This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Are the a0(1710)a_{0}(1710) or a0(1817)a_{0}(1817) resonances in the Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} decay?

Zhong-Yu Wang School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China    Yu-Wen Peng School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China    Jing-Yu Yi School of Physics and Electronics, Hunan University, Changsha 410082, China    W. C. Luo [email protected] School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China    C. W. Xiao [email protected] School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China Department of Physics, Guangxi Normal University, Guilin 541004, China
Abstract

The BESIII Collaboration claimed that a new a0(1817)a_{0}(1817) resonance was found in the recent results of the Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} decay. For this decay process, we perform a unitary amplitude to analyze the contributions of the states a0(980)+a_{0}(980)^{+} and a0(1710)+a_{0}(1710)^{+} with the final state interactions. Considering the Cabibbo-favored external and internal WW-emission mechanisms at the quark level, and the contributions of the resonances a0(980)+a_{0}(980)^{+}, a0(1710)+a_{0}(1710)^{+} in the SS-wave and K¯(892)0\bar{K}^{*}(892)^{0}, K(892)+{K}^{*}(892)^{+} in the PP-wave, the recent experimental data of the KS0K+K_{S}^{0}K^{+} invariant mass spectrum from the BESIII Collaboration can be described well. In our results, the states a0(980)a_{0}(980) and a0(1710)a_{0}(1710) are dynamically generated from the final state interactions of KK¯K\bar{K} and KK¯K^{*}\bar{K}^{*}, respectively, which support the molecular nature for them. Moreover, some obtained branching fractions are in agreement with the experimental measurements.

I Introduction

Recently, the BESIII Collaboration performed the amplitude analysis of the decay Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0}, and reported the branching fraction (Ds+KS0K+π0)=(1.46±0.06±0.05)%\mathcal{B}\left(D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0}\right)=\left(1.46\pm 0.06\pm 0.05\right)\% BESIII:2022npc , which was consistent with the measurement of the CLEO Collaboration CLEO:2013bae . The isovector partner of the f0(1710)f_{0}(1710), a state a0(1710)+a_{0}(1710)^{+} was observed in the KS0K+K_{S}^{0}K^{+} invariant mass spectrum of the decay Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} BESIII:2022npc 111In the published version, they assumed to be a new a0(1817)a_{0}(1817) resonance., of which the mass and width were measured as,

Ma0(1710)=(1.817±0.008±0.020) GeV,Γa0(1710)=(0.097±0.022±0.015) GeV.M_{a_{0}(1710)}=(1.817\pm 0.008\pm 0.020)\textrm{ GeV},~{}\Gamma_{a_{0}(1710)}=(0.097\pm 0.022\pm 0.015)\textrm{ GeV}.

In fact, previously, the BABAR Collaboration performed the Dalitz plot analyses of ηcηπ+π\eta_{c}\rightarrow\eta\pi^{+}\pi^{-} decay and found a new state a0(1700)a_{0}(1700) in the πη\pi\eta invariant mass spectrum BaBar:2021fkz ,

Ma0(1700)=(1.704±0.005±0.002) GeV,Γa0(1700)=(0.110±0.015±0.011) GeV,M_{a_{0}(1700)}=(1.704\pm 0.005\pm 0.002)\textrm{ GeV},~{}\Gamma_{a_{0}(1700)}=(0.110\pm 0.015\pm 0.011)\textrm{ GeV},

which might also be the same state as a0(1710)a_{0}(1710) and corroborated the evidence found in Ref. BaBar:2018uqa . In Ref. BESIII:2021anf , a peak around 1.7101.710 GeV was observed in the KS0KS0K_{S}^{0}K_{S}^{0} mass distribution in the decay Ds+π+KS0KS0D_{s}^{+}\rightarrow\pi^{+}K_{S}^{0}K_{S}^{0} by the BESIII Collaboration. Due to the strong overlap and common quantum numbers JPC=0++J^{PC}=0^{++}, the states a0(1710)a_{0}(1710) and f0(1710)f_{0}(1710) were not distinguished, and then together denoted as S(1710)S(1710), where the mass and width were determined as BESIII:2021anf ,

MS(1710)=(1.723±0.011±0.002) GeV,ΓS(1710)=(0.140±0.014±0.004) GeV.M_{S(1710)}=(1.723\pm 0.011\pm 0.002)\textrm{ GeV},~{}\Gamma_{S(1710)}=(0.140\pm 0.014\pm 0.004)\textrm{ GeV}.

From these reported results of the BESIII BESIII:2022npc ; BESIII:2021anf and BABAR BaBar:2021fkz Collaborations, the extracted Breit-Wigner masses of a0(1710)a_{0}(1710) are quite different. Actually, these experimental results have extraordinary significance, because searching for the a0(1710)a_{0}(1710) is crucial to understand the nature of its isoscalar partner state f0(1710)f_{0}(1710). In the present work, based on the recent results of the BESIII Collaboration BESIII:2022npc , we try to understand the properties of the state a0(1710)a_{0}(1710) by exploiting the final state interaction formalism.

In the quark model, the f0(1710)f_{0}(1710) was interpreted as an IG(JPC)=0+(0++)I^{G}(J^{PC})=0^{+}(0^{++}) light scalar meson by the Godfrey and Isgur model Godfrey:1985xj , which should also have an isovector partner at 1.781.78 GeV. Similar results were obtained in Ref. Segovia:2008zza with a constituent quark model. However, the f0(1710)f_{0}(1710) mainly decays to the channels KK¯K\bar{K} and ηη\eta\eta, indicating that it may have large ss¯s\bar{s} quarks components Chanowitz:2005du ; Chao:2007sk . The f0(1710)f_{0}(1710) was also regarded as a scalar glueball or containing a large glueball components in Refs. Close:2005vf ; Giacosa:2005zt ; Cheng:2006hu ; Albaladejo:2008qa ; Gui:2012gx ; Janowski:2014ppa ; Ochs:2013gi ; Cheng:2015iaa ; Klempt:2021wpg , which were supported by the experimental resuts of the BESIII Collaboration BESIII:2022riz ; BESIII:2022iwi . Searching for the isovector partner of the f0(1710)f_{0}(1710) is the key to identify whether it is a scalar glueball. On the other hand, based on the chiral unitary approach (ChUA) Oller:1997ti ; Oset:1997it ; Oller:2000ma ; Oller:2000fj ; Oset:2008qh , the f0(1710)f_{0}(1710) was dynamically generated in the interactions of vector mesons and assumed to be a molecular state of KK¯K^{*}\bar{K}^{*} in Ref. Geng:2008gx , where its pole located at 1.7261.726 GeV and another a0a_{0} state at 1.781.78 GeV with isospin I=1I=1 was predicted. Similar results were obtained in the extended research works of Du:2018gyn ; Wang:2021jub . Indeed, this a0a_{0} state at 1.781.78 GeV was arranged as the new found a0(1710)a_{0}(1710) state in a further work of Wang:2022pin , which was also a bound state of KK¯K^{*}\bar{K}^{*}, a molecular state. More discussions about the molecular states can be referred to the review of Ref. Guo:2017jvc .

Furthermore, based on the results from the BESIII Collaboration BESIII:2021anf ; BESIII:2020ctr , Ref. Dai:2021owu studied the decay modes Ds+π+K+KD_{s}^{+}\rightarrow\pi^{+}K^{+}K^{-}, π+K0K¯0\pi^{+}K^{0}\bar{K}^{0}, and π0K+K¯0\pi^{0}K^{+}\bar{K}^{0}, where the f0(1710)f_{0}(1710) and a0(1710)a_{0}(1710) states were dynamically generated from the final state interactions of KK¯K^{*}\bar{K}^{*}, and the branching ratio of Ds+π0K+KS0D_{s}^{+}\rightarrow\pi^{0}K^{+}K_{S}^{0} reaction was predicted. Analogously, the decay Ds+π+KS0KS0D_{s}^{+}\rightarrow\pi^{+}K_{S}^{0}K_{S}^{0} was investigated in details in Ref. Zhu:2022wzk , where the KS0KS0K_{S}^{0}K_{S}^{0} and π+KS0\pi^{+}K_{S}^{0} invariant mass distributions were calculated with the resonance contributions of the scalar f0(1710)f_{0}(1710) and the isovector partner a0(1710)a_{0}(1710), and the results obtained were consistent with the measurements from the BESIII Collaboration BESIII:2021anf . However, in Ref. Guo:2022xqu , the a0(1710)a_{0}(1710) state, newly observed by the BESIII Collaboration BESIII:2022npc , was renamed as a0(1817)a_{0}(1817), which was regarded as the isovector partner of the X(1812)X(1812) found in Ref. BES:2006vdb and classified into the isovector scalar meson family according to the standard Regge trajectory.

Therefore, it is meaningful to understand the nature of the state a0(1710)a_{0}(1710), which is critical for further revealing the property of its isoscalar partner state f0(1710)f_{0}(1710). The latest experimental measurement of the decay Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} by the BESIII Collaboration BESIII:2022npc gives us an opportunity to identify the nature of the a0(1710)a_{0}(1710). In the present work, with the framework of the ChUA, we investigate the resonance contributions of the process Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} based on the final state interactions, where the states a0(980)+a_{0}(980)^{+} and a0(1710)+a_{0}(1710)^{+} are dynamically generated in the coupled channel interactions of the channels KK¯K\bar{K} and KK¯K^{*}\bar{K}^{*}. In the interactions of coupled channels, both the pseudoscalar and vector channels are considered, where five channels KK¯K^{*}\bar{K}^{*}, ρω\rho\omega, ρϕ\rho\phi, KK¯K\bar{K}, and πη\pi\eta, are involved. To describe the invariant mass spectra, we also take into account the contributions from the K¯(892)0\bar{K}^{*}(892)^{0} and K(892)+{K}^{*}(892)^{+} in the PP-wave, which play a crucial role in the intermediate processes Ds+K¯(892)0K+D_{s}^{+}\rightarrow\bar{K}^{*}(892)^{0}K^{+} and K(892)+KS0{K}^{*}(892)^{+}K_{S}^{0}, but omit the contribution of the resonance K¯(1410)0\bar{K}^{*}(1410)^{0}, of which the contribution was small as implied in Ref. BESIII:2022npc . The manuscript is organized as follows. In Sec. II, we present the theoretical formalism of the decay Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} with the final state interaction. Next, our results are shown in Sec. III. A short conclusion is made in Sec. IV.

