This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Approximations of the Ruin Probability
in a Discrete Time Risk Model

David J. Santana División Académica de Ciencias Básicas
UJAT
México
Luis Rincón Departamento de Matemáticas
Facultad de Ciencias
UNAM
México
Abstract

Based on a discrete version of the Pollaczeck-Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber-Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.

1 Introduction

Several models have been proposed for a discrete time111We will reserve the use of letter nn for the approximation procedures proposed later on. risk process {U(t):t=0,1,}\{U(t):t=0,1,\ldots\}. The following model is known as a compound binomial process and was first considered in [7],

U(t)=u+ti=1N(t)Xi,U(t)=u+t-\sum_{i=1}^{N(t)}X_{i}, (1)

where U(0)=u0U(0)=u\geq 0 is an integer representing the initial capital and the counting process {N(t):t=0,1,}\{N(t):t=0,1,\ldots\} has a Binomial(t,p)\mbox{Binomial}(t,p) distribution, where pp stands for the probability of a claim in each period. The discrete random variables X1,X2,X_{1},X_{2},\ldots are i.i.d. with probability function fX(x)=P(Xi=x)f_{X}(x)=P(X_{i}=x) for x=1,2,x=1,2,\ldots and mean μX\mu_{X} such that μXp<1\mu_{X}\cdot p<1. This restriction comes from the net profit condition. Each XiX_{i} represents the total amount of claims in the ii-th period where claims existed. In each period, one unit of currency from premiums is gained. The top-left plot of Figure 1 shows a realization of this risk process. The ultimate ruin time is defined as

τ=min{t1:U(t)0},\tau=\min\,\{t\geq 1:U(t)\leq 0\},

as long as the indicated set is not empty, otherwise τ:=\tau:=\infty. Hence, the probability of ultimate ruin is

ψ(u)=P(τ<U(0)=u).\psi(u)=P(\tau<\infty\mid U(0)=u).

One central problem in the theory of ruin is to find ψ(u)\psi(u). For the above model this probability can be calculated using the following relation known as Gerber’s formula [7],

ψ(0)\displaystyle\psi(0) =\displaystyle= pμX,\displaystyle p\cdot\mu_{X}, (2)
ψ(u)\displaystyle\psi(u) =\displaystyle= (1p)ψ(u+1)+px=1uψ(u+1x)fX(x)+pF¯X(u),\displaystyle(1-p)\psi(u+1)+p\sum_{x=1}^{u}\psi(u+1-x)\,f_{X}(x)+p\,\overline{F}_{X}(u), (3)

for u=1,2,u=1,2,\ldots where F¯X(u)=P(Xi>u)=x=u+1fX(x)\overline{F}_{X}(u)=P(X_{i}>u)=\sum_{x=u+1}^{\infty}f_{X}(x).

An apparently simpler risk model is defined as follows.

Definition 1.1.

Let u0u\geq 0 be an integer and let Y1,Y2,Y_{1},Y_{2},\ldots be i.i.d. random variables taking values in {0,1,}\{0,1,\ldots\}. The Gerber-Dickson risk process {U(t):t=0,1,}\{U(t):t=0,1,\ldots\} is given by

U(t)=u+ti=1tYi.U(t)=u+t-\sum_{i=1}^{t}Y_{i}. (4)
0U(t)U(t)ttuuτ\tauY4Y_{4}Y9Y_{9}Y11Y_{11}U(t)=u+ti=1tYiU(t)=u+t-\sum_{i=1}^{t}Y_{i}U(t)U(t)ttuuτ\tauY4Y_{4}Y6Y_{6}Y8Y_{8}Y12Y_{12}|U(τ)||U(\tau)||U(τ)|=ruin severity|U(\tau)|=\mbox{ruin severity}0U(t)U(t)ttuu0τu\tau_{u}uU(τu)u-U(\tau_{u})0Z(t)Z(t)ttMMM=max{Z(t)}M=\max\{Z(t)\}τ3\tau_{3}^{*}τ2\tau_{2}^{*}τ1\tau_{1}^{*}Y3Y_{3}^{*}Y2Y_{2}^{*}Y1Y_{1}^{*}
Figure 1: Discrete time risk process trajectories and some related quantities.

In this case, at each unit of time there is always a claim of size YY. If μY\mu_{Y} denotes the expectation of this claim, the net profit condition now reads μY<1\mu_{Y}<1. It can be shown [4, pp. 467] that this condition implies that ψ(u)<1\psi(u)<1, where the time of ruin τ\tau and the ultimate ruin probability ψ(u)\psi(u) are defined as before. Under a conditioning argument it is easy to show that the probability of ruin satisfies the recursive relation

ψ(0)\displaystyle\psi(0) =\displaystyle= μY,\displaystyle\mu_{Y}, (5)
ψ(u)\displaystyle\psi(u) =\displaystyle= y=0ufY(y)ψ(u+1y)+F¯Y(u),u1.\displaystyle\sum\limits_{y=0}^{u}{f_{Y}(y)\,\psi(u+1-y)}+\overline{F}_{Y}(u),\quad u\geq 1. (6)

Now, given a compound binomial model (1) we can construct a Gerber-Dickson model (4) as follows. Let R1,R2,R_{1},R_{2},\ldots be i.i.d. Bernoulli(p)\mbox{Bernoulli}(p) random variables and define Yi=RiXiY_{i}=R_{i}\cdot X_{i}, i1i\geq 1. The distribution of these claims is fY(0)=1pf_{Y}(0)=1-p and fY(y)=pfX(y)f_{Y}(y)=p\cdot f_{X}(y) for y1y\geq 1.

Conversely, given model (4) and defining p=1fY(0)p=1-f_{Y}(0), we can construct a model (1) by letting claims XiX_{i} have distribution fX(x)=fY(x)/pf_{X}(x)=f_{Y}(x)/p, for x1x\geq 1. It can be readily checked that μY=pμX\mu_{Y}=p\cdot\mu_{X} and that the probability generating function of U(t)U(t) in both models coincide. This shows models (1) and (4) are equivalent in the sense that U(t)U(t) has the same distribution in both models. As expected, the recursive relations (3) and (6) can be easily obtained one from the other.

In this work we will use the notation in the Gerber-Dickson risk model (4) and drop the subindex in the distribution of claims. Also, as time an other auxiliary variables are considered discrete, we will write, for example, t0t\geq 0 instead of t=0,1,t=0,1,\ldots Our main objective es to provide some methods to approximate the ultimate ruin probability in the discrete risk model of Gerber and Dickson.

A survey of results and models for discrete time risk models can be found in [12].

2 The Pollaczeck–Khinchine formula

The continuous version of this formula plays a major role in the theory of ruin for the Cramér-Lundberg model. On the contrary, the discrete version is seldom mentioned in the literature on discrete time risk models. In this section we develop this formula and apply it later to find a general method to calculate ultimate ruin probabilities for claims with particular distributions. The construction procedure resembles closely that for the continuous case.

Assuming τ<\tau<\infty, the non-negative random variable W=|U(τ)|W=|U(\tau)| is known as the severity of ruin. It indicates how large the capital drops below zero at the time of ruin. See the top-right plot of Figure 1. The joint probability of ruin and severity not greater than w=0,1,w=0,1,\ldots is denoted by

φ(u,w)=P(τ<,WwU(0)=u).\varphi(u,w)=P(\tau<\infty,W\leq w\mid U(0)=u). (7)

In [5] it is shown that, in particular,

φ(0,w)=x=0wF¯(x),w0.\varphi(0,w)=\sum_{x=0}^{w}\overline{F}(x),\quad w\geq 0. (8)

Hence,

P(τ<,W=wU(0)=0)=φ(0,w)φ(0,w1)=F¯(w).P(\tau<\infty,W=w\mid U(0)=0)=\varphi(0,w)-\varphi(0,w-1)=\overline{F}(w). (9)

This probability will be useful in finding the distribution of the size of the first drop of the risk process below its initial capital uu, see Proposition 2.3 below, which will ultimately lead us to the Pollaczeck–Khinchine formula. For every claim distribution, there is an associated distribution which often appears in the calculation of ruin probabilities. This is defined next.

Definition 2.1.

Let F(y)F(y) be the distribution function of a discrete random variable with values ​​0,1,0,1,\ldots and with finite mean μ0\mu\neq 0. Its equilibrium probability function is defined by

fe(y)=F¯(y)/μ,y0.f_{e}(y)=\overline{F}(y)/\mu,\quad y\geq 0. (10)

The probability function defined by (10) is also known as the integrated-tail distribution, although this name is best suited to continuous distributions. For example, the equilibrium distribution associated to a Geometric(p)\mbox{Geometric}(p) claim distribution with mean μ=1/(1p)\mu=1/(1-p) is the same geometric since

fe(y)=F¯(y)/μ=(1p)y+1p/(1p)=p(1p)y,y0.f_{e}(y)=\overline{F}(y)/\mu=(1-p)^{y+1}\,p/(1-p)=p\,(1-p)^{y},\quad y\geq 0. (11)

As in the continuous time risk models, let us define the surplus process {Z(t):t0}\{Z(t):t\geq 0\} by

Z(t)=uU(t)=i=1t(Yi1).Z(t)=u-U(t)=\sum_{i=1}^{t}(Y_{i}-1). (12)

This is a random walk that starts at zero, it has stationary and independent increments and Z(t)a.s.Z(t)\rightarrow-\infty\ a.s. as tt\to\infty under the net profit condition μ<1\mu<1. See bottom-right plot of Figure 1. In terms of this surplus process, ruin occurs when Z(t)Z(t) reaches level uu or above. Thus, the ruin probability can be written as

ψ(u)=P(Z(t)u for some t1)=P(maxt1{Z(t)}u),u1.\psi(u)=P(Z(t)\geq u\mbox{ for some }t\geq 1)=P\left(\max\limits_{t\geq 1}\left\{Z(t)\right\}\geq u\right),\quad u\geq 1. (13)

As u1u\geq 1 and Z(0)=0Z(0)=0, we can also write

ψ(u)=P(maxt0{Z(t)}u).\psi(u)=P\left(\max\limits_{t\geq 0}\left\{Z(t)\right\}\geq u\right). (14)

We next define the times of records and the severities for the surplus process.

