This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Approximation of Elliptic Equations with Interior Single-Point Degeneracy and Its Application to Weak Unique Continuation Property

Weijia Wu1, Yaozhong Hu2, Donghui Yang1, Jie zhong3∗ 1 School of Mathematics and Statistics, Central South University, Changsha, 410083, China 2 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada 3 Department of Mathematics, California State University Los Angeles, Los Angeles, 90032, USA [email protected] [email protected] [email protected] [email protected]
Abstract.

This paper investigates the quantitative weak unique continuation property (QWUCP) for a class of high-dimensional elliptic equations with interior point degeneracy. First, we establish well-posedness results in weighted function spaces. Then, using an innovative approximation method, we derive the three-ball theorem at the degenerate point. Finally, we apply the three-ball theorem to prove QWUCP for two different cases.

Key words and phrases:
Degenerate elliptic equations, Weak unique continuation property
2010 Mathematics Subject Classification:
35B60, 35J70
Corresponding author: [email protected]

1. Introduction

The unique continuation properties for uniformly elliptic equations have been extensively studied in the literature ([1, 2, 3, 7, 9, 10, 12, 17, 18, 19, 21, 22, 23, 24, 26, 27]). There are two types of unique continuation properties: the strong unique continuation property (SUCP) and the weak unique continuation property (WUCP). Below, we briefly recall these two properties.

Let P(x,)P(x,\partial) be a uniformly elliptic operator. The strong unique continuation property (SUCP) states that if P(x,)u=0P(x,\partial)u=0 in a domain ΩN\Omega\subset\mathbb{R}^{N}, and there exists a point x0Ωx_{0}\in\Omega such that uu vanishes to infinite order, meaning

Br(x0)u2dx=O(rk) as r0, for every k,\int_{B_{r}(x_{0})}u^{2}\mathrm{d}x=O(r^{k})\text{ as }r\to 0,\mbox{ for every }k\in\mathbb{N},

where Br(x0)B_{r}(x_{0}) denotes a ball in Ω\Omega centered at x0x_{0} with radius rr, then u0u\equiv 0 in Ω\Omega.

The weak unique continuation property (WUCP) states that if P(x,)u=0P(x,\partial)u=0 in Ω\Omega, and u=0u=0 on an open subset ωΩ\omega\subset\Omega, then u0u\equiv 0 in Ω\Omega. It is easy to see that the WUCP requires less stringent conditions compared to the SUCP.

Furthermore, by introducing quantitative descriptions, we can obtain the quantitative weak unique continuation property (QWUCP), which provides quantitative estimates of a solution’s local behavior, refining the conditions of the WUCP. Specifically, the QWUCP can be described as the form

Du2dyCωu2dy,\int_{D}u^{2}\mathrm{d}y\leq C\int_{\omega}u^{2}\mathrm{d}y,

where DΩD\subset\Omega is an open domain satisfying certain conditions (e.g., boundary conditions), and C>0C>0 is a constant independent of uu.

Notably, unique continuation does not hold universally for all uniformly elliptic equations ([27]). Furthermore, the analysis of unique continuation properties becomes significantly more challenging for degenerate elliptic equations compared to uniformly elliptic ones. Currentlty, there are two methods — the three-ball theorem ([1, 17, 23, 24, 25, 26, 30]) and Carleman estimates ([2, 3, 7, 21, 22, 27]), which are effective in dealing with certain special cases ([3, 15, 16, 19, 20]).

The three-ball theorem states that for a harmonic (or subharmonic) function u(x)u(x) defined in a region containing three concentric balls Br1B_{r_{1}}, Br2B_{r_{2}} and Br3B_{r_{3}} with r1<r2<r3r_{1}<r_{2}<r_{3}, the maximum value H(r)H(r) of u(x)u(x) on the intermediate sphere Br2B_{r_{2}} can be bounded by a weighted geometric mean of the maximum values on the inner and outer spheres:

H(r2)(H(r1))μ(H(r3))1μ,H(r_{2})\leq(H(r_{1}))^{\mu}(H(r_{3}))^{1-\mu},

where μ(0,1)\mu\in(0,1) is determined by the radii. The three-ball theorem is developed on the basis of the double-ball theorem, which was originally introduced by Garofalo and Lin in [17]. The authors in [26] provides a detailed introduction to the double-ball theorem, the three-ball theorem, and their applications in unique continuation. In [16], the authors primarily investigates the unique continuation properties of a specific class of second-order elliptic operators that degenerate on manifolds of arbitrary codimension, using the double-ball theorem. The focus is on the model operator

Pα=Δz+|z|2αΔt,α>0,P_{\alpha}=\Delta_{z}+|z|^{2\alpha}\Delta_{t},\ \alpha>0,

in n×m\mathbb{R}^{n}\times\mathbb{R}^{m}, which is elliptic outside a degeneracy manifold ({0}×m)(\left\{0\right\}\times\mathbb{R}^{m}) but degenerates on it. The authors establishes SUCP using Carleman estimates and introduces a quantitative version of SUCP that bypasses Carleman estimates, instead relying on the double-ball theorem. Similarly, in [29], the double-ball theorem is also applied to study the unique continuation properties of solutions to degenerate Schrödinger equations influenced by singular potentials and weighted settings. In [4], SUCP is established for a class of degenerate elliptic operators with Hardy-type potentials using Carleman estimates. This work extends the results of [16] but does not yield a quantitative conclusion. Notably, the three-ball theorem appears to be more effective for studying quantitative weak unique continuation properties.

In this paper, we shall consider the quantitative weak unique continuation properties for the elliptic equation with degenerate interior point by approximation. It is well known that the solution spaces of degenerate elliptic equations belong to weighted Sobolev spaces ([9, 10, 12, 13, 28]). A natural approach is to approximate a solution of a degenerate elliptic equation by a sequence of solutions to uniformly elliptic equations ([9, 10]). This method is feasible in weighted spaces and applies to high-dimensional cases, but it heavily relies on the Calderón-Zygmund decomposition, which can compromise certain desirable properties of the weight function. For instance, the approximating weight functions may lack differentiability, which is crucial when using the three-ball theorem to prove QWUCP, requiring the approximating weight functions to be at least Lipschitz continuous. Another approximation approach, similar to that in [5, 6, 31], involves constructing a non-degenerate coefficient |x+ϵ|α|x+\epsilon|^{\alpha} over the entire domain Ω\Omega to approximate the degenerate coefficient |x|α|x|^{\alpha}. However, this method is suitable for one-dimensional degenerate equations but not for the high-dimensional problems we aim to study. For the problem we consider in this paper, local estimates are required to approximate the solution (see Lemma 3.3).

While the idea of approximation has been utilized in many works, our method is fundamentally different from those in the existing literature. First, one of our main contributions is the introduction of an alternative approximation method for a specific class of weight functions with a single degenerate interior point. Our approximation is achieved by constructing a carefully designed non-degenerate weight function to approximate the degenerate weight function within a small local region BϵB_{\epsilon} rather than the entire domain Ω\Omega. This ensures that the weight function remains differentiable in high-dimensional settings. For a detailed discussion, refer to Section 3. Second, in the proof of QWUCP, we consider two cases: 0ω0\in\omega and 0ω0\notin\omega. For case 0ω0\in\omega, the result is obtained using the three-ball theorem at both degenerate and non-degenerate points. For the more challenging case 0ω0\notin\omega, we apply Schauder estimates to address the difficulties arising from the degenerate point being excluded from ω\omega. Finally, we derive a quantitative WUCP result.

It is worth noting that in most works (see [5, 6, 31]), the SUCP is typically achieved using the double-ball theorem. However, this paper employs the more robust three-ball theorem. Although we do not present results on SUCP here, we have demonstrated it in another working paper using an annular estimate method.

We organize the paper as follows: In Section 2, we present several well-posedness results. In Section 3, we provide a detailed explanation of the construction of the approximation and introduce the preliminary lemmas required for proving the three-ball theorem at the degenerate point. In Section 4, we establish the three-ball theorem at the degenerate point and prove QWUCP for two cases:0ω0\in\omega and 0ω0\notin\omega.

2. Preliminary results

Let us consider the following equation

(2.1) {div(wu)=f,in Ω,u=0,on Ω,\begin{cases}-\operatorname{div}(w\nabla u)=f,&\mbox{in }\Omega,\\ u=0,&\mbox{on }\partial\Omega,\end{cases}

where ΩN\Omega\subset\mathbb{R}^{N} (N2N\geq 2) is a domain containing the origin (0Ω0\in\Omega), and its boundary Ω\partial\Omega is of class C2C^{2}. The weight function is given by w=|x|αw=|x|^{\alpha}, with a fixed α(0,2)\alpha\in(0,2), and ff is a given function such that fL2(Ω;w1)f\in L^{2}(\Omega;w^{-1}). The weighted Sobolev space L2(Ω;w)L^{2}(\Omega;w) defined for every w>0w>0 almost everywhere as:

L2(Ω;w)={u(x)u is measurable, and Ωu2wdx<}.L^{2}(\Omega;w)=\left\{u(x)\mid u\mbox{ is measurable, and }\int_{\Omega}u^{2}w\mathrm{d}x<\infty\right\}.

The inner product on L2(Ω;w)L^{2}(\Omega;w) is

(u,v)L2(Ω;w)=Ωuvwdx,(u,v)_{L^{2}(\Omega;w)}=\int_{\Omega}uvw\mathrm{d}x,

and the norm on L2(Ω;w)L^{2}(\Omega;w) is

uL2(Ω;w)=(Ωu2wdx)12.\|u\|_{L^{2}(\Omega;w)}=\left(\int_{\Omega}u^{2}w\mathrm{d}x\right)^{\frac{1}{2}}.

It is well known that (L2(Ω;w),(,)L2(Ω;w))(L^{2}(\Omega;w),(\cdot,\cdot)_{L^{2}(\Omega;w)}) (see [14]) is a Hilbert space and (L2(Ω;w),L2(Ω;w))(L^{2}(\Omega;w),\|\cdot\|_{L^{2}(\Omega;w)}) is a Banach space.

Set

Hw1(Ω)={uL2(Ω):uxiL2(Ω;w),i=1,,N},H_{w}^{1}(\Omega)=\left\{u\in L^{2}(\Omega)\colon\frac{\partial u}{\partial x_{i}}\in L^{2}(\Omega;w),i=1,\cdots,N\right\},

where uxi,i=1,,N\frac{\partial u}{\partial x_{i}},i=1,\cdots,N are the distribution partial derivatives, the inner product on Hw1(Ω)H_{w}^{1}(\Omega) is

(u,v)Hw1(Ω)=Ωuvwdx+i=1NΩuxivxiwdx=(u,v)L2(Ω;w)+(u,v)L2(Ω;w)(u,v)_{H_{w}^{1}(\Omega)}=\int_{\Omega}uvw\mathrm{d}x+\sum_{i=1}^{N}\int_{\Omega}\frac{\partial u}{\partial x_{i}}\frac{\partial v}{\partial x_{i}}w\mathrm{d}x=(u,v)_{L^{2}(\Omega;w)}+(\nabla u,\nabla v)_{L^{2}(\Omega;w)}

and the norm is

uHw1(Ω)=(Ωu2wdx+i=1NΩ|uxi|2wdx)12.\|u\|_{H_{w}^{1}(\Omega)}=\left(\int_{\Omega}u^{2}w\mathrm{d}x+\sum_{i=1}^{N}\int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{2}w\mathrm{d}x\right)^{\frac{1}{2}}.

Define

Hw,01(Ω)=𝒟(Ω)¯Hw1(Ω),H_{w,0}^{1}(\Omega)=\overline{\mathcal{D}(\Omega)}^{\|\cdot\|_{H_{w}^{1}(\Omega)}},

where 𝒟(Ω)=C0(Ω)\mathcal{D}(\Omega)=C_{0}^{\infty}(\Omega) is the space of test functions. Denote by Hw1(Ω)H_{w}^{-1}(\Omega) the dual space of Hw,01(Ω)H_{w,0}^{1}(\Omega). This space is a subspace of 𝒟(Ω)\mathcal{D}^{\prime}(\Omega), the space of distributions on Ω\Omega. It is well known that (Hw1(Ω),(,)Hw1(Ω))(H_{w}^{1}(\Omega),(\cdot,\cdot)_{H_{w}^{1}(\Omega)}) forms a Hilbert space, while (Hw1(Ω),Hw1(Ω))(H_{w}^{1}(\Omega),\|\cdot\|_{H_{w}^{1}(\Omega)}) is a Banach space.

Next, we aim to establish some well-posedness results for equation (2.1). First, we introduce some notations that will be used:

Ωϵ={xΩ|x|>ϵ},Bϵ={xΩ|x|<ϵ}.\Omega^{\epsilon}=\left\{x\in\Omega\mid|x|>\epsilon\right\},\ B_{\epsilon}=\left\{x\in\Omega\mid|x|<\epsilon\right\}.

Similar to the proof of Lemma 3.1 in [32] or Proposition 2.1 (1) in [28], we can easily derive the following weighted Hardy inequality.

Lemma 2.1.

For any N2N\geq 2 and α(0,2)\alpha\in(0,2), we have

(2.2) (N2+α)|x|α21uL2(Ω)2uL2(Ω;w)(N-2+\alpha)\left\||x|^{\frac{\alpha}{2}-1}u\right\|_{L^{2}(\Omega)}\leq 2\|\nabla u\|_{L^{2}(\Omega;w)}

for all uHw,01(Ω)u\in H_{w,0}^{1}(\Omega). Moreover, if uHw,01(Ω)u\in H_{w,0}^{1}(\Omega), then uL2(Ω)u\in L^{2}(\Omega).

