This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Arithmetic Kei Theory

Ariel Davis, Tomer M. Schlank
Abstract

A ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ (kei), or 2-quandle, is an algebraic structure one can use to produce a numerical invariant of links, known as coloring invariants. Motivated by Mazur’s analogy between prime numbers and knots, we define for every finite kei 𝒦\mathscr{K} an analogous coloring invariant col𝒦(n)\textnormal{col}_{\mathscr{K}}(n) of square-free integers. This is achieved by defining a fundamental kei  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} for every such nn. We conjecture that the asymptotic average order of col𝒦\textnormal{col}_{\mathscr{K}} can be predicted to some extent by the colorings of random braid closures. This conjecture is fleshed out in general, building on previous work, and then proven for several cases.

[Uncaptioned image]

M. C. Escher, Knot, 1966

1 Introduction

There is an analogy that likens prime numbers pp to knots in the sphere S3S^{3}. This analogy is the observation of Barry Mazur regarding the embedding

Spec(𝔽p)Spec()\textnormal{Spec}(\mathbb{F}_{p})\hookrightarrow\textnormal{Spec}(\mathbb{Z}) (1)

of schemes, as seen through the eyes of étale topology and homotopy. Étale topology is a tool in algebraic geometry developed by Grothendieck et al in [BD06]. It enriches the theory of schemes with topological notions such as well-behaved cohomology groups for finite locally-constant sheaves. While the concept was originally conceived with smooth varieties over fields in mind, one can attach an étale topology (or more precisely, an étale site) to any scheme. In the case of spectra of rings of integers in number fields, this provides the framework for Artin-Verdier duality. Through Artin-Verdier duality we are justified in thinking about the geometric objects attached to rings of integers as smooth threefolds - see [AV64] or [Maz73] for details. The étale homotopy type defined by M. Artin and Mazur in [AM06] takes this idea even further, in granting access to a wider array of hompotopical tools by producing for any scheme XX a profinite approximation E´t(X)\acute{E}t(X) of a homotopy type. The homotopy type E´t(Spec())\acute{E}t(\textnormal{Spec}(\mathbb{Z})) is simply-connected, and E´t(Spec(𝔽p))\acute{E}t(\textnormal{Spec}(\mathbb{F}_{p})) is a profinite circle. Therefore étale homotopy sees (1) as the embedding of a circle into a simply-connected threefold - that is, a knot - and for square-free nn\in\mathbb{N}, the embedding

Spec(/n)p|nSpec(𝔽p)Spec()\textnormal{Spec}(\mathbb{Z}/n\mathbb{Z})\simeq\coprod_{p|n}\textnormal{Spec}(\mathbb{F}_{p})\hookrightarrow\textnormal{Spec}(\mathbb{Z})

as a disjoint union of knots - a link. One is motivated to understand how far we can take this analogy. Various notions from knot theory have been interpreted in number theory based on this analogy, many of which can be found in Morishita’s book [Mor12]. One salient example is the linking number link(K1,K2)link(K_{1},K_{2}) of two oriented knots K1,K2K_{1},K_{2}, which corresponds to the homology class

[K1]H1(S3K2;).[K_{1}]\in H_{1}(S^{3}\setminus K_{2};\mathbb{Z})\simeq\mathbb{Z}.

A theorem by Gauss famously states that the linking number is symmetric in K1,K2K_{1},K_{2}. The Jacobi symbol (pq)\left(\frac{p}{q}\right) of odd primes pqp\neq q is seen as analogous to

(1)link(K1,K2),(-1)^{link(K_{1},K_{2})},

and quadratic reciprocity as a manifestation the linking number’s symmetry. A more sophisticated example is the Alexander module of a knot KK, closely related to the Alexander polynomial of KK. This has an arithmetic interpretation as the Iwasawa module of a prime pp. The analogy between knots and primes does not produce de facto links in S3S^{3} for individual square-free integers nn\in\mathbb{N}. That is, while certain knot-theoretical notions are emulated in number theory, the values that they take are not recovered knot-theoretically from any knot or link. Indeed if that were the case, we would expect actual symmetry in quadratic reciprocity.

There is however a way in which one can say that random square-free integers resemble random links. Alexander’s theorem states in [Ale23] that every link is obtained as the closure σ¯\overline{\sigma} of a braid σ\sigma. For kk\in\mathbb{N}, the set of all braids on kk strands, together with concatenation, form the Artin braid group BkB_{k} - see [Art47]. The naive notion of a random braid on kk strands is ill-defined because BkB_{k} is infinite discrete for k2k\geq 2. That said, if a function f:Bkf\colon B_{k}\to\mathbb{R} factors through a finite quotient of BkB_{k}, then we consider the locally-constant extension f^\widehat{f} of ff to B^k\widehat{B}_{k}, the profinite completion of BkB_{k}. In this case we interpret “the distribution of ff” to mean the distribution of f^\widehat{f}, where B^k\widehat{B}_{k} has normalized Haar measure. Such is the case with the number of connected components in the closure σ¯\overline{\sigma}. For σBk\sigma\in B_{k}, the number of connected components of σ¯\overline{\sigma} equals

|π0(σ¯)|=|{1,,k}/σ|.|\pi_{0}(\overline{\sigma})|=|\{1,\dots,k\}/\sigma|.

This is determined by how σ\sigma permutes the endpoints of the kk strands. Hence

|π0(σ¯)|:Bk|\pi_{0}(\overline{\sigma})|\colon B_{k}\to\mathbb{N}

factors through the symmetric group SkS_{k}. As per the above, the closure of a random braid σBk\sigma\in B_{k} is a knot with probability 1k\frac{1}{k}. For square-free nn\in\mathbb{N}, the connected components of E´t(Spec(/n))\acute{E}t(\textnormal{Spec}(\mathbb{Z}/n\mathbb{Z})) correspond to the prime factors of nn. A square-free number nn\in\mathbb{N} of magnitude XX is prime with probability roughly 1logX\frac{1}{\log X}. From here one draws the analogy that

Random square-free integers n of magnitude X resembleclosures of random braids on approximately logX strands.\begin{matrix}\textnormal{Random square-free integers $n\in\mathbb{N}$ of magnitude $X$ resemble}\\ \textnormal{closures of random braids on approximately $\log X$ strands.}\end{matrix} (2)

Another numerical invariant of links, introduced by Fox in [CF12]111See [Prz06] for a more comprehensive treatment of the subject., is the number of 33-colorings of a link LL. A 33-coloring of a link diagram DD constitutes a choice of color x/3x\in\mathbb{Z}/3\mathbb{Z} for each arc in DD such that at each crossing, the colors x,y,zx,y,z as in fig. 1 must satisfy y+z=2xy+z=2x. This condition ensures that the number of 33-colorings is invariant under Reidemeister moves, and by [Rei48] is therefore an isotopy invariant of the link.

x\;\;xy\;yzz\;
Figure 1:

The fact that zz in fig. 1 is determined by x,yx,y is necessary in order to transport colorings across a Reidemeister 22 move, as depicted in fig. 2b. The concept of 33-colorings thus generalizes to coloring links using a set of colors 𝒦\mathscr{K} equipped with a binary operator

(x,y)yx.(x,y)\mapsto{{}^{x}{y}}.

Here a 𝒦\mathscr{K}-coloring of a crossing as in fig. 1 is valid if z=yxz={{}^{x}{y}}. For 𝒦\mathscr{K}-colorings to be transported bijectively across all Reidemeister moves,

x\;\;x\rightsquigarrowx\;\;xx\;\;x
(a) R1
xxyy\rightsquigarrowxxzzyyyy
(b) R2
zz(zy)x{{}^{x}{(}}{{}^{y}{z}})yyyx{{}^{x}{y}}xxxx\rightsquigarrowzzyx{{}^{x}{y}}yyxxxx(zx)(yx){{{}^{({{}^{x}{y}})}{({{}^{x}{z}})}}}
(c) R3
Figure 2:

this operator must satisfy the following corresponding axioms:

Definition 1.1 ([Tak43]222The terminology and Kanji notation ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ are taken from [Tak43], where the notion was first defined. See [Joy82] for keis in relation to knot theory, where they are called 22-quandles.).

A ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ , or kei, is a set 𝒦\mathscr{K} with binary operator

𝒦×𝒦𝒦,x,yyx\mathscr{K}\times\mathscr{K}\to\mathscr{K}\;\;,\;\;\;\;x,y\mapsto{{}^{x}{y}}

satisfying

  1. 1.

    xx=x{{}^{x}{x}}=x for all x𝒦x\in\mathscr{K}.

  2. 2.

    (yx)x=y{{}^{x}{({{}^{x}{y}})}}=y for all x,y𝒦x,y\in\mathscr{K}.

  3. 3.

    (zy)x=(zx)(yx){{}^{x}{({{}^{y}{z}})}}={{}^{({{}^{x}{y}})}{({{}^{x}{z}})}} for all x,y,z𝒦x,y,z\in\mathscr{K}.

Keis are therefore an abstaction of Fox’s three colors, and kei-colorings a generalization of 33-colorings. For finite kei 𝒦\mathscr{K}, the number col𝒦(L)\textnormal{col}_{\mathscr{K}}(L) of 𝒦\mathscr{K}-colorings of a link LL is therefore an isotopy invariant of LL.

The first goal of this paper is to define a number-theoretical analogue of 𝒦\mathscr{K}-colorings. As is turns out, the kei-colorings of a link LL are goverened by a universal kei  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L} associated to LL. That is, the colorings of LL are in natural bijection with representations of  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L}:

Col𝒦(L)Hom𝒦ei( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L,𝒦),\textnormal{Col}_{\mathscr{K}}(L)\simeq\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L},\mathscr{K}),

where 𝒦ei{\mathscr{K}\textnormal{ei}} denotes the category of keis and suitable morphisms. The kei  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L} is constructed explicitly with generators and relations extracted from a diagram DD of LL: to every arc in DD there is a corresponding generator, and to every crossing a corresponding relation. It is not difficult to see that 𝒦\mathscr{K}-colorings of a diagram DD correspond to morphisms  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L𝒦\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L}\to\mathscr{K}. The road to 𝒦\mathscr{K}-coloring squarefree integers nn rests on the construction of an analogous  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} for squarefree nn\in\mathbb{N}. For this, a presentation extracted from a diagram is unsuitable. While an instrinsically topological description of  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L} is already given in [Joy82], it is the following presentation, based on the work of Winker ([Win84]), that we make the most of (for details see section 3.1). We take MLM_{L} to be the unique branched double cover of S3S^{3} with ramification locus equal to LL, and M~L\widetilde{M}_{L} to be the universal cover of MLM_{L}. Then as a set,

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L=π0(M~L×S3L).\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L}=\pi_{0}(\widetilde{M}_{L}\times_{S^{3}}L).

The arithmetic analogue of  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L} follows immediately. For simplicity assume nn is odd:

Definition 1.2 (definition 3.4).

Let nn\in\mathbb{N} be odd squarefree. By 𝔏n\mathfrak{L}_{n} we denote the field

𝔏n=(n),n:=(1)n12n.\mathfrak{L}_{n}=\mathbb{Q}(\sqrt{n^{*}})\;\;,\;\;\;\;n^{*}:=(-1)^{\frac{n-1}{2}}n.

The field 𝔏n\mathfrak{L}_{n} is the unique333This assuming nn is odd. For even nn there are three such fields. In the body of the paper we extend this definition for even nn. Of the three quadratic fields that ramify precisely at nn we choose (n)\mathbb{Q}(\sqrt{n^{*}}) with n=±nn^{*}=\pm n s.t. n=2mod8n^{*}=2\mod 8. While one can consider the other options, this is the one we find most suitable to our needs. quadratic number field ramified at precisely nn. As such, the morphism

Spec(𝒪𝔏n)Spec()\textnormal{Spec}(\mathcal{O}_{\mathfrak{L}_{n}})\to\textnormal{Spec}(\mathbb{Z})

is analogous to the branched double cover MLS3M_{L}\to S^{3}.

Definition 1.3 (definition 3.7).

Let nn\in\mathbb{N} be squarefree. By 𝔉n\mathfrak{F}_{n} we denote the maximal unramified extension of 𝔏n\mathfrak{L}_{n}. We then define  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} to be the profinite set

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n:=Spec(𝒪𝔉n)×Spec()Spec(/n){𝔭 prime in 𝒪𝔉n s.t. 𝔭|n}.\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}:=\textnormal{Spec}(\mathcal{O}_{\mathfrak{F}_{n}})\times_{\textnormal{Spec}(\mathbb{Z})}\textnormal{Spec}(\mathbb{Z}/n\mathbb{Z})\simeq\{\mathfrak{p}\textnormal{ prime in }\mathcal{O}_{\mathfrak{F}_{n}}\textnormal{ s.t. }\mathfrak{p}|n\}.
Theorem 1.4 (proposition 3.15 + proposition 3.12 + definition 3.13).

  1. 1.

    The set  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} has a natural structure of a (profinite) kei.

  2. 2.

    For finite 𝒦𝒦ei\mathscr{K}\in{\mathscr{K}\textnormal{ei}}, the set of continuous morphisms

    Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒦)\textnormal{Hom}_{\mathscr{K}\textnormal{ei}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{K})

    is finite.

This allows us to define 𝒦\mathscr{K}-colorings of squarefree integers nn\in\mathbb{N} using  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} by mimicking the coloring of links:

Definition 1.5 (definition 3.17).

Let nn\in\mathbb{N} be squarefree and let 𝒦\mathscr{K} be a finite kei. We define

col𝒦(n):=|Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒦)|.\textnormal{col}_{\mathscr{K}}(n):=\left|\textnormal{Hom}_{\mathscr{K}\textnormal{ei}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{K})\right|\in\mathbb{N}.

Next, it is our goal to understand the behavior of this function. In particular, we wish to understand the average asymptotic order of col𝒦(n)\textnormal{col}_{\mathscr{K}}(n).

Definition 1.6 (definition 4.5).

Let 𝒦\mathscr{K} be a finite kei and let X1X\geq 1. We denote by

Avg𝒦(X)=1nXnsqr-freecol𝒦(n)1nXnsqr-free1\textnormal{Avg}_{\mathscr{K}}(X)=\frac{\sum\limits_{\begin{subarray}{c}1\leq n\leq X\\ n\;\textrm{sqr-free}\end{subarray}}\textnormal{col}_{\mathscr{K}}(n)}{\sum\limits_{\begin{subarray}{c}1\leq n\leq X\\ n\;\textrm{sqr-free}\end{subarray}}1}\in\mathbb{Q}

the average of col𝒦(n)\textnormal{col}_{\mathscr{K}}(n) over the set of squarefree integers 1nX1\leq n\leq X.

Recall the idea in (2), as pertaining to certain random variables on B^k\widehat{B}_{k}. In similar fashion we may interpret the distribution of 𝒦\mathscr{K}-colorings of closures of random braids as above. In [DS23] we compute the average number of 𝒦\mathscr{K}-colorings of braid closures σ¯\overline{\sigma} of braids σ\sigma in BkB_{k}, and prove the following theorem:

Theorem 1.7 ([DS23, Theorem 1.1]).

Let 𝒦\mathscr{K} be a finite kei. There exists an integer-valued polynomial P𝒦[x]P_{\mathscr{K}}\in\mathbb{Q}[x] such that for all k0k\gg 0,

B^kco^l𝒦(σ)𝑑μ=P𝒦(k).\int\limits_{\widehat{B}_{k}}{\textnormal{c}\widehat{\textnormal{o}}\textnormal{l}}_{\mathscr{K}}(\sigma)d\mu=P_{\mathscr{K}}(k).

This, and (2) motivate us to form a conjecture about the growth of Avg𝒦(X)\textnormal{Avg}_{\mathscr{K}}(X) as XX tends to infinity. In simplified form:

Conjecture 1.8 (definition 4.6 + 4.8).

Let 𝒦𝒦ei\mathscr{K}\in{\mathscr{K}\textnormal{ei}} be finite. Then there exists a𝒦>0a_{\mathscr{K}}>0 such that

Avg𝒦(X)=a𝒦logdegP𝒦(X)(1+o(1))\textnormal{Avg}_{\mathscr{K}}(X)=a_{\mathscr{K}}\log^{\deg P_{\mathscr{K}}}(X)\cdot(1+o(1))

as XX\to\infty.

The second goal of this paper is to verify the conjecture for several examples of finite keis. In particular we verify the conjecture for all keis 𝒦\mathscr{K} of size |𝒦|=3|\mathscr{K}|=3. One can easily show that every such kei is isomorphic to one of three keis, encoded in the following table by

φ:{1,2,3}S3,φi(j)=ji.\varphi\colon\{1,2,3\}\to S_{3}\;\;,\;\;\;\;\varphi_{i}(j)={{}^{i}{j}}.
𝒦\mathscr{K} φ1\varphi_{1} φ2\varphi_{2} φ3\varphi_{3}
𝒯3\mathscr{T}_{3} Id Id Id
𝒥\mathscr{J} Id Id (1,2)(1,2)
3\mathscr{R}_{3} (2,3)(2,3) (1,3)(1,3) (1,2)(1,2)

We note that one recovers Fox’s 33-colorings mentioned above as 3\mathscr{R}_{3}-colorings of links. We begin by identifying the function col𝒦\textnormal{col}_{\mathscr{K}} for each 𝒦{𝒯3,𝒥,3}\mathscr{K}\in\{\mathscr{T}_{3},\mathscr{J},\mathscr{R}_{3}\}:

Proposition 1.9.

For 1<n1<n\in\mathbb{N} squarefree we have:

  1. 1.

    Proposition 6.2:

    col𝒯3(n)=3ω(n),\textnormal{col}_{\mathscr{T}_{3}}(n)=3^{\omega(n)},

    where ω(n)\omega(n) is the number of prime divisors of nn.

  2. 2.

    Proposition 7.3:

    col𝒥(n)=abc=n(ab).\textnormal{col}_{\mathscr{J}}(n)=\sum_{abc=n}\left(\frac{a}{b}\right).
  3. 3.

    Proposition 8.8:

    col3(n)=3|Cl(𝔏n)𝔽3|.\textnormal{col}_{\mathscr{R}_{3}}(n)=3\left|Cl\left({\mathfrak{L}_{n}}\right)\otimes_{\mathbb{Z}}\mathbb{F}_{3}\right|.

The polynomials

P𝒯3(x)=x2+3x+22,P𝒥(x)=2x+1,P3(x)=6P_{\mathscr{T}_{3}}(x)=\frac{x^{2}+3x+2}{2}\;\;,\;\;\;\;P_{\mathscr{J}}(x)=2x+1\;\;,\;\;\;\;P_{\mathscr{R}_{3}}(x)=6

are computed in [DS23, §7]. Using methods of analytic number theory, we prove 1.8 for these three cases, and for additional related keis - see propositions 6.4, 7.7 and 8.14.

1.1 Structure of the Paper

In section 2 we lay the groundwork for defining  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}. Here you’ll find definitions and statements for the algebraic theory of keis, some old, some new. Then in section 3 we define  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} itself, and 𝒦\mathscr{K}-colorings of nn for finite kei 𝒦\mathscr{K}. In section 4 we formulate the main conjecture of this paper. Subsequent sections are devoted to proving the conjecture in for several examples of keis: section 5 contains computations of some preliminary estimations we’ll need for the actual results. Sections 6 through 8 contain concrete examples:

  • section 6 - for trivial keis 𝒯𝒶\mathscr{T}_{\mathcal{a}}

  • section 7 - for a kei 𝒥\mathscr{J} introduced in [Joy82] and variants.

  • section 8 - for the dihedral kei 3\mathscr{R}_{3}.

1.2 Relation to Other Works

Our work is grounded in arithmetic statistics, an active field of research with a long, rich history history. For example, our proof of the main conjecture in the case of 𝒦=3\mathscr{K}=\mathscr{R}_{3} relies heavily on the Davenport-Heilbronn theorem [DH71] and further refinements [BST13] on counting cubic fields. The Cohen-Lenstra-Martinet heuristics [CL84] on the distribution of class groups is very much an ongoing endeavor [SW23]. In the case where one replaces Spec()\textnormal{Spec}(\mathbb{Z}) with Spec(𝔽p[t])\textnormal{Spec}(\mathbb{F}_{p}[t]), the relation with étale topology has been studied in works such as [EVW16] and [FW18]. Others have considered keis and related structures in a number-theoretical setting, with different motivation ([Tak19]). The notions obtained there are different, and unrelated to arithmetic statistics as far as we know.

1.3 Acknowledgements

We thank Ohad Feldheim, Ofir Gorodetski, Aaron Landesman, Lior Yanovski, David Yetter and Tamar Ziegler for useful discussion. TMS was supported by the US-Israel Binational Science Foundation under grant 2018389. TMS was supported by ISF1588/18 and the ERC under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 101125896).

2 Keis and Profinite Keis

2.1 Keis and Augmented Keis

Definition 2.1.

A kei is a set 𝒦\mathscr{K} with a binary operator

𝒦×𝒦𝒦,(x,y)yx\mathscr{K}\times\mathscr{K}\to\mathscr{K}\;\;,\;\;\;\;(x,y)\mapsto{{}^{x}{y}}

satisfying the following three axioms:

  1. (K1)

    x𝒦\forall x\in\mathscr{K}, xx=x{{}^{x}{x}}=x.

  2. (K2)

    x,y𝒦\forall x,y\in\mathscr{K}, (yx)x=y{{}^{x}{({{}^{x}{y}})}}=y.

  3. (K3)

    x,y,z𝒦\forall x,y,z\in\mathscr{K}, (zy)x=(zx)(yx){{}^{x}{({{}^{y}{z}})}}={{}^{({{}^{x}{y}})}{({{}^{x}{z}})}}.

A morphism f:𝒦𝒦f\colon\mathscr{K}\to{\mathscr{K}^{\prime}} of keis is a map satisfying

x,y𝒦,f(yx)=ff(x)(y).\forall x,y\in\mathscr{K}\;\;,\;\;\;\;f({{}^{x}{y}})={{}^{f(x)}{f(y)}}.

Together with morphisms, keis form a category, denoted by 𝒦ei{\mathscr{K}\textnormal{ei}}.

Example 2.2.

Let G𝒢rpG\in{\mathscr{G}\textnormal{rp}} be a group. Then the set S={gG|g2=1}GS=\{g\in G\;|\;g^{2}=1\}\subseteq G of involutions in GG is a kei with structure given by conjugation:

hg=ghg1.{{}^{g}{h}}=ghg^{-1}.
Definition 2.3.

A kei 𝒯𝒦ei\mathscr{T}\in{\mathscr{K}\textnormal{ei}} is trivial if yx=y{{}^{x}{y}}=y for all x,y𝒯x,y\in\mathscr{T}. For 𝒶{\mathcal{a}}\in\mathbb{N}, we denote by 𝒯𝒶\mathscr{T}_{\mathcal{a}} the trivial kei with |𝒯𝒶|=𝒶|\mathscr{T}_{\mathcal{a}}|={\mathcal{a}}. This is well-defined up to isomorphism.

Definition 2.4.

An augmented kei (𝒦,G,α)(\mathscr{K},G,\alpha) consists of a set 𝒦𝒮et\mathscr{K}\in{\mathscr{S}\textnormal{et}}, a group G𝒢rpG\in{\mathscr{G}\textnormal{rp}} acting on 𝒦\mathscr{K} from the left, and an augmentation map - a function

α:𝒦G,xαx\alpha\colon\mathscr{K}\to G\;,\;\;x\mapsto\alpha_{x}

satisfying:

  1. 1.

    For all x𝒦x\in\mathscr{K}, αx(x)=x\alpha_{x}(x)=x.

  2. 2.

    For all x𝒦x\in\mathscr{K}, αx2=1G.\alpha_{x}^{2}=1_{G}.

  3. 3.

    For all gGg\in G and x𝒦x\in\mathscr{K}, αg(x)=gαxg1G\alpha_{g(x)}=g\alpha_{x}g^{-1}\in G.

A morphism of augmented keis (𝒦,G,α)(𝒦,G,α)(\mathscr{K},G,\alpha)\to(\mathscr{K}^{\prime},G^{\prime},\alpha^{\prime}) consists of a function f:𝒦𝒦f\colon\mathscr{K}\to\mathscr{K}^{\prime} and group homomorphism f~:GG\widetilde{f}\colon G\to G^{\prime} satisfying

  1. 1.

    For every x𝒦x\in\mathscr{K}, αf(x)=f~(αx)G\alpha^{\prime}_{f(x)}=\widetilde{f}(\alpha_{x})\in G^{\prime}.

  2. 2.

    For every x𝒦x\in\mathscr{K} and gGg\in G, f(g(x))=f~(g)(f(x))𝒦f(g(x))=\widetilde{f}(g)(f(x))\in\mathscr{K}^{\prime}.

In other words, the following diagram commutes:

G×𝒦𝒦GG×𝒦𝒦G(f~,f)αff~α.\leavevmode\hbox to124.18pt{\vbox to55.66pt{\pgfpicture\makeatletter\hbox{\hskip 63.60175pt\lower-30.8944pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-59.52576pt}{-24.76385pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 17.12567pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.82013pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G\times\mathscr{K}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 17.12567pt\hfil&\hfil\hskip 32.19441pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.8889pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathscr{K}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 8.19444pt\hfil&\hfil\hskip 32.23676pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.93124pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.23679pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 17.55458pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.24904pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G^{\prime}\times\mathscr{K}^{\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 17.55458pt\hfil&\hfil\hskip 32.9644pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.65889pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathscr{K}^{\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.96443pt\hfil&\hfil\hskip 33.00674pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.70123pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G^{\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.00677pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.07988pt}{2.39986pt}\pgfsys@curveto{-1.69989pt}{0.95992pt}{-0.85313pt}{0.27998pt}{0.0pt}{0.0pt}\pgfsys@curveto{-0.85313pt}{-0.27998pt}{-1.69989pt}{-0.95992pt}{-2.07988pt}{-2.39986pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}{}{}{{}}\pgfsys@moveto{-24.64551pt}{12.2778pt}\pgfsys@lineto{-0.2466pt}{12.2778pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-0.04662pt}{12.2778pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-41.97118pt}{5.08478pt}\pgfsys@lineto{-41.97118pt}{-12.11531pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-41.97118pt}{-12.31529pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-61.44897pt}{-6.45135pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{(\widetilde{f}{,}f)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{16.94225pt}{12.2778pt}\pgfsys@lineto{41.68224pt}{12.2778pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{41.88222pt}{12.2778pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.27327pt}{14.63057pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{8.5478pt}{5.91809pt}\pgfsys@lineto{8.5478pt}{-12.11533pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{8.5478pt}{-12.3153pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01447pt}{-5.0486pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{f}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{50.51898pt}{5.91809pt}\pgfsys@lineto{50.51898pt}{-12.11533pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{50.51898pt}{-12.3153pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{52.87175pt}{-6.90971pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\widetilde{f}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-24.2166pt}{-22.26385pt}\pgfsys@lineto{-1.01659pt}{-22.26385pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-0.8166pt}{-22.26385pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{17.71223pt}{-22.26385pt}\pgfsys@lineto{40.91225pt}{-22.26385pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{41.11223pt}{-22.26385pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.72328pt}{-28.74162pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha^{\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\;\;. (3)

Together with morphisms, augmented keis form a category 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}.

Example 2.5.

Let G𝒢rpG\in{\mathscr{G}\textnormal{rp}} group and let XGX\subseteq G be a union of conjugacy classes in GG s.t. x2=1Gx^{2}=1_{G} for all xXx\in X. Let ι:XG\iota\colon X\hookrightarrow G denote the inclusion. Then (X,G,ι)(X,G,\iota) is an augmented kei, where for all xXx\in X and gGg\in G,

g(x)=gxg1.g(x)=gxg^{-1}.

As the name suggests, for (𝒦,G,α)𝒜ug𝒦ei(\mathscr{K},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}, the set 𝒦\mathscr{K} has a canonical kei structure. We omit the proof of the following easily verifiable proposition:

Proposition 2.6.

For every (𝒦,G,α)𝒜ug𝒦ei(\mathscr{K},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}, the operator

𝒦×𝒦𝒦,(x,y)αx(y)\mathscr{K}\times\mathscr{K}\to\mathscr{K}\;\;\;,\;\;\;\;\;\;(x,y)\mapsto\alpha_{x}(y)

defines a kei structure on 𝒦\mathscr{K}. This extends to a functor

Kei:𝒜ug𝒦ei𝒦ei,𝒜=(𝒦,G,α)𝒦.{\textnormal{Kei}_{\bullet}}\colon{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}\to{\mathscr{K}\textnormal{ei}}\;\;\;,\;\;\;\;\;\;\mathscr{A}=(\mathscr{K},G,\alpha)\mapsto\mathscr{K}.
Definition 2.7.

Let 𝒦𝒦ei\mathscr{K}\in{\mathscr{K}\textnormal{ei}} and let x𝒦x\in\mathscr{K}. We denote by

φx=φ𝒦,x:𝒦𝒦:y𝒦,φx(y)=yx\varphi_{x}=\varphi_{\mathscr{K},x}\colon\mathscr{K}\to\mathscr{K}\;\;:\;\;\;\;\forall y\in\mathscr{K}\;,\;\varphi_{x}(y)={{}^{x}{y}}

By (K2), φx\varphi_{x} is a bijection and by (K3), φxAut𝒦ei(𝒦)\varphi_{x}\in\textnormal{Aut}_{\mathscr{K}\textnormal{ei}}(\mathscr{K}). By Inn(𝒦)\textnormal{Inn}(\mathscr{K}) we denote the subgroup

Inn(𝒦)={φx|x𝒦}Aut𝒦ei(𝒦),\textnormal{Inn}(\mathscr{K})=\langle\{\varphi_{x}\;|\;x\in\mathscr{K}\}\rangle\leq\textnormal{Aut}_{\mathscr{K}\textnormal{ei}}(\mathscr{K}),

and by φ𝒦:𝒦Inn(𝒦)\varphi_{\mathscr{K}}\colon\mathscr{K}\to\textnormal{Inn}(\mathscr{K}) the map

φ𝒦:xφ𝒦,x.\varphi_{\mathscr{K}}\colon x\longmapsto\varphi_{\mathscr{K},x}.

The following notion of conciseness is not new - see [Joy82, Thm 10.2] for one of several examples of prior usage. We rely heavily on this property, and therefore see fit to give it a name:

Definition 2.8.

An augmented kei 𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} is concise if the image of α\alpha generates GG, that is,

{αx|x𝒦}=G.\langle\{\alpha_{x}\;|\;x\in\mathscr{K}\}\rangle=G.
Proposition 2.9.

Let 𝒦𝒦ei\mathscr{K}\in{\mathscr{K}\textnormal{ei}}. Then (𝒦,Inn(𝒦),φ𝒦)(\mathscr{K},\textnormal{Inn}(\mathscr{K}),\varphi_{\mathscr{K}}) is a concise augmented kei.

Proof.

Let x𝒦x\in\mathscr{K}. Then

φx(x)=xx=x,\varphi_{x}(x)={{}^{x}{x}}=x,

and for all y𝒦y\in\mathscr{K},

φx2(y)=(yx)x=y.\varphi_{x}^{2}(y)={{}^{x}{({{}^{x}{y}})}}=y.

Therefore φx2=Id𝒦\varphi_{x}^{2}=\textnormal{Id}_{\mathscr{K}}. For g=φyInn(𝒦)g=\varphi_{y}\in\textnormal{Inn}(\mathscr{K}) we have for all z𝒦z\in\mathscr{K},

(φg(x)g)(z)=(φφy(x)φy)(z)=(zy)(xy)=(zx)y=(gφx)(z).(\varphi_{g(x)}\circ g)(z)=(\varphi_{\varphi_{y}(x)}\circ\varphi_{y})(z)={{}^{({{}^{y}{x}})}{({{}^{y}{z}})}}={{}^{y}{({{}^{x}{z}})}}=(g\circ\varphi_{x})(z).

That is,

φg(x)=gφxg1.\varphi_{g(x)}=g\circ\varphi_{x}\circ g^{-1}.

This equality holds for all g{φy|y𝒦}=Inn(𝒦)g\in\langle\{\varphi_{y}\;|\;y\in\mathscr{K}\}\rangle=\textnormal{Inn}(\mathscr{K}). Hence (𝒦,Inn(𝒦),φ𝒦)(\mathscr{K},\textnormal{Inn}(\mathscr{K}),\varphi_{\mathscr{K}}) is a concise augmented kei. ∎

Definition 2.10.

Let 𝒦𝒦ei\mathscr{K}\in{\mathscr{K}\textnormal{ei}}. By 𝒜𝒦𝒜ug𝒦ei\mathscr{A}_{\mathscr{K}}\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} we denote the augmented kei

𝒜𝒦:=(𝒦,Inn(𝒦),φ𝒦).\mathscr{A}_{\mathscr{K}}:=(\mathscr{K},\textnormal{Inn}(\mathscr{K}),\varphi_{\mathscr{K}}).
Proposition 2.11.

Let 𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} be concise, and let f:𝒦𝒦f\colon\mathscr{K}\twoheadrightarrow\mathscr{K}^{\prime} be a surjective morphism in 𝒦ei{\mathscr{K}\textnormal{ei}}. Then there is a unique ρ:GInn(𝒦)\rho\colon G\to\textnormal{Inn}(\mathscr{K}^{\prime}) s.t.

(f,ρ):(𝒦,G,α)𝒜𝒦(f,\rho)\colon(\mathscr{K},G,\alpha)\to\mathscr{A}_{\mathscr{K}^{\prime}}

is a morphism in 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}. Furthermore, ρ\rho is surjective.

Proof.

The desired ρ:GInn(𝒦)\rho\colon G\to\textnormal{Inn}(\mathscr{K}^{\prime}) must satisfy, for all x𝒦x\in\mathscr{K} and gGg\in G:

(i):ρ(αx)=φf(x)and(ii):ρ(g)(f(x))=f(g(x)).(i):\;\rho(\alpha_{x})=\varphi_{f(x)}\;\;\;\;\textrm{and}\;\;\;\;(ii):\;\rho(g)(f(x))=f(g(x)).

Let F𝒦𝒢rpF_{\mathscr{K}}\in{\mathscr{G}\textnormal{rp}} denote the free group on the set 𝒦\mathscr{K}. The maps α:𝒦G\alpha\colon\mathscr{K}\to G and

φf:𝒦Inn(𝒦),xφf(x).\varphi_{f}\colon\mathscr{K}\to\textnormal{Inn}(\mathscr{K}^{\prime})\;\;,\;\;\;\;x\mapsto\varphi_{f(x)}.

extend to respective group homomorphisms

α~:F𝒦G,φf~:F𝒦Inn(𝒦).\widetilde{\alpha}\colon F_{\mathscr{K}}\to G\;\;,\;\;\;\;\widetilde{\varphi_{f}}\colon F_{\mathscr{K}}\to\textnormal{Inn}(\mathscr{K}^{\prime}).

Condition (i)(i) is equivalent to the commuting of the diagram

GF𝒦Inn(𝒦)ρα~φf~.\leavevmode\hbox to149.69pt{\vbox to50.59pt{\pgfpicture\makeatletter\hbox{\hskip 74.84425pt\lower-29.90825pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-74.84425pt}{-20.68048pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 32.23676pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.93124pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.23679pt\hfil\cr\vskip 8.99994pt\cr\hfil\hskip 10.39305pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.08751pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${F_{\mathscr{K}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 10.39305pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 44.21443pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.90892pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\textnormal{Inn}(\mathscr{K}^{\prime})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 20.21446pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@setdash{2.79985pt,1.59991pt}{0.0pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{10.61536pt}{2.55382pt}\pgfsys@lineto{33.85353pt}{-8.39711pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.90459}{-0.42628}{0.42628}{0.90459}{34.03444pt}{-8.48235pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{24.76811pt}{0.70697pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\rho}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-53.85815pt}{-14.2527pt}\pgfsys@lineto{-6.63321pt}{3.26196pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.93759}{0.34773}{-0.34773}{0.93759}{-6.44571pt}{3.33148pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.96652pt}{-3.07307pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\widetilde{\alpha}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-53.85815pt}{-18.18048pt}\pgfsys@lineto{33.81537pt}{-18.18048pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{34.01535pt}{-18.18048pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.5992pt}{-27.75548pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\widetilde{\varphi_{f}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Since 𝒜\mathscr{A} is concise, α~\widetilde{\alpha} is surjective, then ρ\rho - should it exist - is unique. Let x1,,xn𝒦x_{1},\dots,x_{n}\in\mathscr{K} and let ε1,εn{±1}\varepsilon_{1}\dots,\varepsilon_{n}\in\{\pm 1\}. Then for all y𝒦y\in\mathscr{K},

φf~(x1ε1xnεn)(f(y))=(φf(x1)φf(xn))(f(y))=\widetilde{\varphi_{f}}\left(x_{1}^{\varepsilon_{1}}\cdots x_{n}^{\varepsilon_{n}}\right)(f(y))=(\varphi_{f(x_{1})}\circ\cdots\circ\varphi_{f(x_{n})})(f(y))=
=(ff(xn)(y))f(x1)=f(x1(yxn))=f(αx1ε1αxnεn(y)).={{}^{f(x_{1})}{(\dots{{}^{f(x_{n})}{f(y)}}\dots)}}=f\left({{}^{x_{1}}{\dots({{}^{x_{n}}{y}})\dots}}\right)=f(\alpha_{x_{1}}^{\varepsilon_{1}}\cdots\alpha_{x_{n}}^{\varepsilon_{n}}(y)).

If x1,,xn𝒦x_{1},\dots,x_{n}\in\mathscr{K} are s.t. α~(x1ε1xnεn)=αx1ε1αxnεn=1\widetilde{\alpha}\left(x_{1}^{\varepsilon_{1}}\cdots x_{n}^{\varepsilon_{n}}\right)=\alpha_{x_{1}}^{\varepsilon_{1}}\cdots\alpha_{x_{n}}^{\varepsilon_{n}}=1, then for all y𝒦y\in\mathscr{K},

φf~(x1ε1xnεn)(f(y))=f(αx1ε1αxnεn(y))=f(y).\widetilde{\varphi_{f}}\left(x_{1}^{\varepsilon_{1}}\cdots x_{n}^{\varepsilon_{n}}\right)(f(y))=f(\alpha_{x_{1}}^{\varepsilon_{1}}\cdots\alpha_{x_{n}}^{\varepsilon_{n}}(y))=f(y).

Since ff is surjective, we have

α~(x1ε1xnεn)=1φf~(x1ε1xnεn)=Id𝒦.\widetilde{\alpha}\left(x_{1}^{\varepsilon_{1}}\cdots x_{n}^{\varepsilon_{n}}\right)=1\;\;\Longrightarrow\;\;\widetilde{\varphi_{f}}\left(x_{1}^{\varepsilon_{1}}\cdots x_{n}^{\varepsilon_{n}}\right)=\textnormal{Id}_{\mathscr{K}^{\prime}}.

Hence there exists ρ:GInn(𝒦)\rho\colon G\to\textnormal{Inn}(\mathscr{K}^{\prime}) satisfying condition (i)(i):

ρα~=φf~.\rho\circ\widetilde{\alpha}=\widetilde{\varphi_{f}}.

Furthermore, since 𝒜\mathscr{A} is concise, for all g=αx1ε1αxnεnGg=\alpha_{x_{1}}^{\varepsilon_{1}}\cdots\alpha_{x_{n}}^{\varepsilon_{n}}\in G we have

ρ(g)f=φf~(x1ε1xnεn)f=fαx1ε1αxnεn=fg.\rho(g)\circ f=\widetilde{\varphi_{f}}\left(x_{1}^{\varepsilon_{1}}\cdots x_{n}^{\varepsilon_{n}}\right)\circ f=f\circ\alpha_{x_{1}}^{\varepsilon_{1}}\cdots\alpha_{x_{n}}^{\varepsilon_{n}}=f\circ g.

