}(m)^{\mathrm{can}}(\varphi^{\prime\prime})
+φ2′′(0)(0,[ωU𝐲(m,𝐯1,φ1′′)δZ(𝐲)δZ𝐲(m),𝔤U𝐲o(m,𝐯1,φ1′′)δZ(𝐲)])\displaystyle\qquad+\varphi^{\prime\prime}_{2}(0)\left(0,\left[\omega_{U^{\perp}_{\mathbf{y}}}(m,\mathbf{v}_{1},\varphi^{\prime\prime}_{1})\wedge\delta_{Z(\mathbf{y})}-\delta_{Z_{\mathbf{y}}(m)},\,\mathfrak{g}^{o}_{U_{\mathbf{y}}^{\perp}}(m,\mathbf{v}_{1},\varphi^{\prime\prime}_{1})\wedge\delta_{Z(\mathbf{y})}\right]\right) (6.26)

where Z^𝐲(m)can=(Z𝐲(m),[δZ𝐲(m),0])\widehat{Z}_{\mathbf{y}}(m)^{\mathrm{can}}=(Z_{\mathbf{y}}(m),[\delta_{Z_{\mathbf{y}}(m)},0]) is the canonical class associated to Z𝐲(m)Z_{\mathbf{y}}(m). Thus,

Z^𝐲(m,𝐯1)ω^nrk(T)=Z^𝐲(m)canω^nrk(T)+(0,[β𝐲(m,𝐯1),α𝐲(m,𝐯1)])\widehat{Z}_{\mathbf{y}}(m,\mathbf{v}_{1})\cdot\widehat{\omega}^{n-\mathrm{rk}(T)}=\widehat{Z}_{\mathbf{y}}(m)^{\mathrm{can}}\cdot\widehat{\omega}^{n-\mathrm{rk}(T)}+\left(0,\,[\beta_{\mathbf{y}}(m,\mathbf{v}_{1}),\alpha_{\mathbf{y}}(m,\mathbf{v}_{1})]\right) (6.27)

where α𝐲(m,𝐯1)\alpha_{\mathbf{y}}(m,\mathbf{v}_{1}) and β𝐲(m,𝐯1)\beta_{\mathbf{y}}(m,\mathbf{v}_{1}) are S((Λ𝐲)n)S((\Lambda_{\mathbf{y}}^{\perp})^{n})^{\vee}-valued currents defined by

α𝐲(m,𝐯1)(φ′′)=φ2′′(0)𝔤U𝐲o(m,𝐯1,φ1′′)δZ(𝐲)Ωnrk(T)\alpha_{\mathbf{y}}(m,\mathbf{v}_{1})(\varphi^{\prime\prime})\ =\ \varphi^{\prime\prime}_{2}(0)\ \mathfrak{g}^{o}_{U_{\mathbf{y}}^{\perp}}(m,\mathbf{v}_{1},\varphi^{\prime\prime}_{1})\wedge\delta_{Z(\mathbf{y})}\wedge\Omega^{n-\mathrm{rk}(T)} (6.28)

and

β𝐲(m,𝐯1)(φ′′)=φ2′′(0)ωU𝐲(m,𝐯1,φ1′′)δZ(𝐲)Ωnrk(T)δZ𝐲(m)(φ′′)Ωnrk(T)\beta_{\mathbf{y}}(m,\mathbf{v}_{1})(\varphi^{\prime\prime})\ =\ \varphi^{\prime\prime}_{2}(0)\ \omega_{U^{\perp}_{\mathbf{y}}}(m,\mathbf{v}_{1},\varphi_{1}^{\prime\prime})\wedge\delta_{Z(\mathbf{y})}\wedge\Omega^{n-\mathrm{rk}(T)}-\delta_{Z_{\mathbf{y}}(m)(\varphi^{\prime\prime})}\wedge\Omega^{n-\mathrm{rk}(T)} (6.29)

where φ′′=φ1′′φ2′′\varphi^{\prime\prime}=\varphi^{\prime\prime}_{1}\otimes\varphi^{\prime\prime}_{2} as before.

