This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Approximation of birth-death processes

Liping Li Fudan University, Shanghai, China. [email protected]
Abstract.

The birth-death process is a special type of continuous-time Markov chain with index set \mathbb{N}. Its resolvent matrix can be fully characterized by a set of parameters (γ,β,ν)(\gamma,\beta,\nu), where γ\gamma and β\beta are non-negative constants, and ν\nu is a positive measure on \mathbb{N}. By employing the Ray-Knight compactification, the birth-death process can be realized as a càdlàg process with strong Markov property on the one-point compactification space ¯\overline{\mathbb{N}}_{\partial}, which includes an additional cemetery point \partial. In a certain sense, the three parameters that determine the birth-death process correspond to its killing, reflecting, and jumping behaviors at \infty used for the one-point compactification, respectively.

In general, providing a clear description of the trajectories of a birth-death process, especially in the pathological case where |ν|=|\nu|=\infty, is challenging. This paper aims to address this issue by studying the birth-death process using approximation methods. Specifically, we will approximate the birth-death process with simpler birth-death processes that are easier to comprehend. For two typical approximation methods, our main results establish the weak convergence of a sequence of probability measures, which are induced by the approximating processes, on the space of all càdlàg functions. This type of convergence is significantly stronger than the convergence of transition matrices typically considered in the theory of continuous-time Markov chains.

Key words and phrases:
Birth-death processes, Continuous-time Markov chains, Ray-Knight compactification, Boundary conditions, Weak convergence, Skorohod topology, Skorohod representation
2020 Mathematics Subject Classification:
Primary 60J27, 60J40, 60J50, 60J46, 60J55, 60J74.
The author is a member of LMNS, Fudan University. He is partially supported by NSFC (No. 11931004 and 12371144).

1. Introduction

The birth-death process is a specific type of continuous-time Markov chain with index set \mathbb{N}. Its QQ-matrix is given by (2.1), and its key characteristic is that it can only transition between adjacent states in \mathbb{N}. Building upon the work of Feller [7], Yang demonstrated that all birth-death processes can be obtained by solving the resolvent matrix (see [20, Chapter 7]). In essence, each birth-death process is determined by a set of parameters (γ,β,ν)(\gamma,\beta,\nu) that satisfy certain conditions, where γ\gamma and β\beta are two non-negative constants, and ν\nu is a positive measure on \mathbb{N}. For further details, please refer to §2.3.

In the study of continuous-time Markov chains, the index set \mathbb{N} is typically equipped with the discrete topology and considered as the state space of the corresponding process. This perspective is reasonable when our focus is limited to the transition matrix or objects related to the distribution of the process. However, when considering the trajectory of the process, specifically examining its measurability and regularity with respect to time tt, setting the state space as the discrete space \mathbb{N} can lead to certain “peculiar” phenomena. The most extreme example is the famous Feller-McKean chain (see [8]), in which every point in \mathbb{N} is an instantaneous state, meaning that the process does not stay at any point for a period of time. Notably, all the diagonal elements of its QQ-matrix are infinity. In the context of the discrete topology, it is challenging to comprehend the trajectory of the Feller-McKean chain. However, in reality, the Feller-McKean chain can be derived by confining a regular diffusion process on \mathbb{R} to the set of rational numbers \mathbb{Q} (see [18, III§23]). Regular diffusions, on the other hand, have a well-established theoretical characterization (see, for example, [12]). Consequently, it is not the Feller-McKean chain itself that is difficult to comprehend, but rather the difficulty arises solely from the setting of the discrete topology.

In the early stages of the development of continuous-time Markov chain theory, Doob realized that the index set \mathbb{N} is not sufficient to accommodate well-behaved process realizations (see [5]). He then found a so-called separable modification for each continuous-time Markov chain, with trajectories of this modification possessing Borel measurability, separability, and lower semicontinuity (see [3, II§4]). It should be noted that \infty may need to be added to the state space as the compactification point of \mathbb{N}, becoming a state that process trajectories frequently visit (when the index set is {\mathbb{Z}}, apart from \infty, -\infty may also need to be added to the state space). Doob’s modification became a cornerstone of continuous-time Markov chain theory and has been widely applied in various aspects of related theory (see [3] and [20]). However, for some special examples, the one-point compactification topology of \mathbb{N} does not reveal the underlying structural essence of the model. In the case of the Feller-McKean chain, the one-point compactification topology of \mathbb{N} is far from the induced topology of the Euclidean metric on \mathbb{Q}. Doob’s modification also falls short of capturing the regular diffusion that generates the Feller-McKean chain.

Another approach, proposed by Ray in 1959 (see [17]), can achieve this goal. It is now well known as the Ray-Knight compactification. Ray’s theory is applicable to almost all processes satisfying the Markov property. It uses the resolvent to introduce a new metric, expanding the state space in a way that completes the metric, and constructs a càdlàg process satisfying the strong Markov property on the new state space, called a Ray process. Ray’s approach can also be applied profoundly in the study of continuous-time Markov chains (see [18, Chapter 6] and [4, Chapter 9]), and in some aspects, it is even superior to using Doob’s separable modification. Specifically, when Ray-Knight compactification is applied to the Feller-McKean chain, it yields the regular diffusion used to construct the Feller-McKean chain (see [18, III (35.7)]).

In a previous article [14], we investigated all birth-death processes using the Ray-Knight compactification approach. The key advantage of this approach is that it enables us to realize every birth-death process as a càdlàg process that satisfies the strong Markov property on ¯\overline{\mathbb{N}}_{\partial} (see §2.1 for this symbol). Interestingly, for birth-death processes, both the Doob’s modification and the Ray-Knight method result in the same topological transformation. Additionally, with the exception of relatively simple Doob processes (see, e.g., [14, §5]), all birth-death processes are Feller processes. Consequently, to study birth-death processes, we have expanded our toolbox beyond traditional methods for studying continuous-time Markov chains to incorporate the rich theory of general Markov processes.

The primary objective of the paper [14] is to provide a clear characterization of the trajectories of all birth-death processes, particularly their behavior near the boundary point \infty. This issue has not been well-addressed in the existing literature based on continuous-time Markov chain methods, such as [20, 2], and others.

Using the framework of Feller processes, we demonstrated in [14] that the parameters (γ,β,ν)(\gamma,\beta,\nu) determining a birth-death process reflect its different behaviors at the boundary point \infty. From an analytical perspective, these behaviors are described by the boundary condition (2.13) satisfied by the functions in the domain of the infinitesimal generator. From a probabilistic standpoint, γ\gamma, β\beta, and ν\nu respectively describe the killing, reflecting, and jumping behaviors of the birth-death process at \infty. This probabilistic interpretation is clear when the jumping measure ν\nu is finite. More precisely, Doob process corresponds to the case of β=0\beta=0 and |ν|<|\nu|<\infty, where |ν||\nu| is the total variation of ν\nu. It can be obtained by the piecing out transformation (see [11]) of the minimal birth-death process XminX^{\text{min}} with respect to the distribution π\pi on {}\mathbb{N}\cup\{\partial\} given by

π({k})=νkγ+|ν|,k,π({})=γγ+|ν|.\pi(\{k\})=\frac{\nu_{k}}{\gamma+|\nu|},\;k\in\mathbb{N},\quad\pi(\{\partial\})=\frac{\gamma}{\gamma+|\nu|}. (1.1)

Intuitively, whenever it is about to reach \infty, the Doob process always jumps back to {}\mathbb{N}\cup\{\partial\}, and the probability of arriving at position k{}k\in\mathbb{N}\cup\{\partial\} is determined by (1.1). For the case of β>0\beta>0 and |ν|<|\nu|<\infty, the relevant description requires adjusting the above formulation by considering the birth-death process X1X^{1} corresponding to the parameters (γ+|ν|,β,0)(\gamma+|\nu|,\beta,0) instead of XminX^{\text{min}}, and by adapting the random time of approaching \infty to the lifetime of X1X^{1}, namely the time when X1X^{1} enters the cemetery \partial. Note that X1X^{1} can be obtained as a subprocess of the (Q,1)(Q,1)-process (which plays a similar role to a reflecting Brownian motion on [0,)[0,\infty); see [14, §3.3]) under the killing transformation using the multiplicative functional

Mt:=e|ν|+γβLt,t0,M_{t}:=e^{-\frac{|\nu|+\gamma}{\beta}L_{t}},\quad t\geq 0,

where (Lt)t0(L_{t})_{t\geq 0} is the local time of (Q,1)(Q,1)-process at \infty. For the rigorous construction of the subprocess, readers can refer to [1, III, §3].

However, in the case of |ν|=|\nu|=\infty, the construction of piecing out is no longer effective because π\pi given by (1.1) becomes meaningless. Similar to Lévy processes with infinite Lévy measures, in this case, the birth-death process may experience a high frequency of jumps into {}\mathbb{N}\cup\{\partial\} (from \infty) at certain times tt. Namely, for any ε>0\varepsilon>0, there are infinitely many jumps from \infty to {}\mathbb{N}\cup\{\partial\} occurring within the time interval [t,t+ε][t,t+\varepsilon]. This makes it extremely difficult to provide a clear description of the trajectories of the birth-death process. Feller referred to this situation as a “pathological case” in [7], probably for this reason.

In this article, we will explore how to use simpler birth-death processes to approximate complex birth-death processes. The significance of this investigation lies in the fact that if we can establish the convergence of the sequence of approximating processes, then even in the pathological case where π\pi determined by (1.1) lacks meaning, interpreting the target birth-death process through piecing out becomes intuitively acceptable.

Let us first discuss how to obtain simplified birth-death processes for approximation. One approach is to optimize the parameters (γ,β,ν)(\gamma,\beta,\nu) of the target birth-death process and then to apply Feller-Yang’s resolvent approach to generate processes using the new parameters. The simplest example is to truncate the measure ν\nu directly as follows:

γ(n):=γ,β(n):=β,ν(n):=ν|{0,1,,n},\gamma^{(n)}:=\gamma,\quad\beta^{(n)}:=\beta,\quad\nu^{(n)}:=\nu|_{\{0,1,\cdots,n\}}, (1.2)

where ν(n)\nu^{(n)} represents the measure ν\nu restricted to {0,1,,n}\{0,1,\cdots,n\}, and consider X(n)X^{(n)} as the birth-death process determined by the parameters (γ(n),β(n),ν(n))(\gamma^{(n)},\beta^{(n)},\nu^{(n)}). Note that this approach has been briefly mentioned in [14, §9]. Another approach, proposed by Wang in his 1958 doctoral thesis (see [20]), differs significantly from the first approach but is important in the theory of birth-death processes. Wang constructed a sequence of Doob processes with instantaneous measures π(n)\pi^{(n)} supported on {0,1,,n}\{0,1,\cdots,n\} by removing the part of each trajectory of the target birth-death process that starts from \infty until it returns to {0,1,,n}\{0,1,\cdots,n\}. (The original purpose of this approximation method was to provide a probabilistic construction for all birth-death processes.) We will further elaborate on this approximation method in §6.1. Next, let us consider in what sense the constructed sequence of birth-death processes can converge to the target process. Wang’s research is based on the theory of continuous-time Markov chains, where the core object is the transition matrix that defines the birth-death process. Therefore, the established convergence also refers to the convergence of the transition matrices, i.e.,

limnpij(n)(t)=pij(t),i,j.\lim_{n\rightarrow\infty}p^{(n)}_{ij}(t)=p_{ij}(t),\quad\forall i,j\in\mathbb{N}. (1.3)

This convergence is equivalent to the convergence of the resolvents; see Theorem 3.2. In the context of general Markov processes, it is possible to extend our study. Since the trajectories of X(n)X^{(n)} and XX are càdlàg, they can all be realized as probability measures on the space D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty), which consists of all càdlàg functions on ¯\overline{\mathbb{N}}_{\partial}. This space is typically equipped with the Skorohod topology. Consequently, we can attempt to establish the weak convergence of this sequence of probability measures on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty). This weak convergence is significantly stronger than the convergence of the transition matrices (1.3).

The main goal of this paper is to establish the weak convergence of the probability measures on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) associated with both the optimization parameter approximation and Wang’s approximation. For the first type of approximation, the weak convergence has been easily established under additional assumptions of Feller properties in [14, §9]. However, when the approximating sequence consists of Doob processes, the discussion becomes more challenging. Our proof requires an analytical characterization of Doob processes, which, although not Feller processes, can still yield a strongly continuous contractive semigroup when restricted to a closed subspace of the space of continuous functions. This result will be proven in §4. As for Wang’s approximation, in addition to establishing weak convergence on the Skorohod topological space, we will also consider another topology on the space D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) determined by convergence in (Lebesgue) measure. Under this new topology, we can prove both weak convergence and almost sure convergence of D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)-valued random variables induced by the birth-death process sequence. In other words, in the topology determined by convergence in measure, Wang’s approximation not only satisfies weak convergence of the probability measure sequence, but also provides an intuitive construction of the corresponding Skorohod representation.

Finally, we would like to briefly explain the notation that will be frequently used in this paper. Since it is a follow-up study of [14], we will strive to maintain consistency with the notation used in that paper. However, for the sake of clarity, some symbols have been adjusted. For instance, all symbols related to the minimal birth-death process are denoted with a superscript min{}^{\text{min}}, and those related to approximating birth-death processes are represented by superscript (n). (Symbols related to the target birth-death process do not carry any superscripts.) Sometimes, the integral of a function ff with respect to a measure mm is denoted by m(f)m(f). Additionally, we need to correct an error in the derivation of boundary condition (2.13) in [14]. In this equation, the parameter β2\frac{\beta}{2} in front of F+F^{+} was incorrectly written as β\beta in [14]. This error occurred because the scale function used in [14], which is given by (2.6), is half of the scale function defined in Feller [7]. However, in the proof of [14, Theorem 6.3] (the equation above [14, (6.8)]), it was mistakenly overlooked that the result from [7] (i.e., (6.6) in this paper) needs to be multiplied by a factor of two.

2. Preliminaries of birth-death processes

We consider a birth-death density matrix as follows:

Q=(qij)i,j:=(q0b000a1q1b100a2q2b2),Q=(q_{ij})_{i,j\in\mathbb{N}}:=\left(\begin{array}[]{ccccc}-q_{0}&b_{0}&0&0&\cdots\\ a_{1}&-q_{1}&b_{1}&0&\cdots\\ 0&a_{2}&-q_{2}&b_{2}&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots\end{array}\right), (2.1)

where ak>0a_{k}>0 for k1k\geq 1 and bk>0,qk=ak+bkb_{k}>0,q_{k}=a_{k}+b_{k} for k0k\geq 0. (Set a0=0a_{0}=0 for convenience.) A continuous-time Markov chain XX is called a birth-death QQ-process (or simply a QQ-process) if its transition matrix (pij(t))i,j(p_{ij}(t))_{i,j\in\mathbb{N}} is standard, and its density matrix is QQ, i.e., pij(0)=qijp^{\prime}_{ij}(0)=q_{ij} for i,ji,j\in\mathbb{N}. A QQ-process is called honest if its transition matrix (pij(t))i,j(p_{ij}(t))_{i,j\in\mathbb{N}} satisfies jpij(t)=1\sum_{j\in\mathbb{N}}p_{ij}(t)=1 for all ii\in\mathbb{N} and t0t\geq 0. In our context, two QQ-processes with the same transition matrix will not be distinguished. For convenience, we will also refer to (pij(t))i,j(p_{ij}(t))_{i,j\in\mathbb{N}} as a QQ-process when no confusion arises. For further terminology concerning continuous-time Markov chains, readers are referred to [3, 20]; see also [14].

2.1. State space

The index set \mathbb{N} of the transition matrix is typically referred to as the minimal state space. The “real” state space of a QQ-process is its one-point compactification (see, e.g., [14, §2.1])

¯:={},\overline{\mathbb{N}}:=\mathbb{N}\cup\{\infty\},

where ¯\overline{\mathbb{N}} can be metrized with the metric

r(n,m)=|1n+11m+1|,r(n,)=1n+1,n,m.r(n,m)=\left|\frac{1}{n+1}-\frac{1}{m+1}\right|,\quad r(n,\infty)=\frac{1}{n+1},\quad n,m\in\mathbb{N}.