Therefore ρ\rho satsifies condition (ii)(ii) as well, hence

(f,ρ):(𝒦,G,α)(𝒦,Inn(𝒦),φ𝒦)(f,\rho)\colon(\mathscr{K},G,\alpha)\to(\mathscr{K}^{\prime},\textnormal{Inn}(\mathscr{K}^{\prime}),\varphi_{\mathscr{K}^{\prime}})

is a morphism in 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}. Also, ρ\rho is surjective:

ρ(G)=ρ({αx|x𝒦})={φx|x𝒦}=Inn(𝒦).\rho(G)=\rho(\langle\{\alpha_{x}\;|\;x\in\mathscr{K}\}\rangle)=\langle\{\varphi_{x^{\prime}}\;|\;x^{\prime}\in\mathscr{K}^{\prime}\}\rangle=\textnormal{Inn}(\mathscr{K}^{\prime}).

Definition 2.12.

Let 𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} be concise and let f:𝒦𝒦f\colon\mathscr{K}\to\mathscr{K}^{\prime} be a morphism in 𝒦ei{\mathscr{K}\textnormal{ei}}. For 𝒦′′:=f(𝒦)𝒦\mathscr{K}^{\prime\prime}:=f(\mathscr{K})\leq\mathscr{K}^{\prime} We denote by

ρ𝒜,f:GInn(𝒦′′)\rho_{\mathscr{A},f}\colon G\twoheadrightarrow\textnormal{Inn}(\mathscr{K}^{\prime\prime})

the homomorphism ρ\rho from proposition 2.11. If 𝒜=𝒜𝒦\mathscr{A}={\mathscr{A}_{\mathscr{K}}} or if f=Id𝒦f=\textnormal{Id}_{\mathscr{K}}, we respectively denote by:

ρf:=ρ𝒜𝒦,f:Inn(𝒦)Inn(𝒦′′),ρ𝒜:=ρ𝒜,Id𝒦:GInn(𝒦).\rho_{f}:=\rho_{{\mathscr{A}_{\mathscr{K}}},f}\colon\textnormal{Inn}(\mathscr{K})\twoheadrightarrow\textnormal{Inn}(\mathscr{K}^{\prime\prime})\;\;,\;\;\;\;\rho_{\mathscr{A}}:=\rho_{\mathscr{A},\textnormal{Id}_{\mathscr{K}}}\colon G\twoheadrightarrow\textnormal{Inn}(\mathscr{K}).

The following proposition is a straightforward consequence of proposition 2.11. The proof, a routine check, is omitted.

Proposition 2.13.

The map

𝒜:𝒦𝒜𝒦=(𝒦,Inn(𝒦),φ𝒦)𝒜ug𝒦ei{\mathscr{A}_{\bullet}}\colon\mathscr{K}\mapsto{\mathscr{A}_{\mathscr{K}}}=(\mathscr{K},\textnormal{Inn}(\mathscr{K}),\varphi_{\mathscr{K}})\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}

is functorial in surjective morphisms in 𝒦ei{\mathscr{K}\textnormal{ei}}, mapping f:𝒦𝒦f\colon\mathscr{K}\twoheadrightarrow\mathscr{K}^{\prime} to

(f,ρf)Hom𝒜ug𝒦ei(𝒜𝒦,𝒜𝒦).(f,\rho_{f})\in\textnormal{Hom}_{{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}}(\mathscr{A}_{\mathscr{K}},\mathscr{A}_{\mathscr{K}^{\prime}}).

Accordingly, the map 𝒦Inn(𝒦)\mathscr{K}\mapsto\textnormal{Inn}(\mathscr{K}) that sends f:𝒦𝒦f\colon\mathscr{K}\twoheadrightarrow\mathscr{K}^{\prime} to

ρfHom𝒢rp(Inn(𝒦),Inn(𝒦))\rho_{f}\in\textnormal{Hom}_{\mathscr{G}\textnormal{rp}}(\textnormal{Inn}(\mathscr{K}),\textnormal{Inn}(\mathscr{K}^{\prime}))

is functorial in surjective morphisms.

Proposition 2.14.

Let 𝒜=(𝒦,G,α),𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha),\mathscr{A}^{\prime}=(\mathscr{K}^{\prime},G^{\prime},\alpha^{\prime})\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} and let (f,f~):𝒜𝒜(f,\widetilde{f})\colon\mathscr{A}\to\mathscr{A}^{\prime} be a morphism. Then

(f(𝒦),f~(G),α|f(𝒦))𝒜ug𝒦ei(f(\mathscr{K}),\widetilde{f}(G),\alpha^{\prime}_{|f(\mathscr{K})})\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}

is a sub-augmented kei of 𝒜\mathscr{A}^{\prime}.

Proof.

Let y=f(x)f(𝒦)y=f(x)\in f(\mathscr{K}) and let h=f~(g)f~(G)h=\widetilde{f}(g)\in\widetilde{f}(G). Then

αy=αf(x)=f~(αx)f~(G)\alpha^{\prime}_{y}=\alpha^{\prime}_{f(x)}=\widetilde{f}(\alpha_{x})\in\widetilde{f}(G)

and

h(y)=f~(g)(f(x))=f(g(x))f(𝒦).h(y)=\widetilde{f}(g)(f(x))=f(g(x))\in f(\mathscr{K}).

Therefore (f(𝒦),f~(G),α|f(𝒦))(f(\mathscr{K}),\widetilde{f}(G),\alpha^{\prime}_{|f(\mathscr{K})}) is a sub-augmented kei of 𝒜\mathscr{A}^{\prime}. ∎

Definition 2.15.

Let 𝒜=(𝒦,G,α),𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha),\mathscr{A}^{\prime}=(\mathscr{K}^{\prime},G^{\prime},\alpha^{\prime})\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} and let (f,f~):𝒜𝒜(f,\widetilde{f})\colon\mathscr{A}\to\mathscr{A}^{\prime} be a morphism. We define the image of (f,f~)(f,\widetilde{f}) to be the augmented kei

im(f,f~):=(f(𝒦),f~(G),α|f(𝒦))𝒜.\operatorname{im}(f,\widetilde{f}):=(f(\mathscr{K}),\widetilde{f}(G),\alpha^{\prime}_{|f(\mathscr{K})})\leq\mathscr{A}^{\prime}.

We say (f,f~)(f,\widetilde{f}) is surjective if

im(f,f~)=𝒜,\operatorname{im}(f,\widetilde{f})=\mathscr{A}^{\prime},

that is, if f:𝒦𝒦f\colon\mathscr{K}\to\mathscr{K}^{\prime} and f~:GG\widetilde{f}\colon G\to G^{\prime} are both surjective.

Lemma 2.16.

Let (f,f~):𝒜𝒜(f,\widetilde{f})\colon\mathscr{A}\twoheadrightarrow\mathscr{A}^{\prime} be a surjective morphism in 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}. Assume 𝒜\mathscr{A} is concise. Then 𝒜\mathscr{A}^{\prime} is also concise.

Proof.

Write 𝒜=(𝒦,G,α)\mathscr{A}=(\mathscr{K},G,\alpha) and 𝒜=(𝒦,G,α)\mathscr{A}^{\prime}=(\mathscr{K}^{\prime},G^{\prime},\alpha^{\prime}). We have the following equality of subgroups of GG^{\prime}:

{αy}y𝒦={αf(x)}x𝒦={f~(αx)}x𝒦=f~({αx}x𝒦)=f~(G)=G.\langle\{\alpha^{\prime}_{y}\}_{y\in\mathscr{K}^{\prime}}\rangle=\langle\{\alpha^{\prime}_{f(x)}\}_{x\in\mathscr{K}}\rangle=\langle\{\widetilde{f}(\alpha_{x})\}_{x\in\mathscr{K}}\rangle=\widetilde{f}\left(\langle\{\alpha_{x}\}_{x\in\mathscr{K}}\rangle\right)=\widetilde{f}(G)=G^{\prime}.

Corollary 2.17.

Let 𝒜=(𝒦,G,α),𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha),\mathscr{A}^{\prime}=(\mathscr{K},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} be concise and let (f,f~):𝒜𝒜(f,\widetilde{f})\colon\mathscr{A}\to\mathscr{A}^{\prime} be a surjective morphism in 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}. Then

ρfρ𝒜=ρ𝒜f~:GInn(𝒦)GInn(𝒦)ρ𝒜f~//ρfρ𝒜\rho_{f}\circ\rho_{\mathscr{A}}=\rho_{\mathscr{A}^{\prime}}\circ\widetilde{f}\;\;\;\;:\;\;\;\;\;\;\;\;\leavevmode\hbox to83.5pt{\vbox to60.36pt{\pgfpicture\makeatletter\hbox{\hskip 42.27556pt\lower-33.59439pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-41.22122pt}{-26.76387pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 8.23679pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.93124pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 8.23679pt\hfil&\hfil\hskip 43.44444pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.13893pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\textnormal{Inn}(\mathscr{K})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.44447pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 9.00677pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.70123pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G^{\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.00677pt\hfil&\hfil\hskip 44.21443pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.90892pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\textnormal{Inn}(\mathscr{K}^{\prime})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 20.21446pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-23.77766pt}{11.94446pt}\pgfsys@lineto{0.96233pt}{11.94446pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.16231pt}{11.94446pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.51723pt}{15.6639pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\rho_{\mathscr{A}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-32.21445pt}{5.58475pt}\pgfsys@lineto{-32.21445pt}{-14.11534pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-32.21445pt}{-14.31532pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-40.12279pt}{-8.07639pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\widetilde{f}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.54613pt}{-6.6535pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${//}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{21.00676pt}{3.08475pt}\pgfsys@lineto{21.00676pt}{-14.11534pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{21.00676pt}{-14.31532pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.35953pt}{-6.13889pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\rho_{f}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-23.00768pt}{-24.26387pt}\pgfsys@lineto{0.19234pt}{-24.26387pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.39232pt}{-24.26387pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.95723pt}{-29.63052pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\rho_{\mathscr{A}^{\prime}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
Proof.

The statements of proposition 2.11 and proposition 2.13 are interpreted in terms of an adjunction

𝒜Kei,𝒜:𝒦eisurj𝒜ug𝒦eicssurj:Kei,{\mathscr{A}_{\bullet}}\dashv{\textnormal{Kei}_{\bullet}}\;\;,\;\;\;\;\leavevmode\hbox to136.86pt{\vbox to20.48pt{\pgfpicture\makeatletter\hbox{\hskip 68.42783pt\lower-11.49452pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-68.42783pt}{-8.98358pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 22.95668pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.65114pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathscr{A}_{\bullet}}\colon{\mathscr{K}\textnormal{ei}}^{\textnormal{surj}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 22.95668pt\hfil&\hfil\hskip 57.47113pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.16562pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}_{\textnormal{cs}}^{\textnormal{surj}}\colon{\textnormal{Kei}_{\bullet}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 33.47116pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{{{}{}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{{}}}{{{}}}}{{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-22.31447pt}{-4.07248pt}\pgfsys@lineto{0.88554pt}{-4.07248pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.08553pt}{-4.07248pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{{{}{}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{{}}}{{{}}}}{{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{1.2855pt}{-8.89468pt}\pgfsys@lineto{-21.9145pt}{-8.89468pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-22.11449pt}{-8.89468pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

where 𝒦eisurj𝒦ei{\mathscr{K}\textnormal{ei}}^{\textnormal{surj}}\subseteq{\mathscr{K}\textnormal{ei}} is the subcategory of all keis and surjective morphisms, 𝒜ug𝒦eicssurj𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}_{\textnormal{cs}}^{\textnormal{surj}}\subseteq{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} is the subcategory of concise augmented keis and surjective morphisms. The desired square is obtained from the unit of the adjunction:

𝒜{\mathscr{A}}(𝒦,Inn(𝒦),φ𝒦){(\mathscr{K},\textnormal{Inn}(\mathscr{K}),\varphi_{\mathscr{K}})}𝒜{\mathscr{A}^{\prime}}(𝒦,Inn(𝒦),φ𝒦){(\mathscr{K}^{\prime},\textnormal{Inn}(\mathscr{K}^{\prime}),\varphi_{\mathscr{K}^{\prime}})}(Id𝒦,ρ𝒜)\scriptstyle{(\textnormal{Id}_{\mathscr{K}}{,}\rho_{\mathscr{A}})}(f,f~)\scriptstyle{(f{,}\widetilde{f})}//{//}(f,ρf)\scriptstyle{(f{,}\rho_{f})}(Id𝒦,ρ𝒜)\scriptstyle{(\textnormal{Id}_{\mathscr{K}^{\prime}}{,}\rho_{\mathscr{A}^{\prime}})}

Proposition 2.18.

Let 𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} and let HGH\unlhd G. Let

αH:H\𝒦H\G,αH:HxHαx,\alpha_{H}\colon H\backslash\mathscr{K}\to H\backslash G\;\;,\;\;\;\;\alpha_{H}\colon Hx\mapsto H\alpha_{x},

where H\𝒦H\backslash\mathscr{K} is the quotient in 𝒮et{\mathscr{S}\textnormal{et}}. Then (H\𝒦,H\G,αH)(H\backslash\mathscr{K},H\backslash G,\alpha_{H}) is an augmented kei and the quotient map (𝒦,G,α)(H\𝒦,H\G,αH)(\mathscr{K},G,\alpha)\to(H\backslash\mathscr{K},H\backslash G,\alpha_{H}) is a morphism in 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}. In particular H\𝒦H\backslash\mathscr{K} inherits a well-defined kei structure from 𝒦\mathscr{K}, and the quotient map 𝒦H\𝒦\mathscr{K}\to H\backslash\mathscr{K} is a morphism in 𝒦ei{\mathscr{K}\textnormal{ei}}.

Proof.

It suffices to show that αH\alpha_{H} is a well-defined function and that the H\GH\backslash G-action on H\𝒦H\backslash\mathscr{K} is well-defined. Let x𝒦x\in\mathscr{K}, let gGg\in G and let hHh\in H. Then

αh(x)=hαxh1=h(αxhαx1)αxHαx,\alpha_{h(x)}=h\alpha_{x}h^{-1}=h(\alpha_{x}h\alpha_{x}^{-1})\alpha_{x}\in H\alpha_{x},
(hg)(x)=h(g(x))Hg(x),g(h(x))=(ghg1)(g(x))Hg(x).(hg)(x)=h(g(x))\in Hg(x)\;\;,\;\;\;\;g(h(x))=(ghg^{-1})(g(x))\in Hg(x).

The aumgented kei axioms on (H\𝒦,H\G,αH)(H\backslash\mathscr{K},H\backslash G,\alpha_{H}) are seen to hold by routine lifting to 𝒜\mathscr{A}. Consequently H\𝒦H\backslash\mathscr{K} is a kei with structure induced from 𝒦\mathscr{K}:

y¯x¯=yx¯,{{}^{\overline{x}}{\overline{y}}}=\overline{{{}^{x}{y}}},

that is, the quotient map 𝒦H\𝒦\mathscr{K}\to H\backslash\mathscr{K} is a morphism in 𝒦ei{\mathscr{K}\textnormal{ei}}. ∎

Definition 2.19.

Let 𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} and let HGH\unlhd G. We denote by H\𝒜H\backslash\mathscr{A} we denote the augmented kei

H\𝒜:=(H\𝒦,H\G,αH)𝒜ug𝒦ei,H\backslash\mathscr{A}:=(H\backslash\mathscr{K},H\backslash G,\alpha_{H})\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}},
Proposition 2.20.

Let 𝒜=(𝒦,G,α),𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha),\mathscr{A}^{\prime}=(\mathscr{K}^{\prime},G^{\prime},\alpha^{\prime})\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} and let (f,f~):𝒜𝒜(f,\widetilde{f})\colon\mathscr{A}\to\mathscr{A}^{\prime}. Denote by Hf~:=ker(f~:GG)GH_{\widetilde{f}}:=\ker(\widetilde{f}\colon G\to G^{\prime})\unlhd G. Then (f,f~)(f,\widetilde{f}) factors through the quotient

Hf~\𝒜𝒜H_{\widetilde{f}}\backslash\mathscr{A}\to\mathscr{A}^{\prime}
Proof.

By proposition 2.18, Hf~\𝒜𝒜ug𝒦eiH_{\widetilde{f}}\backslash\mathscr{A}\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} and 𝒜Hf~\𝒜\mathscr{A}\to H_{\widetilde{f}}\backslash\mathscr{A} is a morphism in 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}. Let x𝒦x\in\mathscr{K}, let gGg\in G and let hHf~h\in H_{\widetilde{f}}. Then f~(h)=1\widetilde{f}(h)=1, hence

f~(hg)=f~(h)f~(g)=f~(g),\widetilde{f}(hg)=\widetilde{f}(h)\widetilde{f}(g)=\widetilde{f}(g),
f(h(x))=f~(h)(f(x))=f(x).f(h(x))=\widetilde{f}(h)(f(x))=f(x).

This suffices to show that (f,f~)(f,\widetilde{f}) factors through Hf~\𝒜H_{\widetilde{f}}\backslash\mathscr{A}. ∎

Proposition 2.21.

Let 𝒜=(𝒦,G,α)𝒜ug𝒦ei\mathscr{A}=(\mathscr{K},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} be concise, let 𝒦𝒦ei\mathscr{K}^{\prime}\in{\mathscr{K}\textnormal{ei}}, and let f:𝒦𝒦f\colon\mathscr{K}\to\mathscr{K}^{\prime} be a morphism in 𝒦ei{\mathscr{K}\textnormal{ei}}. Let 𝒦′′𝒦\mathscr{K}^{\prime\prime}\leq\mathscr{K}^{\prime} denote the image 𝒦′′:=f(𝒦)\mathscr{K}^{\prime\prime}:=f(\mathscr{K}) of ff. Then ff factors through

Hf\𝒦𝒦,H_{f}\backslash\mathscr{K}\to\mathscr{K}^{\prime},

where

Hf:=ker(ρ𝒜,f:GInn(𝒦′′))G.H_{f}:=\ker(\rho_{\mathscr{A},f}\colon G\twoheadrightarrow\textnormal{Inn}(\mathscr{K}^{\prime\prime}))\unlhd G.
Proof.

By proposition 2.11, f:𝒦𝒦′′f\colon\mathscr{K}\twoheadrightarrow\mathscr{K}^{\prime\prime} lifts to a surjective morphism

(f,ρ𝒜,f):𝒜𝒜𝒦′′(f,\rho_{\mathscr{A},f})\colon\mathscr{A}\twoheadrightarrow\mathscr{A}_{\mathscr{K}^{\prime\prime}}

in 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}. By proposition 2.20, (f,ρ𝒜,f)(f,\rho_{\mathscr{A},f}) factors through

Hf\𝒜𝒜𝒦′′.H_{f}\backslash\mathscr{A}\to\mathscr{A}_{\mathscr{K}^{\prime\prime}}.

Forgetting to 𝒦ei{\mathscr{K}\textnormal{ei}}, we find that f:𝒦𝒦f\colon\mathscr{K}\to\mathscr{K}^{\prime} factors through

Hf\𝒦𝒦′′𝒦.H_{f}\backslash\mathscr{K}\twoheadrightarrow\mathscr{K}^{\prime\prime}\hookrightarrow\mathscr{K}^{\prime}.

2.2 Profinite Keis and Augmented Keis

In this section we discuss profinite keis, which are formal cofiltered limits of finite keis. Closely related notions were extensively developed in [BCJ+24]. Stone duality is the statement that profinite sets are equivalent to Stone spaces - compact, Hausdorff totally-disconnected topological spaces. More precisely, the fully-faithful embedding

δ:𝒮etfin𝒯op\delta\colon{\mathscr{S}\textnormal{et}}^{\textnormal{fin}}\hookrightarrow{\mathscr{T}\textnormal{op}}

of finite sets as discrete topological spaces lifts to a fully faithful functor

δ^:Pro-𝒮etfin𝒯op.\widehat{\delta}\colon\textnormal{Pro-}{\mathscr{S}\textnormal{et}}^{\textnormal{fin}}\hookrightarrow{\mathscr{T}\textnormal{op}}.

Similarly, the embedding of finite groups into topological groups extends to a fully-faithful functor

Pro-𝒢rpfin𝒢rp𝒯op.\textnormal{Pro-}{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}}\hookrightarrow{\mathscr{G}\textnormal{rp}}^{\mathscr{T}\textnormal{op}}.

Hence for 𝔊,𝔊Pro-𝒢rpfin\mathfrak{G},\mathfrak{G}^{\prime}\in\textnormal{Pro-}{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}} we denote by

Hom𝒢rpcont(𝔊,𝔊):=HomPro-𝒢rpfin(𝔊,𝔊).\textnormal{Hom}_{\mathscr{G}\textnormal{rp}}^{\textnormal{cont}}(\mathfrak{G},\mathfrak{G}^{\prime}):=\textnormal{Hom}_{\textnormal{Pro-}{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}}}(\mathfrak{G},\mathfrak{G}^{\prime}).

Like groups, the algberaic theory of keis consists of finitely-many operations of finite arity. An analogous statement for keis holds as well: the induced functor

Pro-𝒦eifin𝒦ei𝒯op\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}\hookrightarrow{\mathscr{K}\textnormal{ei}}^{\mathscr{T}\textnormal{op}}

is fully-faithful ([Joh82, §VI.2]). In considering topological augmented keis, it is not difficult to see that a similar argument works: the enduced functor

Pro-𝒜ug𝒦eifin𝒜ug𝒦ei𝒯op\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}\hookrightarrow{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\mathscr{T}\textnormal{op}}

is fully-faithful. We therefore make no distinction between profinite (augmented) keis and their corresponding topological (augmented) keis. For  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ , ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ Pro-𝒦eifin\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}^{\prime}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} and 𝔄,𝔄Pro-𝒜ug𝒦eifin\mathfrak{A},\mathfrak{A}^{\prime}\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} we denote by

Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ , ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ):=HomPro-𝒦eifin( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ , ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ),\textnormal{Hom}_{\mathscr{K}\textnormal{ei}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}^{\prime}):=\textnormal{Hom}_{\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}^{\prime}),
Hom𝒜ug𝒦eicont(𝔄,𝔄):=HomPro-𝒜ug𝒦eifin(𝔄,𝔄).\textnormal{Hom}_{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\mathfrak{A},\mathfrak{A}^{\prime}):=\textnormal{Hom}_{\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}}(\mathfrak{A},\mathfrak{A}^{\prime}).

It is perhaps worth mentioning that the forgetful functors

Pro-𝒢rpfin{\textnormal{Pro-}{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}}}Pro-𝒜ug𝒦eifin{\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}}Pro-𝒦eifin{\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}}𝔊{\mathfrak{G}}( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝔊,α){(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathfrak{G},\alpha)} ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​

are defined once as naturally extending the finite counterparts

𝒢rpfin𝒜ug𝒦eifin𝒦eifin,\leavevmode\hbox to158.34pt{\vbox to18.14pt{\pgfpicture\makeatletter\hbox{\hskip 79.17084pt\lower-9.12065pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-79.17084pt}{-9.02081pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 16.15417pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.84863pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 16.15417pt\hfil&\hfil\hskip 48.02222pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.7167pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 24.02225pt\hfil&\hfil\hskip 38.99442pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.6889pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.99445pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-23.06252pt}{-6.52081pt}\pgfsys@lineto{-46.26253pt}{-6.52081pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-46.46251pt}{-6.52081pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{25.38197pt}{-6.52081pt}\pgfsys@lineto{48.58199pt}{-6.52081pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{48.78197pt}{-6.52081pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\;\;,

and again as restricted from the topological counterparts

𝒢rp𝒯op𝒜ug𝒦ei𝒯op𝒦ei𝒯op.\leavevmode\hbox to169.08pt{\vbox to18.11pt{\pgfpicture\makeatletter\hbox{\hskip 84.5375pt\lower-9.10509pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-84.5375pt}{-9.00525pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 17.94305pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.63751pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathscr{G}\textnormal{rp}}^{\mathscr{T}\textnormal{op}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 17.94305pt\hfil&\hfil\hskip 49.81111pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.5056pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\mathscr{T}\textnormal{op}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 25.81114pt\hfil&\hfil\hskip 40.78331pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.4778pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathscr{K}\textnormal{ei}}^{\mathscr{T}\textnormal{op}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 16.78334pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-24.85143pt}{-6.50525pt}\pgfsys@lineto{-48.05144pt}{-6.50525pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-48.25142pt}{-6.50525pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{27.17085pt}{-6.50525pt}\pgfsys@lineto{50.37086pt}{-6.50525pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{50.57085pt}{-6.50525pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\;\;.

These two definitions in fact coincide. Also worth mentioning is that because 𝒦ei{\mathscr{K}\textnormal{ei}} and 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} have a well-behaved notion of images (see proposition 2.14 for 𝒜ug𝒦ei{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}), profinite keis and augmented keis can be presented as limits of cofiltered diagrams with surjective maps. This can be done canonically: For  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ Pro-𝒦eifin\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}, Let 𝒟 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ {\mathscr{D}}_{\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}} denote the category whose objects are

{(𝒦,f)|𝒦𝒦eifin,f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦},\{(\mathscr{K},f)\;\;|\;\;\;\;\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}\;,\;\;f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\twoheadrightarrow\mathscr{K}\},

and

Hom((𝒦,f),(𝒦,f))={h:𝒦𝒦|hf=f}.\textnormal{Hom}((\mathscr{K},f),(\mathscr{K}^{\prime},f^{\prime}))=\{h\colon\mathscr{K}\twoheadrightarrow\mathscr{K}^{\prime}\;|\;h\circ f=f^{\prime}\}.

Then 𝒟 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ {\mathscr{D}}_{\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}} is cofiltered, and

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ lim𝒟 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦.\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\simeq\lim_{\begin{subarray}{c}\longleftarrow\\ {\mathscr{D}}_{\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}}\end{subarray}}\mathscr{K}.

We set a convention: When we write

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ =lim𝒟𝒦dPro-𝒦eifin,\displaystyle{\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}=\lim_{\begin{subarray}{c}\longleftarrow\\ {\mathscr{D}}\end{subarray}}\mathscr{K}_{d}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}}, (4)

it is to be understood that 𝒟{\mathscr{D}} is a cofiltered diagram in 𝒦eifin{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}, and that the morphisms 𝒦d𝒦d\mathscr{K}_{d}\to\mathscr{K}_{d^{\prime}} in the diagram are all surjections. Likewise for

𝔄=lim𝒟𝒜dPro-𝒦eifin.\displaystyle{\mathfrak{A}=\lim_{\begin{subarray}{c}\longleftarrow\\ {\mathscr{D}}\end{subarray}}\mathscr{A}_{d}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}}.
Definition 2.22.

Let 𝔄=( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝔊,α)Pro-𝒜ug𝒦eifin\mathfrak{A}=(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathfrak{G},\alpha)\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} be a profinite augmented kei. We say 𝔄\mathfrak{A} is concise if {αx}x ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ \{\alpha_{x}\}_{x\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}} generates 𝔊\mathfrak{G} topologically:

{αx|x ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ }¯=𝔊.\overline{\langle\{\alpha_{x}\;|\;x\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\}\rangle}=\mathfrak{G}.

For finite 𝔄\mathfrak{A}, this notion of concisesness coincides with definition 2.8.

Lemma 2.23.

Let 𝔄𝔄\mathfrak{A}\twoheadrightarrow\mathfrak{A}^{\prime} be a surjective morphism in Pro-𝒜ug𝒦eifin\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}. Assume 𝔄\mathfrak{A} is concise. Then so is 𝔄\mathfrak{A}^{\prime}.

Proof.

Denote 𝔄=( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝔊,α)\mathfrak{A}=(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathfrak{G},\alpha) and 𝔄=( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝔊,α)\mathfrak{A}^{\prime}=(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}^{\prime},\mathfrak{G}^{\prime},\alpha^{\prime}). Because 𝔄\mathfrak{A} is concise, {αx}x ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ¯=𝔊\overline{\langle\{\alpha_{x}\}_{x\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}}\rangle}=\mathfrak{G}. Therefore

{αy}y ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ¯={αf(x)}x ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ¯={f~(αx)}x ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ¯=\overline{\langle\{\alpha^{\prime}_{y}\}_{y\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}^{\prime}}\rangle}=\overline{\langle\{\alpha^{\prime}_{f(x)}\}_{x\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}}\rangle}=\overline{\langle\{\widetilde{f}(\alpha_{x})\}_{x\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}}\rangle}=
=f~({(αx)}x ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ¯)=f~(𝔊)=𝔊.=\widetilde{f}\left(\overline{\langle\{(\alpha_{x})\}_{x\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}}\rangle}\right)=\widetilde{f}(\mathfrak{G})=\mathfrak{G}^{\prime}.

Hence 𝔄\mathfrak{A}^{\prime} is concise. ∎

Suppose 𝔄=lim𝒟𝒜dPro-𝒦eifin\displaystyle{\mathfrak{A}=\lim_{\begin{subarray}{c}\longleftarrow\\ {\mathscr{D}}\end{subarray}}\mathscr{A}_{d}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}} is concise. Then the projections 𝔄𝒜d\mathfrak{A}\to\mathscr{A}_{d} are all surjective. By lemma 2.23, each 𝒜d𝒜ug𝒦eifin\mathscr{A}_{d}\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} is also concise.

Proposition 2.24.

Let 𝔄=( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝔊,α)Pro-𝒦eifin\mathfrak{A}=(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathfrak{G},\alpha)\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} be concise. Let 𝒦𝒦ei\mathscr{K}\in{\mathscr{K}\textnormal{ei}} be finite and let f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\twoheadrightarrow\mathscr{K} be a surjective morphism in Pro-𝒦eifin\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}. Then there is a unique morphism ρ:𝔊Inn(𝒦)\rho\colon\mathfrak{G}\to\textnormal{Inn}(\mathscr{K}) s.t.

(f,ρ):𝔄𝒜𝒦=(𝒦,Inn(𝒦),φ𝒦)(f,\rho)\colon\mathfrak{A}\to\mathscr{A}_{\mathscr{K}}=(\mathscr{K},\textnormal{Inn}(\mathscr{K}),\varphi_{\mathscr{K}})

is a morphism in Pro-𝒜ug𝒦eifin\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}.

Proof.

Write 𝔄\mathfrak{A} as the limit

𝔄=limd𝒟𝒜d,𝒜d=(𝒦d,Gd,αd)𝒜ug𝒦eifin\mathfrak{A}=\lim\limits_{\begin{subarray}{c}\longleftarrow\\ d\in{\mathscr{D}}\end{subarray}}\mathscr{A}_{d}\;\;,\;\;\;\;\mathscr{A}_{d}=(\mathscr{K}_{d},G_{d},\alpha_{d})\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}

of a cofiltered diagram in 𝒜ug𝒦eifin{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} with surjections, so that

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ =limd𝒟𝒦d.\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}=\lim\limits_{\begin{subarray}{c}\longleftarrow\\ d\in{\mathscr{D}}\end{subarray}}\mathscr{K}_{d}.

Therefore f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\twoheadrightarrow\mathscr{K} factors through fd:𝒦d𝒦f_{d}\colon\mathscr{K}_{d}\twoheadrightarrow\mathscr{K} for some d𝒟d\in{\mathscr{D}}. The morphism 𝔄𝒜d\mathfrak{A}\to\mathscr{A}_{d} is surjective, therefore 𝒜d\mathscr{A}_{d} is concise by lemma 2.23. Proposition 2.11 implies the existence of a canonical morphism

(fd,ρd):𝒜d𝒜𝒦(f_{d},\rho_{d})\colon\mathscr{A}_{d}\to\mathscr{A}_{\mathscr{K}}

in 𝒜ug𝒦eifin{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}. The composition

(f,ρ):𝔄𝒜d(fd,ρd)𝒜𝒦(f,\rho)\colon\mathfrak{A}\to\mathscr{A}_{d}\xrightarrow{(f_{d},\rho_{d})}\mathscr{A}_{\mathscr{K}}

is a morphism in Pro-𝒜ug𝒦eifin\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} lifting ff. For all d𝒟d\in{\mathscr{D}} there is at most one such map (fd,ρd)(f_{d},\rho_{d}). Moreover the diagram 𝒟{\mathscr{D}} is cofiltered. Therefore (f,ρ)(f,\rho), independent of dd, is uniquely defined by ff. ∎

The following proposition lists versions of propositions from the previous section for profinite augmented keis. The proofs are fundamentally the same, and are therefore omitted.

Proposition 2.25.

  1. 1. (see 2.18):

    Let 𝔄=( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝔊,α)Pro-𝒜ug𝒦eifin\mathfrak{A}=(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathfrak{G},\alpha)\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} and let N𝔊N\unlhd\mathfrak{G} be closed. Then

    N\𝔄:=(N\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,N\𝔊,αN)Pro-𝒜ug𝒦eifin,N\backslash\mathfrak{A}:=(N\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},N\backslash\mathfrak{G},\alpha_{N})\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}},

    such that the quotient map 𝔄N\𝔄\mathfrak{A}\to N\backslash\mathfrak{A} is a morphism in Pro-𝒜ug𝒦eifin\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}.

  2. 2. (see 2.20):

    Let (f,f~):𝔄𝔄(f,\widetilde{f})\colon\mathfrak{A}\to\mathfrak{A}^{\prime} be a morphism in Pro-𝒜ug𝒦eifin\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}. Denote by Nf~:=ker(f~)N_{\widetilde{f}}:=\ker(\widetilde{f}). Then (f,f~)(f,\widetilde{f}) factors through the quotient

    Nf~\𝔄𝔄.N_{\widetilde{f}}\backslash\mathfrak{A}\to\mathfrak{A}^{\prime}.
  3. 3. (see 2.21):

    Let 𝔄=( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝔊,α)Pro-𝒜ug𝒦eifin\mathfrak{A}=(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathfrak{G},\alpha)\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} be concise, let 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} be finite, and let f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\to\mathscr{K} be a morphism in Pro-𝒦eifin\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}. Then ff factors through Nf\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ N_{f}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}, where

    Nf:=ker(ρ𝔄,f:𝔊Inn(f( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ )))𝔊.N_{f}:=\ker\left(\rho_{\mathfrak{A},f}\colon\mathfrak{G}\to\textnormal{Inn}(f(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}))\right)\unlhd\mathfrak{G}.
Definition 2.26.

A profinite group 𝔊Pro-𝒢rpfin\mathfrak{G}\in\textnormal{Pro-}{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}} is small if for all dd\in\mathbb{N}, 𝔊\mathfrak{G} has finitely-many open subgroups of index dd.

Proposition 2.27.

Let 𝔊Pro-𝒢rpfin\mathfrak{G}\in\textnormal{Pro-}{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}}. Then 𝔊\mathfrak{G} is small iff for all G𝒢rpfinG\in{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}},

|Hom𝒢rpcont(𝔊,G)|<.\left|\textnormal{Hom}_{{\mathscr{G}\textnormal{rp}}}^{\textnormal{cont}}(\mathfrak{G},G)\right|<\infty.
Proof.

Let H𝔊H\leq\mathfrak{G} be an open subgroup of index dd. Then

NH:=gH𝔊/HgHg1𝔊N_{H}:=\bigcap_{gH\in\mathfrak{G}/H}gHg^{-1}\leq\mathfrak{G}

is open and normal, satisfying

𝔊/NH𝔊/H𝔊/gHg1.\mathfrak{G}/N_{H}\hookrightarrow\prod_{\mathfrak{G}/H}\mathfrak{G}/gHg^{-1}.

Therefore every open subgroup HH of index dd contains an open normal subgroup NHN_{H} of index [𝔊:NH]dd[\mathfrak{G}:N_{H}]\leq d^{d}. It follows that 𝔊\mathfrak{G} is small if and only if for all dd\in\mathbb{N} there are finitely-many normal open subgroups N𝔊N\unlhd\mathfrak{G} of index [𝔊:N]d[\mathfrak{G}:N]\leq d. This in turn occurs if and only if for all G𝒢rpfinG\in{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}},

|Hom𝒢rpcont(𝔊,G)|<.\left|\textnormal{Hom}_{{\mathscr{G}\textnormal{rp}}}^{\textnormal{cont}}(\mathfrak{G},G)\right|<\infty.

We therefore give the following analogous definition:

Definition 2.28.

Let  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ Pro-𝒦eifin\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}. We say ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ is small if for every 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}},

|Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝒦)|<.\left|\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathscr{K})\right|<\infty.
Proposition 2.29.

Let 𝔄=( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝔊,α)Pro-𝒜ug𝒦eifin\mathfrak{A}=(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathfrak{G},\alpha)\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} be concise. If 𝔊\mathfrak{G} is a small profinite group and if |𝔊\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ |<\left|\mathfrak{G}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\right|<\infty, then  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ Pro-𝒦eifin\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} is small.

Proof.

A finite kei 𝒦\mathscr{K} has finitely-many sub-keis, therefore ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ is small iff for all 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} there are finitely-many surjective morphisms  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\twoheadrightarrow\mathscr{K}. Since 𝔄\mathfrak{A} is concise, by proposition 2.24 any surjective morphism f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\twoheadrightarrow\mathscr{K} extends uniquely to a morphism

(f,ρ𝔄,f):𝔄𝒜𝒦(f,\rho_{\mathfrak{A},f})\colon\mathfrak{A}\twoheadrightarrow\mathscr{A}_{\mathscr{K}}

in Pro-𝒜ug𝒦eifin\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}. Denote by

Hf:=ker(ρ𝔄,f:𝔊Inn(𝒦))𝔊,H_{f}:=\ker(\rho_{\mathfrak{A},f}\colon\mathfrak{G}\twoheadrightarrow\textnormal{Inn}(\mathscr{K}))\unlhd\mathfrak{G},
H𝒦:=f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦Hf𝔊.H_{\mathscr{K}}:=\bigcap_{f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\twoheadrightarrow\mathscr{K}}H_{f}\unlhd\mathfrak{G}.

Since Inn(𝒦)\textnormal{Inn}(\mathscr{K}) is finite, and ρ𝔄,f\rho_{\mathfrak{A},f} continuous, then Hf𝔊H_{f}\unlhd\mathfrak{G} is open. We also have

|Hom𝒢rpcont(𝔊,Inn(𝒦))|<\left|\textnormal{Hom}_{{\mathscr{G}\textnormal{rp}}}^{\textnormal{cont}}(\mathfrak{G},\textnormal{Inn}(\mathscr{K}))\right|<\infty

because 𝔊Pro-𝒢rpfin\mathfrak{G}\in\textnormal{Pro-}{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}} is small. Therefore H𝒦𝔊H_{\mathscr{K}}\unlhd\mathfrak{G} is open. By proposition 2.25, every f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\twoheadrightarrow\mathscr{K} factors through Hf\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ H_{f}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}, and therefore through

f¯:H𝒦\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝒦.\overline{f}\colon H_{\mathscr{K}}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\to\mathscr{K}.

The quotient H𝒦\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ H_{\mathscr{K}}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}} is finite because 𝔊\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ \mathfrak{G}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}} is finite, and the fibers of the map

H𝒦\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ 𝔊\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ H_{\mathscr{K}}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}\twoheadrightarrow\mathfrak{G}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}

are transitive H𝒦\𝔊H_{\mathscr{K}}\backslash\mathfrak{G}-sets - therefore finite. We conclude that for all 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}},

Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝒦)surjHom𝒦eifin(H𝒦\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ ,𝒦)surj𝒮etfin.\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathscr{K})^{\textnormal{surj}}\xleftarrow{\sim}\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}}(H_{\mathscr{K}}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}},\mathscr{K})^{\textnormal{surj}}\in{{\mathscr{S}\textnormal{et}}^{\textnormal{fin}}}.