Turning to the class A^(T,𝐯)\widehat{A}(T,\mathbf{v}), it can be readily verified that

A^(T,𝐯)=Z(T)^canω^nrk(T)+(0,[ψ(T,𝐯)δZ(T)Ωnrk(T),𝔞(T,𝐯)])\widehat{A}(T,\mathbf{v})=\widehat{Z(T)}{}^{\mathrm{can}}\cdot\widehat{\omega}^{n-\mathrm{rk}(T)}\ +\ \left(0,[\psi(T,\mathbf{v})-\delta_{Z(T)}\wedge\Omega^{n-\mathrm{rk}(T)},\mathfrak{a}(T,\mathbf{v})]\right) (6.30)

where the currents 𝔞(T,𝐯)\mathfrak{a}(T,\mathbf{v}) and ψ(T,𝐯)\psi(T,\mathbf{v}) are defined in (4.23) and (4.36), respectively. Now, by the same argument as in (6.21), and under the assumption rank(T)=rank(T2)+1\mathrm{rank}(T)=\mathrm{rank}(T_{2})+1, we have (as a Γ\Gamma-invariant current on 𝔻\mathbb{D})

𝔞(T,𝐯)(φ1φ2)\displaystyle\mathfrak{a}(T,\mathbf{v})(\varphi_{1}\otimes\varphi_{2})\ =𝐲Ω(T2)φ2(𝐲)𝐱1Ω(T1)𝐱1,𝐲=T12φ1(𝐱1)𝔤o(v1x1)δ𝔻y+Ωnr(T)\displaystyle=\ \sum_{\mathbf{y}\in\Omega(T_{2})}\varphi_{2}(\mathbf{y})\sum_{\begin{subarray}{c}\mathbf{x}_{1}\in\Omega(T_{1})\\ \langle\mathbf{x}_{1},\mathbf{y}\rangle=T_{12}\end{subarray}}\varphi_{1}(\mathbf{x}_{1})\mathfrak{g}^{o}(\sqrt{v_{1}}x_{1})\wedge\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-r(T)} (6.31)
=𝐲Ω(T2)φ2(𝐲)mF(𝐱1′′U𝐲𝐱1′′,𝐱1′′=mφ1′′(𝐱1′′)𝔤o(v1x1′′)δ𝔻y+Ωnr(T))\displaystyle=\sum_{\mathbf{y}\in\Omega(T_{2})}\varphi_{2}(\mathbf{y})\cdot\sum_{m\in F}\left(\sum_{\begin{subarray}{c}\mathbf{x}_{1}^{\prime\prime}\in U_{\mathbf{y}}^{\perp}\\ \langle\mathbf{x}_{1}^{\prime\prime},\mathbf{x}_{1}^{\prime\prime}\rangle=m\end{subarray}}\varphi_{1}^{\prime\prime}(\mathbf{x}_{1}^{\prime\prime})\,\mathfrak{g}^{o}(\sqrt{v_{1}}x_{1}^{\prime\prime})\wedge\delta_{\mathbb{D}^{+}_{y}}\wedge\Omega^{n-r(T)}\right) (6.32)
×r((T1mT12T12T2),φ1),\displaystyle\qquad\qquad\qquad\qquad\times r\left(\left(\begin{smallmatrix}T_{1}-m&T_{12}\\ T_{12^{\prime}}&T_{2}\end{smallmatrix}\right),\varphi_{1}^{\prime}\right), (6.33)

where we use the fact that 𝔤o(v1x1)δ𝔻y+\mathfrak{g}^{o}(\sqrt{v_{1}}x_{1})\wedge\delta_{\mathbb{D}^{+}_{y}} only depends on the orthogonal projection x1′′x_{1}^{\prime\prime} of x1x_{1} onto Uy=σ1(U𝐲)U_{y}^{\perp}=\sigma_{1}(U_{\mathbf{y}}^{\perp}). Thus, as S(Ln)S(L^{n})^{\vee}-valued currents on XX, we obtain the identity

𝔞(T,𝐯)(φ1φ2)=𝐲 mod ΓmFα𝐲(m,𝐯1)(φ1′′φ2′′){φ2(𝐲)r𝐲((T1mT12T12T2),φ1)}\mathfrak{a}(T,\mathbf{v})(\varphi_{1}\otimes\varphi_{2})=\sum_{\mathbf{y}\text{ mod }\Gamma}\sum_{m\in F}\alpha_{\mathbf{y}}(m,\mathbf{v}_{1})(\varphi_{1}^{\prime\prime}\otimes\varphi_{2}^{\prime\prime})\cdot\left\{\varphi_{2}^{\prime}(\mathbf{y})\,r_{\mathbf{y}}\left(\left(\begin{smallmatrix}T_{1}-m&T_{12}\\ T_{12^{\prime}}&T_{2}\end{smallmatrix}\right),\varphi_{1}^{\prime}\right)\right\} (6.34)

with φi=φiφi′′\varphi_{i}=\varphi_{i}^{\prime}\otimes\varphi_{i}^{\prime\prime} as above.