This establishes a topological homeomorphism between ¯\overline{\mathbb{N}} and the set

{1,12,13,,1n+1,,0},\left\{1,\frac{1}{2},\frac{1}{3},\dots,\frac{1}{n+1},\dots,0\right\}, (2.2)

equipped with the relative topology of {\mathbb{R}}. Since we do not always consider honest QQ-processes, it is necessary to introduce a cemetery point \partial, which lies outside the state space ¯\overline{\mathbb{N}}. It should be emphasized that, unless explicitly stated otherwise, \partial is always treated as an isolated point distinct from ¯\overline{\mathbb{N}}. For instance, we can define the distance between a state n¯n\in\overline{\mathbb{N}} and the cemetery point as r(n,)=|1n+1+1|r(n,\partial)=\left|\frac{1}{n+1}+1\right| (1:=0\frac{1}{\infty}:=0), where the inclusion of \partial into ¯\overline{\mathbb{N}} is equivalent to adding the point 1-1 to (2.2).

Given the metric rr, the set

¯:=¯{},\overline{\mathbb{N}}_{\partial}:=\overline{\mathbb{N}}\cup\{\partial\},

forms a compact, separable metric space, and its subspace

:={}\mathbb{N}_{\partial}:=\mathbb{N}\cup\{\partial\}

is a locally compact, separable metric space. For every bounded function ff defined on either ¯\overline{\mathbb{N}}_{\partial} or \mathbb{N}_{\partial}, we define

f:=supx¯ or |f(x)|.\|f\|_{\infty}:=\sup_{x\in\overline{\mathbb{N}}_{\partial}\text{ or }\mathbb{N}_{\partial}}|f(x)|.

Let C(¯)C(\overline{\mathbb{N}}_{\partial}) denote the family of all continuous functions on ¯\overline{\mathbb{N}}_{\partial}, where we emphasize that for fC(¯)f\in C(\overline{\mathbb{N}}_{\partial}), the value of f()f(\partial) may no be equal to 0. Define

C(¯):={fC(¯):f()=0}.C(\overline{\mathbb{N}}):=\left\{f\in C(\overline{\mathbb{N}}_{\partial}):f(\partial)=0\right\}.

The families Cb()C_{b}(\mathbb{N}_{\partial}), C0()C_{0}(\mathbb{N}_{\partial}), and Cc()C_{c}(\mathbb{N}_{\partial}) consist of all continuous functions on \mathbb{N}_{\partial} that are bounded, that vanish at infinity, and that have compact support, respectively. In particular, a function ff defined on \mathbb{N}_{\partial} belongs to C0()C_{0}(\mathbb{N}_{\partial}) (resp. Cc()C_{c}(\mathbb{N}_{\partial})) if limnf(n)=0\lim_{n\rightarrow\infty}f(n)=0 (resp. if there exists an integer NN such that f(n)=0f(n)=0 for all nNn\geq N). Further, we define C0():={fC0():f()=0}C_{0}(\mathbb{N}):=\{f\in C_{0}(\mathbb{N}_{\partial}):f(\partial)=0\} and Cc():={fCc():f()=0}C_{c}(\mathbb{N}):=\{f\in C_{c}(\mathbb{N}_{\partial}):f(\partial)=0\}.

2.2. Minimal QQ-process

Given the density matrix (2.1), there exists a particular birth-death process known as the minimal QQ-process, which is denoted by Xmin=(Xtmin)t0X^{\text{min}}=\left(X^{\text{min}}_{t}\right)_{t\geq 0} and whose transition matrix is denoted by (pijmin(t))i,j\left(p^{\text{min}}_{ij}(t)\right)_{i,j\in\mathbb{N}}. Analytically, this process corresponds to the minimal solution to the Kolmogorov backward equation (as discussed in [7, §10]). From a probabilistic perspective, it represents a QQ-process with minimal information, where the trajectories are terminated as they approach \infty at the first time.

We introduce further notations for the minimal QQ-process. Let ζmin:=inf{t>0:Xtmin=}\zeta^{\text{min}}:=\inf\{t>0:X^{\text{min}}_{t}=\partial\} denote the lifetime of XminX^{\text{min}}, and define

uαmin(i):=𝔼imineαζmin,α>0,i.u^{\text{min}}_{\alpha}(i):=\mathbb{E}^{\text{min}}_{i}e^{-\alpha\zeta^{\text{min}}},\quad\alpha>0,i\in\mathbb{N}. (2.3)

The resolvent matrix of this process is given by

Φijmin(α):=0eαtpijmin(t)𝑑t,i,j,α>0.\Phi^{\text{min}}_{ij}(\alpha):=\int_{0}^{\infty}e^{-\alpha t}p_{ij}^{\text{min}}(t)dt,\quad i,j\in\mathbb{N},\alpha>0. (2.4)

Then, it is straightforward to verify the following relation:

1uαmin(i)=αjΦijmin(α),i,α>0.1-u_{\alpha}^{\text{min}}(i)=\alpha\sum_{j\in\mathbb{N}}\Phi^{\text{min}}_{ij}(\alpha),\quad i\in\mathbb{N},\alpha>0. (2.5)

Similar to regular diffusions on an interval, the minimal QQ-process can be fully characterized by two parameters on \mathbb{N} derived from the matrix (2.1): a scale function and a speed measure. The scale function (ck)k(c_{k})_{k\in\mathbb{N}} is given by

c0=0,c1=12b0,ck=12b0+i=2ka1a2ai12b0b1bi1,k2,c_{0}=0,\quad c_{1}=\frac{1}{2b_{0}},\quad c_{k}=\frac{1}{2b_{0}}+\sum_{i=2}^{k}\frac{a_{1}a_{2}\cdots a_{i-1}}{2b_{0}b_{1}\cdots b_{i-1}},\;k\geq 2, (2.6)

the speed measure μ\mu is

μ({0}):=μ0=1,μ({k}):=μk=b0b1bk1a1a2ak,k1.\mu(\{0\}):=\mu_{0}=1,\quad\mu(\{k\}):=\mu_{k}=\frac{b_{0}b_{1}\cdots b_{k-1}}{a_{1}a_{2}\cdots a_{k}},\;k\geq 1.

The process XminX^{\text{min}} is symmetric with respect to μ\mu in the sense that μipijmin(t)=μjpjimin(t)\mu_{i}p_{ij}^{\text{min}}(t)=\mu_{j}p_{ji}^{\text{min}}(t) for any i,ji,j\in\mathbb{N} and t0t\geq 0. Thus, the speed measure μ\mu is also known as the symmetric measure of XminX^{\text{min}}. Further details and related results are referred to [14, §3.1], which provides a characterization involving time change transformation of Brownian motion.

Using another two parameters derived from the scale function and the speed measure, we can classify the boundary point \infty in accordance with Feller’s approach. Specifically, we define the following two quantities:

R:=k=0(ck+1ck)i=0kμi,S:=k=0ckμk.R:=\sum_{k=0}^{\infty}(c_{k+1}-c_{k})\cdot\sum_{i=0}^{k}\mu_{i},\quad S:=\sum_{k=0}^{\infty}c_{k}\mu_{k}.

The following classification for the boundary point \infty is very well known.

Definition 2.1.

The boundary point \infty (for XminX^{\text{min}}) is called

  • (1)

    regular, if R<,S<{R}<\infty,{S}<\infty;

  • (2)

    an exit, if R<,S={R}<\infty,{S}=\infty;

  • (3)

    an entrance, if R=,S<{R}=\infty,{S}<\infty;

  • (4)

    natural, if R=S={R}={S}=\infty.

Remark 2.2.

Note that \infty is regular if and only if c+μ()<c_{\infty}+\mu(\mathbb{N})<\infty, where

c:=limkck.c_{\infty}:=\lim_{k\rightarrow\infty}c_{k}.

If \infty is an exit, then c<c_{\infty}<\infty and μ()=\mu(\mathbb{N})=\infty. If \infty is an entrance, then c=c_{\infty}=\infty and μ()<\mu(\mathbb{N})<\infty. If \infty is natural, then c+μ()=c_{\infty}+\mu(\mathbb{N})=\infty.

It is crucial to highlight that QQ-processes are unique if and only if \infty is classified as an entrance or natural boundary; for more details, refer to, e.g., [14, Theorem 3.5]. In this paper, however, we focus on the non-uniqueness case, where \infty is either regular or an exit. This non-uniqueness implies the condition c<c_{\infty}<\infty. Furthermore, it holds that

limiuαmin(i)=1;\lim_{i\rightarrow\infty}u^{\text{min}}_{\alpha}(i)=1; (2.7)

see, e.g., [14, Lemma 4.1].

2.3. Parameters determining birth-death processes

From now on, we will assume that \infty is either regular or an exit. In addition to the minimal one, consideration of other QQ-processes, such as Doob processes and the (Q,1)(Q,1)-process (which is only applicable in the regular case), is warranted.

It was first examined by Feller in [7] and then firmly established by Yang in 1965 (see [20, Chapter 7]) that each (non-minimal) QQ-process can be uniquely determined, up to a multiplicative constant, by a triple of parameters (γ,β,ν)(\gamma,\beta,\nu). Here, γ,β0\gamma,\beta\geq 0 are two non-negative constants and ν=(νk)k\nu=(\nu_{k})_{k\in\mathbb{N}} is a positive measure on \mathbb{N} satisfying the conditions:

k0νk(j=k(cj+1cj)i=0jμi)<,|ν|+β0,\sum_{k\geq 0}\nu_{k}\left(\sum_{j=k}^{\infty}(c_{j+1}-c_{j})\sum_{i=0}^{j}\mu_{i}\right)<\infty,\quad|\nu|+\beta\neq 0, (2.8)

where |ν|:=kνk|\nu|:=\sum_{k\in\mathbb{N}}\nu_{k}, and

β=0,if  is an exit.\beta=0,\quad\text{if }\infty\text{ is an exit}. (2.9)

Let 𝒬\mathscr{Q} denote the set of all triples (γ,β,ν)(\gamma,\beta,\nu) satisfying (2.8) and (2.9). More precisely, the resolvent matrix

Φij(α):=0eαtpij(t)𝑑t,i,j,α>0\Phi_{ij}(\alpha):=\int_{0}^{\infty}e^{-\alpha t}p_{ij}(t)dt,\quad i,j\in\mathbb{N},\alpha>0 (2.10)

of the QQ-process (pij(t))i,j(p_{ij}(t))_{i,j\in\mathbb{N}} corresponding to (γ,β,ν)𝒬(\gamma,\beta,\nu)\in\mathscr{Q} can be expressed as (see, e.g., [14, Theorem B.1])

Φij(α):=Φijmin(α)+uαmin(i)kνkΦkjmin(α)+βμjuαmin(j)γ+kνk(1uαmin(k))+βαkμkuαmin(k),\Phi_{ij}(\alpha):=\Phi^{\text{min}}_{ij}(\alpha)+u^{\text{min}}_{\alpha}(i)\frac{\sum_{k\in\mathbb{N}}\nu_{k}\Phi^{\text{min}}_{kj}(\alpha)+\beta\mu_{j}u^{\text{min}}_{\alpha}(j)}{\gamma+\sum_{k\in\mathbb{N}}\nu_{k}(1-u^{\text{min}}_{\alpha}(k))+\beta\alpha\sum_{k\in\mathbb{N}}\mu_{k}u^{\text{min}}_{\alpha}(k)}, (2.11)

where (Φijmin)(\Phi^{\text{min}}_{ij}) is the minimal resolvent matrix (2.4) and uαminu^{\text{min}}_{\alpha} is defined as (2.3). The matrix (2.11) is referred to as the (Q,γ,β,ν)(Q,\gamma,\beta,\nu)-resolvent matrix. It should be noted that for any constant M>0M>0, the (Q,Mγ,Mβ,Mν)(Q,M\gamma,M\beta,M\nu)-resolvent matrix is identical to the (Q,γ,β,ν)(Q,\gamma,\beta,\nu)-resolvent matrix.

We need to provide some observations regarding the expression of the resolvent matrix presented in (2.11). First, the first inequality in (2.8) is equivalent to

αk,jνkΦkjmin(α)=kνk(1uαmin(k))<,α>0(equivalently, α>0);\alpha\sum_{k,j\in\mathbb{N}}\nu_{k}\Phi^{\text{min}}_{kj}(\alpha)=\sum_{k\in\mathbb{N}}\nu_{k}(1-u^{\text{min}}_{\alpha}(k))<\infty,\quad\forall\alpha>0\;(\text{equivalently, }\exists\alpha>0); (2.12)

see, e.g., [20, §7.10]. Second, μ(uαmin):=kμkuαmin(k)\mu(u^{\text{min}}_{\alpha}):=\sum_{k\in\mathbb{N}}\mu_{k}u^{\text{min}}_{\alpha}(k) is finite, if and only if \infty is regular or an entrance; see, e.g., [7, Theorem 7.1]. Thus, the condition (2.9) guarantees that the resolvent matrix (2.11) is well-defined in the exit case. Third, when γ>0\gamma>0 while β=|ν|=0\beta=|\nu|=0, the resolvent matrix (2.11) reduces to the minimal one (although the second inequality in (2.8) is not satisfied).

2.4. Doob processes and Feller QQ-processes

In a recent article [14], it was demonstrated, using Ray-Knight compactification, that every QQ-process XX possesses a càdlàg modification X¯\bar{X} on ¯\overline{\mathbb{N}}_{\partial}. This modified version is a Ray process on ¯\overline{\mathbb{N}}_{\partial}. In this paper, we do not differentiate between XX and its Ray-Knight compactification X¯\bar{X}. Additionally, [14, Corollary 5.2] classifies all non-minimal QQ-processes into two categories: Doob processes and Feller QQ-processes.

According to, e.g., [14, Theorem B.1], the QQ-process XX is a Doob process, if and only if its determining triple (γ,β,ν)(\gamma,\beta,\nu) belongs to

𝒬D:={(γ,β,ν)𝒬:β=0,0<|ν|<}.\mathscr{Q}_{D}:=\{(\gamma,\beta,\nu)\in\mathscr{Q}:\beta=0,0<|\nu|<\infty\}.

In this case, whenever it approaches \infty, the process XX refreshes at a randomly determined location from a distribution π\pi given by (1.1) on \mathbb{N}_{\partial}. In other words, XX can be obtained by the piecing out (see [11]) of the minimal QQ-process XminX^{\text{min}} with respect to the instantaneous distribution π\pi, as established in [14, §5]. The readers are also referred to [14, Appendix A] for a detailed description of the piecing out transformation.

When (γ,β,ν)𝒬F:=𝒬𝒬D(\gamma,\beta,\nu)\in\mathscr{Q}_{F}:=\mathscr{Q}\setminus\mathscr{Q}_{D}, the corresponding QQ-process XX is a Feller process on ¯\overline{\mathbb{N}} (with \partial being the cemetery point). Following [14], this QQ-process will be termed a Feller QQ-process. The infinitesimal generator of the Feller QQ-process XX is derived in [14, Theorem 6.3], and the crucial point is the boundary condition at \infty satisfied by the functions FF in the generator domain:

β2F+()+k(F()F(k))νk+γF()=0,\frac{\beta}{2}F^{+}(\infty)+\sum_{k\in\mathbb{N}}(F(\infty)-F(k))\nu_{k}+\gamma F(\infty)=0, (2.13)

where F+F^{+} represents the discrete gradient of FF with respect to the scale function (ck)k(c_{k})_{k\in\mathbb{N}}; see [14, (6.2)]. Based on this boundary condition, the parameters (γ,β,ν)(\gamma,\beta,\nu) can be utilized to explain three possible types of boundary behaviours of XX at \infty: killing, reflecting, and jumping. Please refer to [14, §2.3] and [15] for more details.