Proof:  If uHw,01(Ω)u\in H_{w,0}^{1}(\Omega), then its restriction belongs to W1,2(Ωϵ)W^{1,2}(\Omega^{\epsilon}) and thus its trace represents a bounded linear map on L2(Ωϵ)L^{2}\left(\partial\Omega^{\epsilon}\right). Then

2Ωϵ|x|α2(xu)u𝑑x\displaystyle 2\int_{\Omega^{\epsilon}}|x|^{\alpha-2}(x\cdot\nabla u)udx =Ωϵ|x|α2x(u2)dx\displaystyle=\int_{\Omega^{\epsilon}}|x|^{\alpha-2}x\cdot\nabla\left(u^{2}\right)dx
=Ω|x|α2u2xν𝑑s+Bϵ|x|α2u2xν𝑑s\displaystyle=\int_{\partial\Omega}|x|^{\alpha-2}u^{2}x\cdot\nu ds+\int_{\partial B_{\epsilon}}|x|^{\alpha-2}u^{2}x\cdot\nu ds
Ωϵ(N2+α)|x|α2u2𝑑x\displaystyle\hskip 12.80373pt-\int_{\Omega^{\epsilon}}(N-2+\alpha)|x|^{\alpha-2}u^{2}dx
=Bϵ|x|α1u2𝑑sΩϵ(N2+α)|x|α2u2𝑑x\displaystyle=-\int_{\partial B_{\epsilon}}|x|^{\alpha-1}u^{2}ds-\int_{\Omega^{\epsilon}}(N-2+\alpha)|x|^{\alpha-2}u^{2}dx

since the trace of uu is zero on Ω\partial\Omega. We have

(N2+α)Ωϵ|x|α2u2𝑑x\displaystyle(N-2+\alpha)\int_{\Omega^{\epsilon}}|x|^{\alpha-2}u^{2}dx 2Ωϵ|x|α2u(xu)𝑑x2Ωϵ(|x|α21|u|)(|x|α2|u|)𝑑x\displaystyle\leq-2\int_{\Omega^{\epsilon}}|x|^{\alpha-2}u(x\cdot\nabla u)dx\leq 2\int_{\Omega^{\epsilon}}\left(|x|^{\frac{\alpha}{2}-1}|u|\right)\left(|x|^{\frac{\alpha}{2}}|\nabla u|\right)dx
2{Ωϵ|x|α2u2𝑑x}1/2{Ωϵ|x|αuudx}1/2\displaystyle\leq 2\left\{\int_{\Omega^{\epsilon}}|x|^{\alpha-2}u^{2}dx\right\}^{1/2}\left\{\int_{\Omega^{\epsilon}}|x|^{\alpha}\nabla u\cdot\nabla udx\right\}^{1/2}

and (2.2) follows by letting ϵ0+\epsilon\rightarrow 0^{+} since wuuL1(Ω)w\nabla u\cdot\nabla u\in L^{1}(\Omega) by our definition of Hw,01(Ω)H_{w,0}^{1}(\Omega).

From (2.2), it is evident that if uHw,01(Ω)u\in H_{w,0}^{1}(\Omega), then uL2(Ω)u\in L^{2}(\Omega). \square

Corollary 2.2.

For any N2N\geq 2 and α(0,2)\alpha\in(0,2), we obtain

(2.3) N2+α2m1α2uL2(Ω)uL2(Ω;w) with m:=supxΩ|x|+1,\frac{N-2+\alpha}{2m^{1-\frac{\alpha}{2}}}\|u\|_{L^{2}(\Omega)}\leq\|\nabla u\|_{L^{2}(\Omega;w)}\ \mbox{ with }m:=\sup_{x\in\Omega}|x|+1,

which is a Poincaré inequality. Furthermore, we have

(2.4) uHw,01(Ω)=(Ω(uu)wdx)12=uL2(Ω;w).\|u\|_{H_{w,0}^{1}(\Omega)}=\left(\int_{\Omega}(\nabla u\cdot\nabla u)w\mathrm{d}x\right)^{\frac{1}{2}}=\left\|\nabla u\right\|_{L^{2}(\Omega;w)}.

Proof:  This follows easily from Lemma 2.1. \square

From Lemma 2.1, it is also evident that space Hw,01(Ω)H_{w,0}^{1}(\Omega) is embedded into space L2(Ω)L^{2}(\Omega). Next, we will prove that this embedding is compact.

Lemma 2.3.

The embedding Hw,01(Ω)L2(Ω)H_{w,0}^{1}(\Omega)\hookrightarrow L^{2}(\Omega) is compact.

Proof:  To establish the compactness of the embedding it suffices to show that if {un}\left\{u_{n}\right\} is a sequence converging weakly to zero in Hw,01(Ω)H_{w,0}^{1}(\Omega) as nn\rightarrow\infty, then unL2(Ω)0\left\|u_{n}\right\|_{L^{2}(\Omega)}\rightarrow 0 as nn\rightarrow\infty.

Since Hw,01(Ω)H_{w,0}^{1}(\Omega) is continuously embedded in L2(Ω)L^{2}(\Omega) by Lemma 2.1, L2(Ω)L^{2}(\Omega)^{*}\subset Hw,01(Ω)H_{w,0}^{1}(\Omega)^{*} and hence {un}\left\{u_{n}\right\} converges weakly to zero in L2(Ω)L^{2}(\Omega).

Consider ϵ>0\epsilon>0. If {un}\left\{u_{n}\right\} does not converge weakly to zero in W1,2(Ωϵ)W^{1,2}\left(\Omega^{\epsilon}\right), there exist fW1,2(Ωϵ)f\in W^{1,2}\left(\Omega^{\epsilon}\right)^{*}, a subsequence {unk}\left\{u_{n_{k}}\right\} and δ>0\delta>0 such that |f(unk)|δ\left|f\left(u_{n_{k}}\right)\right|\geq\delta for all nkn_{k}. Passing to a further subsequence if necessary, we can suppose that {unk}\left\{u_{n_{k}}\right\} converges weakly to an element vv in W1,2(Ωϵ)W^{1,2}\left(\Omega^{\epsilon}\right). Thus {unk}\left\{u_{n_{k}}\right\} converges weakly to vv in L2(Ωϵ)L^{2}\left(\Omega^{\epsilon}\right) and so v=0v=0 a.e. on Ωϵ\Omega^{\epsilon} since {un}\left\{u_{n}\right\} converges weakly to zero in L2(Ω)L^{2}(\Omega) and hence also on L2(Ωϵ)L^{2}\left(\Omega^{\epsilon}\right). But then f(unk)f(v)=f(0)=0f\left(u_{n_{k}}\right)\rightarrow f(v)=f(0)=0 as nkn_{k}\rightarrow\infty, contradicting with |f(unk)|δ\left|f\left(u_{n_{k}}\right)\right|\geq\delta for all nkn_{k}. Hence {un}\left\{u_{n}\right\} converges weakly to zero in W1,2(Ωϵ)W^{1,2}\left(\Omega^{\epsilon}\right) and therefore unL2(Ωϵ)0\left\|u_{n}\right\|_{L^{2}\left(\Omega^{\epsilon}\right)}\rightarrow 0 as nn\rightarrow\infty . From the above it follows that

(2.5) lim supnunL2(Ω)2=lim supnBϵ|un|2𝑑x.\limsup_{n\rightarrow\infty}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}=\limsup_{n\rightarrow\infty}\int_{B_{\epsilon}}\left|u_{n}\right|^{2}dx.

But from [8] and (2.3) in Corollary 2.2, we have

(2.6) uLq(Ω)CuHw,01(Ω), 1q2NN2+α,\left\|u\right\|_{L^{q}(\Omega)}\leq C\left\|u\right\|_{H_{w,0}^{1}(\Omega)},\ 1\leq q\leq\frac{2N}{N-2+\alpha},

then (taking q>2q>2)

Bϵ|un|2𝑑x(Bϵ|1|qq2𝑑x)q2q(Bϵ(|un|2)q2𝑑x)2q|Bϵ|q2qunLq(Ω)2.\int_{B_{\epsilon}}\left|u_{n}\right|^{2}dx\leq\left(\int_{B_{\epsilon}}|1|^{\frac{q}{q-2}}dx\right)^{\frac{q-2}{q}}\left(\int_{B_{\epsilon}}\left(|u_{n}|^{2}\right)^{\frac{q}{2}}dx\right)^{\frac{2}{q}}\leq|B_{\epsilon}|^{\frac{q-2}{q}}\left\|u_{n}\right\|^{2}_{L^{q}(\Omega)}.

The weak convergence of {un}\left\{u_{n}\right\} in Hw,01(Ω)H_{w,0}^{1}(\Omega) and (2.6) imply that this sequence is bounded in Lq(Ω)L^{q}(\Omega), then (note that q>2q>2)

Bϵ|un|2𝑑xC|Bϵ|q2qunHw,01(Bϵ)2C|Bϵ|q2q.\int_{B_{\epsilon}}\left|u_{n}\right|^{2}dx\leq C|B_{\epsilon}|^{\frac{q-2}{q}}\left\|u_{n}\right\|^{2}_{H_{w,0}^{1}(B_{\epsilon})}\leq C|B_{\epsilon}|^{\frac{q-2}{q}}.

Letting ϵ0+\epsilon\rightarrow 0^{+} in (2.5) shows that unL2(Ω)0\left\|u_{n}\right\|_{L^{2}(\Omega)}\rightarrow 0 as nn\rightarrow\infty, completing the proof. \square

Next, we use the Lax-Milgram theorem to show that equation (2.1) has a unique weak solution uHw,01(Ω)u\in H_{w,0}^{1}(\Omega) in the sense of

Ω(uv)wdx=Ωfvdx\int_{\Omega}(\nabla u\cdot\nabla v)w\mathrm{d}x=\int_{\Omega}fv\mathrm{d}x

for all vHw,01(Ω)v\in H_{w,0}^{1}(\Omega).

Lemma 2.4.

For each fL2(Ω;w1)f\in L^{2}(\Omega;w^{-1}), there exists a unique solution for the equation (2.1).

Proof:  Denote

Bw[u,v]=Ω(uv)wdx for all u,vHw,01(Ω).B_{w}[u,v]=\int_{\Omega}(\nabla u\cdot\nabla v)w\mathrm{d}x\mbox{ for all }u,v\in H_{w,0}^{1}(\Omega).

It is easily verified that Bw[,]:Hw,01(Ω)×Hw,01(Ω)B_{w}[\cdot,\cdot]:H_{w,0}^{1}(\Omega)\times H_{w,0}^{1}(\Omega)\rightarrow\mathbb{R} be a bilinear form.

On one hand, we have

|Bw[u,v]|uHw,01(Ω)vHw,01(Ω),\left|B_{w}[u,v]\right|\leq\|u\|_{H_{w,0}^{1}(\Omega)}\|v\|_{H_{w,0}^{1}(\Omega)},

and Bw[u,u]=uHw,01(Ω)B_{w}[u,u]=\|u\|_{H_{w,0}^{1}(\Omega)}. On the other hand, we have

|Ωfvdx|fL2(Ω;w1)vL2(Ω;w)CfL2(Ω;w1)vHw,01(Ω)\left|\int_{\Omega}fv\mathrm{d}x\right|\leq\|f\|_{L^{2}(\Omega;w^{-1})}\|v\|_{L^{2}(\Omega;w)}\leq C\|f\|_{L^{2}(\Omega;w^{-1})}\|v\|_{H_{w,0}^{1}(\Omega)}

by Cauchy inequality and (2.3) in Corollary 2.2, i.e., f:Hw,01(Ω)f:H_{w,0}^{1}(\Omega)\rightarrow\mathbb{R} is a bounded linear functional on Hw,01(Ω)H_{w,0}^{1}(\Omega).

Finally, by the Lax-Milgram theorem, we obtain that there exists a unique uHw,01(Ω)u\in H_{w,0}^{1}(\Omega) satisfying (2.1). \square

3. Approximations

Our approach is to approximate the solution of a degenerate equation by a sequence of solutions to non-degenerate equations that satisfy the uniform ellipticity condition.

Let

(3.7) wϵ={|x|α,|x|ϵ,(34|x|2+14ϵ2)α2,|x|ϵ.w_{\epsilon}=\begin{cases}|x|^{\alpha},&|x|\geq\epsilon,\\ (\frac{3}{4}|x|^{2}+\frac{1}{4}\epsilon^{2})^{\frac{\alpha}{2}},&|x|\leq\epsilon.\end{cases}

Then it is clear that wϵC0,1(Ω¯)w_{\epsilon}\in C^{0,1}(\overline{\Omega}) since α(0,2)\alpha\in(0,2), wϵw_{\epsilon} is a radial convex function on N\mathbb{R}^{N} and nondecreasing on [0,)[0,\infty), and (ϵ2)αwϵϵα(\frac{\epsilon}{2})^{\alpha}\leq w_{\epsilon}\leq\epsilon^{\alpha} in BϵB_{\epsilon}, and

wϵ={α|x|α2x,|x|>ϵ,α(34|x|2+14ϵ2)α2134x,|x|<ϵ.\nabla w_{\epsilon}=\begin{cases}\alpha|x|^{\alpha-2}x,&|x|>\epsilon,\\ \alpha\left(\frac{3}{4}|x|^{2}+\frac{1}{4}\epsilon^{2}\right)^{\frac{\alpha}{2}-1}\frac{3}{4}x,&|x|<\epsilon.\end{cases}

It is worth noting that, our approximation methods is different from the one used in other literature (see [5, 6, 31]), such as setting a non-degenerate coefficient |x+ϵ|α|x+\epsilon|^{\alpha} to approximate the degenerate coefficient |x|α|x|^{\alpha}, which takes the form |x+ϵ|α|x+\epsilon|^{\alpha} over the entire domain Ω\Omega. However, in this paper, our setup of wϵw_{\epsilon} ensures that the approximate coefficients do not depend on ϵ\epsilon outside BϵB_{\epsilon} while approximating the original degenerate coefficient within BϵB_{\epsilon}. This allows us to achieve better estimates of the solution and obtain improved regularity results, even in the high-dimensional case.

For each kk\in\mathbb{N}, we denote w1kw_{\frac{1}{k}} by wkw_{k} and consider the following approximate equation

(3.8) {div(wkuk)=fk,in Ω,uk=0,on Ω\begin{cases}-\operatorname{div}(w_{k}\nabla u_{k})=f_{k},&\mbox{in }\Omega,\\ u_{k}=0,&\mbox{on }\partial\Omega\end{cases}

with fkL2(Ω;wk1)f_{k}\in L^{2}(\Omega;w_{k}^{-1}). We say that ukHwk,01(Ω)u_{k}\in H_{w_{k},0}^{1}(\Omega) is a weak solution of (3.8), if

Ω(ukv)wkdx=Ωfkvdx\int_{\Omega}(\nabla u_{k}\cdot\nabla v)w_{k}\mathrm{d}x=\int_{\Omega}f_{k}v\mathrm{d}x

for all vHwk,01(Ω)v\in H_{w_{k},0}^{1}(\Omega).

We note that Hwk,01(Ω)=H01(Ω)H_{w_{k},0}^{1}(\Omega)=H_{0}^{1}(\Omega) since (1k)αwkmα(\frac{1}{k})^{\alpha}\leq w_{k}\leq m^{\alpha} (see (2.3)) for each kk\in\mathbb{N}, where H01(Ω)H_{0}^{1}(\Omega) is the classical Sobolev spaces.

As Lemma 2.1, we provide a proof of the Hardy inequality for the non-degenerate equation.

Lemma 3.1.

Let uHwk,01(Ω)u\in H_{w_{k},0}^{1}(\Omega). Then

(3.9) (N+α2)wk121αuL2(Ω)2uHwk,01(Ω).(N+\alpha-2)\|w_{k}^{\frac{1}{2}-\frac{1}{\alpha}}u\|_{L^{2}(\Omega)}\leq 2\|u\|_{H_{w_{k},0}^{1}(\Omega)}.