II Formalism

For the three-body weak decay Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0}, we start from the dynamics at the quark level, where the dominant external and internal WW-emission mechanisms Chau:1982da ; Chau:1987tk are taken into account. In the next step, in the hadron level we consider the final state interactions in the SS-wave and the vector meson productions in the PP-wave, which will be discussed later. First, the Feynman diagrams of the external WW-emission mechanisms are shown in Fig. 1, and the ones with the internal WW-emission mechanisms are given in Fig. 2. As shown in Fig. 1 for the weak decays of Ds+D_{s}^{+}, the cc quark decays into a W+W^{+} boson and an ss quark, and the s¯\bar{s} quark in Ds+D_{s}^{+} as a spectator remains unchanged, then the W+W^{+} boson decays into an ud¯u\bar{d} quark pair. In the following procedures, there are two possibilities for the hadonization progresses. In Fig. 1(a), the ud¯u\bar{d} pair forms a π+\pi^{+} or ρ+\rho^{+} meson, along with this process, the ss¯s\bar{s} quark pair hadronizes into two mesons with q¯q=u¯u+d¯d+s¯s\bar{q}q=\bar{u}u+\bar{d}d+\bar{s}s produced from the vacuum. Contrarily, in Fig. 1(b), the ss¯s\bar{s} quark pair goes into an η\eta or ϕ\phi meson, the ud¯u\bar{d} quark pair made by the W+W^{+} boson hadronizes into two mesons with the q¯q\bar{q}q pairs generated from the vacuum. The corresponding processes for these hadonizations can be given by the formulae below for Fig. 1(a) and Fig. 1(b), respectively,

Refer to caption
(a) ss¯s\bar{s} quark pair hadronizes into a final meson pair.
Refer to caption
(b) ud¯u\bar{d} quark pair hadronizes into a final meson pair.
Figure 1: Diagrams for the Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} decay with external WW-emission mechanisms.
|H(1a)=\displaystyle|H^{(1a)}\rangle= VP(1a)VcsVud(ud¯π+)|s(u¯u+d¯d+s¯s)s¯\displaystyle V_{P}^{(1a)}V_{cs}V_{ud}(u\bar{d}\rightarrow\pi^{+})|s(\bar{u}u+\bar{d}d+\bar{s}s)\bar{s}\rangle (1)
+VP(1a)VcsVud(ud¯ρ+)|s(u¯u+d¯d+s¯s)s¯\displaystyle+V_{P}^{*(1a)}V_{cs}V_{ud}(u\bar{d}\rightarrow\rho^{+})|s(\bar{u}u+\bar{d}d+\bar{s}s)\bar{s}\rangle
=\displaystyle= VP(1a)VcsVudπ+(MM)33+VP(1a)VcsVudρ+(MM)33,\displaystyle V_{P}^{(1a)}V_{cs}V_{ud}\pi^{+}(M\cdot M)_{33}+V_{P}^{*(1a)}V_{cs}V_{ud}\rho^{+}(M\cdot M)_{33},
|H(1b)=\displaystyle|H^{(1b)}\rangle= VP(1b)VcsVud(ss¯26η)|u(u¯u+d¯d+s¯s)d¯\displaystyle V_{P}^{(1b)}V_{cs}V_{ud}(s\bar{s}\rightarrow\frac{-2}{\sqrt{6}}\eta)|u(\bar{u}u+\bar{d}d+\bar{s}s)\bar{d}\rangle (2)
+VP(1b)VcsVud(ss¯ϕ)|u(u¯u+d¯d+s¯s)d¯\displaystyle+V_{P}^{*(1b)}V_{cs}V_{ud}(s\bar{s}\rightarrow\phi)|u(\bar{u}u+\bar{d}d+\bar{s}s)\bar{d}\rangle
=\displaystyle= VP(1b)VcsVud26η(MM)12+VP(1b)VcsVudϕ(MM)12,\displaystyle V_{P}^{(1b)}V_{cs}V_{ud}\frac{-2}{\sqrt{6}}\eta(M\cdot M)_{12}+V_{P}^{*(1b)}V_{cs}V_{ud}\phi(M\cdot M)_{12},

where the VP(1a)V_{P}^{(1a)} and VP(1a)V_{P}^{*(1a)} are the weak interaction strengths of the production vertices Liang:2015qva ; Ahmed:2020qkv for the generations π+\pi^{+} and ρ+\rho^{+}, respectively, for the case of Fig. 1(a), and the VP(1b)V_{P}^{(1b)} and VP(1b)V_{P}^{*(1b)} are the ones for the productions η\eta and ϕ\phi, severally, for the other case of Fig. 1(b). The factors VcsV_{cs} and VudV_{ud} are the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which indicate from q1q2q_{1}\rightarrow q_{2} quarks. The symbol MM is the qq¯q\bar{q} matrix in SU(3)SU{(3)}, defined as

M=(uu¯ud¯us¯du¯dd¯ds¯su¯sd¯ss¯).\displaystyle M=\left(\begin{array}[]{lll}{u\bar{u}}&{u\bar{d}}&{u\bar{s}}\\ {d\bar{u}}&{d\bar{d}}&{d\bar{s}}\\ {s\bar{u}}&{s\bar{d}}&{s\bar{s}}\end{array}\right). (3)
Refer to caption
(a) us¯u\bar{s} quark pair hadronizes into a final meson pair.
Refer to caption
(b) sd¯s\bar{d} quark pair hadronizes into a final meson pair.
Figure 2: Diagrams for the Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} decay with internal WW-emission mechanisms.

Analogously, in the mechanisms of internal WW-emission, see in Fig. 2, the sd¯s\bar{d} pair goes into a K¯0\bar{K}^{0} or K¯0\bar{K}^{*0} meson, and the remnant us¯u\bar{s} quark pair hadronizes into two mesons with q¯q\bar{q}q pairs produced from the vacuum, as shown in Fig. 2(a). On the other hand, in Fig. 2(b), the us¯u\bar{s} pair forms a K+K^{+} or K+K^{*+} meson, and the sd¯s\bar{d} quark pair hadronizes into two mesons with q¯q\bar{q}q pairs created from the vacuum. One can write these processes in the following way for Fig. 2(a) and Fig. 2(b), respectively,

|H(2a)=\displaystyle|H^{(2a)}\rangle= VP(2a)VcsVud(sd¯K¯0)|u(u¯u+d¯d+s¯s)s¯\displaystyle V_{P}^{(2a)}V_{cs}V_{ud}(s\bar{d}\rightarrow\bar{K}^{0})|u(\bar{u}u+\bar{d}d+\bar{s}s)\bar{s}\rangle (4)
+VP(2a)VcsVud(sd¯K¯0)|u(u¯u+d¯d+s¯s)s¯\displaystyle+V_{P}^{*(2a)}V_{cs}V_{ud}(s\bar{d}\rightarrow\bar{K}^{*0})|u(\bar{u}u+\bar{d}d+\bar{s}s)\bar{s}\rangle
=\displaystyle= VP(2a)VcsVudK¯0(MM)13+VP(2a)VcsVudK¯0(MM)13,\displaystyle V_{P}^{(2a)}V_{cs}V_{ud}\bar{K}^{0}(M\cdot M)_{13}+V_{P}^{*(2a)}V_{cs}V_{ud}\bar{K}^{*0}(M\cdot M)_{13},
|H(2b)=\displaystyle|H^{(2b)}\rangle= VP(2b)VcsVud(us¯K+)|s(u¯u+d¯d+s¯s)d¯\displaystyle V_{P}^{(2b)}V_{cs}V_{ud}(u\bar{s}\rightarrow K^{+})|s(\bar{u}u+\bar{d}d+\bar{s}s)\bar{d}\rangle (5)
+VP(2b)VcsVud(us¯K+)|s(u¯u+d¯d+s¯s)d¯\displaystyle+V_{P}^{*(2b)}V_{cs}V_{ud}(u\bar{s}\rightarrow K^{*+})|s(\bar{u}u+\bar{d}d+\bar{s}s)\bar{d}\rangle
=\displaystyle= VP(2b)VcsVudK+(MM)32+VP(2b)VcsVudK+(MM)32,\displaystyle V_{P}^{(2b)}V_{cs}V_{ud}K^{+}(M\cdot M)_{32}+V_{P}^{*(2b)}V_{cs}V_{ud}K^{*+}(M\cdot M)_{32},

where the VP(2a)V_{P}^{(2a)} and VP(2a)V_{P}^{*(2a)} are the weak interaction strengths of the production vertices for the creations K¯0\bar{K}^{0} and K¯0\bar{K}^{*0}, respectively, and the VP(2b)V_{P}^{(2b)} and VP(2b)V_{P}^{*(2b)} are the ones for the formations K+K^{+} and K+K^{*+}, severally. Afterward, the matrix MM for the hadronization can be revised in terms of the pseudoscalar (PP) or vector (VV) mesons, written as