2.5. Notations in the context of general Markov processes

Let us introduce some notations for a QQ-process in the context of general Markov processes.

Given the transition matrix (pij(t))t0(p_{ij}(t))_{t\geq 0} and its resolvent matrix (Φij(α))α>0(\Phi_{ij}(\alpha))_{\alpha>0} as provided in (2.10), we define

Rαf(i):=jΦij(α)f(i),i,Rαf():=0,R_{\alpha}f(i):=\sum_{j\in\mathbb{N}}\Phi_{ij}(\alpha)f(i),\;i\in\mathbb{N},\quad R_{\alpha}f(\partial):=0,

for every fC(¯)f\in C(\overline{\mathbb{N}}) (with f()=0f(\partial)=0) and α>0\alpha>0. According to (2.11), Rαf(i)R_{\alpha}f(i) for fC(¯)f\in C(\overline{\mathbb{N}}) and ii\in\mathbb{N} can be expressed in terms of the parameters (γ,β,ν)(\gamma,\beta,\nu) as

Rαf(i)=Rαminf(i)+uαmin(i)kνkRαminf(k)+βjμjuαmin(j)f(j)γ+kνk(1uαmin(k))+βαkμkuαmin(k),R_{\alpha}f(i)=R^{\text{min}}_{\alpha}f(i)+u^{\text{min}}_{\alpha}(i)\frac{\sum_{k\in\mathbb{N}}\nu_{k}R^{\text{min}}_{\alpha}f(k)+\beta\sum_{j\in\mathbb{N}}\mu_{j}u^{\text{min}}_{\alpha}(j)f(j)}{\gamma+\sum_{k\in\mathbb{N}}\nu_{k}(1-u^{\text{min}}_{\alpha}(k))+\beta\alpha\sum_{k\in\mathbb{N}}\mu_{k}u^{\text{min}}_{\alpha}(k)}, (2.14)

where Rαminf(i):=jΦijmin(α)f(i)R^{\text{min}}_{\alpha}f(i):=\sum_{j\in\mathbb{N}}\Phi^{\text{min}}_{ij}(\alpha)f(i). By utilizing (2.5) and (2.7), we can obtain that

limiRαf(i)=kνkRαminf(k)+βjμjuαmin(j)f(j)γ+kνk(1uαmin(k))+βαkμkuαmin(k).\lim_{i\rightarrow\infty}R_{\alpha}f(i)=\frac{\sum_{k\in\mathbb{N}}\nu_{k}R^{\text{min}}_{\alpha}f(k)+\beta\sum_{j\in\mathbb{N}}\mu_{j}u^{\text{min}}_{\alpha}(j)f(j)}{\gamma+\sum_{k\in\mathbb{N}}\nu_{k}(1-u^{\text{min}}_{\alpha}(k))+\beta\alpha\sum_{k\in\mathbb{N}}\mu_{k}u^{\text{min}}_{\alpha}(k)}. (2.15)

Define Rαf()R_{\alpha}f(\infty) as this limit. For fC(¯)f\in C(\overline{\mathbb{N}}_{\partial}) where f()f(\partial) may not be equal to 0, it holds that f0:=ff()C(¯)f_{0}:=f-f(\partial)\in C(\overline{\mathbb{N}}). We define

Rαf(x):=Rαf0(x)+f()α,fC(¯),x¯.R_{\alpha}f(x):=R_{\alpha}f_{0}(x)+\frac{f(\partial)}{\alpha},\quad f\in C(\overline{\mathbb{N}}_{\partial}),x\in\overline{\mathbb{N}}_{\partial}.

As established in [14, §4],

Rα:C(¯)C(¯),α>0R_{\alpha}:C(\overline{\mathbb{N}}_{\partial})\rightarrow C(\overline{\mathbb{N}}_{\partial}),\quad\alpha>0

is a Ray resolvent in the sense of, e.g., [4, Definition 8.1]. According to, e.g., [4, Theorem 8.2], there exists a Borel measurable Markov transition semigroup (Pt)t0(P_{t})_{t\geq 0} on ¯\overline{\mathbb{N}}_{\partial}, having (Rα)α>0(R_{\alpha})_{\alpha>0} as the resolvent, such that tPtf(x)t\mapsto P_{t}f(x) is right-continuous for all fC(¯)f\in C(\overline{\mathbb{N}}_{\partial}) and x¯x\in\overline{\mathbb{N}}_{\partial}. This transition semigroup (Pt)t0(P_{t})_{t\geq 0} is known as a Ray semigroup. Note that for fC(¯)f\in C(\overline{\mathbb{N}}) and t0t\geq 0, it holds that Ptf(i)=jpij(t)f(j)P_{t}f(i)=\sum_{j\in\mathbb{N}}p_{ij}(t)f(j) for ii\in\mathbb{N} and Ptf()=0P_{t}f(\partial)=0.

In the case where (pij(t))t0(p_{ij}(t))_{t\geq 0} is a Feller QQ-process, the semigroup (Pt)t0(P_{t})_{t\geq 0} is a Feller semigroup in the sense that PtC(¯)C(¯)P_{t}C(\overline{\mathbb{N}}_{\partial})\subset C(\overline{\mathbb{N}}_{\partial}) and

limt0Ptff=0,fC(¯).\lim_{t\rightarrow 0}\|P_{t}f-f\|_{\infty}=0,\quad f\in C(\overline{\mathbb{N}}_{\partial}). (2.16)

Particularly, a Feller QQ-process satisfies the normal property on ¯\overline{\mathbb{N}}_{\partial}, i.e., P0(x,)=δxP_{0}(x,\cdot)=\delta_{x} for all x¯x\in\overline{\mathbb{N}}_{\partial}. However, in the case where (pij(t))t0(p_{ij}(t))_{t\geq 0} is a Doob process, neither (2.16) nor the normal property is satisfied. More precisely, P0(x,)=δxP_{0}(x,\cdot)=\delta_{x} only holds for xx\in\mathbb{N}_{\partial}, and \infty is a branching point of the QQ-process in the sense of, e.g., [4, Definition 8.3]. Specifically, P0(,)=πP_{0}(\infty,\cdot)=\pi, which is given by (1.1); see [14, Theorem 5.1].

As a Ray process on ¯\overline{\mathbb{N}}_{\partial}, the QQ-process has a.s. càdlàg trajectories on ¯\overline{\mathbb{N}}_{\partial} according to, e.g., [4, Theorem 8.6] (or [19, Theorem 9.13]). Therefore, we can define the trajectory space Ω\Omega as the set of all càdlàg functions ω\omega from [0,)[0,\infty) to ¯\overline{\mathbb{N}}_{\partial} such that ω(t)=\omega(t)=\partial for all tζ(ω):=inf{t0:ω(t)=}t\geq\zeta(\omega):=\inf\{t\geq 0:\omega(t)=\partial\}. We can then define the projection maps

Xt:Ω¯,ωω(t)X_{t}:\Omega\rightarrow\overline{\mathbb{N}}_{\partial},\quad\omega\mapsto\omega(t)

for all t0t\geq 0. The translation operators (θt)t0(\theta_{t})_{t\geq 0} on Ω\Omega are defined by θtω(s):=ω(t+s)\theta_{t}\omega(s):=\omega(t+s) for all t,s0t,s\geq 0. Let 0:=σ{Xs:s0}{\mathscr{F}}^{0}:=\sigma\left\{X_{s}:s\geq 0\right\} and t0:=σ{Xs:0st}{\mathscr{F}}^{0}_{t}:=\sigma\left\{X_{s}:0\leq s\leq t\right\}, the σ\sigma-algebras on Ω\Omega generated by {Xs:s0}\{X_{s}:s\geq 0\} and {Xs:0st}\{X_{s}:0\leq s\leq t\}, respectively. These σ\sigma-algebras are known as the natural filtration on Ω\Omega. According to [4, Theorem 8.6] (see also [19, Theorem 9.13]), for any probability measure λ\lambda on ¯\overline{\mathbb{N}}_{\partial}, there exists a probability measure λ\mathbb{P}_{\lambda} on (Ω,0)(\Omega,{\mathscr{F}}^{0}) such that

(Ω,0,t0,Xt,θt,λ)\left(\Omega,{\mathscr{F}}^{0},{\mathscr{F}}^{0}_{t},X_{t},\theta_{t},\mathbb{P}_{\lambda}\right)

forms a Markov process on ¯\overline{\mathbb{N}}_{\partial} with initial distribution λP0\lambda P_{0} (not λ\lambda!) and transition semigroup (Pt)t0(P_{t})_{t\geq 0}. Here, λP0(A):=¯P0(x,A)λ(dx)\lambda P_{0}(A):=\int_{\overline{\mathbb{N}}_{\partial}}P_{0}(x,A)\lambda(dx) for A¯A\subset\overline{\mathbb{N}}_{\partial}. If λ=δx\lambda=\delta_{x} for x¯x\in\overline{\mathbb{N}}_{\partial}, we write λ\mathbb{P}_{\lambda} as x\mathbb{P}_{x}. Additionally, note that λ()=¯x()λ(dx)\mathbb{P}_{\lambda}(\cdot)=\int_{\overline{\mathbb{N}}_{\partial}}\mathbb{P}_{x}(\cdot)\lambda(dx). The natural filtration (0,t0)({\mathscr{F}}^{0},{\mathscr{F}}^{0}_{t}) can be augmented using the standard approach described in [19, I§6], resulting in the augmented natural filtration (,t)({\mathscr{F}},{\mathscr{F}}_{t}) on Ω\Omega. Finally, we obtain a collection

X=(Ω,,t,Xt,θt,x),X=\left(\Omega,{\mathscr{F}},{\mathscr{F}}_{t},X_{t},\theta_{t},\mathbb{P}_{x}\right), (2.17)

which forms a realization of the QQ-process (pij(t))i,j(p_{ij}(t))_{i,j\in\mathbb{N}}.

The lifetime of XX is ζ=inf{t>0:Xt=}\zeta=\inf\{t>0:X_{t}=\partial\}. Note that (Xt=,t0)=1\mathbb{P}_{\partial}(X_{t}=\partial,\forall t\geq 0)=1 and i(X0=i)=1\mathbb{P}_{i}(X_{0}=i)=1 for all ii\in\mathbb{N}. In the case where XX is a Feller QQ-process, it also holds that (X0=)=1\mathbb{P}_{\infty}(X_{0}=\infty)=1. In contrast, for a Doob process, (X0)=π\mathbb{P}_{\infty}(X_{0}\in\cdot)=\pi since P0(,)=πP_{0}(\infty,\cdot)=\pi. However, when the Doob process is restricted to \mathbb{N}_{\partial}, it transforms into a Borel right process that satisfies the normal property (see [19, Theorem 9.13]). It is worth noting that in the context of Borel right process, the cemetery point \partial is commonly considered as the compactification point of the state space \mathbb{N}, which slightly differs from the setup in §2.1.

2.6. Realization on Skorohod topological space

Let D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) denote the set of all càdlàg functions from [0,)[0,\infty) to ¯\overline{\mathbb{N}}_{\partial}. According to [6, §3, Theorem 5.6], the space D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) equipped with the metric dd inducing the Skorohod topology (defined in [6, §3(5.2)]) is a complete, separable metric space. In addition, utilizing [6, §3, Proposition 7.1], we can identify the Borel σ\sigma-algebra (D¯[0,);d)\mathscr{B}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d\right) on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) with respect to the Skorohod topology as σ{πt:t0}\sigma\{\pi_{t}:t\geq 0\}, which is generated by all the projection maps πt:D¯[0,)¯,ww(t)\pi_{t}:D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)\rightarrow\overline{\mathbb{N}}_{\partial},w\mapsto w(t).

It is evident that ΩD¯[0,)\Omega\subset D_{\overline{\mathbb{N}}_{\partial}}[0,\infty), where Ω\Omega is the trajectory space in the realization (2.17) of the QQ-process. Since (D¯[0,);d)=σ{πt:t0}\mathscr{B}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d\right)=\sigma\{\pi_{t}:t\geq 0\}, it is straightforward to verify that the embedding map

𝒳:(Ω,)(D¯[0,),(D¯[0,));d),ωX(ω)\mathcal{X}:(\Omega,{\mathscr{F}})\rightarrow\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty),\mathscr{B}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)\right);d\right),\quad\omega\mapsto X_{\cdot}(\omega) (2.18)

is measurable. Thus, for any probability measure λ\lambda on ¯\overline{\mathbb{N}}_{\partial}, λ\mathbb{P}_{\lambda} induces an image probability measure λ𝒳1\mathbb{P}_{\lambda}\circ\mathcal{X}^{-1} on (D¯[0,),(D¯[0,));d)\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty),\mathscr{B}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)\right);d\right). Since λ𝒳1\mathbb{P}_{\lambda}\circ\mathcal{X}^{-1} can be regarded as the extension of λ\mathbb{P}_{\lambda} to D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) by defining λ(D¯[0,)Ω):=0\mathbb{P}_{\lambda}(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)\setminus\Omega):=0, we will still denote this image measure by λ\mathbb{P}_{\lambda} if no ambiguity arises.

3. Convergence of resolvents

Consider a QQ-process XX with parameters (γ,β,ν)𝒬(\gamma,\beta,\nu)\in\mathscr{Q}, which determine its resolvent matrix. Define uα(k):=𝔼keαζu_{\alpha}(k):=\mathbb{E}_{k}e^{-\alpha\zeta} for kk\in\mathbb{N} and α\alpha, where ζ\zeta is the lifetime of XX. Additionally, consider a sequence of QQ-processes {X(n):n1}\{X^{(n)}:n\geq 1\}, with parameters denoted by (γ(n),β(n),ν(n))𝒬(\gamma^{(n)},\beta^{(n)},\nu^{(n)})\in\mathscr{Q}. Symbols related to this sequence will be distinguished by the superscript (n)\text{}^{(n)}. For example, the realization of X(n)X^{(n)} can be denoted by

X(n)=(Ω,(n),t(n),Xt,θt,x(n)),X^{(n)}=\left(\Omega,{\mathscr{F}}^{(n)},{\mathscr{F}}^{(n)}_{t},X_{t},\theta_{t},\mathbb{P}^{(n)}_{x}\right),

where the lifetime is ζ(n)\zeta^{(n)}. The semigroup and resolvent of X(n)X^{(n)} are denoted by (Pt(n))t0(P^{(n)}_{t})_{t\geq 0} and (Rα(n))α>0(R^{(n)}_{\alpha})_{\alpha>0}, respectively, and uα(n)(k):=𝔼k(n)eαζ(n)u^{(n)}_{\alpha}(k):=\mathbb{E}^{(n)}_{k}e^{-\alpha\zeta^{(n)}} for kk\in\mathbb{N} and α>0\alpha>0.

In this section, our aim is to clarify the relationships between the convergence of the transition matrices, the resolvent matrices, the transition semigroups, and the resolvents for X(n)X^{(n)}. Among these convergences, the resolvent convergence is comparatively clear and straightforward, according to the resolvent representation (2.14).

A simple case of Kurtz’s lemma [13, Lemma 2.11], as stated below, will be useful in proving our results.

Lemma 3.1.

Let 𝐁\mathbf{B} be a Banach space with the norm \|\cdot\|. Suppose that for each nn, Fn(t)F_{n}(t) is a function of 0t<0\leq t<\infty taking values in 𝐁\mathbf{B}, and that Fn(t)F_{n}(t) forms a bounded, equicontinuous sequence in the sense that:

  • (i)

    There exists M>0M>0 such that Fn(t)M\|F_{n}(t)\|\leq M for all nn and t0t\geq 0.

  • (ii)

    For every ε>0\varepsilon>0 and t0t\geq 0, there exists δ>0\delta>0 such that t0t^{\prime}\geq 0 with |tt|<δ|t-t^{\prime}|<\delta implies Fn(t)Fn(t)<ε\|F_{n}(t)-F_{n}(t^{\prime})\|<\varepsilon for all nn.