Definition 2.2.

Let τ0:=0\tau_{0}^{*}:=0. For i1i\geq 1 the ii-th record time of the surplus process is defined as

τi=min{t>τi1:Z(t)Z(τi1)},\tau_{i}^{*}=\min\,\{t>\tau_{i-1}^{*}:Z(t)\geq Z(\tau_{i-1}^{*})\}, (15)

when the indicated set is not empty, otherwise τi:=\tau_{i}^{*}:=\infty. The non-negative variable Yi=Z(τi)Z(τi1)Y_{i}^{*}=Z(\tau_{i}^{*})-Z(\tau_{i-1}^{*}) is called the severity or size of the ii-th record time, assuming τi<\tau_{i}^{*}<\infty.

The random variables τ0<τ1<\tau_{0}^{*}<\tau_{1}^{*}<\cdots represent the stopping times when the surplus process {Z(t):t0}\left\{Z(t):t\geq 0\right\} arrives at a new or the previous maximum, and the severity YiY_{i}^{*} is the difference between the maxima at τi\tau_{i}^{*} and τi1\tau_{i-1}^{*}. A graphical example of these record times are shown in the bottom-right plot of Figure 1. In particular, observe τ1\tau_{1}^{*} is the first positive time the risk process is less than or equal to its initial capital uu, that is,

τ1=min{t>0:uU(t)0},\tau_{1}^{*}=\min\,\{t>0:u-U(t)\geq 0\}, (16)

and the severity is Y1=Z(τ1)=uU(τ1)Y_{1}^{*}=Z(\tau_{1}^{*})=u-U(\tau_{1}^{*}) and this is the size of this first drop below level uu. Also, since the surplus process has stationary increments, all severities share the same distribution, that is,

Yi=Z(τi)Z(τi1)Z(τ1)Z(0)=Y1,i1,Y_{i}^{*}=Z(\tau_{i}^{*})-Z(\tau_{i-1}^{*})\sim Z(\tau_{1}^{*})-Z(0)=Y_{1}^{*},\quad i\geq 1, (17)

assuming τi<\tau_{i}^{*}<\infty. We will next find out that distribution.

Proposition 2.3.

Let k1k\geq 1. Conditioned on the event (τk<)(\tau_{k}^{*}<\infty), the severities Y1,,YkY_{1}^{*},\ldots,Y_{k}^{*} are independent and identically distributed according to the equilibrium distribution

P(Y=xτk<)=F¯(x)/μ,x0.P(Y^{*}=x\mid\tau_{k}^{*}<\infty)=\overline{F}(x)/\mu,\quad x\geq 0. (18)

Proof. By (17), it is enough to find the distribution of Y1Y_{1}^{*}. Observe that τ1=τ\tau_{1}^{*}=\tau when U(0)=0U(0)=0. By (9) and (LABEL:dickson-ruin-0), for x0x\geq 0,

P(Y1=xτ1<))\displaystyle P(Y_{1}^{*}=x\mid\tau_{1}^{*}<\infty)) =\displaystyle= P(uU(τ1)=xτ1<)\displaystyle P(u-U(\tau_{1}^{*})=x\mid\tau_{1}^{*}<\infty)
=\displaystyle= P(|U(τ)|=xτ<,U(0)=0)\displaystyle P(|U(\tau)|=x\mid\tau<\infty,U(0)=0)
=\displaystyle= P(τ<,Y=xU(0)=0)/P(τ<U(0)=0)\displaystyle P(\tau<\infty,Y=x\mid U(0)=0)/P(\tau<\infty\mid U(0)=0)
=\displaystyle= F¯(x)/μ.\displaystyle\overline{F}(x)/\mu.

The independence property follows from the independence of the claims. Indeed, the severity of the ii-th record time is

Yi=Z(τi)Z(τi1)=j=τi1+1τi(Yj1),i1.Y_{i}^{*}=Z(\tau_{i}^{*})-Z(\tau_{i-1}^{*})=\sum_{j=\tau_{i-1}^{*}+1}^{\tau_{i}^{*}}(Y_{j}-1),\quad i\geq 1.

Therefore,

P(i=1k(Yi=yi))=P(i=1k(j=τi1+1τi(Yj1)=yi))=i=1kP(Yi=yi).P\left(\bigcap_{i=1}^{k}\left(Y_{i}^{*}=y_{i}\right)\right)=P\left(\bigcap_{i=1}^{k}\left(\sum_{j=\tau_{i-1}^{*}+1}^{\tau_{i}^{*}}(Y_{j}-1)=y_{i}\right)\right)=\prod_{i=1}^{k}\,P\left(Y_{i}^{*}=y_{i}\right).

Since the surplus process is a Markov process, the following properties hold: For i2i\geq 2 and assuming τi<\tau_{i}^{*}<\infty, for 0<s<x0<s<x,

P(τi=xτi1=s)=P(τiτi1=xsτi1=s)=P(τ1=xs).P(\tau_{i}^{*}=x\mid\tau_{i-1}^{*}=s)=P(\tau_{i}^{*}-\tau_{i-1}^{*}=x-s\mid\tau_{i-1}^{*}=s)=P(\tau_{1}^{*}=x-s). (19)

Also, for k1k\geq 1,

P(τk<τk1<)\displaystyle P(\tau_{k}^{*}<\infty\mid\tau_{k-1}^{*}<\infty) =\displaystyle= P(τ1<),\displaystyle P(\tau_{1}^{*}<\infty), (20)
P(τk=τk1<)\displaystyle P(\tau_{k}^{*}=\infty\mid\tau_{k-1}^{*}<\infty) =\displaystyle= P(τ1=).\displaystyle P(\tau_{1}^{*}=\infty). (21)

The total number of records of the surplus process {Z(t):t0}\{Z(t):t\geq 0\} is defined by the non-negative random variable

K=max{k1:τk<},K=\max\,\{k\geq 1:\tau_{k}^{*}<\infty\}, (22)

when the indicated set is not empty, otherwise K:=0K:=0. Note that 0K<0\leq K<\infty a.s. since Z(t)Z(t)\rightarrow-\infty a.s. under the net profit condition. The distribution of this random variable is established next.

Proposition 2.4.

The number of records KK has a Geometric(1μ)\mbox{Geometric}(1-\mu) distribution, that is,

fK(k)=(1μ)μk,k0.f_{K}(k)=(1-\mu)\mu^{k},\quad k\geq 0. (23)

Proof. The case k=0k=0 can be related to the ruin probability with u=0u=0 as follows,

fK(0)=P(τ1=)=P(τ=U(0)=0)=1ψ(0)=1μ.f_{K}(0)=P(\tau_{1}^{*}=\infty)=P(\tau=\infty\mid U(0)=0)=1-\psi(0)=1-\mu.

Hence, P(K>0)=ψ(0)=μP(K>0)=\psi(0)=\mu. Let us see the case k=1k=1,

fK(1)=P(τ1<,τ2=)=P(τ2=τ1<)P(τ1<).f_{K}(1)=P(\tau_{1}^{*}<\infty,\tau_{2}^{*}=\infty)=P(\tau_{2}^{*}=\infty\mid\tau_{1}^{*}<\infty)P(\tau_{1}^{*}<\infty).

By (20),

fK(1)=P(τ1=)P(τ1<)=P(K>0)fK(0)=μ(1μ).f_{K}(1)=P(\tau_{1}^{*}=\infty)P(\tau_{1}^{*}<\infty)=P(K>0)f_{K}(0)=\mu(1-\mu).

Now consider the case k2k\geq 2 and let Ak=(τk<)A_{k}=(\tau_{k}^{*}<\infty). Conditioning on Ak1A_{k-1} and its complement,

P(Ak)\displaystyle P(A_{k}) =\displaystyle= P(τk<Ak1)P(Ak1)\displaystyle P(\tau_{k}^{*}<\infty\mid A_{k-1})P(A_{k-1})
=\displaystyle= P(τk<τk1<)P(Ak1)\displaystyle P(\tau_{k}^{*}<\infty\mid\tau_{k-1}^{*}<\infty)P(A_{k-1})
=\displaystyle= P(τ1<)P(Ak1)\displaystyle P(\tau_{1}^{*}<\infty)P(A_{k-1})
=\displaystyle= ψ(0)P(Ak1).\displaystyle\psi(0)P(A_{k-1}).

An iterative argument shows that P(Ak)=(ψ(0))kP(A_{k})=(\psi(0))^{k}, k2k\geq 2. Therefore,

fK(k)=P(τk+1=,Ak)=P(τk+1=Ak)P(Ak)=P(τ1=)(ψ(0))k=(1μ)μk.f_{K}(k)=P(\tau_{k+1}^{*}=\infty,A_{k})=P(\tau_{k+1}^{*}=\infty\mid A_{k})P(A_{k})=P(\tau_{1}^{*}=\infty)(\psi(0))^{k}=(1-\mu)\mu^{k}.

In the following proposition it is established that the ultimate maximum of the surplus process has a compound geometric distribution. This will allow us to write the ruin probability as the tail of this distribution.

Proposition 2.5.