P=(12π0+16ηπ+K+π12π0+16ηK0KK¯026η),\displaystyle P=\left(\begin{array}[]{ccc}{\frac{1}{\sqrt{2}}\pi^{0}+\frac{1}{\sqrt{6}}\eta}&{\pi^{+}}&{K^{+}}\\ {\pi^{-}}&{-\frac{1}{\sqrt{2}}\pi^{0}+\frac{1}{\sqrt{6}}\eta}&{K^{0}}\\ {K^{-}}&{\bar{K}^{0}}&{-\frac{2}{\sqrt{6}}\eta}\end{array}\right), (6)
V=(12ρ0+12ωρ+K+ρ12ρ0+12ωK0KK¯0ϕ),\displaystyle V=\left(\begin{array}[]{ccc}{\frac{1}{\sqrt{2}}\rho^{0}+\frac{1}{\sqrt{2}}\omega}&{\rho^{+}}&{K^{*+}}\\ {\rho^{-}}&{-\frac{1}{\sqrt{2}}\rho^{0}+\frac{1}{\sqrt{2}}\omega}&{K^{*0}}\\ {K^{*-}}&{\bar{K}^{*0}}&{\phi}\end{array}\right), (7)

where we take ηη8\eta\equiv\eta_{8} Liang:2014tia . In Eqs. (1), (2), (4), and (5), the MMM\cdot M has four possible situations with two matrices of physical mesons, i.e., PPP\cdot P, VVV\cdot V, PVP\cdot V, and VPV\cdot P. And thus, these hadronization processes can be reexpressed as

|H(1b)=VP(1b)VcsVudϕ(12ρ+π0)+VP(1b)VcsVudϕ(12ρ+π0),\displaystyle|H^{(1b)}\rangle=V_{P}^{*(1b)}V_{cs}V_{ud}\phi(\frac{-1}{\sqrt{2}}\rho^{+}\pi^{0})+V_{P}^{*(1b)^{\prime}}V_{cs}V_{ud}\phi(\frac{1}{\sqrt{2}}\rho^{+}\pi^{0}), (8)
|H(2a)=VP(2a)VcsVudK¯0(12K+π0)+VP(2a)VcsVudK¯0(12K+π0),\displaystyle|H^{(2a)}\rangle=V_{P}^{(2a)}V_{cs}V_{ud}\bar{K}^{0}(\frac{1}{\sqrt{2}}K^{+}\pi^{0})+V_{P}^{*(2a)}V_{cs}V_{ud}\bar{K}^{*0}(\frac{1}{\sqrt{2}}K^{*+}\pi^{0}), (9)
|H(2b)=VP(2b)VcsVudK+(12K¯0π0)+VP(2b)VcsVudK+(12K¯0π0),\displaystyle|H^{(2b)}\rangle=V_{P}^{(2b)}V_{cs}V_{ud}K^{+}(-\frac{1}{\sqrt{2}}\bar{K}^{0}\pi^{0})+V_{P}^{*(2b)}V_{cs}V_{ud}K^{*+}(-\frac{1}{\sqrt{2}}\bar{K}^{*0}\pi^{0}), (10)

where we only keep the terms that contribute to the final states KS0K+π0K_{S}^{0}K^{+}\pi^{0}. It should be mentioned that there is no term for the Fig. 1(a) contributed to these final states of present Ds+D_{s}^{+} decay process. Besides, in Eq. (8), the factors VP(1b)V_{P}^{*(1b)} and VP(1b)V_{P}^{*(1b)^{\prime}} are different because they come from (VP)12(V\cdot P)_{12} and (PV)12(P\cdot V)_{12}, respectively. Then, we obtain the total contributions in the SS-wave,

|H=\displaystyle|H\rangle= |H(1b)+|H(2a)+|H(2b)\displaystyle|H^{(1b)}\rangle+|H^{(2a)}\rangle+|H^{(2b)}\rangle (11)
=\displaystyle= 12(VP(1b)VP(1b))VcsVudρ+ϕπ0+12(VP(2a)VP(2b))VcsVudK+K¯0π0\displaystyle\frac{1}{\sqrt{2}}(V_{P}^{*(1b)^{\prime}}-V_{P}^{*(1b)})V_{cs}V_{ud}\rho^{+}\phi\pi^{0}+\frac{1}{\sqrt{2}}(V_{P}^{(2a)}-V_{P}^{(2b)})V_{cs}V_{ud}K^{+}\bar{K}^{0}\pi^{0}
+12(VP(2a)VP(2b))VcsVudK+K¯0π0,\displaystyle+\frac{1}{\sqrt{2}}(V_{P}^{*(2a)}-V_{P}^{*(2b)})V_{cs}V_{ud}K^{*+}\bar{K}^{*0}\pi^{0},
=\displaystyle= 12VPVcsVudρ+ϕπ0+12VPVcsVudK+K¯0π0+12VPVcsVudK+K¯0π0,\displaystyle\frac{1}{\sqrt{2}}V_{P}^{*^{\prime}}V_{cs}V_{ud}\rho^{+}\phi\pi^{0}+\frac{1}{\sqrt{2}}V_{P}V_{cs}V_{ud}K^{+}\bar{K}^{0}\pi^{0}+\frac{1}{\sqrt{2}}V_{P}^{*}V_{cs}V_{ud}K^{*+}\bar{K}^{*0}\pi^{0},

where we define VP=VP(1b)VP(1b)V_{P}^{*^{\prime}}=V_{P}^{*(1b)^{\prime}}-V_{P}^{*(1b)}, VP=VP(2a)VP(2b)V_{P}=V_{P}^{(2a)}-V_{P}^{(2b)}, and VP=VP(2a)VP(2b)V_{P}^{*}=V_{P}^{*(2a)}-V_{P}^{*(2b)}. Note that there are also the final states K¯0K+π0\bar{K}^{0}K^{+}\pi^{0} produced directly in the hadronization processes in Eq. (11). Taking into account the final state interactions, we can get these final states via the rescattering procedures, such as K+K¯0K+K¯0K^{+}\bar{K}^{0}\rightarrow K^{+}\bar{K}^{0}, ρ+ϕK+K¯0\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}, and K+K¯0K+K¯0K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0}, which are depicted in Fig. 3. One more thing should be mentioned that there is no direct term ηπ+π0\eta\pi^{+}\pi^{0} contributed in Eq. (11) due to its two terms in |H(1b)|H^{(1b)}\rangle cancelled, which is consistent with the evaluation of Ref. Molina:2019udw , where the experimental findings for the decay Ds+ηπ+π0D^{+}_{s}\to\eta\pi^{+}\pi^{0} BESIII:2019jjr were investigated. In Ref. Molina:2019udw , the larger decay rate of Ds+ηπ+π0D^{+}_{s}\to\eta\pi^{+}\pi^{0} was explained via the internal WW-emission mechanism for the decay process rather than the WW-annihilation procedure as assumed in Ref. BESIII:2019jjr . In the further study of the decay Ds+ηπ+π0D^{+}_{s}\to\eta\pi^{+}\pi^{0}, no tree diagram of Ds+ηπ+π0D^{+}_{s}\to\eta\pi^{+}\pi^{0} decay was taken into account in Refs. Hsiao:2019ait ; Ling:2021qzl . Therefore, under the dominant external and internal WW-emission mechanisms, the amplitude of decay Ds+K¯0K+π0D_{s}^{+}\rightarrow\bar{K}^{0}K^{+}\pi^{0} in the SS-wave is given by

Refer to caption
(a) Tree-level diagram.
Refer to caption
(b) Rescattering of the K+K¯0K+K¯0K^{+}\bar{K}^{0}\rightarrow K^{+}\bar{K}^{0}.
Refer to caption
(c) Rescattering of the ρ+ϕK+K¯0\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}.
Refer to caption
(d) Rescattering of the K+K¯0K+K¯0K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0}.
Figure 3: Mechanisms of the SS-wave final state interactions in the Ds+D_{s}^{+} decay.
tS-wave(M12)|K¯0K+π0=\displaystyle t_{S\text{-wave}}(M_{12})\big{|}_{\bar{K}^{0}K^{+}\pi^{0}}= 12𝒞1Gρ+ϕ(M12)Tρ+ϕK+K¯0(M12)\displaystyle\frac{1}{\sqrt{2}}\mathcal{C}_{1}G_{\rho^{+}\phi}(M_{12})T_{\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}}(M_{12}) (12)
+12𝒞2+12𝒞2GK+K¯0(M12)TK+K¯0K+K¯0(M12)\displaystyle+\frac{1}{\sqrt{2}}\mathcal{C}_{2}+\frac{1}{\sqrt{2}}\mathcal{C}_{2}G_{K^{+}\bar{K}^{0}}(M_{12})T_{K^{+}\bar{K}^{0}\rightarrow K^{+}\bar{K}^{0}}(M_{12})
+12𝒞3GK+K¯0(M12)TK+K¯0K+K¯0(M12),\displaystyle+\frac{1}{\sqrt{2}}\mathcal{C}_{3}G_{K^{*+}\bar{K}^{*0}}(M_{12})T_{K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0}}(M_{12}),

where the factors VPVcsVudV_{P}^{*^{\prime}}V_{cs}V_{ud}, VPVcsVudV_{P}V_{cs}V_{ud}, and VPVcsVudV_{P}^{*}V_{cs}V_{ud} in Eq. (11) have been absorbed into the parameters 𝒞1\mathcal{C}_{1}, 𝒞2\mathcal{C}_{2}, and 𝒞3\mathcal{C}_{3}, respectively. In the present work, we take them as the free constants, which are independent on the invariant masses and contain the global normalization factor for matching the events of the experimental data. MijM_{ij} is the energy of two particles in the center-of-mass (c.m.) frame, where the lower indices i,j=1,2,3i,j=1,2,3 denote the three final states of KS0(K¯0)K_{S}^{0}(\bar{K}^{0}), K+K^{+}, and π0\pi^{0}, respectively. Besides, GPP(VV)G_{PP^{{}^{\prime}}(VV^{{}^{\prime}})} and TPP(VV)PPT_{PP^{{}^{\prime}}(VV^{{}^{\prime}})\rightarrow PP^{{}^{\prime}}} are the loop functions and the two-body scattering amplitudes, respectively. Then, as done in Ref. Dai:2021owu , we take |KS0=12(|K0|K¯0)|K_{S}^{0}\rangle=\frac{1}{\sqrt{2}}(|K^{0}\rangle-|\bar{K}^{0}\rangle), and change the final state from K¯0\bar{K}^{0} to KS0K_{S}^{0}, where Eq. (12) becomes

tS-wave(M12)|KS0K+π0=\displaystyle t_{S\text{-wave}}(M_{12})\big{|}_{K^{0}_{S}K^{+}\pi^{0}}= 12𝒞1Gρ+ϕ(M12)Tρ+ϕK+K¯0(M12)\displaystyle-\frac{1}{2}\mathcal{C}_{1}G_{\rho^{+}\phi}(M_{12})T_{\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}}(M_{12}) (13)
12𝒞212𝒞2GK+K¯0(M12)TK+K¯0K+K¯0(M12)\displaystyle-\frac{1}{2}\mathcal{C}_{2}-\frac{1}{2}\mathcal{C}_{2}G_{K^{+}\bar{K}^{0}}(M_{12})T_{K^{+}\bar{K}^{0}\rightarrow K^{+}\bar{K}^{0}}(M_{12})
12𝒞3GK+K¯0(M12)TK+K¯0K+K¯0(M12).\displaystyle-\frac{1}{2}\mathcal{C}_{3}G_{K^{*+}\bar{K}^{*0}}(M_{12})T_{K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0}}(M_{12}).