Then

limn0eαtFn(t)𝑑t=0for all α>0\lim_{n\rightarrow\infty}\left\|\int_{0}^{\infty}e^{-\alpha t}F_{n}(t)dt\right\|=0\quad\text{for all }\alpha>0 (3.1)

implies

limnsup0tTFn(t)=0for all T>0.\lim_{n\rightarrow\infty}\sup_{0\leq t\leq T}\|F_{n}(t)\|=0\quad\text{for all }T>0.

Now we are in a position to present our first result regarding the equivalent conditions for resolvent convergence.

Theorem 3.2.

The following convergences are all equivalent to each other:

  • (1a)

    For some kk\in\mathbb{N} (or equivalently, for all kk\in\mathbb{N}), it holds that limnRα(n)f(k)=Rαf(k)\lim_{n\rightarrow\infty}R^{(n)}_{\alpha}f(k)=R_{\alpha}f(k) for all fC(¯)f\in C(\overline{\mathbb{N}}) and α>0\alpha>0.

  • (1b)

    limnRα(n)fRαf=0\lim_{n\rightarrow\infty}\|R^{(n)}_{\alpha}f-R_{\alpha}f\|_{\infty}=0 for all fC(¯)f\in C(\overline{\mathbb{N}}) and α>0\alpha>0.

  • (1c)

    limnRα(n)f()=Rαf()\lim_{n\rightarrow\infty}R^{(n)}_{\alpha}f(\infty)=R_{\alpha}f(\infty) for all fC(¯)f\in C(\overline{\mathbb{N}}) and α>0\alpha>0.

  • (2a)

    For some kk\in\mathbb{N} (or equivalently, for all kk\in\mathbb{N}), it holds that limnΦkj(n)(α)=Φkj(α)\lim_{n\rightarrow\infty}\Phi^{(n)}_{kj}(\alpha)=\Phi_{kj}(\alpha) for all jj\in\mathbb{N} and α>0\alpha>0, and limnuα(n)(k)=uα(k)\lim_{n\rightarrow\infty}u^{(n)}_{\alpha}(k)=u_{\alpha}(k) for all α>0\alpha>0.

  • (2b)

    It holds that limnsupk|Φkj(n)(α)Φkj(α)|=0\lim_{n\rightarrow\infty}\sup_{k\in\mathbb{N}}|\Phi^{(n)}_{kj}(\alpha)-\Phi_{kj}(\alpha)|=0 for all jj\in\mathbb{N} and α>0\alpha>0, and limnsupk|uα(n)(k)uα(k)|=0\lim_{n\rightarrow\infty}\sup_{k\in\mathbb{N}}|u^{(n)}_{\alpha}(k)-u_{\alpha}(k)|=0 for all α>0\alpha>0.

  • (3a)

    For some kk\in\mathbb{N} (or equivalently, for all kk\in\mathbb{N}), it holds that limnPt(n)f(k)=Ptf(k)\lim_{n\rightarrow\infty}P^{(n)}_{t}f(k)=P_{t}f(k) for all fC0()f\in C_{0}(\mathbb{N}) and t0t\geq 0, and limnuα(n)(k)=uα(k)\lim_{n\rightarrow\infty}u^{(n)}_{\alpha}(k)=u_{\alpha}(k) for all α>0\alpha>0.

  • (3b)

    For some kk\in\mathbb{N} (or equivalently, for all kk\in\mathbb{N}), it holds that

    limnsupt[0,T]|Pt(n)f(k)Ptf(k)|=0\lim_{n\rightarrow\infty}\sup_{t\in[0,T]}|P^{(n)}_{t}f(k)-P_{t}f(k)|=0

    for all fC0()f\in C_{0}(\mathbb{N}) and T0T\geq 0, and limnuα(n)(k)=uα(k)\lim_{n\rightarrow\infty}u^{(n)}_{\alpha}(k)=u_{\alpha}(k) for all α>0\alpha>0.

  • (4a)

    For some kk\in\mathbb{N} (or equivalently, for all kk\in\mathbb{N}), it holds that limnpkj(n)(t)=pkj(t)\lim_{n\rightarrow\infty}p^{(n)}_{kj}(t)=p_{kj}(t) for all jj\in\mathbb{N} and t0t\geq 0, and limnuα(n)(k)=uα(k)\lim_{n\rightarrow\infty}u^{(n)}_{\alpha}(k)=u_{\alpha}(k) for all α>0\alpha>0.

  • (4b)

    For some kk\in\mathbb{N} (or equivalently, for all kk\in\mathbb{N}), it holds that

    limnsupt[0,T]|pkj(n)(t)pkj(t)|=0\lim_{n\rightarrow\infty}\sup_{t\in[0,T]}|p^{(n)}_{kj}(t)-p_{kj}(t)|=0 (3.2)

    for all jj\in\mathbb{N} and T0T\geq 0, and limnuα(n)(k)=uα(k)\lim_{n\rightarrow\infty}u^{(n)}_{\alpha}(k)=u_{\alpha}(k) for all α>0\alpha>0.

Proof.

The equivalence between (1a), (1b), and (1c) can be easily verified by considering the following facts: Rα(n)f,RαfC(¯)R^{(n)}_{\alpha}f,R_{\alpha}f\in C(\overline{\mathbb{N}}) for fC(¯)f\in C(\overline{\mathbb{N}}) and α>0\alpha>0; according to (2.14),

Rα(n)f(k)Rαf(k)=uαmin(k)(Rα(n)f()Rαf()),k;R^{(n)}_{\alpha}f(k)-R_{\alpha}f(k)=u^{\text{min}}_{\alpha}(k)\cdot\left(R^{(n)}_{\alpha}f(\infty)-R_{\alpha}f(\infty)\right),\quad k\in\mathbb{N};

in addition, 0<uαmin(k)<10<u_{\alpha}^{\text{min}}(k)<1 for all kk\in\mathbb{N}.

Clearly, (2b) implies (2a). By taking f=1{j}f=1_{\{j\}} and f=1¯f=1_{\overline{\mathbb{N}}} in (1b), we obtain

limnsupk|Φkj(n)(α)Φkj(α)|=0andlimnsupk|uα(n)(k)uα(k)|=0,\lim_{n\rightarrow\infty}\sup_{k\in\mathbb{N}}|\Phi^{(n)}_{kj}(\alpha)-\Phi_{kj}(\alpha)|=0\quad\text{and}\quad\lim_{n\rightarrow\infty}\sup_{k\in\mathbb{N}}|u^{(n)}_{\alpha}(k)-u_{\alpha}(k)|=0,

respectively. Thus, (1b) indicates (2b). Now, we will demonstrate that (2a) implies (1a), thereby establishing the equivalence between (1a), (1b), (1c), (2a), and (2b). Suppose that for some kk\in\mathbb{N}, it holds that limnΦkj(n)(α)=Φkj(α)\lim_{n\rightarrow\infty}\Phi^{(n)}_{kj}(\alpha)=\Phi_{kj}(\alpha) for all jj\in\mathbb{N} and limnuα(n)(k)=uα(k)\lim_{n\rightarrow\infty}u^{(n)}_{\alpha}(k)=u_{\alpha}(k). For any gCc()g\in C_{c}(\mathbb{N}), there exists an integer MM such that g(m)=0g(m)=0 for all m>Mm>M. Therefore, we have

limnRα(n)g(k)=limn0mMΦkm(n)(α)g(m)=0mMΦkm(α)g(m)=Rαg(k).\lim_{n\rightarrow\infty}R^{(n)}_{\alpha}g(k)=\lim_{n\rightarrow\infty}\sum_{0\leq m\leq M}\Phi^{(n)}_{km}(\alpha)g(m)=\sum_{0\leq m\leq M}\Phi_{km}(\alpha)g(m)=R_{\alpha}g(k).

Note that Cc()C_{c}(\mathbb{N}) is dense in C0()C_{0}(\mathbb{N}), and Rα(n)g1αg,Rαg1αg\|R^{(n)}_{\alpha}g\|_{\infty}\leq\frac{1}{\alpha}\|g\|_{\infty},\|R_{\alpha}g\|_{\infty}\leq\frac{1}{\alpha}\|g\|_{\infty} for all gC(¯)g\in C(\overline{\mathbb{N}}). It is straightforward to further obtain that limnRα(n)g(k)=Rαg(k)\lim_{n\rightarrow\infty}R^{(n)}_{\alpha}g(k)=R_{\alpha}g(k) for all gC0()g\in C_{0}(\mathbb{N}). Taking fC(¯)f\in C(\overline{\mathbb{N}}), and defining f0:=ff()1¯C0()f_{0}:=f-f(\infty)\cdot 1_{\overline{\mathbb{N}}}\in C_{0}(\mathbb{N}), we observe that

Rα(n)1¯(k)=1α(1uα(n)(k)),Rα1¯(k)=1α(1uα(k)).R^{(n)}_{\alpha}1_{\overline{\mathbb{N}}}(k)=\frac{1}{\alpha}\left(1-u_{\alpha}^{(n)}(k)\right),\quad R_{\alpha}1_{\overline{\mathbb{N}}}(k)=\frac{1}{\alpha}\left(1-u_{\alpha}(k)\right).

From this, we can deduce that

limnRα(n)f(k)\displaystyle\lim_{n\rightarrow\infty}R^{(n)}_{\alpha}f(k) =limn(Rα(n)f0(k)+f()α(1uα(n)(k)))\displaystyle=\lim_{n\rightarrow\infty}\left(R^{(n)}_{\alpha}f_{0}(k)+\frac{f(\infty)}{\alpha}\left(1-u_{\alpha}^{(n)}(k)\right)\right)
=Rαf0(k)+f()α(1uα(k))=Rαf(k).\displaystyle=R_{\alpha}f_{0}(k)+\frac{f(\infty)}{\alpha}\left(1-u_{\alpha}(k)\right)=R_{\alpha}f(k).

Consequently, (1a) holds true.

Next, we will establish the equivalence between (4a), (4b), and (2a). Clearly, (4b) implies (4a), and (4a) implies (2a) (by the dominated convergence theorem). Suppose that (2a) holds. In order to conclude (4b), our goal is to apply Lemma 3.1 with 𝐁=\mathbf{B}=\mathbb{R} and Fn(t):=pkj(n)(t)pkj(t)F_{n}(t):=p^{(n)}_{kj}(t)-p_{kj}(t). It is sufficient to verify condition (ii) of Lemma 3.1. In fact, based on [3, II§3, Theorem 1], for any t,t0t,t^{\prime}\geq 0, we have

|Fn(t)Fn(t)||pkj(n)(t)pkj(n)(t)|+|pkj(t)pkj(t)|2qk|tt|.|F_{n}(t)-F_{n}(t^{\prime})|\leq|p^{(n)}_{kj}(t)-p^{(n)}_{kj}(t^{\prime})|+|p_{kj}(t)-p_{kj}(t^{\prime})|\leq 2q_{k}|t-t^{\prime}|. (3.3)

Hence, the equcontinuity of Fn(t)F_{n}(t) can be easily obtained.

For the remaining conditions (3a) and (3b), it is worth noting that (3b) implies (3a), and (3a) implies (4a) (by taking f=1{j}f=1_{\{j\}} in (3a)). Additionally, (4a) implies (4b). Furthermore, we can use the same argument as the one used to show that (2a) implies (1a) to deduce that (4b) implies (3b). Therefore, the equivalence of all conditions has been established. ∎

Remark 3.3.

In discussions about general Markov processes, it is commonly assumed that functions take the value of 0 at the cemetery state \partial. This assumption is the reason why we consider fC(¯)f\in C(\overline{\mathbb{N}}) in the theorem above. However, in the subsequent discussion in §5, we will examine the weak convergence of a family of probability measures on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty), where it becomes necessary to address functions that are not equal to 0 at \partial. Fortunately, it is easy to adjust the conditions in the theorem to apply to fC(¯)f\in C(\overline{\mathbb{N}}_{\partial}). To keep the presentation simple, we will not elaborate on this here.

In conditions (3a) and (3b) that describe the convergence of the transition semigroups, it is somewhat limiting that ff can only be chosen from functions in C0()C_{0}(\mathbb{N}) rather than from all functions in C(¯)C(\overline{\mathbb{N}}). Moreover, there is a lack of characterization for equivalent conditions where kk has uniformity. These limitations render it inadequate to guarantee the convergence of the finite-dimensional distributions of X(n)X^{(n)} to the corresponding finite-dimensional distributions of XX. The challenge here is that if we plan to apply Lemma 3.1 with 𝐁=C(¯)\mathbf{B}=C(\overline{\mathbb{N}}) and F(t):=Pt(n)fPtfF(t):=P^{(n)}_{t}f-P_{t}f, neither X(n)X^{(n)} nor XX is necessarily a Feller QQ-process, which does not always guarantee that F(t)𝐁F(t)\in\mathbf{B}. To address this difficulty, we need to take an alternative approach using Theorem 4.2. We will revisit this issue in §5.

4. Infinitesimal generators of Doob processes

In this section, we examine the Doob process, whose resolvent matrix is determined by the parameters (γ,0,ν)𝒬D(\gamma,0,\nu)\in\mathscr{Q}_{D}. All other notation related to XX is consistent with that in §2. Note that the resolvent Rα:C(¯)C(¯)R_{\alpha}:C(\overline{\mathbb{N}})\rightarrow C(\overline{\mathbb{N}}) does not satisfy the strong continuity. That is, limααRαff=0\lim_{\alpha\rightarrow\infty}\|\alpha R_{\alpha}f-f\|_{\infty}=0 does not hold for all fC(¯)f\in C(\overline{\mathbb{N}}). However, we will demonstrate that the strong continuity does hold in a smaller Banach space, enabling the transition semigroup (Pt)t0(P_{t})_{t\geq 0} of the Doob process to form a “Feller semigroup” on this Banach space.

We first introduce a lemma, which states that the minimal QQ-process is a Feller process on \mathbb{N} (with \partial being the cemetery).

Lemma 4.1.

The transition semigroup (Ptmin)t0(P^{\text{min}}_{t})_{t\geq 0} of XminX^{\text{min}} acts on C0()C_{0}(\mathbb{N}) as a strongly continuous contractive semigroup, i.e.,

PtminfC0(),limt0Ptminff=0P^{\text{min}}_{t}f\in C_{0}(\mathbb{N}),\quad\lim_{t\rightarrow 0}\|P_{t}^{\text{min}}f-f\|_{\infty}=0 (4.1)

for all fC0()f\in C_{0}(\mathbb{N}).

Proof.

Let (𝒜min,𝒢min)({\mathscr{A}}^{\text{min}},{\mathscr{G}}^{\text{min}}) be the Dirichlet form associated with XminX^{\text{min}} on L2(,μ)L^{2}(\mathbb{N},\mu), as described in [14, Lemma 3.1]. Fix fCc()𝒢minf\in C_{c}(\mathbb{N})\subset{\mathscr{G}}^{\text{min}}. According to [14, Lemma 3.1], we have Rαminf𝒢minC0()R^{\text{min}}_{\alpha}f\in{\mathscr{G}}^{\text{min}}\subset C_{0}(\mathbb{N}) for any α>0\alpha>0. By utilizing [10, Lemma 1.3.3], we can derive that

𝒜min(gα,gα):=12k(gα(k+1)gα(k))2ck+1ck0{\mathscr{A}}^{\text{min}}(g_{\alpha},g_{\alpha}):=\frac{1}{2}\sum_{k\in\mathbb{N}}\frac{\left(g_{\alpha}(k+1)-g_{\alpha}(k)\right)^{2}}{c_{k+1}-c_{k}}\rightarrow 0

as α\alpha\rightarrow\infty, where gα:=αRαminffC0()g_{\alpha}:=\alpha R^{\text{min}}_{\alpha}f-f\in C_{0}(\mathbb{N}). It follows from the Cauchy-Schwarz inequality that for any k0k_{0}\in\mathbb{N},

|gα(k0)|=|kk0(gα(k+1)gα(k))|(2𝒜min(gα,gα))1/2c1/2.|g_{\alpha}(k_{0})|=\left|\sum_{k\geq k_{0}}(g_{\alpha}(k+1)-g_{\alpha}(k))\right|\leq\left(2{\mathscr{A}}^{\text{min}}(g_{\alpha},g_{\alpha})\right)^{1/2}\cdot c_{\infty}^{1/2}.