For a surplus process {Z(t):t0}\{Z(t):t\geq 0\} with total number of records K0K\geq 0 and record severities Y1,Y2,,YKY_{1}^{*},Y_{2}^{*},\ldots,Y_{K}^{*},

maxt0{Z(t)}=di=1KYi.\max\limits_{t\geq 0}\,\{Z(t)\}\stackrel{{\scriptstyle d}}{{=}}\sum_{i=1}^{K}Y_{i}^{*}. (24)

Hence,

ψ(u)=P(i=1KYiu),u1.\psi(u)=P\left(\sum_{i=1}^{K}Y_{i}^{*}\geq u\right),\quad u\geq 1. (25)

Proof.

i=1KYi=i=1K(Z(τi)Z(τi1))=Z(τK)=maxt0{Z(t)}a.s.\sum_{i=1}^{K}Y_{i}^{*}=\sum_{i=1}^{K}\left(Z(\tau_{i}^{*})-Z(\tau_{i-1}^{*})\right)=Z(\tau_{K}^{*})=\max_{t\geq 0}\,\{Z(t)\}\quad a.s. (26)

Thus, for u1u\geq 1,

ψ(u)=P(maxt0{Z(t)}u)=P(i=1KYiu).\psi(u)=P\left(\max_{t\geq 0}\,\{Z(t)\}\geq u\right)=P\left(\sum_{i=1}^{K}Y_{i}^{*}\geq u\right).

Proposition 2.6.

(Pollaczeck–Khinchine formula, discrete version) The probability of ruin for a Gerber-Dickson risk process can be written as

ψ(u)=(1μ)k=1P(Sku)μk,u0,\psi(u)=(1-\mu)\sum_{k=1}^{\infty}P(S_{k}^{*}\geq u)\,\mu^{k},\quad u\geq 0, (27)

where Sk=i=1kYiS_{k}^{*}=\sum_{i=1}^{k}Y^{*}_{i}.

Proof. For u=0u=0, the sum in (27) reduces to μ\mu which we know is ψ(0)\psi(0). For u1u\geq 1, by (23) and (25),

ψ(u)=P(i=1KYiu)=k=0P(i=1KYiuK=k)fK(k)=(1μ)k=1P(Sku)μk.\psi(u)=P\left(\sum_{i=1}^{K}Y^{*}_{i}\geq u\right)=\sum_{k=0}^{\infty}P\left(\sum_{i=1}^{K}Y^{*}_{i}\geq u\mid K=k\right)f_{K}(k)=(1-\mu)\sum_{k=1}^{\infty}P(S_{k}^{*}\geq u)\mu^{k}.

For example, suppose claims have a Geometric(p)\mbox{Geometric}(p) distribution with mean μ=(1p)/p\mu=(1-p)/p. The net profit condition μ<1\mu<1 implies p>1/2p>1/2. We have seen that the associated equilibrium distribution is again Geometric(p)\mbox{Geometric}(p), and hence the kk-th convolution is Negative Binomial(k,p)\mbox{Negative Binomial}(k,p), k0k\geq 0. Straightforward calculations show that the Pollaczeck–Khinchine formula gives the known solution for the probability of ruin,

ψ(u)=(1pp)u+1,u0.\psi(u)=\left(\frac{1-p}{p}\right)^{u+1},\quad u\geq 0. (28)

This includes in the same formula the case u=0u=0. In the following section we will consider claims that have a mixture of some distributions.

3 Negative binomial mixture

Negative binomial mixture (NBM) distributions will be used to approximate the ruin probability when claims have a mixed Poisson (MP) distribution. Although NBM distributions are the analogue of Erlang mixture distributions, they cannot be used to approximate any discrete distribution with non-negative support. However, it turns out that they can approximate mixed Poisson distributions. This is stated in [17, Theorem 1], where the authors define NBM distributions those with probability generating function

G(z)=limmk=1mqk,m(1pk,m1pk,mz)rk,m,z<1,G(z)=\lim_{m\rightarrow\infty}\sum_{k=1}^{m}q_{k,m}\left(\frac{1-p_{k,m}}{1-p_{k,m}\,z}\right)^{r_{k,m}},\quad z<1,

where qk,mq_{k,m} are positive numbers and sum 11 over index kk. This is a rather general definition for a NBM distribution. In this work we will consider a particular case of it.

We will denote by nb(k,p)(x)\mbox{nb}(k,p)(x) the probability function of a negative binomial distribution with parameters kk and pp, and by NB(k,p)(x)\mbox{NB}(k,p)(x) its distribution function, namely, for x0x\geq 0,

nb(k,p)(x)=(k+x1x)pk(1p)x, and NB(k,p)(x)=1i=0k1nb(x+1,1p)(i).\mbox{nb}(k,p)(x)=\binom{k+x-1}{x}p^{k}(1-p)^{x},\,\mbox{ and }\,\mbox{NB}(k,p)(x)=1-\sum_{i=0}^{k-1}\mbox{nb}(x+1,1-p)(i).
Definition 3.1.

Let q1,q2,q_{1},q_{2},\ldots be a sequence of numbers such that qk0q_{k}\geq 0 and k=1qk=1\sum_{k=1}^{\infty}q_{k}=1. A negative binomial mixture distribution with parameters 𝛑=(q1,q2,)\boldsymbol{\pi}=(q_{1},q_{2},\ldots) and p(0,1)p\in(0,1), denoted by NBM(𝛑,p)\mbox{NBM}(\boldsymbol{\pi},p), is a discrete distribution with probability function

f(x)=k=1qknb(k,p)(x),x0.f(x)=\sum_{k=1}^{\infty}q_{k}\cdot\mbox{nb}(k,p)(x),\quad x\geq 0.

It is useful to observe that any NBM distribution can be written as a compound sum of geometric random variables. Indeed, let NN be a discrete random variable with probability function qk=fN(k)q_{k}=f_{N}(k), k1k\geq 1, and define SN=i=1NXiS_{N}=\sum_{i=1}^{N}X_{i}, where X1,X2,X_{1},X_{2},\ldots are i.i.d. r.v.s Geometric(p)\mbox{Geometric}(p) distributed and independent of NN. Then

k=1qknb(k,p)(x)=k=1qkP(i=1kXi=x)=P(SN=x),x0.\sum_{k=1}^{\infty}q_{k}\cdot\mbox{nb}(k,p)(x)=\sum_{k=1}^{\infty}q_{k}\cdot P\left(\sum_{i=1}^{k}X_{i}=x\right)=P(S_{N}=x),\quad x\geq 0.

Thus, given any NBM(𝝅,p)\mbox{NBM}(\boldsymbol{\pi},p) distribution with 𝝅=(fN(1),fN(2),)\boldsymbol{\pi}=(f_{N}(1),f_{N}(2),\ldots), we have the representation

SN=i=1NXiNBM(𝝅,p).S_{N}=\sum_{i=1}^{N}X_{i}\sim\mbox{NBM}(\boldsymbol{\pi},p). (29)

In particular,

E(SN)\displaystyle E(S_{N}) =\displaystyle= E(N)(1pp),\displaystyle E(N)\left(\frac{1-p}{p}\right), (30)
FSN(x)\displaystyle F_{S_{N}}(x) =\displaystyle= k=1fN(k)NB(k,p)(x),x0,\displaystyle\sum_{k=1}^{\infty}f_{N}(k)\cdot\mbox{NB}(k,p)(x),\quad x\geq 0, (31)

and the p.g.f. has the form GSN(r)=GN(GX(r))G_{S_{N}}(r)=G_{N}(G_{X}(r)). The following is a particular way to write the distribution function of a NBM distribution.

Proposition 3.2.

Let SNNBM(𝛑,p)S_{N}\sim\mbox{NBM}(\boldsymbol{\pi},p), where 𝛑=(fN(1),fN(2),)\boldsymbol{\pi}=(f_{N}(1),f_{N}(2),\ldots) for some discrete r.v. NN. For each x0x\geq 0, let ZNegBin(x+1,1p)Z\sim\mbox{NegBin}(x+1,1-p). Then

FSN(x)=E(FN(Z)),x0.F_{S_{N}}(x)=E(F_{N}(Z)),\quad x\geq 0. (32)

Proof.

FSN(x)\displaystyle F_{S_{N}}(x) =\displaystyle= k=1fN(k)NB(k,p)(x)\displaystyle\sum_{k=1}^{\infty}f_{N}(k)\cdot\mbox{NB}(k,p)(x)
=\displaystyle= k=1fN(k)[1i=0k1nb(x+1,1p)(i)]\displaystyle\sum_{k=1}^{\infty}f_{N}(k)\,\left[1-\sum_{i=0}^{k-1}\mbox{nb}(x+1,1-p)(i)\right]
=\displaystyle= i=0[k=1ifN(k)]nb(x+1,1p)(i)\displaystyle\sum_{i=0}^{\infty}\left[\sum_{k=1}^{i}f_{N}(k)\right]\,\mbox{nb}(x+1,1-p)(i)
=\displaystyle= E(FN(Z)).\displaystyle E(F_{N}(Z)).

We will show next that the equilibrium distribution associated to a NBM distribution is again NBM. For a distribution function F(x)F(x), F¯(x)\overline{F}(x) denotes 1F(x)1-F(x).

Proposition 3.3.

Let SNNBM(𝛑,p)S_{N}\sim\mbox{NBM}(\boldsymbol{\pi},p), with 𝛑=(fN(1),fN(2),)\boldsymbol{\pi}=(f_{N}(1),f_{N}(2),\ldots) and E(N)<E(N)<\infty. The equilibrium distribution of SNS_{N} is NBM(𝛑e,p)\mbox{NBM}(\boldsymbol{\pi}_{e},p), where 𝛑e=(fNe(1),fNe(2),)\boldsymbol{\pi}_{e}=(f_{Ne}(1),f_{Ne}(2),\ldots) and

fNe(j)=F¯N(j1)/E(N),j0.f_{Ne}(j)=\overline{F}_{N}(j-1)/E(N),\quad j\geq 0. (33)

Proof.

fe(x)=F¯SN(x)E(SN)=pi=0F¯N(i)(x+ii)pi(1p)x+1(1p)E(N)=i=0F¯N(i)E(N)(x+ii)pi+1(1p)x.f_{e}(x)=\frac{\overline{F}_{S_{N}}(x)}{E(S_{N})}=\frac{p\sum_{i=0}^{\infty}\overline{F}_{N}(i)\binom{x+i}{i}p^{i}(1-p)^{x+1}}{(1-p)E(N)}=\sum_{i=0}^{\infty}\frac{\overline{F}_{N}(i)}{E(N)}\binom{x+i}{i}p^{i+1}(1-p)^{x}.