A similar argument gives

ψ(T,𝐯)(φ)δZ(T)(φ)Ωnrk(T)=𝐲 mod ΓmFβ𝐲(m,𝐯1)(φ1′′φ2′′){φ2(𝐲)r𝐲((T1mT12T12T2),φ1)},\psi(T,\mathbf{v})(\varphi)-\delta_{Z(T)(\varphi)}\wedge\Omega^{n-\mathrm{rk}(T)}=\sum_{\mathbf{y}\text{ mod }\Gamma}\sum_{m\in F}\beta_{\mathbf{y}}(m,\mathbf{v}_{1})(\varphi_{1}^{\prime\prime}\otimes\varphi_{2}^{\prime\prime})\cdot\left\{\varphi_{2}^{\prime}(\mathbf{y})\,r_{\mathbf{y}}\left(\left(\begin{smallmatrix}T_{1}-m&T_{12}\\ T_{12^{\prime}}&T_{2}\end{smallmatrix}\right),\varphi_{1}^{\prime}\right)\right\}, (6.35)

and so in total, we have

A^(T,𝐯)(φ1φ2)=𝐲 mod ΓmZ^𝐲(m,𝐯1)(φ1′′φ2′′)ω^nrk(T2)1{φ2(𝐲)r𝐲((T1mT12T12T2))(φ1)}\widehat{A}(T,\mathbf{v})(\varphi_{1}\otimes\varphi_{2})=\sum_{\mathbf{y}\text{ mod }\Gamma}\sum_{m}\widehat{Z}_{\mathbf{y}}(m,\mathbf{v}_{1})(\varphi_{1}^{\prime\prime}\otimes\varphi_{2}^{\prime\prime})\cdot\widehat{\omega}^{n-\mathrm{rk}(T_{2})-1}\cdot\left\{\varphi_{2}^{\prime}(\mathbf{y})\,r_{\mathbf{y}}\left(\left(\begin{smallmatrix}T_{1}-m&T_{12}\\ T_{12^{\prime}}&T_{2}\end{smallmatrix}\right)\right)(\varphi_{1}^{\prime})\right\} (6.36)

whenever rank(T)=rank(T2)+1\mathrm{rank}(T)=\mathrm{rank}(T_{2})+1.

Now suppose rank(T)=rank(T2)\mathrm{rank}(T)=\mathrm{rank}(T_{2}). Then for any tuple (𝐱1,𝐲)Ω(T)(\mathbf{x}_{1},\mathbf{y})\in\Omega(T), we must have 𝐱1U𝐲\mathbf{x}_{1}\in U_{\mathbf{y}}, and in particular, the only terms contributing to the right hand side of (6.36) are those with m=0m=0. On the other hand, we have

𝔞(T,𝐯)=0,ψ(T,𝐯)=δZ(T)Ωnrk(T),\mathfrak{a}(T,\mathbf{v})=0,\qquad\psi(T,\mathbf{v})=\delta_{Z(T)}\wedge\Omega^{n-\mathrm{rk}(T)}, (6.37)

and hence

A^(T,𝐯)=Z(T)^canω^nrk(T);\widehat{A}(T,\mathbf{v})=\widehat{Z(T)}{}^{\mathrm{can}}\cdot\widehat{\omega}^{n-\mathrm{rk}(T)}; (6.38)

with these observations, it follows easily from unwinding definitions that (6.36) continues to hold in this case.

Finally, the statement in the proposition follows by observing that the TT’th qq coefficient on the right hand side of (6.14) is precisely the right hand side of (6.36).

Corollary 6.3.

The series ϕ^A(𝛕)\widehat{\phi}_{A}(\bm{\tau}) is a Jacobi modular form of weight κ:=(p+2)/2\kappa:=(p+2)/2 and index T2T_{2}, in the sense of Definition 2.7.

Proof.