Consequently, limααRαminff=limαgα=0\lim_{\alpha\rightarrow\infty}\|\alpha R^{\text{min}}_{\alpha}f-f\|_{\infty}=\lim_{\alpha\rightarrow\infty}\|g_{\alpha}\|_{\infty}=0. In other words, we have established that RαminCc()C0()R^{\text{min}}_{\alpha}C_{c}(\mathbb{N})\subset C_{0}(\mathbb{N}) and limααRαminff=0\lim_{\alpha\rightarrow\infty}\|\alpha R^{\text{min}}_{\alpha}f-f\|_{\infty}=0 for all fCc()f\in C_{c}(\mathbb{N}). Note that Cc()C_{c}(\mathbb{N}) is dense in C0()C_{0}(\mathbb{N}) with respect to the uniform norm \|\cdot\|_{\infty}, and αRαminff\|\alpha R^{\text{min}}_{\alpha}f\|_{\infty}\leq\|f\|_{\infty} holds for all fCc()f\in C_{c}(\mathbb{N}). Therefore, it is straightforward to verify that RαminC0()C0()R_{\alpha}^{\text{min}}C_{0}(\mathbb{N})\subset C_{0}(\mathbb{N}) and limααRαminff=0\lim_{\alpha\rightarrow\infty}\|\alpha R^{\text{min}}_{\alpha}f-f\|_{\infty}=0 for all fC0()f\in C_{0}(\mathbb{N}). Applying the Hille-Yosida theorem, we can obtain (4.1). ∎

Based on the density matrix QQ provided by (2.1), we define a function QFQF on \mathbb{N} for every function FF on \mathbb{N} as

QF(k):=akF(k1)qkF(k)+bkF(k+1),k,QF(k):=a_{k}F(k-1)-q_{k}F(k)+b_{k}F(k+1),\quad k\in\mathbb{N}, (4.2)

where F(1):=0F(-1):=0. Note that FF can be extended to a function in C(¯)C(\overline{\mathbb{N}}), if and only if F():=limnF(n)F(\infty):=\lim_{n\rightarrow\infty}F(n) exists. In this case, we represent its extension using the same symbol FF. Then, by an abuse of notation, the operator QQ defined by (4.2) with domain

𝒟(Q):={FC(¯):QFC(¯)}\mathcal{D}(Q):=\{F\in C(\overline{\mathbb{N}}):QF\in C(\overline{\mathbb{N}})\}

is usually referred to as the maximal (discrete) generalized second order differential operator; see, e.g., [7] and [14, Lemma 6.1].

Given the triple (γ,0,ν)𝒬D(\gamma,0,\nu)\in\mathscr{Q}_{D}, we define

𝐂ν,γ:={FC(¯):k(F()F(k))νk+γF()=0}.\mathbf{C}_{\nu,\gamma}:=\left\{F\in C(\overline{\mathbb{N}}):\sum_{k\in\mathbb{N}}(F(\infty)-F(k))\nu_{k}+\gamma F(\infty)=0\right\}. (4.3)

Since |ν|<|\nu|<\infty, 𝐂ν,γ\mathbf{C}_{\nu,\gamma} is a closed subspace of C(¯)C(\overline{\mathbb{N}}). Thus, it is a Banach space equipped with the uniform norm \|\cdot\|_{\infty}.

The following result is analogous to the second part of [16, II §5, Theorem 3].

Theorem 4.2.

Let XX be a Doob process determined by the triple (ν,0,γ)𝒬D(\nu,0,\gamma)\in\mathscr{Q}_{D}, i.e., 0<|ν|<0<|\nu|<\infty. Then, (Pt)t0(P_{t})_{t\geq 0} acts on 𝐂ν,γ\mathbf{C}_{\nu,\gamma} as a strongly continuous contractive semigroup, i.e.,

Ptf𝐂ν,γ,limt0Ptff=0P_{t}f\in\mathbf{C}_{\nu,\gamma},\quad\lim_{t\rightarrow 0}\|P_{t}f-f\|_{\infty}=0

for all f𝐂ν,γf\in\mathbf{C}_{\nu,\gamma}. Furthermore, the infinitesimal generator of (Pt)t0(P_{t})_{t\geq 0} on 𝐂ν,γ\mathbf{C}_{\nu,\gamma} is ν,γF:=QF\mathscr{L}_{\nu,\gamma}F:=QF with domain 𝒟(ν,γ):={F𝐂ν,γ:QF𝐂ν,γ}\mathcal{D}(\mathscr{L}_{\nu,\gamma}):=\{F\in\mathbf{C}_{\nu,\gamma}:QF\in\mathbf{C}_{\nu,\gamma}\}.

Proof.

We aim to apply the Hille-Yosida theorem (see, e.g., [16, I §1, Theorem 1]) to (Rα)α>0(R_{\alpha})_{\alpha>0} and ν,γ\mathscr{L}_{\nu,\gamma}. Two facts need to be proven:

  • (1)

    𝒟(ν,γ)\mathcal{D}(\mathscr{L}_{\nu,\gamma}) is dense in 𝐂ν,γ\mathbf{C}_{\nu,\gamma}.

  • (2)

    For any f𝐂ν,γf\in\mathbf{C}_{\nu,\gamma} and α>0\alpha>0, RαfR_{\alpha}f is the unique solution to the equation

    αFν,γF=f.\alpha F-\mathscr{L}_{\nu,\gamma}F=f. (4.4)

Firstly, we prove that Rαf𝒟(ν,γ)R_{\alpha}f\in\mathcal{D}(\mathscr{L}_{\nu,\gamma}) for any f𝐂ν,γf\in\mathbf{C}_{\nu,\gamma} and α>0\alpha>0. According to (2.15), we have RαfC(¯)R_{\alpha}f\in C(\overline{\mathbb{N}}) with

Rαf(k)\displaystyle R_{\alpha}f(k) =Rαminf(k)+uαmin(k)Rαf()\displaystyle=R^{\text{min}}_{\alpha}f(k)+u^{\text{min}}_{\alpha}(k)R_{\alpha}f(\infty) (4.5)
=Rαminf(k)+uαmin(k)iνiRαminf(i)γ+iνi(1uαmin(i)).\displaystyle=R^{\text{min}}_{\alpha}f(k)+u^{\text{min}}_{\alpha}(k)\frac{\sum_{i\in\mathbb{N}}\nu_{i}R^{\text{min}}_{\alpha}f(i)}{\gamma+\sum_{i\in\mathbb{N}}\nu_{i}(1-u^{\text{min}}_{\alpha}(i))}.

Then, a straightforward computation yields

kνkRαf(k)=(γ+|ν|)Rαf().\sum_{k\in\mathbb{N}}\nu_{k}R_{\alpha}f(k)=(\gamma+|\nu|)R_{\alpha}f(\infty).

Hence, Rαf𝐂ν,γR_{\alpha}f\in\mathbf{C}_{\nu,\gamma}. In addition, it follows from [7, Theorems 7.1 and 9.1] that for kk\in\mathbb{N},

QRαf(k)\displaystyle QR_{\alpha}f(k) =QRαminf(k)+Rαf()Quαmin(k)\displaystyle=QR^{\text{min}}_{\alpha}f(k)+R_{\alpha}f(\infty)\cdot Qu^{\text{min}}_{\alpha}(k) (4.6)
=(αRαminf(k)f(k))+Rαf()αuαmin(k).\displaystyle=(\alpha R^{\text{min}}_{\alpha}f(k)-f(k))+R_{\alpha}f(\infty)\cdot\alpha u^{\text{min}}_{\alpha}(k).

Thus, QRαfC(¯)QR_{\alpha}f\in C(\overline{\mathbb{N}}) with

QRαf()=αRαf()f().QR_{\alpha}f(\infty)=\alpha R_{\alpha}f(\infty)-f(\infty). (4.7)

Note that kνkf(k)=(γ+|ν|)f()\sum_{k\in\mathbb{N}}\nu_{k}f(k)=(\gamma+|\nu|)f(\infty) due to f𝐂ν,γf\in\mathbf{C}_{\nu,\gamma}. This, together with (4.5) and (4.7), yields that

kνkQRαf(k)=(γ+|ν|)QRαf().\sum_{k\in\mathbb{N}}\nu_{k}QR_{\alpha}f(k)=(\gamma+|\nu|)QR_{\alpha}f(\infty).

As a result, QRαf𝐂ν,γQR_{\alpha}f\in\mathbf{C}_{\nu,\gamma}. Therefore, Rαf𝒟(ν,γ)R_{\alpha}f\in\mathcal{D}(\mathscr{L}_{\nu,\gamma}) is obtained.

Next, we consider the resolvent equation (4.4) and prove that RαfR_{\alpha}f is the unique solution to (4.4). In fact, by using Rαf𝒟(ν,γ)R_{\alpha}f\in\mathcal{D}(\mathscr{L}_{\nu,\gamma}), (4.5), and (4.6), we have

((αν,γ)Rαf)(k)=αRαf(k)QRαf(k)=f(k),k.\left((\alpha-\mathscr{L}_{\nu,\gamma})R_{\alpha}f\right)(k)=\alpha R_{\alpha}f(k)-QR_{\alpha}f(k)=f(k),\quad\forall k\in\mathbb{N}.

Consequently, RαfR_{\alpha}f is a solution to (4.4). The uniqueness of the solutions to (4.4) can be concluded by the same argument in the last paragraph of the proof of [14, Theorem 6.3].

Thirdly, we demonstrate that

limααRαff=0\lim_{\alpha\rightarrow\infty}\|\alpha R_{\alpha}f-f\|_{\infty}=0 (4.8)

for all f𝐂ν,γf\in\mathbf{C}_{\nu,\gamma}, thereby establishing that 𝒟(ν,γ)\mathcal{D}(\mathscr{L}_{\nu,\gamma}) is dense in 𝐂ν,γ\mathbf{C}_{\nu,\gamma}. To prove (4.8), we define f0:=ff()1¯C0()f_{0}:=f-f(\infty)\cdot 1_{\overline{\mathbb{N}}}\in C_{0}(\mathbb{N}). Utilizing (2.5) and (4.5), we can deduce that

αRαf(k)f(k)\displaystyle\alpha R_{\alpha}f(k)-f(k) =αRαminf0(k)f0(k)f()uαmin(k)\displaystyle=\alpha R^{\text{min}}_{\alpha}f_{0}(k)-f_{0}(k)-f(\infty)u_{\alpha}^{\text{min}}(k) (4.9)
+uαmin(k)ν(αRαminf0)+f()iνi(1uαmin(i))γ+iνi(1uαmin(i)).\displaystyle\qquad+u^{\text{min}}_{\alpha}(k)\frac{\nu\left(\alpha R^{\text{min}}_{\alpha}f_{0}\right)+f(\infty)\sum_{i\in\mathbb{N}}\nu_{i}(1-u^{\text{min}}_{\alpha}(i))}{\gamma+\sum_{i\in\mathbb{N}}\nu_{i}(1-u^{\text{min}}_{\alpha}(i))}.

As established in Lemma 4.1, limααRαminf0f0=0\lim_{\alpha\rightarrow\infty}\|\alpha R_{\alpha}^{\text{min}}f_{0}-f_{0}\|_{\infty}=0. Since |ν|<|\nu|<\infty and limαuαmin(i)=0\lim_{\alpha\rightarrow\infty}u^{\text{min}}_{\alpha}(i)=0, it follows that

limαν(αRαminf0)+f()iνi(1uαmin(i))γ+iνi(1uαmin(i))=ν(f0)+f()|ν|γ+|ν|.\lim_{\alpha\rightarrow\infty}\frac{\nu\left(\alpha R^{\text{min}}_{\alpha}f_{0}\right)+f(\infty)\sum_{i\in\mathbb{N}}\nu_{i}(1-u^{\text{min}}_{\alpha}(i))}{\gamma+\sum_{i\in\mathbb{N}}\nu_{i}(1-u^{\text{min}}_{\alpha}(i))}=\frac{\nu(f_{0})+f(\infty)|\nu|}{\gamma+|\nu|}.

Note that (γ+|ν|)f()=ν(f)=ν(f0)+f()|ν|(\gamma+|\nu|)f(\infty)=\nu(f)=\nu(f_{0})+f(\infty)|\nu|, since f𝐂ν,γf\in\mathbf{C}_{\nu,\gamma}. Thus, the above limit is equal to f()f(\infty). From (4.9), we can obtain (4.8).

Finally, by applying the Hille-Yosida theorem, we can conclude that ν,γ\mathscr{L}_{\nu,\gamma} is the infinitesimal generator of the resolvent (Rα)α>0(R_{\alpha})_{\alpha>0} on 𝐂ν,γ\mathbf{C}_{\nu,\gamma}. Hence, it admits a strongly continuous contractive semigroup (Pt)t0(P^{\prime}_{t})_{t\geq 0} on 𝐂ν,γ\mathbf{C}_{\nu,\gamma}. Fixing f𝐂ν,γf\in\mathbf{C}_{\nu,\gamma} and x¯x\in\overline{\mathbb{N}}, we have

Rαf(x)=0eαtPtf(x)𝑑t=0eαtPtf(x)𝑑t,α>0.R_{\alpha}f(x)=\int_{0}^{\infty}e^{-\alpha t}P_{t}f(x)dt=\int_{0}^{\infty}e^{-\alpha t}P^{\prime}_{t}f(x)dt,\quad\forall\alpha>0.

Thus, Ptf(x)=Ptf(x)P_{t}f(x)=P^{\prime}_{t}f(x) for a.e. tt. Since Pt+hfPtf0\|P^{\prime}_{t+h}f-P^{\prime}_{t}f\|_{\infty}\rightarrow 0 as h0h\downarrow 0 for any t0t\geq 0 and tPtf(x)t\mapsto P_{t}f(x) is right-continuous (see [4, Theorem 8.2]), it is easy to see that Ptf(x)=Ptf(x)P_{t}f(x)=P^{\prime}_{t}f(x) for all tt. This completes the proof. ∎

Remark 4.3.

In the reduced case where γ>0\gamma>0 and β=|ν|=0\beta=|\nu|=0, corresponding to the minimal QQ-process, we have 𝐂ν,γ=C0()\mathbf{C}_{\nu,\gamma}=C_{0}(\mathbb{N}). The same argument as presented in this proof indicates that the infinitesimal generator of (Ptmin)t0(P^{\text{min}}_{t})_{t\geq 0} on C0()C_{0}(\mathbb{N}) is given by minF=QF\mathscr{L}^{\text{min}}F=QF with domain 𝒟(min)={FC0():QFC0()}\mathcal{D}(\mathscr{L}^{\text{min}})=\{F\in C_{0}(\mathbb{N}):QF\in C_{0}(\mathbb{N})\}.

5. Weak convergence on Skorohod topological space

In this section, we continue our study of the convergence issues that were temporarily paused in §3. As explained in §2.6, for each probability measure λ(n)\lambda^{(n)} (resp. λ\lambda) on ¯\overline{\mathbb{N}}_{\partial}, λ(n)(n)\mathbb{P}^{(n)}_{\lambda^{(n)}} (resp. λ\mathbb{P}_{\lambda}) can be considered as a probability measure on the Skorohod topological space D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty). Our goal is to demonstrate that if (γ(n),β(n),ν(n))(\gamma^{(n)},\beta^{(n)},\nu^{(n)}) converges to (γ,β,ν)𝒬F(\gamma,\beta,\nu)\in\mathscr{Q}_{F} and λ(n)\lambda^{(n)} converges to λ\lambda in some sense, then λ(n)(n)\mathbb{P}^{(n)}_{\lambda^{(n)}} converges weakly to λ\mathbb{P}_{\lambda} on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty).