Hence ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ is small. ∎

2.3 Disjoint Unions in 𝒦ei{\mathscr{K}\textnormal{ei}}

In this section we shall discuss disjoint unions of keis. Much like the tensor product of non-commutative rings, this is not the coproduct in 𝒦ei{\mathscr{K}\textnormal{ei}}. It is however a symmetric monoidal structure on 𝒦ei{\mathscr{K}\textnormal{ei}}, with the empty kei playing the role of the unit. This discussion can be extended to profinite keis as well. The statements and their proofs are similar enough that we omit them in the profinite case.

Proposition 2.30.

Let 𝒦1,𝒦2𝒦ei\mathscr{K}_{1},\mathscr{K}_{2}\in{\mathscr{K}\textnormal{ei}}. Then the disjoint union 𝒦1𝒦2\mathscr{K}_{1}\sqcup\mathscr{K}_{2} is a kei with structure

y𝒦1φ𝒦1,x(y)yy𝒦2yφ𝒦2,x(y).{{}^{x}{y}}=\;\;\;\;\;\;\begin{tabular}[]{|c||c|c|}\hline\cr&$x\in\mathscr{K}_{1}$&$x\in\mathscr{K}_{2}$\\ \hline\cr\hline\cr$y\in\mathscr{K}_{1}$&$\varphi_{\mathscr{K}_{1},x}(y)$&$y$\\ \hline\cr$y\in\mathscr{K}_{2}$&$y$&$\varphi_{\mathscr{K}_{2},x}(y)$\\ \hline\cr\end{tabular}\;\;.
yx= xK1xK2

This puts a symmetric monoidal structure (𝒦ei,,)({\mathscr{K}\textnormal{ei}},\sqcup,\emptyset) on 𝒦ei{\mathscr{K}\textnormal{ei}}.

Proof.

The first two kei axioms are easily verified. As for the third, let x,y𝒦1𝒦2x,y\in\mathscr{K}_{1}\sqcup\mathscr{K}_{2}. If x,y𝒦ix,y\in\mathscr{K}_{i} for some ii, w.l.o.g. i=1i=1, then

φxφy=(φ𝒦1,xφ𝒦1,y)Id𝒦2=\varphi_{x}\circ\varphi_{y}=(\varphi_{\mathscr{K}_{1},x}\circ\varphi_{\mathscr{K}_{1},y})\sqcup\textnormal{Id}_{\mathscr{K}_{2}}=
=(φ𝒦1,yxφ𝒦1,x)Id𝒦2=φyxφx.=(\varphi_{\mathscr{K}_{1},{{}^{x}{y}}}\circ\varphi_{\mathscr{K}_{1},x})\sqcup\textnormal{Id}_{\mathscr{K}_{2}}=\varphi_{{{}^{x}{y}}}\circ\varphi_{x}.

otherwise, w.l.o.g. x𝒦1x\in\mathscr{K}_{1} and y𝒦2y\in\mathscr{K}_{2}, then

φxφy=φ𝒦1,xφ𝒦2,y=φyφx=φyxφx.\varphi_{x}\circ\varphi_{y}=\varphi_{\mathscr{K}_{1},x}\sqcup\varphi_{\mathscr{K}_{2},y}=\varphi_{y}\circ\varphi_{x}=\varphi_{{{}^{x}{y}}}\circ\varphi_{x}.

Let T𝒮etfinT\in{\mathscr{S}\textnormal{et}}^{\textnormal{fin}}. The disjoint union of TT copies of the terminal object 𝒦ei*\in{\mathscr{K}\textnormal{ei}} recovers the trivial kei 𝒯𝒦ei\mathscr{T}\in{\mathscr{K}\textnormal{ei}} with underlying set TT. Hence there is a functor

ιT:𝒦eiT𝒦ei/𝒯,(𝒦t)tT(tT𝒦t𝒯).\iota_{T}\colon{\mathscr{K}\textnormal{ei}}^{T}\to{\mathscr{K}\textnormal{ei}}_{/\mathscr{T}}\;\;\;\;,\;\;\;\;\;\;\;\;(\mathscr{K}_{t})_{t\in T}\longmapsto(\;\;\bigsqcup_{t\in T}\mathscr{K}_{t}\to\mathscr{T}\;\;).

The functor ιT\iota_{T} preserves small limits and filtered colimits, and therefore has a left adjoint

λT:𝒦ei/𝒯𝒦eiT.\lambda_{T}\colon{\mathscr{K}\textnormal{ei}}_{/\mathscr{T}}\to{\mathscr{K}\textnormal{ei}}^{T}.

The functor ιT\iota_{T} is also fully faithful, therefore λT\lambda_{T} can be computed in terms of the unit

(ιTλT)().\mathscr{L}\to(\iota_{T}\circ\lambda_{T})(\mathscr{L}).

We explicitly construct λT()\lambda_{T}(\mathscr{L}) for 𝒦ei\mathscr{L}\in{\mathscr{K}\textnormal{ei}}, making use of an augmentation on \mathscr{L}:

Proposition 2.31.

Let 𝒯𝒦eifin\mathscr{T}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} be trivial, let (,G,α)𝒜ug𝒦ei(\mathscr{L},G,\alpha)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}} be concise, and let η:𝒯\eta\colon\mathscr{L}\to\mathscr{T} be a morphism in 𝒦ei{\mathscr{K}\textnormal{ei}}. For t𝒯t\in\mathscr{T}, we denote by t:=η1(t)\mathscr{L}_{t}:=\eta^{-1}(t)\subseteq\mathscr{L} and by HtGH_{t}\leq G the subgroup Ht:={αx|xt}GH_{t}:=\langle\{\alpha_{x}\;|\;x\in\mathscr{L}\setminus\mathscr{L}_{t}\}\rangle\leq G. Then

  1. 1.

    The set THt\t\bigsqcup_{T}H_{t}\backslash\mathscr{L}_{t} is well-defined, and a quotient of \mathscr{L} in 𝒦ei{\mathscr{K}\textnormal{ei}}.

  2. 2.

    For all (𝒦t)T𝒦eiT(\mathscr{K}_{t})_{T}\in{\mathscr{K}\textnormal{ei}}^{T}, let 𝒦𝒯𝒦ei\mathscr{K}_{\mathscr{T}}\in{\mathscr{K}\textnormal{ei}} denote the disjoint union

    𝒦𝒯:=T𝒦t.\mathscr{K}_{\mathscr{T}}:=\bigsqcup_{T}\mathscr{K}_{t}.

    Then there is a natural bijection

    Hom𝒦ei/𝒯(,𝒦𝒯)tTHom𝒦ei(Ht\t,𝒦t).\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}_{/\mathscr{T}}}(\mathscr{L},\mathscr{K}_{\mathscr{T}})\simeq\prod_{t\in T}\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}(H_{t}\backslash\mathscr{L}_{t},\mathscr{K}_{t}).
Proof.

Let t𝒯t\in\mathscr{T}. Then for all yty\in\mathscr{L}_{t} and all xx\in\mathscr{L},

η(αx(y))=η(yx)=ηη(x)(y)=η(y)=t.\eta(\alpha_{x}(y))=\eta({{}^{x}{y}})={{}^{\eta(x)}{\eta(y)}}=\eta(y)=t. (5)

Since (,G,α)(\mathscr{L},G,\alpha) is concise, it follows that the t\mathscr{L}_{t} are GG-invariant. For all gGg\in G and xx\in\mathscr{L},

gαxg1=αg(x),g\alpha_{x}g^{-1}=\alpha_{g(x)},

where g(x)η(x)g(x)\in\mathscr{L}_{\eta(x)}. Hence the subgroups

Ht={αx|xt},Ht:={αx|xt}GH_{t}=\langle\{\alpha_{x}\;|\;x\in\mathscr{L}\setminus\mathscr{L}_{t}\}\rangle\;\;,\;\;\;\;H^{\prime}_{t}:=\langle\{\alpha_{x}\;|\;x\in\mathscr{L}_{t}\}\rangle\leq G

are normal. Next, let xx\in\mathscr{L} and let hHη(x)h\in H_{\eta(x)}. Then

αh(x)αx1=hαxh1αx1[Hη(x),Hη(x)]Hη(x)Hη(x).\alpha_{h(x)}\alpha_{x}^{-1}=h\alpha_{x}h^{-1}\alpha_{x}^{-1}\in[H_{\eta(x)},H^{\prime}_{\eta(x)}]\leq H_{\eta(x)}\cap H^{\prime}_{\eta(x)}.

Let t𝒯t\in\mathscr{T}. If tη(x)t\neq\eta(x), then Hη(x)HtH^{\prime}_{\eta(x)}\leq H_{t}. Hence for all t𝒯t\in\mathscr{T},

αh(x)αx1Ht.\alpha_{h(x)}\alpha_{x}^{-1}\in H_{t}.

Let x,yx,y\in\mathscr{L}. Then for all hHη(y)h\in H_{\eta(y)},

hx(y)=αxh(y)=αxhαx1(αx(y))Hη(y)(yx)=Hη(yx)(yx),{{}^{x}{h(y)}}=\alpha_{x}h(y)=\alpha_{x}h\alpha_{x}^{-1}(\alpha_{x}(y))\in H_{\eta(y)}({{}^{x}{y}})=H_{\eta({{}^{x}{y}})}({{}^{x}{y}}),

and for all hHη(x)h\in H_{\eta(x)},

yh(x)=αh(x)(y)=αh(x)αx1(αx(y))Hη(yx)(yx).{{}^{h(x)}{y}}=\alpha_{h(x)}(y)=\alpha_{h(x)}\alpha_{x}^{-1}(\alpha_{x}(y))\in H_{\eta({{}^{x}{y}})}({{}^{x}{y}}).

Therefore the set λη:=THt\t\lambda_{\eta}:=\hskip 2.0pt\cdot\bigcup_{T}H_{t}\backslash\mathscr{L}_{t} is a kei with structure inherited from \mathscr{L}. For all x¯,y¯λη\overline{x},\overline{y}\in\lambda_{\eta} with η(x)η(y)\eta(x)\neq\eta(y), we have αxHη(y)\alpha_{x}\in H_{\eta(y)}, therefore

y¯x¯=yx¯=αxy¯=y¯.{{}^{\overline{x}}{\overline{y}}}=\overline{{{}^{x}{y}}}=\overline{\alpha_{x}y}=\overline{y}.

Hence λη\lambda_{\eta} is the disjoint union

λη=THt\t𝒦ei.\lambda_{\eta}=\bigsqcup_{T}H_{t}\backslash\mathscr{L}_{t}\in{\mathscr{K}\textnormal{ei}}.

Finally, let (𝒦t)tT𝒦eiT(\mathscr{K}_{t})_{t\in T}\in{\mathscr{K}\textnormal{ei}}^{T} and let f:𝒦𝒯f\colon\mathscr{L}\to\mathscr{K}_{\mathscr{T}} be a morphism in 𝒦ei/𝒯{\mathscr{K}\textnormal{ei}}_{/\mathscr{T}}. Then for all t𝒯t\in\mathscr{T}, for all yty\in\mathscr{L}_{t} and all xtx\in\mathscr{L}\setminus\mathscr{L}_{t},

f(αx(y))=f(yx)=ff(x)(y)=f(y).f(\alpha_{x}(y))=f({{}^{x}{y}})={{}^{f(x)}{f(y)}}=f(y).

Therefore f|tf_{|\mathscr{L}_{t}} is well-defined on the quotient Ht\tH_{t}\backslash\mathscr{L}_{t}, hence ff factors through

λη=THt\tf¯𝒦𝒯.\lambda_{\eta}=\bigsqcup_{T}H_{t}\backslash\mathscr{L}_{t}\xrightarrow{\overline{f}}\mathscr{K}_{\mathscr{T}}.

We conclude that

Hom𝒦ei/𝒯(,𝒦𝒯)Hom𝒦ei/𝒯(TNt\t,𝒦𝒯)THom𝒦ei(Nt\t,𝒦t).\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}_{/\mathscr{T}}}(\mathscr{L},\mathscr{K}_{\mathscr{T}})\simeq\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}_{/\mathscr{T}}}\big{(}\bigsqcup_{T}N_{t}\backslash\mathscr{L}_{t},\mathscr{K}_{\mathscr{T}}\big{)}\simeq\prod_{T}\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}(N_{t}\backslash\mathscr{L}_{t},\mathscr{K}_{t}).

3 Fundamental Arithemtic Keis

In this section we define the fundamental kei  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} of square-free integers nn\in\mathbb{N} by emulating the construction of  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L}, the fundamental kei of a link LL in S3S^{3}. In the case of traditional links,  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L} is intimately tied to the automorphism group of some infinite branched cover of the sphere. The construction is similar here, and since infinite Galois groups are profinite,  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} will in fact be a profinite kei. We then analogously define 𝒦\mathscr{K}-colorings of nn in terms of said  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}.

3.1 The Fundamental Kei of a link

Our definition of the fundamental arithmetic kei  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} is motivated by a presentation of the fundamental kei  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L} found in the introduction. The purpose of this section is to justify this presentation. Neither object  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L,𝒬L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L},\mathscr{Q}_{L} discussed here - nor indeed the general notion of a quandle - are needed anywhere else in the paper. If you are comfortable with  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L} as presented in the introduction, feel free to skip this part.

Proposition 3.1.

Let LS3L\subseteq S^{3} be a link. Let MLM_{L} denote the branched double cover of S3S^{3} with ramification locus LL and let M~L\widetilde{M}_{L} denote the universal cover of MLM_{L}. Then there is an augmented kei

(π0(M~L×S3L),Aut𝒯op(M~L/S3),m)𝒜ug𝒦ei\left(\pi_{0}(\widetilde{M}_{L}\times_{S^{3}}L)\;,\;\textnormal{Aut}_{\mathscr{T}\textnormal{op}}(\widetilde{M}_{L}/S^{3})\;,\;m\right)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}

that recovers the fundamental kei  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L} that corepresents colorings of LL:

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ Lπ0(M~L×S3L).\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L}\simeq\pi_{0}(\widetilde{M}_{L}\times_{S^{3}}L).

An augmented quandle (Q,G,α)(Q,G,\alpha), much like an augmented kei, consists of a set QQ, a group GG acting on QQ, and an augmentation map α:QG\alpha\colon Q\to G, satisfying two of the three augmented kei axioms:

xQ,gG:αx(x)=xandαg(x)=gαxg1.\forall x\in Q\;,\;\;g\in G\;:\;\;\alpha_{x}(x)=x\;\;\textnormal{and}\;\;\alpha_{g(x)}=g\alpha_{x}g^{-1}.\;

The set QQ, together with the binary operator (x,y)αx(y)(x,y)\mapsto\alpha_{x}(y), is an algebraic structure known as a quandle. To be more specific, quandles are a more general notion than keis, obtained by relaxing the second axiom, requiring that each element act merely as a permutation (rather than an involution). Quandles to oriented links are what keis are to unoriented links: much like keis, one can use quandles to color an oriented link LL, and these colorings are similarly controled by a fundamental quandle 𝒬L\mathscr{Q}_{L} attached to LL. A topological definition of 𝒬L\mathscr{Q}_{L} is found in [Joy82, §14], where structure is given by an augmentation with π1(SL)\pi_{1}(S_{L}). This boils down to the following presentation555See [Nos17, p.17]:

We take ULS3U_{L}\subseteq S^{3} to denote a tubular neighborhood of LL, SLS_{L} to denote the complement SL=S3US_{L}=S^{3}\setminus U, and ULSL\partial U_{L}\subseteq S_{L} the boundary of ULU_{L}. We fix a base point SL*\in S_{L}. Then 𝒬L\mathscr{Q}_{L} is defined as the set of paths UL*\rightsquigarrow\partial U_{L} in SLS_{L} - up to homotopy. The structure on 𝒬L\mathscr{Q}_{L} is defined by an augmentation with 𝒢L=π1(SL)\mathscr{G}_{L}=\pi_{1}(S_{L}). Here 𝒢L\mathscr{G}_{L} acts on 𝒬L\mathscr{Q}_{L} via concatenation, and the augmentation map m:𝒬L𝒢Lm\colon\mathscr{Q}_{L}\to\mathscr{G}_{L} maps a path xx to a meridian mx𝒢Lm_{x}\in\mathscr{G}_{L}, looping once around a component of LL in a manner consistent with the orientation of LL.

Proof.

(proposition 3.1) Let S~L\widetilde{S}_{L} denote the universal covering of SLS_{L}, and let

𝒢L:=π1(SL)Aut(S~L/SL).\mathscr{G}_{L}:=\pi_{1}(S_{L})\simeq\textnormal{Aut}(\widetilde{S}_{L}/S_{L}).

The pullback S~L×SLUL\widetilde{S}_{L}\times_{S_{L}}\partial U_{L} in 𝒯op{\mathscr{T}\textnormal{op}} consists of paths U*\rightsquigarrow\partial U in SLS_{L}, up to homotopy that fixes both endpoints. Passing to connected components we have an isomorphism

π0(S~L×SLU)𝒬L\pi_{0}(\widetilde{S}_{L}\times_{S_{L}}\partial U){\xrightarrow{\sim}}\mathscr{Q}_{L}

of 𝒢L\mathscr{G}_{L}-sets. We denote by H𝒢LH\unlhd\mathscr{G}_{L} the subgroup

H=mx2x𝒬L𝒢L,H=\langle m_{x}^{2}\mid x\in\mathscr{Q}_{L}\rangle\unlhd\mathscr{G}_{L},

and by

Y=H\S~LY=H\backslash\widetilde{S}_{L}

the covering of SLS_{L} corresponding to HH. By [Joy82, Thm. 10.2],

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ LH\𝒬Lπ0(Y×SLU),\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L}\simeq H\backslash\mathscr{Q}_{L}\simeq\pi_{0}(Y\times_{S_{L}}\partial U),

with structure on H\𝒬LH\backslash\mathscr{Q}_{L} given by augmentation with the group

H\𝒢LAut(Y/SL).H\backslash\mathscr{G}_{L}\simeq\textnormal{Aut}(Y/{S_{L}}).

For every branched cover ZS3Z\to S^{3} that is unramified away from LL, we denote by Z=Z×S3SLZ^{\circ}=Z\times_{S^{3}}S_{L}. In [Win84, §5], the group H\𝒢LH\backslash\mathscr{G}_{L} sits in an exact sequence

0π1(ML)H\𝒢LAut𝒯op(ML/S3)0Aut((M~L)/ML)Aut(ML/SL)||||.\leavevmode\hbox to309.01pt{\vbox to42.02pt{\pgfpicture\makeatletter\hbox{\hskip 154.50406pt\lower-21.01161pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-154.50406pt}{-21.01161pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 43.74594pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.44043pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}(M_{L})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 19.74597pt\hfil&\hfil\hskip 42.30826pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.00275pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${H\backslash\mathscr{G}_{L}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.30829pt\hfil&\hfil\hskip 61.31108pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-33.00557pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\textnormal{Aut}_{{\mathscr{T}\textnormal{op}}}(M_{L}/S^{3})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 37.31111pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 61.2736pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-32.9681pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\textnormal{Aut}((\widetilde{M}_{L})^{\circ}/M_{L}^{\circ})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 37.27364pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 56.83885pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.53334pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\textnormal{Aut}(M_{L}^{\circ}/S_{L})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 32.83888pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-140.69298pt}{5.05443pt}\pgfsys@lineto{-99.9653pt}{5.05443pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-99.76532pt}{5.05443pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-59.6734pt}{5.05443pt}\pgfsys@lineto{-18.94572pt}{5.05443pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.74574pt}{5.05443pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.47081pt}{5.05443pt}\pgfsys@lineto{41.67082pt}{5.05443pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{41.8708pt}{5.05443pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{117.093pt}{5.05443pt}\pgfsys@lineto{140.29301pt}{5.05443pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{140.493pt}{5.05443pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-81.56381pt}{-7.85637pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\scriptstyle{||}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.63745pt}{-8.44081pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\scriptstyle{||}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\;\;.

From the proof in [Win84], it is not hard to see that

H\𝒢LAut𝒯op((M~L)/SL)Aut𝒯op(M~L/S3).H\backslash\mathscr{G}_{L}\simeq\textnormal{Aut}_{\mathscr{T}\textnormal{op}}((\widetilde{M}_{L})^{\circ}/S_{L})\simeq\textnormal{Aut}_{\mathscr{T}\textnormal{op}}(\widetilde{M}_{L}/S^{3}).

The pullback ML×S3ULMLM_{L}\times_{S^{3}}U_{L}\subseteq M_{L} is a disjoint union of solid tori that homotopy retracts onto ML×S3LM_{L}\times_{S^{3}}L, and has boundary

(ML×S3UL)=ML×SLULML.\partial(M_{L}\times_{S^{3}}U_{L})=M_{L}^{\circ}\times_{S_{L}}\partial U_{L}\subseteq M_{L}.

The same holds for any covering space of MLM_{L}. Therefore

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ L=π0((M~L)×SLUL)π0(M~L×S3UL)π0(M~L×S3L).\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{L}=\pi_{0}((\widetilde{M}_{L})^{\circ}\times_{S_{L}}\partial U_{L})\simeq\pi_{0}(\widetilde{M}_{L}\times_{S^{3}}U_{L})\simeq\pi_{0}(\widetilde{M}_{L}\times_{S^{3}}L).

3.2 The Fundamental Kei of an Arithmetic Link

Definition 3.2.

We denote by {\mathbb{N}^{*}} the set of square-free positive integers.

Definition 3.3.

For n=2kmn=2^{k}m\in\mathbb{N} with mm odd, we define

n=(1)m12n.n^{*}=(-1)^{\frac{m-1}{2}}n.

It is easily verified that (n1n2)=n1n2(n_{1}n_{2})^{*}=n_{1}^{*}n_{2}^{*}. Thus for nn\in{\mathbb{N}^{*}} we have

n=p|np.n^{*}=\prod_{p|n}p^{*}.
Definition 3.4.

Let 1n1\neq n\in{\mathbb{N}^{*}}. By 𝔏n\mathfrak{L}_{n} we denote the quadratic number field

𝔏n=(n).\mathfrak{L}_{n}=\mathbb{Q}(\sqrt{n^{*}}).

The field 𝔏n\mathfrak{L}_{n} is ramified at precisely nn. We define the field 𝔉n\mathfrak{F}_{n} to be the maximal unramified extension of 𝔏n\mathfrak{L}_{n}:

𝔉n=𝔏nun.\mathfrak{F}_{n}=\mathfrak{L}_{n}^{un}.

The extension 𝔉n/\mathfrak{F}_{n}/\mathbb{Q} is Galois. By 𝔊n\mathfrak{G}_{n} we denote the Galois group

𝔊n=Gal(𝔉n/)Pro-𝒢rpfin.\mathfrak{G}_{n}=\textnormal{Gal}(\mathfrak{F}_{n}/\mathbb{Q})\in\textnormal{Pro-}{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}}.
Proposition 3.5.

Let 1m,n1\neq m,n\in{\mathbb{N}^{*}} s.t. m|nm|n. Then

𝔉m𝔉n,\mathfrak{F}_{m}\subseteq\mathfrak{F}_{n},

and 𝔉m\mathfrak{F}_{m} is the maximal subfield of 𝔉n\mathfrak{F}_{n} that is unramified over \mathbb{Q} away from mm.

Proof.

All primes p|np|n are doubly-ramified in 𝔏n\mathfrak{L}_{n} and in 𝔏m𝔏n=𝔏m𝔏n/m\mathfrak{L}_{m}\mathfrak{L}_{n}=\mathfrak{L}_{m}\mathfrak{L}_{n/m}. A short computation of ramification indices shows that the extension

𝔏m𝔏n/𝔏n\mathfrak{L}_{m}\mathfrak{L}_{n}/\mathfrak{L}_{n}

is unramified. Since 𝔉m/𝔏m\mathfrak{F}_{m}/\mathfrak{L}_{m} is unramified, so is the tower 𝔉m𝔏n/𝔏m𝔏n/𝔏n\mathfrak{F}_{m}\mathfrak{L}_{n}/\mathfrak{L}_{m}\mathfrak{L}_{n}/\mathfrak{L}_{n}, whereby

𝔉m𝔉m𝔏n𝔏nun=𝔉n.\mathfrak{F}_{m}\subseteq\mathfrak{F}_{m}\mathfrak{L}_{n}\subseteq\mathfrak{L}_{n}^{un}=\mathfrak{F}_{n}.

Finally, the ramification index of any prime 𝔭\mathfrak{p} in 𝔉n\mathfrak{F}_{n} is at most 22. Therefore any field F𝔉nF\subseteq\mathfrak{F}_{n} that contains 𝔏m\mathfrak{L}_{m} and is unramified over \mathbb{Q} away from mm is necessarily unramified over 𝔏m\mathfrak{L}_{m}. Therefore 𝔉m\mathfrak{F}_{m} is the maximal subfield of 𝔉n\mathfrak{F}_{n} that is unramified over \mathbb{Q} away from mm. ∎

Definition 3.6.

For pp prime, we denote by

τpGal(𝔏p/)\tau_{p}\in\textnormal{Gal}(\mathfrak{L}_{p}/\mathbb{Q})

the only non-trivial element in Gal(𝔏p/)/2\textnormal{Gal}(\mathfrak{L}_{p}/\mathbb{Q})\simeq\mathbb{Z}/2\mathbb{Z}.

Definition 3.7.

Let nn\in{\mathbb{N}^{*}}. We define  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒯op\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\in{\mathscr{T}\textnormal{op}} to be

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n:=|Spec(𝒪𝔉n/n)|𝒯op.\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}:=\left|\textnormal{Spec}\left(\mathcal{O}_{\mathfrak{F}_{n}}\otimes_{\mathbb{Z}}\mathbb{Z}/n\mathbb{Z}\right)\right|\in{\mathscr{T}\textnormal{op}}.

As a set,  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} comprises all primes 𝔭\mathfrak{p} in 𝔉n\mathfrak{F}_{n} dividing nn. For every F𝔉nF\subseteq\mathfrak{F}_{n} finite, Galois over \mathbb{Q}, |Spec(𝒪F/n)||\textnormal{Spec}\left(\mathcal{O}_{F}\otimes_{\mathbb{Z}}\mathbb{Z}/n\mathbb{Z}\right)| is finite discrete. The forgetful functor

Schemesop𝒯op\textrm{Schemes}^{\textnormal{op}}\to{\mathscr{T}\textnormal{op}}

preserves cofiltered limits, therefore

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n=|Spec(𝒪𝔉n/n)|limF|Spec(𝒪F/n)|Pro-𝒮etfin.\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}=|\textnormal{Spec}\left(\mathcal{O}_{\mathfrak{F}_{n}}\otimes_{\mathbb{Z}}\mathbb{Z}/n\mathbb{Z}\right)|\simeq\lim_{\begin{subarray}{c}\longleftarrow\\ F\end{subarray}}|\textnormal{Spec}\left(\mathcal{O}_{F}\otimes_{\mathbb{Z}}\mathbb{Z}/n\mathbb{Z}\right)|\in\textnormal{Pro-}{\mathscr{S}\textnormal{et}}^{\textnormal{fin}}.

The profinite group 𝔊n\mathfrak{G}_{n} acts continuously on  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} via 𝔭g(𝔭)\mathfrak{p}\mapsto g(\mathfrak{p}).

The goal now is to describe a topological kei structure on  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}.

Definition 3.8.

Let nn\in{\mathbb{N}^{*}} and let m|nm|n be prime. By  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m} we denote

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m=|Spec(𝒪𝔉n/m)| ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n.\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m}=|\textnormal{Spec}\left(\mathcal{O}_{\mathfrak{F}_{n}}\otimes_{\mathbb{Z}}\mathbb{Z}/m\mathbb{Z}\right)|\subseteq\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}.

For p|np|n prime, the 𝔊n\mathfrak{G}_{n}-action on  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} restricts to a transitive action on  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p}. For 𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p}, the stabilizer of 𝔭\mathfrak{p} in 𝔊n\mathfrak{G}_{n} is the decomposition group of 𝔭\mathfrak{p}, denoted by

D𝔭:=Stab𝔊n(𝔭).D_{\mathfrak{p}}:=\textnormal{Stab}_{\mathfrak{G}_{n}}(\mathfrak{p}).
Definition 3.9.

Let nn\in{\mathbb{N}^{*}} and let 𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}. By \I𝔭𝔊n\I_{\mathfrak{p}}\leq\mathfrak{G}_{n} we denote the inertia group

\I𝔭:={g𝔊n|α𝒪𝔉n,g(α)α𝔭}𝔊n\I_{\mathfrak{p}}:=\{g\in\mathfrak{G}_{n}\;|\;\forall\alpha\in\mathcal{O}_{\mathfrak{F}_{n}}\;,\;g(\alpha)-\alpha\in\mathfrak{p}\}\leq\mathfrak{G}_{n}

over pp, the rational prime under 𝔭\mathfrak{p}. The extension 𝔉n/𝔏p\mathfrak{F}_{n}/\mathfrak{L}_{p} is unramified at pp and 𝔏p/\mathfrak{L}_{p}/\mathbb{Q} is totally ramified at pp, therefore

\I𝔭Gal(𝔏p/)/2.\I_{\mathfrak{p}}\simeq\textnormal{Gal}(\mathfrak{L}_{p}/\mathbb{Q})\simeq\mathbb{Z}/2\mathbb{Z}.

We denote the unique nontrivial element in \I𝔭\I_{\mathfrak{p}} by

𝔪n,𝔭\I𝔭𝔊n.\mathfrak{m}_{n,\mathfrak{p}}\in\I_{\mathfrak{p}}\leq\mathfrak{G}_{n}.
Proposition 3.10.

Let nn\in{\mathbb{N}^{*}}, let 𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} and let g𝔊ng\in\mathfrak{G}_{n}. Then

  1. 1.

    𝔪n,𝔭(𝔭)=𝔭\mathfrak{m}_{n,\mathfrak{p}}(\mathfrak{p})=\mathfrak{p}.

  2. 2.

    𝔪n,𝔭2=1𝔊n\mathfrak{m}_{n,\mathfrak{p}}^{2}=1_{\mathfrak{G}_{n}}.

  3. 3.

    g𝔪n,𝔭g1=𝔪n,g(𝔭)g\mathfrak{m}_{n,\mathfrak{p}}g^{-1}=\mathfrak{m}_{n,g(\mathfrak{p})}.

Proof.

Claim (1)(1) holds because the inertia group \I𝔭\I_{\mathfrak{p}} is a subgroup of the decomposition group D𝔭D_{\mathfrak{p}}. In particular 𝔪n,𝔭\I𝔭\mathfrak{m}_{n,\mathfrak{p}}\in\I_{\mathfrak{p}} stabilizes 𝔭\mathfrak{p}:

𝔪n,𝔭(𝔭)=𝔭.\mathfrak{m}_{n,\mathfrak{p}}(\mathfrak{p})=\mathfrak{p}.

Claim (2)(2) holds because \I𝔭/2\I_{\mathfrak{p}}\simeq\mathbb{Z}/2\mathbb{Z} - therefore 𝔪n,𝔭\I𝔭\mathfrak{m}_{n,\mathfrak{p}}\in\I_{\mathfrak{p}} is an involution. Claim (3)(3) holds because conjugation by gg maps \I𝔭\I_{\mathfrak{p}} isomorphically onto \Ig(𝔭)\I_{g(\mathfrak{p})}. As the sole non-trivial elements in their respective groups, 𝔪n,𝔭\mathfrak{m}_{n,\mathfrak{p}} is mapped to 𝔪n,g(𝔭)\mathfrak{m}_{n,g(\mathfrak{p})}:

g𝔪n,𝔭g1=𝔪n,g(𝔭).g\mathfrak{m}_{n,\mathfrak{p}}g^{-1}=\mathfrak{m}_{n,g(\mathfrak{p})}.

Proposition 3.11.

Let nn\in{\mathbb{N}^{*}}. Then the function

𝔪n: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝔊n,𝔭𝔪n,𝔭\mathfrak{m}_{n}\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\mathfrak{G}_{n}\;\;,\;\;\;\;\mathfrak{p}\mapsto\mathfrak{m}_{n,\mathfrak{p}}

is continuous.

Proof.

Let p|np|n be prime. The 𝔊n\mathfrak{G}_{n}-action on  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p} is continuous and transitive. Fix some 𝔭0 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p\mathfrak{p}_{0}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p}. The stabilizer D𝔭0𝔊nD_{\mathfrak{p}_{0}}\leq\mathfrak{G}_{n} is closed, the quotient map 𝔊n𝔊n/D𝔭0\mathfrak{G}_{n}\to\mathfrak{G}_{n}/D_{\mathfrak{p}_{0}} is open, and the map

𝔊n/D𝔭0gD𝔭0g(𝔭0) ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p\mathfrak{G}_{n}/D_{\mathfrak{p}_{0}}\xrightarrow{gD_{\mathfrak{p}_{0}}\longmapsto g(\mathfrak{p}_{0})}\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p}

is a homeomorphism. The composition

𝔊ngg(𝔭0) ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p𝔪n𝔊n,gg𝔪n,𝔭0g1\mathfrak{G}_{n}\xrightarrow{g\mapsto g(\mathfrak{p}_{0})}\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p}\xrightarrow{\mathfrak{m}_{n}}\mathfrak{G}_{n}\;\;,\;\;\;\;g\mapsto g\mathfrak{m}_{n,\mathfrak{p}_{0}}g^{-1}

is also continuous. It follows that (𝔪n)| ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p𝔊n(\mathfrak{m}_{n})_{|\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p}}\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p}\to\mathfrak{G}_{n} is continuous. Since  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ np|n ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p𝒯op\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\simeq\coprod_{p|n}\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p}\in{\mathscr{T}\textnormal{op}}, we conclude that 𝔪n: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝔊n\mathfrak{m}_{n}\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\mathfrak{G}_{n} is continuous. ∎

Proposition 3.12.

Let nn\in{\mathbb{N}^{*}}. Then ( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝔊n,𝔪n)(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathfrak{G}_{n},\mathfrak{m}_{n}) is a topological augmented kei.

Proof.

Let 𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} and let g𝔊ng\in\mathfrak{G}_{n}. From proposition 3.10,

𝔪n,𝔭(𝔭)=𝔭,𝔪n,𝔭2=1𝔊nandg𝔪n,𝔭g1=𝔪n,g(𝔭).\mathfrak{m}_{n,\mathfrak{p}}(\mathfrak{p})=\mathfrak{p}\;\;\;\;\textrm{,}\;\;\;\;\;\;\;\;\mathfrak{m}_{n,\mathfrak{p}}^{2}=1_{\mathfrak{G}_{n}}\;\;\;\;\;\;\;\;\textrm{and}\;\;\;\;\;\;\;\;g\mathfrak{m}_{n,\mathfrak{p}}g^{-1}=\mathfrak{m}_{n,g(\mathfrak{p})}.

It follows that ( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝔊n,𝔪n)(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathfrak{G}_{n},\mathfrak{m}_{n}) is an augmented kei. The 𝔊n\mathfrak{G}_{n}-action on  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} is continuous, and by proposition 3.11 the augmentation map 𝔪n: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝔊n\mathfrak{m}_{n}\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\mathfrak{G}_{n} is continuous. We conclude that ( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝔊n,𝔪n)(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathfrak{G}_{n},\mathfrak{m}_{n}) is a topological augmented kei. ∎

Definition 3.13.

Let nn\in{\mathbb{N}^{*}}. The augmented arithmetic kei of nn is defined as

𝔄n=( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝔊n,𝔪n)Pro-𝒜ug𝒦eifin.\mathfrak{A}_{n}=(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathfrak{G}_{n},\mathfrak{m}_{n})\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}.

The fundamental arithmetic kei of nn is defined to be the kei  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ nPro-𝒦eifin\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}, with structure induced from the augmentation with 𝔊n\mathfrak{G}_{n}:

𝔮𝔭:=𝔪n,𝔭(𝔮).{{}^{\mathfrak{p}}{\mathfrak{q}}}:=\mathfrak{m}_{n,\mathfrak{p}}(\mathfrak{q}).
Proposition 3.14.

Let nn\in{\mathbb{N}^{*}}. Then 𝔄nPro-𝒜ug𝒦eifin\mathfrak{A}_{n}\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} is concise.

Proof.

Let N𝔊nN\leq\mathfrak{G}_{n} denote the closed subgroup

N={𝔪n,𝔭|𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n}¯𝔊n.N=\overline{\langle\{\mathfrak{m}_{n,\mathfrak{p}}\;|\;\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\}\rangle}\leq\mathfrak{G}_{n}.

From proposition 3.10, g𝔪n,𝔭g1=𝔪n,g(𝔭)g\mathfrak{m}_{n,\mathfrak{p}}g^{-1}=\mathfrak{m}_{n,g(\mathfrak{p})} for all 𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} and g𝔊ng\in\mathfrak{G}_{n}, hence N𝔊nN\unlhd\mathfrak{G}_{n} is normal. Since 𝔉n/\mathfrak{F}_{n}/\mathbb{Q} is unramified away from nn and \I𝔭N\I_{\mathfrak{p}}\leq N for all 𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}, the quotient 𝔊n/N\mathfrak{G}_{n}/N corresponds to a nowhere-ramified Galois extension of \mathbb{Q}. By the Hermite-Minkowski theorem this is \mathbb{Q} itself, hence

{𝔪n,𝔭|𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n}¯=N=𝔊n.\overline{\langle\{\mathfrak{m}_{n,\mathfrak{p}}\;|\;\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\}\rangle}=N=\mathfrak{G}_{n}.

Hence 𝔄nPro-𝒜ug𝒦eifin\mathfrak{A}_{n}\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} is concise. ∎

Proposition 3.15.

Let nn\in{\mathbb{N}^{*}}. Then  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ nPro-𝒦eifin\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} is small.

Proof.

Let dd\in\mathbb{N}. The open subgroups of 𝔊n\mathfrak{G}_{n} of index dd correspond to number fields L𝔉nL\subseteq\mathfrak{F}_{n} of degree [L:]=d[L:\mathbb{Q}]=d. Such LL are unramified away from nn, therefore satisfy

Disc(L)nd.\textnormal{Disc}(L)\leq n^{d}.

By the Hermite-Minkowsk theorem, there are finitely many such fields LL. Hence 𝔊nPro-𝒢rpfin\mathfrak{G}_{n}\in\textnormal{Pro-}{\mathscr{G}\textnormal{rp}}^{\textnormal{fin}} is small. By proposition 3.14, 𝔄nPro-𝒜ug𝒦eifin\mathfrak{A}_{n}\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} is concise. For each p|np|n, the group 𝔊n\mathfrak{G}_{n} acts transitively on  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,p\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,p}. Therefore

𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n{p|nprime}𝒮etfin.\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\simeq\{p|n\;\textrm{prime}\}\in{\mathscr{S}\textnormal{et}}^{\textnormal{fin}}.

By proposition 2.29,  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} is small. ∎

Example 3.16.

Following [Yam97], for n=3,7,11,19,43,67,143n=3,7,11,19,43,67,143, we have 𝔉n=𝔏n\mathfrak{F}_{n}=\mathfrak{L}_{n}. In terms of  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}, these nn are indistinguishable from the unknot, since

 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n.\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\simeq*.

3.3 𝒦\mathscr{K}-Coloring Arithmetic Links

Definition 3.17.

Let nn\in{\mathbb{N}^{*}} and let 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}. We define sets

Col𝒦(n):=Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒦)\textnormal{Col}_{\mathscr{K}}(n):=\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{K})

and

Col𝒦dom(n):={f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒦}Col𝒦(n).\textnormal{Col}_{\mathscr{K}}^{\textnormal{dom}}(n):=\{f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\twoheadrightarrow\mathscr{K}\}\subseteq\textnormal{Col}_{\mathscr{K}}(n).