Furthermore, the rescattering amplitudes Tρ+ϕK+K¯0T_{\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}}, TK+K¯0K+K¯0T_{K^{+}\bar{K}^{0}\rightarrow K^{+}\bar{K}^{0}}, and TK+K¯0K+K¯0T_{K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0}} in Eq. (13) can be calculated by the coupled channel Bethe-Salpeter equation of the on-shell form,

T=[1vG]1v,\displaystyle T=[1-vG]^{-1}v, (14)

where the matrix vv is constituted by the SS-wave interaction potentials in the coupled channels. In the present work, we consider the interactions of five channels K+K¯0K^{*+}\bar{K}^{*0}, ρ+ω\rho^{+}\omega, ρ+ϕ\rho^{+}\phi, K+K¯0K^{+}\bar{K}^{0}, and π+η\pi^{+}\eta, where one can expect that the states a0(980)a_{0}(980) and a0(1710)a_{0}(1710) will be dynamically generated. Among them, the potential elements of vVVVVv_{VV\rightarrow VV} are taken from the Appendix of Ref. Geng:2008gx (the arXiv version), which included the contact and exchange vector meson terms. The VVPVVP vertex is suppressed, and thus, the contributions of exchange pseudoscalar meson are ignored. As done in Ref. Wang:2019niy , the potentials vPPPPv_{PP\rightarrow PP} are taken from Refs. Oller:1997ti ; Duan:2020vye ; Xie:2014tma , which only included the contact items from the chiral Lagrangian. The ones vVVPPv_{VV\rightarrow PP} are evaluated with the approach of Ref. Wang:2022pin , where the Feynman diagrams of t- and u-channels were considered, as depicted in Fig. 4. The interaction Lagrangian for the VPPVPP vertex is given by Bando:1984ej ; Bando:1987br ,

Refer to caption
(a) t-channel.
Refer to caption
(b) u-channel.
Figure 4: Feynman diagrams of t- and u-channels.
VPP=igVμ[P,μP],\displaystyle\mathcal{L}_{VPP}=-ig\left\langle V_{\mu}\left[P,\partial^{\mu}P\right]\right\rangle, (15)

with g=MV/(2fπ)g=M_{V}/(2f_{\pi}), where taking MV=0.84566M_{V}=0.84566 GeV is the averaged vector-meson mass and fπ=0.093f_{\pi}=0.093 GeV pion decay constant, which are taken from Ref. Wang:2022pin . Thus, the interaction potentials are given by

vK+K¯0K+K¯0=(2tmπ26tmη2)g2ϵ1μk3μϵ2νk4ν,\displaystyle v_{K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0}}=\left(\frac{2}{t-m_{\pi}^{2}}-\frac{6}{t-m_{\eta}^{2}}\right)g^{2}\epsilon_{1\mu}k_{3}^{\mu}\epsilon_{2\nu}k_{4}^{\nu}, (16)
vK+K¯0π+η=26(g2tmK2ϵ1μk3μϵ2νk4ν+g2umK2ϵ1μk4μϵ2νk3ν),\displaystyle v_{K^{*+}\bar{K}^{*0}\rightarrow\pi^{+}\eta}=-2\sqrt{6}\left(\frac{g^{2}}{t-m_{K}^{2}}\epsilon_{1\mu}k_{3}^{\mu}\epsilon_{2\nu}k_{4}^{\nu}+\frac{g^{2}}{u-m_{K}^{2}}\epsilon_{1\mu}k_{4}^{\mu}\epsilon_{2\nu}k_{3}^{\nu}\right),
vρ+ωK+K¯0=22(g2tmK2ϵ1μk3μϵ2νk4ν+g2umK2ϵ1μk4μϵ2νk3ν),\displaystyle v_{\rho^{+}\omega\rightarrow K^{+}\bar{K}^{0}}=-2\sqrt{2}\left(\frac{g^{2}}{t-m_{K}^{2}}\epsilon_{1\mu}k_{3}^{\mu}\epsilon_{2\nu}k_{4}^{\nu}+\frac{g^{2}}{u-m_{K}^{2}}\epsilon_{1\mu}k_{4}^{\mu}\epsilon_{2\nu}k_{3}^{\nu}\right),
vρ+ωπ+η=0,\displaystyle v_{\rho^{+}\omega\rightarrow\pi^{+}\eta}=0,
vρ+ϕK+K¯0=4(g2tmK2ϵ1μk3μϵ2νk4ν+g2umK2ϵ1μk4μϵ2νk3ν),\displaystyle v_{\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}}=4\left(\frac{g^{2}}{t-m_{K}^{2}}\epsilon_{1\mu}k_{3}^{\mu}\epsilon_{2\nu}k_{4}^{\nu}+\frac{g^{2}}{u-m_{K}^{2}}\epsilon_{1\mu}k_{4}^{\mu}\epsilon_{2\nu}k_{3}^{\nu}\right),
vρ+ϕπ+η=0,\displaystyle v_{\rho^{+}\phi\rightarrow\pi^{+}\eta}=0,

where t=(k1k3)2t=(k_{1}-k_{3})^{2} and u=(k1k4)2u=(k_{1}-k_{4})^{2} are defined, ϵi\epsilon_{i} is polarization vector, and kik_{i} three-momentum of the corresponding particles with the lower index ii (i=1,2,3,4i=1,2,3,4) denoting the particles in scattering process V(1)V(2)P(3)P(4)V(1)V(2)\rightarrow P(3)P(4). Compared with vVVVVv_{VV\rightarrow VV}, the potentials of vVVPPv_{VV\rightarrow PP} are much strengthened, and thus, a monopole form factor is introduced at each VPPVPP vertex of the exchanged pseudoscalar meson as done in Refs. Molina:2008jw ; Oset:2012zza ; Wang:2021jub ,

F=Λ2mex2Λ2q2,\displaystyle F=\frac{\Lambda^{2}-m_{ex}^{2}}{\Lambda^{2}-q^{2}}, (17)

where mexm_{ex} is the mass of the exchanged pseudoscalar meson, and qq the transferred momentum. The value of parameter Λ\Lambda is empirically chosen as 1.01.0 GeV. After performing the partial wave projection, one can obtain the SS-wave potentials vv.

The diagonal matrix GG is made up of the meson-meson two-point loop functions, where the explicit form of the element of matrix GG with the dimensional regularization is given by Oller:2000fj ; Oller:1998zr ; Gamermann:2006nm ; Alvarez-Ruso:2010rqm ; Guo:2016zep ,

Gii(Minv)=\displaystyle G_{ii}(M_{inv})= 116π2{aii(μ)+lnm12μ2+m22m12+Minv22Minv2lnm22m12\displaystyle\frac{1}{16\pi^{2}}\left\{a_{ii}(\mu)+\ln\frac{m_{1}^{2}}{\mu^{2}}+\frac{m_{2}^{2}-m_{1}^{2}+M_{inv}^{2}}{2M_{inv}^{2}}\ln\frac{m_{2}^{2}}{m_{1}^{2}}\right. (18)
+qcmi(Minv)Minv[ln(Minv2(m22m12)+2qcmi(Minv)Minv)\displaystyle+\frac{q_{cmi}(M_{inv})}{M_{inv}}\left[\ln\left(M_{inv}^{2}-\left(m_{2}^{2}-m_{1}^{2}\right)+2q_{cmi}(M_{inv})M_{inv}\right)\right.
+ln(Minv2+(m22m12)+2qcmi(Minv)Minv)\displaystyle+\ln\left(M_{inv}^{2}+\left(m_{2}^{2}-m_{1}^{2}\right)+2q_{cmi}(M_{inv})M_{inv}\right)
ln(Minv2(m22m12)+2qcmi(Minv)Minv)\displaystyle-\ln\left(-M_{inv}^{2}-\left(m_{2}^{2}-m_{1}^{2}\right)+2q_{cmi}(M_{inv})M_{inv}\right)
ln(Minv2+(m22m12)+2qcmi(Minv)Minv)]},\displaystyle\left.\left.-\ln\left(-M_{inv}^{2}+\left(m_{2}^{2}-m_{1}^{2}\right)+2q_{cmi}(M_{inv})M_{inv}\right)\right]\right\},

where m1m_{1} and m2m_{2} are the masses of the intermediate mesons in the loops, MinvM_{inv} is the invariant mass of the meson-meson system, μ\mu the regularization scale, of which the value will be discussed in Sec. III, and the aii(μ)a_{ii}(\mu) the subtraction constant. As done in Refs. Duan:2020vye ; Wang:2021kka , its value can be evaluated by Eq. (17) of Ref. Oller:2000fj ,

aii(μ)=2ln(1+1+m12μ2)+,\displaystyle a_{ii}(\mu)=-2\ln\left(1+\sqrt{1+\frac{m_{1}^{2}}{\mu^{2}}}\right)+\cdots, (19)

where m1m_{1} is the mass of a larger-mass meson in the corresponding channels, and the ellipses indicates the ingnored higher order terms in the nonrelativistic expansion Guo:2018tjx . Besides, qcmi(Minv)q_{cmi}(M_{inv}) is the three-momentum of the particle in the c.m. frame,

qcmi(Minv)=λ1/2(Minv2,m12,m22)2Minv,\displaystyle q_{cmi}(M_{inv})=\frac{\lambda^{1/2}\left(M_{inv}^{2},m_{1}^{2},m_{2}^{2}\right)}{2M_{inv}}, (20)

with the usual Källen triangle function λ(a,b,c)=a2+b2+c22(ab+ac+bc)\lambda(a,b,c)=a^{2}+b^{2}+c^{2}-2(ab+ac+bc).