Naming j=i+1j=i+1,

fe(x)=j=1F¯N(j1)E(N)(j+x1x)pj(1p)x=j=1fNe(j)nb(j,p)(x).f_{e}(x)=\sum_{j=1}^{\infty}\frac{\overline{F}_{N}(j-1)}{E(N)}\binom{j+x-1}{x}p^{j}(1-p)^{x}=\sum_{j=1}^{\infty}f_{Ne}(j)\cdot\mbox{nb}(j,p)(x).

It can be checked that (33) is a probability function. It is the equilibrium distribution associated to NN. In what follows, a truncated geometric distribution will be used. This is denoted by TGeometric(ρ)\mbox{TGeometric}(\rho), where 0<ρ<10<\rho<1, and defined by the probability function f(k)=ρ(1ρ)k1f(k)=\rho(1-\rho)^{k-1}, for k1k\geq 1.

The following proposition states that a compound geometric NBM distribution is again NBM. This result is essential to calculate the ruin probability when claims have NBM distribution.

Proposition 3.4.

Let MTGeometric(ρ)M\sim\mbox{TGeometric}(\rho) and let N1,N2,N_{1},N_{2},\ldots be a sequence of independent random variables with identical distribution 𝛑=(fN(1),fN(2),)\boldsymbol{\pi}=(f_{N}(1),f_{N}(2),\ldots). Let SN1,SN2,S_{N_{1}},S_{N_{2}},\ldots be random variables with NBM(𝛑,p)\mbox{NBM}(\boldsymbol{\pi},p) distribution. Then

S:=j=1MSNjNBM(𝝅,p),S:=\sum_{j=1}^{M}S_{N_{j}}\sim\mbox{NBM}(\boldsymbol{\pi}^{*},p), (34)

where 𝛑=(fN(1),fN(2),)\boldsymbol{\pi}^{*}=(f_{N^{*}}(1),f_{N^{*}}(2),\ldots) is the distribution of N=j=1MNjN^{*}=\sum_{j=1}^{M}N_{j} and is given by

fN(1)\displaystyle f_{N^{*}}(1) =\displaystyle= ρfN(1),\displaystyle\rho\,f_{N}(1), (35)
fN(k)\displaystyle f_{N^{*}}(k) =\displaystyle= (1ρ)i=1k1fN(i)fN(ki)+ρfN(k),k2.\displaystyle(1-\rho)\sum_{i=1}^{k-1}f_{N}(i)\,f_{N^{*}}(k-i)+\rho\,f_{N}(k),\quad k\geq 2. (36)

Proof. For x1x\geq 1 and m1m\geq 1,

P(S=xM=m)=P(j=1mSNj=x)=P(j=1mi=1NjXij=x)=P(=1NmX=x),P(S=x\mid M=m)=P\left(\sum_{j=1}^{m}S_{N_{j}}=x\right)=P\left(\sum_{j=1}^{m}\sum_{i=1}^{N_{j}}X_{i\,j}=x\right)=P\left(\sum_{\ell=1}^{N_{m}}X_{\ell}=x\right), (37)

where Nm=i=1mNiN_{m}=\sum_{i=1}^{m}N_{i} and XGeometric(p)X_{\ell}\sim\mbox{Geometric}(p) for 1\ell\geq 1. Therefore,

P(S=x)=m=1P(S=xM=m)fM(m)=m=1P(=1NmXl=x)fM(m)=P(=1NX=x),P(S=x)=\sum_{m=1}^{\infty}P(S=x\mid M=m)f_{M}(m)=\sum_{m=1}^{\infty}P\left(\sum_{\ell=1}^{N_{m}}X_{l}=x\right)f_{M}(m)=P\left(\sum_{\ell=1}^{N^{*}}X_{\ell}=x\right),

where N=j=1MNjN^{*}=\sum_{j=1}^{M}N_{j}. Using Panjer’s formula it can be shown that NN^{*} has distribution 𝝅\boldsymbol{\pi}^{*} given by (35) and (36). Since XGeometric(p)X_{\ell}\sim\mbox{Geometric}(p), =1NXNBM(𝝅,p)\sum_{\ell=1}^{N^{*}}X_{\ell}\sim\mbox{NBM}(\boldsymbol{\pi}^{*},p). Lastly, we consider the probability of the event (S=0)(S=0).

P(S=0)=k=1fN(k)nb(k,p)(0)=k=1fN(k)pk=fN(1)p+k=2fN(k)pk.P(S=0)=\sum_{k=1}^{\infty}f_{N^{*}}(k)\,\mbox{nb}(k,p)(0)=\sum_{k=1}^{\infty}f_{N^{*}}(k)\,p^{k}=f_{N^{*}}(1)\,p+\sum_{k=2}^{\infty}f_{N^{*}}(k)\,p^{k}.

Substituting fN(k)f_{N^{*}}(k) from (35) and (36), one obtains

P(S=0)\displaystyle P(S=0) =\displaystyle= ρGN(p)+(1ρ)GN(p)P(S=0).\displaystyle\rho\,G_{N}(p)+(1-\rho)\,G_{N}(p)\,P(S=0).

Therefore,

P(S=0)=ρGN(p)1(1ρ)GN(p)=GM(GN(p))=GM(GN(GXij(0))).P(S=0)=\frac{\rho\,G_{N}(p)}{1-(1-\rho)\,G_{N}(p)}=G_{M}(G_{N}(p))=G_{M}(G_{N}(G_{X_{i\,j}}(0))). (38)

The last term is the p.g.f. of a NBM(𝝅,p)\mbox{NBM}(\boldsymbol{\pi}^{*},p) distribution evaluated at zero. ∎

From (35) and (36), it is not difficult to derive a recursive formula for F¯N(k)\overline{F}_{N^{*}}(k), namely,

F¯N(k)=(1ρ)j=1kfN(j)F¯N(kj)+F¯N(k),k1.\overline{F}_{N^{*}}(k)=(1-\rho)\,\sum_{j=1}^{k}f_{N}(j)\,\overline{F}_{N^{*}}(k-j)+\overline{F}_{N}(k),\quad k\geq 1. (39)

The following result establishes a formula to calculate the ruin probability when claims have a NBM distribution.

Theorem 3.5.

Consider the Gerber-Dickson model with claims having a NBM(𝛑,p)\mbox{NBM}(\boldsymbol{\pi},p) distribution, where 𝛑=(fN(1),fN(2),)\boldsymbol{\pi}=(f_{N}(1),f_{N}(2),\ldots) and E(N)<E(N)<\infty. For u1u\geq 1 define ZuNegBin(u,1p)Z_{u}\sim\mbox{NegBin}(u,1-p). Then the ruin probability can be written as

ψ(u)=k=0C¯kP(Zu=k)=E(C¯Zu),u1,\psi(u)=\sum_{k=0}^{\infty}\overline{C}_{k}\cdot P(Z_{u}=k)=E(\overline{C}_{Z_{u}}),\quad u\geq 1, (40)

where the sequence {C¯k}k=0\left\{\overline{C}_{k}\right\}_{k=0}^{\infty} is given by

C¯0\displaystyle\overline{C}_{0} =\displaystyle= E(N)(1p)/p,\displaystyle E(N)(1-p)/p, (41)
C¯k\displaystyle\overline{C}_{k} =\displaystyle= C¯0[i=1kfNe(i)C¯ki+F¯Ne(k)],k1,\displaystyle\overline{C}_{0}\,\left[\sum_{i=1}^{k}f_{Ne}(i)\,\overline{C}_{k-i}+\overline{F}_{Ne}(k)\right],\quad k\geq 1, (42)
fNe(i)\displaystyle f_{Ne}(i) =\displaystyle= F¯N(i1)E(N),i1.\displaystyle\frac{\overline{F}_{N}(i-1)}{E(N)},\quad i\geq 1. (43)

Proof. Let R0=j=1M0Ye,jR_{0}=\sum_{j=1}^{M_{0}}Y_{e,j}, where M0Geometric(ρ)M_{0}\sim\mbox{Geometric}(\rho) with ρ=1ψ(0)\rho=1-\psi(0), and let Ye,1,Ye,2,Y_{e,1},Y_{e,2},\ldots be r.v.s distributed according to the equilibrium distribution associated to NBM(𝝅,p)\mbox{NBM}(\boldsymbol{\pi},p) claims. By Proposition 3.3, we know this equilibrium distribution is NBM(𝝅e,p)\mbox{NBM}(\boldsymbol{\pi}_{e},p), where 𝝅e\boldsymbol{\pi}_{e} is given by fNe(j)=F¯N(j1)/E(N)f_{Ne}(j)=\overline{F}_{N}(j-1)/E(N), j1j\geq 1. By (25), for u1u\geq 1,

ψ(u)\displaystyle\psi(u) =\displaystyle= P(R0u)\displaystyle P(R_{0}\geq u)
=\displaystyle= P(R0uM0>0)P(M0>0)+P(R0uM0=0)P(M0=0)\displaystyle P(R_{0}\geq u\mid M_{0}>0)P(M_{0}>0)+P(R_{0}\geq u\mid M_{0}=0)P(M_{0}=0)
=\displaystyle= (1ρ)P(Ru),\displaystyle(1-\rho)\,P(R\geq u),

where Rj=1MYe,jR\sim\sum_{j=1}^{M}Y_{e,j} with MTGeometric(ρ)M\sim\mbox{TGeometric}(\rho) with probability function fM(k)=ρ(1ρ)k1f_{M}(k)=\rho(1-\rho)^{k-1}, for k1k\geq 1. By Proposition 3.4, RNBM(𝝅,p)R\sim\mbox{NBM}(\boldsymbol{\pi}^{*},p), where 𝝅\boldsymbol{\pi}^{*} is given by equations (35) and (36). Now define

C¯k=(1ρ)F¯N(k),k0.\overline{C}_{k}=(1-\rho)\overline{F}_{N^{*}}(k),\quad k\geq 0. (44)

Therefore, using (32),

ψ(u)=(1ρ)P(R>u)=(1ρ)E(F¯N(Zu))=k=0C¯kP(Zu=k).\psi(u)=(1-\rho)P(R>u)=(1-\rho)E\left(\overline{F}_{N^{*}}(Z_{u})\right)=\sum_{k=0}^{\infty}\overline{C}_{k}P(Z_{u}=k).