By proposition 3.15, Col𝒦(n)\textnormal{Col}_{\mathscr{K}}(n) is finite. We define col𝒦(n),col𝒦dom(n)\textnormal{col}_{\mathscr{K}}(n),\textnormal{col}_{\mathscr{K}}^{\textnormal{dom}}(n)\in\mathbb{N} via

col𝒦(n):=|Col𝒦(n)|,col𝒦dom(n):=|Col𝒦dom(n)|.\textnormal{col}_{\mathscr{K}}(n):=\left|\textnormal{Col}_{\mathscr{K}}(n)\right|\;\;,\;\;\;\;\textnormal{col}^{\textnormal{dom}}_{\mathscr{K}}(n):=\left|\textnormal{Col}^{\textnormal{dom}}_{\mathscr{K}}(n)\right|.
Definition 3.18.

Let nn\in{\mathbb{N}^{*}}, let 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}, and let F𝔉nF\subseteq\mathfrak{F}_{n} be finite and Galois over \mathbb{Q}. A 𝒦\mathscr{K}-coloring fCol𝒦(n)f\in\textnormal{Col}_{\mathscr{K}}(n) of nn is said to be defined on FF if ff is well-defined on the quotient Gal(𝔉n/F)\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\textnormal{Gal}(\mathfrak{F}_{n}/F)\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}. We say that Col𝒦(n)\textnormal{Col}_{\mathscr{K}}(n) is defined on FF if every fCol𝒦(n)f\in\textnormal{Col}_{\mathscr{K}}(n) is defined on FF.

Lemma 3.19.

Let nn\in{\mathbb{N}^{*}}, let 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} and let f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒦f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\mathscr{K} be a kei morphism. Denote by 𝒦=f( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n)𝒦\mathscr{K}^{\prime}=f(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n})\leq\mathscr{K}, and by

Hf:=ker(ρ𝔄n,f:𝔊nInn(𝒦))𝔊n.H_{f}:=\ker\left(\rho_{\mathfrak{A}_{n},f}\colon\mathfrak{G}_{n}\twoheadrightarrow\textnormal{Inn}(\mathscr{K}^{\prime})\right)\unlhd\mathfrak{G}_{n}.

Let Ff=(𝔉n)Hf𝔉nF_{f}=(\mathfrak{F}_{n})^{H_{f}}\subseteq\mathfrak{F}_{n}. Then ff factors through

Hf\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ nSpec(𝒪Ff/n)𝒦,H_{f}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\simeq\textnormal{Spec}\left(\mathcal{O}_{F_{f}}\otimes_{\mathbb{Z}}\mathbb{Z}/n\mathbb{Z}\right)\to\mathscr{K},

which is to say that ff is defined on FfF_{f}.

Proof.

By proposition 3.14, 𝔄nPro-𝒜ug𝒦eifin\mathfrak{A}_{n}\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}} is concise. The claim therefore follows from proposition 2.25 (proposition 2.21) ∎

Lemma 3.20.

Let nn\in{\mathbb{N}^{*}}. Then the construction Col𝒦(n)\textnormal{Col}_{\mathscr{K}}(n) assembles to a functor

Col(n):𝒦eifin𝒮etfin\textnormal{Col}_{\bullet}(n)\colon{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}\to{\mathscr{S}\textnormal{et}}^{\textnormal{fin}}

that preserves finite limits.

Proof.

As is the case for all corepresentable functors, the functor

HomPro-𝒦eifin( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,):Pro-𝒦eifin𝒮et\textnormal{Hom}_{\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},-)\colon\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}\to{\mathscr{S}\textnormal{et}}

preserves all limits. The canonical embedding

𝒦eifinPro-𝒦eifin{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}\hookrightarrow\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}

preserves finite limits. The composition

Col(n):𝒦eifinPro-𝒦eifin𝒮et\textnormal{Col}_{\bullet}(n)\colon{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}\hookrightarrow\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}\to{\mathscr{S}\textnormal{et}}

therefore preserves finite limits. By proposition 3.15,  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} is small, so these finite limits in 𝒮et{\mathscr{S}\textnormal{et}} are in fact computed in 𝒮etfin{\mathscr{S}\textnormal{et}}^{\textnormal{fin}}. ∎

Proposition 3.21.

Let m,nm,n\in{\mathbb{N}^{*}} be s.t. m|nm|n. Let H𝔊nH\leq\mathfrak{G}_{n} denote the closed subgroup

H:=𝔪n,𝔭|𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m¯𝔊n.H:=\overline{\langle\mathfrak{m}_{n,\mathfrak{p}}\;|\;\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\setminus\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m}\rangle}\leq\mathfrak{G}_{n}.

Then

𝔉nH=𝔉m\mathfrak{F}_{n}^{H}=\mathfrak{F}_{m}

and

H\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ mPro-𝒦eifin.H\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m}\simeq\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{m}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}.
Proof.

The elements {𝔪𝔭}𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m\{\mathfrak{m}_{\mathfrak{p}}\}_{\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\setminus\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m}} are precisely the nontrivial inertia elements for primes in 𝔉n\mathfrak{F}_{n} over all p|nmp|\frac{n}{m}. Therefore 𝔉nH𝔉n\mathfrak{F}_{n}^{H}\subseteq\mathfrak{F}_{n} is the maximal subfield ramified over \mathbb{Q} at most at mm. By proposition 3.5,

𝔉nH=𝔉m\mathfrak{F}_{n}^{H}=\mathfrak{F}_{m}

- and H=ker(𝔊n𝔊m)𝔊nH=\ker(\mathfrak{G}_{n}\twoheadrightarrow\mathfrak{G}_{m})\unlhd\mathfrak{G}_{n} accordingly. Let

𝔄n,m=( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m,𝔊n,(𝔪n)| ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m)Pro-𝒜ug𝒦eifin.\mathfrak{A}_{n,m}=(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m},\mathfrak{G}_{n},(\mathfrak{m}_{n})_{|\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m}})\in\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}.

By proposition 2.25 (proposition 2.20), the canonical morphism

(f,f~):𝔄n,m𝔄m:f(𝔭)=𝔭𝒪𝔉m,f~(g)=g|𝔉m(f,\widetilde{f})\colon\mathfrak{A}_{n,m}\to\mathfrak{A}_{m}\;\;:\;\;\;\;f(\mathfrak{p})=\mathfrak{p}\cap\mathcal{O}_{\mathfrak{F}_{m}}\;\;,\;\;\;\;\widetilde{f}(g)=g_{|\mathfrak{F}_{m}}

factors through the quotient H\𝔄n,mH\backslash\mathfrak{A}_{n,m}. The map H\𝔄n,m𝔄mH\backslash\mathfrak{A}_{n,m}\to\mathfrak{A}_{m} is an isomorphism because it induces isomorphisms H\𝔊n𝔊mH\backslash\mathfrak{G}_{n}{\xrightarrow{\sim}}\mathfrak{G}_{m} and

H\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m=H\Spec(𝒪𝔉n/m)Spec(𝒪𝔉nH/m)= ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ m.H\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m}=H\backslash\textnormal{Spec}\left(\mathcal{O}_{\mathfrak{F}_{n}}\otimes_{\mathbb{Z}}\mathbb{Z}/m\mathbb{Z}\right){\xrightarrow{\sim}}\textnormal{Spec}\left(\mathcal{O}_{\mathfrak{F}_{n}^{H}}\otimes_{\mathbb{Z}}\mathbb{Z}/m\mathbb{Z}\right)=\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{m}.

By proposition 2.18, the kei structure on H\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,mH\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m} is induced by that of  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m𝒦ei\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m}\in{\mathscr{K}\textnormal{ei}}, therefore we obtain an isomorphism

H\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,m ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ mPro-𝒦eifin.H\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,m}{\xrightarrow{\sim}}\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{m}\in\textnormal{Pro-}{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}.

Lemma 3.22.

Let nn\in{\mathbb{N}^{*}}. Then 𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} is the trivial kei {p|nprime}\{p|n\;\textrm{prime}\}:

𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒯ω(n)𝒦ei.\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\simeq\mathscr{T}_{\omega(n)}\in{\mathscr{K}\textnormal{ei}}.
Proof.

As a set,

𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n=Gal(𝔉n/)\|Spec(𝒪𝔉n/n)||Spec(/n)|={p|nprime}.\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}=\textnormal{Gal}(\mathfrak{F}_{n}/\mathbb{Q})\backslash\left|\textnormal{Spec}(\mathcal{O}_{\mathfrak{F}_{n}}\otimes_{\mathbb{Z}}\mathbb{Z}/n\mathbb{Z})\right|\simeq\left|\textnormal{Spec}(\mathbb{Z}/n\mathbb{Z})\right|=\{p|n\;\textrm{prime}\}.

The kei structure on 𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} is induced by Galois action on  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}. These act trivially on sets of rational primes. Therefore 𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒦ei\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\in{\mathscr{K}\textnormal{ei}} is trivial:

𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒯ω(n).\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\simeq\mathscr{T}_{\omega(n)}.

Proposition 3.23.

Let 𝒯𝒦ei\mathscr{T}\in{\mathscr{K}\textnormal{ei}} be trivial. There is a natural isomorphism

Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒯)𝒯{p|nprime}.\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{T})\simeq\mathscr{T}^{\{p|n\;\textnormal{prime}\}}.
Proof.

Let f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒯f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\mathscr{T} be a kei morphism. Denote by 𝒯:=f( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n)𝒯\mathscr{T}^{\prime}:=f(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n})\leq\mathscr{T}, also trivial. Therefore Inn(𝒯)={Id}\textnormal{Inn}(\mathscr{T}^{\prime})=\{\textnormal{Id}\}, and

Hf:=ker(ρ𝔄n,f:𝔊nInn(𝒯))=𝔊n.H_{f}:=\ker\Big{(}\rho_{\mathfrak{A}_{n},f}\colon\mathfrak{G}_{n}\to\textnormal{Inn}(\mathscr{T}^{\prime})\Big{)}=\mathfrak{G}_{n}.

By lemma 3.19, ff factors through 𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}. By lemma 3.22, 𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n} is a trivial kei with underlying set {p|nprime}\{p|n\;\textnormal{prime}\}. Therefore

Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒯)Hom𝒦ei(𝔊n\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒯)𝒯{p|nprime}.\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{T})\simeq\textnormal{Hom}_{\mathscr{K}\textnormal{ei}}(\mathfrak{G}_{n}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{T})\simeq\mathscr{T}^{\{p|n\;\textnormal{prime}\}}.

Proposition 3.24.

Let nn\in{\mathbb{N}^{*}} be square-free and let 𝒦1,𝒦2𝒦eifin\mathscr{K}_{1},\mathscr{K}_{2}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}. Then

col𝒦1𝒦2(n)=n=n1n2col𝒦1(n1)col𝒦2(n2).\textnormal{col}_{\mathscr{K}_{1}\sqcup\mathscr{K}_{2}}(n)=\sum_{n=n_{1}n_{2}}\textnormal{col}_{\mathscr{K}_{1}}(n_{1})\cdot\textnormal{col}_{\mathscr{K}_{2}}(n_{2}).
Proof.

Let 𝒯2={1,2}𝒦ei\mathscr{T}_{2}=\{*_{1},*_{2}\}\in{\mathscr{K}\textnormal{ei}}. By proposition 3.23, there is a natural bijection

Hom𝒦ei( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒯2)𝒯2{p|nprime}{(n1,n2)|n=n1n2}.\textnormal{Hom}_{\mathscr{K}\textnormal{ei}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{T}_{2})\simeq\mathscr{T}_{2}^{\{p|n\;\textnormal{prime}\}}\simeq\{(n_{1},n_{2})\;|\;n=n_{1}n_{2}\}.

for η: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒯2\eta\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\mathscr{T}_{2} corresponding to (n1,n2)(n_{1},n_{2}), we denote by

Colk1𝒦2(n)(n1,n2):=Hom/η( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒦1𝒦2).\textnormal{Col}_{k_{1}\sqcup\mathscr{K}_{2}}(n)_{(n_{1},n_{2})}:=\textnormal{Hom}_{/\eta}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{K}_{1}\sqcup\mathscr{K}_{2}).

By proposition 2.31 and proposition 3.21, there is a bijection

Col𝒦1𝒦2(n)(n1,n2)\textnormal{Col}_{\mathscr{K}_{1}\sqcup\mathscr{K}_{2}}(n)_{(n_{1},n_{2})}\simeq
Hom𝒦eicont(Hn,n1\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,n1,𝒦1)×Hom𝒦eicont(Hn,n2\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,n2,𝒦2)\simeq\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(H_{n,n_{1}}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,n_{1}},\mathscr{K}_{1})\times\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(H_{n,n_{2}}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n,n_{2}},\mathscr{K}_{2})\simeq
Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n1,𝒦1)×Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n2,𝒦2).\simeq\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n_{1}},\mathscr{K}_{1})\times\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n_{2}},\mathscr{K}_{2}).

where Hn,m:=Gal(𝔉n/𝔉m)H_{n,m}:=\textnormal{Gal}(\mathfrak{F}_{n}/\mathfrak{F}_{m}) for all m|nm|n as in proposition 3.21. Therefore

Col𝒦1𝒦2(n)(n1,n2)Col𝒦1(n1)×Col𝒦2(n2),\textnormal{Col}_{\mathscr{K}_{1}\sqcup\mathscr{K}_{2}}(n)_{(n_{1},n_{2})}\simeq\textnormal{Col}_{\mathscr{K}_{1}}(n_{1})\times\textnormal{Col}_{\mathscr{K}_{2}}(n_{2}),

and

col𝒦1𝒦2(n)=n=n1n2|Colk1𝒦2(n)(n1,n2)|=n=n1n2col𝒦1(n1)col𝒦2(n2).\textnormal{col}_{\mathscr{K}_{1}\sqcup\mathscr{K}_{2}}(n)=\sum_{n=n_{1}n_{2}}\left|\textnormal{Col}_{k_{1}\sqcup\mathscr{K}_{2}}(n)_{(n_{1},n_{2})}\right|=\sum_{n=n_{1}n_{2}}\textnormal{col}_{\mathscr{K}_{1}}(n_{1})\cdot\textnormal{col}_{\mathscr{K}_{2}}(n_{2}).

4 Main Conjecture

While the analogy of Barry Mazur likens positive square-free integers to links, the fibration of the affine line 𝔸𝔽p1\mathbb{A}^{1}_{\mathbb{F}_{p}} over 𝔽p\mathbb{F}_{p}, paints a sharper picture, likening a degree-kk separable polynomial f(t)𝔽p[t]f(t)\in\mathbb{F}_{p}[t] to the closure of a braid on k=logp|𝔽p[t]/f(t)|k=\log_{p}\left|\mathbb{F}_{p}[t]/f(t)\right| strands. By coarse analogy, nn\in{\mathbb{N}^{*}} should be a braid on logn\log n strands. The scope of this claim is limited by the lack of a Frobenius map, more so by the fact that logn\log n\notin\mathbb{N}. Nevertheless, the claim is bolstered by statistical phenomena about random numbers: A random number of magnitude XX is prime with probability (logX)1\approx\left(\log X\right)^{-1}, mirroring the fact that the closure of a random braids σBk\sigma\in B_{k} is connected with probability 1/k1/k. The aim of this paper is to use asymptotic statistical phenomena of kei-coloring invariants to lend further credence to this notion.

For a finite kei 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}, basic statistical invariants about 𝒦\mathscr{K}-coloring of random links admit particularly straightforward description when viewed as closures of braids: Let kk\in\mathbb{N} and let BkB_{k} be the Artin braid group on kk strands. The braid closure σ¯\overline{\sigma} of a braid σBk\sigma\in B_{k} is a link in S3S^{3}. The function mapping σBk\sigma\in B_{k} to col𝒦(σ¯)\textnormal{col}_{\mathscr{K}}(\overline{\sigma})\in\mathbb{N} extends to a locally constant function on the profinite completion B^k\widehat{B}_{k}. By [DS23] there exists for every 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} an integer-valued polynomial P𝒦(t)[t]P_{\mathscr{K}}(t)\in\mathbb{Q}[t] s.t. for all k0k\gg 0,

P𝒦(k)=B^kcol𝒦(σ¯)𝑑μ,P_{\mathscr{K}}(k)=\int\limits_{\widehat{B}_{k}}\textnormal{col}_{\mathscr{K}}(\overline{\sigma})d\mu,

where μ\mu is the Haar measure on B^k\widehat{B}_{k}. We use this to further bolster the notion that a random nn\in{\mathbb{N}^{*}} should be thought of as the closure of a random braid on logX\approx\log X strands.

4.1 The Hilbert Polynomial of a Finite Kei

Let 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}. Recall in [DS23] that there exists an integer-valued polynomial P𝒦(x)[x]P_{\mathscr{K}}(x)\in\mathbb{Q}[x] s.t. for all k0k\gg 0,

P𝒦(k)=B^kco^l𝒦𝑑μ,P_{\mathscr{K}}(k)=\int\limits_{\widehat{B}_{k}}{\textnormal{c}\widehat{\textnormal{o}}\textnormal{l}}_{\mathscr{K}}d\mu,

where μ\mu is the Haar measure on the profinite braid group B^k\widehat{B}_{k}. The degree of P𝒦P_{\mathscr{K}} is explicitly calculated in terms of 𝒦\mathscr{K}:

degP𝒦=1+max𝒦𝒦|Inn(𝒦)\𝒦|.\deg P_{\mathscr{K}}=-1+\max_{\mathscr{K}^{\prime}\leq\mathscr{K}}\left|\textnormal{Inn}(\mathscr{K}^{\prime})\backslash\mathscr{K}^{\prime}\right|.

4.2 Statistics of 𝒦\mathscr{K}-Coloring Random Arithmetic Links

Definition 4.1.

Let ss\in{\mathbb{N}^{*}} be square-free. By s{\mathbb{N}^{*}_{s}} we denote the set of square-free elements coprime to ss:

s:={n|(n,s)=1}.{\mathbb{N}^{*}_{s}}:=\{n\in{\mathbb{N}^{*}}\;|\;(n,s)=1\}.
Definition 4.2.

Let ss\in{\mathbb{N}^{*}}, let f:sf\colon{\mathbb{N}^{*}_{s}}\to\mathbb{C}, and let LL\in\mathbb{C}. We say ff converges to LL if for all ε>0\varepsilon>0 there exists uεsu_{\varepsilon}\in{\mathbb{N}^{*}_{s}} s.t. for all usu\in{\mathbb{N}^{*}_{s}},

uε|u|f(u)L|<ε.u_{\varepsilon}|u\;\;\Longrightarrow\;\;\left|f(u)-L\right|<\varepsilon.

We shall use either of the following notations:

limusf(u)=L,f(u)uL.\lim_{u\in{\mathbb{N}^{*}_{s}}}f(u)=L\;\;\;\;\;\;\;\;,\textnormal{}\;\;\;\;\;\;\;\;f(u)\xrightarrow{u\in{\mathbb{N}^{*}}}L.
Definition 4.3.

Let ss\in{\mathbb{N}^{*}} be squarefree. By γs\gamma_{s}\in\mathbb{R} we denote

γs:=ps(1p2)p|s(1p1)=ζ(2)1p|s(1+p1)1.\gamma_{s}:=\prod_{p\nmid s}(1-p^{-2})\cdot\prod_{p|s}(1-p^{-1})=\zeta(2)^{-1}\cdot\prod_{p|s}(1+p^{-1})^{-1}.
Remark 4.4.

For square-free ss, the number of ss-coprime square-free integers up to XX is

|s[1,X]|=γsX(1+o(1)).\left|{\mathbb{N}^{*}_{s}}\cap[1,X]\right|=\gamma_{s}X(1+o(1)).

Therefore the probability of ns[1,X]n\in{\mathbb{N}^{*}_{s}}\cap[1,X] being prime is

π(X)+Os(1)|s[1,X]|=π(X)+Os(1)XX|s[1,X]|=1+o(1)γslogX.\frac{\pi(X)+O_{s}(1)}{\left|{\mathbb{N}^{*}_{s}}\cap[1,X]\right|}=\frac{\pi(X)+O_{s}(1)}{X}\frac{X}{\left|{\mathbb{N}^{*}_{s}}\cap[1,X]\right|}=\frac{1+o(1)}{\gamma_{s}\log X}.

In likening a squarefree integer to the closure of a braid, the correct number of strands is purported to be inverse to the probability of primality. In light of this computation, for fixed ss\in{\mathbb{N}^{*}} we should think of ns[1,X]n\in{\mathbb{N}^{*}_{s}}\cap[1,X] as the closure of a braid with γslogX\approx\gamma_{s}\log X strands.

Definition 4.5.

Let f:f\colon{\mathbb{N}^{*}}\to\mathbb{C} and let ss\in{\mathbb{N}^{*}}. For 1X1\leq X\in\mathbb{R} we denote by

𝒩f,s(X):=ns[1,X]f(n)\mathcal{N}_{f,s}(X):=\sum_{n\in{\mathbb{N}^{*}_{s}}\cap[1,X]}f(n)

and

f,s(X)=𝒩f,s(X)|s[1,X]|.\mathcal{E}_{f,s}(X)=\frac{\mathcal{N}_{f,s}(X)}{|{\mathbb{N}^{*}_{s}}\cap[1,X]|}.

For 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}, we denote by

𝒩𝒦,s(X):=𝒩col𝒦,s(X)and𝒦,s(X):=col𝒦,s(X).\mathcal{N}_{\mathscr{K},s}(X):=\mathcal{N}_{\textnormal{col}_{\mathscr{K}},s}(X)\;\;\;\;\textrm{and}\;\;\;\;\;\;\;\;\mathcal{E}_{\mathscr{K},s}(X):=\mathcal{E}_{\textnormal{col}_{\mathscr{K}},s}(X).
Definition 4.6.

Let f:f\colon{\mathbb{N}^{*}}\to\mathbb{C}, let 0β0\leq\beta\in\mathbb{N} and let 0c0\neq c\in\mathbb{C}. We say ff has generic summatory type (β,c)(\beta,c) if for every ss\in{\mathbb{N}^{*}} there exists a limit

cs(f):=limXf,s(X)(γslogX)β{0},c_{s}(f):=\lim_{X\to\infty}\frac{\mathcal{E}_{f,s}(X)}{(\gamma_{s}\log X)^{\beta}}\in\mathbb{C}\setminus\{0\},

and if

c(f):=limscs(f)=c.c(f):=\lim_{s\in{\mathbb{N}^{*}}}c_{s}(f)=c.

We denote by 𝒲(β,c){\mathscr{W}(\beta,c)} the set of all such functions:

𝒲(β,c):={f:|fhas generic summatory type(β,c)}.{\mathscr{W}(\beta,c)}:=\{f\colon{\mathbb{N}^{*}}\to\mathbb{C}\;|\;f\;\textrm{has generic summatory type}\;(\beta,c)\}.

In the case of f=col𝒦f=\textnormal{col}_{\mathscr{K}} for some 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}, we denote by

cs(𝒦):=cs(col𝒦)andc(𝒦):=c(col𝒦).c_{s}(\mathscr{K}):=c_{s}(\textnormal{col}_{\mathscr{K}})\;\;\;\;\textnormal{and}\;\;\;\;\;\;\;\;c(\mathscr{K}):=c(\textnormal{col}_{\mathscr{K}}).
Remark 4.7.

In light of remark 4.4, for f𝒲(β,c)f\in{\mathscr{W}(\beta,c)} and ss\in{\mathbb{N}^{*}},

γs1+βcs(f)=limX𝒩f,s(X)Xlogβ(X).\gamma_{s}^{1+\beta}c_{s}(f)=\lim_{X\to\infty}\frac{\mathcal{N}_{f,s}(X)}{X\log^{\beta}(X)}.

In practice, it is the RHS here that we will be computing for every ss\in{\mathbb{N}^{*}}.

We are now ready to state the main conjecture of the paper:

Conjecture 4.8.

Let 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}. Let P𝒦(t)[t]P_{\mathscr{K}}(t)\in\mathbb{Q}[t] be the Hilbert polynomial of 𝒦\mathscr{K}, as defined in [DS23]. Then there exists 0<c0<c\in\mathbb{Q} s.t.

col𝒦𝒲(degP𝒦,c).\textnormal{col}_{\mathscr{K}}\in{\mathscr{W}(\deg P_{\mathscr{K}},c)}.

5 Preliminary Numerical Computations

A few preliminary definitions will be useful. In the following discussion of arithmetic functions, we follow standard notation: For arithmetic functions f,g:f,g\colon\mathbb{N}\to\mathbb{C}, the convolution fg:f*g\colon\mathbb{N}\to\mathbb{C} is defined via

(fg)(n):=n1n2=nf(n1)g(n2).(f*g)(n):=\sum_{n_{1}n_{2}=n}f(n_{1})g(n_{2}).

By δ1:\delta_{1}\colon\mathbb{N}\to\mathbb{C} we denote the unit with respect to convolution:

δ1(n)=δ1,n={1,n=10,n1.\delta_{1}(n)=\delta_{1,n}=\begin{cases}1&,\;n=1\\ 0&,\;n\neq 1\end{cases}\;\;.

By 𝟙,μ:\mathds{1},\mu\colon\mathbb{N}\to\mathbb{C} we respectively denote the constant function 𝟙(n)=1\mathds{1}(n)=1 and the Möbius function μ\mu, its inverse with respect to convolution. This is the multiplicative arithmetic function satisfying for all prime powers pν1p^{\nu}\neq 1,

μ(pν)={1,ν=10,ν>1.\mu(p^{\nu})=\begin{cases}-1&,\;\nu=1\\ 0&,\;\nu>1\end{cases}.

The function ω:\omega\colon\mathbb{N}\to\mathbb{C} counts distinct prime divisors:

ω(n):=|{p|nprime}|.\omega(n):=|\{p|n\;\textnormal{prime}\}|.
Definition 5.1.

Let ss\in{\mathbb{N}^{*}}. We denote by 𝟙(s),𝟙s:\mathds{1}_{(s)},\mathds{1}_{s}\;\colon\mathbb{N}\to\mathbb{C} the functions

𝟙s(n)={1,(n,s)=10,(n,s)>1,        1(s)(n)={1,n|sk for some k00,otherwise.\mathds{1}_{s}(n)=\begin{cases}1&,\;(n,s)=1\\ 0&,\;(n,s)>1\end{cases}\;\;\;\;,\;\;\;\;\;\;\;\;\mathds{1}_{(s)}(n)=\begin{cases}1&,\;n|s^{k}\;\textnormal{ for some }k\gg 0\\ 0&,\;\textnormal{otherwise}\end{cases}\;\;.

We denote by μs,μ(s):\mu_{s},\mu_{(s)}\colon\mathbb{N}\to\mathbb{C} the functions

μs(n)=𝟙s(n)μ(n),μ(s)(n)=𝟙(s)(n)μ(n).\mu_{s}(n)=\mathds{1}_{s}(n)\mu(n)\;\;,\;\;\;\;\mu_{(s)}(n)=\mathds{1}_{(s)}(n)\mu(n).

These are all multiplicative arithmetic functions, and they satisfy

𝟙sμs=𝟙(s)μ(s)=δ1,    1s𝟙(s)=𝟙.\mathds{1}_{s}*\mu_{s}=\mathds{1}_{(s)}*\mu_{(s)}=\delta_{1}\;\;,\;\;\;\;\mathds{1}_{s}*\mathds{1}_{(s)}=\mathds{1}.

5.1 Divisor Counting

Let 𝒶{\mathcal{a}}\in\mathbb{N}. Then for all 0<n0<n\in\mathbb{N}

𝟙𝒶(n)=𝟙𝟙𝒶(n)=d𝒶(n),\mathds{1}^{*{\mathcal{a}}}(n)=\underbrace{\mathds{1}*\cdots*\mathds{1}}_{{\mathcal{a}}}(n)=d_{\mathcal{a}}(n),

where d𝒶d_{\mathcal{a}} is the 𝒶{\mathcal{a}}-fold divisor counting function. This is the multiplicative function satisfying

𝟙𝒶(pν)=(𝒶+ν1𝒶1)\mathds{1}^{*{\mathcal{a}}}(p^{\nu})={{\mathcal{a}}+\nu-1\choose{\mathcal{a}}-1}

For all prime powers pνp^{\nu}. We begin by stating some standard results regarding the counting of divisors:

Lemma 5.2.

Let 1𝒶1\leq{\mathcal{a}}\in\mathbb{N}. Then for all m,nm,n\in\mathbb{N},

𝟙𝒶(mn)𝟙𝒶(m)𝟙𝒶(n).\mathds{1}^{*{\mathcal{a}}}(mn)\leq\mathds{1}^{*{\mathcal{a}}}(m)\mathds{1}^{*{\mathcal{a}}}(n).
Proof.

There is an equality

(𝒶+ν1𝒶1)=(𝒶+ν1)(ν+1)(𝒶1)!=k=1𝒶1(1+νk).{{\mathcal{a}}+\nu-1\choose{\mathcal{a}}-1}=\frac{({\mathcal{a}}+\nu-1)\cdots(\nu+1)}{({\mathcal{a}}-1)!}=\prod_{k=1}^{{\mathcal{a}}-1}(1+\frac{\nu}{k}).

The desired inequality immediately follows from the fact that

(1+νk)(1+νk)1+ν+νk.(1+\frac{\nu}{k})(1+\frac{\nu^{\prime}}{k})\geq 1+\frac{\nu+\nu^{\prime}}{k}.

Lemma 5.3.

Let 𝒷{\mathcal{b}}\in\mathbb{N} and let nn\in{\mathbb{N}^{*}}. Then

m|n𝒷ω(m)=(𝒷+1)ω(n).\sum_{m|n}{\mathcal{b}}^{\omega(m)}=({\mathcal{b}}+1)^{\omega(n)}.
Proof.

Since nn is square-free, we have

𝟙𝒷(n)=p|n𝟙𝒷(p)=𝒷ω(n).\mathds{1}^{*{\mathcal{b}}}(n)=\prod_{p|n}\mathds{1}^{*{\mathcal{b}}}(p)={\mathcal{b}}^{\omega(n)}.

Hence

(𝒷+1)ω(n)=𝟙(𝒷+1)(n)=mm=n𝟙𝒷(m)𝟙(m)=m|n𝒷ω(m).({\mathcal{b}}+1)^{\omega(n)}=\mathds{1}^{*({\mathcal{b}}+1)}(n)=\sum_{mm^{\prime}=n}\mathds{1}^{*{\mathcal{b}}}(m)\mathds{1}(m^{\prime})=\sum_{m|n}{\mathcal{b}}^{\omega(m)}.

Lemma 5.4.

Let 1𝒶1\leq{\mathcal{a}}\in\mathbb{N}. Then there exists C=C𝒶>0C=C_{\mathcal{a}}>0 s.t. the term

θ𝒶(X):=nX𝟙𝒶(n)Xlog𝒶1(X)(𝒶1)!\theta_{\mathcal{a}}(X):=\sum_{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n)-\frac{X\log^{{\mathcal{a}}-1}(X)}{({\mathcal{a}}-1)!}

is bounded for all X1X\geq 1 by

|θ𝒶(X)|{CX(log𝒶2(X)+1),𝒶2C,𝒶=1.|\theta_{\mathcal{a}}(X)|\leq\begin{cases}CX(\log^{{\mathcal{a}}-2}(X)+1)&,\;{\mathcal{a}}\geq 2\\ C&,\;{\mathcal{a}}=1\end{cases}\;\;.

In particular, as XX\to\infty we have

nX𝟙𝒶(n)=Xlog𝒶1(X)(𝒶1)!(1+o(1)).\sum_{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n)=\frac{X\log^{{\mathcal{a}}-1}(X)}{({\mathcal{a}}-1)!}(1+o(1)).
Proof.

If 𝒶=1{\mathcal{a}}=1, then for all X1X\geq 1,

|θ1(X)|=|XX|1.|\theta_{1}(X)|=|{\lfloor{X}\rfloor}-X|\leq 1.

If 𝒶2{\mathcal{a}}\geq 2, then there exists D𝒶(t)[t]D_{\mathcal{a}}(t)\in\mathbb{R}[t] with leading term t𝒶(𝒶1)!\frac{t^{\mathcal{a}}}{({\mathcal{a}}-1)!} s.t.

nX𝟙𝒶(n)=XD𝒶(logX)+O(X11𝒶1(log𝒶2(X)).\sum_{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n)=XD_{\mathcal{a}}(\log X)+O(X^{1-{\frac{1}{{\mathcal{a}}-1}}}(\log^{{\mathcal{a}}-2}(X)).\;

Hence

θ𝒶(X)X=1XnX𝟙𝒶(n)log𝒶1(X)(𝒶1)!=O(log𝒶2(X)).\frac{\theta_{\mathcal{a}}(X)}{X}=\frac{1}{X}\sum_{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n)-\frac{\log^{{\mathcal{a}}-1}(X)}{({\mathcal{a}}-1)!}=O(\log^{{\mathcal{a}}-2}(X)).

The function

θ𝒶(X)X(log𝒶2(X)+1):[1,)\frac{\theta_{\mathcal{a}}(X)}{X(\log^{{\mathcal{a}}-2}(X)+1)}\colon[1,\infty)\to\mathbb{R}

is then bounded not only for X0X\gg 0, but for all X[1,)X\in[1,\infty) because

X1log𝒶2(X)+11.X\geq 1\;\Longrightarrow\;\log^{{\mathcal{a}}-2}(X)+1\geq 1.

Hence there is some C𝒶>0C_{\mathcal{a}}>0 s.t. for all X1X\geq 1,

|θ𝒶(X)|C𝒶X(log𝒶2(X)+1).|\theta_{\mathcal{a}}(X)|\leq C_{\mathcal{a}}\cdot X(\log^{{\mathcal{a}}-2}(X)+1).

We have the following immediate corollary in the same spirit of stating a bound for all X1X\geq 1:

Lemma 5.5.

Let 1𝒶1\leq{\mathcal{a}}\in\mathbb{N}. Then there is a constant C=C𝒶>0C=C_{\mathcal{a}}>0 s.t. for all X1X\geq 1,

nX𝟙𝒶(n)CX(log𝒶1(X)+1).\sum_{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n)\leq CX(\log^{{\mathcal{a}}-1}(X)+1).
Lemma 5.6.

Let 1𝒶1\leq{\mathcal{a}}\in\mathbb{N} and let ϵ>0\epsilon>0. Then for every prime pp,

ν=0𝟙𝒶(pν)pϵν=(1pϵ)𝒶.\sum_{\nu=0}^{\infty}\frac{\mathds{1}^{*{\mathcal{a}}}(p^{\nu})}{p^{\epsilon\nu}}=(1-p^{-\epsilon})^{-{\mathcal{a}}}.

More generally, for every ss\in{\mathbb{N}^{*}},

n=1𝟙(s)𝒶(n)nϵ=p|s(1pϵ)𝒶.\sum_{n=1}^{\infty}\frac{\mathds{1}_{(s)}^{*{\mathcal{a}}}(n)}{n^{\epsilon}}=\prod_{p|s}(1-p^{-\epsilon})^{-{\mathcal{a}}}.
Proof.

From the formal equality of power series

(1t)𝒶=ν=0(𝒶+ν1𝒶1)tν,(1-t)^{-{\mathcal{a}}}=\sum_{\nu=0}^{\infty}{{\mathcal{a}}+\nu-1\choose{\mathcal{a}}-1}t^{\nu},

we have

ν=0𝟙𝒶(pν)pϵν=ν(𝒶+ν1𝒶1)pϵν=(1pϵ)𝒶.\sum_{\nu=0}^{\infty}\frac{\mathds{1}^{*{\mathcal{a}}}(p^{\nu})}{p^{\epsilon\nu}}=\sum_{\nu}{{\mathcal{a}}+\nu-1\choose{\mathcal{a}}-1}p^{-\epsilon\nu}=(1-p^{-\epsilon})^{-{\mathcal{a}}}.

The function 𝟙(s)a\mathds{1}_{(s)}^{*a} is multiplicative, satisfying

𝟙(s)𝒶(pν)={𝟙𝒶(pν),p|s0,ps,ν1.\mathds{1}_{(s)}^{*{\mathcal{a}}}(p^{\nu})=\begin{cases}\mathds{1}^{*{\mathcal{a}}}(p^{\nu})&,\;p|s\\ 0&,\;p\nmid s,\;\nu\geq 1\end{cases}\;\;.

Hence

n=1𝟙(s)𝒶(n)nϵ=p|sν𝟙𝒶(pν)pϵν=p|s(1pϵ)𝒶.\sum_{n=1}^{\infty}\frac{\mathds{1}_{(s)}^{*{\mathcal{a}}}(n)}{n^{\epsilon}}=\prod_{p|s}\sum_{\nu}\frac{\mathds{1}^{*{\mathcal{a}}}(p^{\nu})}{p^{\epsilon\nu}}=\prod_{p|s}(1-p^{-\epsilon})^{-{\mathcal{a}}}.

Definition 5.7.

Let 1𝒶1\leq{\mathcal{a}}\in\mathbb{N} and let f:f\colon\mathbb{N}\to\mathbb{R} be multiplicative, s.t.

0f(n)𝟙𝒶(n)0\leq f(n)\leq\mathds{1}^{*{\mathcal{a}}}(n)

for all nn\in\mathbb{N}. For every prime pp we denote by

Mp(𝒶)(f):=(1p1)𝒶ν=0f(pν)pν(0,1],M_{p}^{({\mathcal{a}})}(f):=(1-p^{-1})^{\mathcal{a}}\sum_{\nu=0}^{\infty}\frac{f(p^{\nu})}{p^{\nu}}\in(0,1],

and we denote by M(𝒶)(f)M^{({\mathcal{a}})}(f) the infinite product

M(𝒶)(f):=pMp(𝒶)(f)[0,1].M^{({\mathcal{a}})}(f):=\prod_{p}M_{p}^{({\mathcal{a}})}(f)\in[0,1].
Lemma 5.8.

Let 𝒶{\mathcal{a}}\in\mathbb{N} and let f:f\colon\mathbb{N}\to\mathbb{R} be a function s.t. 0f𝟙𝒶0\leq f\leq\mathds{1}^{*{\mathcal{a}}}. If the product M(𝒶)(f)M^{({\mathcal{a}})}(f) converges (to nonzero limit), then so does the infinite sum

p𝒶f(p)p.\sum_{p}\frac{{\mathcal{a}}-f(p)}{p}.
Proof.

For all prime pp,

1Mp(𝒶)(f)=Mp(𝒶)(𝟙𝒶)Mp(𝒶)(f)(1p1)𝒶𝟙𝒶(p)f(p)p2𝒶𝒶f(p)p.1-M_{p}^{({\mathcal{a}})}(f)=M_{p}^{({\mathcal{a}})}(\mathds{1}^{*{\mathcal{a}}})-M_{p}^{({\mathcal{a}})}(f)\geq(1-p^{-1})^{\mathcal{a}}\cdot\frac{\mathds{1}^{*{\mathcal{a}}}(p)-f(p)}{p}\geq 2^{-{\mathcal{a}}}\frac{{\mathcal{a}}-f(p)}{p}.

Hence

0Mp(𝒶)(f)12𝒶𝒶f(p)p1.0\leq M_{p}^{({\mathcal{a}})}(f)\leq 1-2^{-{\mathcal{a}}}\frac{{\mathcal{a}}-f(p)}{p}\leq 1.

The convergence of M(𝒶)(f)M^{({\mathcal{a}})}(f) implies the convergence of

p(12𝒶𝒶f(p)p).\prod_{p}\left(1-2^{-{\mathcal{a}}}\frac{{\mathcal{a}}-f(p)}{p}\right).

The convergence of the desired sum then follows, as

p𝒶f(p)p=2𝒶p2𝒶𝒶f(p)p.\sum_{p}\frac{{\mathcal{a}}-f(p)}{p}=2^{\mathcal{a}}\cdot\sum_{p}2^{-{\mathcal{a}}}\frac{{\mathcal{a}}-f(p)}{p}.

Lemma 5.9.

Let f:f\colon\mathbb{N}\to\mathbb{R} be a function s.t.