In addition, we also consider the contributions of the vector resonances in the intermediate states in the PP-wave as discussed above, such as the ones K¯(892)0\bar{K}^{*}(892)^{0} and K(892)+K^{*}(892)^{+}, which are not produced in the meson-meson scattering amplitudes. The production mechanisms are depicted in Fig. 5. Referring to Refs. Toledo:2020zxj ; Roca:2020lyi , the relativistic amplitude for the decay Ds+K¯(892)0K+KS0π0K+D_{s}^{+}\rightarrow\bar{K}^{*}(892)^{0}K^{+}\rightarrow K_{S}^{0}\pi^{0}K^{+} can be written as,

Refer to caption
(a) Diagram via the K¯(892)0\bar{K}^{*}(892)^{0}.
Refer to caption
(b) Diagram via the K(892)+K^{*}(892)^{+}.
Figure 5: Mechanisms of Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} decay via the intermediate states K¯(892)0\bar{K}^{*}(892)^{0} and K(892)+K^{*}(892)^{+}.
tK¯(892)0(M12,M13)=\displaystyle t_{\bar{K}^{*}(892)^{0}}(M_{12},M_{13})= 𝒟1eiϕK¯(892)0M132mK¯(892)02+imK¯(892)0ΓK¯(892)0\displaystyle\frac{\mathcal{D}_{1}e^{i\phi_{\bar{K}^{*}(892)^{0}}}}{M_{13}^{2}-m_{\bar{K}^{*}(892)^{0}}^{2}+im_{\bar{K}^{*}(892)^{0}}\Gamma_{\bar{K}^{*}(892)^{0}}} (21)
×[(mKS02mπ02)mDs+2mK+2mK¯(892)02M122+M232],\displaystyle\times\left[(m_{K_{S}^{0}}^{2}-m_{\pi^{0}}^{2})\frac{m_{D_{s}^{+}}^{2}-m_{K^{+}}^{2}}{m_{\bar{K}^{*}(892)^{0}}^{2}}-M_{12}^{2}+M_{23}^{2}\right],

where 𝒟1\mathcal{D}_{1} is a unknown constant, ϕK¯(892)0\phi_{\bar{K}^{*}(892)^{0}} a phase for the interference effect, the mass of K¯(892)0\bar{K}^{*}(892)^{0} taken as mK¯(892)0=0.89555m_{\bar{K}^{*}(892)^{0}}=0.89555 GeV, and the width taken as ΓK¯(892)0=0.0473\Gamma_{\bar{K}^{*}(892)^{0}}=0.0473 GeV, both of which are taken from the Particle Data Group (PDG) Workman:2022ynf . Note that the invariant masses MijM_{ij} fulfil the constraint condition,

M122+M132+M232=mDs+2+mKS02+mK+2+mπ02.\displaystyle M_{12}^{2}+M_{13}^{2}+M_{23}^{2}=m_{D_{s}^{+}}^{2}+m_{K_{S}^{0}}^{2}+m_{K^{+}}^{2}+m_{\pi^{0}}^{2}. (22)

Analogously, the amplitude for the decay Ds+KS0K(892)+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{*}(892)^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} is given by

tK(892)+(M12,M13)=\displaystyle t_{K^{*}(892)^{+}}(M_{12},M_{13})= 𝒟2eiϕK(892)+M232mK(892)+2+imK(892)+ΓK(892)+\displaystyle\frac{\mathcal{D}_{2}e^{i\phi_{K^{*}(892)^{+}}}}{M_{23}^{2}-m_{K^{*}(892)^{+}}^{2}+im_{K^{*}(892)^{+}}\Gamma_{K^{*}(892)^{+}}} (23)
×[(mK+2mπ02)mDs+2mKS02mK(892)+2M122+M132],\displaystyle\times\left[(m_{K^{+}}^{2}-m_{\pi^{0}}^{2})\frac{m_{D_{s}^{+}}^{2}-m_{K_{S}^{0}}^{2}}{m_{K^{*}(892)^{+}}^{2}}-M_{12}^{2}+M_{13}^{2}\right],

where 𝒟2\mathcal{D}_{2} is also a unknown constant, ϕK(892)+\phi_{K^{*}(892)^{+}} a phase, the mass of K(892)+K^{*}(892)^{+} taken as mK(892)+=0.89167m_{K^{*}(892)^{+}}=0.89167 GeV, and the width taken as ΓK(892)+=0.0514\Gamma_{K^{*}(892)^{+}}=0.0514 GeV Workman:2022ynf .

Finally, according to the formula of Ref. Workman:2022ynf , the double differential width of the decay Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} is obtained as

d2ΓdM12dM13=1(2π)3M12M138mDs+3(|tS-wave+tK¯(892)0+tK(892)+|2),\displaystyle\frac{d^{2}\Gamma}{dM_{12}dM_{13}}=\frac{1}{(2\pi)^{3}}\frac{M_{12}M_{13}}{8m_{D_{s}^{+}}^{3}}\left(\left|t_{S\text{-wave}}+t_{\bar{K}^{*}(892)^{0}}+t_{K^{*}(892)^{+}}\right|^{2}\right), (24)

where we have considered the interference between the SS- and PP-waves with a coherent sum for the amplitudes. Even though the scattering amplitudes of Eq. (13) are pure SS-wave contribution in our formalism, the amplitudes in PP-wave, see Eqs. (21) and (23), are in fact the Breit-Wigner type, which are not pure PP-wave, and thus lead to nonzero interference with the SS-wave amplitudes 222Thanks the referee for the useful comment. Indeed, without the interference effect, the contribution of the a0(1710)a_{0}(1710) resonance will be enhanced, where our conclusions would not be changed.. Note that, in the experimental modelling, the nonzero unphysical interference is always taken into account when the Breit-Wigner type amplitudes are used for the resonances. With Eq. (24), it is easy to calculate dΓ/dMKS0K+d\Gamma/dM_{K_{S}^{0}K^{+}}, dΓ/dMKS0π0d\Gamma/dM_{K_{S}^{0}\pi^{0}}, and dΓ/dMK+π0d\Gamma/dM_{K^{+}\pi^{0}} by integrating over each of the invariant mass variables with the limits of the Dalitz Plot, see Ref. Workman:2022ynf for more details.

III Results

As one can see in the last section of our theoretical model, that we have eight parameters: the μ\mu is the regularization scale in loop functions, 𝒞1\mathcal{C}_{1}, 𝒞2\mathcal{C}_{2}, and 𝒞3\mathcal{C}_{3} represent the strengths of three production factors in the SS-wave final state interactions, 𝒟1\mathcal{D}_{1}, 𝒟2\mathcal{D}_{2}, ϕK¯(892)0\phi_{\bar{K}^{*}(892)^{0}}, and ϕK(892)+\phi_{K^{*}(892)^{+}} are the production factors and phases appeared in the PP-wave productions, respectively. We perform a combined fit to the three invariant mass distributions of the Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} decay measured by the BESIII Collaboration BESIII:2022npc . For the regularization scale μ\mu in the loop functions of Eq. (18), generally, the values μ=0.6\mu=0.6 GeV Duan:2020vye ; Wang:2021ews and μ=1.0\mu=1.0 GeV Geng:2008gx are adopted in pseudoscalar-pseudoscalar and vector-vector meson interactions, respectively. In our fitting, we take it as a free parameter because our model includes the interactions with both pseudoscalar and vector meson channels 333When we fix μ=1.0\mu=1.0 GeV, the fitting results are just a bit worse with χ2/dof.=201.70/(1297)=1.65\chi^{2}/dof.=201.70/(129-7)=1.65.. The parameters obtained from the fit are given in Table I, where the fitted χ2/dof.=171.24/(1298)=1.42\chi^{2}/dof.=171.24/(129-8)=1.42, and the corresponding three invariant mass distributions are shown in Fig. 6. When the regularization scale μ\mu is taken as 0.7160.716 GeV from the fit, see Table I, the subtraction constants aii(μ)a_{ii}(\mu) for each coupled channels calculated by Eq. (19) are obtained as

aK+K¯0=1.91,aρ+ω=1.82,aρ+ϕ=2.02,\displaystyle a_{K^{*+}\bar{K}^{*0}}=-1.91,\quad a_{\rho^{+}\omega}=-1.82,\quad a_{\rho^{+}\phi}=-2.02, (25)
aK+K¯0=1.59,aπ+η=1.63.\displaystyle a_{K^{+}\bar{K}^{0}}=-1.59,\quad a_{\pi^{+}\eta}=-1.63.

It should be mentioned that the uncertainties of the experimental data near the peak structures are larger than the others BESIII:2022npc , as one can see in Fig. 6. But, when we ignore the errors of the data, or equivalently set all the errors as 11, the obtained results are not much different with the ones as shown in Fig. 6 with χ2/dof.=199.18/(1298)=1.65\chi^{2}/dof.=199.18/(129-8)=1.65, which of course should be admitted that there are some uncertainties for the pole position affected by the large errors. In our formalism, both the states a0(980)+a_{0}(980)^{+} and a0(1710)+a_{0}(1710)^{+} are dynamically generated from the coupled channel interactions in pure SS-wave. But, they are also affected by the PP-wave amplitudes for the states K¯(892)0\bar{K}^{*}(892)^{0} and K(892)+K^{*}(892)^{+}, since the values of the phases ϕK¯(892)0\phi_{\bar{K}^{*}(892)^{0}} and ϕK(892)+\phi_{K^{*}(892)^{+}} are in fact π2±0.1\frac{\pi}{2}\pm 0.1 (for the central values) as shown in Table I, which is just a bit deviated from orthogonality and leads to nonzero interference effect, even though the effect is small. Note that, the difference between these two phases are about 0.21, which is close to the experimental measurement but with opposite sign, i.e., 0.16±0.12±0.11-0.16\pm 0.12\pm 0.11 in Ref. BESIII:2022npc , within the uncertainties. In Fig. 6, our fitting results describe well the data of the three invariant mass distributions BESIII:2022npc , where one feature of our fit is only one set parameter used in the combined fitting procedure, as given in Table I. An enhancement at the threshold in the KS0K+K_{S}^{0}K^{+} mass distribution is caused by the resonance a0(980)+a_{0}(980)^{+} as shown by the dot (magenta) line in Fig. 6(a), which is dynamically generated in the SS-wave final state interactions with the ChUA. The bump structure around 1.251.25 GeV in Fig. 6(a) is the reflection contributions of both the states K¯(892)0\bar{K}^{*}(892)^{0} and K(892)+K^{*}(892)^{+} in the PP-wave. The obvious peak structure around 1.61.6 to 1.81.8 GeV in Fig. 6(a) is contributed by the reflection contributions from the states K¯(892)0\bar{K}^{*}(892)^{0} and K(892)+K^{*}(892)^{+} and the significant signal of the resonance a0(1710)+a_{0}(1710)^{+} in the SS-wave interactions, which comes along with a0(980)+a_{0}(980)^{+} from the coupled channel interaction of one amplitude, see Eq. (13). In Fig. 6(b) for the KS0π0K_{S}^{0}\pi^{0} invariant mass distribution, the peak of K¯(892)0\bar{K}^{*}(892)^{0} is obvious in the middle-energy region, contrarily, the SS-wave and K(892)+K^{*}(892)^{+} contributions are concentrated in the low and high-energy regions. Similarly, for the K+π0K^{+}\pi^{0} mass distribution in Fig. 6(c), except for the peak of the K(892)+K^{*}(892)^{+}, the states a0(980)+a_{0}(980)^{+}, a0(1710)+a_{0}(1710)^{+}, and K¯(892)0\bar{K}^{*}(892)^{0} enhance in the energy regions near the threshold, and the state K¯(892)0\bar{K}^{*}(892)^{0} also contributes to the enhancement in the high-energy region. Note that as one can see in the low-energy region of Figs. 6(b) and 6(c), there are still some differences between our fit and the experimental data, which, as implied by the experiment, may be caused by the contribution of the resonance K¯(1410)0\bar{K}^{*}(1410)^{0}, not considered in our formalism.