It should be noted that the assumption of the target process being a Feller QQ-process, i.e., (γ,β,ν)𝒬F(\gamma,\beta,\nu)\in\mathscr{Q}_{F}, appears to be necessary. According to Theorem 4.2, when XX is a Doob process, its semigroup exhibits improved analytic properties when restricted to the proper subspace 𝐂ν,γ\mathbf{C}_{\nu,\gamma} of C(¯)C(\overline{\mathbb{N}}). Thus, establishing convergence properties with respect to all functions in C(¯)C(\overline{\mathbb{N}}) seems challenging. However, it is worth mentioning that Doob processes and Feller QQ-processes with |ν|<|\nu|<\infty are well understood (see [14]). Therefore, our main focus is on examining the approximation of Feller QQ-processes with |ν|=|\nu|=\infty. From this perspective, the assumption of (γ,β,ν)𝒬F(\gamma,\beta,\nu)\in\mathscr{Q}_{F} does not result in any loss.

5.1. Approximating triples

We begin by examining condition (1c) in Theorem 3.2. According to (2.15), this condition can be expressed in terms of the triples in 𝒬\mathscr{Q} as

limn\displaystyle\lim_{n\rightarrow\infty} ν(n)(Rαminf)+β(n)μ(uαminf)γ(n)+ν(n)(1uαmin)+β(n)αμ(uαmin)=ν(Rαminf)+βμ(uαminf)γ+ν(1uαmin)+βαμ(uαmin).\displaystyle\frac{\nu^{(n)}\left(R^{\text{min}}_{\alpha}f\right)+\beta^{(n)}\cdot\mu\left(u^{\text{min}}_{\alpha}f\right)}{\gamma^{(n)}+\nu^{(n)}\left(1-u^{\text{min}}_{\alpha}\right)+\beta^{(n)}\alpha\cdot\mu\left(u^{\text{min}}_{\alpha}\right)}=\frac{\nu\left(R^{\text{min}}_{\alpha}f\right)+\beta\cdot\mu\left(u^{\text{min}}_{\alpha}f\right)}{\gamma+\nu\left(1-u^{\text{min}}_{\alpha}\right)+\beta\alpha\cdot\mu\left(u^{\text{min}}_{\alpha}\right)}. (5.1)

The verification of the convergence of the corresponding parts in (5.1) is a straightforward process in establishing the validity of (1c). Specifically, we can examine the convergence properties of the triples (γ(n),β(n),ν(n))(\gamma^{(n)},\beta^{(n)},\nu^{(n)}) as follows.

Definition 5.1.

The triple (γ(n),β(n),ν(n))𝒬(\gamma^{(n)},\beta^{(n)},\nu^{(n)})\in\mathscr{Q} is said to converge to (γ,β,ν)𝒬(\gamma,\beta,\nu)\in\mathscr{Q}, if

limnγ(n)=γ,limnβ(n)=β,limnνk(n)=νk,k,\lim_{n\rightarrow\infty}\gamma^{(n)}=\gamma,\quad\lim_{n\rightarrow\infty}\beta^{(n)}=\beta,\quad\lim_{n\rightarrow\infty}\nu^{(n)}_{k}=\nu_{k},\;\forall k\in\mathbb{N},

and

limnν(n)(1uαmin)=ν(1uαmin),α>0(or equivalently, α>0).\lim_{n\rightarrow\infty}\nu^{(n)}\left(1-u^{\text{min}}_{\alpha}\right)=\nu\left(1-u^{\text{min}}_{\alpha}\right),\quad\forall\alpha>0\;(\text{or equivalently, }\exists\alpha>0). (5.2)
Remark 5.2.

The pointwise convergence limnνk(n)=νk,k,\lim_{n\rightarrow\infty}\nu^{(n)}_{k}=\nu_{k},\forall k\in\mathbb{N}, is equivalent to the vague convergence of the measure ν(n)\nu^{(n)} on \mathbb{N} to ν\nu, i.e., ν(n)(f)ν(f)\nu^{(n)}(f)\rightarrow\nu(f) for any fCc()f\in C_{c}(\mathbb{N}). However, this condition alone is not sufficient to guarantee (5.2), because 1uαminC0()1-u_{\alpha}^{\text{min}}\in C_{0}(\mathbb{N}) and ν\nu or ν(n)\nu^{(n)} may be infinite measure. The equivalence between the two formulations in condition (5.2) can be established by using the following two inequalities and the generalized dominated convergence theorem (similar to the approach in the proof of Lemma 5.3): 1uα1min(k)1uα2min(k)1-u_{\alpha_{1}}^{\text{min}}(k)\leq 1-u_{\alpha_{2}}^{\text{min}}(k) and 1u2α1min(k)2(1uα1min(k))1-u_{2\alpha_{1}}^{\text{min}}(k)\leq 2(1-u_{\alpha_{1}}^{\text{min}}(k)) for all α2>α1>0\alpha_{2}>\alpha_{1}>0.

When ν(n)\nu^{(n)} monotonically converges pointwise to ν\nu, i.e., νk(n)νk\nu^{(n)}_{k}\uparrow\nu_{k} (or νk(n)νk\nu^{(n)}_{k}\downarrow\nu_{k}) for all kk\in\mathbb{N}, condition (5.2) is clearly satisfied by the dominated convergence theorem. This case includes approximation sequence obtained using the simplest truncation method:

γ(n):=γ,β(n):=β,νk(n):=νk, 0kn,νk(n):=0,k>n,\gamma^{(n)}:=\gamma,\quad\beta^{(n)}:=\beta,\quad\nu^{(n)}_{k}:=\nu_{k},\;0\leq k\leq n,\quad\nu^{(n)}_{k}:=0,\;k>n,

which serves as the primary motivation for the study of this section. However, Definition 5.1 is not restricted to the scenario described in this example, where a sequence of simple processes approximates a complex process. It also allows for the opposite situation. For instance, let us consider the case where \infty is a regular boundary and (γ,β,ν)𝒬(\gamma,\beta,\nu)\in\mathscr{Q} satisfies β>0\beta>0 and |ν|=|\nu|=\infty. Define

γ(n):=γ,β(n):=β,νk(n):=0, 0kn,νk(n):=νk,k>n.\gamma^{(n)}:=\gamma,\quad\beta^{(n)}:=\beta,\quad\nu^{(n)}_{k}:=0,\;0\leq k\leq n,\quad\nu^{(n)}_{k}:=\nu_{k},\;k>n.

Then, |ν(n)|=|\nu^{(n)}|=\infty for all nn\in\mathbb{N}, while (γ(n),β(n),ν(n))\left(\gamma^{(n)},\beta^{(n)},\nu^{(n)}\right) converges to (γ,β,0)(\gamma,\beta,0) in the sense of Definition 5.1.

It is easy to prove that the convergence based on the triple, as defined above, implies (5.1).

Lemma 5.3.

Assume that (γ(n),β(n),ν(n))(\gamma^{(n)},\beta^{(n)},\nu^{(n)}) converges to (γ,β,ν)(\gamma,\beta,\nu) in the sense of Definition 5.1. Then all the conditions in Theorem 3.2 are satisfied.

Proof.

It suffices to prove ν(n)(Rαminf)ν(Rαminf)\nu^{(n)}(R_{\alpha}^{\text{min}}f)\rightarrow\nu(R_{\alpha}^{\text{min}}f) for all fC(¯)f\in C(\overline{\mathbb{N}}). To do this, note that

νk(n)Rαminf(k)νkRαminf(k),νk(n)(1uαmin(k))νk(1uαmin(k))\nu^{(n)}_{k}R_{\alpha}^{\text{min}}f(k)\rightarrow\nu_{k}R_{\alpha}^{\text{min}}f(k),\quad\nu^{(n)}_{k}(1-u^{\text{min}}_{\alpha}(k))\rightarrow\nu_{k}(1-u^{\text{min}}_{\alpha}(k))

and

|νk(n)Rαminf(k)|fανk(n)(1uαmin(k))|\nu^{(n)}_{k}R^{\text{min}}_{\alpha}f(k)|\leq\frac{\|f\|_{\infty}}{\alpha}\nu^{(n)}_{k}(1-u_{\alpha}^{\text{min}}(k))

for fixed kk\in\mathbb{N}. Thus, ν(n)(Rαminf)ν(Rαminf)\nu^{(n)}(R_{\alpha}^{\text{min}}f)\rightarrow\nu(R_{\alpha}^{\text{min}}f) follows from (5.2) by utilizing the generalized dominated convergence theorem (see [9, §2.3, Exercise 20]). ∎

5.2. Convergence in finite-dimensional distributions

For each nn, define 𝐂(n):=C(¯)\mathbf{C}^{(n)}:=C(\overline{\mathbb{N}}) if X(n)X^{(n)} is a Feller QQ-process, and define 𝐂(n):=𝐂ν(n),γ(n)\mathbf{C}^{(n)}:=\mathbf{C}_{\nu^{(n)},\gamma^{(n)}} as (4.3) (with ν=ν(n),γ=γ(n)\nu=\nu^{(n)},\gamma=\gamma^{(n)}) if X(n)X^{(n)} is a Doob process. According to [14, Theorem 6.3] or Theorem 4.2, the transition semigroup (Pt(n))t0(P^{(n)}_{t})_{t\geq 0} acts on 𝐂(n)\mathbf{C}^{(n)} as a strongly continuous contractive semigroup. Let (n)\mathscr{L}^{(n)} with domain 𝒟((n))\mathcal{D}(\mathscr{L}^{(n)}) denote the infinitesimal generator of (Pt(n))t0(P^{(n)}_{t})_{t\geq 0} on 𝐂(n)\mathbf{C}^{(n)}. Similarly, we define 𝐂:=C(¯)\mathbf{C}:=C(\overline{\mathbb{N}}) if XX is a Feller QQ-process, and 𝐂:=𝐂ν,γ\mathbf{C}:=\mathbf{C}_{\nu,\gamma} if XX is a Doob process. Denote by \mathscr{L} with domain 𝒟()\mathcal{D}(\mathscr{L}) the infinitesimal generator of (Pt)t0(P_{t})_{t\geq 0} on 𝐂\mathbf{C}.

Lemma 5.4.

Assume that (γ(n),β(n),ν(n))(\gamma^{(n)},\beta^{(n)},\nu^{(n)}) converges to (γ,β,ν)(\gamma,\beta,\nu) in the sense of Definition 5.1. Then the following conclusions hold:

  • (1)

    For any g𝐂g\in\mathbf{C}, there exists a sequence gn𝐂(n)g_{n}\in\mathbf{C}^{(n)} such that

    gng=0,n.\|g_{n}-g\|_{\infty}=0,\quad n\rightarrow\infty. (5.3)
  • (2)

    For any f𝒟()f\in\mathcal{D}(\mathscr{L}), there exists a sequence fn𝒟((n))f_{n}\in\mathcal{D}(\mathscr{L}^{(n)}) such that

    fnf+(n)fnf0,n.\|f_{n}-f\|_{\infty}+\|\mathscr{L}^{(n)}f_{n}-\mathscr{L}f\|_{\infty}\rightarrow 0,\quad n\rightarrow\infty. (5.4)
Proof.

The sequence of processes X(n)X^{(n)} can be divided into at most two subsequences: one consisting of Feller QQ-processes and the other consisting of Doob processes. Thus, it is sufficient to consider each subsequence separately. First, we will examine the subsequence, still denoted by X(n)X^{(n)}, consisting of Feller QQ-processes. Note that 𝐂n=C(¯)\mathbf{C}_{n}=C(\overline{\mathbb{N}}) for all nn\in\mathbb{N}. Hence, the existence of gng_{n} is evident. For f=Rαh𝒟()f=R_{\alpha}h\in\mathcal{D}(\mathscr{L}) with h𝐂h\in\mathbf{C}, we can take fn:=Rα(n)h𝒟((n))f_{n}:=R^{(n)}_{\alpha}h\in\mathcal{D}(\mathscr{L}^{(n)}), which satisfies (5.4) by (1b) of Theorem 3.2 and the Hille-Yosida theorem.

It remains to consider the subsequence consisting of Doob processes. From now on, we assume that all X(n)X^{(n)} are Doob processes. According to Definition 5.1, we have β=limnβ(n)=0\beta=\lim_{n\rightarrow\infty}\beta^{(n)}=0.

(1) Assume without loss of generality that g=Rαh𝒟()g=R_{\alpha}h\in\mathcal{D}(\mathscr{L}) with h𝐂h\in\mathbf{C}. According to (2.13) or Theorem 4.2, we have

k(g()g(k))νk+γg()=0.\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu_{k}+\gamma g(\infty)=0. (5.5)

Note that |ν|>0|\nu|>0 because of the condition (2.8). Let NN\in\mathbb{N} such that k=0Nνk>0\sum_{k=0}^{N}\nu_{k}>0, and assume without loss of generality that k=0Nνk(n)>0\sum_{k=0}^{N}\nu^{(n)}_{k}>0 for all n1n\geq 1. Define

gn:=g+χn1{0,1,,N},g_{n}:=g+\chi_{n}\cdot 1_{\{0,1,\cdots,N\}},

where

χn:=k(g()g(k))νk(n)+γ(n)g()k=0Nνk(n).\chi_{n}:=\frac{\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu^{(n)}_{k}+\gamma^{(n)}g(\infty)}{\sum_{k=0}^{N}\nu^{(n)}_{k}}.

We explain why k(g()g(k))νk(n)\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu^{(n)}_{k} is finite in the definition of χn\chi_{n}. In fact, according to (2.14), we have

g()g(k)=Rαh()Rαh(k)=Rαh()(1uαmin(k))Rαminh(k).g(\infty)-g(k)=R_{\alpha}h(\infty)-R_{\alpha}h(k)=R_{\alpha}h(\infty)(1-u^{\text{min}}_{\alpha}(k))-R^{\text{min}}_{\alpha}h(k).

Thus,

k(g()g(k))νk(n)=Rαh()ν(n)(1uαmin)ν(n)(Rαminh),\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu^{(n)}_{k}=R_{\alpha}h(\infty)\cdot\nu^{(n)}(1-u^{\text{min}}_{\alpha})-\nu^{(n)}(R_{\alpha}^{\text{min}}h), (5.6)

which is finite due to (2.12). In addition, it follows from (5.2) and Lemma 5.3 that

limnk(g()g(k))νk(n)\displaystyle\lim_{n\rightarrow\infty}\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu^{(n)}_{k} =Rαh()ν(1uαmin)ν(Rαminh)\displaystyle=R_{\alpha}h(\infty)\cdot\nu(1-u^{\text{min}}_{\alpha})-\nu(R_{\alpha}^{\text{min}}h)
=k(g()g(k))νk.\displaystyle=\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu_{k}.

Hence, χn0\chi_{n}\rightarrow 0 by (5.5), which yields that gng0\|g_{n}-g\|_{\infty}\rightarrow 0. Finally, it is straightforward to verify that gnC(¯)g_{n}\in C(\overline{\mathbb{N}}) with k(gn()gn(k))νk(n)+γ(n)gn()=0\sum_{k\in\mathbb{N}}(g_{n}(\infty)-g_{n}(k))\nu^{(n)}_{k}+\gamma^{(n)}g_{n}(\infty)=0 by using the definition of χn\chi_{n}. In other words, gn𝐂(n)g_{n}\in\mathbf{C}^{(n)}.