0f𝟙(s)𝒷0\leq f\leq\mathds{1}_{(s)}^{*{\mathcal{b}}}

for some bb\in\mathbb{N} and ss\in{\mathbb{N}^{*}}. Then for all ii\in\mathbb{N}, the series

n=1f(n)nlogi(n)\sum_{n=1}^{\infty}\frac{f(n)}{n}\log^{i}(n)

converges.

Proof.

Let ii\in\mathbb{N}. Then logi(n)<n\log^{i}(n)<\sqrt{n} for n0n\gg 0. Convergence is therefore dominated by

n=1f(n)nn=1𝟙(s)𝒷(n)n=p|s(1p12)𝒷.\sum_{n=1}^{\infty}\frac{f(n)}{\sqrt{n}}\leq\sum_{n=1}^{\infty}\frac{\mathds{1}_{(s)}^{*{\mathcal{b}}}(n)}{\sqrt{n}}=\prod_{p|s}(1-p^{-\frac{1}{2}})^{-{\mathcal{b}}}.

Lemma 5.10.

Let 1𝒶1\leq{\mathcal{a}}\in\mathbb{N} and let f:f\colon\mathbb{N}\to\mathbb{R} be multiplicative s.t.

0f𝟙(s)𝒷0\leq f\leq\mathds{1}_{(s)}^{*{\mathcal{b}}}

for some 𝒷{\mathcal{b}}\in\mathbb{N} and ss\in{\mathbb{N}^{*}}. For g:g\colon\mathbb{N}\to\mathbb{C} and X1X\geq 1 we denote by

g(X):=1nXg(X).\mathcal{M}_{g}(X):=\sum_{1\leq n\leq X}g(X).

Then as XX\to\infty,

limXf𝟙𝒶(X)X(logX)𝒶1=1(𝒶1)!m=1f(m)m.\lim_{X\to\infty}\frac{\mathcal{M}_{f*\mathds{1}^{*{\mathcal{a}}}}(X)}{X(\log X)^{{\mathcal{a}}-1}}=\frac{1}{({\mathcal{a}}-1)!}\cdot\sum_{m=1}^{\infty}\frac{f(m)}{m}.
Proof.

Let X0X\geq 0. Then

f𝟙𝒶(X)=mXf(m)aX/m𝟙𝒶(a)=mXf(m)(Xmlog𝒶1(X/m)(𝒶1)!+θ𝒶(X/m)).\mathcal{M}_{f*\mathds{1}^{*{\mathcal{a}}}}(X)=\sum_{m\leq X}f(m)\sum_{a\leq X/m}\mathds{1}^{*{\mathcal{a}}}(a)=\sum_{m\leq X}f(m)\cdot\left(\frac{X}{m}\frac{\log^{{\mathcal{a}}-1}(X/m)}{({\mathcal{a}}-1)!}+\theta_{\mathcal{a}}(X/m)\right).

Therefore

f𝟙𝒶(X)Xlog𝒶1(X)=1(𝒶1)!mXf(m)m(1logmlogX)𝒶1+1log𝒶1(X)mXf(m)mmXθ𝒶(X/m).\frac{\mathcal{M}_{f*\mathds{1}^{*{\mathcal{a}}}}(X)}{X\log^{{\mathcal{a}}-1}(X)}=\frac{1}{({\mathcal{a}}-1)!}\sum_{m\leq X}\frac{f(m)}{m}\left(1-\frac{\log m}{\log X}\right)^{{\mathcal{a}}-1}+\frac{1}{\log^{{\mathcal{a}}-1}(X)}\sum_{m\leq X}\frac{f(m)}{m}\cdot\frac{m}{X}\theta_{\mathcal{a}}(X/m).

Considering the first summand, it follows from lemma 5.9 that for all i>0i>0,

0mXf(m)m(logmlogX)i1logi(X)m=1f(m)mlogi(m)X0.0\leq\sum_{m\leq X}\frac{f(m)}{m}\left(\frac{\log m}{\log X}\right)^{i}\leq\frac{1}{\log^{i}(X)}\sum_{m=1}^{\infty}\frac{f(m)}{m}\log^{i}(m)\xrightarrow{X\to\infty}0.

Therefore

mXf(m)m(1logmlogX)𝒶1=mXf(m)m+o(1)=m=1f(m)m+o(1).\sum_{m\leq X}\frac{f(m)}{m}\left(1-\frac{\log m}{\log X}\right)^{{\mathcal{a}}-1}=\sum_{m\leq X}\frac{f(m)}{m}+o(1)=\sum_{m=1}^{\infty}\frac{f(m)}{m}+o(1).

Turning to the remaining summand, we first address the case 𝒶2{\mathcal{a}}\geq 2. By lemma 5.4 there is a constant C>0C>0 s.t.

|mXθ𝒶(X/m)|C(log𝒶2(X/m)+1)C(log𝒶2(X)+1)\left|\frac{m}{X}\theta_{\mathcal{a}}(X/m)\right|\leq C\left(\log^{{\mathcal{a}}-2}(X/m)+1\right)\leq C\left(\log^{{\mathcal{a}}-2}(X)+1\right)

for all 1mX1\leq m\leq X. Therefore

|mXf(m)mmXθ𝒶(X/m)|mXf(m)m|mXθ𝒶(X/m)|\left|\sum_{m\leq X}\frac{f(m)}{m}\cdot\frac{m}{X}\theta_{\mathcal{a}}(X/m)\right|\leq\sum_{m\leq X}\frac{f(m)}{m}\cdot\left|\frac{m}{X}\theta_{\mathcal{a}}(X/m)\right|\leq
C(log𝒶2(X)+1)m=1f(m)m=o(log𝒶1(X)).\leq C\left(\log^{{\mathcal{a}}-2}(X)+1\right)\sum_{m=1}^{\infty}\frac{f(m)}{m}=o(\log^{{\mathcal{a}}-1}(X)).

In the case 𝒶=1{\mathcal{a}}=1, this summand is bounded, for some constant C>0C>0, by

|mXf(m)Xθ1(X/m)|CXmXf(m)CXmX𝟙(s)𝒶(m)=O(X1logω(s)(X))=o(1).\left|\sum_{m\leq X}\frac{f(m)}{X}\theta_{1}(X/m)\right|\leq\frac{C}{X}\sum_{m\leq X}f(m)\leq\frac{C}{X}\sum_{m\leq X}\mathds{1}_{(s)}^{*{\mathcal{a}}}(m)=O\left(X^{-1}\log^{\omega(s)}(X)\right)=o(1).

Thus for any 𝒶1{\mathcal{a}}\geq 1,

f𝟙𝒶(X)Xlog𝒶1(X)=1(𝒶1)!(m=1f(m)m+o(1))+o(log𝒶1(X))log𝒶1(X)=\frac{\mathcal{M}_{f*\mathds{1}^{*{\mathcal{a}}}}(X)}{X\log^{{\mathcal{a}}-1}(X)}=\frac{1}{({\mathcal{a}}-1)!}\left(\sum_{m=1}^{\infty}\frac{f(m)}{m}+o(1)\right)+\frac{o(\log^{{\mathcal{a}}-1}(X))}{\log^{{\mathcal{a}}-1}(X)}=
=1(𝒶1)!m=1f(m)m+o(1).=\frac{1}{({\mathcal{a}}-1)!}\sum_{m=1}^{\infty}\frac{f(m)}{m}+o(1).

Lemma 5.11.

Let kk\in\mathbb{N} and let 0biai0\leq b_{i}\leq a_{i} for 1ik1\leq i\leq k. Then

iaiibii(aibi)jiaj.\prod_{i}a_{i}-\prod_{i}b_{i}\leq\sum_{i}(a_{i}-b_{i})\prod_{j\neq i}a_{j}.
Proof.

If ai=0a_{i}=0 for some ii then both sides of the inequality equal 0. We assume therefore that ai>0a_{i}>0 for all ii. Then 0biai10\leq\frac{b_{i}}{a_{i}}\leq 1 for all ii, therefore

1ibiaii(1biai).1-\prod_{i}\frac{b_{i}}{a_{i}}\leq\sum_{i}\left(1-\frac{b_{i}}{a_{i}}\right).

Thus

iaiibi=jaj(1ibiai)jaji(1biai)=i(aibi)jiaj.\prod_{i}a_{i}-\prod_{i}b_{i}=\prod_{j}a_{j}\left(1-\prod_{i}\frac{b_{i}}{a_{i}}\right)\leq\prod_{j}a_{j}\sum_{i}\left(1-\frac{b_{i}}{a_{i}}\right)=\sum_{i}(a_{i}-b_{i})\prod_{j\neq i}a_{j}.

Proposition 5.12.

Let 1𝒶1\leq{\mathcal{a}}\in\mathbb{N}, and let f:f\colon\mathbb{N}\to\mathbb{R} be multiplicative s.t.

0f(n)𝟙𝒶(n)0\leq f(n)\leq\mathds{1}^{*{\mathcal{a}}}(n)

for all nn\in\mathbb{N}. For X1X\geq 1 we denote by

f(X):=1nXf(X).\mathcal{M}_{f}(X):=\sum_{1\leq n\leq X}f(X).

Then

limXf(X)Xlog𝒶1(X)=1(𝒶1)!M(𝒶)(f).\lim_{X\to\infty}\frac{\mathcal{M}_{f}(X)}{X\log^{{\mathcal{a}}-1}(X)}=\frac{1}{({\mathcal{a}}-1)!}M^{({\mathcal{a}})}(f).
Proof.

For all ss\in{\mathbb{N}^{*}} we define the function fs(𝒶):f_{s}^{({\mathcal{a}})}\colon\mathbb{N}\to\mathbb{R} via

fs(𝒶)=(f𝟙(s))𝟙s𝒶.f_{s}^{({\mathcal{a}})}=(f\cdot\mathds{1}_{(s)})*\mathds{1}_{s}^{*{\mathcal{a}}}.

Since f,𝟙(s),𝟙sf,\mathds{1}_{(s)},\mathds{1}_{s} are multiplicative, then so is fs(𝒶)f_{s}^{({\mathcal{a}})}, satisfying for all prime powers pν1p^{\nu}\neq 1,

fs(𝒶)(pν)=i=0νf(pi)𝟙(s)(pi)𝟙s𝒶(pνi)={f(pν),p|s𝟙𝒶(pν),ps.f_{s}^{({\mathcal{a}})}(p^{\nu})=\sum_{i=0}^{\nu}f(p^{i})\mathds{1}_{(s)}(p^{i})\mathds{1}_{s}^{*{\mathcal{a}}}(p^{\nu-i})=\begin{cases}f(p^{\nu})&,\;p|s\\ \mathds{1}^{*{\mathcal{a}}}(p^{\nu})&,\;p\nmid s\end{cases}\;\;.

Therefore for all ss\in{\mathbb{N}^{*}},

0ffs(𝒶)𝟙𝒶.0\leq f\leq f_{s}^{({\mathcal{a}})}\leq\mathds{1}^{*{\mathcal{a}}}.

The function fs(𝒶)f_{s}^{({\mathcal{a}})} can be written

fs(𝒶)=(f𝟙(s))𝟙s𝒶=((f𝟙(s))𝟙𝒶)μ(s)𝒶.f_{s}^{({\mathcal{a}})}=(f\cdot\mathds{1}_{(s)})*\mathds{1}_{s}^{*{\mathcal{a}}}=\left((f\cdot\mathds{1}_{(s)})*\mathds{1}^{*{\mathcal{a}}}\right)*\mu_{(s)}^{*{\mathcal{a}}}.

Note that μ(s)𝒶(a)=0\mu_{(s)}^{*{\mathcal{a}}}(a)=0 for a>s𝒶a>s^{{\mathcal{a}}}. Since 0f𝟙(s)𝟙𝒶𝟙(s)=𝟙(s)𝒶0\leq f\mathds{1}_{(s)}\leq\mathds{1}^{*{\mathcal{a}}}\mathds{1}_{(s)}=\mathds{1}_{(s)}^{*{\mathcal{a}}}, by lemma 5.10 for all X1X\geq 1, we have

fs(𝒶)(X)X=1XabXμ(s)𝒶(a)((f𝟙(s))𝟙𝒶)(b)=\frac{\mathcal{M}_{f_{s}^{({\mathcal{a}})}}(X)}{X}=\frac{1}{X}\sum_{ab\leq X}\mu_{(s)}^{*{\mathcal{a}}}(a)\left((f\cdot\mathds{1}_{(s)})*\mathds{1}^{*{\mathcal{a}}}\right)(b)=
=as𝒶μ(s)𝒶(a)aaXbXa((f𝟙(s))𝟙𝒶)(b)==\sum_{a\leq s^{\mathcal{a}}}\frac{\mu_{(s)}^{*{\mathcal{a}}}(a)}{a}\cdot\frac{a}{X}\sum_{b\leq\frac{X}{a}}\left((f\cdot\mathds{1}_{(s)})*\mathds{1}^{*{\mathcal{a}}}\right)(b)=
=as𝒶μ(s)𝒶(a)alog𝒶1(X/a)(𝒶1)!m=1(f𝟙(s))(m)m(1+o(1))==\sum_{a\leq s^{\mathcal{a}}}\frac{\mu_{(s)}^{*{\mathcal{a}}}(a)}{a}\cdot\frac{\log^{{\mathcal{a}}-1}(X/a)}{({\mathcal{a}}-1)!}\cdot\sum_{m=1}^{\infty}\frac{(f\cdot\mathds{1}_{(s)})(m)}{m}\cdot(1+o(1))=
=p|s(1p1)𝒶log𝒶1(X)(𝒶1)!p|sνf(pν)pν(1+o(1))==\prod_{p|s}(1-p^{-1})^{\mathcal{a}}\cdot\frac{\log^{{\mathcal{a}}-1}(X)}{({\mathcal{a}}-1)!}\cdot\prod_{p|s}\sum_{\nu}\frac{f(p^{\nu})}{p^{\nu}}\cdot(1+o(1))=
=log𝒶1(X)(𝒶1)!p|sMp(𝒶)(f)(1+o(1)).=\frac{\log^{{\mathcal{a}}-1}(X)}{({\mathcal{a}}-1)!}\cdot\prod_{p|s}M_{p}^{({\mathcal{a}})}(f)\cdot(1+o(1)).

For all ss\in{\mathbb{N}^{*}} and X1X\geq 1, f(X)fs(𝒶)(X)\mathcal{M}_{f}(X)\leq\mathcal{M}_{f_{s}^{({\mathcal{a}})}}(X). Therefore

0lim supXf(X)Xlog𝒶1(X)infslim supXfs(𝒶)(X)Xlog𝒶1(X)=0\leq\limsup_{X\to\infty}\frac{\mathcal{M}_{f}(X)}{X\log^{{\mathcal{a}}-1}(X)}\leq\inf_{s\in{\mathbb{N}^{*}}}\limsup_{X\to\infty}\frac{\mathcal{M}_{f_{s}^{({\mathcal{a}})}}(X)}{X\log^{{\mathcal{a}}-1}(X)}=
=1(𝒶1)!pMp(𝒶)(f)=1(𝒶1)!M(𝒶)(f).=\frac{1}{({\mathcal{a}}-1)!}\prod_{p}M_{p}^{({\mathcal{a}})}(f)=\frac{1}{({\mathcal{a}}-1)!}M^{({\mathcal{a}})}(f).

Should the product M(𝒶)(f)M^{({\mathcal{a}})}(f) diverge, it necessarily diverges to 0, whereby

limXf(X)X(logX)𝒶1=0=1(𝒶1)!M(𝒶)(f),\lim_{X\to\infty}\frac{\mathcal{M}_{f}(X)}{X(\log X)^{{\mathcal{a}}-1}}=0=\frac{1}{({\mathcal{a}}-1)!}M^{({\mathcal{a}})}(f),

as desired. We assume therefore that M(𝒶)(f)M^{({\mathcal{a}})}(f) converges. By lemma 5.11, for all ss\in{\mathbb{N}^{*}} and nn\in\mathbb{N},

0fs(𝒶)(n)f(n)pν||nfs(𝒶)(n/pν)(fs(𝒶)(pν)f(pν))=0\leq f_{s}^{({\mathcal{a}})}(n)-f(n)\leq\sum_{p^{\nu}||n}f_{s}^{({\mathcal{a}})}(n/p^{\nu})(f_{s}^{({\mathcal{a}})}(p^{\nu})-f(p^{\nu}))=
=pν||npsfs(𝒶)(n/pν)(𝟙𝒶(pν)f(pν))pν||nps𝟙𝒶(n/pν)(𝟙𝒶(pν)f(pν)).=\sum_{\begin{subarray}{c}p^{\nu}||n\\ p\nmid s\end{subarray}}f_{s}^{({\mathcal{a}})}(n/p^{\nu})(\mathds{1}^{*{\mathcal{a}}}(p^{\nu})-f(p^{\nu}))\leq\sum_{\begin{subarray}{c}p^{\nu}||n\\ p\nmid s\end{subarray}}\mathds{1}^{*{\mathcal{a}}}(n/p^{\nu})(\mathds{1}^{*{\mathcal{a}}}(p^{\nu})-f(p^{\nu})).

Summing over 1nX1\leq n\leq X we have

0fs(𝒶)(X)f(X)nXpνnps𝟙𝒶(n/pν)(𝟙𝒶(pν)f(pν))0\leq\mathcal{M}_{f_{s}^{({\mathcal{a}})}}(X)-\mathcal{M}_{f}(X)\leq\sum_{n\leq X}\sum_{\begin{subarray}{c}p^{\nu}\|n\\ p\nmid s\end{subarray}}\mathds{1}^{*{\mathcal{a}}}(n/p^{\nu})\left(\mathds{1}^{*{\mathcal{a}}}(p^{\nu})-f(p^{\nu})\right)\leq
ps[p2|nnX𝟙𝒶(n)+p||nnX𝟙𝒶(n/p)(𝟙𝒶(p)f(p))].\leq\sum_{\begin{subarray}{c}p\nmid s\end{subarray}}\left[\sum_{p^{2}|n}^{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n)+\sum_{p||n}^{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n/p)\left(\mathds{1}^{*{\mathcal{a}}}(p)-f(p)\right)\right].

By lemma 5.2, the first summand is bounded as follows:

0psp2|nnX𝟙𝒶(n)=psmXp2𝟙𝒶(mp2)psmXp2𝟙𝒶(m)𝟙𝒶(p2)=0\leq\sum_{p\nmid s}\sum_{p^{2}|n}^{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n)=\sum_{\begin{subarray}{c}p\nmid s\end{subarray}}\sum_{m\leq\frac{X}{p^{2}}}\mathds{1}^{*{\mathcal{a}}}(mp^{2})\leq\sum_{\begin{subarray}{c}\\ p\nmid s\end{subarray}}\sum_{m\leq\frac{X}{p^{2}}}\mathds{1}^{*{\mathcal{a}}}(m)\mathds{1}^{*{\mathcal{a}}}(p^{2})=
=(𝒶+12)pspXmX/p2𝟙𝒶(m).={{\mathcal{a}}+1\choose 2}\sum_{p\nmid s}^{p\leq\sqrt{X}}\sum_{m\leq X/p^{2}}\mathds{1}^{*{\mathcal{a}}}(m).

Therefore there exists C=C𝒶>0C=C_{\mathcal{a}}>0 s.t. for all X1X\geq 1,

psp2|nnX𝟙𝒶(n)pspXCXp2(log𝒶1(X/p2)+1)CX(log𝒶1(X)+1)ps1p2.\sum_{p\nmid s}\sum_{\begin{subarray}{c}p^{2}|n\end{subarray}}^{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n)\leq\sum_{\begin{subarray}{c}p\nmid s\end{subarray}}^{p\leq\sqrt{X}}C\frac{X}{p^{2}}\left(\log^{{\mathcal{a}}-1}(X/p^{2})+1\right)\leq CX\left(\log^{{\mathcal{a}}-1}(X)+1\right)\sum_{p\nmid s}\frac{1}{p^{2}}.

The second summand is likewise bounded for all X1X\geq 1 by

psp||nnX𝟙𝒶(n/p)(𝟙𝒶(p)f(p))ps(𝒶f(p))mXp𝟙𝒶(m)\sum_{p\nmid s}\sum_{\begin{subarray}{c}p||n\end{subarray}}^{n\leq X}\mathds{1}^{*{\mathcal{a}}}(n/p)(\mathds{1}^{*{\mathcal{a}}}(p)-f(p))\leq\sum_{\begin{subarray}{c}p\nmid s\end{subarray}}({\mathcal{a}}-f(p))\sum_{m\leq\frac{X}{p}}\mathds{1}^{*{\mathcal{a}}}(m)\leq
pspX(𝒶f(p))CXp(log𝒶1(X/p)+1)\leq\sum_{\begin{subarray}{c}p\nmid s\end{subarray}}^{p\leq X}({\mathcal{a}}-f(p))\cdot C\frac{X}{p}\left(\log^{{\mathcal{a}}-1}(X/p)+1\right)\leq
CX(log𝒶1(X)+1)ps𝒶f(p)p.\leq CX\left(\log^{{\mathcal{a}}-1}(X)+1\right)\sum_{p\nmid s}\frac{{\mathcal{a}}-f(p)}{p}.

Hence there is a constant C>0C>0 such that for all ss\in{\mathbb{N}^{*}} and X1X\geq 1,

0fs(𝒶)(X)f(X)X(log𝒶1(X)+1)Cps1p2+Cps𝒶f(p)p.0\leq\frac{\mathcal{M}_{f_{s}^{({\mathcal{a}})}}(X)-\mathcal{M}_{f}(X)}{X(\log^{{\mathcal{a}}-1}(X)+1)}\leq C\sum_{p\nmid s}\frac{1}{p^{2}}+C\sum_{p\nmid s}\frac{{\mathcal{a}}-f(p)}{p}.

The series p𝒶f(p)p\sum_{p}\frac{{\mathcal{a}}-f(p)}{p} converges following lemma 5.8 and the assumed convergence of M(𝒶)(f)M^{({\mathcal{a}})}(f). The series pp2\sum_{p}p^{-2} converges as well, therefore

ps1p2+ps𝒶f(p)ps0.\sum_{p\nmid s}\frac{1}{p^{2}}+\sum_{p\nmid s}\frac{{\mathcal{a}}-f(p)}{p}\xrightarrow{s\in{\mathbb{N}^{*}}}0.

It follows that there is uniform convergence for X[2,[X\in[2,\infty[:

fs(𝒶)(X)X(logX)𝒶1sf(X)X(logX)𝒶1.\frac{\mathcal{M}_{f_{s}^{({\mathcal{a}})}}(X)}{X(\log X)^{{\mathcal{a}}-1}}\xrightarrow{s\in{\mathbb{N}^{*}}}\frac{\mathcal{M}_{f}(X)}{X(\log X)^{{\mathcal{a}}-1}}.

Thus we obtain the desired limit

limXf(X)Xlog𝒶1(X)=limslimXfs(𝒶)(X)Xlog𝒶1(X)=\lim_{X\to\infty}\frac{\mathcal{M}_{f}(X)}{X\log^{{\mathcal{a}}-1}(X)}=\lim_{s\in{\mathbb{N}^{*}}}\lim_{X\to\infty}\frac{\mathcal{M}_{f_{s}^{({\mathcal{a}})}}(X)}{X\log^{{\mathcal{a}}-1}(X)}=
=lims1(𝒶1)!p|sMp(𝒶)(f)=1(𝒶1)!M(𝒶)(f).=\lim_{s\in{\mathbb{N}^{*}}}\frac{1}{({\mathcal{a}}-1)!}\prod_{p|s}M_{p}^{({\mathcal{a}})}(f)=\frac{1}{({\mathcal{a}}-1)!}M^{({\mathcal{a}})}(f).

5.2 Sums of Kronecker Symbols

Recall that the Kronecker symbol (ab){0,±1}\left(\frac{a}{b}\right)\in\{0,\pm 1\}, defined for a,ba,b\in\mathbb{Z} with b>0b>0, satisfies for primes p2p\neq 2:

(p2)=(2p)=(2p)=(1)p218.\left(\frac{p}{2}\right)=\left(\frac{2^{*}}{p}\right)=\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}.
Proposition 5.13.

Let χ:\chi\colon\mathbb{Z}\to\mathbb{C} be a non-principal character of modulus dd and let ss\in{\mathbb{N}^{*}}. Then there exists C>0C>0, independent of χ\chi and ss, s.t.

|AnB(χ𝟙s)(n)|C2ω(s)dlogd\left|\sum_{A\leq n\leq B}(\chi\cdot\mathds{1}_{s})(n)\right|\leq C\cdot 2^{\omega(s)}\sqrt{d}\log d

for all A,BA,B\in\mathbb{R}.

Proof.

Let A,BA,B\in\mathbb{R}. A run-through of ss-coprime integers is obtained by Möbius inversion:

AnBχ(n)𝟙s(n)=u|sμ(u)AnBu|nχ(n)=u|sμ(u)χ(u)AunBuχ(n).\sum_{A\leq n\leq B}\chi(n)\mathds{1}_{s}(n)=\sum_{u|s}\mu(u)\sum_{\begin{subarray}{c}A\leq n\leq B\end{subarray}}^{u|n}\chi(n)=\sum_{u|s}\mu(u)\chi(u)\sum_{\frac{A}{u}\leq n\leq\frac{B}{u}}\chi(n).

By the theorem of Pólya-Vinogradov777see [Pól18] or [Hil88], there is a constanct C>0C>0 s.t.

|AnBχ(n)𝟙s(n)|u|s|AunBuχ(n)|C2ω(s)dlogd.\left|\sum_{A\leq n\leq B}\chi(n)\mathds{1}_{s}(n)\right|\leq\sum_{u|s}\left|\sum_{\frac{A}{u}\leq n\leq\frac{B}{u}}\chi(n)\right|\leq C\cdot 2^{\omega(s)}\sqrt{d}\log d.

Proposition 5.14.

For χ:\chi\colon\mathbb{Z}\to\mathbb{C} a non-principal Dirichlet character with modulus dd, for ss\in{\mathbb{N}^{*}} and 1YX1\leq Y\leq X, denote by

Sχ,s(X)=1nXμs2(n)χ(n),Sχ,s(Y,X)=Y<nXμs2(n)χ(n).S_{\chi,s}(X)=\sum\limits_{1\leq n\leq X}\mu_{s}^{2}(n)\chi(n)\;\;,\;\;\;\;S_{\chi,s}(Y,X)=\sum\limits_{Y<n\leq X}\mu_{s}^{2}(n)\chi(n).

Then there is a constant 0<C0<C\in\mathbb{R} s.t. for all such χ\chi, ss\in{\mathbb{N}^{*}} and XY1X\geq Y\geq 1,

|Sχ,s(X)|,|Sχ,s(Y,X)|CX12212ω(s)d14log12(d).|S_{\chi,s}(X)|\;,\;\;|S_{\chi,s}(Y,X)|\leq C\cdot X^{\frac{1}{2}}\cdot 2^{\frac{1}{2}\omega(s)}d^{\frac{1}{4}}\log^{\frac{1}{2}}(d).
Proof.
Sχ,s(X)=1nXμ2(n)𝟙s(n)χ(n)=a=1μ(a)a2|n1nX𝟙s(n)χ(n)=S_{\chi,s}(X)=\sum_{1\leq n\leq X}\mu^{2}(n)\mathds{1}_{s}(n)\chi(n)=\sum_{a=1}^{\infty}\mu(a)\sum_{\begin{subarray}{c}a^{2}|n\end{subarray}}^{1\leq n\leq X}\mathds{1}_{s}(n)\chi(n)=
=aμ(a)1mXa2𝟙s(a2m)χ(a2m)=1aXμs(a)χ(a)21mXa2𝟙s(m)χ(m).=\sum_{a}\mu(a)\sum_{1\leq m\leq\frac{X}{a^{2}}}\mathds{1}_{s}(a^{2}m)\chi(a^{2}m)=\sum_{1\leq a\leq\sqrt{X}}\mu_{s}(a)\chi(a)^{2}\sum_{1\leq m\leq\frac{X}{a^{2}}}\mathds{1}_{s}(m)\chi(m).

Let 1ZX1\leq Z\leq\sqrt{X} be some parameter to be determined later. Then

Sχ,s(X)=(1aZ+Z<aX)μs(a)χ(a)21mXa2χ(m)𝟙s(m).S_{\chi,s}(X)=\left(\sum_{1\leq a\leq Z}+\sum_{Z<a\leq\sqrt{X}}\right)\mu_{s}(a)\chi(a)^{2}\sum_{1\leq m\leq\frac{X}{a^{2}}}\chi(m)\mathds{1}_{s}(m). (6)

By proposition 5.13 there is C>0C^{\prime}>0 s.t. the first summand in (6) is bounded by

|1aZμs(a)χ(a)21mXa2χ(m)𝟙s(m)|aZ|mXa2χ(m)𝟙s(m)|\left|\sum_{1\leq a\leq Z}\mu_{s}(a)\chi(a)^{2}\sum_{1\leq m\leq\frac{X}{a^{2}}}\chi(m)\mathds{1}_{s}(m)\right|\leq\sum_{a\leq Z}\left|\sum_{m\leq\frac{X}{a^{2}}}\chi(m)\cdot\mathds{1}_{s}(m)\right|\leq
ZC2ω(s)dlogd.\leq Z\cdot C^{\prime}2^{\omega(s)}\sqrt{d}\log d.

The second summand in (6) is bounded, for some constant C′′>0C^{\prime\prime}>0, by

|Z<aXμs(a)χ(a)21mXa2χ(m)𝟙s(m)|a>ZmXa21a>ZXa2C′′XZ.\left|\sum_{Z<a\leq\sqrt{X}}\mu_{s}(a)\chi(a)^{2}\sum_{1\leq m\leq\frac{X}{a^{2}}}\chi(m)\mathds{1}_{s}(m)\right|\leq\sum_{a>Z}\sum_{m\leq\frac{X}{a^{2}}}1\leq\sum_{a>Z}\frac{X}{a^{2}}\leq C^{\prime\prime}\cdot\frac{X}{Z}.

Therefore taking C=max{C,C′′,1}C=\max\{C^{\prime},C^{\prime\prime},1\},

|Sχ,s(X)|ZC2ω(s)dlogd+XCZ.\left|S_{\chi,s}(X)\right|\leq Z\cdot C\cdot 2^{\omega(s)}\sqrt{d}\log d+X\cdot\frac{C}{Z}. (7)

If X<2ω(s)d12logdX<2^{\omega(s)}d^{\frac{1}{2}}\log d, then

|Sχ,s(X)|1nX|μs2(n)χ(n)|X<2CX12(2ω(s)d12logd)12=\left|S_{\chi,s}(X)\right|\leq\sum_{1\leq n\leq X}|\mu_{s}^{2}(n)\chi(n)|\leq X<2C\cdot X^{\frac{1}{2}}\left(2^{\omega(s)}d^{\frac{1}{2}}\log d\right)^{\frac{1}{2}}=
=2CX12212ω(s)d14log12(d).=2C\cdot X^{\frac{1}{2}}\cdot 2^{\frac{1}{2}\omega(s)}d^{\frac{1}{4}}\log^{\frac{1}{2}}(d).

Otherwise, take Z=X12(2ω(s)d12logd)12Z=X^{\frac{1}{2}}\big{(}2^{\omega(s)}d^{\frac{1}{2}}\log d\big{)}^{-\frac{1}{2}}. The modulus dd of a non-principal Dirichlet character χ\chi is at least 33, whereby dlog(d)>1\sqrt{d}\log(d)>1. Hence

1ZX12212ω(s)X12,1\leq Z\leq X^{\frac{1}{2}}2^{-\frac{1}{2}\omega(s)}\leq X^{\frac{1}{2}},

and (7) then reads:

|Sχ,s(X)|2CX12212ω(s)d14log12(d).\left|S_{\chi,s}(X)\right|\leq 2C\cdot X^{\frac{1}{2}}\cdot 2^{\frac{1}{2}\omega(s)}d^{\frac{1}{4}}\log^{\frac{1}{2}}(d).

For all 1YX1\leq Y\leq X, we then have

|Sχ,s(Y,X)||Sχ,s(X)|+|Sχ,s(Y)|4CX12212ω(s)d14log12(d).\left|S_{\chi,s}(Y,X)\right|\leq\left|S_{\chi,s}(X)\right|+\left|S_{\chi,s}(Y)\right|\leq 4C\cdot X^{\frac{1}{2}}\cdot 2^{\frac{1}{2}\omega(s)}d^{\frac{1}{4}}\log^{\frac{1}{2}}(d).

Definition 5.15.

A function B:2B\colon\mathbb{N}^{2}\to\mathbb{C} is a bi-character with slopes 1c1,c21\leq c_{1},c_{2}\in\mathbb{N} if

  • for all aa\in\mathbb{N}, there exist Dirichlet character χa\chi_{a} of modulus c1ac_{1}a and MaM_{a}\in\mathbb{C} with |Ma|1|M_{a}|\leq 1 s.t.

    B(a,)=Ma(χa)|:,B(a,-)=M_{a}\cdot(\chi_{a})_{|\mathbb{N}}\colon\mathbb{N}\to\mathbb{C},
  • for all bb\in\mathbb{N}, there exist Dirichlet character ψb\psi_{b} of modulus c2bc_{2}b and NbN_{b}\in\mathbb{C} with |Nb|1|N_{b}|\leq 1 s.t.

    B(,b)=Nb(ψb)|:.B(-,b)=N_{b}\cdot(\psi_{b})_{|\mathbb{N}}\colon\mathbb{N}\to\mathbb{C}.

    We say BB is non-principal at a=a0a=a_{0} (resp. at b=b0b=b_{0}) if either Ma0=0M_{a_{0}}=0 (resp. Nb0=0N_{b_{0}}=0) or χa0\chi_{a_{0}} (resp. ψb0\psi_{b_{0}}) is non-principal.

Proposition 5.16.

Let ss\in{\mathbb{N}^{*}} and let B:2B\colon\mathbb{N}^{2}\to\mathbb{C} be a bi-character with slopes c1,c2c_{1},c_{2}. Assume a0,b0a_{0},b_{0}\in\mathbb{N} are such that BB is non-principal at all aa0a\geq a_{0} and at all bb0b\geq b_{0}. Then there exists a constant C>0C>0, independent of s,a0,b0,Bs,a_{0},b_{0},B s.t. for all X1X\geq 1,

|aa0bb0abXμs2(ab)B(a,b)|C212ω(s)c118c218(1+logmax{c1,c2})X78(1+logX)12.\left|\sum_{\begin{subarray}{c}a\geq a_{0}\\ b\geq b_{0}\end{subarray}}^{ab\leq X}\mu_{s}^{2}(ab)B(a,b)\right|\leq C\cdot 2^{\frac{1}{2}\omega(s)}c_{1}^{\frac{1}{8}}c_{2}^{\frac{1}{8}}\left(1+\log\max\{c_{1},c_{2}\}\right)X^{\frac{7}{8}}\left(1+\log X\right)^{\frac{1}{2}}.
Proof.

The function BB satisfies B(a,b)=0B(a,b)=0 whenever (a,b)1(a,b)\neq 1, therefore

μs2(ab)B(a,b)=μs2(a)μs2(b)B(a,b).\mu_{s}^{2}(ab)B(a,b)=\mu_{s}^{2}(a)\mu_{s}^{2}(b)B(a,b).

Let X1,X2>0X_{1},X_{2}>0, to be determined later, s.t. X1X2=XX_{1}X_{2}=X. Then

aa0bb0abXμs2(a)μs2(b)B(a,b)=(a=a0X1b=b0Xa(I)+b=b0X2a=a0Xb(II)a=a0X1b=b0X2(III))μs2(a)μs2(b)B(a,b).\sum_{\begin{subarray}{c}a\geq a_{0}\\ b\geq b_{0}\end{subarray}}^{ab\leq X}\mu_{s}^{2}(a)\mu_{s}^{2}(b)B(a,b)=\Bigg{(}\underbrace{\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}\sum_{b=b_{0}}^{{\lfloor{\frac{X}{a}}\rfloor}}}_{(I)}+\underbrace{\sum_{b=b_{0}}^{{\lfloor{X_{2}}\rfloor}}\sum_{a=a_{0}}^{{\lfloor{\frac{X}{b}}\rfloor}}}_{(II)}-\underbrace{\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}\sum_{b=b_{0}}^{{\lfloor{X_{2}}\rfloor}}}_{(III)}\Bigg{)}\mu_{s}^{2}(a)\mu_{s}^{2}(b)B(a,b).

The first summand (I)(I) is bounded by

|(I)|=|a=a0X1μs2(a)b=b0Xaμs2(b)B(a,b)|a=a0X1|b=b0Xaμs2(b)B(a,b)|=|(I)|=\left|\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}\mu_{s}^{2}(a)\sum_{b=b_{0}}^{{\lfloor{\frac{X}{a}}\rfloor}}\mu_{s}^{2}(b)B(a,b)\right|\leq\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}\left|\sum_{b=b_{0}}^{{\lfloor{\frac{X}{a}}\rfloor}}\mu_{s}^{2}(b)B(a,b)\right|=
=a=a0X1|Ma||b=b0Xaμs2(b)χa(b)|a=a0X1|b=b0Xaμs2(b)χa(b)|.=\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}|M_{a}|\left|\sum_{b=b_{0}}^{{\lfloor{\frac{X}{a}}\rfloor}}\mu_{s}^{2}(b)\chi_{a}(b)\right|\leq\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}\left|\sum_{b=b_{0}}^{{\lfloor{\frac{X}{a}}\rfloor}}\mu_{s}^{2}(b)\chi_{a}(b)\right|.

For all aa0a\geq a_{0}, χa\chi_{a} is non-principal of modulus c1ac_{1}a. By proposition 5.14 there exists C>0C^{\prime}>0, independent of s,c1,as,c_{1},a, s.t.

|b=b0Xaμs2(b)χa(b)|=|Sχa,s(b01,X/a)|C(X/a)12212ω(s)(c1a)14log12(c1a)\left|\sum_{b=b_{0}}^{{\lfloor{\frac{X}{a}}\rfloor}}\mu_{s}^{2}(b)\chi_{a}(b)\right|=\left|S_{\chi_{a},s}(b_{0}-1,X/a)\right|\leq C^{\prime}\cdot(X/a)^{\frac{1}{2}}2^{\frac{1}{2}\omega(s)}(c_{1}a)^{\frac{1}{4}}\log^{\frac{1}{2}}(c_{1}a)

for all X1X\geq 1. Since a,c11a,c_{1}\geq 1, we have logc1,loga0\log c_{1},\log a\geq 0, therefore

log(c1a)=logc1+loga(1+logc1)(1+loga).\log(c_{1}a)=\log c_{1}+\log a\leq(1+\log c_{1})(1+\log a).

Therefore

|(I)|a=a0X1|b=b0Xaμs2(b)χa(b)|C212ω(s)X12c114(1+logc1)12a=a0X1a14(1+loga)12.|(I)|\leq\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}\left|\sum_{b=b_{0}}^{{\lfloor{\frac{X}{a}}\rfloor}}\mu_{s}^{2}(b)\chi_{a}(b)\right|\leq C^{\prime}\cdot 2^{\frac{1}{2}\omega(s)}X^{\frac{1}{2}}c_{1}^{\frac{1}{4}}\left(1+\log c_{1}\right)^{\frac{1}{2}}\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}a^{-\frac{1}{4}}(1+\log a)^{\frac{1}{2}}.

There is a constant C′′>0C^{\prime\prime}>0 s.t. for all Y1Y\geq 1

1aYa14(1+loga)12C′′Y34(1+logY)12.\sum_{1\leq a\leq Y}a^{-\frac{1}{4}}(1+\log a)^{\frac{1}{2}}\leq C^{\prime\prime}Y^{\frac{3}{4}}(1+\log Y)^{\frac{1}{2}}.