Moreover, we have

(3.10) uL2(Ω;wk)2mN+α2|u|L2(Ω;wk).\|u\|_{L^{2}(\Omega;w_{k})}\leq\frac{2m}{N+\alpha-2}\||\nabla u|\|_{L^{2}(\Omega;w_{k})}.

Proof:  Denote ϵ=1k\epsilon=\frac{1}{k}. We shall prove

(N+α2)uL2(Ω;wϵ)2uHwϵ,01(Ω)(N+\alpha-2)\|u\|_{L^{2}(\Omega;w_{\epsilon})}\leq 2\|u\|_{H_{w_{\epsilon},0}^{1}(\Omega)}

for each uHwϵ,01(Ω)u\in H_{w_{\epsilon},0}^{1}(\Omega).

Since wϵC0,1(Ω¯)w_{\epsilon}\in C^{0,1}(\overline{\Omega}) (i.e., wϵW1,(Ω)w_{\epsilon}\in W^{1,\infty}(\Omega)), we have

2Ωwϵ12αu(xu)dx=Ωwϵ12αxu2dx=Ωdiv(wϵ12αu2x)dxΩu2div(wϵ12αx)dx=(N+α2)Ωu2wϵ12αdx2α4ϵ2Bϵ(34|x|2+14ϵ2)α22dx.\begin{split}2\int_{\Omega}w_{\epsilon}^{1-\frac{2}{\alpha}}u(x\cdot\nabla u)\mathrm{d}x&=\int_{\Omega}w_{\epsilon}^{1-\frac{2}{\alpha}}x\cdot\nabla u^{2}\mathrm{d}x=\int_{\Omega}\operatorname{div}\left(w_{\epsilon}^{1-\frac{2}{\alpha}}u^{2}x\right)\mathrm{d}x-\int_{\Omega}u^{2}\operatorname{div}\left(w_{\epsilon}^{1-\frac{2}{\alpha}}x\right)\mathrm{d}x\\ &=-(N+\alpha-2)\int_{\Omega}u^{2}w_{\epsilon}^{1-\frac{2}{\alpha}}\mathrm{d}x-\frac{2-\alpha}{4}\epsilon^{2}\int_{B_{\epsilon}}\left(\frac{3}{4}|x|^{2}+\frac{1}{4}\epsilon^{2}\right)^{\frac{\alpha}{2}-2}\mathrm{d}x.\end{split}

Then

(N+α2)Ωu2wϵ12αdx2Ωwϵ12αu(xu)dx=2Ω(wϵ121αu)(wϵ121αxu)dx2(Ωwϵ12αu2dx)12(Ωwϵ12α|x|2|u|2dx)122(Ωwϵ12αu2dx)12(Ω|u|2wϵdx)12\begin{split}(N+\alpha-2)\int_{\Omega}u^{2}w_{\epsilon}^{1-\frac{2}{\alpha}}\mathrm{d}x&\leq-2\int_{\Omega}w_{\epsilon}^{1-\frac{2}{\alpha}}u(x\cdot\nabla u)\mathrm{d}x=2\int_{\Omega}\left(w_{\epsilon}^{\frac{1}{2}-\frac{1}{\alpha}}u\right)\left(w_{\epsilon}^{\frac{1}{2}-\frac{1}{\alpha}}x\cdot\nabla u\right)\mathrm{d}x\\ &\leq 2\left(\int_{\Omega}w_{\epsilon}^{1-\frac{2}{\alpha}}u^{2}\mathrm{d}x\right)^{\frac{1}{2}}\left(\int_{\Omega}w_{\epsilon}^{1-\frac{2}{\alpha}}|x|^{2}|\nabla u|^{2}\mathrm{d}x\right)^{\frac{1}{2}}\\ &\leq 2\left(\int_{\Omega}w_{\epsilon}^{1-\frac{2}{\alpha}}u^{2}\mathrm{d}x\right)^{\frac{1}{2}}\left(\int_{\Omega}|\nabla u|^{2}w_{\epsilon}\mathrm{d}x\right)^{\frac{1}{2}}\end{split}

by α(0,2)\alpha\in(0,2) and |x|234|x|2+14ϵ2|x|^{2}\leq\frac{3}{4}|x|^{2}+\frac{1}{4}\epsilon^{2} on BϵB_{\epsilon}. This shows that

(N+α2)wϵ121αuL2(Ω)2|u|L2(Ω;wϵ).(N+\alpha-2)\|w_{\epsilon}^{\frac{1}{2}-\frac{1}{\alpha}}u\|_{L^{2}(\Omega)}\leq 2\||\nabla u|\|_{L^{2}(\Omega;w_{\epsilon})}.

Finally, by (3.9) and 14ϵ234|x|2+14ϵ2m2\frac{1}{4}\epsilon^{2}\leq\frac{3}{4}|x|^{2}+\frac{1}{4}\epsilon^{2}\leq m^{2} in Ω\Omega (see (2.3) for mm), we get (3.10). \square

To prove that the solution of the non-degenerate equation converges weakly in the solution space to the solution of the degenerate equation, we first show that the approximate solutions are bounded.

Lemma 3.2.

Let uku_{k} be a solution of (3.8) with fkL2(Ω;wk1)f_{k}\in L^{2}(\Omega;w_{k}^{-1}). For each kk\in\mathbb{N}, then

ukHwk,01(Ω)CfkL2(Ω;wk1),\|u_{k}\|_{H_{w_{k},0}^{1}(\Omega)}\leq C\|f_{k}\|_{L^{2}(\Omega;w_{k}^{-1})},

where the constant C>0C>0 depends only on α,N\alpha,N and Ω\Omega.

Proof:  Let ukHwk,01(Ω)u_{k}\in H_{w_{k},0}^{1}(\Omega) be the test function. Then

Ω|uk|2wkdx(Ω|fkwk1|2wkdx)12(Ωuk2wkdx)12.\begin{split}\int_{\Omega}|\nabla u_{k}|^{2}w_{k}\mathrm{d}x\leq\left(\int_{\Omega}|f_{k}w_{k}^{-1}|^{2}w_{k}\mathrm{d}x\right)^{\frac{1}{2}}\left(\int_{\Omega}u_{k}^{2}w_{k}\mathrm{d}x\right)^{\frac{1}{2}}.\end{split}

By (3.10) in Lemma 3.1, we get

ukHwk,01(Ω)CfkL2(Ω;wk1),\|u_{k}\|_{H_{w_{k},0}^{1}(\Omega)}\leq C\|f_{k}\|_{L^{2}(\Omega;w_{k}^{-1})}\,,

where the constant C>0C>0 depends only on α,N\alpha,N and Ω\Omega. \square

Now, we are ready to show the existence of the solution for degenerate equation (2.1) by using the approximation via the solutions of the non-degenerate equations.

Lemma 3.3.

Let ukHwk,0(Ω)u_{k}\in H_{w_{k},0}(\Omega) be the solution of (3.8) with fk=ff_{k}=f, where fL2(Ω;w1)f\in L^{2}(\Omega;w^{-1}) and kk\in\mathbb{N}. Then, there is a u0Hw,01(Ω)u_{0}\in H_{w,0}^{1}(\Omega) such that

(3.11) uku0 weakly in Hw,01(Ω),u_{k}\rightharpoonup u_{0}\mbox{ weakly in }H_{w,0}^{1}(\Omega),

and

(3.12) uku0 strongly in L2(Ω).u_{k}\rightarrow u_{0}\mbox{ strongly in }L^{2}(\Omega).

Moreover, u0u_{0} is the unique solution of (2.1) with fL2(Ω;w1)f\in L^{2}(\Omega;w^{-1}).

Proof:  Since fL2(Ω;w1)f\in L^{2}(\Omega;w^{-1}), we have

Ω(fwk)1wkdx=Ω(fw1)2(wwk1)wdxΩ(fw1)2wdx\int_{\Omega}(fw_{k})^{-1}w_{k}\mathrm{d}x=\int_{\Omega}(fw^{-1})^{2}(ww_{k}^{-1})w\mathrm{d}x\leq\int_{\Omega}(fw^{-1})^{2}w\mathrm{d}x

according to wwkw\leq w_{k} for all kk\in\mathbb{N}. i.e., fL2(Ω;wk1)f\in L^{2}(\Omega;w_{k}^{-1}) for all kk\in\mathbb{N}. From Lemma 3.2, for each kk\in\mathbb{N}, since wwkw\leq w_{k} for all kk\in\mathbb{N}, we have

ukHw,01(Ω)ukHwk,01(Ω)CfL2(Ω;wk1)CfL2(Ω;w1),\|u_{k}\|_{H_{w,0}^{1}(\Omega)}\leq\|u_{k}\|_{H_{w_{k},0}^{1}(\Omega)}\leq C\|f\|_{L^{2}(\Omega;w_{k}^{-1})}\leq C\|f\|_{L^{2}(\Omega;w^{-1})},

where the constant C>0C>0 depends only on α,N\alpha,N and Ω\Omega. Then there exists a subsequence of {uk}k\{u_{k}\}_{k\in\mathbb{N}}, still denote by itself, and u~0Hw,01(Ω)\widetilde{u}_{0}\in H_{w,0}^{1}(\Omega), such that

uku~0 weakly in Hw,01(Ω),u_{k}\rightharpoonup\widetilde{u}_{0}\mbox{ weakly in }H_{w,0}^{1}(\Omega),

and

uku~0 strongly in L2(Ω).u_{k}\rightarrow\widetilde{u}_{0}\mbox{ strongly in }L^{2}(\Omega).

by Hw,01(Ω)L2(Ω)H_{w,0}^{1}(\Omega)\hookrightarrow L^{2}(\Omega) is compact (see Lemma 2.3).

Now, we prove u~0\widetilde{u}_{0} satisfies the equation (2.1) with fL2(Ω;w1)f\in L^{2}(\Omega;w^{-1}).

Let ψ𝒟(Ω)\psi\in\mathcal{D}(\Omega). Let ϵ>0\epsilon>0. By (3.11), there exists k0k_{0}\in\mathbb{N}, such that

(3.13) |Ω(ukψ)wdxΩ(u~0ψ)wdx|<12ϵ when kk0.\left|\int_{\Omega}(\nabla u_{k}\cdot\nabla\psi)w\mathrm{d}x-\int_{\Omega}(\nabla\widetilde{u}_{0}\cdot\nabla\psi)w\mathrm{d}x\right|<\frac{1}{2}\epsilon\mbox{ when }k\geq k_{0}.

Since uku_{k} is a solution of (3.8) for each kk\in\mathbb{N}, we have

(3.14) Ω(ukψ)wkdx=Ωfψdx.\int_{\Omega}(\nabla u_{k}\cdot\nabla\psi)w_{k}\mathrm{d}x=\int_{\Omega}f\psi\mathrm{d}x.

Note that wk=ww_{k}=w on ΩB1k\Omega\setminus B_{\frac{1}{k}} for kk0k\geq k_{0}, we have

(3.15) Ω(ukψ)wkdx=ΩB1k(ukψ)wdx+B1k(ukψ)wkdx.\begin{split}\int_{\Omega}(\nabla u_{k}\cdot\nabla\psi)w_{k}\mathrm{d}x&=\int_{\Omega\setminus B_{\frac{1}{k}}}(\nabla u_{k}\cdot\nabla\psi)w\mathrm{d}x+\int_{B_{\frac{1}{k}}}(\nabla u_{k}\cdot\nabla\psi)w_{k}\mathrm{d}x.\end{split}

By Lemma 3.2 we have

(3.16) |B1k(ukψ)wkdx|(B1k|uk|2wkdx)12(B1k|ψ|2wkdx)12(supxΩ|ψ(x)|)(Ω|uk|2wkdx)12wk(B1k)12Cψ,N,αfL2(Ω;w1)1kα+N2,\begin{split}\left|\int_{B_{\frac{1}{k}}}(\nabla u_{k}\cdot\nabla\psi)w_{k}\mathrm{d}x\right|&\leq\left(\int_{B_{\frac{1}{k}}}|\nabla u_{k}|^{2}w_{k}\mathrm{d}x\right)^{\frac{1}{2}}\left(\int_{B_{\frac{1}{k}}}|\nabla\psi|^{2}w_{k}\mathrm{d}x\right)^{\frac{1}{2}}\\ &\leq\left(\sup_{x\in\Omega}|\nabla\psi(x)|\right)\left(\int_{\Omega}|\nabla u_{k}|^{2}w_{k}\mathrm{d}x\right)^{\frac{1}{2}}w_{k}(B_{\frac{1}{k}})^{\frac{1}{2}}\\ &\leq C_{\psi,N,\alpha}\|f\|_{L^{2}(\Omega;w^{-1})}\frac{1}{k^{\frac{\alpha+N}{2}}},\end{split}

where Cψ,N,α>0C_{\psi,N,\alpha}>0 is a constant that depends only on ψ,Ω,N\psi,\Omega,N and α\alpha, and wk(B1k)12=(B1kwkdx)12w_{k}(B_{\frac{1}{k}})^{\frac{1}{2}}=\left(\int_{B_{\frac{1}{k}}}w_{k}\mathrm{d}x\right)^{\frac{1}{2}}. Hence we can assume

(3.17) |B1k(ukψ)wkdx|<14ϵ when kk0.\left|\int_{B_{\frac{1}{k}}}(\nabla u_{k}\cdot\nabla\psi)w_{k}\mathrm{d}x\right|<\frac{1}{4}\epsilon\mbox{ when }k\geq k_{0}\,.

On the other hand, by wwkw\leq w_{k}, and by the same argument as for (3.16), we have

|B1k(ukψ)wdx|B1k|uk||ψ|wkdx(B1k|uk|2wkdx)12(B1k|ψ|2wkdx)12Cψ,N,αfL2(Ω;w1)1kα+N2,\begin{split}\left|\int_{B_{\frac{1}{k}}}(\nabla u_{k}\cdot\nabla\psi)w\mathrm{d}x\right|&\leq\int_{B_{\frac{1}{k}}}|\nabla u_{k}||\nabla\psi|w_{k}\mathrm{d}x\leq\left(\int_{B_{\frac{1}{k}}}|\nabla u_{k}|^{2}w_{k}\mathrm{d}x\right)^{\frac{1}{2}}\left(\int_{B_{\frac{1}{k}}}|\nabla\psi|^{2}w_{k}\mathrm{d}x\right)^{\frac{1}{2}}\\ &\leq C_{\psi,N,\alpha}\|f\|_{L^{2}(\Omega;w^{-1})}\frac{1}{k^{\frac{\alpha+N}{2}}},\end{split}

hence we also can assume

(3.18) |B1k(ukψ)wdx|<14ϵ when kk0.\left|\int_{B_{\frac{1}{k}}}(\nabla u_{k}\cdot\nabla\psi)w\mathrm{d}x\right|<\frac{1}{4}\epsilon\mbox{ when }k\geq k_{0}.