(2) Let g:=ff𝐂g:=f-\mathscr{L}f\in\mathbf{C}. By applying the first assertion to this gg, we obtain a sequence gn𝐂(n)g_{n}\in\mathbf{C}^{(n)} that satisfies (5.3). Define fn:=R1(n)gn𝒟((n))f_{n}:=R^{(n)}_{1}g_{n}\in\mathcal{D}(\mathscr{L}^{(n)}). Since f=R1gf=R_{1}g, it follows from (1b) of Theorem 3.2 and (5.3) that

fnf\displaystyle\|f_{n}-f\|_{\infty} R1(n)gnR1(n)g+R1(n)gR1g\displaystyle\leq\left\|R^{(n)}_{1}g_{n}-R_{1}^{(n)}g\right\|_{\infty}+\left\|R^{(n)}_{1}g-R_{1}g\right\|_{\infty}
gng+R1(n)gR1g0.\displaystyle\leq\left\|g_{n}-g\right\|_{\infty}+\left\|R^{(n)}_{1}g-R_{1}g\right\|_{\infty}\rightarrow 0.

Additionally, we note that

(n)fn=fngn,f=fg.\mathscr{L}^{(n)}f_{n}=f_{n}-g_{n},\quad\mathscr{L}f=f-g.

Therefore, we can also conclude that (n)fnf0\left\|\mathscr{L}^{(n)}f_{n}-\mathscr{L}f\right\|_{\infty}\rightarrow 0. ∎

Let 𝒫()\mathcal{P}(\mathbb{N}_{\partial}) denote the family of all probability measures on \mathbb{N}_{\partial}. A sequence of measures λ(n)𝒫()\lambda^{(n)}\in\mathcal{P}(\mathbb{N}_{\partial}) is said to converge weakly to λ𝒫()\lambda\in\mathcal{P}(\mathbb{N}_{\partial}) if limnλ(n)(f)=λ(f)\lim_{n\rightarrow\infty}\lambda^{(n)}(f)=\lambda(f) for all fCb()f\in C_{b}(\mathbb{N}_{\partial}). It is worth noting that this weak convergence is equivalent to the vague convergence, i.e., limnλ(n)(f)=λ(f)\lim_{n\rightarrow\infty}\lambda^{(n)}(f)=\lambda(f) for all fCc()f\in C_{c}(\mathbb{N}_{\partial}); see, e.g., [9, §7.3, Exercise 26].

Now we are ready to prove the convergence of X(n)X^{(n)} in finite-dimensional distributions to a Feller QQ-process XX.

Theorem 5.5.

Assume that (γ(n),β(n),ν(n))(\gamma^{(n)},\beta^{(n)},\nu^{(n)}) converges to (γ,β,ν)(\gamma,\beta,\nu) in the sense of Definition 5.1, and that (γ,β,ν)𝒬F(\gamma,\beta,\nu)\in\mathscr{Q}_{F}. Then

limnsupt[0,T],k|Pt(n)f(k)Ptf(k)|=0\lim_{n\rightarrow\infty}\sup_{t\in[0,T],k\in\mathbb{N}_{\partial}}\left|P^{(n)}_{t}f(k)-P_{t}f(k)\right|=0 (5.7)

for all fC(¯)f\in C(\overline{\mathbb{N}}_{\partial}) and T0T\geq 0. Furthermore, if λ(n)𝒫()\lambda^{(n)}\in\mathcal{P}(\mathbb{N}_{\partial}) converges weakly to λ𝒫()\lambda\in\mathcal{P}(\mathbb{N}_{\partial}), then for any 0=t1<<tN0=t_{1}<\cdots<t_{N}, and f1,,fNC(¯)f_{1},\cdots,f_{N}\in C(\overline{\mathbb{N}}_{\partial}) with N1N\geq 1,

limn𝔼λ(n)(n)(f1(Xt1)fN(XtN))=𝔼λ(f1(Xt1)fN(XtN)).\lim_{n\rightarrow\infty}\mathbb{E}^{(n)}_{\lambda^{(n)}}\left(f_{1}(X_{t_{1}})\cdots f_{N}(X_{t_{N}})\right)=\mathbb{E}_{\lambda}\left(f_{1}(X_{t_{1}})\cdots f_{N}(X_{t_{N}})\right). (5.8)
Proof.

Consider f𝒟()f\in\mathcal{D}(\mathscr{L}), and take a sequence fn𝒟((n))f_{n}\in\mathcal{D}(\mathscr{L}^{(n)}) satisfying (5.4). We will first apply Lemma 3.1 with 𝐁=C(¯)\mathbf{B}=C(\overline{\mathbb{N}}) and Fn(t):=Pt(n)fnPtf𝐁F_{n}(t):=P^{(n)}_{t}f_{n}-P_{t}f\in\mathbf{B} to conclude that

limnsup0tTPt(n)fnPtf=0.\lim_{n\rightarrow\infty}\sup_{0\leq t\leq T}\left\|P^{(n)}_{t}f_{n}-P_{t}f\right\|_{\infty}=0. (5.9)

Clearly, the first condition (i) and (3.1) in Lemma 3.1 hold for this F(t)F(t). It suffices to prove the equicontinuity of F(t)F(t). In fact, the Hille-Yosida theorem indicates that

Fn(t)Fn(t)=tt(Ps(n)(n)fnPsf)𝑑s.F_{n}(t)-F_{n}(t^{\prime})=\int_{t^{\prime}}^{t}\left(P^{(n)}_{s}\mathscr{L}^{(n)}f_{n}-P_{s}\mathscr{L}f\right)ds.

Since Ps(n)(n)fnPsf(n)fn+f2f\|P^{(n)}_{s}\mathscr{L}^{(n)}f_{n}-P_{s}\mathscr{L}f\|_{\infty}\leq\|\mathscr{L}^{(n)}f_{n}\|_{\infty}+\|\mathscr{L}f\|_{\infty}\rightarrow 2\|\mathscr{L}f\|_{\infty}, it is straightforward to obtain the equicontinuity of Fn(t)F_{n}(t). Therefore, (5.9) is established.

We are now in a position to demonstrate (5.7). Since Pt(n)1¯=Pt1¯1P^{(n)}_{t}1_{\overline{\mathbb{N}}_{\partial}}=P_{t}1_{\overline{\mathbb{N}}_{\partial}}\equiv 1, it is sufficient to consider fC(¯)f\in C(\overline{\mathbb{N}}). Take an arbitrary ε>0\varepsilon>0. We need to show that there exists an integer NN such that for any n>Nn>N,

supt[0,T],k|Pt(n)f(k)Ptf(k)|<ε.\sup_{t\in[0,T],k\in\mathbb{N}}\left|P^{(n)}_{t}f(k)-P_{t}f(k)\right|<\varepsilon. (5.10)

Since 𝐂=C(¯)\mathbf{C}=C(\overline{\mathbb{N}}), we can take f~𝒟()\tilde{f}\in\mathcal{D}(\mathscr{L}) such that f~f<ε/4\|\tilde{f}-f\|_{\infty}<\varepsilon/4. Let f~n𝒟((n))\tilde{f}_{n}\in\mathcal{D}(\mathscr{L}^{(n)}) be the sequence for f~\tilde{f} as in (5.4), i.e.,

f~nf~+(n)f~nf~0.\left\|\tilde{f}_{n}-\tilde{f}\right\|_{\infty}+\left\|\mathscr{L}^{(n)}\tilde{f}_{n}-\mathscr{L}\tilde{f}\right\|_{\infty}\rightarrow 0.

It follows from (5.9) that

limnsup0tTPt(n)f~nPtf~=0.\lim_{n\rightarrow\infty}\sup_{0\leq t\leq T}\left\|P^{(n)}_{t}\tilde{f}_{n}-P_{t}\tilde{f}\right\|_{\infty}=0.

Particularly, there exists an integer NN such that for any n>Nn>N,

f~nf~<ε/4,sup0tTPt(n)f~nPtf~<ε/4.\left\|\tilde{f}_{n}-\tilde{f}\right\|_{\infty}<\varepsilon/4,\quad\sup_{0\leq t\leq T}\left\|P^{(n)}_{t}\tilde{f}_{n}-P_{t}\tilde{f}\right\|_{\infty}<\varepsilon/4. (5.11)

Note that for any k,t[0,T]k\in\mathbb{N},t\in[0,T] and n>Nn>N,

|Pt(n)f(k)Ptf(k)|\displaystyle|P^{(n)}_{t}f(k)-P_{t}f(k)| |Pt(n)f(k)Pt(n)f~(k)|+|Pt(n)f~(k)Pt(n)f~n(k)|\displaystyle\leq|P^{(n)}_{t}f(k)-P^{(n)}_{t}\tilde{f}(k)|+|P^{(n)}_{t}\tilde{f}(k)-P^{(n)}_{t}\tilde{f}_{n}(k)|
+|Pt(n)f~n(k)Ptf~(k)|+|Ptf~(k)Ptf(k)|\displaystyle\qquad+|P^{(n)}_{t}\tilde{f}_{n}(k)-P_{t}\tilde{f}(k)|+|P_{t}\tilde{f}(k)-P_{t}f(k)|
ff~+f~f~n+Pt(n)f~nPtf~+f~f.\displaystyle\leq\|f-\tilde{f}\|_{\infty}+\|\tilde{f}-\tilde{f}_{n}\|_{\infty}+\|P^{(n)}_{t}\tilde{f}_{n}-P_{t}\tilde{f}\|_{\infty}+\|\tilde{f}-f\|_{\infty}.

By means of f~f<ε/4\|\tilde{f}-f\|_{\infty}<\varepsilon/4 and (5.11), we can obtain (5.10).

Before proving (5.8), let us clarify two facts. Firstly, it is not difficult to derive from (5.7) that

limnsupt[0,T],k|Pt(n)gn(k)Ptg(k)|=0\lim_{n\rightarrow\infty}\sup_{t\in[0,T],k\in\mathbb{N}_{\partial}}\left|P^{(n)}_{t}g_{n}(k)-P_{t}g(k)\right|=0 (5.12)

holds for any functions gn,gC(¯)g_{n},g\in C(\overline{\mathbb{N}}_{\partial}) satisfying gng0\|g_{n}-g\|_{\infty}\rightarrow 0. Secondly, let ϱn():=λ(n)(n)((Xt1,,XtN))\varrho_{n}(\cdot):=\mathbb{P}^{(n)}_{\lambda^{(n)}}\left(\left(X_{t_{1}},\cdots,X_{t_{N}}\right)\in\cdot\right) and ϱ():=λ((Xt1,,XtN))\varrho(\cdot):=\mathbb{P}_{\lambda}\left(\left(X_{t_{1}},\cdots,X_{t_{N}}\right)\in\cdot\right). It can be shown that ϱn\varrho_{n} and ϱ\varrho are probability measures on (¯)N\left(\overline{\mathbb{N}}_{\partial}\right)^{N} (the NN-fold product space of ¯\overline{\mathbb{N}}_{\partial}) satisfying ϱn(()N)=ϱ(()N)=1\varrho_{n}\left(\left(\mathbb{N}_{\partial}\right)^{N}\right)=\varrho\left(\left(\mathbb{N}_{\partial}\right)^{N}\right)=1. Thus, according to [9, §7.3, Exercise 26], to prove (5.8) as required, it is equivalent to proving that ϱn\varrho_{n} converges vaguely to ϱ\varrho on ()N\left(\mathbb{N}_{\partial}\right)^{N}. In other words, we can assume without loss of generality that f1,,fNCc()f_{1},\cdots,f_{N}\in C_{c}(\mathbb{N}_{\partial}) in (5.8).

By utilizing (5.7) for fNf_{N}, we have

supk|PtNtN1(n)fN(k)PtNtN1fN(k)|0.\sup_{k\in\mathbb{N}_{\partial}}\left|P^{(n)}_{t_{N}-t_{N-1}}f_{N}(k)-P_{t_{N}-t_{N-1}}f_{N}(k)\right|\rightarrow 0. (5.13)

Although PtNtN1(n)fNP^{(n)}_{t_{N}-t_{N-1}}f_{N} may not be in C(¯)C(\overline{\mathbb{N}}_{\partial}), it holds that

gN1(n):=fN1PtNtN1(n)fNCc(),gN1:=fN1PtNtN1fNCc()g_{N-1}^{(n)}:=f_{N-1}P^{(n)}_{t_{N}-t_{N-1}}f_{N}\in C_{c}(\mathbb{N}_{\partial}),\quad g_{N-1}:=f_{N-1}P_{t_{N}-t_{N-1}}f_{N}\in C_{c}(\mathbb{N}_{\partial})

because of fN1Cc()f_{N-1}\in C_{c}(\mathbb{N}_{\partial}). Then, (5.13) indicates

limngN1(n)gN1=0.\lim_{n\rightarrow\infty}\left\|g_{N-1}^{(n)}-g_{N-1}\right\|_{\infty}=0.

It follows from (5.12) that

supk\displaystyle\sup_{k\in\mathbb{N}_{\partial}} |PtN1tN2(n)(fN1PtNtN1(n)fN)PtN1tN2(fN1PtNtN1fN)|\displaystyle\left|P^{(n)}_{t_{N-1}-t_{N-2}}\left(f_{N-1}P^{(n)}_{t_{N}-t_{N-1}}f_{N}\right)-P_{t_{N-1}-t_{N-2}}\left(f_{N-1}P_{t_{N}-t_{N-1}}f_{N}\right)\right|
=supk|PtN1tN2(n)gN1(n)PtN1tN2gN1|0.\displaystyle=\sup_{k\in\mathbb{N}_{\partial}}\left|P^{(n)}_{t_{N-1}-t_{N-2}}g^{(n)}_{N-1}-P_{t_{N-1}-t_{N-2}}g_{N-1}\right|\rightarrow 0.

By induction, we obtain that

g1(n):=f1Pt2t1(n)(f2PtN1tN2(n)(fN1PtNtN1(n)fN))Cc(),\displaystyle g^{(n)}_{1}:=f_{1}P^{(n)}_{t_{2}-t_{1}}\left(f_{2}\cdots P^{(n)}_{t_{N-1}-t_{N-2}}\left(f_{N-1}P^{(n)}_{t_{N}-t_{N-1}}f_{N}\right)\right)\in C_{c}(\mathbb{N}_{\partial}),
g1:=f1Pt2t1(f2PtN1tN2(fN1PtNtN1fN))Cc(),\displaystyle g_{1}:=f_{1}P_{t_{2}-t_{1}}\left(f_{2}\cdots P_{t_{N-1}-t_{N-2}}\left(f_{N-1}P_{t_{N}-t_{N-1}}f_{N}\right)\right)\in C_{c}(\mathbb{N}_{\partial}),

and

limng1(n)g1=0.\lim_{n\rightarrow\infty}\left\|g_{1}^{(n)}-g_{1}\right\|_{\infty}=0.

Since λ(n)\lambda^{(n)} converges weakly to λ\lambda, it is easy to verify that λ(n)(g1(n))λ(g1)\lambda^{(n)}(g^{(n)}_{1})\rightarrow\lambda(g_{1}). This is precisely the desired (5.8). ∎

Remark 5.6.

It is worth noting that (5.7) is stronger than either condition in Theorem 3.2, since by the dominated convergence theorem, (5.7) implies condition (1a) in Theorem 3.2.

5.3. Weak convergence

Under the assumption stated in Theorem 5.5, we proceed to examine the convergence of X(n)X^{(n)}. As discussed in § 2.6, the process X(n)X^{(n)} with initial distribution λ(n)\lambda^{(n)} can be represented as a probability measure λ(n)(n)\mathbb{P}^{(n)}_{\lambda^{(n)}} on the Skorohod topological space D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty). Similarly, the process XX with initial distribution λ\lambda can be represented as a probability measure λ\mathbb{P}_{\lambda} on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty). We aim to establish the weak convergence of λ(n)(n)\mathbb{P}^{(n)}_{\lambda^{(n)}} to λ\mathbb{P}_{\lambda}.

Theorem 5.7.