Hence

|(I)|CC′′212ω(s)X12c114(1+log2c1)12X134(1+logX1)12.|(I)|\leq C^{\prime}C^{\prime\prime}\cdot 2^{\frac{1}{2}\omega(s)}X^{\frac{1}{2}}c_{1}^{\frac{1}{4}}\left(1+\log_{2}c_{1}\right)^{\frac{1}{2}}X_{1}^{\frac{3}{4}}(1+\log X_{1})^{\frac{1}{2}}.

Likewise,

|(II)|CC′′212ω(s)X12c214(1+log2c2)12X234(1+logX2)12.|(II)|\leq C^{\prime}C^{\prime\prime}\cdot 2^{\frac{1}{2}\omega(s)}X^{\frac{1}{2}}c_{2}^{\frac{1}{4}}\left(1+\log_{2}c_{2}\right)^{\frac{1}{2}}X_{2}^{\frac{3}{4}}(1+\log X_{2})^{\frac{1}{2}}.

For the summand (III)(III), again by proposition 5.14,

|(III)|=|a=a0X1b=b0X2μs2(a)μs2(b)B(a,b)|a=a0X1|b=b0X2μs2(b)χa(b)|\left|(III)\right|=\left|\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}\sum_{b=b_{0}}^{{\lfloor{X_{2}}\rfloor}}\mu_{s}^{2}(a)\mu_{s}^{2}(b)B(a,b)\right|\leq\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}\left|\sum_{b=b_{0}}^{{\lfloor{X_{2}}\rfloor}}\mu_{s}^{2}(b)\chi_{a}(b)\right|\leq
a=a0X1C212ω(s)X212(c1a)14log(c1a)12\leq\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}C^{\prime}2^{\frac{1}{2}\omega(s)}X_{2}^{\frac{1}{2}}(c_{1}a)^{\frac{1}{4}}\log(c_{1}a)^{\frac{1}{2}}\leq
C212ω(s)X212c114(1+log2c2)12a=a0X1a14(1+loga)12\leq C^{\prime}2^{\frac{1}{2}\omega(s)}X_{2}^{\frac{1}{2}}c_{1}^{\frac{1}{4}}\left(1+\log_{2}c_{2}\right)^{\frac{1}{2}}\sum_{a=a_{0}}^{{\lfloor{X_{1}}\rfloor}}a^{\frac{1}{4}}(1+\log a)^{\frac{1}{2}}\leq
CC′′′212ω(s)X212c114(1+log2c2)12X154(1+logX1)12.\leq C^{\prime}C^{\prime\prime\prime}2^{\frac{1}{2}\omega(s)}X_{2}^{\frac{1}{2}}c_{1}^{\frac{1}{4}}\left(1+\log_{2}c_{2}\right)^{\frac{1}{2}}X_{1}^{\frac{5}{4}}(1+\log X_{1})^{\frac{1}{2}}.

We now take X1=c116c216X12X_{1}=c_{1}^{-\frac{1}{6}}c_{2}^{\frac{1}{6}}X^{\frac{1}{2}} and X2=c116c216X12X_{2}=c_{1}^{\frac{1}{6}}c_{2}^{-\frac{1}{6}}X^{\frac{1}{2}}, so that

X12c114X134=X12c214X234=X212c114X154=c118c218X78.X^{\frac{1}{2}}c_{1}^{\frac{1}{4}}X_{1}^{\frac{3}{4}}=X^{\frac{1}{2}}c_{2}^{\frac{1}{4}}X_{2}^{\frac{3}{4}}=X_{2}^{\frac{1}{2}}c_{1}^{\frac{1}{4}}X_{1}^{\frac{5}{4}}=c_{1}^{\frac{1}{8}}c_{2}^{\frac{1}{8}}X^{\frac{7}{8}}.

For Xc113c213X\geq c_{1}^{-\frac{1}{3}}c_{2}^{\frac{1}{3}} we have X1XX_{1}\leq X, and for Xc113c213X\geq c_{1}^{\frac{1}{3}}c_{2}^{-\frac{1}{3}} we have X2XX_{2}\leq X. Then for such XX we find, taking the above into account, that

|aa0bb0abXμs2(ab)B(a,b)||(I)|+|(II)|+|(III)|\left|\sum_{\begin{subarray}{c}a\geq a_{0}\\ b\geq b_{0}\end{subarray}}^{ab\leq X}\mu_{s}^{2}(ab)B(a,b)\right|\leq|(I)|+|(II)|+|(III)|\leq
C(2C′′+C′′′)212ω(s)c118c218X78(1+logmax{c1,c2})12(1+logX)12.\leq C^{\prime}(2C^{\prime\prime}+C^{\prime\prime\prime})\cdot 2^{\frac{1}{2}\omega(s)}c_{1}^{\frac{1}{8}}c_{2}^{\frac{1}{8}}X^{\frac{7}{8}}\left(1+\log\max\{c_{1},c_{2}\}\right)^{\frac{1}{2}}\left(1+\log X\right)^{\frac{1}{2}}.

However if w.l.o.g. c2c1c_{2}\geq c_{1} and 1Xc113c2131\leq X\leq c_{1}^{-\frac{1}{3}}c_{2}^{\frac{1}{3}}, then the bounded is obtained in simpler fashion:

X=X18X78c1124c2124X78c118c218X78X=X^{\frac{1}{8}}X^{\frac{7}{8}}\leq c_{1}^{-\frac{1}{24}}c_{2}^{\frac{1}{24}}X^{\frac{7}{8}}\leq c_{1}^{\frac{1}{8}}c_{2}^{\frac{1}{8}}X^{\frac{7}{8}}

and

logXlogc23logmax{c1,c2}.\log X\leq\frac{\log c_{2}}{3}\leq\log\max\{c_{1},c_{2}\}.

By lemma 5.5 there exists C~>0\widetilde{C}>0 s.t.

|aa0bb0abXμs2(ab)B(a,b)|aa0bb0abX1nX(𝟙𝟙)(n)C~X(1+logX)\left|\sum_{\begin{subarray}{c}a\geq a_{0}\\ b\geq b_{0}\end{subarray}}^{ab\leq X}\mu_{s}^{2}(ab)B(a,b)\right|\leq\sum_{\begin{subarray}{c}a\geq a_{0}\\ b\geq b_{0}\end{subarray}}^{ab\leq X}1\leq\sum_{\begin{subarray}{c}n\leq X\end{subarray}}(\mathds{1}*\mathds{1})(n)\leq\widetilde{C}X(1+\log X)\leq
C~212ω(s)c118c218X78(1+logmax{c1,c2})12(1+logX)12.\leq\widetilde{C}\cdot 2^{\frac{1}{2}\omega(s)}c_{1}^{\frac{1}{8}}c_{2}^{\frac{1}{8}}X^{\frac{7}{8}}\left(1+\log\max\{c_{1},c_{2}\}\right)^{\frac{1}{2}}\left(1+\log X\right)^{\frac{1}{2}}.

The claim therefore holds for all X1X\geq 1 with C:=max{C(2C′′+C′′′),C~}C:=\max\{C^{\prime}(2C^{\prime\prime}+C^{\prime\prime\prime}),\widetilde{C}\}. ∎

Proposition 5.17.

The functions B,B,B′′:2B,B^{\prime},B^{\prime\prime}\colon\mathbb{N}^{2}\to\mathbb{C},

B(a,b)=𝟙2(ab)(ba),B(a,b)=𝟙2(ab)(2ba)=(2a)B(a,b)B(a,b)=\mathds{1}_{2}(ab)\left(\frac{b}{a}\right)\;,\;\;B^{\prime}(a,b)=\mathds{1}_{2}(ab)\left(\frac{2b}{a}\right)=\left(\frac{2}{a}\right)B(a,b)
B′′(a,b)=𝟙2(ab)(b2a)=(b2)B(a,b)B^{\prime\prime}(a,b)=\mathds{1}_{2}(ab)\left(\frac{b}{2a}\right)=\left(\frac{b}{2}\right)B(a,b)

are bi-characters with slopes c1,c28c_{1},c_{2}\leq 8. Moreover, BB (resp. BB^{\prime}; B′′B^{\prime\prime}) is non-principal at a2a\geq 2 and at b2b\geq 2 (a2a\geq 2 and b1b\geq 1 ; a1a\geq 1 and b2b\geq 2).

Proof.

Let h:h\colon\mathbb{Z}\to\mathbb{C} denote the function

h(n)=(2n)=(n2)=𝟙2(n)(1)n218,h(n)=\left(\frac{2}{n}\right)=\left(\frac{n}{2}\right)=\mathds{1}_{2}(n)(-1)^{\frac{n^{2}-1}{8}},

a Dirichlet character of modulus 88. For odd a,b1a,b\geq 1, let χa,ψb:\chi_{a},\psi_{b}\colon\mathbb{Z}\to\mathbb{C} be

χa(n)=𝟙2(n)(na),ψb(n)=𝟙2(n)(1)b12n12(nb).\chi_{a}(n)=\mathds{1}_{2}(n)\left(\frac{n}{a}\right)\;,\;\;\psi_{b}(n)=\mathds{1}_{2}(n)(-1)^{\frac{b-1}{2}\frac{n-1}{2}}\left(\frac{n}{b}\right).

Then χa\chi_{a} (resp. ψb\psi_{b}) is a Dirichlet character of modulus 2a2a (resp. 4b4b). For n1n\geq 1,

ψb(n)=𝟙2(n)(bn)\psi_{b}(n)=\mathds{1}_{2}(n)\left(\frac{b}{n}\right)

- trivially for nn even, by quadratic reciprocity for nn odd. For all a1a\geq 1 we have

B(a,)=𝟙2(a)χa,B(a,)=h(a)χa,B′′(a,)=𝟙2(a)hχa,B(a,-)=\mathds{1}_{2}(a)\cdot\chi_{a}\;,\;\;B^{\prime}(a,-)=h(a)\cdot\chi_{a}\;,\;\;B^{\prime\prime}(a,-)=\mathds{1}_{2}(a)\cdot h\chi_{a},

to be interpreted as zero for aa even. Likewise, for all b1b\geq 1 we have

B(,b)=𝟙2(b)ψb,B(,b)=𝟙2(b)hψb,B′′(,b)=h(b)ψb.B(-,b)=\mathds{1}_{2}(b)\cdot\psi_{b}\;,\;\;B^{\prime}(-,b)=\mathds{1}_{2}(b)\cdot h\psi_{b}\;,\;\;B^{\prime\prime}(-,b)=h(b)\cdot\psi_{b}.

The function hχah\chi_{a} (resp. hψbh\psi_{b}) is a Dirichlet character of modulus 8a8a (resp. 8b8b). Moreover, |𝟙2(n)|,|h(n)|1|\mathds{1}_{2}(n)|,|h(n)|\leq 1 for all nn. Therefore BB (resp. BB^{\prime} ; B′′B^{\prime\prime}) is a bi-character with slopes (c1,c2)=(2,4)(c_{1},c_{2})=(2,4) (resp. (2,8)(2,8) ; (8,4)(8,4)). For odd m2m\geq 2, the function n(nm)n\mapsto\left(\frac{n}{m}\right) is clearly non-principal of modulus mm. Since

𝟙2(n)(resp. 𝟙2(n)(1)m12n12;h(n);  12(n)(1)m12h(n))\mathds{1}_{2}(n)\;\;\;\;(\;\textnormal{resp. }\mathds{1}_{2}(n)(-1)^{\frac{m-1}{2}\frac{n-1}{2}}\;\;;\;\;h(n)\;\;;\;\;\mathds{1}_{2}(n)(-1)^{\frac{m-1}{2}}h(n)\;)

has modulus 22 (resp. 4; 8; 84\;;\;8\;;\;8), coprime to mm, it follows for all odd m2m\geq 2 that χm\chi_{m} (resp. ψm\psi_{m} ; hχmh\chi_{m} ; hψmh\psi_{m}) is non-principal. Moreover, for m=1m=1 we have hχ1=hψ1=hh\chi_{1}=h\psi_{1}=h, non-principal. ∎

Lemma 5.18.

Let 𝒶>1{\mathcal{a}}>-1 and let 1𝒷1\leq{\mathcal{b}}\in\mathbb{N}. Then for all X1X\geq 1,

1nXμ2(n)n𝒶𝒷ω(n)11+𝒶X1+𝒶(1+logX)𝒷1.\sum_{1\leq n\leq X}\mu^{2}(n)\cdot n^{{\mathcal{a}}}\cdot{\mathcal{b}}^{\omega(n)}\leq\frac{1}{1+{\mathcal{a}}}X^{1+{\mathcal{a}}}(1+\log X)^{{\mathcal{b}}-1}.
Proof.

The proof is by induction on 𝒷{\mathcal{b}}. The claim holds for 𝒷=1{\mathcal{b}}=1: since 𝒶>1{\mathcal{a}}>-1, for all X1X\geq 1 we have

nXμ(n)2n𝒶0Xt𝒶𝑑t=11+𝒶X1+𝒶.\sum_{n\leq X}\mu(n)^{2}n^{{\mathcal{a}}}\leq\int\limits_{0}^{X}t^{{\mathcal{a}}}dt=\frac{1}{1+{\mathcal{a}}}X^{1+{\mathcal{a}}}.

Assume next that the claim holds for some 𝒷{\mathcal{b}}\in\mathbb{N}. By lemma 5.3,

nXμ2(n)n𝒶(𝒷+1)ω(n)=m,d1mdXμ2(md)(md)𝒶𝒷ω(m)\sum_{n\leq X}\mu^{2}(n)n^{{\mathcal{a}}}({\mathcal{b}}+1)^{\omega(n)}=\sum_{\begin{subarray}{c}m,d\geq 1\\ md\leq X\end{subarray}}\mu^{2}(md)(md)^{{\mathcal{a}}}{\mathcal{b}}^{\omega(m)}\leq
1dXd𝒶1mXdμ2(m)m𝒶𝒷ω(m).\leq\sum_{1\leq d\leq X}d^{{\mathcal{a}}}\sum_{1\leq m\leq\frac{X}{d}}\mu^{2}(m)m^{{\mathcal{a}}}{\mathcal{b}}^{\omega(m)}.

By the induction assumption, this is bounded by

11+𝒶dXd𝒶(X/d)1+𝒶(1+log(X/d))𝒷111+𝒶X1+𝒶dXd1(1+logX)𝒷1\frac{1}{1+{\mathcal{a}}}\sum_{d\leq X}d^{{\mathcal{a}}}(X/d)^{1+{\mathcal{a}}}(1+\log(X/d))^{{\mathcal{b}}-1}\leq\frac{1}{1+{\mathcal{a}}}X^{1+{\mathcal{a}}}\sum_{d\leq X}d^{-1}(1+\log X)^{{\mathcal{b}}-1}\leq
11+𝒶X1+𝒶(1+logX)𝒷.\leq\frac{1}{1+{\mathcal{a}}}X^{1+{\mathcal{a}}}(1+\log X)^{{\mathcal{b}}}.

Hence the statement holds for all 1𝒷1\leq{\mathcal{b}}\in\mathbb{N}, 𝒶>1{\mathcal{a}}>-1 and X1X\geq 1. ∎

Lemma 5.19.

Let 𝒶>1{\mathcal{a}}>-1. Then there exists 0<C0<C\in\mathbb{R} s.t. for all X1X\geq 1,

|1nXμ2(n)n𝒶212ω(n)|CX1+𝒶(1+logX)12.\left|\sum_{1\leq n\leq X}\mu^{2}(n)\cdot n^{{\mathcal{a}}}\cdot 2^{\frac{1}{2}\omega(n)}\right|\leq C\cdot X^{1+{\mathcal{a}}}(1+\log X)^{\frac{1}{2}}.
Proof.

For all nn we have

μ2(n)n𝒶212ω(n)=(n𝒶)12(μ2(n)n𝒶2ω(n))12.\mu^{2}(n)\cdot n^{{\mathcal{a}}}\cdot 2^{\frac{1}{2}\omega(n)}=\left(n^{{\mathcal{a}}}\right)^{\frac{1}{2}}\left(\mu^{2}(n)\cdot n^{{\mathcal{a}}}\cdot 2^{\omega(n)}\right)^{\frac{1}{2}}.

By the Cauchy-Schwartz inequality,

n=1Xμ2(n)n𝒶212ω(n)n=1Xn𝒶n=1Xμ2(n)n𝒶2ω(n).\sum_{n=1}^{{\lfloor{X}\rfloor}}\mu^{2}(n)\cdot n^{{\mathcal{a}}}\cdot 2^{\frac{1}{2}\omega(n)}\leq\sqrt{\sum_{n=1}^{{\lfloor{X}\rfloor}}n^{{\mathcal{a}}}}\cdot\sqrt{\sum_{n=1}^{{\lfloor{X}\rfloor}}\mu^{2}(n)\cdot n^{{\mathcal{a}}}\cdot 2^{\omega(n)}}.

Since 𝒶>1{\mathcal{a}}>-1, and following lemma 5.18, this is bounded by

CX1+𝒶X1+𝒶(1+logX)=CX1+𝒶(1+logX)12.C\cdot\sqrt{X^{1+{\mathcal{a}}}}\cdot\sqrt{X^{1+{\mathcal{a}}}(1+\log X)}=C\cdot X^{1+{\mathcal{a}}}\cdot(1+\log X)^{\frac{1}{2}}.

Proposition 5.20.

Let ss\in{\mathbb{N}^{*}}. For all 1X1\leq X\in\mathbb{R}, denote by

Ts(X)=a,b2abXμs2(ab)(ba).T_{s}(X)=\sum_{\begin{subarray}{c}a,b\geq 2\\ ab\leq X\end{subarray}}\mu_{s}^{2}(ab)\left(\frac{b}{a}\right).

Then there exists a constant C>0C>0 s.t. for all 1X1\leq X\in\mathbb{R},

|Ts(X)|C212ω(s)X78(1+logX)12.\left|T_{s}(X)\right|\leq C\cdot 2^{\frac{1}{2}\omega(s)}\cdot X^{\frac{7}{8}}(1+\log X)^{\frac{1}{2}}.
Proof.

We write

Ts(X)=a,b2abXμs2(ab)(ba)=T_{s}(X)=\sum_{\begin{subarray}{c}a,b\geq 2\\ ab\leq X\end{subarray}}\mu_{s}^{2}(ab)\left(\frac{b}{a}\right)=
=(a,b2abX2a, 2b(I)+a,b2abX2a, 2||b(II)+a,b2abX2||a, 2b(III))μs2(ab)(ba).=\left(\overbrace{\sum_{\begin{subarray}{c}a,b\geq 2\\ ab\leq X\end{subarray}}^{2\nmid a,\;2\nmid b}}^{(I)}+\overbrace{\sum_{\begin{subarray}{c}a,b\geq 2\\ ab\leq X\end{subarray}}^{2\nmid a,\;2||b}}^{(II)}+\overbrace{\sum_{\begin{subarray}{c}a,b\geq 2\\ ab\leq X\end{subarray}}^{2||a,\;2\nmid b}}^{(III)}\right)\mu_{s}^{2}(ab)\left(\frac{b}{a}\right). (8)

We have

(I)=a,b2abXμs2(ab)𝟙2(ab)(ba).(I)=\sum_{\begin{subarray}{c}a,b\geq 2\end{subarray}}^{ab\leq X}\mu_{s}^{2}(ab)\mathds{1}_{2}(ab)\left(\frac{b}{a}\right).
(II)=2b,a22baXμs2(2ba)𝟙2(ab)(2ba)=b1,a2abX/2μs2(ab)𝟙2(ab)(2ba).(II)=\sum_{\begin{subarray}{c}2b,a\geq 2\end{subarray}}^{2b\cdot a\leq X}\mu_{s}^{2}(2b\cdot a)\mathds{1}_{2}(ab)\left(\frac{2b}{a}\right)=\sum_{\begin{subarray}{c}b\geq 1,\;a\geq 2\end{subarray}}^{ab\leq X/2}\mu_{s}^{2}(ab)\mathds{1}_{2}(ab)\left(\frac{2b}{a}\right).
(III)=b,2a2b2aXμs2(b2a)𝟙2(b)(b2a)=b2,a1abX/2μs2(ab)𝟙2(ab)(b2a).(III)=\sum_{\begin{subarray}{c}b,2a\geq 2\end{subarray}}^{b\cdot 2a\leq X}\mu_{s}^{2}(b\cdot 2a)\mathds{1}_{2}(b)\left(\frac{b}{2a}\right)=\sum_{\begin{subarray}{c}b\geq 2,\;a\geq 1\end{subarray}}^{ab\leq X/2}\mu_{s}^{2}(ab)\mathds{1}_{2}(ab)\left(\frac{b}{2a}\right).

By propositions 5.17 and 5.16 there exists C>0C>0 s.t.

|(I)|C212ω(s)X78(1+logX)12,|(I)|\leq C2^{\frac{1}{2}\omega(s)}X^{\frac{7}{8}}(1+\log X)^{\frac{1}{2}},
|(II)|C212ω(s)(X/2)78(1+log(X/2))12C212ω(s)X78(1+logX)12,|(II)|\leq C2^{\frac{1}{2}\omega(s)}(X/2)^{\frac{7}{8}}(1+\log(X/2))^{\frac{1}{2}}\leq C2^{\frac{1}{2}\omega(s)}X^{\frac{7}{8}}(1+\log X)^{\frac{1}{2}},

and

|(III)|C212ω(s)(X/2)78(log(1+X/2))12C212ω(s)X78(1+logX)12.|(III)|\leq C2^{\frac{1}{2}\omega(s)}(X/2)^{\frac{7}{8}}(\log(1+X/2))^{\frac{1}{2}}\leq C2^{\frac{1}{2}\omega(s)}X^{\frac{7}{8}}(1+\log X)^{\frac{1}{2}}.

Therefore

|Ts(X)||(I)|+|(II)|+|(III)|3C212ω(s)X78(1+logX)12.\left|T_{s}(X)\right|\leq\left|(I)\right|+\left|(II)\right|+\left|(III)\right|\leq 3C2^{\frac{1}{2}\omega(s)}X^{\frac{7}{8}}(1+\log X)^{\frac{1}{2}}.

6 Trivial Keis 𝒯a\mathscr{T}_{a}

Recall that a kei 𝒦𝒦ei\mathscr{K}\in{\mathscr{K}\textnormal{ei}} is trivial if yx=y{{}^{x}{y}}=y for all x,y𝒦x,y\in\mathscr{K}. The following assertions about trivial keis are easily shown:

Lemma 6.1.

  1. 1.

    Let 𝒯𝒦ei\mathscr{T}\in{\mathscr{K}\textnormal{ei}} be trivial. Then every sub-kei 𝒯𝒯\mathscr{T}^{\prime}\leq\mathscr{T} is trivial.

  2. 2.

    Let 𝒯,𝒯𝒦ei\mathscr{T},\mathscr{T}^{\prime}\in{\mathscr{K}\textnormal{ei}} be trivial. Then any function f:𝒯𝒯f\colon\mathscr{T}^{\prime}\to\mathscr{T} is a kei morphism.

Recall in [DS23] the computation of the Hilbert polynomial of 𝒯a\mathscr{T}_{a}:

P𝒯𝒶(k)=(𝒶+k1𝒶1)=k𝒶1(𝒶1)!+O(k𝒶2).P_{\mathscr{T}_{\mathcal{a}}}(k)={{\mathcal{a}}+k-1\choose{\mathcal{a}}-1}=\frac{k^{{\mathcal{a}}-1}}{({\mathcal{a}}-1)!}+O(k^{{\mathcal{a}}-2}).

6.1 Interpretation of 𝒯𝒶\mathscr{T}_{\mathcal{a}}-colorings

Proposition 6.2.

Let 0𝒶0\leq{\mathcal{a}}\in\mathbb{N} and let nn\in{\mathbb{N}^{*}}. Then

col𝒯𝒶(n)=𝒶ω(n).\textnormal{col}_{\mathscr{T}_{\mathcal{a}}}(n)={\mathcal{a}}^{\omega(n)}.
Proof.

This follows directly from proposition 3.23:

col𝒯𝒶(n)=|Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒯𝒶)|=|𝒯𝒶{p|nprime}|=𝒶omega(n).\textnormal{col}_{\mathscr{T}_{\mathcal{a}}}(n)=\left|\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{T}_{\mathcal{a}})\right|=\left|\mathscr{T}_{\mathcal{a}}^{\{p|n\;\textnormal{prime}\}}\right|={\mathcal{a}}^{\ omega(n)}.

6.2 Proof of Main Conjecture for 𝒦=𝒯𝒶\mathscr{K}=\mathscr{T}_{\mathcal{a}}.

Lemma 6.3.

Let 𝒶{\mathcal{a}}\in\mathbb{N}. The infinite product

p(1+p1)𝒶(1+𝒶p1)\prod_{p}\frac{(1+p^{-1})^{\mathcal{a}}}{(1+{\mathcal{a}}p^{-1})}

converges.

Proof.

For 𝒶=0,1{\mathcal{a}}=0,1, the claim is obvious. Assume that 𝒶2{\mathcal{a}}\geq 2. For all prime pp,

1+𝒶p1(1+p1)𝒶=1+𝒶p1+i=2𝒶(𝒶i)pi1+𝒶p1+2𝒶p2(1+𝒶p1)(1+2𝒶p2).1+{\mathcal{a}}p^{-1}\leq(1+p^{-1})^{\mathcal{a}}=1+{\mathcal{a}}p^{-1}+\sum_{i=2}^{\mathcal{a}}{{\mathcal{a}}\choose i}p^{-i}\leq 1+{\mathcal{a}}p^{-1}+2^{\mathcal{a}}p^{-2}\leq(1+{\mathcal{a}}p^{-1})(1+2^{\mathcal{a}}p^{-2}).

For p4𝒶p\geq 4^{\mathcal{a}}, all but finitely many, we have

1(1+p1)𝒶(1+𝒶p1)1+2𝒶p21+p3/2.1\leq\frac{(1+p^{-1})^{\mathcal{a}}}{(1+{\mathcal{a}}p^{-1})}\leq 1+2^{\mathcal{a}}p^{-2}\leq 1+p^{-3/2}.

The convergence of

p(1+p3/2)=ζ(3)1ζ(3/2)\prod_{p}(1+p^{-3/2})=\zeta(3)^{-1}\zeta(3/2)

guarantees the convergence of

p(1+p1)𝒶(1+𝒶p1).\prod_{p}\frac{(1+p^{-1})^{\mathcal{a}}}{(1+{\mathcal{a}}p^{-1})}.

Proposition 6.4.

Let 1𝒶1\leq{\mathcal{a}}\in\mathbb{N}. Then col𝒯𝒶\textnormal{col}_{\mathscr{T}_{\mathcal{a}}} has generic summatory type

col𝒯𝒶𝒲(𝒶1,1(𝒶1)!).\textnormal{col}_{\mathscr{T}_{\mathcal{a}}}\in{\mathscr{W}({\mathcal{a}}-1,\textstyle{\frac{1}{({\mathcal{a}}-1)!}})}.
Proof.

In proposition 6.2 we saw that

col𝒯𝒶(n)=𝒶ω(n)\textnormal{col}_{\mathscr{T}_{\mathcal{a}}}(n)={\mathcal{a}}^{\omega(n)}

for all nn\in{\mathbb{N}^{*}}. Let ss\in{\mathbb{N}^{*}}. The function μs2(n)𝒶ω(n):\mu_{s}^{2}(n){\mathcal{a}}^{\omega(n)}\colon\mathbb{N}\to\mathbb{R} is multiplicative, and satisfies

0μs2(n)𝒶ω(n)=μs2(n)𝟙𝒶(n)𝟙𝒶(n)0\leq\mu_{s}^{2}(n){\mathcal{a}}^{\omega(n)}=\mu_{s}^{2}(n)\mathds{1}^{*{\mathcal{a}}}(n)\leq\mathds{1}^{*{\mathcal{a}}}(n)

for all nn\in\mathbb{N}. By proposition 5.12,

limX𝒩𝒯𝒶,s(X)X(logX)𝒶1=1(𝒶1)!p(1p1)𝒶𝒶νμs2(pν)𝒶ω(pν)pν=\lim_{X\to\infty}\frac{\mathcal{N}_{\mathscr{T}_{\mathcal{a}},s}(X)}{X(\log X)^{{\mathcal{a}}-1}}=\frac{1}{({\mathcal{a}}-1)!}\prod_{p}(1-p^{-1})^{\mathcal{a}}{\mathcal{a}}\sum_{\nu}\frac{\mu_{s}^{2}(p^{\nu}){\mathcal{a}}^{\omega(p^{\nu})}}{p^{\nu}}=
=1(𝒶1)!p|s(1p1)𝒶ps(1p1)𝒶(1+𝒶p1).=\frac{1}{({\mathcal{a}}-1)!}\prod_{p|s}(1-p^{-1})^{\mathcal{a}}\cdot\prod_{p\nmid s}(1-p^{-1})^{\mathcal{a}}(1+{\mathcal{a}}p^{-1}).

Therefore

cs(𝒯𝒶)=γs1𝒶limX𝒯𝒶,s(X)log𝒶1(X)=γs𝒶limX𝒩𝒯𝒶,s(X)Xlog𝒶1(X)=c_{s}(\mathscr{T}_{\mathcal{a}})=\gamma_{s}^{1-{\mathcal{a}}}\lim_{X\to\infty}\frac{\mathcal{E}_{\mathscr{T}_{\mathcal{a}},s}(X)}{\log^{{\mathcal{a}}-1}(X)}=\gamma_{s}^{-{\mathcal{a}}}\lim_{X\to\infty}\frac{\mathcal{N}_{\mathscr{T}_{\mathcal{a}},s}(X)}{X\log^{{\mathcal{a}}-1}(X)}=
=1(𝒶1)!p|s(1p1)𝒶(1p1)𝒶ps(1p1)𝒶(1+𝒶p1)(1p2)𝒶==\frac{1}{({\mathcal{a}}-1)!}\cdot\prod_{p|s}\frac{(1-p^{-1})^{\mathcal{a}}}{(1-p^{-1})^{\mathcal{a}}}\cdot\prod_{p\nmid s}\frac{(1-p^{-1})^{\mathcal{a}}(1+{\mathcal{a}}p^{-1})}{(1-p^{-2})^{{\mathcal{a}}}}=
=1(𝒶1)!ps1+𝒶p1(1+p1)𝒶.=\frac{1}{({\mathcal{a}}-1)!}\prod_{p\nmid s}\frac{1+{\mathcal{a}}p^{-1}}{(1+p^{-1})^{\mathcal{a}}}.

By lemma 6.3, this product converges. Moreover, it follows that

limscs(𝒯𝒶)=1(𝒶1)!limsps1+𝒶p1(1+p1)𝒶=1(𝒶1)!.\lim_{s\in{\mathbb{N}^{*}}}c_{s}(\mathscr{T}_{\mathcal{a}})=\frac{1}{({\mathcal{a}}-1)!}\lim_{s\in{\mathbb{N}^{*}}}\prod_{p\nmid s}\frac{1+{\mathcal{a}}p^{-1}}{(1+p^{-1})^{\mathcal{a}}}=\frac{1}{({\mathcal{a}}-1)!}.

Therefore col𝒯𝒶:\textnormal{col}_{\mathscr{T}_{\mathcal{a}}}\colon{\mathbb{N}^{*}}\to\mathbb{R} has summatory type (𝒶1,1(𝒶1)!)({\mathcal{a}}-1,\frac{1}{({\mathcal{a}}-1)!}). ∎

7 The Joyce kei 𝒥\mathscr{J}

In this section we recall the kei 𝒥\mathscr{J} that was introduced in [Joy82, §6]. We will address here not only colorings of nn\in{\mathbb{N}^{*}} by 𝒥\mathscr{J}, but by 𝒥𝒯𝒶\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}} where 𝒯𝒶𝒦eifin\mathscr{T}_{\mathcal{a}}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} is the trivial kei on 𝒶{\mathcal{a}}\in\mathbb{N} elements.

Definition 7.1.

The kei 𝒥\mathscr{J} has underlying set and structure

wx+x+x+xxxx+yyy.\mathscr{J}=\{x_{+},x_{-},y\}\;\;,\;\;\;\;\begin{tabular}[]{|cc||c|c|c|}\hline\cr\vrule\lx@intercol\hfil\hbox{\multirowsetup${{}^{z}{w}}$}\hfil\lx@intercol\vrule\lx@intercol\vrule\lx@intercol&\vrule\lx@intercol\hfil$z$\hfil\lx@intercol\vrule\lx@intercol\\ \cline{3-5}\cr&&$x_{+}$&$x_{-}$&$y$\\ \hline\cr\hline\cr\hbox{\multirowsetup$w$}&\vrule\lx@intercol\hfil$x_{+}$\hfil\lx@intercol\vrule\lx@intercol\vrule\lx@intercol&$x_{+}$&$x_{+}$&$x_{-}$\\ \cline{2-5}\cr&\vrule\lx@intercol\hfil$x_{-}$\hfil\lx@intercol\vrule\lx@intercol\vrule\lx@intercol&$x_{-}$&$x_{-}$&$x_{+}$\\ \cline{2-5}\cr&\vrule\lx@intercol\hfil$y$\hfil\lx@intercol\vrule\lx@intercol\vrule\lx@intercol&$y$&$y$&$y$\\ \hline\cr\end{tabular}\;\;.
𝒥={x+,x,y}, wzzx+x-y

The kei 𝒥\mathscr{J} satisfies

Inn(𝒥)={Id𝒥,φy}/2.\textnormal{Inn}(\mathscr{J})=\{\textnormal{Id}_{\mathscr{J}},\varphi_{y}\}\simeq\mathbb{Z}/2\mathbb{Z}.

For all z𝒥z\in\mathscr{J}, φzId\varphi_{z}\neq\textnormal{Id} iff z=yz=y. The proper sub-quandles of 𝒥\mathscr{J} are

,{x+},{x},{y},{x+,x},\emptyset,\{x_{+}\},\{x_{-}\},\{y\},\{x_{+},x_{-}\},

all trivial.

Lemma 7.2.

Let {x0,y0}=𝒯2\{x_{0},y_{0}\}=\mathscr{T}_{2} be a trivial kei. Then the map

η0:𝒥{x0,y0},x±x0,yy0\eta_{0}\colon\mathscr{J}\to\{x_{0},y_{0}\}\;\;,\;\;\;\;x_{\pm}\mapsto x_{0}\;,\;\;y\mapsto y_{0}

is a kei morphism.

Recall in [DS23] the computation of the Hilbert polynomial of 𝒥\mathscr{J}:

P𝒥(k)=2k+1,P_{\mathscr{J}}(k)=2k+1,

and more generally, for 0𝒶0\leq{\mathcal{a}}\in\mathbb{N},

P𝒥𝒯𝒶(k)=2(k+𝒶+1𝒶+1)(k+𝒶𝒶)=2(𝒶+1)!k𝒶+1+O(k𝒶).P_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}}}(k)=2{k+{\mathcal{a}}+1\choose{\mathcal{a}}+1}-{k+{\mathcal{a}}\choose{\mathcal{a}}}=\frac{2}{({\mathcal{a}}+1)!}k^{{\mathcal{a}}+1}+O(k^{\mathcal{a}}).

7.1 Interpretation of 𝒥\mathscr{J}-colorings

Proposition 7.3.

Let nn\in{\mathbb{N}^{*}}. Then

col𝒥(n)=ab|n(ba),\textnormal{col}_{\mathscr{J}}(n)=\sum_{ab|n}\left(\frac{b}{a}\right),

where (ba)\left(\frac{b}{a}\right) is the Kronecker symbol.

Proof.

Consider the kei morphism η0:𝒥{x0,y0}𝒯2\eta_{0}\colon\mathscr{J}\to\{x_{0},y_{0}\}\simeq\mathscr{T}_{2} from lemma 7.2. By lemma 3.20 and proposition 3.23 there is a map

Col𝒥(n)η0Col𝒯2(n)𝒯2{p|nprime}{(nx,ny)2|nxny=n}.\textnormal{Col}_{\mathscr{J}}(n)\xrightarrow{\eta_{0}\circ-}\textnormal{Col}_{\mathscr{T}_{2}}(n)\simeq\mathscr{T}_{2}^{\{p|n\;\textnormal{prime}\}}\simeq\{(n_{x},n_{y})\in\mathbb{N}^{2}\;|\;n_{x}n_{y}=n\}.

For n1,n2n_{1},n_{2}\in\mathbb{N} s.t. n1n2=nn_{1}n_{2}=n, we denote by Col𝒥(n)(n1,n2)Col𝒥(n)\textnormal{Col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}\subseteq\textnormal{Col}_{\mathscr{J}}(n) the fiber

Col𝒥(n)(n1,n2)={f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒥|𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,f(𝔭){{x±}𝔭|n1{y}𝔭|n2}\textnormal{Col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}=\left\{f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\mathscr{J}\;|\;\forall\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\;,\;\;f(\mathfrak{p})\in\begin{cases}\{x_{\pm}\}&\mathfrak{p}|n_{1}\\ \{y\}&\mathfrak{p}|n_{2}\end{cases}\;\;\;\;\right\}

over (n1,n2)(n_{1},n_{2}), and by

col𝒥(n)(n1,n2):=|Col𝒥(n)(n1,n2)|,\textnormal{col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}:=\left|\textnormal{Col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}\right|\in\mathbb{N},

s.t.

col𝒥(n)=n1n2=ncol𝒥(n)(n1,n2).\textnormal{col}_{\mathscr{J}}(n)=\sum_{n_{1}n_{2}=n}\textnormal{col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}.

We show that for all n1,n2n_{1},n_{2}\in\mathbb{N} s.t. n1n2=nn_{1}n_{2}=n,

col𝒥(n)(n1,n2)=p|n1(1+(pn2))={0,p|n1(pn2)=12ω(n1),p|n1(pn2)=1.\textnormal{col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}=\prod_{p|n_{1}}\left(1+\left(\frac{p}{n_{2}}\right)\right)=\begin{cases}0&,\;\exists\;p|n_{1}\;\left(\frac{p}{n_{2}}\right)=-1\\ 2^{\omega(n_{1})}&,\;\forall\;p|n_{1}\;\left(\frac{p}{n_{2}}\right)=1\end{cases}\;\;.

If n1=nn_{1}=n, then for all p|np|n we have (p1)=1\left(\frac{p}{1}\right)=1, and indeed

col𝒥(n)(n,1)=|Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,{x±})|=col𝒯2(n)=2ω(n).\textnormal{col}_{\mathscr{J}}(n)_{(n,1)}=\left|\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\{x_{\pm}\})\right|=\textnormal{col}_{\mathscr{T}_{2}}(n)=2^{\omega(n)}.

If n1=1n_{1}=1, then (pn)=1\left(\frac{p}{n}\right)=1 vacuously for all p|1p|1, and

col𝒥(n)(1,n)=|Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,{y})|=1=2ω(1).\textnormal{col}_{\mathscr{J}}(n)_{(1,n)}=\left|\textnormal{Hom}_{{\mathscr{K}\textnormal{ei}}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\{y\})\right|=1=2^{\omega(1)}.