From (3.13), (3.14), (3.15), (3.17) and (3.18), we obtain

|Ω(u~0ψ)wdxΩfψdx||Ω(ukψ)wkdxΩ(ukψ)wdx|+|Ω(u~0ψ)wdxΩ(ukψ)wdx|+|Ω(ukψ)wkdxΩfψdx||B1k(ukψ)wkdx|+|B1k(ukψ)wdx|+12ϵ<ϵ.\begin{split}&\left|\int_{\Omega}(\nabla\widetilde{u}_{0}\cdot\nabla\psi)w\mathrm{d}x-\int_{\Omega}f\psi\mathrm{d}x\right|\\ &\leq\left|\int_{\Omega}(\nabla u_{k}\cdot\nabla\psi)w_{k}\mathrm{d}x-\int_{\Omega}(\nabla u_{k}\cdot\nabla\psi)w\mathrm{d}x\right|+\left|\int_{\Omega}(\nabla\widetilde{u}_{0}\cdot\nabla\psi)w\mathrm{d}x-\int_{\Omega}(\nabla u_{k}\cdot\nabla\psi)w\mathrm{d}x\right|\\ &\hskip 12.80373pt+\left|\int_{\Omega}(\nabla u_{k}\cdot\nabla\psi)w_{k}\mathrm{d}x-\int_{\Omega}f\psi\mathrm{d}x\right|\\ &\leq\left|\int_{B_{\frac{1}{k}}}(\nabla u_{k}\cdot\nabla\psi)w_{k}\mathrm{d}x\right|+\left|\int_{B_{\frac{1}{k}}}(\nabla u_{k}\cdot\nabla\psi)w\mathrm{d}x\right|+\frac{1}{2}\epsilon<\epsilon.\end{split}

This implies that

Ω(u~0ψ)wdx=Ωfψdx.\int_{\Omega}(\nabla\widetilde{u}_{0}\cdot\nabla\psi)w\mathrm{d}x=\int_{\Omega}f\psi\mathrm{d}x.

This proves that u~0\widetilde{u}_{0} is a solution of (2.1).

Finally, by the uniqueness of the solution of the equation (2.1), we get u~0=u0\widetilde{u}_{0}=u_{0}. This complete the proof of the lemma. \square

Next, we transform the inhomogeneous problem (2.1) into a boundary value problem to facilitate the subsequent proof of the three-ball theorem, and the proof of QWUCP.

Corollary 3.4.

Let u0Hw1(Ω)u_{0}\in H_{w}^{1}(\Omega) be a solution of the equation

(3.19) {div(wu)=0,in Ω,u=g,on Ω,\begin{cases}-\operatorname{div}(w\nabla u)=0,&\mbox{in }\Omega,\\ u=g,&\mbox{on }\partial\Omega,\end{cases}

where gH32(Ω)g\in H^{\frac{3}{2}}(\partial\Omega) is a given function. Let ukHwk1(Ω)u_{k}\in H_{w_{k}}^{1}(\Omega) be a solution of the following equation

{div(wkuk)=0,in Ω,uk=g,on Ω.\begin{cases}-\operatorname{div}(w_{k}\nabla u_{k})=0,&\mbox{in }\Omega,\\ u_{k}=g,&\mbox{on }\partial\Omega.\end{cases}

Then we have

uku0 strongly in L2(Ω).\begin{split}u_{k}&\rightarrow u_{0}\mbox{ strongly in }L^{2}(\Omega).\end{split}

Proof:  We denote by vH2(Ω)v\in H^{2}(\Omega) a solution of the following equation

{Δv+v=0,in Ω,v=g,on Ω.\begin{cases}-\Delta v+v=0,&\mbox{in }\Omega,\\ v=g,&\mbox{on }\partial\Omega\,.\end{cases}

Let R0>0R_{0}>0 with B3R0ΩB_{3R_{0}}\subseteq\Omega and take the cut-off function ζC0(Ω)\zeta\in C_{0}^{\infty}(\Omega) such that

0ζ1,ζ=0 on BR0,ζ=1 on ΩB2R0,|ζ|CR0,0\leq\zeta\leq 1,\quad\zeta=0\mbox{ on }B_{R_{0}},\quad\zeta=1\mbox{ on }\Omega\setminus B_{2R_{0}},\quad|\nabla\zeta|\leq\frac{C}{R_{0}},

where C>0C>0 is a generic constant. Set v0=ζvv_{0}=\zeta v. It is obvious that div(wv0)L2(Ω;w)\operatorname{div}(w\nabla v_{0})\in L^{2}(\Omega;w) since v0=0v_{0}=0 on BR0B_{R_{0}}, and v0=gv_{0}=g on Ω\partial\Omega.

Taking u~0=u0v0\widetilde{u}_{0}=u_{0}-v_{0}, then u~0Hw,01(Ω)\widetilde{u}_{0}\in H_{w,0}^{1}(\Omega) satisfies the following equation

{div(wu~0)=div(wv0),in Ω,u~0=0,on Ω,\begin{cases}-\operatorname{div}(w\nabla\widetilde{u}_{0})=\operatorname{div}(w\nabla v_{0}),&\mbox{in }\Omega,\\ \widetilde{u}_{0}=0,&\mbox{on }\partial\Omega,\end{cases}

By Lemma 3.3, there exists a sequence uk,0Hwk,01(Ω)u_{k,0}\in H_{w_{k},0}^{1}(\Omega) satisfies

{div(wkuk,0)=div(wv0),in Ω,uk,0=0,on Ω,\begin{cases}-\operatorname{div}(w_{k}\nabla u_{k,0})=\operatorname{div}(w\nabla v_{0}),&\mbox{in }\Omega,\\ u_{k,0}=0,&\mbox{on }\partial\Omega,\end{cases}

and

uk,0u~0 weakly in Hw,01(Ω),uk,0u~0 strongly in L2(Ω).\begin{split}u_{k,0}&\rightharpoonup\widetilde{u}_{0}\mbox{ weakly in }H_{w,0}^{1}(\Omega),\\ u_{k,0}&\rightarrow\widetilde{u}_{0}\mbox{ strongly in }L^{2}(\Omega).\end{split}

Denote uk=uk,0+v0u_{k}=u_{k,0}+v_{0}. Notice that v0=0v_{0}=0 on BR0B_{R_{0}} and w=wkw=w_{k} for k>1R0k>\frac{1}{R_{0}}, then uku_{k} is the solution of the following system

{div(wkuk)=0,in Ω,uk=g,on Ω,\begin{cases}-\operatorname{div}(w_{k}\nabla u_{k})=0,&\mbox{in }\Omega,\\ u_{k}=g,&\mbox{on }\partial\Omega,\end{cases}

and

uku0 strongly in L2(Ω).\begin{split}u_{k}&\rightarrow u_{0}\mbox{ strongly in }L^{2}(\Omega).\end{split}

This complete the proof of Corollary 3.4. \square

Before proving the three-ball theorem, we present some preliminary results. The proof of the degenerate three-ball theorem is more complex than that of the standard one, and the following corollary will play a crucial role in establishing the degenerate version.

Corollary 3.5.

Let u0,uk(k)u_{0},u_{k}\ (k\in\mathbb{N}) be defined as in Lemma 3.3 or Corollary 3.4. Then for any η>0\eta>0 with BηΩB_{\eta}\subseteq\Omega, we have

(3.20) Bηwkuk2dxBηwu02dx as k,\int_{B_{\eta}}w_{k}u_{k}^{2}\mathrm{d}x\rightarrow\int_{B_{\eta}}wu_{0}^{2}\mathrm{d}x\mbox{ as }k\rightarrow\infty,

and

(3.21) Rk:=α2k2B1k(34|y|2+14k2)α21uk2dy0 as k.R_{k}:=\frac{\alpha}{2k^{2}}\int_{B_{\frac{1}{k}}}\left(\frac{3}{4}|y|^{2}+\frac{1}{4k^{2}}\right)^{\frac{\alpha}{2}-1}u_{k}^{2}\mathrm{d}y\rightarrow 0\mbox{ as }k\rightarrow\infty.

Proof:  Since η>0\eta>0, let kk\in\mathbb{N} be sufficiently large such that 1k<12η\frac{1}{k}<\frac{1}{2}\eta. Since w=wkw=w_{k} in BηB1kB_{\eta}\setminus B_{\frac{1}{k}}, by Lemma 3.3 and the uniform continuity property, we see that

|Bηwkuk2dxBηwu02dx||Bηwkuk2dxBηwuk2dx|+|Bηwuk2dxBηwu02dx|max|x|1k[(34|x|2+14k2)α2|x|α]ukL2(Bη)2+|Bηwuk2dxBηwu02dx|Cmax|x|1k[(34|x|2+14k2)α2|x|α]+|Bηwuk2dxBηwu02dx|0 as k.\begin{split}&\left|\int_{B_{\eta}}w_{k}u_{k}^{2}\mathrm{d}x-\int_{B_{\eta}}wu_{0}^{2}\mathrm{d}x\right|\\ &\leq\left|\int_{B_{\eta}}w_{k}u_{k}^{2}\mathrm{d}x-\int_{B_{\eta}}wu_{k}^{2}\mathrm{d}x\right|+\left|\int_{B_{\eta}}wu_{k}^{2}\mathrm{d}x-\int_{B_{\eta}}wu_{0}^{2}\mathrm{d}x\right|\\ &\leq\max_{|x|\leq\frac{1}{k}}\left[\left(\frac{3}{4}|x|^{2}+\frac{1}{4k^{2}}\right)^{\frac{\alpha}{2}}-|x|^{\alpha}\right]\|u_{k}\|_{L^{2}(B_{\eta})}^{2}+\left|\int_{B_{\eta}}wu_{k}^{2}\mathrm{d}x-\int_{B_{\eta}}wu_{0}^{2}\mathrm{d}x\right|\\ &\leq C\max_{|x|\leq\frac{1}{k}}\left[\left(\frac{3}{4}|x|^{2}+\frac{1}{4k^{2}}\right)^{\frac{\alpha}{2}}-|x|^{\alpha}\right]+\left|\int_{B_{\eta}}wu_{k}^{2}\mathrm{d}x-\int_{B_{\eta}}wu_{0}^{2}\mathrm{d}x\right|\rightarrow 0\mbox{ as }k\rightarrow\infty.\end{split}

This proves the (3.20). Now, we are going to prove (3.21).

Note that 14k234|y|2+14k21k2\frac{1}{4k^{2}}\leq\frac{3}{4}|y|^{2}+\frac{1}{4k^{2}}\leq\frac{1}{k^{2}} in B1kB_{\frac{1}{k}}, we have

α2B1kwkuk2dxRk2αB1kwkuk2dx,\frac{\alpha}{2}\int_{B_{\frac{1}{k}}}w_{k}u_{k}^{2}\mathrm{d}x\leq R_{k}\leq 2\alpha\int_{B_{\frac{1}{k}}}w_{k}u_{k}^{2}\mathrm{d}x,

so, we only need to show that

B1kwkuk2dx0 as k0.\int_{B_{\frac{1}{k}}}w_{k}u_{k}^{2}\mathrm{d}x\rightarrow 0\mbox{ as }k\rightarrow 0.

Indeed, by (3.12), we have

B1kwkuk2dx|B1kwkuk2dxB1kwu02dx|+B1kwu02dx|B1k(wkuk2wku02)dx|+|B1k(wkw)u02dx|+B1kwu02dx1kα|B1kuk2dxB1ku02dx|+2mαB1ku02dx+B1kwu02dx0\begin{split}\int_{B_{\frac{1}{k}}}w_{k}u_{k}^{2}\mathrm{d}x&\leq\left|\int_{B_{\frac{1}{k}}}w_{k}u_{k}^{2}\mathrm{d}x-\int_{B_{\frac{1}{k}}}wu_{0}^{2}\mathrm{d}x\right|+\int_{B_{\frac{1}{k}}}wu_{0}^{2}\mathrm{d}x\\ &\leq\left|\int_{B_{\frac{1}{k}}}(w_{k}u_{k}^{2}-w_{k}u_{0}^{2})\mathrm{d}x\right|+\left|\int_{B_{\frac{1}{k}}}(w_{k}-w)u_{0}^{2}\mathrm{d}x\right|+\int_{B_{\frac{1}{k}}}wu_{0}^{2}\mathrm{d}x\\ &\leq\frac{1}{k^{\alpha}}\left|\int_{B_{\frac{1}{k}}}u_{k}^{2}\mathrm{d}x-\int_{B_{\frac{1}{k}}}u_{0}^{2}\mathrm{d}x\right|+2m^{\alpha}\int_{B_{\frac{1}{k}}}u_{0}^{2}\mathrm{d}x+\int_{B_{\frac{1}{k}}}wu_{0}^{2}\mathrm{d}x\rightarrow 0\end{split}

as kk\rightarrow\infty, where mm is defined in (2.3). \square

4. Three ball theorem

We now proceed to prove the degenerate three-ball theorem, also using an approximation method. First, we introduce some notations.

Set 0<ϵr0<\epsilon\ll r, let

H(r)=Brw|v(y)|2dy,D(r)=Brw|v(y)|2(r2|y|2)dy,H(r)=\int_{B_{r}}w|v(y)|^{2}\mathrm{d}y,\quad D(r)=\int_{B_{r}}w|\nabla v(y)|^{2}(r^{2}-|y|^{2})\mathrm{d}y,

and

Hϵ(r)=Brwϵ|v(y)|2dy,Dϵ(r)=Brwϵ|v(y)|2(r2|y|2)dy,H_{\epsilon}(r)=\int_{B_{r}}w_{\epsilon}|v(y)|^{2}\mathrm{d}y,\quad D_{\epsilon}(r)=\int_{B_{r}}w_{\epsilon}|\nabla v(y)|^{2}(r^{2}-|y|^{2})\mathrm{d}y,

where wϵw_{\epsilon} defined in (3.7). Let

Φϵ(r)={Dϵ(r)Hϵ(r),if Hϵ0,0,if Hϵ=0.\Phi_{\epsilon}(r)=\begin{cases}\frac{D_{\epsilon}(r)}{H_{\epsilon}(r)},&\mbox{if }H_{\epsilon}\neq 0,\\ 0,&\mbox{if }H_{\epsilon}=0.\end{cases}

We first prove the following three-ball theorem for the uniformly elliptic operator with ϵ\epsilon, which contains additional terms 12r1r2rαRϵHϵ(r)dr\frac{1}{2}\int_{r_{1}}^{r_{2}}\frac{r^{\alpha}R_{\epsilon}}{H_{\epsilon}(r)}\mathrm{d}r and 12r2r3rαRϵHϵ(r)dr\frac{1}{2}\int_{r_{2}}^{r_{3}}\frac{r^{\alpha}R_{\epsilon}}{H_{\epsilon}(r)}\mathrm{d}r, compared to the standard form of the three-ball theorem.