Finally, we calculate the coefficients C¯k\overline{C}_{k} where ρ=1ψ(0)=1E(N)(1p)/p\rho=1-\psi(0)=1-E(N)(1-p)/p. First,

C¯0=(1ρ)F¯N(0)=1ρ=E(N)(1p)/p,\overline{C}_{0}=(1-\rho)\overline{F}_{N^{*}}(0)=1-\rho=E(N)(1-p)/p,

and by (39),

C¯k=(1ρ)F¯N(k)=C¯0[i=1kfNe(i)C¯ki+F¯Ne(k)],k1.\overline{C}_{k}=(1-\rho)\overline{F}_{N^{*}}(k)=\overline{C}_{0}\,\left[\,\sum_{i=1}^{k}f_{Ne}(i)\overline{C}_{k-i}+\overline{F}_{Ne}(k)\,\right],\quad k\geq 1.

As an example consider claims with a geometric distribution. This is a NBM distribution with 𝝅=(1,0,0,)\boldsymbol{\pi}=(1,0,0,\ldots). Equations (4143) yield

C¯k=((1p)/p)k+1,k0.\overline{C}_{k}=\left((1-p)/p\right)^{k+1},\quad k\geq 0.

Substituting in (40) together with ψ(0)=(1p)/p\psi(0)=(1-p)/p, we recover the known solution ψ(u)=((1p)/p)u+1,u0\psi(u)=\left((1-p)/p\right)^{u+1},\quad u\geq 0.

4 Mixed Poisson

This section contains the definition of a mixed Poisson distribution and some of its relations with NBM distributions.

Definition 4.1.

Let XX and Λ\Lambda two non-negative random variables. If X(Λ=λ)Poisson(λ)X\mid(\Lambda=\lambda)\sim\mbox{Poisson}(\lambda), then we say that XX has a mixed Poisson distribution with mixing distribution FΛF_{\Lambda}. In this case, we write XMP(FΛ)X\sim\mbox{MP}(F_{\Lambda}).

Observe the distribution of X(Λ=λ)X\mid(\Lambda=\lambda) is required to be Poisson, but the unconditional distribution of XX, although discrete, is not necessarily Poisson. A large number of examples of these distributions can be found in [9] and a study of their general properties is given in [8]. In particular, it is not difficult to see that E(X)=E(Λ)E(X)=E(\Lambda) and the p.g.f. of XX can be written as

GX(r)=0eλ(1r)𝑑FΛ(λ),r<1.G_{X}(r)=\int_{0}^{\infty}e^{-\lambda(1-r)}dF_{\Lambda}(\lambda),\quad r<1. (45)

The following proposition establishes a relationship between the Erlang mixture distribution and the negative binomial distribution. The former will be denoted by ErlangM(𝝅,β)\mbox{ErlangM}(\boldsymbol{\pi},\beta), with similar meaning for the parameters as in the notation NBM(𝝅,p)\mbox{NBM}(\boldsymbol{\pi},p) used before. In the ensuing calculations the probability function of a Poisson(λ)\mbox{Poisson}(\lambda) distribution will be denoted by poisson(λ)(x)\mbox{poisson}(\lambda)(x).

Proposition 4.2.

Let Λ\Lambda be a random variable with distribution ErlangM(𝛑,β)\mbox{ErlangM}(\boldsymbol{\pi},\beta). The distributions MP(FΛ)\mbox{MP}(F_{\Lambda}) and NBM(𝛑,β/(β+1))\mbox{NBM}(\boldsymbol{\pi},\beta/(\beta+1)) are the same.

Proof. Let XMP(FΛ)X\sim\mbox{MP}(F_{\Lambda}). For x0x\geq 0,

P(X=x)\displaystyle P(X=x) =\displaystyle= 0poisson(λ)(x)k=1qkerl(k,β)(λ)dλ\displaystyle\int_{0}^{\infty}poisson(\lambda)(x)\cdot\sum_{k=1}^{\infty}q_{k}\cdot\mbox{erl}(k,\beta)(\lambda)\,d\lambda
=\displaystyle= k=1qk(ββ+1)k(1β+1)x(k+x1)!(k1)!x!\displaystyle\sum_{k=1}^{\infty}q_{k}\cdot\left(\frac{\beta}{\beta+1}\right)^{k}\left(\frac{1}{\beta+1}\right)^{x}\frac{(k+x-1)!}{(k-1)!\,x!}
=\displaystyle= k=1qknb(k,β/(β+1))(x).\displaystyle\sum_{k=1}^{\infty}q_{k}\cdot\mbox{nb}(k,\beta/(\beta+1))(x).

As a simple example consider the case ΛExp(β)\Lambda\sim\mbox{Exp}(\beta) and 𝝅=(1,0,0,)\boldsymbol{\pi}=(1,0,0,\ldots). By Proposition 4.2, P(X=x)=nb(1,β/(β+1))(x)P(X=x)=\mbox{nb}(1,\beta/(\beta+1))(x) for x0x\geq 0. That is, XGeometric(p)X\sim\mbox{Geometric}(p) with p=β/(β+1)p=\beta/(\beta+1).

Next proposition will be useful to show that a MP distribution can be approximated by NBM distributions. Its proof can be found in [8].

Proposition 4.3.

Let Λ1,Λ2,\Lambda_{1},\Lambda_{2},\ldots be positive random variables with distribution functions F1,F2,F_{1},F_{2},\ldots and let X1,X2,X_{1},X_{2},\ldots be random variables such that XiMP(Fi)X_{i}\sim\mbox{MP}(F_{i}), i1i\geq 1. Then Xn𝐷XX_{n}\xrightarrow{D}​​X, if and only if, Λn𝐷Λ\Lambda_{n}\xrightarrow{D}​​\Lambda, where XMP(FΛ)X\sim\mbox{MP}(F_{\Lambda}).

Finally we establish how to approximate an MP distribution.

Proposition 4.4.

Let XMP(FΛ)X\sim\mbox{MP}(F_{\Lambda}), and let XnX_{n} be a random variable with distribution NBM(𝛑n,pn)\mbox{NBM}(\boldsymbol{\pi}_{n},p_{n}) for n1n\geq 1, where pn=n/(n+1)p_{n}=n/(n+1), 𝛑n=(q(1,n),q(2,n),)\boldsymbol{\pi}_{n}=(q(1,n),q(2,n),\ldots) and q(k,n)=FΛ(k/n)FΛ((k1)/n)q(k,n)=F_{\Lambda}(k/n)-F_{\Lambda}((k-1)/n). Then Xn𝐷XX_{n}\xrightarrow{D}​​X.

Proof. First, suppose that FΛF_{\Lambda} is continuous. Let Λ1,Λ2,\Lambda_{1},\Lambda_{2},\ldots be random variables, where Λn\Lambda_{n} has distribution given by the following Erlangs mixture (see [15]),

Fn(x)=k=1q(k,n)Erl(k,n)(x),x>0,F_{n}(x)=\sum_{k=1}^{\infty}q(k,n)\cdot\mbox{Erl}(k,n)(x),\quad x>0, (46)

with q(k,n)=FΛ(k/n)FΛ((k1)/n)q(k,n)=F_{\Lambda}(k/n)-F_{\Lambda}((k-1)/n). It is known [15] that

limnFn(x)=FΛ(x),x>0.\lim\limits_{n\rightarrow\infty}F_{n}(x)=F_{\Lambda}(x),\quad x>0.

Then, by Proposition 4.3, Xn𝐷XX_{n}\xrightarrow{D}​​X, where XnMP(Fn)X_{n}\sim\mbox{MP}(F_{n}). This is an NBM(𝝅,pn)\mbox{NBM}(\boldsymbol{\pi},p_{n}) by Proposition 4.2 where 𝝅=(q(1,n),q(2,n),)\boldsymbol{\pi}=(q(1,n),q(2,n),\ldots) and pn=n/(n+1)p_{n}=n/(n+1).

Now suppose FΛF_{\Lambda} is discrete. Let YnNegBin(λn,n/(n+1))Y_{n}\sim\mbox{NegBin}(\lambda n,n/(n+1)), where λ\lambda and nn are positive integers and let ZPoisson(λ)Z\sim\mbox{Poisson}(\lambda). The probability generating functions of these random variables satisfy

limnGYn(r)=limn(1+1rn)λn=exp{λ(1r)}=GZ(r).\lim_{n\rightarrow\infty}G_{Y_{n}}(r)=\lim_{n\rightarrow\infty}\left(1+\frac{1-r}{n}\right)^{-\lambda n}=\exp\{-\lambda(1-r)\}=G_{Z}(r).