Table I: Values of the parameters from the fit.
Par. μ\mu 𝒞1\mathcal{C}_{1} 𝒞2\mathcal{C}_{2} 𝒞3\mathcal{C}_{3}
Fit I 0.716±0.0130.716\pm 0.013 GeV 47518.79±7523.1847518.79\pm 7523.18 1595.34±138.511595.34\pm 138.51 46454.25±3868.0446454.25\pm 3868.04
𝒟1\mathcal{D}_{1} 𝒟2\mathcal{D}_{2} ϕK¯(892)0\phi_{\bar{K}^{*}(892)^{0}} ϕK(892)+\phi_{K^{*}(892)^{+}}
61.65±2.3361.65\pm 2.33 40.43±2.9540.43\pm 2.95 1.46±0.121.46\pm 0.12 1.67±0.151.67\pm 0.15
Refer to caption
(a) KS0K+K_{S}^{0}K^{+} invariant mass distribution.
Refer to caption
(b) KS0π0K_{S}^{0}\pi^{0} invariant mass distribution.
Refer to caption
(c) K+π0K^{+}\pi^{0} invariant mass distribution.
Figure 6: Invariant mass distributions for the Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} decay. The solid (red) line corresponds to the total contributions of the SS- and PP-waves, the dash (blue) line represents the contributions from the K¯(892)0\bar{K}^{*}(892)^{0}, the dash-dot (green) line is the contributions from the K(892)+K^{*}(892)^{+}, the dot (magenta) line is the contributions from the SS-wave interactions (a0(980)+a_{0}(980)^{+} and a0(1710)+a_{0}(1710)^{+}), and the dot (black) points are the data taken from Ref. BESIII:2022npc .
Refer to caption
(a) ρ+ϕK+K¯0\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}.
Refer to caption
(b) K+K¯0K+K¯0K^{+}\bar{K}^{0}\rightarrow K^{+}\bar{K}^{0}.
Refer to caption
(c) K+K¯0K+K¯0K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0}.
Figure 7: Modulus square of the amplitudes (a) ρ+ϕK+K¯0\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}, (b) K+K¯0K+K¯0K^{+}\bar{K}^{0}\rightarrow K^{+}\bar{K}^{0}, and (c) K+K¯0K+K¯0K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0}.

In Fig. 7, we show the modulus square of the two-body ρ+ϕK+K¯0\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}, K+K¯0K+K¯0K^{+}\bar{K}^{0}\rightarrow K^{+}\bar{K}^{0}, and K+K¯0K+K¯0K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0} amplitudes, where the a0(980)+a_{0}(980)^{+} signal near the threshold is strengthened, which is also found in the K+KK^{+}K^{-} invariant mass spectrum of the Ds+K+Kπ+D_{s}^{+}\rightarrow K^{+}K^{-}\pi^{+} decay including the intermediate resonances f0(980)f_{0}(980) and a0(980)a_{0}(980) in the experimental results of Ref. BESIII:2020ctr . One thing should be mentioned that as we discuss in the formalism, the regularization scale μ\mu is a free parameter in our formalism, which is determined from the fit, and the subtraction constants aii(μ)a_{ii}(\mu) for each channels are evaluated by Eq. (19), different from what had been done in Refs. Ahmed:2020kmp ; Geng:2008gx ; Du:2018gyn ; Wang:2022pin . With the fitting results, the obtained aii(μ)a_{ii}(\mu) have been given in Eq. (25), and the corresponding poles for the states a0(980)a_{0}(980) and a0(1710)a_{0}(1710) in the complex second Riemann sheets are shown in Table II. In Table II, the pole for the state a0(980)a_{0}(980) is not much different with the ones obatined in Ref. Ahmed:2020kmp , which indicates that the interactions of vector meson channels have little influence on this state. For the a0(1710)a_{0}(1710), it is obvious that the obtained width is at least seven times smaller than the ones of Refs. Geng:2008gx ; Wang:2022pin and three times smaller than the one gotten in Ref. Du:2018gyn . Note that we only evaluate the interactions of the isospin I=1I=1 sector for the final state interactions of the decay Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0}, where one can expect that the states f0(980)f_{0}(980) and f0(1710)f_{0}(1710) could be reproduced together with the similar two-body interaction formalism in the isospin I=0I=0 sector, showing the molecular nature for them.

Table II: Poles 555Note that the poles are always a pair of conjugated solutions in the complex Riemann sheet. compared with the other works (Unit: GeV).
 This work  Ref. Ahmed:2020kmp  Ref. Geng:2008gx  Ref. Wang:2022pin  Ref. Du:2018gyn
Par. μ=0.716\mu=0.716 qmax=0.931q_{max}=0.931, qmax=1.08q_{max}=1.08 μ=1.00\mu=1.00 qmax=1.00q_{max}=1.00 qmax=1.00q_{max}=1.00 , g1=4.596g_{1}=4.596
a0(980)a_{0}(980) 1.0419+0.0345i1.0419+0.0345i 1.0029+0.0567i1.0029+0.0567i, 0.9745+0.0573i0.9745+0.0573i - - -
a0(1710)a_{0}(1710) 1.7936+0.0094i1.7936+0.0094i - 1.7800.066i1.780-0.066i 1.720.10i1.72-0.10i 1.76±0.03i1.76\pm 0.03i

Furthermore, based on the results in Table II, we also concern the widths and partial decay widths of the poles for the corresponding resonances. Since the pole is in fact located at (MR+iΓRtot2)(M_{R}+i\frac{\Gamma_{R}^{tot}}{2}), one can easily obtain the (total) widths ΓRtot\Gamma_{R}^{tot} of the corresponding poles for the states a0(980)a_{0}(980) and a0(1710)a_{0}(1710) from the results in Table II. For the partial decay widths of each coupled channel, we take the formulae from Refs. Oller:1997ti ; Oller:1998hw , written

ΓRi=116π2EminEmax𝑑EqcmiE24MRImTii,\displaystyle\Gamma_{R\to i}=-\frac{1}{16\pi^{2}}\int_{E_{\min}}^{E_{\max}}dE\frac{q_{cmi}}{E^{2}}4M_{R}\operatorname{Im}T_{ii}, (26)
ΓRj=116π2EminEmax𝑑EqcmjE24MR(ImTji)2ImTii,\displaystyle\Gamma_{R\to j}=-\frac{1}{16\pi^{2}}\int_{E_{\min}}^{E_{\max}}dE\frac{q_{cmj}}{E^{2}}4M_{R}\frac{\left(\operatorname{Im}T_{ji}\right)^{2}}{\operatorname{Im}T_{ii}}, (27)

where EE stands for the total energy of the meson-meson system in the c.m. frame, qcmiq_{cmi} (qcmjq_{cmj}) is the three momentum of the meson in the c.m. frame, given by Eq. (20), and the amplitudes TijT_{ij} are evaluated by Eq. (14). The obtained results are shown in Tables III and IV. Note that, the Γa0(980)+K+K¯0\Gamma_{a_{0}(980)^{+}\to K^{+}\bar{K}^{0}} is calculated with Eq. (26), and the others with Eq. (27). Meanwhile, the integration limits are taken from threshold to 1.1 GeV for the results in Table III, and taken from 1.7 to 2.0 GeV for the ones in Table IV. The results in Table IV are somehow very small for a0(1710)+a_{0}(1710)^{+} decaying into the channels K+K¯0K^{+}\bar{K}^{0} and π+η\pi^{+}\eta, which are also different from the ones predicted in Refs. Wang:2022pin ; Oset:2012zza . Note that, in Ref. Geng:2008gx it was found that the width did not increase much when the contributions of the box diagrams were included, and thus, it was concluded that the predicted a0(1710)a_{0}(1710) state had a small branching ratio to two pseudoscalars.

Table III: The partial decay widths of a0(980)+a_{0}(980)^{+}.
                   Γa0(980)+K+K¯0\Gamma_{a_{0}(980)^{+}\to K^{+}\bar{K}^{0}}                    Γa0(980)+π+η\Gamma_{a_{0}(980)^{+}\to\pi^{+}\eta}
                   28.3828.38 MeV                    43.6043.60 MeV
Table IV: The partial decay widths of a0(1710)+a_{0}(1710)^{+}.
           Γa0(1710)+ρ+ω\Gamma_{a_{0}(1710)^{+}\to\rho^{+}\omega}            Γa0(1710)+K+K¯0\Gamma_{a_{0}(1710)^{+}\to K^{+}\bar{K}^{0}}            Γa0(1710)+π+η\Gamma_{a_{0}(1710)^{+}\to\pi^{+}\eta}
           19.6519.65 MeV            0.540.54 MeV            0.050.05 MeV

In addition, we also calculate the branching ratios of the corresponding decay channels. For the decays Ds+K¯(892)0K+D_{s}^{+}\rightarrow\bar{K}^{*}(892)^{0}K^{+}, K(892)+KS0K^{*}(892)^{+}K_{S}^{0}, and a0(980)+π0a_{0}(980)^{+}\pi^{0}, we integrate the three corresponding invariant mass spectra from the threshold to 1.21.2 GeV. The uncertainties come from the changes of upper limits 1.20±0.051.20\pm 0.05 GeV. For the Ds+a0(1710)+π0D_{s}^{+}\rightarrow a_{0}(1710)^{+}\pi^{0} decay, the integration limits are taken from 1.61.6 GeV to (mDs+mπ0m_{D_{s}^{+}}-m_{\pi^{0}}), the uncertainties are from the changes of 1.60±0.051.60\pm 0.05 GeV. The results are given as follows