Lemma 4.1.

Let R0>0R_{0}>0 with B2R0ΩB_{2R_{0}}\subseteq\Omega, and let ϵ(0,12R0)\epsilon\in(0,\frac{1}{2}R_{0}) be small enough. Let vv be a solution of div(wϵv)=0\operatorname{div}(w_{\epsilon}\nabla v)=0 in BR0B_{R_{0}}. Then for any 0<2ϵ<r1<r2<r3<R00<2\epsilon<r_{1}<r_{2}<r_{3}<R_{0}, we have

(4.22) 1r1αr2α(logHϵ(r2)Hϵ(r1)+12r1r2rαRϵHϵ(r)dr)1r2αr3α(logHϵ(r3)Hϵ(r2)+12r2r3rαRϵHϵ(r)dr),\frac{1}{r_{1}^{-\alpha}-r_{2}^{-\alpha}}\left(\log\frac{H_{\epsilon}(r_{2})}{H_{\epsilon}(r_{1})}+\frac{1}{2}\int_{r_{1}}^{r_{2}}\frac{r^{\alpha}R_{\epsilon}}{H_{\epsilon}(r)}\mathrm{d}r\right)\leq\frac{1}{r_{2}^{-\alpha}-r_{3}^{-\alpha}}\left(\log\frac{H_{\epsilon}(r_{3})}{H_{\epsilon}(r_{2})}+\frac{1}{2}\int_{r_{2}}^{r_{3}}\frac{r^{\alpha}R_{\epsilon}}{H_{\epsilon}(r)}\mathrm{d}r\right),

where

(4.23) Rϵ=α2ϵ2Bϵ(34|y|2+14ϵ2)α21v2dy.R_{\epsilon}=\frac{\alpha}{2}\epsilon^{2}\int_{B_{\epsilon}}\left(\frac{3}{4}|y|^{2}+\frac{1}{4}\epsilon^{2}\right)^{\frac{\alpha}{2}-1}v^{2}\mathrm{d}y.

Proof:  It is obvious that vH2(BR0)v\in H^{2}(B_{R_{0}}) since (ϵ2)αwϵ(\frac{\epsilon}{2})^{\alpha}\leq w_{\epsilon} on Ω\Omega. i.e., div(wϵv)=0-\operatorname{div}(w_{\epsilon}\nabla v)=0 in BR0B_{R_{0}} is indeed a uniformly elliptic equation. We divide our proof into the following steps.

Step 1. We compute Hϵ(r)H_{\epsilon}^{\prime}(r) and Dϵ(r)D_{\epsilon}(r). It is clear that

(4.24) Hϵ(r)=Brwϵ|v(y)|2dσ(y).H_{\epsilon}^{\prime}(r)=\int_{\partial B_{r}}w_{\epsilon}|v(y)|^{2}\mathrm{d}\sigma(y).

By

Brdiv(wϵ(v)v(r2|y|2))dy=Brwϵ(vν)v(r2|y|2)dσ(y)=0,\int_{B_{r}}\operatorname{div}\big{(}w_{\epsilon}(\nabla v)v(r^{2}-|y|^{2})\big{)}\mathrm{d}y=\int_{\partial B_{r}}w_{\epsilon}(\nabla v\cdot\nu)v(r^{2}-|y|^{2})\mathrm{d}\sigma(y)=0,

and

Brdiv(wϵ(v)v(r2|y|2))dy=Brdiv(wϵv)v(r2|y|2)dy+Brwϵ|v|2(r2|y|2)dy2Brwϵvvydy\begin{split}&\int_{B_{r}}\operatorname{div}\big{(}w_{\epsilon}(\nabla v)v(r^{2}-|y|^{2})\big{)}\mathrm{d}y\\ &=\int_{B_{r}}\operatorname{div}(w_{\epsilon}\nabla v)v(r^{2}-|y|^{2})\mathrm{d}y+\int_{B_{r}}w_{\epsilon}|\nabla v|^{2}(r^{2}-|y|^{2})\mathrm{d}y-2\int_{B_{r}}w_{\epsilon}v\nabla v\cdot y\mathrm{d}y\end{split}

we get

(4.25) Dϵ(r)=2BrwϵvvydyD_{\epsilon}(r)=2\int_{B_{r}}w_{\epsilon}v\nabla v\cdot y\mathrm{d}y

by div(wϵv)=0\operatorname{div}(w_{\epsilon}\nabla v)=0.

Step 2. We compute Hϵ(r)Hϵ(r)\frac{H_{\epsilon}^{\prime}(r)}{H_{\epsilon}(r)}. Set

G(y)=r2|y|2,G(y)=r^{2}-|y|^{2},

then

G|Br=0,G=2y,Gν|Br=2r.G|_{\partial B_{r}}=0,\quad\nabla G=-2y,\quad\frac{\partial G}{\partial\nu}\bigg{|}_{\partial B_{r}}=-2r.

We compute

Brdiv(wϵv2)Gdy=Brdiv(wϵGv2)dyBrwϵv2Gdy=BrwϵGv2νdσ(y)Brwϵv2Gdy=BrwϵGv2dy=Brdiv(wϵv2G)dy+Brv2div(wϵG)dy=2rBrwϵv2dσ(y)2(N+α)Brwϵv2dy+α2ϵ2Bϵ(34|y|2+14ϵ2)α21v2dy.\begin{split}&\int_{B_{r}}\operatorname{div}(w_{\epsilon}\nabla v^{2})G\mathrm{d}y\\ &=\int_{B_{r}}\operatorname{div}(w_{\epsilon}G\nabla v^{2})\mathrm{d}y-\int_{B_{r}}w_{\epsilon}\nabla v^{2}\cdot\nabla G\mathrm{d}y=\int_{\partial B_{r}}w_{\epsilon}G\nabla v^{2}\cdot\nu\mathrm{d}\sigma(y)-\int_{B_{r}}w_{\epsilon}\nabla v^{2}\cdot\nabla G\mathrm{d}y\\ &=-\int_{B_{r}}w_{\epsilon}\nabla G\cdot\nabla v^{2}\mathrm{d}y=-\int_{B_{r}}\operatorname{div}(w_{\epsilon}v^{2}\nabla G)\mathrm{d}y+\int_{B_{r}}v^{2}\operatorname{div}(w_{\epsilon}\nabla G)\mathrm{d}y\\ &=2r\int_{\partial B_{r}}w_{\epsilon}v^{2}\mathrm{d}\sigma(y)-2(N+\alpha)\int_{B_{r}}w_{\epsilon}v^{2}\mathrm{d}y+\frac{\alpha}{2}\epsilon^{2}\int_{B_{\epsilon}}\left(\frac{3}{4}|y|^{2}+\frac{1}{4}\epsilon^{2}\right)^{\frac{\alpha}{2}-1}v^{2}\mathrm{d}y.\end{split}

Since

Brdiv(wϵv2)Gdy=2Brdiv(wϵvv)Gdx=2Brwϵ|v|2Gdx+2Brvdiv(wϵv)Gdx=2Dϵ(r)\begin{split}\int_{B_{r}}\operatorname{div}(w_{\epsilon}\nabla v^{2})G\mathrm{d}y&=2\int_{B_{r}}\operatorname{div}(w_{\epsilon}v\nabla v)G\mathrm{d}x\\ &=2\int_{B_{r}}w_{\epsilon}|\nabla v|^{2}G\mathrm{d}x+2\int_{B_{r}}v\operatorname{div}(w_{\epsilon}\nabla v)G\mathrm{d}x=2D_{\epsilon}(r)\end{split}

by (4.24), we have

(4.26) Hϵ(r)=N+αrHϵ(r)+1rDϵ(r)12rRϵ,\begin{split}H_{\epsilon}^{\prime}(r)=\frac{N+\alpha}{r}H_{\epsilon}(r)+\frac{1}{r}D_{\epsilon}(r)-\frac{1}{2r}R_{\epsilon},\end{split}

where

Rϵ=α2ϵ2Bϵ(34|y|2+14ϵ2)α21v2dy.R_{\epsilon}=\frac{\alpha}{2}\epsilon^{2}\int_{B_{\epsilon}}\left(\frac{3}{4}|y|^{2}+\frac{1}{4}\epsilon^{2}\right)^{\frac{\alpha}{2}-1}v^{2}\mathrm{d}y.

This implies

(4.27) Hϵ(r)Hϵ(r)=N+αr+1rDϵ(r)Hϵ(r)12rRϵHϵ(r).\frac{H_{\epsilon}^{\prime}(r)}{H_{\epsilon}(r)}=\frac{N+\alpha}{r}+\frac{1}{r}\frac{D_{\epsilon}(r)}{H_{\epsilon}(r)}-\frac{1}{2r}\frac{R_{\epsilon}}{H_{\epsilon}(r)}.

Step 3. We compute Dϵ(r)D_{\epsilon}^{\prime}(r). Now,

(4.28) Dϵ(r)=2rBrwϵ|v(y)|2dy.\begin{split}D_{\epsilon}^{\prime}(r)=2r\int_{B_{r}}w_{\epsilon}|\nabla v(y)|^{2}\mathrm{d}y.\end{split}

On one hand, we have

Brdiv[wϵ|v(y)|2(r2|y|2)y]dy=Brwϵ|v(y)|2(r2|y|2)yνdσ(y)=0.\begin{split}\int_{B_{r}}\operatorname{div}\big{[}w_{\epsilon}|\nabla v(y)|^{2}(r^{2}-|y|^{2})y\big{]}\mathrm{d}y=\int_{\partial B_{r}}w_{\epsilon}|\nabla v(y)|^{2}\left(r^{2}-|y|^{2}\right)y\cdot\nu\mathrm{d}\sigma(y)=0.\end{split}

On the other hand, we have

Brdiv[wϵ|v(y)|2(r2|y|2)y]dy=(N+α)Brwϵ|v(y)|2(r2|y|2)dyα4ϵ2Bϵ(34|y|2+14ϵ2)α21|v(y)|2(r2|y|2)dy2Brwϵ|y|2|v(y)|2dy+Brwϵ(y|v(y)|2)(r2|y|2)dy.\begin{split}&\int_{B_{r}}\operatorname{div}\big{[}w_{\epsilon}|\nabla v(y)|^{2}(r^{2}-|y|^{2})y\big{]}\mathrm{d}y\\ &=(N+\alpha)\int_{B_{r}}w_{\epsilon}|\nabla v(y)|^{2}(r^{2}-|y|^{2})\mathrm{d}y-\frac{\alpha}{4}\epsilon^{2}\int_{B_{\epsilon}}\left(\frac{3}{4}|y|^{2}+\frac{1}{4}\epsilon^{2}\right)^{\frac{\alpha}{2}-1}|\nabla v(y)|^{2}(r^{2}-|y|^{2})\mathrm{d}y\\ &\hskip 12.80373pt-2\int_{B_{r}}w_{\epsilon}|y|^{2}|\nabla v(y)|^{2}\mathrm{d}y+\int_{B_{r}}w_{\epsilon}(y\cdot\nabla|\nabla v(y)|^{2})(r^{2}-|y|^{2})\mathrm{d}y.\end{split}

Now, by the equation v(yv)=|v|2+12y|v|2\nabla v\cdot\nabla(y\cdot\nabla v)=|\nabla v|^{2}+\frac{1}{2}y\cdot\nabla|\nabla v|^{2} and div(wϵv)=0\operatorname{div}(w_{\epsilon}\nabla v)=0 and div(wϵv)=0\operatorname{div}(w_{\epsilon}\nabla v)=0, we get

Brwϵy|v(y)|2(r2|y|2)dy=2Brwϵ|v|2(r2|y|2)dy+2Brwϵv(yv)(r2|y|2)dy=2Dϵ(r)+2Brdiv[wϵ(r2|y|2)(yv)v]dx2Br(yv)div[wϵ(r2|y|2)v]dy=2Dϵ(r)2Br(yv)div(wϵv)(r2|y|2)dy+4Brwϵ(yv)2dy=2Dϵ(r)+4Brwϵ(yv)2dy.\begin{split}&\int_{B_{r}}w_{\epsilon}y\cdot\nabla|\nabla v(y)|^{2}(r^{2}-|y|^{2})\mathrm{d}y\\ &=-2\int_{B_{r}}w_{\epsilon}|\nabla v|^{2}(r^{2}-|y|^{2})\mathrm{d}y+2\int_{B_{r}}w_{\epsilon}\nabla v\cdot\nabla(y\cdot\nabla v)(r^{2}-|y|^{2})\mathrm{d}y\\ &=-2D_{\epsilon}(r)+2\int_{B_{r}}\operatorname{div}\left[w_{\epsilon}(r^{2}-|y|^{2})(y\cdot\nabla v)\nabla v\right]\mathrm{d}x-2\int_{B_{r}}(y\cdot\nabla v)\operatorname{div}\left[w_{\epsilon}(r^{2}-|y|^{2})\nabla v\right]\mathrm{d}y\\ &=-2D_{\epsilon}(r)-2\int_{B_{r}}(y\cdot\nabla v)\operatorname{div}(w_{\epsilon}\nabla v)(r^{2}-|y|^{2})\mathrm{d}y+4\int_{B_{r}}w_{\epsilon}(y\cdot\nabla v)^{2}\mathrm{d}y\\ &=-2D_{\epsilon}(r)+4\int_{B_{r}}w_{\epsilon}(y\cdot\nabla v)^{2}\mathrm{d}y.\end{split}

Then

(4.29) 0=(N+α2)Dϵ(r)2Brwϵ|y|2|v(y)|2dy+4Brwϵ(yv)2dyR~ϵ,\begin{split}0=(N+\alpha-2)D_{\epsilon}(r)-2\int_{B_{r}}w_{\epsilon}|y|^{2}|\nabla v(y)|^{2}\mathrm{d}y+4\int_{B_{r}}w_{\epsilon}(y\cdot\nabla v)^{2}\mathrm{d}y-\widetilde{R}_{\epsilon},\end{split}

where

R~ϵ=α4ϵ2Bϵ(34|y|2+14ϵ2)α21|v(y)|2(r2|y|2)dy.\widetilde{R}_{\epsilon}=\frac{\alpha}{4}\epsilon^{2}\int_{B_{\epsilon}}\left(\frac{3}{4}|y|^{2}+\frac{1}{4}\epsilon^{2}\right)^{\frac{\alpha}{2}-1}|\nabla v(y)|^{2}(r^{2}-|y|^{2})\mathrm{d}y.