Fix 𝐲Ω(T2)\mathbf{y}\in\Omega(T_{2}). By Corollary 3.3, applied to the space U𝐲U_{\mathbf{y}}^{\perp}, there exist finitely many z^𝐲,1,,z^𝐲,rCH^(X𝐲)1\widehat{z}_{\mathbf{y},1},\dots,\widehat{z}_{\mathbf{y},r}\in\widehat{\mathrm{CH}}{}^{1}_{\mathbb{C}}(X_{\mathbf{y}}), finitely many (elliptic) forms f𝐲,1,,f𝐲,rAκ(ρΛ𝐲)f_{\mathbf{y},1},\dots,f_{\mathbf{y},r}\in A_{\kappa}(\rho^{\vee}_{\Lambda^{\perp}_{\mathbf{y}}}) and an element g𝐲Aκ(ρΛ𝐲;D(X))g_{\mathbf{y}}\in A_{\kappa}(\rho^{\vee}_{\Lambda_{\mathbf{y}}^{\perp}};D^{*}(X)) such that the identity

mFZ^U𝐲(m,𝐯1)qm=i=1rf𝐲,i(𝝉1)z^𝐲,i+a(g𝐲(𝝉1))\sum_{m\in F}\widehat{Z}_{U_{\mathbf{y}}^{\perp}}(m,\mathbf{v}_{1})q^{m}=\sum_{i=1}^{r}f_{\mathbf{y},i}(\bm{\tau}_{1})\widehat{z}_{\mathbf{y},i}\ +\ a(g_{\mathbf{y}}(\bm{\tau}_{1})) (6.39)

holds at the level of qq-coefficients; here 𝝉11d\bm{\tau}_{1}\in\mathbb{H}_{1}^{d} and 𝐯1=Im(𝝉1)\mathbf{v}_{1}=\mathrm{Im}(\bm{\tau}_{1}). Moreover, from the proof of Corollary 3.3, we see that g𝐲(τ)g_{\mathbf{y}}(\tau) is smooth on XX.

Therefore, applying Proposition 6.2 and unwinding definitions, we obtain the identity

ϕ^A(𝝉)=𝐲Ω(T2)mod Γi=1r(F𝐲,i(𝝉)θ𝐲(𝝉))Z^𝐲,i+a((G𝐲(𝝉)θ𝐲(𝝉))δZ(𝐲)Ωnrank(T2)1)\widehat{\phi}_{A}(\bm{\tau})\ =\ \sum_{\begin{subarray}{c}\mathbf{y}\in\Omega(T_{2})\\ \text{mod }{\Gamma}\end{subarray}}\ \sum_{i=1}^{r}\left(F_{\mathbf{y},i}(\bm{\tau})\otimes\theta_{\mathbf{y}}(\bm{\tau})\right)\widehat{Z}_{\mathbf{y},i}\ +\ a\left(\left(G_{\mathbf{y}}(\bm{\tau})\otimes\theta_{\mathbf{y}}(\bm{\tau})\right)\wedge\delta_{Z(\mathbf{y})}\wedge\Omega^{n-\mathrm{rank}(T_{2})-1}\right) (6.40)

of formal generating series, where

Z^𝐲,i:=π𝐲,(z^𝐲,i)ω^nrk(T2)1CH^(X,𝒟cur)n,\widehat{Z}_{\mathbf{y},i}\ :=\ \pi_{\mathbf{y},*}\left(\widehat{z}_{\mathbf{y},i}\right)\cdot\widehat{\omega}^{n-\mathrm{rk}(T_{2})-1}\ \in\ \widehat{\mathrm{CH}}{}^{n}_{\mathbb{C}}(X,\mathcal{D}_{\mathrm{cur}}), (6.41)

and we promote the elliptic forms f𝐲,if_{\mathbf{y},i} and g𝐲g_{\mathbf{y}} to S((Λ𝐲)n)S((\Lambda_{\mathbf{y}}^{\perp})^{n})^{\vee}-valued functions by setting