Thus,

Yn𝐷Z.Y_{n}\xrightarrow{D}​​Z. (47)

On the other hand, suppose that XX is a mixed Poisson random variable with probability function fX(x)f_{X}(x) for x0x\geq 0 and mixing distribution FΛ(λ)F_{\Lambda}(\lambda) for λ1\lambda\geq 1. Let {Xn}n=1\{X_{n}\}_{n=1}^{\infty} be a sequence of random variables with distribution

fn(x)=k=1q(k,n)nb(k,nn+1)(x),n1,x0,f_{n}(x)=\sum_{k=1}^{\infty}q(k,n)\cdot\mbox{nb}\left(k,\frac{n}{n+1}\right)(x),\quad n\geq 1,\,x\geq 0, (48)

where q(k,n)=FΛ(k/n)FΛ((k1)/n)q(k,n)=F_{\Lambda}(k/n)-F_{\Lambda}((k-1)/n). Note that for any natural number nn, if kk is not a multiple of nn, then q(k,n)=0q(k,n)=0. Let k=λnk=\lambda\,n with λ1\lambda\geq 1. Then q(k,n)=FΛ(λ)FΛ(λ1/n)=fΛ(λ)q(k,n)=F_{\Lambda}(\lambda)-F_{\Lambda}(\lambda-1/n)=f_{\Lambda}(\lambda). Therefore, for x0x\geq 0,

fXn(x)=λ=1q(λn,n)nb(λn,n/(n+1))(x)=λ=1fΛ(λ)nb(λn,n/(n+1))(x).f_{X_{n}}(x)=\sum_{\lambda=1}^{\infty}q(\lambda\,n,n)\cdot\mbox{nb}(\lambda\,n,n/(n+1))(x)=\sum_{\lambda=1}^{\infty}f_{\Lambda}(\lambda)\cdot\mbox{nb}(\lambda\,n,n/(n+1))(x).

Therefore,

limnfXn(x)=λ=1fΛ(λ)limnnb(λn,n/(n+1))(x)=λ=1fΛ(λ)poisson(λ)(x).\lim_{n\rightarrow\infty}f_{X_{n}}(x)=\sum_{\lambda=1}^{\infty}f_{\Lambda}(\lambda)\cdot\lim_{n\rightarrow\infty}\mbox{nb}(\lambda\,n,n/(n+1))(x)=\sum_{\lambda=1}^{\infty}f_{\Lambda}(\lambda)\cdot\mbox{poisson}(\lambda)(x).

For XnNBM(𝝅n,pn)X_{n}\sim\mbox{NBM}(\boldsymbol{\pi}_{n},p_{n}) as in the previous statement, it easy to see that

E(Xn)<1.E(X_{n})<1. (49)

As a consequence of Proposition 4.4, for XMP(FΛ)X\sim\mbox{MP}(F_{\Lambda}), its probability function can be approximated by NBM distributions with suitable parameters. That is, for sufficiently large values of nn,

P(X=x)k=1q(k,n)nb(k,pn)(x),P(X=x)\approx\sum_{k=1}^{\infty}q(k,n)\cdot\mbox{nb}(k,p_{n})(x), (50)

where q(k,n)=FΛ(k/n)FΛ((k1)/n)q(k,n)=F_{\Lambda}\left(k/n\right)-F_{\Lambda}\left((k-1)/n\right) and pn=n/(n+1)p_{n}=n/(n+1).

5 Ruin probability approximations

We here consider the case when claims in the Gerber-Dickson risk model have distribution function FMP(FΛ)F\sim\mbox{MP}(F_{\Lambda}). Let ψn(u)\psi_{n}(u) denote the ruin probability when claims have distribution Fn(x)F_{n}(x) as defined in Proposition 4.4. If nn is large enough, Fn(x)F_{n}(x) is close to F(x)F(x), and is expected that ψn(u)\psi_{n}(u) will be close to ψ(u)\psi(u), the unknown ruin probability. This procedure is formalized in the following theorem.

Theorem 5.1.

If claims in the Gerber-Dickson model have a MP(FΛ)\mbox{MP}(F_{\Lambda}) distribution, then

ψ(u)=limnψn(u),u0,\psi(u)=\lim\limits_{n\rightarrow\infty}\psi_{n}(u),\quad u\geq 0,

where

ψn(u)=k=0C¯k,nP(Z=k)=E(C¯Z,n),\psi_{n}(u)=\sum_{k=0}^{\infty}\overline{C}_{k,n}\,P(Z=k)=E\left(\overline{C}_{Z,n}\right), (51)

with ZNegBin(u,1/(1+n))Z\sim\mbox{NegBin}(u,1/(1+n)). The sequence {C¯k,n}k=0\left\{\overline{C}_{k,n}\right\}_{k=0}^{\infty} is determined by

C¯0,n\displaystyle\overline{C}_{0,n} =\displaystyle= j=0F¯Λ(j/n)/n,\displaystyle\sum_{j=0}^{\infty}\overline{F}_{\Lambda}(j/n)/n, (52)
C¯k,n\displaystyle\overline{C}_{k,n} =\displaystyle= C¯0,n[i=1kfNe(i)C¯ki,n+F¯Ne(k)],k1,\displaystyle\overline{C}_{0,n}\left[\sum_{i=1}^{k}f_{Ne}(i)\overline{C}_{k-i,n}+\overline{F}_{Ne}(k)\right],\quad k\geq 1, (53)
fNe(i)\displaystyle f_{Ne}(i) =\displaystyle= F¯Λ((i1)/n)j=0F¯Λ(j/n),i1.\displaystyle\frac{\overline{F}_{\Lambda}((i-1)/n)}{\sum_{j=0}^{\infty}\overline{F}_{\Lambda}(j/n)},\quad i\geq 1. (54)

Proof. Suppose XMP(FΛ)X\sim\mbox{MP}(F_{\Lambda}) with E(X)<1E(X)<1 and equilibrium probability function fe(x)f_{e}(x). Let X1,X2,X_{1},X_{2},\ldots be an approximating sequence of NBM(𝝅n,pn)\mbox{NBM}(\boldsymbol{\pi}_{n},p_{n}) random variables to XX, where 𝝅n=(q(1,n),q(2,n),)\boldsymbol{\pi}_{n}=(q(1,n),q(2,n),\ldots), with q(k,n)=FΛ(k/n)FΛ((k1)/n)q(k,n)=F_{\Lambda}(k/n)-F_{\Lambda}((k-1)/n) and pn=n/(n+1)p_{n}=n/(n+1). That is,

fXn(x)=k=1q(k,n)nb(k,n/(n+1))(x),x0.f_{X_{n}}(x)=\sum_{k=1}^{\infty}q(k,n)\cdot\mbox{nb}(k,n/(n+1))(x),\quad x\geq 0. (55)

By (30),

E(Xn)=k=1kq(k,n)1/(n+1)n/(n+1)=k=1(k/n)[FΛ(k/n)FΛ((k1)/n)].E(X_{n})=\sum_{k=1}^{\infty}k\,q(k,n)\cdot\frac{1/(n+1)}{n/(n+1)}=\sum_{k=1}^{\infty}(k/n)\cdot[\,F_{\Lambda}(k/n)-F_{\Lambda}((k-1)/n)\,].

Taking the limit,

limnE(Xn)=0x𝑑FΛ(x)=E(Λ)=E(X).\lim_{n\rightarrow\infty}E(X_{n})=\int_{0}^{\infty}x\,dF_{\Lambda}(x)=E(\Lambda)=E(X). (56)

Now, by Proposition 4.4, since Xn𝐷XX_{n}\xrightarrow{D}​​X, we have

limnF¯Xn(x)=F¯X(x),x0.\lim_{n\rightarrow\infty}\overline{F}_{X_{n}}(x)=\overline{F}_{X}(x),\quad x\geq 0.

Combining the above with (56),

limnF¯Xn(x)E(Xn)=F¯X(x)E(X).\lim_{n\rightarrow\infty}\frac{\overline{F}_{X_{n}}(x)}{E(X_{n})}=\frac{\overline{F}_{X}(x)}{E(X)}.

This means the equilibrium probability function fe,n(x)f_{e,n}(x) associated to fXn(x)f_{X_{n}}(x) satisfies

limnfe,n(x)=fe(x),x0.\lim_{n\rightarrow\infty}f_{e,n}(x)=f_{e}(x),\quad x\geq 0. (57)

Using probability generating functions and (57), it is also easy to show that for any k1k\geq 1,

limnFe,nk(x)=Fek(x),x0.\lim_{n\rightarrow\infty}F_{e,n}^{*k}(x)=F_{e}^{*k}(x),\quad x\geq 0. (58)

Now, let Xn1,Xn2,X_{n1},X_{n2},\ldots be i.i.d. random variables with probability function fe,n(x)f_{e,n}(x) and set Sk,n:=i=1kXniS_{k,n}:=\sum_{i=1}^{k}X_{ni}. By the Pollaczeck-Khinchine formula, for u0u\geq 0,

ψn(u)=k=1P(Sk,nu)(1E(Xn))Ek(Xn)=k=1(1Fe,nk(u1))(1E(Xn))Ek(Xn).\psi_{n}(u)=\sum_{k=1}^{\infty}P(S_{k,n}\geq u)\,(1-E(X_{n}))E^{k}(X_{n})=\sum_{k=1}^{\infty}(1-F_{e,n}^{*k}(u-1))\,(1-E(X_{n}))E^{k}(X_{n}).

Taking the nn\to\infty limit and using (56) and (58),

limnψn(u)=k=1(1Fek(u1))(1E(X))Ek(X)=ψ(u),u1.\lim_{n\rightarrow\infty}\psi_{n}(u)=\sum_{k=1}^{\infty}(1-F_{e}^{*k}(u-1))\,(1-E(X))E^{k}(X)=\psi(u),\quad u\geq 1.