Since

Dϵ(r)=r2Brwϵ|v|2dyBrwϵ|y|2|v|2dy,D_{\epsilon}(r)=r^{2}\int_{B_{r}}w_{\epsilon}|\nabla v|^{2}\mathrm{d}y-\int_{B_{r}}w_{\epsilon}|y|^{2}|\nabla v|^{2}\mathrm{d}y,

we obtain that

Brwϵ|y|2|v|2dy=Dϵ(r)r2Brwϵ|v|2dy,-\int_{B_{r}}w_{\epsilon}|y|^{2}|\nabla v|^{2}\mathrm{d}y=D_{\epsilon}(r)-r^{2}\int_{B_{r}}w_{\epsilon}|\nabla v|^{2}\mathrm{d}y,

and

(N+α)Dϵ(r)=2r2Brwϵ|v|2dy4Brwϵ(yv)2dy+R~ϵ.(N+\alpha)D_{\epsilon}(r)=2r^{2}\int_{B_{r}}w_{\epsilon}|\nabla v|^{2}\mathrm{d}y-4\int_{B_{r}}w_{\epsilon}(y\cdot\nabla v)^{2}\mathrm{d}y+\widetilde{R}_{\epsilon}.

Hence,

(4.30) Dϵ(r)=N+αrDϵ(r)+4rBrwϵ(yv)2dy1rR~ϵ.D_{\epsilon}^{\prime}(r)=\frac{N+\alpha}{r}D_{\epsilon}(r)+\frac{4}{r}\int_{B_{r}}w_{\epsilon}(y\cdot\nabla v)^{2}\mathrm{d}y-\frac{1}{r}\widetilde{R}_{\epsilon}.

Step 4. We prove rαΦϵ(r)r^{\alpha}\Phi_{\epsilon}(r) is a nondecreasing function for r>0r>0. Note that Rϵ0,R~ϵ0R_{\epsilon}\geq 0,\widetilde{R}_{\epsilon}\geq 0, we obtain

Hϵ2(r)Φϵ(r)=Dϵ(r)Hϵ(r)Dϵ(r)Hϵ(r)=4r[(Brwϵ(yv)2dx)(Brwϵv2dx)(Brwϵvyvdx)2]1rR~ϵHϵ(r)+12rDϵ(r)Rϵ1rR~ϵHϵ(r).\begin{split}H_{\epsilon}^{2}(r)\Phi_{\epsilon}^{\prime}(r)&=D_{\epsilon}^{\prime}(r)H_{\epsilon}(r)-D_{\epsilon}(r)H_{\epsilon}^{\prime}(r)\\ &=\frac{4}{r}\left[\left(\int_{B_{r}}w_{\epsilon}(y\cdot\nabla v)^{2}\mathrm{d}x\right)\left(\int_{B_{r}}w_{\epsilon}v^{2}\mathrm{d}x\right)-\left(\int_{B_{r}}w_{\epsilon}vy\cdot\nabla v\mathrm{d}x\right)^{2}\right]\\ &\hskip 12.80373pt-\frac{1}{r}\widetilde{R}_{\epsilon}H_{\epsilon}(r)+\frac{1}{2r}D_{\epsilon}(r)R_{\epsilon}\\ &\geq-\frac{1}{r}\widetilde{R}_{\epsilon}H_{\epsilon}(r).\end{split}

Since ϵ2434|y|2+14ϵ2ϵ2\frac{\epsilon^{2}}{4}\leq\frac{3}{4}|y|^{2}+\frac{1}{4}\epsilon^{2}\leq\epsilon^{2}, we have

R~ϵ=α4ϵ2Bϵ(34|y|2+14ϵ2)α21|v(y)|2(r2|y|2)dyαBϵ(34|y|2+14ϵ2)α2|v(y)|2(r2|y|2)dyαDϵ(r),\begin{split}\widetilde{R}_{\epsilon}&=\frac{\alpha}{4}\epsilon^{2}\int_{B_{\epsilon}}\left(\frac{3}{4}|y|^{2}+\frac{1}{4}\epsilon^{2}\right)^{\frac{\alpha}{2}-1}|\nabla v(y)|^{2}(r^{2}-|y|^{2})\mathrm{d}y\\ &\leq\alpha\int_{B_{\epsilon}}\left(\frac{3}{4}|y|^{2}+\frac{1}{4}\epsilon^{2}\right)^{\frac{\alpha}{2}}|\nabla v(y)|^{2}(r^{2}-|y|^{2})\mathrm{d}y\leq\alpha D_{\epsilon}(r),\end{split}

which implies that

Φϵ(r)αrΦϵ(r).\Phi_{\epsilon}^{\prime}(r)\geq-\frac{\alpha}{r}\Phi_{\epsilon}(r).

Hence

(4.31) rαΦϵ(r) is a nondecreasing function for r>0.r^{\alpha}\Phi_{\epsilon}(r)\mbox{ is a nondecreasing function for $r>0$}.

Step 5. Conclusion of the proof. Again, by (4.27), we have

ddtlogHϵ(r)=Hϵ(r)Hϵ(r)=1r((N+α)+Φ(r)12RϵHϵ(r)).\frac{\mathrm{d}}{\mathrm{d}t}\log H_{\epsilon}(r)=\frac{H_{\epsilon}^{\prime}(r)}{H_{\epsilon}(r)}=\frac{1}{r}\left((N+\alpha)+\Phi(r)-\frac{1}{2}\frac{R_{\epsilon}}{H_{\epsilon}(r)}\right)\,.

Then, for 0<r1<r20<r_{1}<r_{2}, we have

logHϵ(r2)Hϵ(r1)=r1r21r((N+α)+Φϵ(r)12RϵHϵ(r))dr=r1r21r1+α(rα(N+α)+rαΦϵ(r)12rαRϵHϵ(r))dr,\begin{split}\log\frac{H_{\epsilon}(r_{2})}{H_{\epsilon}(r_{1})}&=\int_{r_{1}}^{r_{2}}\frac{1}{r}\left((N+\alpha)+\Phi_{\epsilon}(r)-\frac{1}{2}\frac{R_{\epsilon}}{H_{\epsilon}(r)}\right)\mathrm{d}r\\ &=\int_{r_{1}}^{r_{2}}\frac{1}{r^{1+\alpha}}\left(r^{\alpha}(N+\alpha)+r^{\alpha}\Phi_{\epsilon}(r)-\frac{1}{2}\frac{r^{\alpha}R_{\epsilon}}{H_{\epsilon}(r)}\right)\mathrm{d}r,\end{split}

and hence, by (4.27), we obtain

(4.32) logHϵ(r2)Hϵ(r1)+12r1r2RϵrHϵ(r)drα1(r1αr2α)(r2α(N+α)+r2αΦϵ(r2)).\begin{split}\log\frac{H_{\epsilon}(r_{2})}{H_{\epsilon}(r_{1})}+\frac{1}{2}\int_{r_{1}}^{r_{2}}\frac{R_{\epsilon}}{rH_{\epsilon}(r)}\mathrm{d}r&\leq\alpha^{-1}(r_{1}^{-\alpha}-r_{2}^{-\alpha})\big{(}r_{2}^{\alpha}(N+\alpha)+r_{2}^{\alpha}\Phi_{\epsilon}(r_{2})\big{)}.\end{split}

We note that the integral r1r2RϵrHϵ(r)dx\int_{r_{1}}^{r_{2}}\frac{R_{\epsilon}}{rH_{\epsilon}(r)}\mathrm{d}x is meaningful since Rϵ2αHϵ(r)R_{\epsilon}\leq 2\alpha H_{\epsilon}(r) for all r>0r>0 and all ϵ>0\epsilon>0. Now, for r2<r3<R0r_{2}<r_{3}<R_{0}, we have

logHϵ(r3)Hϵ(r2)=r2r31r1+α(rα(N+α)+rαΦϵ(r)12rαRϵHϵ(r))dr,\begin{split}\log\frac{H_{\epsilon}(r_{3})}{H_{\epsilon}(r_{2})}&=\int_{r_{2}}^{r_{3}}\frac{1}{r^{1+\alpha}}\left(r^{\alpha}(N+\alpha)+r^{\alpha}\Phi_{\epsilon}(r)-\frac{1}{2}\frac{r^{\alpha}R_{\epsilon}}{H_{\epsilon}(r)}\right)\mathrm{d}r,\end{split}

and hence, by (4.31), we obtain

(4.33) logHϵ(r3)Hϵ(r2)+12r2r3RϵrHϵ(r)drα1(r2αr3α)(r2α(N+α)+r2αΦϵ(r2)).\begin{split}\log\frac{H_{\epsilon}(r_{3})}{H_{\epsilon}(r_{2})}+\frac{1}{2}\int_{r_{2}}^{r_{3}}\frac{R_{\epsilon}}{rH_{\epsilon}(r)}\mathrm{d}r\geq\alpha^{-1}(r_{2}^{-\alpha}-r_{3}^{-\alpha})\big{(}r_{2}^{\alpha}(N+\alpha)+r_{2}^{\alpha}\Phi_{\epsilon}(r_{2})\big{)}.\end{split}

Combining (4.32) and (4.33), for all ϵ>0\epsilon>0, we get

1r1αr2α(logHϵ(r2)Hϵ(r1)+12r1r2RϵrHϵ(r)dr)1r2αr3α(logHϵ(r3)Hϵ(r2)+12r2r3RϵrHϵ(r)dr).\frac{1}{r_{1}^{-\alpha}-r_{2}^{-\alpha}}\left(\log\frac{H_{\epsilon}(r_{2})}{H_{\epsilon}(r_{1})}+\frac{1}{2}\int_{r_{1}}^{r_{2}}\frac{R_{\epsilon}}{rH_{\epsilon}(r)}\mathrm{d}r\right)\leq\frac{1}{r_{2}^{-\alpha}-r_{3}^{-\alpha}}\left(\log\frac{H_{\epsilon}(r_{3})}{H_{\epsilon}(r_{2})}+\frac{1}{2}\int_{r_{2}}^{r_{3}}\frac{R_{\epsilon}}{rH_{\epsilon}(r)}\mathrm{d}r\right).

This complete the proof of the lemma. \square

By a limiting argument, we obtain the following degenerate three-ball theorem.

Theorem 4.2.

Let R0>0R_{0}>0 with B2R0ΩB_{2R_{0}}\subseteq\Omega. Let u0u_{0} be a solution of div(wu0)=0-\operatorname{div}(w\nabla u_{0})=0 in BR0B_{R_{0}}. Then, for any 0<r1<r2<r3<R00<r_{1}<r_{2}<r_{3}<R_{0}, we have

(4.34) 1r1αr2αlogH(r2)H(r1)1r2αr3αlogH(r3)H(r2).\frac{1}{r_{1}^{-\alpha}-r_{2}^{-\alpha}}\log\frac{H(r_{2})}{H(r_{1})}\leq\frac{1}{r_{2}^{-\alpha}-r_{3}^{-\alpha}}\log\frac{H(r_{3})}{H(r_{2})}.

Moreover, there exists μ(0,1)\mu\in(0,1), such that

H(r2)(H(r1))μ(H(r3))1μ.H(r_{2})\leq(H(r_{1}))^{\mu}(H(r_{3}))^{1-\mu}.

Proof:  Without loss of generality, we assume that u00u_{0}\neq 0 in BR0B_{R_{0}}. By the standard regularity enhancement method for elliptic equations in [11], we have u0H2(BR0\BR02)u_{0}\in H^{2}(B_{R_{0}}\backslash B_{\frac{R_{0}}{2}}) and u0H32(BR0)u_{0}\in H^{\frac{3}{2}}(\partial B_{R_{0}}), and by Corollary 3.4, there exists ukHwk1(BR0)(k)u_{k}\in H_{w_{k}}^{1}(B_{R_{0}})\ (k\in\mathbb{N}) satisfying

{div(wkuk)=0,in BR0,uk=u0,on BR0,\begin{cases}-\operatorname{div}(w_{k}\nabla u_{k})=0,&\mbox{in }B_{R_{0}},\\ u_{k}=u_{0},&\mbox{on }\partial B_{R_{0}},\end{cases}

and

(4.35) uku0 strongly in L2(BR0).u_{k}\rightarrow u_{0}\mbox{ strongly in }L^{2}(B_{R_{0}}).

By Lemma 4.1, we get (4.22). Replacing ϵ\epsilon by ϵ=1k\epsilon=\frac{1}{k}, we see

1r1αr2α(logHk(r2)Hk(r1)+12r1r2RkrHk(r)dr)1r2αr3α(logHk(r3)Hk(r2)+12r2r3RkrHk(r)dr),\frac{1}{r_{1}^{-\alpha}-r_{2}^{-\alpha}}\left(\log\frac{H_{k}(r_{2})}{H_{k}(r_{1})}+\frac{1}{2}\int_{r_{1}}^{r_{2}}\frac{R_{k}}{rH_{k}(r)}\mathrm{d}r\right)\leq\frac{1}{r_{2}^{-\alpha}-r_{3}^{-\alpha}}\left(\log\frac{H_{k}(r_{3})}{H_{k}(r_{2})}+\frac{1}{2}\int_{r_{2}}^{r_{3}}\frac{R_{k}}{rH_{k}(r)}\mathrm{d}r\right),

where

Hk(r)=Brwkuk2dx,Rk=α2k2B1k(34|y|2+14k2)α21uk2dy.H_{k}(r)=\int_{B_{r}}w_{k}u_{k}^{2}\mathrm{d}x,\quad R_{k}=\frac{\alpha}{2k^{2}}\int_{B_{\frac{1}{k}}}\left(\frac{3}{4}|y|^{2}+\frac{1}{4k^{2}}\right)^{\frac{\alpha}{2}-1}u_{k}^{2}\mathrm{d}y.

From (4.35) and Corollary 3.5, letting kk\rightarrow\infty, we get

1r1αr2αlogH(r2)H(r1)1r2αr3αlogH(r3)H(r2).\frac{1}{r_{1}^{-\alpha}-r_{2}^{-\alpha}}\log\frac{H(r_{2})}{H(r_{1})}\leq\frac{1}{r_{2}^{-\alpha}-r_{3}^{-\alpha}}\log\frac{H(r_{3})}{H(r_{2})}.

This proves (4.34).