Let n1,n21n_{1},n_{2}\neq 1 with n1n2=nn_{1}n_{2}=n. We denote by ρn,n2\rho_{n,n_{2}} the map

ρn,n2:𝔊n=Gal(𝔉n/)Gal(𝔏n2/)/2Inn(𝒥).\rho_{n,n_{2}}\colon\mathfrak{G}_{n}=\textnormal{Gal}(\mathfrak{F}_{n}/\mathbb{Q})\twoheadrightarrow\textnormal{Gal}(\mathfrak{L}_{n_{2}}/\mathbb{Q})\simeq\mathbb{Z}/2\mathbb{Z}\simeq\textnormal{Inn}(\mathscr{J}).

where 𝔏n2=(n2)\mathfrak{L}_{n_{2}}=\mathbb{Q}(\sqrt{n_{2}^{*}}) is the unique quadratic field in 𝔉n\mathfrak{F}_{n} that ramifies at precisely n2n_{2}. Any fCol𝒥(n)(n1,n2)f\in\textnormal{Col}_{\mathscr{J}}(n)_{(n_{1},n_{2})} is necessarily surjective, thus by proposition 2.24, lifts uniquely to

(f,ρ𝔄n,f):( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝔊n,𝔪n)(𝒥,Inn(𝒥),φ)(f,\rho_{\mathfrak{A}_{n},f})\colon(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathfrak{G}_{n},\mathfrak{m}_{n})\to(\mathscr{J},\textnormal{Inn}(\mathscr{J}),\varphi)

in Pro-𝒜ug𝒦eifin\textnormal{Pro-}{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}^{\textnormal{fin}}. For all 𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},

ρ𝔄n,f(𝔪𝔭)=φf(𝔭)1ρ𝔄n,f(𝔪𝔭)=φy𝔭f1(y)𝔭|n2.\rho_{\mathfrak{A}_{n},f}(\mathfrak{m}_{\mathfrak{p}})=\varphi_{f(\mathfrak{p})}\neq 1\;\iff\;\rho_{\mathfrak{A}_{n},f}(\mathfrak{m}_{\mathfrak{p}})=\varphi_{y}\;\iff\;\mathfrak{p}\in f^{-1}(y)\;\iff\;\mathfrak{p}|n_{2}.

Therefore ρ𝔄n,f:𝔊nInn(𝒥)\rho_{\mathfrak{A}_{n},f}\colon\mathfrak{G}_{n}\twoheadrightarrow\textnormal{Inn}(\mathscr{J}) corresponds to 𝔏n2𝔉n\mathfrak{L}_{n_{2}}\subseteq\mathfrak{F}_{n}:

ρ𝔄n,f=ρn,n2,kerρ𝔄n,f=Gal(𝔉n/𝔏n2).\rho_{\mathfrak{A}_{n},f}=\rho_{n,n_{2}}\;\;,\;\;\;\;\ker\rho_{\mathfrak{A}_{n},f}=\textnormal{Gal}(\mathfrak{F}_{n}/\mathfrak{L}_{n_{2}}).

It also follows from proposition 2.25 that every fCol𝒥(n)(n1,n2)f\in\textnormal{Col}_{\mathscr{J}}(n)_{(n_{1},n_{2})} factors through the quotient

𝒦:=kerρn,n2\ ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ nSpec(𝒪𝔎n2/n)𝒥\mathscr{K}:=\ker\rho_{n,n_{2}}\backslash\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\simeq\textnormal{Spec}\left(\mathcal{O}_{\mathfrak{K}_{n_{2}}}\otimes\mathbb{Z}/n\mathbb{Z}\right)\to\mathscr{J}

in 𝒦eifin{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}}. The kei structure on 𝒦\mathscr{K} is defined by the induced augmentation with G:=Gal(𝔎n2/)G:=\textnormal{Gal}(\mathfrak{K}_{n_{2}}/\mathbb{Q}), satisfying 𝔭𝔮=𝔪𝔮(𝔭){{}^{\mathfrak{q}}{\mathfrak{p}}}=\mathfrak{m}_{\mathfrak{q}}(\mathfrak{p}) for all 𝔭,𝔮𝒦\mathfrak{p},\mathfrak{q}\in\mathscr{K}, where 𝔪𝔮=1G\mathfrak{m}_{\mathfrak{q}}=1_{G} iff 𝔮|n1\mathfrak{q}|n_{1}. Then for all 𝔭,𝔮𝒦\mathfrak{p},\mathfrak{q}\in\mathscr{K} over respective rational primes p,qp,q,

𝔭𝔮𝔭q|n2,p|n1, and (n2p)=(pn2)=1.{{}^{\mathfrak{q}}{\mathfrak{p}}}\neq\mathfrak{p}\;\iff\;q|n_{2},\;p|n_{1},\;\textnormal{ and }\;\left(\frac{n_{2}^{*}}{p}\right)=\left(\frac{p}{n_{2}}\right)=1.

Suppose there exists a prime p|n1p|n_{1} s.t. (pn2)=1\left(\frac{p}{n_{2}}\right)=-1. Let 𝔭,𝔮𝒦\mathfrak{p},\mathfrak{q}\in\mathscr{K} be s.t. 𝔭|p\mathfrak{p}|p and 𝔮|n2\mathfrak{q}|n_{2} (n21n_{2}\neq 1). Then on one hand, 𝔭𝔮=𝔭{{}^{\mathfrak{q}}{\mathfrak{p}}}=\mathfrak{p}. On the other hand, for any fCol𝒥(n)(n1,n2)f\in\textnormal{Col}_{\mathscr{J}}(n)_{(n_{1},n_{2})},

f(𝔭){x±}ff(𝔮)(𝔭)=fy(𝔭)f(𝔭).f(\mathfrak{p})\in\{x_{\pm}\}\;\;\Longrightarrow\;\;{{}^{f(\mathfrak{q})}{f(\mathfrak{p})}}={{}^{y}{f(\mathfrak{p})}}\neq f(\mathfrak{p}).

This is a contradiction, therefore Col𝒥(n)(n1,n2)=\textnormal{Col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}=\emptyset in these conditions:

p|n1(pn2)=1col𝒥(n)(n1,n2)=0.\exists\;p|n_{1}\;\left(\frac{p}{n_{2}}\right)=-1\;\Longrightarrow\;\textnormal{col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}=0.

If on the other hand (pn2)=1\left(\frac{p}{n_{2}}\right)=1 for all p|n1p|n_{1}, then ff is determined by bijections

Spec(𝒪𝔎n2𝔽p){x±}\textnormal{Spec}(\mathcal{O}_{\mathfrak{K}_{n_{2}}}\otimes\mathbb{F}_{p}){\xrightarrow{\sim}}\{x_{\pm}\}

for all p|n1p|n_{1}, each independent of the other. Therefore

p|n1(pn2)=1col𝒥(n)(n1,n2)=2ω(n1).\forall\;p|n_{1}\;\left(\frac{p}{n_{2}}\right)=1\;\Longrightarrow\;\textnormal{col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}=2^{\omega(n_{1})}.

It follows that for any n1,n2n_{1},n_{2} s.t. n1n2=nn_{1}n_{2}=n,

col𝒥(n)(n1,n2)=p|n1(1+(pn2))=b|n1(bn2).\textnormal{col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}=\prod_{p|n_{1}}\left(1+\left(\frac{p}{n_{2}}\right)\right)=\sum_{b|n_{1}}\left(\frac{b}{n_{2}}\right).

In total,

col𝒥(n)=n1n2=ncol𝒥(n)(n1,n2)=n1n2=nb|n1(bn2)=ab|n(ba).\textnormal{col}_{\mathscr{J}}(n)=\sum_{n_{1}n_{2}=n}\textnormal{col}_{\mathscr{J}}(n)_{(n_{1},n_{2})}=\sum_{n_{1}n_{2}=n}\sum_{b|n_{1}}\left(\frac{b}{n_{2}}\right)=\sum_{ab|n}\left(\frac{b}{a}\right).

Proposition 7.4.

Let 0𝒶0\leq{\mathcal{a}}\in\mathbb{N}. Then for all nn\in{\mathbb{N}^{*}},

col𝒯𝒶𝒥(n)=abc=n(𝒶+1)ω(c)(ba).\textnormal{col}_{\mathscr{T}_{\mathcal{a}}\sqcup\mathscr{J}}(n)=\sum_{abc=n}({\mathcal{a}}+1)^{\omega(c)}\left(\frac{b}{a}\right).
Proof.

Let nn\in{\mathbb{N}^{*}}. By proposition 6.2,

col𝒯𝒶=𝒶ω(n).\textnormal{col}_{\mathscr{T}_{\mathcal{a}}}={\mathcal{a}}^{\omega(n)}.

By proposition 3.24 and lemma 5.3,

col𝒯𝒶𝒥(n)=n1n2=ncol𝒯𝒶(n1)col𝒥(n2)=n1n2=n𝒶ω(n1)ab|n2(ba)=\textnormal{col}_{\mathscr{T}_{\mathcal{a}}\sqcup\mathscr{J}}(n)=\sum_{n_{1}n_{2}=n}\textnormal{col}_{\mathscr{T}_{\mathcal{a}}}(n_{1})\textnormal{col}_{\mathscr{J}}(n_{2})=\sum_{n_{1}n_{2}=n}{\mathcal{a}}^{\omega(n_{1})}\sum_{ab|n_{2}}\left(\frac{b}{a}\right)=
=abc=n(ba)n1|c𝒶ω(n1)=abc=n(𝒶+1)ω(c)(ba).=\sum_{abc=n}\left(\frac{b}{a}\right)\sum_{n_{1}|c}{\mathcal{a}}^{\omega(n_{1})}=\sum_{abc=n}({\mathcal{a}}+1)^{\omega(c)}\left(\frac{b}{a}\right).

7.2 Proof of the Main Conjecture for 𝒦=𝒥𝒯𝒶\mathscr{K}=\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}}.

Proposition 7.5.

Let 0𝒶0\leq{\mathcal{a}}\in\mathbb{N}, let ss\in{\mathbb{N}^{*}} and let X1X\geq 1. Then

𝒩𝒥𝒯𝒶,s(X)=2𝒩𝒯𝒶+2,s(X)𝒩𝒯𝒶+1,s(X)+nXμs2(n)(𝒶+1)ω(n)Tsn(X/n),\mathcal{N}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}},s}(X)=2\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+2},s}(X)-\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+1},s}(X)+\sum_{n\leq X}\mu_{s}^{2}(n)({\mathcal{a}}+1)^{\omega(n)}T_{sn}(X/n),

where for vv\in{\mathbb{N}^{*}} and 1Y1\leq Y\in\mathbb{R},

Tv(Y)=a,b2abYμv2(ab)(ba).T_{v}(Y)=\sum_{\begin{subarray}{c}a,b\geq 2\\ ab\leq Y\end{subarray}}\mu_{v}^{2}(ab)\left(\frac{b}{a}\right).
Proof.

Let nn\in{\mathbb{N}^{*}}. By lemma 5.3, we write

col𝒥𝒯𝒶(n)=abc=n(𝒶+1)ω(c)(ba)=\textnormal{col}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}}}(n)=\sum_{abc=n}({\mathcal{a}}+1)^{\omega(c)}\left(\frac{b}{a}\right)=
=(abc=na=1+abc=nb=1abc=na=b=1+abc=na,b2)(𝒶+1)ω(c)(ba)==\left(\sum_{\begin{subarray}{c}abc=n\\ a=1\end{subarray}}+\sum_{\begin{subarray}{c}abc=n\\ b=1\end{subarray}}-\sum_{\begin{subarray}{c}abc=n\\ a=b=1\end{subarray}}+\sum_{\begin{subarray}{c}abc=n\\ a,b\geq 2\end{subarray}}\right)({\mathcal{a}}+1)^{\omega(c)}\left(\frac{b}{a}\right)=
=2c|n(𝒶+2)ω(c)(𝒶+1)ω(n)+abc=na,b2𝒶ω(c)(ba).=2\sum_{c|n}({\mathcal{a}}+2)^{\omega(c)}-({\mathcal{a}}+1)^{\omega(n)}+\sum_{\begin{subarray}{c}abc=n\\ a,b\geq 2\end{subarray}}{\mathcal{a}}^{\omega(c)}\left(\frac{b}{a}\right).

Therefore by proposition 6.2,

col𝒥𝒯𝒶(n)=2col𝒯𝒶+2(n)col𝒯𝒶+1(n)+abc=na,b2(𝒶+1)ω(c)(ba).\textnormal{col}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}}}(n)=2\textnormal{col}_{\mathscr{T}_{{\mathcal{a}}+2}}(n)-\textnormal{col}_{\mathscr{T}_{{\mathcal{a}}+1}}(n)+\sum_{\begin{subarray}{c}abc=n\\ a,b\geq 2\end{subarray}}({\mathcal{a}}+1)^{\omega(c)}\left(\frac{b}{a}\right).

Thus for X1X\geq 1, summing over 1nX1\leq n\leq X we have

𝒩𝒥𝒯𝒶,s(X)2𝒩𝒯𝒶+2,s(X)+𝒩𝒯𝒶+1,s(X)=1nXμs2(n)abc=na,b2(𝒶+1)ω(c)(ba)=\mathcal{N}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}},s}(X)-2\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+2},s}(X)+\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+1},s}(X)=\sum_{1\leq n\leq X}\mu_{s}^{2}(n)\sum_{\begin{subarray}{c}abc=n\\ a,b\geq 2\end{subarray}}({\mathcal{a}}+1)^{\omega(c)}\left(\frac{b}{a}\right)=
abcXa,b2μs2(abc)(𝒶+1)ω(c)(ba)=1cXμs2(c)(𝒶+1)ω(c)abX/ca,b2μsc2(ab)(ba)=\sum_{\begin{subarray}{c}abc\leq X\\ a,b\geq 2\end{subarray}}\mu_{s}^{2}(abc)({\mathcal{a}}+1)^{\omega(c)}\left(\frac{b}{a}\right)=\sum_{1\leq c\leq X}\mu_{s}^{2}(c)({\mathcal{a}}+1)^{\omega(c)}\sum_{\begin{subarray}{c}ab\leq X/c\\ a,b\geq 2\end{subarray}}\mu_{sc}^{2}(ab)\left(\frac{b}{a}\right)=
=1cXμs2(c)(𝒶+1)ω(c)Tsc(X/c).=\sum_{1\leq c\leq X}\mu_{s}^{2}(c)({\mathcal{a}}+1)^{\omega(c)}T_{sc}(X/c).

Proposition 7.6.

Let 0𝒶0\leq{\mathcal{a}}\in\mathbb{N} and let ss\in{\mathbb{N}^{*}}. Then

𝒩𝒥𝒯𝒶,s(X)2𝒩𝒯𝒶+2,s(X)+𝒩𝒯𝒶+1,s(X)=o(Xlog𝒶+1(X)).\mathcal{N}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}},s}(X)-2\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+2},s}(X)+\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+1},s}(X)=o(X\log^{{\mathcal{a}}+1}(X)).
Proof.

By proposition 7.5,

𝒩JTa,s(X)2𝒩Ta+2,s(X)+𝒩Ta+1,s(X)=nXμs2(n)(𝒶+1)ω(n)Tsn(X/n),\mathcal{N}_{J\sqcup T_{a},s}(X)-2\mathcal{N}_{T_{a+2},s}(X)+\mathcal{N}_{T_{a+1},s}(X)=\sum_{n\leq X}\mu_{s}^{2}(n)({\mathcal{a}}+1)^{\omega(n)}T_{sn}(X/n),

which equals

(1nXY(I)+XY<nX(II))μs2(n)(𝒶+1)ω(n)Tsn(X/n)\left(\overbrace{\sum_{1\leq n\leq\frac{X}{Y}}}^{(I)}+\overbrace{\sum_{\frac{X}{Y}<n\leq X}}^{(II)}\right)\mu_{s}^{2}(n)({\mathcal{a}}+1)^{\omega(n)}T_{sn}(X/n) (9)

for some 1<Y<X1<Y<X to be determined later. By proposition 5.20, there exists C>0C>0 s.t. the first summand in (9) is bounded by

|(I)|1nXYμs2(n)(𝒶+1)ω(n)|Tsn(X/n)||(I)|\leq\sum_{1\leq n\leq\frac{X}{Y}}\mu_{s}^{2}(n)({\mathcal{a}}+1)^{\omega(n)}|T_{sn}(X/n)|\leq
CnXYμs2(n)(𝒶+1)ω(n)212ω(sn)(X/n)78(log(X/n)+1)12\leq C\cdot\sum_{n\leq\frac{X}{Y}}\mu_{s}^{2}(n)({\mathcal{a}}+1)^{\omega(n)}\cdot 2^{\frac{1}{2}\omega(sn)}(X/n)^{\frac{7}{8}}(\log(X/n)+1)^{\frac{1}{2}}\leq
C212ω(s)X78(logX+1)12nXYμs2(n)(𝒶+1)ω(n)212ω(n)n78.\leq C\cdot 2^{\frac{1}{2}\omega(s)}X^{\frac{7}{8}}(\log X+1)^{\frac{1}{2}}\sum_{n\leq\frac{X}{Y}}\mu_{s}^{2}(n)({\mathcal{a}}+1)^{\omega(n)}\cdot 2^{\frac{1}{2}\omega(n)}n^{-\frac{7}{8}}.

Let 𝒷=(𝒶+1)2{\mathcal{b}}=\lceil({\mathcal{a}}+1)\sqrt{2}\rceil. Then by lemma 5.18,

|(I)|C212ω(s)X78(logX+1)12nXYμs2(n)𝒷ω(n)n78|(I)|\leq C\cdot 2^{\frac{1}{2}\omega(s)}X^{\frac{7}{8}}(\log X+1)^{\frac{1}{2}}\sum_{n\leq\frac{X}{Y}}\mu_{s}^{2}(n){\mathcal{b}}^{\omega(n)}n^{-\frac{7}{8}}\leq
C212ω(s)X78(logX+1)128(X/Y)18(1+log(X/Y))𝒷1\leq C\cdot 2^{\frac{1}{2}\omega(s)}X^{\frac{7}{8}}(\log X+1)^{\frac{1}{2}}\cdot 8(X/Y)^{\frac{1}{8}}(1+\log(X/Y))^{{\mathcal{b}}-1}\leq
8C212ω(s)XY18(logX+1)𝒷.\leq 8C\cdot 2^{\frac{1}{2}\omega(s)}X\cdot Y^{-\frac{1}{8}}(\log X+1)^{{\mathcal{b}}}.

For X0X\gg 0 we may take

Y=(logX+1)8𝒷X,Y=(\log X+1)^{8{\mathcal{b}}}\leq X,

for which we then have

|(I)|C212ω(s)X.|(I)|\leq C\cdot 2^{\frac{1}{2}\omega(s)}X.

We turn to (II)(II), the second summand in (9):

(II)=XY<nXμs(n)2(𝒶+1)ω(n)Tsn(X/n)=(II)=\sum_{\frac{X}{Y}<n\leq X}\mu_{s}(n)^{2}({\mathcal{a}}+1)^{\omega(n)}T_{sn}(X/n)=
=XY<nXμs2(n)𝟙(𝒶+1)(n)a,b2abX/nμsn2(ab)(ba),=\sum_{\frac{X}{Y}<n\leq X}\mu_{s}^{2}(n)\mathds{1}^{*({\mathcal{a}}+1)}(n)\sum_{\begin{subarray}{c}a,b\geq 2\\ ab\leq X/n\end{subarray}}\mu_{sn}^{2}(ab)\left(\frac{b}{a}\right),

which is bounded by

|(II)|XY<nX𝟙(𝒶+1)(n)a,b1abX/n1a,b1abYnXab𝟙(𝒶+1)(n).|(II)|\leq\sum_{\frac{X}{Y}<n\leq X}\mathds{1}^{*({\mathcal{a}}+1)}(n)\sum_{\begin{subarray}{c}a,b\geq 1\\ ab\leq X/n\end{subarray}}1\leq\sum_{\begin{subarray}{c}a,b\geq 1\\ ab\leq Y\end{subarray}}\sum_{n\leq\frac{X}{ab}}\mathds{1}^{*({\mathcal{a}}+1)}(n).

By lemma 5.5 there exists C>0C^{\prime}>0 s.t.

|(II)|CabYXab(log𝒶(X/ab)+1)|(II)|\leq C^{\prime}\sum_{\begin{subarray}{c}ab\leq Y\end{subarray}}\frac{X}{ab}\left(\log^{\mathcal{a}}(X/ab)+1\right)\leq
CX(log𝒶(X)+1)abY1abCX(log𝒶(X)+1)C′′log2(Y)=\leq C^{\prime}X\left(\log^{\mathcal{a}}(X)+1\right)\sum_{\begin{subarray}{c}ab\leq Y\end{subarray}}\frac{1}{ab}\leq C^{\prime}X\left(\log^{\mathcal{a}}(X)+1\right)\cdot C^{\prime\prime}\log^{2}(Y)=
=CC′′X(log𝒶(X)+1)(8𝒷log(logX+1))2.=C^{\prime}C^{\prime\prime}X\left(\log^{\mathcal{a}}(X)+1\right)(8{\mathcal{b}}\log(\log X+1))^{2}.

Hence

|𝒩𝒥𝒯𝒶,s(X)2𝒩𝒯𝒶+2,s(X)+𝒩𝒯𝒶+1,s(X)|=|(9)||(I)|+|(II)|=\left|\mathcal{N}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}},s}(X)-2\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+2},s}(X)+\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+1},s}(X)\right|=|(\ref{Eqn: J-col split T_su(X/u) sum J_+ case})|\leq|(I)|+|(II)|=
=Os(X)+O𝒶(Xlog𝒶(X)(loglogX)2)=o(Xlog𝒶+1(X)).=O_{s}(X)+O_{\mathcal{a}}\left(X\log^{\mathcal{a}}(X)(\log\log X)^{2}\right)=o(X\log^{{\mathcal{a}}+1}(X)).

Proposition 7.7.

Let 0𝒶0\leq{\mathcal{a}}\in\mathbb{N}. Then col𝒥𝒯𝒶\textnormal{col}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}}} is of generic summatory type (𝒶+1,2(𝒶+1)!)({\mathcal{a}}+1,\frac{2}{({\mathcal{a}}+1)!}):

col𝒥𝒯𝒶𝒲(𝒶+1,2(𝒶+1)!)\textnormal{col}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}}}\in{\mathscr{W}({\mathcal{a}}+1,\textstyle{\frac{2}{({\mathcal{a}}+1)!}})}
Proof.

Let ss\in{\mathbb{N}^{*}}. Following proposition 7.6,

limX𝒩𝒥𝒯𝒶,s(X)2𝒩𝒯𝒶+2,s(X)+𝒩𝒯𝒶+1,s(X)Xlog𝒶+1(X)=0.\lim_{X\to\infty}\frac{\mathcal{N}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}},s}(X)-2\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+2},s}(X)+\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+1},s}(X)}{X\log^{{\mathcal{a}}+1}(X)}=0.

By proposition 6.4, col𝒯𝒶+1𝒲(𝒶,1𝒶!)\textnormal{col}_{\mathscr{T}_{{\mathcal{a}}+1}}\in{\mathscr{W}({\mathcal{a}},\frac{1}{{\mathcal{a}}!})} and col𝒯𝒶+2𝒲(𝒶+1,1(𝒶+1)!)\textnormal{col}_{\mathscr{T}_{{\mathcal{a}}+2}}\in{\mathscr{W}({\mathcal{a}}+1,\frac{1}{({\mathcal{a}}+1)!})}. For all ss\in{\mathbb{N}^{*}} we therefore have 𝒩𝒯𝒶+1,s(X)=o(Xlog𝒶+1(X))\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+1},s}(X)=o\left(X\log^{{\mathcal{a}}+1}(X)\right) and

limX𝒩𝒥𝒯𝒶,s(X)Xlog𝒶+1(X)=2limX𝒩𝒯𝒶+2,s(X)Xlog𝒶+1(X).\lim_{X\to\infty}\frac{\mathcal{N}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}},s}(X)}{X\log^{{\mathcal{a}}+1}(X)}=2\lim_{X\to\infty}\frac{\mathcal{N}_{\mathscr{T}_{{\mathcal{a}}+2},s}(X)}{X\log^{{\mathcal{a}}+1}(X)}.

Therefore

cs(𝒥𝒯𝒶):=γs𝒶1limX𝒥𝒯𝒶,s(X)log𝒶+1(X)=c_{s}(\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}}):=\gamma_{s}^{-{\mathcal{a}}-1}\lim_{X\to\infty}\frac{\mathcal{E}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}},s}(X)}{\log^{{\mathcal{a}}+1}(X)}=
=2γs𝒶1limX𝒯𝒶+2,s(X)log𝒶+1(X)=2cs(𝒯𝒶+2)>0,=2\gamma_{s}^{-{\mathcal{a}}-1}\lim_{X\to\infty}\frac{\mathcal{E}_{\mathscr{T}_{{\mathcal{a}}+2},s}(X)}{\log^{{\mathcal{a}}+1}(X)}=2c_{s}(\mathscr{T}_{{\mathcal{a}}+2})>0,

and

limscs(𝒥𝒯𝒶)=2limscs(𝒯𝒶+2)=2(𝒶+1)!.\lim_{s\in{\mathbb{N}^{*}}}c_{s}(\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}})=2\lim_{s\in{\mathbb{N}^{*}}}c_{s}(\mathscr{T}_{{\mathcal{a}}+2})=\frac{2}{({\mathcal{a}}+1)!}.

Thus

col𝒥𝒯𝒶𝒲(𝒶+1,2(𝒶+1)!).\textnormal{col}_{\mathscr{J}\sqcup\mathscr{T}_{\mathcal{a}}}\in{\mathscr{W}({\mathcal{a}}+1,\textstyle{\frac{2}{({\mathcal{a}}+1)!}})}.

8 The Dihedral kei 3\mathscr{R}_{3}

Definition 8.1.

Let D3𝒢rpD_{3}\in{\mathscr{G}\textnormal{rp}} denote the dihedral group of a triangle. and let σ:D3{±1}\sigma\colon D_{3}\to\{\pm 1\} denote the homomorphism

σ:D3(/3){±1}{±1}.\sigma\colon D_{3}\simeq(\mathbb{Z}/3\mathbb{Z})\rtimes\{\pm 1\}\to\{\pm 1\}.

By 3D3\mathscr{R}_{3}\subseteq D_{3} we denote the set of reflections in D3D_{3}:

3:=D3kerσ=σ1(1).\mathscr{R}_{3}:=D_{3}\setminus\ker\sigma=\sigma^{-1}(-1).

The set 3\mathscr{R}_{3} is comprised of involutions and is closed under conjugation. Therefore 3\mathscr{R}_{3} is a kei with structure given by conjugation: hg:=ghg1{{}^{g}{h}}:=ghg^{-1}.

Recall in [DS23] the computation of the Hilbert polynomial of 3\mathscr{R}_{3}:

P3(k)=6.P_{\mathscr{R}_{3}}(k)=6.

8.1 Interpretation of 3\mathscr{R}_{3}-colorings

Lemma 8.2.

Let 𝒦𝒦eifin\mathscr{K}\in{\mathscr{K}\textnormal{ei}}^{\textnormal{fin}} be such that

  1. 1.

    the map φ:𝒦Inn(𝒦)\varphi\colon\mathscr{K}\to\textnormal{Inn}(\mathscr{K}) is an injection, and

  2. 2.

    for every proper sub-kei 𝒦<𝒦\mathscr{K}^{\prime}<\mathscr{K}, the set {φx|x𝒦}Inn(𝒦)\{\varphi_{x}\;|\;x\in\mathscr{K}^{\prime}\}\subseteq\textnormal{Inn}(\mathscr{K}) generates a proper subgroup of Inn(𝒦)\textnormal{Inn}(\mathscr{K}):

    {φ𝒦,x|x𝒦}<Inn(𝒦).\langle\{\varphi_{\mathscr{K},x}\;|\;x\in\mathscr{K}^{\prime}\}\rangle<\textnormal{Inn}(\mathscr{K}).

Then for all nn\in{\mathbb{N}^{*}} there is a bijection

Col𝒦dom(n){ρ:𝔊nInn(𝒦)|(ρ𝔪n)( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n)φ(𝒦)Inn(𝒦)}.\textnormal{Col}_{\mathscr{K}}^{\textnormal{dom}}(n)\simeq\{\rho\colon\mathfrak{G}_{n}\twoheadrightarrow\textnormal{Inn}(\mathscr{K})\;|\;(\rho\circ\mathfrak{m}_{n})(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n})\subseteq\varphi(\mathscr{K})\subseteq\textnormal{Inn}(\mathscr{K})\}.
Proof.

Let nn\in{\mathbb{N}^{*}} and let f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒦f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\twoheadrightarrow\mathscr{K}. Then by proposition 2.24, ff extends uniquely to a morphism (f,ρ):𝔄n𝒜𝒦(f,\rho)\colon\mathfrak{A}_{n}\twoheadrightarrow\mathscr{A}_{\mathscr{K}}. The map ρ:𝔊nInn(𝒦)\rho\colon\mathfrak{G}_{n}\twoheadrightarrow\textnormal{Inn}(\mathscr{K}) satisfies

ρ(𝔪𝔭)=φf(𝔭)φ(𝒦).\rho(\mathfrak{m}_{\mathfrak{p}})=\varphi_{f(\mathfrak{p})}\in\varphi(\mathscr{K}).

We therefore have a map

Col𝒦dom(n){ρ:𝔊nInn(𝒦)|ρ𝔪n=φf}Hom𝒢rpcont(𝔊n,Inn(𝒦))surj.\textnormal{Col}_{\mathscr{K}}^{\textnormal{dom}}(n)\to\{\rho\colon\mathfrak{G}_{n}\twoheadrightarrow\textnormal{Inn}(\mathscr{K})\;|\;\rho\circ\mathfrak{m}_{n}=\varphi\circ f\}\subseteq\textnormal{Hom}_{\mathscr{G}\textnormal{rp}}^{\textnormal{cont}}(\mathfrak{G}_{n},\textnormal{Inn}(\mathscr{K}))^{\textnormal{surj}}.

Conversely, let ρ:𝔊nInn(𝒦)\rho\colon\mathfrak{G}_{n}\twoheadrightarrow\textnormal{Inn}(\mathscr{K}) be such that (ρ𝔪n)( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n)φ(𝒦)Inn(𝒦)(\rho\circ\mathfrak{m}_{n})(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n})\subseteq\varphi(\mathscr{K})\subseteq\textnormal{Inn}(\mathscr{K}). Since φ\varphi is an embedding, there is a unique continuous map f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n𝒦f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\mathscr{K} s.t.

ρ𝔪n=φf: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ nInn(𝒦).\rho\circ\mathfrak{m}_{n}=\varphi\circ f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\textnormal{Inn}(\mathscr{K}).

This ff is a kei morphism: for all 𝔭,𝔮 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{p},\mathfrak{q}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},

φf(𝔮𝔭)=ρ(𝔪𝔮𝔭)=ρ(𝔪𝔭𝔪𝔮𝔪𝔭1)=ρ(𝔪𝔭)ρ(𝔪𝔮)ρ(𝔪𝔭)1=\varphi_{f({{}^{\mathfrak{p}}{\mathfrak{q}}})}=\rho(\mathfrak{m}_{{{}^{\mathfrak{p}}{\mathfrak{q}}}})=\rho(\mathfrak{m}_{\mathfrak{p}}\mathfrak{m}_{\mathfrak{q}}\mathfrak{m}_{\mathfrak{p}}^{-1})=\rho(\mathfrak{m}_{\mathfrak{p}})\rho(\mathfrak{m}_{\mathfrak{q}})\rho(\mathfrak{m}_{\mathfrak{p}})^{-1}=
=φf(𝔭)φf(𝔮)φf(𝔭)1=φff(𝔭)(𝔮).=\varphi_{f(\mathfrak{p})}\varphi_{f(\mathfrak{q})}\varphi_{f(\mathfrak{p})}^{-1}=\varphi_{{{}^{f(\mathfrak{p})}{f(\mathfrak{q})}}}.

It follows that f(𝔮𝔭)=ff(𝔭)(𝔮)f({{}^{\mathfrak{p}}{\mathfrak{q}}})={{}^{f(\mathfrak{p})}{f(\mathfrak{q})}} because φ\varphi is an embedding. This ff is also surjective: Let 𝒦=f( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n)𝒦\mathscr{K}^{\prime}=f(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n})\leq\mathscr{K}. Then

Inn(𝒦)=ρ(𝔊n)={ρ(𝔪𝔭)|𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n}={φf(𝔭)|𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n}={φ𝒦,x|x𝒦}.\textnormal{Inn}(\mathscr{K})=\rho(\mathfrak{G}_{n})=\langle\{\rho(\mathfrak{m}_{\mathfrak{p}})\;|\;\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\}\rangle=\langle\{\varphi_{f(\mathfrak{p})}\;|\;\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\}\rangle=\langle\{\varphi_{\mathscr{K},x}\;|\;x\in\mathscr{K}^{\prime}\}\rangle.

It follows from the assumption on 𝒦\mathscr{K} that f( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n)=𝒦f(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n})=\mathscr{K}, that is, ff is surjective. Hence we obtain a map

{Hom𝒢rpcont(𝔊n,Inn(𝒦))surj|(ρ𝔪n)( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n)φ(𝒦)}Hom𝒦eicont( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n,𝒦)surj=\{\textnormal{Hom}_{\mathscr{G}\textnormal{rp}}^{\textnormal{cont}}(\mathfrak{G}_{n},\textnormal{Inn}(\mathscr{K}))^{\textnormal{surj}}\;|\;(\rho\circ\mathfrak{m}_{n})(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n})\subseteq\varphi(\mathscr{K})\}\to\textnormal{Hom}_{\mathscr{K}\textnormal{ei}}^{\textnormal{cont}}(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n},\mathscr{K})^{\textnormal{surj}}=
=Col𝒦dom(n).=\textnormal{Col}_{\mathscr{K}}^{\textnormal{dom}}(n).

These constructions are inverse to one another. ∎

Proposition 8.3.

Let ι:3D3\iota\colon\mathscr{R}_{3}\hookrightarrow D_{3} denote the inclusion. Then (3,D3,ι)(\mathscr{R}_{3},D_{3},\iota) is an augmented kei, and

(3,D3,ι)𝒜3𝒜ug𝒦ei.(\mathscr{R}_{3},D_{3},\iota)\simeq\mathscr{A}_{\mathscr{R}_{3}}\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}.
Proof.

The set 3\mathscr{R}_{3} is a conjugacy class of involutions in D3D_{3}, hence 𝒜:=(3,D3,ι)𝒜ug𝒦ei\mathscr{A}:=(\mathscr{R}_{3},D_{3},\iota)\in{\mathscr{A}\textnormal{ug}{\mathscr{K}\textnormal{ei}}}. This 𝒜\mathscr{A} is concise because 3=D3\langle\mathscr{R}_{3}\rangle=D_{3}. By proposition 2.11, Id3\textnormal{Id}_{\mathscr{R}_{3}} lifts to a morphism

(Id3,ρ):𝒜𝒜3.(\textnormal{Id}_{\mathscr{R}_{3}},\rho)\colon\mathscr{A}\twoheadrightarrow\mathscr{A}_{\mathscr{R}_{3}}.

Suppose gkerρg\in\ker\rho. Then gxg1=xgxg^{-1}=x for all x3x\in\mathscr{R}_{3}. Since 3\mathscr{R}_{3} generates D3D_{3}, it follows that gZ(D3)={1}g\in Z(D_{3})=\{1\}. Hence ρ\rho is a group isomorphism, and

(Id3,ρ):(3,D3,ι)𝒜3.(\textnormal{Id}_{\mathscr{R}_{3}},\rho)\colon(\mathscr{R}_{3},D_{3},\iota){\xrightarrow{\sim}}\mathscr{A}_{\mathscr{R}_{3}}.

Corollary 8.4.

The kei 3\mathscr{R}_{3} satisfies the conditions of lemma 8.2

Proof.

Following proposition 8.3, the map φ:3Inn(3)\varphi\colon\mathscr{R}_{3}\to\textnormal{Inn}(\mathscr{R}_{3}) is an embedding. Moreover, the non-empty proper sub-keis of 3\mathscr{R}_{3} are the singletons, and for all xR3x\in R_{3},

|φ3,x|=2<6=|Inn(3)|.|\langle\varphi_{\mathscr{R}_{3},x}\rangle|=2<6=|\textnormal{Inn}(\mathscr{R}_{3})|.

An order is an integral domain RR that is free as a \mathbb{Z}-module. For order RR, the ring R=RR_{\mathbb{Q}}=\mathbb{Q}\otimes_{\mathbb{Z}}R is a number field. As such R𝒪RR\subseteq\mathcal{O}_{R_{\mathbb{Q}}}, where 𝒪L\mathcal{O}_{L}, the ring of integers in a number field LL, is the maximal order in LL. The discriminant Disc(R)\textnormal{Disc}(R) of an order RR is the volume of RR as a lattice with the trace form:

Disc(R)=det([Tr(xixj)]i,j),\textnormal{Disc}(R)=\det([\textnormal{Tr}(x_{i}x_{j})]_{i,j})\in\mathbb{Z},

where {xi}\{x_{i}\} is a basis for RR as a \mathbb{Z}-module, and Tr(x)\textnormal{Tr}(x)\in\mathbb{Z} is the trace of multiplication by xx. The discriminant of a number field LL is defined to be

Disc(L):=Disc(𝒪L).\textnormal{Disc}(L):=\textnormal{Disc}(\mathcal{O}_{L}).

A fundamental discriminant is the discriminant of a quadratic number field. A quadratic number field LL can be written uniquely as L=(m)L=\mathbb{Q}(\sqrt{m}) with mm\in\mathbb{Z} square-free. For such L=(m)L=\mathbb{Q}(\sqrt{m}),

Disc(L)={m,m=1mod34m,m=2,3mod4.\textnormal{Disc}(L)=\begin{cases}m&,\;m=1\mod 3\\ 4m&,\;m=2,3\mod 4\end{cases}\;\;.

Every square-free integer mm\in\mathbb{Z} can be written uniquely as m=un=unm=u^{\prime}n=un^{*} with n2n\in{\mathbb{N}^{*}_{2}} and u,u{±1,±2}u,u^{\prime}\in\{\pm 1,\pm 2\}. Hence every fundamental discriminant is of the form

Δ=un,n2,u{1,4,8,8}.\Delta=u\cdot n^{*}\;\;,\;\;\;\;n\in{\mathbb{N}^{*}_{2}}\;,\;u\in\{1,-4,8,-8\}.
Definition 8.5.

Let 0D0\neq D\in\mathbb{Z}. By H3(D)H_{3}(D) we denote the set of isomorphism classes of cubic orders RR with discriminant Disc(R)=D\textnormal{Disc}(R)=D:

H3(D)={R/|rk(R)=3 and Disc(R)=D}/,H_{3}(D)=\left\{R/\mathbb{Z}\;|\;\begin{subarray}{c}rk_{\mathbb{Z}}(R)=3\;\textnormal{ and }\\ \;\textnormal{Disc}(R)=D\end{subarray}\right\}/_{\sim},

and by h3(D):=|H3(D)|h_{3}(D):=|H_{3}(D)|\in\mathbb{N} its cardinality.

The following is a well-known fact about cubic number fields, due to [Has30]:

Lemma 8.6.

Let LL be a cubic number field. Then Disc(L)=df2\textnormal{Disc}(L)=df^{2}, where dd\in\mathbb{Z} is a fundamental discriminant, and ff\in\mathbb{Z} is such that for every prime pp, p|fp|f iff pp is totally ramified in LL.

Proposition 8.7.

Let Δ\Delta\in\mathbb{Z} be a fundamental discriminant. Then

H3(Δ)={𝒪L/|[L:]=3 and Disc(L)=Δ}/.H_{3}(\Delta)=\left\{\mathcal{O}_{L}/\mathbb{Z}\;|\;\begin{subarray}{c}[L:\mathbb{Q}]=3\;\textnormal{ and }\\ \;\textnormal{Disc}(L)=\Delta\end{subarray}\right\}/_{\sim}.
Proof.

Let RH3(Δ)R\in H_{3}(\Delta). Denote by L:=RL:=\mathbb{Q}\otimes_{\mathbb{Z}}R, a cubic number field. Let 𝒪L\mathcal{O}_{L} be the maximal order in LL. Then

Δ=Disc(R)=[𝒪L:R]2Disc(𝒪L)=[𝒪L:R]2Disc(L).\Delta=\textnormal{Disc}(R)=[\mathcal{O}_{L}:R]^{2}\textnormal{Disc}(\mathcal{O}_{L})=[\mathcal{O}_{L}:R]^{2}\textnormal{Disc}(L).