F𝐲,i(𝝉)(φ):=φ2(0)f𝐲,i(𝝉1)(φ1),G𝐲(𝝉)=φ2(0)g𝐲(𝝉1)(φ1)F_{\mathbf{y},i}(\bm{\tau})(\varphi)\ :=\ \varphi_{2}(0)\cdot f_{\mathbf{y},i}(\bm{\tau}_{1})(\varphi_{1}),\qquad G_{\mathbf{y}}(\bm{\tau})=\varphi_{2}(0)\cdot g_{\mathbf{y}}(\bm{\tau}_{1})(\varphi_{1}) (6.42)

for φ=φ1φ2S(Λ𝐲)S((Λ𝐲)n1)\varphi=\varphi_{1}\otimes\varphi_{2}\in S(\Lambda_{\mathbf{y}}^{\perp})\otimes S((\Lambda_{\mathbf{y}}^{\perp})^{n-1}) and 𝝉=(𝝉1𝝉12𝝉12𝝉2)\bm{\tau}=\left(\begin{smallmatrix}\bm{\tau}_{1}&\bm{\tau}_{12}\\ \bm{\tau}_{12}^{\prime}&\bm{\tau}_{2}\end{smallmatrix}\right).

It remains to show that F𝐲,i(𝝉)θ𝐲(𝝉)F_{\mathbf{y},i}(\bm{\tau})\otimes\theta_{\mathbf{y}}(\bm{\tau}) and G𝐲(τ)θ𝐲(𝝉)G_{\mathbf{y}}(\tau)\otimes\theta_{\mathbf{y}}(\bm{\tau}) are invariant under the slash operators (2.38) for elements of Γ~J\widetilde{\Gamma}^{J}; this can be verified directly using the generators (5.15) – (5.18), the modularity in genus one of f𝐲,if_{\mathbf{y},i} and g𝐲g_{\mathbf{y}}, and explicit formulas for the Weil representation (as in e.g. [Kud96]).

References

  • [BGKK07] J. I. Burgos Gil, J. Kramer, and U. Kühn. Cohomological arithmetic Chow rings. J. Inst. Math. Jussieu, 6(1):1–172, 2007.
  • [Bis90] Jean-Michel Bismut. Superconnection currents and complex immersions. Invent. Math., 99(1):59–113, 1990.
  • [Bor99] Richard E. Borcherds. The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J., 97(2):219–233, 1999.
  • [Bru12] Jan Hendrik Bruinier. Regularized theta lifts for orthogonal groups over totally real fields. J. Reine Angew. Math., 672:177–222, 2012.
  • [BWR15] Jan Hendrik Bruinier and Martin Westerholt-Raum. Kudla’s modularity conjecture and formal Fourier-Jacobi series. Forum Math. Pi, 3:e7, 30, 2015.
  • [ES18] Stephan Ehlen and Siddarth Sankaran. On two arithmetic theta lifts. Compos. Math., 154(10):2090–2149, 2018.
  • [EZ85] Martin Eichler and Don Zagier. The theory of Jacobi forms, volume 55 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1985.
  • [GS90] Henri Gillet and Christophe Soulé. Arithmetic intersection theory. Inst. Hautes Études Sci. Publ. Math., (72):93–174 (1991), 1990.
  • [GS19] Luis E. Garcia and Siddarth Sankaran. Green forms and the arithmetic Siegel-Weil formula. Invent. Math., 215(3):863–975, 2019.
  • [JS07] Dihua Jiang and David Soudry. On the genericity of cuspidal automorphic forms of SO(2n+1){\rm SO}(2n+1). II. Compos. Math., 143(3):721–748, 2007.
  • [KM90] Stephen S. Kudla and John J. Millson. Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. Inst. Hautes Études Sci. Publ. Math., (71):121–172, 1990.
  • [KRY06] Stephen S. Kudla, Michael Rapoport, and Tonghai Yang. Modular forms and special cycles on Shimura curves, volume 161 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2006.
  • [Kud96] Stephen Kudla. Notes on the local theta correspondence. Lecture Notes of the European School on Group Theory, Schloß  Hirschberg, 1996.
    http://www.math.toronto.edu/skudla/castle.pdf.
  • [Kud97] Stephen S. Kudla. Algebraic cycles on Shimura varieties of orthogonal type. Duke Math. J., 86(1):39–78, 1997.
  • [Kud19] Stephen Kudla. Remarks on generating series for special cycles. arXiv e-prints, page arXiv:1908.08390, Aug 2019.
  • [Sou92] C. Soulé. Lectures on Arakelov geometry, volume 33 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1992. With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer.
  • [YZZ09] Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang. The Gross-Kohnen-Zagier theorem over totally real fields. Compos. Math., 145(5):1147–1162, 2009.
  • [Zha09] Wei Zhang. Modularity of generating functions of special cycles on Shimura varieties. ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–Columbia University.