Finally, taking

μ=r1αr2αr1αr3α=(r3r2)α(r2r1)α1(r3r1)α1,1μ=r2αr3αr1αr3α=(r1r2)α1(r2r3)α1(r1r3)α,\mu=\frac{r_{1}^{-\alpha}-r_{2}^{-\alpha}}{r_{1}^{-\alpha}-r_{3}^{-\alpha}}=\left(\frac{r_{3}}{r_{2}}\right)^{\alpha}\frac{\left(\frac{r_{2}}{r_{1}}\right)^{\alpha}-1}{\left(\frac{r_{3}}{r_{1}}\right)^{\alpha}-1},\quad 1-\mu=\frac{r_{2}^{-\alpha}-r_{3}^{-\alpha}}{r_{1}^{-\alpha}-r_{3}^{-\alpha}}=\left(\frac{r_{1}}{r_{2}}\right)^{\alpha}\frac{1-\left(\frac{r_{2}}{r_{3}}\right)^{\alpha}}{1-\left(\frac{r_{1}}{r_{3}}\right)^{\alpha}},

yields

H(r2)(H(r1))μ(H(r3))1μ.H(r_{2})\leq(H(r_{1}))^{\mu}(H(r_{3}))^{1-\mu}.

This complete the proof of theorem. \square

Below, we present the most standard and commonly used form of the degenerate three-ball theorem.

Corollary 4.3.

Assume the conditions in Proposition 4.2 hold. Then

Brv2wdx(Br2v2wdx)μ(B2rv2wdy)1μ\int_{B_{r}}v^{2}w\mathrm{d}x\leq\left(\int_{B_{\frac{r}{2}}}v^{2}w\mathrm{d}x\right)^{\mu}\left(\int_{B_{2r}}v^{2}w\mathrm{d}y\right)^{1-\mu}

for 0<r<R020<r<\frac{R_{0}}{2} with μ=4α2α4α1\mu=\frac{4^{\alpha}-2^{\alpha}}{4^{\alpha}-1}.

Proof:  Taking r1=r2,r2=r,r3=2rr_{1}=\frac{r}{2},r_{2}=r,r_{3}=2r in Proposition 4.2 produces the desired conclusion. \square

We have already obtained the three-ball theorem at the degenerate point 0. To derive an estimate over the entire domain, we will now present the three-ball theorem at the non-degenerate point.

Lemma 4.4.

Let Γ\Gamma be a non-empty open subset of Ω\partial\Omega. Let r0,r1,r2,r3r_{0},r_{1},r_{2},r_{3} be four real numbers such that 0<r1<r0<r2<r3<R080<r_{1}<r_{0}<r_{2}<r_{3}<\frac{R_{0}}{8}. Suppose that y0D,|y0|>r0y_{0}\in D,|y_{0}|>r_{0} satisfies the following three conditions:

i) B(y0,r)DB(y_{0},r)\cap D is star-shaped with respect to y0y_{0} for all r(0,R04)r\in(0,\frac{R_{0}}{4}),

ii) B(y0,r)DB(y_{0},r)\subseteq D for all r(0,r0)r\in(0,r_{0}),

iii) B(y0,r)DΓB(y_{0},r)\cap\partial D\subseteq\Gamma for all r(r0,R02)r\in(r_{0},\frac{R_{0}}{2}).

If uH2(Ω)u\in H^{2}(\Omega) is a solution to div(wu)=0\operatorname{div}(w\nabla u)=0 in ΩB2r0\Omega\setminus B_{2r_{0}} and u=0u=0 on Γ\Gamma, then there exists μ(0,1)\mu\in(0,1) such that

B(y0,r2)Dv2dxC(B(y0,r1)v2dx)μ(B(y0,r3)Ωv2dx)1μ,\int_{B(y_{0},r_{2})\cap D}v^{2}\mathrm{d}x\leq C\left(\int_{B(y_{0},r_{1})}v^{2}\mathrm{d}x\right)^{\mu}\left(\int_{B(y_{0},r_{3})\cap\Omega}v^{2}\mathrm{d}x\right)^{1-\mu},

and C>0C>0 is a constant that only depends on r0,R0r_{0},R_{0} and NN.

Proof:  Set Ω^=ΩB¯(0,2r0)\widehat{\Omega}=\Omega\setminus\overline{B}(0,2r_{0}). We note that 𝒜v=0\mathcal{A}v=0 on Ω^\widehat{\Omega} is an uniformly elliptic equation since

2αr0α|ξ|2i,j=1N|x|αξiξj(supxΩ|x|α)|ξ|2,ξ=(ξ1,,ξN)N2^{\alpha}r_{0}^{\alpha}|\xi|^{2}\leq\sum_{i,j=1}^{N}|x|^{\alpha}\xi_{i}\xi_{j}\leq\left(\sup_{x\in\Omega}|x|^{\alpha}\right)|\xi|^{2},\ \forall\xi=(\xi_{1},\cdots,\xi_{N})\in\mathbb{R}^{N}

and Ω\Omega is a bounded domain. Similar to [1, 23, 25, 26, 30], we obtain Lemma 4.4. \square

We recall the operator div(w)\operatorname{div}(w\nabla\cdot) possesses the QWUCP, if for any open subset ωΩ\omega\subseteq\Omega, and any weak solution uu of the following equation

{div(wu)=0,in D,u=0,on Γ\begin{cases}\operatorname{div}(w\nabla u)=0,&\mbox{in }D,\\ u=0,&\mbox{on }\Gamma\end{cases}

with domain DΩD\subseteq\Omega and DΩΓΩ\partial D\cap\partial\Omega\subset\subset\Gamma\subseteq\partial\Omega and D¯(ΓD)Ω\overline{D}\setminus(\Gamma\cap\partial D)\subseteq\Omega, we have

Du2wdxCωu2wdx,\int_{D}u^{2}w\mathrm{d}x\leq C\int_{\omega}u^{2}w\mathrm{d}x,

where the constant C>0C>0 is independent of the solution uu.

It is easy to see that QWUCP implies WUCP, and thus, we focus on the proof of QWUCP via three-ball theorem.

In the proof of QWUCP, we consider two cases: when the degenerate point lies inside or outside ω\omega (0ω0\in\omega). To deal with the later one, we present a result analogous to the Schauder estimate. Specifically, we estimate the integral over the small ball containing the origin by the integral over an annular region surrounding the ball. In such a way, we control the integral in the degenerate region by the integral in the non-degenerate region. This approach seems new .

Theorem 4.5.

Let R0>0R_{0}>0 with B2R0ΩB_{2R_{0}}\subseteq\Omega. Let uu be a solution to div(wu)=0\operatorname{div}(w\nabla u)=0 in BR0B_{R_{0}}. Then there exists C>0C>0 that is independent of r(r<R0)r\ (r<R_{0}) and uu, such that

Br2u2wdxCr2BrB34ru2wdx.\begin{split}\int_{B_{\frac{r}{2}}}u^{2}w\mathrm{d}x\leq\frac{C}{r^{2}}\int_{B_{r}\setminus B_{\frac{3}{4}r}}u^{2}w\mathrm{d}x.\end{split}

Proof:  Let ζC0(N)\zeta\in C_{0}^{\infty}(\mathbb{R}^{N}) be a cut-off function satisfying

ζ=1 on B34r, and ζ=0 on NBr, and |ζ|Cr on BrB34r,\zeta=1\mbox{ on }B_{\frac{3}{4}r},\mbox{ and }\zeta=0\mbox{ on }\mathbb{R}^{N}-B_{r},\mbox{ and }|\nabla\zeta|\leq\frac{C}{r}\mbox{ on }B_{r}\setminus B_{\frac{3}{4}r},

where C>0C>0 is a generic constant.

Using ζ2u\zeta^{2}u as the test function, we have

0=BR0u(ζ2u)wdx.0=\int_{B_{R_{0}}}\nabla u\cdot\nabla(\zeta^{2}u)w\mathrm{d}x.

This implies that

BR0ζ2|u|2wdx=2BR0ζu(ζu)wdx12BR0ζ2|u|2wdx+4BR0u2|ζ|2wdx\begin{split}\int_{B_{R_{0}}}\zeta^{2}|\nabla u|^{2}w\mathrm{d}x=-2\int_{B_{R_{0}}}\zeta u(\nabla\zeta\cdot\nabla u)w\mathrm{d}x\leq\frac{1}{2}\int_{B_{R_{0}}}\zeta^{2}|\nabla u|^{2}w\mathrm{d}x+4\int_{B_{R_{0}}}u^{2}|\nabla\zeta|^{2}w\mathrm{d}x\end{split}

by Cauchy inequality, i.e.,

BR0ζ2|u|2wdx8BR0u2|ζ|2wdx.\int_{B_{R_{0}}}\zeta^{2}|\nabla u|^{2}w\mathrm{d}x\leq 8\int_{B_{R_{0}}}u^{2}|\nabla\zeta|^{2}w\mathrm{d}x.

From which, we obtain that

BR0|(ζu)|2wdx2BR0|ζ|2u2wdx+2BR0ζ2|u|2wdx18BR0u2|ζ|2wdx.\begin{split}\int_{B_{R_{0}}}|\nabla(\zeta u)|^{2}w\mathrm{d}x&\leq 2\int_{B_{R_{0}}}|\nabla\zeta|^{2}u^{2}w\mathrm{d}x+2\int_{B_{R_{0}}}\zeta^{2}|\nabla u|^{2}w\mathrm{d}x\leq 18\int_{B_{R_{0}}}u^{2}|\nabla\zeta|^{2}w\mathrm{d}x.\end{split}

Note that ζuHw,01(Ω)\zeta u\in H_{w,0}^{1}(\Omega), by (2.3) in Corollary 2.2, we obtain

BR0(ζu)2wdxCBR0u2|ζ|2wdx.\int_{B_{R_{0}}}(\zeta u)^{2}w\mathrm{d}x\leq C\int_{B_{R_{0}}}u^{2}|\nabla\zeta|^{2}w\mathrm{d}x.

This implies that

Br2u2wdxCr2BrB34ru2wdx\int_{B_{\frac{r}{2}}}u^{2}w\mathrm{d}x\leq\frac{C}{r^{2}}\int_{B_{r}\setminus B_{\frac{3}{4}r}}u^{2}w\mathrm{d}x

according to the definition of ζ\zeta. \square

Next, we provide the proof of QWUCP, which is characterized by the following two equivalent theorems.

Theorem 4.6.

Let Γ\Gamma be a non-empty open subset of Ω\partial\Omega and let ω\omega be a non-empty open subset of Ω\Omega. Then, for each DΩD\subseteq\Omega satisfying DΩΓ\partial D\cap\partial\Omega\subset\subset\Gamma and D¯(ΓD)D\overline{D}\setminus(\Gamma\cap\partial D)\subseteq D, there exists μ(0,1)\mu\in(0,1), such that for any solution vHw1(Ω)v\in H_{w}^{1}(\Omega) of (2.1) with v=0v=0 on Γ\Gamma, we have

(4.36) Dv2wdyC(1ϵ)1μμωv2wdy+ϵΩv2wdy\int_{D}v^{2}w\mathrm{d}y\leq C\left(\frac{1}{\epsilon}\right)^{\frac{1-\mu}{\mu}}\int_{\omega}v^{2}w\mathrm{d}y+\epsilon\int_{\Omega}v^{2}w\mathrm{d}y

for any ϵ>0\epsilon>0, where C>0C>0 is a constant independent of uu.

Proof:  We divide the proof into the following steps.

Step 1. There are two cases that we should consider: one is 0ω0\in\omega, the other is 0ω0\notin\omega. In what follows, we denote kk\in\mathbb{N} an arbitrary integer.

Case 1. Assume 0ω0\in\omega. We choose r0>0r_{0}>0 such that r0r_{0} satisfies the conditions of Lemma 4.4 and B(0,r0)ωB(0,r_{0})\subseteq\omega. Since Ω\Omega is connected, then there exists a compact set KDK\subseteq D, such that B(q,r0)DB(q,r_{0})\subseteq D for all qKq\in K, and DqKB(q,2r0)D\subseteq\bigcup_{q\in K}B(q,2r_{0}) and B(q,2r0)ΩΓB(q,2r_{0})\cap\partial\Omega\subseteq\Gamma for all qKq\in K. Hence, for each qKq\in K, there exists a sequence of balls {B(qj,r0)}j=0,1,,k\{B(q_{j},r_{0})\}_{j=0,1,\cdots,k}, such that the following conditions hold

B(qj+1,r0)B(qj,2r0) for all j=0,1,,k1,and q0=0,qk=q.\begin{split}B(q_{j+1},r_{0})\subseteq B(q_{j},2r_{0})\mbox{ for all }j=0,1,\cdots,k-1,\quad\mbox{and }q_{0}=0,q_{k}=q.\end{split}

Note that wr0αw\geq r_{0}^{\alpha} on ΩBr0\Omega\setminus B_{r_{0}}, then there exists C>0C>0 that independents vv, such that

B(qk,r0)v2wdy(or,B(qk,2r0)Dv2wdy)C(B(qk,r0)v2wdy)μ1(Ωv2wdy)1μ1C(B(qk1,2r0)v2wdy)μ1(Ωv2wdy)1μ1C(B(qk1,r0)v2dy)μ12(Ωv2wdy)1μ12C(B(qk2,2r0)v2dy)μ12(Ωv2wdy)1μ12C(B(q1,r0)v2wdy)μ1k(Ωv2wdy)1μ1kC(B(q0,2r0)v2wdy)μ1k(Ωv2wdy)1μ1kC(B(0,r0)v2wdy)μ1kμ2(Ωv2wdy)1μ1kμ2,\begin{split}&\int_{B(q_{k},r_{0})}v^{2}w\mathrm{d}y\ \left(\mbox{or},\int_{B(q_{k},2r_{0})\cap D}v^{2}w\mathrm{d}y\right)\\ &\leq C\left(\int_{B(q_{k},r_{0})}v^{2}w\mathrm{d}y\right)^{\mu_{1}}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu_{1}}\leq C\left(\int_{B(q_{k-1},2r_{0})}v^{2}w\mathrm{d}y\right)^{\mu_{1}}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu_{1}}\\ &\leq C\left(\int_{B(q_{k-1},r_{0})}v^{2}\mathrm{d}y\right)^{\mu_{1}^{2}}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu_{1}^{2}}\leq C\left(\int_{B(q_{k-2},2r_{0})}v^{2}\mathrm{d}y\right)^{\mu_{1}^{2}}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu_{1}^{2}}\\ &\leq\cdots\\ &\leq C\left(\int_{B(q_{1},r_{0})}v^{2}w\mathrm{d}y\right)^{\mu_{1}^{k}}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu_{1}^{k}}\leq C\left(\int_{B(q_{0},2r_{0})}v^{2}w\mathrm{d}y\right)^{\mu_{1}^{k}}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu_{1}^{k}}\\ &\leq C\left(\int_{B(0,r_{0})}v^{2}w\mathrm{d}y\right)^{\mu_{1}^{k}\mu_{2}}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu_{1}^{k}\mu_{2}}\,,\end{split}

where μ1\mu_{1} is the exponent in Lemma 4.4 and the first several inequalities we have used Lemma 4.4 and in the last inequalities we have used Proposition 4.2 and μ2\mu_{2} is the exponent in Proposition 4.2.