On the other hand, since claims XnX_{n} have a NBM(𝝅n,pn)\mbox{NBM}(\boldsymbol{\pi}_{n},p_{n}) distribution, with 𝝅n=(q(1,n),q(2,n),)\boldsymbol{\pi}_{n}=(q(1,n),q(2,n),\ldots), q(k,n)=FΛ(k/n)FΛ((k1)/n)\quad q(k,n)=F_{\Lambda}(k/n)-F_{\Lambda}((k-1)/n) and pn=n/(n+1)p_{n}=n/(n+1), by Theorem 3.5,

ψn(u)=k=0C¯k,nP(Z=k)=E(C¯Z,n),u1,\psi_{n}(u)=\sum_{k=0}^{\infty}\overline{C}_{k,n}\cdot P(Z=k)=E(\overline{C}_{Z,n}),\quad u\geq 1,

where ZNegBin(u,1/(n+1))Z\sim\mbox{NegBin}(u,1/(n+1)) and the sequence {C¯k,n}k=0\left\{\overline{C}_{k,n}\right\}_{k=0}^{\infty} is given by

C¯0,n\displaystyle\overline{C}_{0,n} =\displaystyle= E(Nn)/n,\displaystyle E(N_{n})/n,
C¯k,n\displaystyle\overline{C}_{k,n} =\displaystyle= C¯0,n[i=1kfNe(i)C¯ki,n+F¯Ne(k)],k1,\displaystyle\overline{C}_{0,n}\,\left[\sum_{i=1}^{k}f_{Ne}(i)\,\overline{C}_{k-i,n}+\overline{F}_{Ne}(k)\right],\quad k\geq 1,
fNe(i)\displaystyle f_{Ne}(i) =\displaystyle= F¯Nn(i1)E(Nn),i1,\displaystyle\frac{\overline{F}_{N_{n}}(i-1)}{E(N_{n})},\quad i\geq 1,

where NnN_{n} is the r.v. related to probabilities q(k,n)q(k,n). Thus, it only remains to calculate the form of E(Nn)E(N_{n}) and F¯Nn(i1)\overline{F}_{N_{n}}(i-1).

E(Nn)=j=1P(Nn>j1)=j=1i=jq(i,n)=j=1i=j(FΛ(i/n)FΛ((i1)/n))=j=0F¯Λ(j/n).E(N_{n})=\sum_{j=1}^{\infty}P(N_{n}>j-1)=\sum_{j=1}^{\infty}\sum_{i=j}^{\infty}q(i,n)=\sum_{j=1}^{\infty}\sum_{i=j}^{\infty}(F_{\Lambda}(i/n)-F_{\Lambda}((i-1)/n))=\sum_{j=0}^{\infty}\overline{F}_{\Lambda}(j/n).

Thus,

C¯0,n=j=0F¯Λ(j/n)/n.\overline{C}_{0,n}=\sum_{j=0}^{\infty}\overline{F}_{\Lambda}(j/n)/n.

Also,

F¯Nn(i1)=P(Nn>i1)=k=iq(k,n)=k=i(FΛ(k/n)FΛ((k1)/n))=F¯Λ((i1)/n).\overline{F}_{N_{n}}(i-1)=P(N_{n}>i-1)=\sum_{k=i}^{\infty}q(k,n)=\sum_{k=i}^{\infty}(F_{\Lambda}(k/n)-F_{\Lambda}((k-1)/n))=\overline{F}_{\Lambda}((i-1)/n).

Then,

fNe(i)=F¯Λ((i1)/n)j=0F¯Λ(j/n),i1.f_{Ne}(i)=\frac{\overline{F}_{\Lambda}((i-1)/n)}{\sum_{j=0}^{\infty}\overline{F}_{\Lambda}(j/n)},\quad i\geq 1.

5.1 First approximation method

Our first proposal of approximation to ψ(u)\psi(u) is presented as a corollary of Theorem 5.1. Note that C¯0,n=j=0F¯Λ(j/n)/n\overline{C}_{0,n}=\sum_{j=0}^{\infty}\overline{F}_{\Lambda}(j/n)/n is an upper sum of the integral of F¯Λ\overline{F}_{\Lambda}. Thus, C¯0,nE(Λ)\overline{C}_{0,n}\to E(\Lambda) as nn\rightarrow\infty. For the approximation methods we propose, we will take C¯0,n=E(Λ)\overline{C}_{0,n}=E(\Lambda), for any value of nn.

Corollary 5.2.

Suppose a Gerber-Dickson model with MP(FΛ)\mbox{MP}(F_{\Lambda}) claims is given. For large nn,

ψ(u)k=0C¯k,nnb(u,1/(1+n))(k),\psi(u)\approx\sum_{k=0}^{\infty}\overline{C}_{k,n}\cdot\mbox{nb}(u,1/(1+n))(k), (59)

where

C¯0,n\displaystyle\overline{C}_{0,n} =\displaystyle= E(Λ),\displaystyle E(\Lambda), (60)
C¯k,n\displaystyle\overline{C}_{k,n} =\displaystyle= E(Λ)[i=1kfNe(i)C¯ki,n+F¯Ne(k)],k1,\displaystyle E(\Lambda)\left[\sum_{i=1}^{k}f_{Ne}(i)\,\overline{C}_{k-i,n}+\overline{F}_{Ne}(k)\right],\quad k\geq 1, (61)
fNe(i)\displaystyle f_{Ne}(i) =\displaystyle= F¯Λ((i1)/n)j=0F¯Λ(j/n),i1.\displaystyle\frac{\overline{F}_{\Lambda}((i-1)/n)}{\sum_{j=0}^{\infty}\overline{F}_{\Lambda}(j/n)},\quad i\geq 1. (62)

For the examples shown in the next section, we have numerically found that the sum in (59) quickly converge to its value. This will allow us to truncate the infinite sum without much loss of accuracy.

For example, suppose claims have a MP(FΛ)\mbox{MP}(F_{\Lambda}) distribution, where ΛExp(β)\Lambda\sim\mbox{Exp}(\beta). In this case, claims have Geo(β/(1+β))\mbox{Geo}(\beta/(1+\beta)) distribution and by (28),

ψ(u)=(1/(1+β)β/(1+β))u+1=1βu+1.\psi(u)=\left(\frac{1/(1+\beta)}{\beta/(1+\beta)}\right)^{u+1}=\frac{1}{\beta^{u+1}}.

We will check that our approximation (59) converges to this solution as nn\rightarrow\infty. First, the following is easily calculated: fNe(i)=eiβ/n(eβ/n1)f_{Ne}(i)=e^{-i\beta/n}(e^{\beta/n}-1) and F¯Ne(k)=eβk/n\overline{F}_{Ne}(k)=e^{-\beta k/n}. After some more calculations, one can obtain

C¯k,n=1β[1β(1eβ/n)+eβ/n]k.\overline{C}_{k,n}=\frac{1}{\beta}\left[\frac{1}{\beta}(1-e^{-\beta/n})+e^{-\beta/n}\right]^{k}. (63)

Substituting (63) into (59) and simplifying,

ψn(u)=1β(1n(1eβ/n)/β+n(1eβ/n))u 1/βu+1asn.\psi_{n}(u)=\frac{1}{\beta}\,\left(1-n\,(1-e^{-\beta/n})/\beta+n\,(1-e^{-\beta/n})\right)^{-u}\ \to\ 1/\beta^{u+1}\quad\mbox{as}\quad n\to\infty.

5.2 Second approximation method

Our second method to approximate the ruin probability is a direct application of the Law of Large Numbers.

Corollary 5.3.

Suppose a Gerber-Dickson model with MP(FΛ)\mbox{MP}(F_{\Lambda}) claims is given. Let z1,,zmz_{1},\ldots,z_{m} be a random sample of a NegBin(u,1/(1+n))\mbox{NegBin}(u,1/(1+n)) distribution. For large nn and mm,

ψ(u)1mi=1mC¯zi,n,\psi(u)\approx\frac{1}{m}\sum_{i=1}^{m}\overline{C}_{z_{i},n}, (64)

where {C¯k,n}k=0\{\overline{C}_{k,n}\}_{k=0}^{\infty} is given by (60), (61) and (62).

6 Numerical examples

In this section we apply the proposed approximation methods in the case when the mixing distribution is Erlang, Pareto and Lognormal. The results obtained show that the approximated ruin probabilities are extremely close to the exact probabilities. The later were calculated recursively using formulas (5) and (6), or by numerical integration. In all cases the approximations were calculated for u=0,1,2,,10u=0,1,2,\ldots,10 and using the software R. For the first proposed approximation method, n=500n=500 was used and for the second method, m=1000m=1000 values ​​were generated from a NegBin(u,1/(n+1))\mbox{NegBin}(u,1/(n+1)) distribution and again n=n= 500. The sum (59) was truncated up to

k=max{x>un:nb(u,1/(1+n))(x)>0.00001}.k^{*}=\max\{x>un:\mbox{nb}(u,1/(1+n))(x)>0.00001\}. (65)

Erlang distribution

In this example we assume claims have a MP(FΛ)\mbox{MP}(F_{\Lambda}) distribution with ΛErlang(2,3)\Lambda\sim\mbox{Erlang}(2,3). In this case E(Λ)=2/3E(\Lambda)=2/3. Table 1 below shows the results of the approximations. Columns EE, N1N_{1} and N2N_{2} show for each value of uu, the exact value of ψ(u)\psi(u), the approximation with the first method and the approximation with the second method, respectively. Relative errors (ψ^ψ)/ψ(\hat{\psi}-\psi)/\psi are also shown. The left-hand side plot of Figure 2 shows the values ​​of uu against EE, N1N_{1} and N2N_{2}. The right-hand side plot shows the values ​​of uu against the relative errors.

Pareto distribution

In this example claims have a MP(FΛ)\mbox{MP}(F_{\Lambda}) distribution with ΛPareto(3,1)\Lambda\sim\mbox{Pareto}(3,1). For this distribution, E(Λ)=1/2E(\Lambda)=1/2. Table 2 shows the approximations results in the same terms as in Table 1. Figure 3 shows the results graphically.

Lognormal distribution

In this example we suppose claims have a MP(FΛ)\mbox{MP}(F_{\Lambda}) distribution with ΛLognormal(1,1)\Lambda\sim\mbox{Lognormal}(-1,1). For this distribution E(Λ)=e1/2E(\Lambda)=e^{-1/2}. Table 3 shows the approximations results and Figure 4 shows the related graphics.

As can be seen from the tables and graphs shown, the two approximating methods yield ruin probabilities close to the exact probabilities for the examples considered.