(Ds+K(892)+KS0,K(892)+K+π0)(Ds+K¯(892)0K+,K¯(892)0KS0π0)=0.400.003+0.002,\displaystyle\frac{\mathcal{B}(D_{s}^{+}\rightarrow K^{*}(892)^{+}K_{S}^{0},K^{*}(892)^{+}\rightarrow K^{+}\pi^{0})}{\mathcal{B}(D_{s}^{+}\rightarrow\bar{K}^{*}(892)^{0}K^{+},\bar{K}^{*}(892)^{0}\rightarrow K_{S}^{0}\pi^{0})}=0.40^{+0.002}_{-0.003}, (28)
(Ds+a0(980)+π0,a0(980)+KS0K+)(Ds+K¯(892)0K+,K¯(892)0KS0π0)=0.530.08+0.06,\displaystyle\frac{\mathcal{B}(D_{s}^{+}\rightarrow a_{0}(980)^{+}\pi^{0},a_{0}(980)^{+}\rightarrow K_{S}^{0}K^{+})}{\mathcal{B}(D_{s}^{+}\rightarrow\bar{K}^{*}(892)^{0}K^{+},\bar{K}^{*}(892)^{0}\rightarrow K_{S}^{0}\pi^{0})}=0.53^{+0.06}_{-0.08}, (29)
(Ds+a0(1710)+π0,a0(1710)+KS0K+)(Ds+K¯(892)0K+,K¯(892)0KS0π0)=0.410.05+0.04.\displaystyle\frac{\mathcal{B}(D_{s}^{+}\rightarrow a_{0}(1710)^{+}\pi^{0},a_{0}(1710)^{+}\rightarrow K_{S}^{0}K^{+})}{\mathcal{B}(D_{s}^{+}\rightarrow\bar{K}^{*}(892)^{0}K^{+},\bar{K}^{*}(892)^{0}\rightarrow K_{S}^{0}\pi^{0})}=0.41^{+0.04}_{-0.05}. (30)

Then we take the branching fraction (Ds+K¯(892)0K+,K¯(892)0KS0π0)=(4.77±0.38±0.32)×103\mathcal{B}(D_{s}^{+}\rightarrow\bar{K}^{*}(892)^{0}K^{+},\bar{K}^{*}(892)^{0}\rightarrow K_{S}^{0}\pi^{0})=(4.77\pm 0.38\pm 0.32)\times 10^{-3} 666Note that, only the results for the decays (Ds+K¯(892)0K+,K¯(892)0Kπ+)(D_{s}^{+}\rightarrow\bar{K}^{*}(892)^{0}K^{+},\bar{K}^{*}(892)^{0}\rightarrow K^{-}\pi^{+}) and Ds+K(892)+K¯0D_{s}^{+}\rightarrow K^{*}(892)^{+}\bar{K}^{0} are found in PDG Workman:2022ynf . In principle, with these results in PDG one can obtain the ratio of Eq. (28) under the isospin symmetry to the strong decay. But, since the branching fraction of the decay Ds+K(892)+K¯0D_{s}^{+}\rightarrow K^{*}(892)^{+}\bar{K}^{0} is evaluated with the results from low statistics, we do not take it into account in the present work. measured by the BESIII Collaboration BESIII:2022npc as the input, and get the branching ratios for the other channels, written

(Ds+K(892)+KS0,K(892)+K+π0)=(1.91±0.200.01+0.01)×103,\displaystyle\mathcal{B}(D_{s}^{+}\rightarrow K^{*}(892)^{+}K_{S}^{0},K^{*}(892)^{+}\rightarrow K^{+}\pi^{0})=(1.91\pm 0.20^{+0.01}_{-0.01})\times 10^{-3}, (31)
(Ds+a0(980)+π0,a0(980)+KS0K+)=(2.53±0.260.38+0.27)×103,\displaystyle\mathcal{B}(D_{s}^{+}\rightarrow a_{0}(980)^{+}\pi^{0},a_{0}(980)^{+}\rightarrow K_{S}^{0}K^{+})=(2.53\pm 0.26^{+0.27}_{-0.38})\times 10^{-3},
(Ds+a0(1710)+π0,a0(1710)+KS0K+)=(1.94±0.200.24+0.18)×103,\displaystyle\mathcal{B}(D_{s}^{+}\rightarrow a_{0}(1710)^{+}\pi^{0},a_{0}(1710)^{+}\rightarrow K_{S}^{0}K^{+})=(1.94\pm 0.20^{+0.18}_{-0.24})\times 10^{-3},

where the first uncertainties are estimated from the experimental errors, and the second ones come from the Eqs. (28-30). The following results are taken from the experimental measurements BESIII:2022npc ,

(Ds+K(892)+KS0,K(892)+K+π0)=(2.03±0.26±0.20)×103,\displaystyle\mathcal{B}(D_{s}^{+}\rightarrow K^{*}(892)^{+}K_{S}^{0},K^{*}(892)^{+}\rightarrow K^{+}\pi^{0})=(2.03\pm 0.26\pm 0.20)\times 10^{-3}, (32)
(Ds+a0(980)+π0,a0(980)+KS0K+)=(1.12±0.25±0.27)×103,\displaystyle\mathcal{B}(D_{s}^{+}\rightarrow a_{0}(980)^{+}\pi^{0},a_{0}(980)^{+}\rightarrow K_{S}^{0}K^{+})=(1.12\pm 0.25\pm 0.27)\times 10^{-3},
(Ds+a0(1710)+π0,a0(1710)+KS0K+)=(3.44±0.52±0.32)×103.\displaystyle\mathcal{B}(D_{s}^{+}\rightarrow a_{0}(1710)^{+}\pi^{0},a_{0}(1710)^{+}\rightarrow K_{S}^{0}K^{+})=(3.44\pm 0.52\pm 0.32)\times 10^{-3}.

Compared with the experimental measurements of Eq. (32), our results of the branching fractions in Eq. (31) for the decay Ds+K(892)+KS0D_{s}^{+}\rightarrow K^{*}(892)^{+}K_{S}^{0} is a little smaller, but they are consistent with each other within the uncertainties. Whereas, the one for the decay Ds+a0(980)+π0D_{s}^{+}\rightarrow a_{0}(980)^{+}\pi^{0} is two times bigger than the measurement result. For the decay Ds+a0(1710)+π0D_{s}^{+}\rightarrow a_{0}(1710)^{+}\pi^{0}, our result is 1/3 smaller than the experimental measurement. However, note that, in Ref. Dai:2021owu the predicted branching ratio of Ds+a0(1710)+π0D_{s}^{+}\rightarrow a_{0}(1710)^{+}\pi^{0} is (1.3±0.4)×103(1.3\pm 0.4)\times 10^{-3}, which is smaller than what we have.

IV Conclusions

We study the weak decay process of Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} by considering the mechanisms of external and internal WW-emission in the quark level. In the hadron level, based on the final state interaction formalism, including the contributions of tree-level and rescattering of the interactions ρ+ϕK+K¯0\rho^{+}\phi\rightarrow K^{+}\bar{K}^{0}, K+K¯0K+K¯0K^{+}\bar{K}^{0}\rightarrow K^{+}\bar{K}^{0}, and K+K¯0K+K¯0K^{*+}\bar{K}^{*0}\rightarrow K^{+}\bar{K}^{0}, the KS0K+K_{S}^{0}K^{+} invariant mass spectrum is described with the main contributions from the resonances a0(980)+a_{0}(980)^{+} and a0(1710)+a_{0}(1710)^{+}. Note that these two states are dynamically reproduced with the chiral unitary approach, where the coupled channel interactions including the pseudoscalar and vector channels are taken into account coherently. Moreover, combining with the PP-wave contributions from the states K¯(892)0\bar{K}^{*}(892)^{0} and K(892)+K^{*}(892)^{+}, the experimental data of the three mass distributions in the decay Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} are well described, where it can be found that the reflections of these states are important to the spectra as shown in Fig. 6, and one should keep in mind that only one set of free parameter is used in the combined fit. In addition, with the fitted regularization scale μ\mu for deteriming aii(μ)a_{ii}(\mu) by Eq. (19), we find the poles of the states a0(980)+a_{0}(980)^{+} and a0(1710)+a_{0}(1710)^{+} in the corresponding Riemann sheets, which are consistent with the results in Refs. Ahmed:2020kmp ; Geng:2008gx ; Wang:2022pin ; Du:2018gyn , except for a bit small width of the a0(1710)+a_{0}(1710)^{+}. Our results indicate that the a0(980)a_{0}(980) is a KK¯K\bar{K} bound state, and the a0(1710)a_{0}(1710) is a KK¯K^{*}\bar{K}^{*} bound state. Furthermore, we evaluate the branching ratios of related decay channels. Within the uncertainties, the obtained results are consistent with the experimental measurements in the magnitudes. In view of these results, the state found in the KS0K+K_{S}^{0}K^{+} invariant mass spectrum is indeed the a0(1710)a_{0}(1710), not a new a0(1817)a_{0}(1817) state.

Note added: When our manuscript is prepared, one work on the decay Ds+KS0K+π0D_{s}^{+}\rightarrow K_{S}^{0}K^{+}\pi^{0} is given in Ref. Zhu:2022guw , of which the formalism is similar. But, in the present work, both the resonances a0(980)+a_{0}(980)^{+} and a0(1710)+a_{0}(1710)^{+} are dynamically generated in the coupled channel interactions.

Acknowledgements

We would like to thank Xiang Liu, Zhi-Feng Sun, Si-Qiang Luo, Zheng-Li Wang, and Yu Lu for valuable discussions. This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 12247101 (ZYW), and partly by the Natural Science Foundation of Changsha under Grant No. kq2208257 and the Natural Science Foundation of Hunan province under Grant No. 2023JJ30647 (CWX).