Case 2. Assume 0ω¯0\notin\overline{\omega}. We choose r0>0r_{0}>0 and q0ωq_{0}\in\omega such that r0r_{0} satisfies the conditions of Lemma 4.4 and B(q0,2r0)ωB(q_{0},2r_{0})\subseteq\omega and B(q0,r0)B(0,r0)=B(q_{0},r_{0})\cap B(0,r_{0})=\emptyset. Choosing q1,,qk=0q_{1},\cdots,q_{k}=0 such that |qjqj1|<r0|q_{j}-q_{j-1}|<r_{0} for j=1,,kj=1,\cdots,k, and B(qj,2r0)ΩB(q_{j},2r_{0})\subseteq\Omega for j=0,1,,kj=0,1,\cdots,k. Then, for qk=0q_{k}=0, there exists C>0C>0 that is independent of vv, such that

B(qk,2r0)v2wdyCr02A3r0,52r0v2wdy\begin{split}\int_{B(q_{k},2r_{0})}v^{2}w\mathrm{d}y\leq\frac{C}{r_{0}^{2}}\int_{A_{3r_{0},\frac{5}{2}r_{0}}}v^{2}w\mathrm{d}y\end{split}

by Theorem 4.5 and r0<R04r_{0}<\frac{R_{0}}{4}, where A3r0,52r0={xN:52r0<|x|<3r0}A_{3r_{0},\frac{5}{2}r_{0}}=\{x\in\mathbb{R}^{N}\colon\frac{5}{2}r_{0}<|x|<{3r_{0}}\} is an annulus. Note that

f(q)=B(q,r0)A3r0,52r0v2wdy,qB(0,52r0)f(q)=\int_{B(q,r_{0})\cap A_{3r_{0},\frac{5}{2}r_{0}}}v^{2}w\mathrm{d}y,\ \forall q\in\partial B\left(0,\frac{5}{2}r_{0}\right)

is a continuous function, then there exists qk1B(0,52r0)q_{k-1}\in\partial B(0,\frac{5}{2}r_{0}) such that

f(qk1)=maxqB(0,52r0)f(q).f(q_{k-1})=\max_{q\in\partial B(0,\frac{5}{2}r_{0})}f(q).

Hence, there exists a constant C+C\in\mathbb{Z}^{+} (the constant CC depends only on NN and r0r_{0}), such that A3r0,52r0A_{3r_{0},\frac{5}{2}r_{0}} can be covered by CC numbers B(q,r0)B(q,r_{0}) with qB(0,52r0)q\in\partial B(0,\frac{5}{2}r_{0}). Moreover,

(4.37) A3r0,52r0v2wdyCB(qk1,r0)v2wdy.\int_{A_{3r_{0},\frac{5}{2}r_{0}}}v^{2}w\mathrm{d}y\leq C\int_{B(q_{k-1},r_{0})}v^{2}w\mathrm{d}y.

Since Ω\Omega is connected, then there exists a compact set KDB(0,2r0)K\subseteq D\setminus B(0,2r_{0}), such that B(q,r0)DB(0,r0)B(q,r_{0})\subseteq D\setminus B(0,r_{0}) for all qKq\in K, and DB(0,2r0)qKB(q,2r0)D\setminus B(0,2r_{0})\subseteq\bigcup_{q\in K}B(q,2r_{0}) and B(q,2r0)ΩΓB(q,2r_{0})\cap\partial\Omega\subseteq\Gamma for all qKq\in K. Hence, there exists a sequence of balls {B(qj,r0)}j=0,1,,k1\{B(q_{j},r_{0})\}_{j=0,1,\cdots,k-1}, such that the following conditions hold

B(qj+1,r0)B(qj,2r0) for all j=0,1,,k2.\begin{split}B(q_{j+1},r_{0})\subseteq B(q_{j},2r_{0})\mbox{ for all }j=0,1,\cdots,k-2.\end{split}

Now, we use Lemma 4.4 by kk times to obtain

(4.38) B(qk1,r0)v2wdyB(qk2,2r0)v2wdyC(B(qk3,r0)v2wdy)μ1(Ωv2wdy)1μ1C(B(q0,r0)v2wdy)μ1k2(Ωv2wdy)1μ1k2,\begin{split}\int_{B(q_{k-1},r_{0})}v^{2}w\mathrm{d}y&\leq\int_{B(q_{k-2},2r_{0})}v^{2}w\mathrm{d}y\leq C\left(\int_{B(q_{k-3},r_{0})}v^{2}w\mathrm{d}y\right)^{\mu_{1}}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu_{1}}\\ &\leq\cdots\leq C\left(\int_{B(q_{0},r_{0})}v^{2}w\mathrm{d}y\right)^{\mu_{1}^{k-2}}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu_{1}^{k-2}}\,,\end{split}

where μ1\mu_{1} is the exponent in Lemma 4.4. Finally, together (4.37) and (4.38) we have

(4.39) B(0,r0)v2wdyC(B(q0,r0)v2wdy)μ(Ωv2wdy)1μ,\begin{split}\int_{B(0,r_{0})}v^{2}w\mathrm{d}y\leq C\left(\int_{B(q_{0},r_{0})}v^{2}w\mathrm{d}y\right)^{\mu}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu},\end{split}

where the constant C>0C>0 is independent of vv but depends on r0r_{0}, and μ=μ1k2\mu=\mu_{1}^{k-2}.

For each point qkKq_{k}\in K, using Lemma 4.4 by k+1k+1 times, we obtain

B(qm,r0)v2wdyC(B(q0,r0)v2wdy)μ1k(Ωv2dy)1μ1k,\int_{B(q_{m},r_{0})}v^{2}w\mathrm{d}y\leq C\left(\int_{B(q_{0},r_{0})}v^{2}w\mathrm{d}y\right)^{\mu_{1}^{k}}\left(\int_{\Omega}v^{2}\mathrm{d}y\right)^{1-\mu_{1}^{k}},

where μ1\mu_{1} is defined in Lemma 4.4.

Step 2. By Case 1 and Case 2 in Step 1, using the case that KK is compact and by finite covering theorem, we obtain that

(4.40) Dv2wdyC(ωv2wdy)μ(Ωv2wdy)1μ,\int_{D}v^{2}w\mathrm{d}y\leq C\left(\int_{\omega}v^{2}w\mathrm{d}y\right)^{\mu}\left(\int_{\Omega}v^{2}w\mathrm{d}y\right)^{1-\mu},

where C>0C>0 is a constant that is independent of vv.

Step 3. The proof of (4.36) is standard. We denote

A=Dv2wdy0,B=ωv2wdy,E=Ωv2wdy.A=\int_{D}v^{2}w\mathrm{d}y\neq 0,\quad B=\int_{\omega}v^{2}w\mathrm{d}y,\quad E=\int_{\Omega}v^{2}w\mathrm{d}y.

Then, by Step 2, there exists C>0C>0 and μ(0,1)\mu\in(0,1) such that ACBμE1μA\leq CB^{\mu}E^{1-\mu}, i.e.,

AC1μB(EA)1μμ.A\leq C^{\frac{1}{\mu}}B\left(\frac{E}{A}\right)^{\frac{1-\mu}{\mu}}.

Now, if EA1ϵ\frac{E}{A}\leq\frac{1}{\epsilon}, then AϵEA\leq\epsilon E. This implies (4.36). This complete the proof of Theorem 4.6. \square

Lastly, we present an equivalent result to Theorem 4.6.

Theorem 4.7.

Let Γ\Gamma be a non-empty open subset of Ω\partial\Omega and let ω\omega be a non-empty open subset of Ω\Omega. Then, for each DΩD\subseteq\Omega satisfying DΩΓ\partial D\cap\partial\Omega\subset\subset\Gamma and D¯(ΓD)Ω\overline{D}\setminus(\Gamma\cap\partial D)\subseteq\Omega, there exists μ(0,1)\mu\in(0,1), such that for any solution uHw1(Ω)u\in H_{w}^{1}(\Omega) of (2.1) with u=0u=0 on Γ\Gamma, we have

(4.41) Du2wdyC(ωu2wdy)μ(Ωu2wdy)1μ,\int_{D}u^{2}w\mathrm{d}y\leq C\left(\int_{\omega}u^{2}w\mathrm{d}y\right)^{\mu}\left(\int_{\Omega}u^{2}w\mathrm{d}y\right)^{1-\mu},

where C>0C>0 is a constant independent of uu.

Proof:  Assume (4.41) is true, we just need to follow the Step 3 in Theorem 4.6 to derive (4.36).

Conversely, assume (4.36) is true, we denote

A=Dv2wdy0,B=ωv2wdy,E=Ωv2wdy,A=\int_{D}v^{2}w\mathrm{d}y\neq 0,\quad B=\int_{\omega}v^{2}w\mathrm{d}y,\quad E=\int_{\Omega}v^{2}w\mathrm{d}y,

choose ϵ=12AE\epsilon=\frac{1}{2}\frac{A}{E}, then A2CBμE1μA\leq 2CB^{\mu}E^{1-\mu}, and we obtain (4.41). \square

Finally, we provide WUCP for the degenerate elliptic operator.

Theorem 4.8.

The degenerate elliptic operator div(w)-\operatorname{div}(w\nabla\cdot) on Ω\Omega satisfies the WUCP.

Proof:  From Theorem 4.6 and Theorem 4.7, we can easily obtain WUCP. \square

Acknowledgment

We would like to express our gratitude to Dr. Yubiao Zhang from Tianjin University for providing valuable suggestions for this work.

References

  • [1] Vilhelm Adolfsson and Luis Escauriaza, C1,αC^{1,\alpha} domains and unique continuation at the boundary, Comm. Pure Appl. Math. 50 (1997), no. 10, 935–969. MR 1466583
  • [2] Laurent Bakri, Carleman estimates for the Schrödinger operator. Applications to quantitative uniqueness, Comm. Partial Differential Equations 38 (2013), no. 1, 69–91. MR 3005547
  • [3] Agnid Banerjee, Nicola Garofalo, and Ramesh Manna, Carleman estimates for Baouendi-Grushin operators with applications to quantitative uniqueness and strong unique continuation, Appl. Anal. 101 (2022), no. 10, 3667–3688. MR 4446597
  • [4] Agnid Banerjee and Arka Mallick, On the strong unique continuation property of a degenerate elliptic operator with hardy-type potential, Annali di Matematica Pura ed Applicata (1923-) 199 (2020), no. 1, 1–21.
  • [5] P. Cannarsa, P. Martinez, and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations 10 (2005), no. 2, 153–190. MR 2106129
  • [6] by same author, Global Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc. 239 (2016), no. 1133, ix+209.
  • [7] T. Carleman, Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys. 26 (1939), no. 17, 9. MR 334
  • [8] Florin Catrina and Zhi-Qiang Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), no. 2, 229–258.
  • [9] Albo Carlos Cavalheiro, An approximation theorem for solutions of degenerate elliptic equations, Proc. Edinb. Math. Soc. (2) 45 (2002), no. 2, 363–389. MR 1912646
  • [10] by same author, An approximation theorem for solutions of degenerate semilinear elliptic equations, Commun. Math. 25 (2017), no. 1, 21–34. MR 3667074
  • [11] Lawrence C. Evans, Partial differential equations, second ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943
  • [12] Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116. MR 643158
  • [13] Bruno Franchi, Cristian E. Gutiérrez, and Richard L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), no. 3-4, 523–604. MR 1265808
  • [14] José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985, Notas de Matemática, 104. [Mathematical Notes]. MR 807149
  • [15] N. Garofalo and Z. Shen, Carleman estimates for a subelliptic operator and unique continuation, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 1, 129–166. MR 1262883
  • [16] Nicola Garofalo, Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension, J. Differential Equations 104 (1993), no. 1, 117–146. MR 1224123
  • [17] Nicola Garofalo and Fang-Hua Lin, Monotonicity properties of variational integrals, ApA_{p} weights and unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–268. MR 833393
  • [18] by same author, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), no. 3, 347–366. MR 882069
  • [19] Nicola Garofalo and Dimiter Vassilev, Strong unique continuation properties of generalized Baouendi-Grushin operators, Comm. Partial Differential Equations 32 (2007), no. 4-6, 643–663. MR 2334826
  • [20] B. Guo, W. Wu, and D. Yang, Quantitative unique continuation for a class of degenerate elliptic equations with weakened boundary conditions, preprint.
  • [21] Lars Hörmander, On the uniqueness of the Cauchy problem, Math. Scand. 6 (1958), 213–225. MR 104924
  • [22] Carlos E. Kenig, Carleman estimates, uniform Sobolev inequalities for second-order differential operators, and unique continuation theorems, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 948–960. MR 934297
  • [23] Igor Kukavica, Level sets for the stationary solutions of the Ginzburg-Landau equation, Calc. Var. Partial Differential Equations 5 (1997), no. 6, 511–521. MR 1473306
  • [24] by same author, Quantitative uniqueness for second-order elliptic operators, Duke Math. J. 91 (1998), no. 2, 225–240. MR 1600578
  • [25] Igor Kukavica and Kaj Nyström, Unique continuation on the boundary for Dini domains, Proc. Amer. Math. Soc. 126 (1998), no. 2, 441–446. MR 1415331
  • [26] K.-D. Phung, Doubling property for the laplaican and its applications (course chengdu 2007), https://www.idpoisson.fr/phung/phung_j.pdfhttps://www.idpoisson.fr/phung/phung\_j.pdf.
  • [27] A. Pliś, On non-uniqueness in Cauchy problem for an elliptic second order differential equation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 95–100. MR 153959
  • [28] Charles A. Stuart, Stability analysis for a family of degenerate semilinear parabolic problems, Discrete Contin. Dyn. Syst. 38 (2018), no. 10, 5297–5337. MR 3834720
  • [29] Xiangxing Tao and Songyan Zhang, Weighted doubling properties and unique continuation theorems for the degenerate schrödinger equations with singular potentials, Journal of mathematical analysis and applications 339 (2008), no. 1, 70–84.
  • [30] S. Vessella, Quantitative continuation from a measurable set of solutions of elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 4, 909–923. MR 1776684
  • [31] Bin Wu, Qun Chen, and Zewen Wang, Carleman estimates for a stochastic degenerate parabolic equation and applications to null controllability and an inverse random source problem, Inverse Problems 36 (2020), no. 7, 075014, 38.
  • [32] W. Wu, Y. Hu, Y. Liu, and D. Yang, Carleman estimates for degenerate parabolic equations with single interior point degeneracy and its applications, preprint.