ψ(u)\psi(u)uuEN1N2PKE\approx N_{1}\approx N_{2}\approx PK0123456789100.20.40.6N1N_{1}N2N_{2}PKuuψ^ψψ\frac{\hat{\psi}-\psi}{\psi}12345678910-0.06-0.04-0.0200.02Relative errors
Figure 2: Approximation when claims are MP(Λ)\mbox{MP}(\Lambda) and ΛErl(2,3)\Lambda\sim\mbox{Erl}(2,3).
Table 1: Ruin probability approximation for MP(FΛ)\mbox{MP}(F_{\Lambda}) claims with ΛErlang(2,3)\Lambda\sim\mbox{Erlang}(2,3).
uu EE N1N_{1} ψ^ψψ\frac{\hat{\psi}-\psi}{\psi} N2N_{2} ψ^ψψ\frac{\hat{\psi}-\psi}{\psi} PKPK ψ^ψψ\frac{\hat{\psi}-\psi}{\psi}
0 0.66667 0.66667 0.00000 0.66667 0.00000 0.66667 0.00000
1 0.40741 0.40775 0.00084 0.40326 -0.01019 0.4089 0.00366
2 0.24280 0.24328 0.00196 0.24551 0.01115 0.2397 -0.01276
3 0.14358 0.14401 0.00306 0.14317 -0.00282 0.1456 0.01410
4 0.08469 0.08504 0.00414 0.08647 0.02096 0.084 -0.00818
5 0.04992 0.05018 0.00521 0.05063 0.01419 0.0512 0.02566
6 0.02942 0.02960 0.00628 0.02989 0.01607 0.0311 0.05726
7 0.01733 0.01746 0.00735 0.01732 -0.00079 0.0172 -0.00763
8 0.01021 0.01030 0.00842 0.01009 -0.01208 0.0105 0.02818
9 0.00602 0.00607 0.00949 0.00586 -0.02682 0.0061 0.01379
10 0.00355 0.00358 0.01056 0.00335 -0.05468 0.0031 -0.12559
ψ(u)\psi(u)uuEN1N2PKE\approx N_{1}\approx N_{2}\approx PK0123456789100.20.40.6uuψ^ψψ\frac{\hat{\psi}-\psi}{\psi}12345678910-0.04-0.0200.02Relative errorsN1N_{1}N2N_{2}PK
Figure 3: Approximation when claims are MP(Λ)\mbox{MP}(\Lambda) and ΛPareto(3,1)\Lambda\sim\mbox{Pareto}(3,1).
Table 2: Ruin probability approximation for MP(FΛ)\mbox{MP}(F_{\Lambda}) claims with ΛPareto(3,1)\Lambda\sim\mbox{Pareto}(3,1).
uu EE N1N_{1} ψ^ψψ\frac{\hat{\psi}-\psi}{\psi} N2N_{2} ψ^ψψ\frac{\hat{\psi}-\psi}{\psi} PKPK ψ^ψψ\frac{\hat{\psi}-\psi}{\psi}
0 0.50000 0.50000 0.00000 0.50000 0.00000 0.50000 0.00000
1 0.28757 0.28751 -0.00023 0.28484 -0.00950 0.29170 0.01435
2 0.18050 0.18046 -0.00022 0.18216 0.00921 0.17690 -0.01995
3 0.12014 0.12010 -0.00034 0.11960 -0.00448 0.12040 0.00215
4 0.08348 0.08344 -0.00053 0.08445 0.01159 0.08170 -0.02135
5 0.06001 0.05996 -0.00076 0.06034 0.00547 0.06080 0.01317
6 0.04437 0.04432 -0.00100 0.04450 0.00301 0.04600 0.03681
7 0.03360 0.03356 -0.00127 0.03343 -0.00528 0.03270 -0.02686
8 0.02599 0.02595 -0.00154 0.02577 -0.00865 0.02280 -0.12288
9 0.02049 0.02045 -0.00181 0.02019 -0.01467 0.02020 -0.01419
10 0.01643 0.01639 -0.00209 0.01612 -0.01858 0.01750 0.06527
ψ(u)\psi(u)uuEN1N2E\approx N_{1}\approx N_{2}0123456789100.20.40.6uuψ^ψψ\frac{\hat{\psi}-\psi}{\psi}12345678910-0.02-0.010.010.02Relative errorsN1N_{1}N2N_{2}PK
Figure 4: Approximation when claims are MP(Λ)\mbox{MP}(\Lambda) and ΛLognormal(1,1)\Lambda\sim\mbox{Lognormal}(-1,1).
Table 3: Approximations for MP(FΛ)\mbox{MP}(F_{\Lambda}) claims with ΛLognormal(1,1)\Lambda\sim\mbox{Lognormal}(-1,1).
uu EE N1N_{1} ψ^ψψ\frac{\hat{\psi}-\psi}{\psi} N2N_{2} ψ^ψψ\frac{\hat{\psi}-\psi}{\psi} PKPK ψ^ψψ\frac{\hat{\psi}-\psi}{\psi}
0 0.60653 0.60653 0.00000 0.60653 0.00000 0.60653 0.00000
1 0.38126 0.38124 -0.00005 0.37816 -0.00813 0.37960 -0.00436
2 0.25231 0.25238 0.00025 0.25426 0.00772 0.25340 0.00431
3 0.17287 0.17294 0.00042 0.17198 -0.00515 0.17520 0.01349
4 0.12128 0.12135 0.00053 0.12282 0.01264 0.12010 -0.00976
5 0.08661 0.08666 0.00060 0.08715 0.00624 0.08960 0.03456
6 0.06272 0.06276 0.00064 0.06297 0.00397 0.06280 0.00124
7 0.04597 0.04600 0.00067 0.04574 -0.00487 0.04390 -0.04498
8 0.03404 0.03406 0.00067 0.03373 -0.00914 0.03420 0.00466
9 0.02545 0.02546 0.00066 0.02502 -0.01686 0.02420 -0.04902
10 0.01919 0.01920 0.00063 0.01874 -0.02346 0.02030 0.05791

7 Conclusions

We have first provided a general formula for the ultimate ruin probability in the Gerber-Dickson risk model when claims follow a negative binomial mixture (NBM) distribution. The ruin probability is expressed as the expected value of a deterministic sequence {Ck}\{C_{k}\}, where index kk is the value of a negative binomial distribution. The sequence is not given explicitly but can be calculated recursively. We then extended the formula for claims with a mixed Poisson (MP) distribution. The extension was possible due to the fact that MP distributions can be approximated by NBM distributions. The formulas obtained yielded two immediate approximation methods. These were tested using particular examples. The numerical results showed high accuracy when compared to the exact ruin probabilities. The general results obtained in this work bring about some other questions that we have set aside for further work: error bounds for our estimates, detailed study of some other particular cases of the NBM and MP distributions, properties and bounds for the sequence {Ck}\{C_{k}\}, and the possible extension of the ruin probability formula to more general claim distributions.

References

  • [1]
  • [2] Bowers N.L., Gerber H.U., Hickman J.C., Jones D.A. and Nesbitt C.J. (1997). Actuarial Mathematics. The Society of Actuaries. Schaumburg, Illinois .
  • [3] Cheng S., Gerber H.U. and Shiu E.S. (2000). Discounted probabilities and ruin theory in the compound binomial model. Insurance : Mathematics and Economics 26 (2), 239-250.
  • [4] Damarackas J. and S̆iaulys J. (2015). A note on the net profit condition for discrete and classical risk models. Lithuanian Mathematical Journal 55 (4), 465–473.
  • [5] Dickson D.C. (1994). Some comments on the compound binomial model. ASTIN Bulletin 24 (1), 33–45.
  • [6] Feller W. (1968). An introduction to probability theory and its applications I. John Wiley and Sons, Inc., New York.
  • [7] Gerber H.U. (1988). Mathematical fun with the compound binomial process. ASTIN Bulletin 18 (2), 161–168.
  • [8] Grandell J. (1997). Mixed poisson processes. Monographs on Statistics and Applied Probability 77. Springer Science Business and Media, Dordrecht .
  • [9] Karlis D. and Xekalaki E. (2005). Mixed poisson distributions. International Statistical Review 73 (1), 35–58.
  • [10] Li S. (2005). Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time risk models. Scandinavian Actuarial Journal, 2005 (4), 271–284.
  • [11] Li S. and Garrido J. (2002). On the time value of ruin in the discrete time risk model . Business Economics Series 12, Working Paper 02-18, Universidad Carlos III de Madrid.
  • [12] Li S., Lu Y. and Garrido J. (2009) A review of discrete-time risk models. Rev. R. Acad. Cien. Serie A. Mat. 103 (2), 321–337.
  • [13] Puri P.S. and Goldie C.M. (1979). Poisson mixtures and quasi-infinite divisibility of distributions. Journal of Applied Probability 16 (1), 138–153.
  • [14] R Development Core Team (2008). R: A language and environment for statistical computing . R Foundation for Statistical Computing, Vienna , Austria. ISBN 3-900051-07-0, URL : http : // www .R-project. org .
  • [15] Santana D., González J. and Rincón L. (2017). Approximations of the Ultimate Ruin Probability in a Risk Process using Erlang Mixtures. Methodology and Computing in Applied Probability 19 (3), 775–798.
  • [16] Shiu E. (1989). The probability of eventual ruin in the compound binomial model. ASTIN Bulletin 19 (2), 179–190.
  • [17] Steutel F.W. and Van Eenige M.J.A. (1997). Note on the approximation of distributions on Z+ by mixtures of negative binomial distributions. Stochastic Models 13 (2), 271–274.
  • [18] Willmot G. and Woo J.K. (2007). On the class of Erlang mixtures with risk theoretic applications. North American Actuarial Journal 11 (2), 99–115.
  • [19] Willmot G. and Lin S. (2011). Risk modeling with the mixed Erlang distribution. Applied Stochastic Models in Business and Industry 27 (1), 2–16.