There exists ff\in\mathbb{Z} s.t.

Disc(L)=df2,\textnormal{Disc}(L)=df^{2},

where dd is a fundamental discriminant. Thus

Δ=[𝒪L:R]2f2d.\Delta=[\mathcal{O}_{L}:R]^{2}f^{2}d.

No two fundamental discriminants differ by a perfect square, hence R=𝒪LR=\mathcal{O}_{L} is the maximal order in LL, and Disc(L)=Δ\textnormal{Disc}(L)=\Delta. Hence

H3(Δ)={𝒪L/|[L:]=3 and Disc(L)=Δ}/.H_{3}(\Delta)=\left\{\mathcal{O}_{L}/\mathbb{Z}\;|\;\begin{subarray}{c}[L:\mathbb{Q}]=3\;\textnormal{ and }\\ \;\textnormal{Disc}(L)=\Delta\end{subarray}\right\}/_{\sim}.

Proposition 8.8.

Let 1<n1<n\in{\mathbb{N}^{*}}. Then

col3(n)=3|Cl(𝔏n)𝔽3|={3+6h3(n), 2n3+6h3(4n), 2|n\textnormal{col}_{\mathscr{R}_{3}}(n)=3\left|Cl(\mathfrak{L}_{n})\otimes_{\mathbb{Z}}\mathbb{F}_{3}\right|=\begin{cases}3+6h_{3}(n^{*})&,\;2\nmid n\\ 3+6h_{3}(4n^{*})&,\;2|n\end{cases}
={3+6h3(n),n=1mod43+6h3(n),n=3mod43+6h3(4n),n=2mod83+6h3(4n),n=6mod8=\begin{cases}3+6h_{3}(n)&,\;n=1\mod 4\\ 3+6h_{3}(-n)&,\;n=3\mod 4\\ 3+6h_{3}(4n)&,\;n=2\mod 8\\ 3+6h_{3}(-4n)&,\;n=6\mod 8\end{cases}

where Cl(𝔏n)Cl(\mathfrak{L}_{n}) is the class group of 𝔏n=(n)\mathfrak{L}_{n}=\mathbb{Q}(\sqrt{n^{*}}).

Proof.

Since n>1n>1,  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\neq\emptyset. The image of a coloring f: ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n3f\colon\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}\to\mathscr{R}_{3} is therefore a nonempty sub-kei of 3\mathscr{R}_{3}. The proper nonempty sub-keis of 3\mathscr{R}_{3} are the three singletons in 3\mathscr{R}_{3}. Therefore

col3(n)=3col𝒯1(n)+col3dom(n)=3+col3dom(n).\textnormal{col}_{\mathscr{R}_{3}}(n)=3\textnormal{col}_{\mathscr{T}_{1}}(n)+\textnormal{col}_{\mathscr{R}_{3}}^{\textnormal{dom}}(n)=3+\textnormal{col}_{\mathscr{R}_{3}}^{\textnormal{dom}}(n).

Let η:𝔊n{±1}\eta\colon\mathfrak{G}_{n}\to\{\pm 1\} denote the homomorphism

η:𝔊n=Gal(𝔉n/)Gal(𝔏n/){±1}.\eta\colon\mathfrak{G}_{n}=\textnormal{Gal}(\mathfrak{F}_{n}/\mathbb{Q})\twoheadrightarrow\textnormal{Gal}(\mathfrak{L}_{n}/\mathbb{Q}){\xrightarrow{\sim}}\{\pm 1\}.

This is the unique morphism that maps 𝔪𝔭1\mathfrak{m}_{\mathfrak{p}}\mapsto-1 for all 𝔭 ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n\mathfrak{p}\in\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}. Since 3=σ1(1)D3\mathscr{R}_{3}=\sigma^{-1}(-1)\subseteq D_{3}, then by lemma 8.2 and corollary 8.4, we have

Col3dom(n){ρ:𝔊nD3|(ρ𝔪n)( ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n)3}=Hom/η(𝔊n,D3)surj\textnormal{Col}_{\mathscr{R}_{3}}^{\textnormal{dom}}(n)\simeq\{\rho\colon\mathfrak{G}_{n}\twoheadrightarrow D_{3}\;|\;(\rho\circ\mathfrak{m}_{n})(\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n})\subseteq\mathscr{R}_{3}\}=\textnormal{Hom}_{/\eta}(\mathfrak{G}_{n},D_{3})^{\textnormal{surj}}

where Hom/η(𝔊n,D3)surj\textnormal{Hom}_{/\eta}(\mathfrak{G}_{n},D_{3})^{\textnormal{surj}} is the set of surjective lifts

𝔊n{\mathfrak{G}_{n}}D3{D_{3}}{±1}{\{\pm 1\}}ρ\scriptstyle{\rho}η\scriptstyle{\eta}σ\scriptstyle{\sigma}

The D3D_{3}-action on Hom/η(𝔊n,D3)surj\textnormal{Hom}_{/\eta}(\mathfrak{G}_{n},D_{3})^{\textnormal{surj}} via conjugation,

g(ρ)(γ):=gρ(γ)g1,g(\rho)(\gamma):=g\rho(\gamma)g^{-1},

is free because D3D_{3} has trivial center. Therefore

colR3(n)=3+6|D3\Hom/η(𝔊n,D3)surj|.\textnormal{col}_{R_{3}}(n)=3+6\cdot|D_{3}\backslash\textnormal{Hom}_{/\eta}(\mathfrak{G}_{n},D_{3})^{\textnormal{surj}}|.

The quotient D3\Hom/η(𝔊n,D3)surjD_{3}\backslash\textnormal{Hom}_{/\eta}(\mathfrak{G}_{n},D_{3})^{\textnormal{surj}} classifies D3D_{3}-Galois number fields L~\widetilde{L} containing 𝔏n\mathfrak{L}_{n} s.t. L~/𝔏n\widetilde{L}/\mathfrak{L}_{n} is unramified. Since Gal(𝔏n/)\textnormal{Gal}(\mathfrak{L}_{n}/\mathbb{Q}) acts via sign on the class group Cl(𝔏n)Cl(\mathfrak{L}_{n}) in its entirety, every unramified /3\mathbb{Z}/3\mathbb{Z}-extension N/𝔏nN/\mathfrak{L}_{n} is Galois over \mathbb{Q} with

Gal(N/)/3/2D3.\textnormal{Gal}(N/\mathbb{Q})\simeq\mathbb{Z}/3\mathbb{Z}\rtimes\mathbb{Z}/2\mathbb{Z}\simeq D_{3}.

Hence these L~\widetilde{L} are precisely the unramified /3\mathbb{Z}/3\mathbb{Z}-Galois extensions of 𝔏n\mathfrak{L}_{n}, of which there are

|D3\Hom/η(𝔊n,D3)surj|=|𝔽3(Cl(𝔏n)𝔽3)|=|Cl(𝔏n)𝔽3|12.|D_{3}\backslash\textnormal{Hom}_{/\eta}(\mathfrak{G}_{n},D_{3})^{\textnormal{surj}}|=\left|\mathbb{P}_{\mathbb{F}_{3}}\left(Cl(\mathfrak{L}_{n})\otimes_{\mathbb{Z}}\mathbb{F}_{3}\right)\right|=\frac{\left|Cl(\mathfrak{L}_{n})\otimes_{\mathbb{Z}}\mathbb{F}_{3}\right|-1}{2}.

Such extensions are classified by cubic fields LL with discriminant

Disc(L)=Disc(𝔏n)={n, 2n4n, 2|n.\textnormal{Disc}(L)=\textnormal{Disc}(\mathfrak{L}_{n})=\begin{cases}n^{*}&,\;2\nmid n\\ 4n^{*}&,\;2|n\end{cases}\;\;.

It follows by proposition 8.7 that

D3\Hom/η(𝔊n,D3)surjH3(Disc(𝔏n)).D_{3}\backslash\textnormal{Hom}_{/\eta}(\mathfrak{G}_{n},D_{3})^{\textnormal{surj}}\simeq H_{3}(\textnormal{Disc}(\mathfrak{L}_{n})).

All in all,

colR3(n)=3+6|D3\Hom/η(𝔊n,D3)surj|=\textnormal{col}_{R_{3}}(n)=3+6\cdot|D_{3}\backslash\textnormal{Hom}_{/\eta}(\mathfrak{G}_{n},D_{3})^{\textnormal{surj}}|=
=3+6|Cl(𝔏n)𝔽3|12=3|Cl(𝔏n)𝔽3|==3+6\cdot\frac{\left|Cl(\mathfrak{L}_{n})\otimes_{\mathbb{Z}}\mathbb{F}_{3}\right|-1}{2}=3\left|Cl(\mathfrak{L}_{n})\otimes_{\mathbb{Z}}\mathbb{F}_{3}\right|=
=3+6h3(Disc(𝔏n))={3+6h3(n), 2n3+6h3(4n), 2|n.=3+6h_{3}(\textnormal{Disc}(\mathfrak{L}_{n}))=\begin{cases}3+6h_{3}(n^{*})&,\;2\nmid n\\ 3+6h_{3}(4n^{*})&,\;2|n\end{cases}\;\;.

8.2 Proof of the Main Conjecture for 𝒦=3\mathscr{K}=\mathscr{R}_{3}

Lemma 8.9.

Let Δ\Delta be a fundamental discriminant, let p|Δp|\Delta be prime, and let R/R/\mathbb{Z} be a cubic order with discriminant Δ\Delta. Then

pRp×p[Δ/2].\mathbb{Z}_{p}\otimes_{\mathbb{Z}}R\simeq\mathbb{Z}_{p}\times\mathbb{Z}_{p}[{\sqrt{\Delta}}/2].
Proof.

Since Δ\Delta is a fundamental discriminant, then RR is the maximal order R=𝒪LR=\mathcal{O}_{L} in the non-Galois cubic number field L=RL=\mathbb{Q}\otimes_{\mathbb{Z}}R. Since p|Δ=Disc(L)p|\Delta=\textnormal{Disc}(L), then pp is partially ramified in LL, hence there is some ramified quadratic M/pM/\mathbb{Q}_{p} s.t.

pRp×𝒪M.\mathbb{Z}_{p}\otimes_{\mathbb{Z}}R\simeq\mathbb{Z}_{p}\times\mathcal{O}_{M}.

The normal closure L~\widetilde{L} of LL contains (Δ)\mathbb{Q}(\sqrt{\Delta}). Which is to say that (Δ)\mathbb{Q}(\sqrt{\Delta}) is a sub-quotient of LLL\otimes_{\mathbb{Q}}L. Therefore p(Δ):=p(Δ)\mathbb{Q}_{p}(\sqrt{\Delta}):=\mathbb{Q}_{p}\otimes_{\mathbb{Q}}\mathbb{Q}(\sqrt{\Delta}) is a sub-quotient of

(LL)p(Lp)p(Lp)(L\otimes_{\mathbb{Q}}L)\otimes_{\mathbb{Q}}\mathbb{Q}_{p}\simeq(L\otimes_{\mathbb{Q}}\mathbb{Q}_{p})\otimes_{\mathbb{Q}_{p}}(L\otimes_{\mathbb{Q}}\mathbb{Q}_{p})\simeq
(p×M)p(p×M)p×M4.\simeq(\mathbb{Q}_{p}\times M)\otimes_{\mathbb{Q}_{p}}(\mathbb{Q}_{p}\times M)\simeq\mathbb{Q}_{p}\times M^{4}.

Hence M=p(Δ)M=\mathbb{Q}_{p}(\sqrt{\Delta}). For all p|Δp|\Delta,

𝒪M=𝒪p(Δ)=p[Δ+Δ2]=p[Δ/2],\mathcal{O}_{M}=\mathcal{O}_{\mathbb{Q}_{p}(\sqrt{\Delta})}=\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathbb{Z}[\textstyle{\frac{\Delta+\sqrt{\Delta}}{2}}]=\mathbb{Z}_{p}[\sqrt{\Delta}/2],

and

pRp×𝒪M×p[Δ/2].\mathbb{Z}_{p}\otimes_{\mathbb{Z}}R\simeq\mathbb{Z}_{p}\times\mathcal{O}_{M}\simeq\mathbb{Z}\times\mathbb{Z}_{p}[\sqrt{\Delta}/2].

Corollary 8.10.

Let RR be a cubic order s.t. Δ:=Disc(R)\Delta:=\textnormal{Disc}(R) is a fundamental discriminant. Then there exists even nn\in{\mathbb{N}^{*}} s.t. Δ=4n\Delta=4n^{*} iff

2R{2×2[2],2×2[6]}.\mathbb{Z}_{2}\otimes_{\mathbb{Z}}R\in\{\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{2}],\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{-6}]\}.
Proof.

The set of fundamental discriminants equals

{cm|m2,c=1,4,8,8}.\{c\cdot m^{*}\;|\;m\in\mathbb{N}^{*}_{2},\;c=1,-4,-8,8\}.

The proof of the corollary is straightforward under the assumption that 2Δ2\nmid\Delta since neither 2×2[2]\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{2}] nor 2×2[6]\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{-6}] is étale over 2\mathbb{Z}_{2}. Assuming therefore that 2|Δ2|\Delta, we have

2R2×2[Δ/2]\mathbb{Z}_{2}\otimes_{\mathbb{Z}}R\simeq\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{\Delta}/2]

For m2m\in\mathbb{N}^{*}_{2} we have

m3,1mod8,2m6,2mod16,  2m2,6mod16,-m^{*}\equiv 3,-1\mod 8\;,\;\;-2m^{*}\equiv 6,-2\mod 16\;,\;\;2m^{*}\equiv 2,-6\mod 16,

Hence

Δ\Delta 2R\mathbb{Z}_{2}\otimes_{\mathbb{Z}}R 2[Δ/2]=\mathbb{Z}_{2}[\sqrt{\Delta}/2]=
4m-4m^{*} 2×2[m]\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{-m^{*}}] 2[3],2[1]\mathbb{Z}_{2}[\sqrt{3}],\mathbb{Z}_{2}[\sqrt{-1}]
8m-8m^{*} 2×2[2m]\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{-2m^{*}}] 2[6],2[2]\mathbb{Z}_{2}[\sqrt{6}],\mathbb{Z}_{2}[\sqrt{-2}]
8m8m^{*} 2×2[2m]\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{2m^{*}}] 2[2],2[6]\mathbb{Z}_{2}[\sqrt{2}],\mathbb{Z}_{2}[\sqrt{-6}]

Having done a comprehensive sweep of all fundamental discriminants, we can verify that there exists even n=2mn=2m\in{\mathbb{N}^{*}} s.t. Disc(R)=4n=8m\textnormal{Disc}(R)=4n^{*}=8m^{*} iff

2R{2×2[2],2×2[6]}.\mathbb{Z}_{2}\otimes_{\mathbb{Z}}R\in\{\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{2}],\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{-6}]\}.

Definition 8.11.

For prime pp we define the following sets SpS_{p} and SpS_{p}^{\circ} of cubic p\mathbb{Z}_{p}-algerbas up to isomorphism:

Sp={W(𝔽p3)}{p×𝒪p[x]/(x2α)|αp×/(p×)2},S_{p}=\{W(\mathbb{F}_{p^{3}})\}\cup\{\mathbb{Z}_{p}\times\mathcal{O}_{\mathbb{Q}_{p}[x]/(x^{2}-\alpha)}\;|\;\alpha\in\mathbb{Q}_{p}^{\times}/(\mathbb{Q}_{p}^{\times})^{2}\},

- which for p2p\neq 2 equals

Sp={W(𝔽p3),p3,p×p[αp],p×p[p],p×p[αpp]},S_{p}=\{W(\mathbb{F}_{p^{3}})\;,\;\mathbb{Z}_{p}^{3}\;,\;\mathbb{Z}_{p}\times\mathbb{Z}_{p}[\sqrt{\alpha_{p}}]\;,\;\mathbb{Z}_{p}\times\mathbb{Z}_{p}[\sqrt{p}]\;,\;\mathbb{Z}_{p}\times\mathbb{Z}_{p}[\sqrt{\alpha_{p}p}]\},

where αp\alpha_{p} is a quadratic non-residue modulo pp and WW denotes the ring of Witt vectors. The set SpS_{p}^{\circ} consists of all étale cubic p\mathbb{Z}_{p}-algebras:

Sp={W(𝔽p3),p3,p×W(𝔽p2)}.S_{p}^{\circ}=\{W(\mathbb{F}_{p^{3}}),\mathbb{Z}_{p}^{3},\mathbb{Z}_{p}\times W(\mathbb{F}_{p^{2}})\}.

For p=2p=2 we also define the set S2S_{2}^{\prime} of 2\mathbb{Z}_{2}-algebras:

S2={2×2[2],2×2[6]}.S_{2}^{\prime}=\{\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{2}],\mathbb{Z}_{2}\times\mathbb{Z}_{2}[\sqrt{-6}]\}.

Let ss\in{\mathbb{N}^{*}} and let pp be prime. We define the sets Σs,p\Sigma_{s,p} and Σs,p\Sigma_{s,p}^{\prime}:

Σs,p={Sp,p|2sSp,p2s,Σs,p={Sp, 2s,p|sSp, 2s, 2psS2, 2s,p=2, 2|s,p=2Sp, 2|s, 2p|sSp, 2|s,ps\Sigma_{s,p}=\begin{cases}S_{p}^{\circ}&,\;p|2s\\ S_{p}&,\;p\nmid 2s\end{cases}\;\;\;\;\;\;\;\;,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Sigma_{s,p}^{\prime}=\begin{cases}S_{p}^{\circ}&,\;2\nmid s,\;p|s\\ S_{p}&,\;2\nmid s,\;2\neq p\nmid s\\ S_{2}^{\prime}&,\;2\nmid s,\;p=2\\ \emptyset&,\;2|s,\;p=2\\ S_{p}^{\circ}&,\;2|s,\;2\neq p|s\\ S_{p}&,\;2|s,\;p\nmid s\end{cases}

We also define for p=p=\infty, the following sets of \mathbb{R}-algebras:

Σs,=Σs,={3,×}.\Sigma_{s,\infty}=\Sigma_{s,\infty}^{\prime}=\{\mathbb{R}^{3},\mathbb{R}\times\mathbb{C}\}.
Proposition 8.12.

Let ss\in{\mathbb{N}^{*}} and let R/R/\mathbb{Z} be a cubic order. Then

Rnn oddH3(n) - resp.Rnn evenH3(4n)R\in\bigcup_{\begin{subarray}{c}n\in{\mathbb{N}^{*}}\\ n\textnormal{ odd}\end{subarray}}H_{3}(n^{*})\;\;\;\;\;\;\textnormal{ - resp.}\;\;R\in\bigcup_{\begin{subarray}{c}n\in{\mathbb{N}^{*}}\\ n\textnormal{ even}\end{subarray}}H_{3}(4n^{*})

iff for all prime pp,

pRΣs,p - resp. pRΣs,p.\mathbb{Z}_{p}\otimes_{\mathbb{Z}}R\in\Sigma_{s,p}\;\;\;\;\;\;\textnormal{ - resp. }\mathbb{Z}_{p}\otimes_{\mathbb{Z}}R\in\Sigma_{s,p}^{\prime}.
Proof.

Following lemma 8.6 and proposition 8.7, the property that Disc(R)\textnormal{Disc}(R) is a fundamental discriminant is completely determined locally: For prime pp, let

Rp:=pR.R_{p}:=\mathbb{Z}_{p}\otimes R.

Then RH3(Δ)R\in H_{3}(\Delta) for some fundamental discriminant Δ\Delta iff for all prime pp, RpR_{p} is a regular ring either isomorphic to the Witt vectors W(𝔽p3)W(\mathbb{F}_{p^{3}}), or of the form Rpp×𝒪MR_{p}\simeq\mathbb{Z}_{p}\times\mathcal{O}_{M} for some degree-22 étale p\mathbb{Q}_{p}-algebra MM:

Rp{W(𝔽p3)}{p×𝒪p[x]/(x2α)|αp×/(p×)2}=Sp.R_{p}\in\{W(\mathbb{F}_{p^{3}})\}\cup\{\mathbb{Z}_{p}\times\mathcal{O}_{\mathbb{Q}_{p}[x]/(x^{2}-\alpha)}\;|\;\alpha\in\mathbb{Q}_{p}^{\times}/(\mathbb{Q}_{p}^{\times})^{2}\}=S_{p}.

Furthermore, for every prime pp, pΔp\nmid\Delta iff Rp/pR_{p}/\mathbb{Z}_{p} is étale, which is to say that

pΔRpSp.p\nmid\Delta\;\iff\;R_{p}\in S_{p}^{\circ}. (10)

The set {n|odd n}\{n^{*}\;|\;\textnormal{odd }n\in{\mathbb{N}^{*}}\} equals the set of odd fundamental discriminants, hence RH3(n)R\in H_{3}(n^{*}) for some odd nn\in{\mathbb{N}^{*}} iff

Rp{Sp,p2Sp,p=2.R_{p}\in\begin{cases}S_{p}&,\;p\neq 2\\ S_{p}^{\circ}&,\;p=2\end{cases}\;\;.

By corollary 8.10, the set {4n|even n}={8m|m2}\{4n^{*}\;|\;\textnormal{even }n\in{\mathbb{N}^{*}}\}=\{8m^{*}\;|\;m\in\mathbb{N}^{*}_{2}\} equals the set of fundamental discriminants Δ\Delta for which

2(Δ)=2(2),2(6).\mathbb{Q}_{2}(\Delta)=\mathbb{Q}_{2}(\sqrt{2}),\mathbb{Q}_{2}(\sqrt{-6}).

Following lemma 8.9, RH3(4n)R\in H_{3}(4n^{*}) for some even nn\in{\mathbb{N}^{*}} iff

Rp{Sp,p2S2,p=2.R_{p}\in\begin{cases}S_{p}&,\;p\neq 2\\ S_{2}^{\prime}&,\;p=2\end{cases}\;\;.

By (10), placing further ss-coprimality conditions on Disc(R)\textnormal{Disc}(R) is tantamount to intersecting any prior local conditions on RR with SpS_{p}^{\circ} for all p|sp|s: The cubic order RR is in H3(n)H_{3}(n^{*}) for some odd nsn\in{\mathbb{N}^{*}_{s}} iff for every prime pp,

Rp{Sp, 2psS2, 2=psSpSp, 2p|sS2Sp, 2=p|s={Sp,p2sSp,p|2s=Σs,p.R_{p}\in\begin{cases}S_{p}&,\;2\neq p\nmid s\\ S_{2}^{\circ}&,\;2=p\nmid s\\ S_{p}\cap S_{p}^{\circ}&,\;2\neq p|s\\ S_{2}^{\circ}\cap S_{p}^{\circ}&,\;2=p|s\end{cases}\;\;\;\;=\begin{cases}S_{p}&,\;p\nmid 2s\\ S_{p}^{\circ}&,\;p|2s\end{cases}\;\;\;\;=\Sigma_{s,p}.

Similarly, RR is in H3(4n)H_{3}(4n^{*}) for some even nn\in{\mathbb{N}^{*}} iff for every prime pp,

Rp{Sp, 2psS2, 2=psSpSp, 2p|sS2Sp, 2=p|s={Sp, 2psS2, 2=psSp, 2p|s, 2=p|s=Σs,p.R_{p}\in\begin{cases}S_{p}&,\;2\neq p\nmid s\\ S_{2}^{\prime}&,\;2=p\nmid s\\ S_{p}\cap S_{p}^{\circ}&,\;2\neq p|s\\ S_{2}^{\prime}\cap S_{p}^{\circ}&,\;2=p|s\end{cases}\;\;\;\;=\begin{cases}S_{p}&,\;2\neq p\nmid s\\ S_{2}^{\prime}&,\;2=p\nmid s\\ S_{p}^{\circ}&,\;2\neq p|s\\ \emptyset&,\;2=p|s\end{cases}\;\;\;\;=\Sigma_{s,p}^{\prime}.

Proposition 8.13.

Let ss\in{\mathbb{N}^{*}}. Then

limX1X(1nodd(n,s)=1nXh3(n)+neven(n,s)=1nXh3(4n))=γs3,\lim_{X\to\infty}\frac{1}{X}\left(\sum_{\begin{subarray}{c}1\neq n\;\textnormal{odd}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(n^{*})+\sum_{\begin{subarray}{c}n\;\textnormal{even}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(4n^{*})\right)=\frac{\gamma_{s}}{3},

where

γs=p|s(1p1)ps(1p2).\gamma_{s}=\prod_{p|s}(1-p^{-1})\prod_{p\nmid s}(1-p^{-2}).
Proof.

Let X1X\geq 1. By proposition 8.12, the sum

1nodd(n,s)=1nXh3(n)\sum_{\begin{subarray}{c}1\neq n\;\textnormal{odd}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(n^{*})

counts cubic orders R/R/\mathbb{Z} for which pRΣs,p\mathbb{Z}_{p}\otimes R\in\Sigma_{s,p} for all primes pp, and

|Disc(R)|=|n|=nX.|\textnormal{Disc}(R)|=|n^{*}|=n\leq X.

Likewise, the sum

neven(n,s)=1nXh3(4n)\sum_{\begin{subarray}{c}n\;\textnormal{even}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(4n^{*})

counts cubic orders R/R/\mathbb{Z} for which pRΣs,p\mathbb{Z}_{p}\otimes R\in\Sigma_{s,p}^{\prime} for all primes pp, and

|Disc(R)|=|4n|=4n4X.|\textnormal{Disc}(R)|=|4n^{*}|=4n\leq 4X.

By Theorem 8 in [BST13],

limX1X1nodd(n,s)=1nXh3(n)=C(Σs,)pC(Σs,p),\lim_{X\to\infty}\frac{1}{X}\sum_{\begin{subarray}{c}1\neq n\;\textnormal{odd}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(n^{*})=C(\Sigma_{s,\infty})\prod_{p}C(\Sigma_{s,p}),
limX14Xneven(n,s)=1nXh3(4n)=C(Σs,)pC(Σs,p),...\lim_{X\to\infty}\frac{1}{4X}\sum_{\begin{subarray}{c}n\;\textnormal{even}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(4n^{*})=C(\Sigma_{s,\infty}^{\prime})\prod_{p}C(\Sigma_{s,p}^{\prime}),

where for S~p\widetilde{S}_{p} a set of isomorphism classes of cubic p\mathbb{Z}_{p}-algebras, C(S~p)C(\widetilde{S}_{p}) is a local density factor defined as

C(S~p)=(1p1)RS~p1Discp(R)1|Aut(R)|,C(\widetilde{S}_{p})=(1-p^{-1})\sum_{R\in\widetilde{S}_{p}}\frac{1}{\textnormal{Disc}_{p}(R)}\cdot\frac{1}{|\textnormal{Aut}(R)|},

and for S~\widetilde{S}_{\infty} a set of cubic \mathbb{R}-algebras,

C(S~)=12RS~1|Aut(R)|.C(\widetilde{S}_{\infty})=\frac{1}{2}\sum_{R\in\widetilde{S}_{\infty}}\frac{1}{|\textnormal{Aut}(R)|}.

Hence

limX1X(1nodd(n,s)=1nXh3(n)+neven(n,s)=1nXh3(4n))=\lim_{X\to\infty}\frac{1}{X}\left(\sum_{\begin{subarray}{c}1\neq n\;\textnormal{odd}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(n^{*})+\sum_{\begin{subarray}{c}n\;\textnormal{even}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(4n^{*})\right)=
=C(Σs,)pC(Σs,p)+4C(Σs,)pC(Σs,p).=C(\Sigma_{s,\infty})\prod_{p}C(\Sigma_{s,p})+4C(\Sigma_{s,\infty}^{\prime})\prod_{p}C(\Sigma_{s,p}^{\prime}).

For all every prime p2p\neq 2, Σs,p=Σs,p\Sigma_{s,p}=\Sigma_{s,p}^{\prime} and

RΣs,p1Discp(R)1|Aut(R)|={16+12+13=1,p|s16+12+13+1p12+1p12=1+p1,ps.\sum_{R\in\Sigma_{s,p}}\frac{1}{\textnormal{Disc}_{p}(R)}\cdot\frac{1}{|\textnormal{Aut}(R)|}=\begin{cases}\frac{1}{6}+\frac{1}{2}+\frac{1}{3}=1&,\;p|s\\ \frac{1}{6}+\frac{1}{2}+\frac{1}{3}+\frac{1}{p}\cdot\frac{1}{2}+\frac{1}{p}\cdot\frac{1}{2}=1+p^{-1}&,\;p\nmid s\end{cases}\;\;.

Hence

C(Σs,p)=C(Σs,p)=(1p1)RΣs,p1Discp(R)1|Aut(R)|={1p1,p|s1p2,ps.C(\Sigma_{s,p})=C(\Sigma_{s,p}^{\prime})=(1-p^{-1})\sum_{R\in\Sigma_{s,p}}\frac{1}{\textnormal{Disc}_{p}(R)}\cdot\frac{1}{|\textnormal{Aut}(R)|}=\begin{cases}1-p^{-1}&,\;p|s\\ 1-p^{-2}&,\;p\nmid s\end{cases}\;\;.

For the case at \infty,

C(Σs,)=C(Σs,)=12(16+12)=13.C(\Sigma_{s,\infty})=C(\Sigma_{s,\infty}^{\prime})=\frac{1}{2}(\frac{1}{6}+\frac{1}{2})=\frac{1}{3}.

For p=2p=2, we compute C(Σs,2)+4C(Σs,2)C(\Sigma_{s,2})+4C(\Sigma_{s,2}^{\prime}). If ss is even, then

C(Σs,2)+4C(Σs,2)=C(Σs,2)=12=121C(\Sigma_{s,2})+4C(\Sigma_{s,2}^{\prime})=C(\Sigma_{s,2})=\frac{1}{2}=1-2^{-1}

if ss is odd, then

C(Σs,2)+4C(Σs,2)=12+412(1812+1812)=34=122.C(\Sigma_{s,2})+4C(\Sigma_{s,2}^{\prime})=\frac{1}{2}+4\cdot\frac{1}{2}\left(\frac{1}{8}\cdot\frac{1}{2}+\frac{1}{8}\cdot\frac{1}{2}\right)=\frac{3}{4}=1-2^{-2}.

Hence regardless of parity of ss, we have

limX1X(1nodd(n,s)=1nXh3(n)+neven(n,s)=1nXh3(4n))=\lim_{X\to\infty}\frac{1}{X}\left(\sum_{\begin{subarray}{c}1\neq n\;\textnormal{odd}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(n^{*})+\sum_{\begin{subarray}{c}n\;\textnormal{even}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(4n^{*})\right)=
=C(Σs,)pC(Σs,p)+4C(Σs,)pC(Σs,p)==C(\Sigma_{s,\infty})\prod_{p}C(\Sigma_{s,p})+4C(\Sigma_{s,\infty}^{\prime})\prod_{p}C(\Sigma_{s,p}^{\prime})=
=13p|s(1p1)ps(1p2)=γs3.=\frac{1}{3}\prod_{p|s}(1-p^{-1})\prod_{p\nmid s}(1-p^{-2})=\frac{\gamma_{s}}{3}.

Proposition 8.14.

The function col3\textnormal{col}_{\mathscr{R}_{3}} has generic summatory type

col3𝒲(0,5).\textnormal{col}_{\mathscr{R}_{3}}\in{\mathscr{W}(0,5)}.
Proof.

Let ss\in{\mathbb{N}^{*}}. For n=1n=1 we have  ​​​​​​ min\CJKtilde\CJKnospace 圭 ​​​​ n=\text{\begin{CJK}{UTF8}{} \!\!\!\!\!\! min\CJKtilde\CJKnospace 圭 \!\!\!\! \end{CJK}}_{n}=\emptyset, therefore

col3(n)=|Hom𝒦ei(,3)|=1.\textnormal{col}_{\mathscr{R}_{3}}(n)=|\textnormal{Hom}_{\mathscr{K}\textnormal{ei}}(\emptyset,\mathscr{R}_{3})|=1.

For all X1X\geq 1 we have

𝒩3,s(X)=1+(n,s)=12nXcol3(n)=1+1nodd(n,s)=1nX(3+6h3(n))+neven(n,s)=1nX(3+6h3(4n))=\mathcal{N}_{\mathscr{R}_{3},s}(X)=1+\sum_{(n,s)=1}^{2\leq n\leq X}\textnormal{col}_{\mathscr{R}_{3}}(n)=1+\sum_{\begin{subarray}{c}1\neq n\;\textnormal{odd}\\ (n,s)=1\end{subarray}}^{n\leq X}(3+6h_{3}(n^{*}))+\sum_{\begin{subarray}{c}n\;\textnormal{even}\\ (n,s)=1\end{subarray}}^{n\leq X}(3+6h_{3}(4n^{*}))=
2+31nXμs2(n)+6(1nodd(n,s)=1nXh3(n)+neven(n,s)=1nXh3(4n)).-2+3\sum_{1\leq n\leq X}\mu_{s}^{2}(n)+6\left(\sum_{\begin{subarray}{c}1\neq n\;\textnormal{odd}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(n^{*})+\sum_{\begin{subarray}{c}n\;\textnormal{even}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(4n^{*})\right).

Therefore

limX𝒩3,s(X)X=\lim_{X\to\infty}\frac{\mathcal{N}_{\mathscr{R}_{3},s}(X)}{X}=
=3limX𝒩𝒯1,s(X)X+6limX(1nodd(n,s)=1nXh3(n)+neven(n,s)=1nXh3(4n))==3\lim_{X\to\infty}\frac{\mathcal{N}_{\mathscr{T}_{1},s}(X)}{X}+6\lim_{X\to\infty}\left(\sum_{\begin{subarray}{c}1\neq n\;\textnormal{odd}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(n^{*})+\sum_{\begin{subarray}{c}n\;\textnormal{even}\\ (n,s)=1\end{subarray}}^{n\leq X}h_{3}(4n^{*})\right)=
=3γs+6γs3=5γs.=3\gamma_{s}+6\cdot\frac{\gamma_{s}}{3}=5\gamma_{s}.

We find that

cs(3)=limX3,s(X)log0(X)=limX𝒩3,s(X)γsX=5c_{s}(\mathscr{R}_{3})=\lim_{X\to\infty}\frac{\mathcal{E}_{\mathscr{R}_{3},s}(X)}{\log^{0}(X)}=\lim_{X\to\infty}\frac{\mathcal{N}_{\mathscr{R}_{3},s}(X)}{\gamma_{s}X}=5

for all ss\in{\mathbb{N}^{*}}, and subseuqently

limscs(3)=5.\lim_{s\in{\mathbb{N}^{*}}}c_{s}(\mathscr{R}_{3})=5.

Hence

col3𝒲(0,5).\textnormal{col}_{\mathscr{R}_{3}}\in{\mathscr{W}(0,5)}.

References

  • [Ale23] James W Alexander. A lemma on systems of knotted curves. Proceedings of the National Academy of Sciences, 9(3):93–95, 1923.
  • [AM06] Michael Artin and Barry Mazur. Etale homotopy, volume 100. Springer, 2006.
  • [Art47] Emil Artin. Theory of braids. Annals of Mathematics, 48(1):101–126, 1947.
  • [AV64] Michael Artin and Jean-Louis Verdier. Seminar on étale cohomology of number fields. Woods hole, 1964.
  • [BCJ+24] On Profinite Quandles Alexander W Byard, Brian Cai, Nathan P Jones, Lucy H Vuong, and David N Yetter. On profinite quandles. arXiv preprint arXiv:2406.15387, 2024.
  • [BD06] Nicolas Bourbaki and Pierre Deligne. Theorie des Topos et Cohomologie Etale des Schemas. Seminaire de Geometrie Algebrique du Bois-Marie 1963-1964 (SGA 4): Tome 1, volume 269. Springer, 2006.
  • [BST13] Manjul Bhargava, Arul Shankar, and Jacob Tsimerman. On the davenport–heilbronn theorems and second order terms. Inventiones mathematicae, 193:439–499, 2013.
  • [CF12] Richard H Crowell and Ralph Hartzler Fox. Introduction to knot theory, volume 57. Springer Science & Business Media, 2012.
  • [CL84] Henri Cohen and Hendrik W. Lenstra, Jr. Heuristics on class groups of number fields. In Number Theory Noordwijkerhout 1983: Proceedings of the Journées Arithmétiques held at Noordwijkerhout, The Netherlands July 11–15, 1983, pages 33–62. Springer, 1984.
  • [DH71] Harold Davenport and Hans Arnold Heilbronn. On the density of discriminants of cubic fields. ii. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 322(1551):405–420, 1971.
  • [DS23] Ariel Davis and Tomer M Schlank. The hilbert polynomial of quandles and colorings of random links. arXiv preprint arXiv:2304.08314, 2023.
  • [EVW16] Jordan S Ellenberg, Akshay Venkatesh, and Craig Westerland. Homological stability for hurwitz spaces and the cohen-lenstra conjecture over function fields. annals of Mathematics, pages 729–786, 2016.
  • [FW18] Benson Farb and Jesse Wolfson. Étale homological stability and arithmetic statistics. Quarterly Journal of Mathematics, 69(3):951–974, 2018.
  • [Has30] Helmut Hasse. Arithmetische theorie der kubischen zahlkörper auf klassenkörpertheoretischer grundlage. Mathematische Zeitschrift, 31(1):565–582, 1930.
  • [Hil88] Adolf Hildebrand. Large values of character sums. Journal of Number Theory, 29(3):271–296, 1988.
  • [Joh82] Peter T Johnstone. Stone spaces, volume 3. Cambridge university press, 1982.
  • [Joy82] David Joyce. A classifying invariant of knots, the knot quandle. Journal of Pure and Applied Algebra, 23(1):37–65, 1982.
  • [Maz63] Barry Mazur. Remarks on the alexander polynomial. (No Title), 1963.
  • [Maz73] Barry Mazur. Notes on étale cohomology of number fields. In Annales scientifiques de l’École Normale Supérieure, volume 6, pages 521–552, 1973.
  • [Mor12] Masanori Morishita. Knots and primes. In Universitext. Springer, 2012.
  • [MV07] Hugh L Montgomery and Robert C Vaughan. Multiplicative number theory I: Classical theory. Number 97. Cambridge university press, 2007.
  • [Nos17] Takefumi Nosaka. Quandles and topological pairs: Symmetry, knots, and cohomology. Springer, 2017.
  • [Pól18] George Pólya. Über die verteilung der quadratischen reste und nichtreste. Göttingen Nachrichten, 1:21–29, 1918.
  • [Prz06] Józef H Przytycki. 3-coloring and other elementary invariants of knots. arXiv preprint math/0608172, 2006.
  • [Rei48] Kurt Reidemeister. Knotentheorie. Springer, 1948.
  • [SW23] Will Sawin and Melanie Matchett Wood. Conjectures for distributions of class groups of extensions of number fields containing roots of unity. arXiv preprint arXiv:2301.00791, 2023.
  • [Tak43] Mituhisa Takasaki. Abstraction of symmetric transformations. Tohoku Mathematical Journal, First Series, 49:145–207, 1943.
  • [Tak19] Nobuyoshi Takahashi. Quandles associated to galois covers of arithmetic schemes. Kyushu Journal of Mathematics, 73(1):145–164, 2019.
  • [THB86] Edward Charles Titchmarsh and David Rodney Heath-Brown. The theory of the Riemann zeta-function. Oxford university press, 1986.
  • [Win84] Steven Karl Winker. Quandles, knot invariants, and the n-fold branched cover. University of Illinois at Chicago, 1984.
  • [Yam97] Ken Yamamura. Maximal unramified extensions of imaginary quadratic number fields of small conductors. Journal de théorie des nombres de Bordeaux, 9(2):405–448, 1997.