References

  • (1) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 129, no.18, 18 (2022) [arXiv:2204.09614 [hep-ex]].
  • (2) P. U. E. Onyisi et al. [CLEO], Phys. Rev. D 88, no.3, 032009 (2013) [arXiv:1306.5363 [hep-ex]].
  • (3) J. P. Lees et al. [BaBar], Phys. Rev. D 104, no.7, 072002 (2021) [arXiv:2106.05157 [hep-ex]].
  • (4) J. P. Lees et al. [BaBar], Phys. Rev. D 97, no.11, 112006 (2018) [arXiv:1804.04044 [hep-ex]].
  • (5) M. Ablikim et al. [BESIII], Phys. Rev. D 105, no.5, L051103 (2022) [arXiv:2110.07650 [hep-ex]].
  • (6) S. Godfrey and N. Isgur, Phys. Rev. D 32, 189-231 (1985)
  • (7) J. Segovia, D. R. Entem and F. Fernandez, Phys. Lett. B 662, 33-36 (2008)
  • (8) M. Chanowitz, Phys. Rev. Lett. 95, 172001 (2005) [arXiv:hep-ph/0506125 [hep-ph]].
  • (9) K. T. Chao, X. G. He and J. P. Ma, Phys. Rev. Lett. 98, 149103 (2007) [arXiv:0704.1061 [hep-ph]].
  • (10) F. E. Close and Q. Zhao, Phys. Rev. D 71, 094022 (2005) [arXiv:hep-ph/0504043 [hep-ph]].
  • (11) F. Giacosa, T. Gutsche, V. E. Lyubovitskij and A. Faessler, Phys. Rev. D 72, 094006 (2005) [arXiv:hep-ph/0509247 [hep-ph]].
  • (12) H. Y. Cheng, C. K. Chua and K. F. Liu, Phys. Rev. D 74, 094005 (2006) [arXiv:hep-ph/0607206 [hep-ph]].
  • (13) M. Albaladejo and J. A. Oller, Phys. Rev. Lett. 101, 252002 (2008) [arXiv:0801.4929 [hep-ph]].
  • (14) L. C. Gui et al. [CLQCD], Phys. Rev. Lett. 110, no.2, 021601 (2013) [arXiv:1206.0125 [hep-lat]].
  • (15) S. Janowski, F. Giacosa and D. H. Rischke, Phys. Rev. D 90, no.11, 114005 (2014) [arXiv:1408.4921 [hep-ph]].
  • (16) W. Ochs, J. Phys. G 40, 043001 (2013) [arXiv:1301.5183 [hep-ph]].
  • (17) H. Y. Cheng, C. K. Chua and K. F. Liu, Phys. Rev. D 92, no.9, 094006 (2015) [arXiv:1503.06827 [hep-ph]].
  • (18) E. Klempt and A. V. Sarantsev, Phys. Lett. B 826, 136906 (2022) [arXiv:2112.04348 [hep-ph]].
  • (19) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 129, no.19, 192002 (2022) [arXiv:2202.00621 [hep-ex]].
  • (20) M. Ablikim et al. [BESIII], Phys. Rev. D 106, no.7, 072012 (2022) [arXiv:2202.00623 [hep-ex]].
  • (21) J. A. Oller and E. Oset, Nucl. Phys. A 620, 438-456 (1997) [erratum: Nucl. Phys. A 652, 407-409 (1999)] [arXiv:hep-ph/9702314 [hep-ph]].
  • (22) E. Oset and A. Ramos, Nucl. Phys. A 635, 99-120 (1998) [arXiv:nucl-th/9711022 [nucl-th]].
  • (23) J. A. Oller, E. Oset and A. Ramos, Prog. Part. Nucl. Phys. 45, 157-242 (2000) [arXiv:hep-ph/0002193 [hep-ph]].
  • (24) J. A. Oller and U.-G. Meißner, Phys. Lett. B 500, 263-272 (2001) [arXiv:hep-ph/0011146 [hep-ph]].
  • (25) E. Oset, L. S. Geng, D. Gamermann, M. J. Vicente Vacas, D. Strottman, K. P. Khemchandani, A. Martinez Torres, J. A. Oller, L. Roca and M. Napsuciale, Int. J. Mod. Phys. E 18, 1389-1403 (2009) [arXiv:0806.0340 [nucl-th]].
  • (26) L. S. Geng and E. Oset, Phys. Rev. D 79, 074009 (2009) [arXiv:0812.1199 [hep-ph]].
  • (27) M. L. Du, D. Gülmez, F. K. Guo, U.-G. Meißner and Q. Wang, Eur. Phys. J. C 78, no.12, 988 (2018) [arXiv:1808.09664 [hep-ph]].
  • (28) Z. L. Wang and B. S. Zou, Phys. Rev. D 104, no.11, 114001 (2021) [arXiv:2107.14470 [hep-ph]].
  • (29) Z. L. Wang and B. S. Zou, Eur. Phys. J. C 82, no.6, 509 (2022) [arXiv:2203.02899 [hep-ph]].
  • (30) F. K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Rev. Mod. Phys. 90, no.1, 015004 (2018) [erratum: Rev. Mod. Phys. 94, no.2, 029901 (2022)] [arXiv:1705.00141 [hep-ph]].
  • (31) M. Ablikim et al. [BESIII], Phys. Rev. D 104, no.1, 012016 (2021) [arXiv:2011.08041 [hep-ex]].
  • (32) L. R. Dai, E. Oset and L. S. Geng, Eur. Phys. J. C 82, no.3, 225 (2022) [arXiv:2111.10230 [hep-ph]].
  • (33) X. Zhu, D. M. Li, E. Wang, L. S. Geng and J. J. Xie, Phys. Rev. D 105, no.11, 116010 (2022) [arXiv:2204.09384 [hep-ph]].
  • (34) D. Guo, W. Chen, H. X. Chen, X. Liu and S. L. Zhu, Phys. Rev. D 105, no.11, 114014 (2022) [arXiv:2204.13092 [hep-ph]].
  • (35) M. Ablikim et al. [BES], Phys. Rev. Lett. 96, 162002 (2006) [arXiv:hep-ex/0602031 [hep-ex]].
  • (36) L. L. Chau, Phys. Rept. 95, 1-94 (1983)
  • (37) L. L. Chau and H. Y. Cheng, Phys. Rev. D 36, 137 (1987)
  • (38) W. H. Liang, J. J. Xie and E. Oset, Eur. Phys. J. C 75, no.12, 609 (2015) [arXiv:1510.03175 [hep-ph]].
  • (39) H. A. Ahmed, Z. Y. Wang, Z. F. Sun and C. W. Xiao, Eur. Phys. J. C 81, no.8, 695 (2021) [arXiv:2011.08758 [hep-ph]].
  • (40) W. H. Liang and E. Oset, Phys. Lett. B 737, 70-74 (2014) [arXiv:1406.7228 [hep-ph]].
  • (41) R. Molina, J. J. Xie, W. H. Liang, L. S. Geng and E. Oset, Phys. Lett. B 803, 135279 (2020) [arXiv:1908.11557 [hep-ph]].
  • (42) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 123, no.11, 112001 (2019) [arXiv:1903.04118 [hep-ex]].
  • (43) Y. K. Hsiao, Y. Yu and B. C. Ke, Eur. Phys. J. C 80, no.9, 895 (2020) [arXiv:1909.07327 [hep-ph]].
  • (44) X. Z. Ling, M. Z. Liu, J. X. Lu, L. S. Geng and J. J. Xie, Phys. Rev. D 103, no.11, 116016 (2021) [arXiv:2102.05349 [hep-ph]].
  • (45) Z. L. Wang and B. S. Zou, Phys. Rev. D 99, no.9, 096014 (2019) [arXiv:1901.10169 [hep-ph]].
  • (46) M. Y. Duan, J. Y. Wang, G. Y. Wang, E. Wang and D. M. Li, Eur. Phys. J. C 80, no.11, 1041 (2020) [arXiv:2008.10139 [hep-ph]].
  • (47) J. J. Xie, L. R. Dai and E. Oset, Phys. Lett. B 742, 363-369 (2015) [arXiv:1409.0401 [hep-ph]].
  • (48) M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985)
  • (49) M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217-314 (1988)
  • (50) R. Molina, D. Nicmorus and E. Oset, Phys. Rev. D 78, 114018 (2008) [arXiv:0809.2233 [hep-ph]].
  • (51) E. Oset, L. S. Geng and R. Molina, J. Phys. Conf. Ser. 348, 012004 (2012)
  • (52) J. A. Oller and E. Oset, Phys. Rev. D 60, 074023 (1999) [arXiv:hep-ph/9809337 [hep-ph]].
  • (53) D. Gamermann, E. Oset, D. Strottman and M. J. Vicente Vacas, Phys. Rev. D 76, 074016 (2007) [arXiv:hep-ph/0612179 [hep-ph]].
  • (54) L. Alvarez-Ruso, J. A. Oller and J. M. Alarcon, Phys. Rev. D 82, 094028 (2010) [arXiv:1007.4512 [hep-ph]].
  • (55) Z. H. Guo, L. Liu, U.-G. Meißner, J. A. Oller and A. Rusetsky, Phys. Rev. D 95, no.5, 054004 (2017) [arXiv:1609.08096 [hep-ph]].
  • (56) Z. Y. Wang, H. A. Ahmed and C. W. Xiao, Phys. Rev. D 105, no.1, 016030 (2022) [arXiv:2110.05359 [hep-ph]].
  • (57) Z. H. Guo, L. Liu, U. G. Meißner, J. A. Oller and A. Rusetsky, Eur. Phys. J. C 79, no.1, 13 (2019) doi:10.1140/epjc/s10052-018-6518-1 [arXiv:1811.05585 [hep-ph]].
  • (58) G. Toledo, N. Ikeno and E. Oset, Eur. Phys. J. C 81, no.3, 268 (2021) [arXiv:2008.11312 [hep-ph]].
  • (59) L. Roca and E. Oset, Phys. Rev. D 103, no.3, 034020 (2021) [arXiv:2011.05185 [hep-ph]].
  • (60) R. L. Workman [Particle Data Group], PTEP 2022, 083C01 (2022)
  • (61) Z. Y. Wang, J. Y. Yi, Z. F. Sun and C. W. Xiao, Phys. Rev. D 105, no.1, 016025 (2022) [arXiv:2109.00153 [hep-ph]].
  • (62) H. A. Ahmed and C. W. Xiao, Phys. Rev. D 101, no.9, 094034 (2020) [arXiv:2001.08141 [hep-ph]].
  • (63) J. A. Oller, E. Oset and J. R. Pelaez, Phys. Rev. D 59, 074001 (1999) [erratum: Phys. Rev. D 60, 099906 (1999); erratum: Phys. Rev. D 75, 099903 (2007)] [arXiv:hep-ph/9804209 [hep-ph]].
  • (64) X. Zhu, H. N. Wang, D. M. Li, E. Wang, L. S. Geng and J. J. Xie, Phys. Rev. D 107, no.3, 034001 (2023) [arXiv:2210.12992 [hep-ph]].