Assume that (γ(n),β(n),ν(n))(\gamma^{(n)},\beta^{(n)},\nu^{(n)}) converges to (γ,β,ν)𝒬F(\gamma,\beta,\nu)\in\mathscr{Q}_{F} in the sense of Definition 5.1. If λ(n)𝒫()\lambda^{(n)}\in\mathcal{P}(\mathbb{N}_{\partial}) converges weakly to λ𝒫()\lambda\in\mathcal{P}(\mathbb{N}_{\partial}), then λ(n)(n)\mathbb{P}^{(n)}_{\lambda^{(n)}} converges weakly to λ\mathbb{P}_{\lambda} on the Skorohod topological space D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty), i.e.,

limnD¯[0,)F(w)λ(n)(n)(dw)=D¯[0,)F(w)λ(dw)\lim_{n\rightarrow\infty}\int_{D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)}F(w)\mathbb{P}^{(n)}_{\lambda^{(n)}}(dw)=\int_{D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)}F(w)\mathbb{P}_{\lambda}(dw) (5.14)

for all FCb(D¯[0,);d)F\in C_{b}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d\right), where Cb(D¯[0,);d)C_{b}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d\right) denotes the family of all bounded continuous functions on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) equipped with the Skorohod topology.

Proof.

The sequence of processes X(n)X^{(n)} can be divided into at most two subsequences. One subsequence consists of Doob processes, while the other subsequence consists of Feller QQ-processes. Therefore, it is sufficient to prove (5.14) separately for each of these subsequences. For the subsequence consisting of Feller QQ-processes, we can directly apply the result from [6, §4 Theorem 2.5]. Further details can be found in the proof of [14, Theorem 9.2]. Now, let us focus on the subsequence consisting of Doob processes. Without loss of generality, we assume that all X(n)X^{(n)} are Doob processes.

Let Dk[0,)D_{\mathbb{R}^{k}}[0,\infty) denote the Skorohod topological space consisting of all càdlàg functions on k\mathbb{R}^{k} for k1k\geq 1. For g1,,gkC(¯)g_{1},\cdots,g_{k}\in C(\overline{\mathbb{N}}_{\partial}), the vector-valued function G:=(g1,,gk)G:=(g_{1},\cdots,g_{k}) induces a Borel measurable map

G:D¯[0,)Dk[0,),wwG,G:D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)\rightarrow D_{{\mathbb{R}}^{k}}[0,\infty),\quad w\mapsto w_{G},

where wG(t):=(g1(w(t)),,gk(w(t)))w_{G}(t):=(g_{1}(w(t)),\cdots,g_{k}(w(t))). Thus, the image measures

^(n):=λ(n)(n)G1,^:=λG1\hat{\mathbb{P}}^{(n)}:=\mathbb{P}^{(n)}_{\lambda^{(n)}}\circ G^{-1},\quad\hat{\mathbb{P}}:=\mathbb{P}_{\lambda}\circ G^{-1}

are probability measures on Dk[0,)D_{{\mathbb{R}}^{k}}[0,\infty). We aim to show the weak convergence of ^(n)\hat{\mathbb{P}}^{(n)} to ^\hat{\mathbb{P}} on Dk[0,)D_{{\mathbb{R}}^{k}}[0,\infty), and then, (5.14) follows by applying [6, §3, Corollary 9.2].

We first demonstrate that the sequence {^(n):n1}\{\hat{\mathbb{P}}^{(n)}:n\geq 1\} of probability measures on Dk[0,)D_{{\mathbb{R}}^{k}}[0,\infty) is relatively compact. According to [6, §3 Theorem 9.4 and Remark 9.5 (b)], it suffices to consider the case k=1k=1 and, for fixed g=g1C(¯)g=g_{1}\in C(\overline{\mathbb{N}}_{\partial}), ε>0\varepsilon>0, and T>0T>0, to find a pair of real-valued progressive processes (Yt(n),Zt(n))(Y^{(n)}_{t},Z^{(n)}_{t}) on (Ω,(n),λ(n)(n))(\Omega,{\mathscr{F}}^{(n)},\mathbb{P}^{(n)}_{\lambda^{(n)}}), adapted to the filtration t(n){\mathscr{F}}^{(n)}_{t} of X(n)X^{(n)}, for all n1n\geq 1, satisfying the following conditions:

  • (i)

    supt0𝔼λ(n)(n)|Yt(n)|,supt0𝔼λ(n)(n)|Zt(n)|<\sup_{t\geq 0}\mathbb{E}^{(n)}_{\lambda^{(n)}}\left|Y^{(n)}_{t}\right|,\sup_{t\geq 0}\mathbb{E}^{(n)}_{\lambda^{(n)}}\left|Z^{(n)}_{t}\right|<\infty, and

    Yt(n)0tZs(n)𝑑sY^{(n)}_{t}-\int_{0}^{t}Z^{(n)}_{s}ds (5.15)

    is an t(n){\mathscr{F}}^{(n)}_{t}-martingale.

  • (ii)

    It holds that

    lim supn𝔼λ(n)(n)(supt[0,T]|Yt(n)g(Xt)|)<ε\limsup_{n\rightarrow\infty}\mathbb{E}^{(n)}_{\lambda^{(n)}}\left(\sup_{t\in[0,T]}\left|Y^{(n)}_{t}-g(X_{t})\right|\right)<\varepsilon (5.16)

    and

    lim supn𝔼λ(n)(n)(supt[0,T]|Zt(n)|)<.\limsup_{n\rightarrow\infty}\mathbb{E}^{(n)}_{\lambda^{(n)}}\left(\sup_{t\in[0,T]}\left|Z^{(n)}_{t}\right|\right)<\infty. (5.17)

In fact, since (Rα)α>0(R_{\alpha})_{\alpha>0} is strongly continuous on C(¯)C(\overline{\mathbb{N}}_{\partial}), there exists α0>0\alpha_{0}>0 such that

α0Rα0gg<ε.\left\|\alpha_{0}R_{\alpha_{0}}g-g\right\|_{\infty}<\varepsilon. (5.18)

Applying the first statement of Lemma 5.4 to gg, we can obtain a sequence gn𝐂ng_{n}\in\mathbf{C}_{n} such that gng0\|g_{n}-g\|_{\infty}\rightarrow 0. It follows from (1b) of Theorem 3.2 that

limnα0Rα0(n)gnα0Rα0g=0.\lim_{n\rightarrow\infty}\left\|\alpha_{0}R^{(n)}_{\alpha_{0}}g_{n}-\alpha_{0}R_{\alpha_{0}}g\right\|_{\infty}=0. (5.19)

For each nn, we define

Yt(n):=α0Rα0(n)gn(Xt),Zt(n):=α0(α0Rα0(n)gngn)(Xt),Y^{(n)}_{t}:=\alpha_{0}R^{(n)}_{\alpha_{0}}g_{n}(X_{t}),\quad Z^{(n)}_{t}:=\alpha_{0}\left(\alpha_{0}R^{(n)}_{\alpha_{0}}g_{n}-g_{n}\right)(X_{t}),

and verify the conditions listed above as follows. It is evident that the first part of (i) holds true, since supngn<\sup_{n\in\mathbb{N}}\|g_{n}\|_{\infty}<\infty. To demonstrate that (5.15) is an t(n){\mathscr{F}}^{(n)}_{t}-martingale, we note that f:=α0Rα0(n)gn𝒟((n))f:=\alpha_{0}R^{(n)}_{\alpha_{0}}g_{n}\in\mathcal{D}(\mathscr{L}^{(n)}) and (n)f=α0(α0Rα0(n)gngn)\mathscr{L}^{(n)}f=\alpha_{0}\left(\alpha_{0}R^{(n)}_{\alpha_{0}}g_{n}-g_{n}\right). Then

Yt(n)0tZs(n)𝑑s=f(Xt)0t(n)f(Xs)𝑑sY^{(n)}_{t}-\int_{0}^{t}Z^{(n)}_{s}ds=f(X_{t})-\int_{0}^{t}\mathscr{L}^{(n)}f(X_{s})ds (5.20)

is adapted to t(n){\mathscr{F}}^{(n)}_{t}. By virtue of Theorem 4.2 and the Hille-Yosida theorem, we have

𝔼i(n)(f(Xt)f(X0))=𝔼i(n)0t(n)f(Xu)𝑑u\mathbb{E}^{(n)}_{i}\left(f(X_{t})-f(X_{0})\right)=\mathbb{E}^{(n)}_{i}\int_{0}^{t}\mathscr{L}^{(n)}f(X_{u})du (5.21)

for any ii\in\mathbb{N}_{\partial} and t0t\geq 0. Since XtX_{t} takes values in \mathbb{N}_{\partial} for all t0t\geq 0, λ(n)(n)\mathbb{P}^{(n)}_{\lambda^{(n)}}-a.s., it follows from the Markov property and (5.21) that for any 0s<t0\leq s<t,

𝔼λ(n)(n)(f(Xt)f(Xs)|s(n))\displaystyle\mathbb{E}^{(n)}_{\lambda^{(n)}}\left(f(X_{t})-f(X_{s})\bigg{|}{\mathscr{F}}^{(n)}_{s}\right) =𝔼Xs(n)(f(Xts)f(X0))\displaystyle=\mathbb{E}^{(n)}_{X_{s}}\left(f(X_{t-s})-f(X_{0})\right)
=𝔼λ(n)(n)(st(n)f(Xu)𝑑u|s(n)).\displaystyle=\mathbb{E}^{(n)}_{\lambda^{(n)}}\left(\int_{s}^{t}\mathscr{L}^{(n)}f(X_{u})du\bigg{|}{\mathscr{F}}^{(n)}_{s}\right).

As a result, (5.20) is an t(n){\mathscr{F}}^{(n)}_{t}-martingale. Additionally, according to (5.18) and (5.19), the left hand side of (5.16) is not greater than

lim supn(α0Rα0(n)gnα0Rα0g+α0Rα0gg)<ε,\limsup_{n\rightarrow\infty}\left(\left\|\alpha_{0}R^{(n)}_{\alpha_{0}}g_{n}-\alpha_{0}R_{\alpha_{0}}g\right\|_{\infty}+\left\|\alpha_{0}R_{\alpha_{0}}g-g\right\|_{\infty}\right)<\varepsilon,

and it follows from gng0\|g_{n}-g\|_{\infty}\rightarrow 0 that the left hand side of (5.17) is not greater than

lim supn2α0gn=2α0g<.\limsup_{n\rightarrow\infty}2\alpha_{0}\|g_{n}\|_{\infty}=2\alpha_{0}\|g\|_{\infty}<\infty.

Therefore, we have established the existence of (Yt(n),Zt(n))(Y^{(n)}_{t},Z^{(n)}_{t}), thereby completing the proof of the relative compactness of ^(n)\hat{\mathbb{P}}^{(n)}.

In order to conclude that the weak convergence of ^(n)\hat{\mathbb{P}}^{(n)} to ^\hat{\mathbb{P}}, according to [6, §3, Theorem 7.8], it remains to verify that for 0t1<<tm0\leq t_{1}<\cdots<t_{m} and h1,,hmCb(k)h_{1},\cdots,h_{m}\in C_{b}({\mathbb{R}}^{k}) with m1m\geq 1,

limn𝔼λ(n)(n)(h1(G(Xt1))hm(G(Xtm)))=𝔼λ(h1(G(Xt1))hm(G(Xtm))).\lim_{n\rightarrow\infty}\mathbb{E}^{(n)}_{\lambda^{(n)}}\left(h_{1}(G\left(X_{t_{1}}\right))\cdots h_{m}\left(G(X_{t_{m}}\right))\right)=\mathbb{E}_{\lambda}\left(h_{1}\left(G(X_{t_{1}})\right)\cdots h_{m}\left(G(X_{t_{m}})\right)\right). (5.22)

Since g1,,gkC(¯)g_{1},\cdots,g_{k}\in C(\overline{\mathbb{N}}_{\partial}) and hiCb(k)h_{i}\in C_{b}({\mathbb{R}}^{k}) for 1im1\leq i\leq m, it follows that fi:=hiGC(¯)f_{i}:=h_{i}\circ G\in C(\overline{\mathbb{N}}_{\partial}). Particularly, (5.22) is the consequence of (5.8). This completes the proof. ∎

After proving the theorem mentioned above, it becomes apparent that the truncation method (1.3) effectively enables the construction of a sequence of simple QQ-processes, which converges to the target process with an infinite jumping measure as described in (5.14). Additionally, this theorem allows for the construction of various other types of examples. For instance, let us consider the case where \infty is a regular boundary, and we choose an infinite measure ν\nu that satisfies (2.8). Define a sequence of measures ν(n)\nu^{(n)} as follows:

νk(n):=0, 0kn,νk(n):=νk,k>n.\nu^{(n)}_{k}:=0,\;0\leq k\leq n,\quad\nu^{(n)}_{k}:=\nu_{k},\;k>n.

For any constant β>0\beta>0, the triple (0,β,ν(n))(0,\beta,\nu^{(n)}) corresponds to an honest QQ-process X(n)X^{(n)}, which exhibits complex jumping behavior near the boundary \infty, but each jump originating from \infty will only enter states that are beyond nn. As nn\rightarrow\infty, the jumps of X(n)X^{(n)} from \infty into \mathbb{N} become increasingly compressed, and this sequence of processes converges to the (Q,1)(Q,1)-process in the sense of (5.14).

6. Weak convergence for Wang’s approximation

In his 1958 doctoral thesis (see [20, Chapter 6]), Wang constructed a sequence of honest Doob processes for each honest QQ-process. These processes are designed to converge to the given QQ-process in the sense of (1.3). In fact, Wang’s construction remains effective even in the non-honest case, and its convergence is stronger than (1.3) as it also ensures the weak convergence on the Skorohod topological space. In this subsection, these findings will be explained.

6.1. Wang’s approximation

We begin by introducing a transformation on the trajectories. Let x(t)x(t) be a càdlàg function on ¯\overline{\mathbb{N}}_{\partial}. Consider two sequences of positive constants (αm)(\alpha_{m}) and (βm)(\beta_{m}) such that

0(=:β0)<α1β1<α2β2<.0(=:\beta_{0})<\alpha_{1}\leq\beta_{1}<\alpha_{2}\leq\beta_{2}<\cdots.

(These sequences may consist of finite numbers.) We say that the function y(t)y(t) is obtained from x(t)x(t) by the C(αm,βm)C(\alpha_{m},\beta_{m})-transformation if

y(t)=x(t),\displaystyle y(t)=x(t), 0t<α1,\displaystyle\quad 0\leq t<\alpha_{1},
y(dm+t)=x(βm+t),\displaystyle y(d_{m}+t)=x(\beta_{m}+t), 0t<αm+1βm,\displaystyle\quad 0\leq t<\alpha_{m+1}-\beta_{m},

where d1:=α1d_{1}:=\alpha_{1} and dm+1:=dm+(αm+1βm)d_{m+1}:=d_{m}+(\alpha_{m+1}-\beta_{m}). Intuitively speaking, the C(αm,βm)C(\alpha_{m},\beta_{m})-transformation discards the trajectory of x(t)x(t) corresponding to the interval [αm,βm)[\alpha_{m},\beta_{m}), keeps the segment [0,α1)[0,\alpha_{1}) unchanged, and shifts the remaining parts to the left, connecting them in the original order without intersection, thereby obtaining a new càdlàg trajectory y(t)y(t).

Let XX be either a Doob process or a Feller QQ-process with parameters (γ,β,ν)𝒬(\gamma,\beta,\nu)\in\mathscr{Q}. Fix nn\in\mathbb{N}. Define η:=inf{t>0:Xt=}\eta:=\inf\{t>0:X_{t-}=\infty\} and σ(n):=inf{t>0:Xt{0,1,,n,}}\sigma^{(n)}:=\inf\{t>0:X_{t}\in\{0,1,\cdots,n,\partial\}\} (inf:=\inf\emptyset:=\infty). Then, we define a sequence of stopping times as follows:

η1(n):=η,σ1(n):=inf{tη1(n):Xt{0,1,,n,}},\eta^{(n)}_{1}:=\eta,\quad\sigma^{(n)}_{1}:=\inf\{t\geq\eta_{1}^{(n)}:X_{t}\in\{0,1,\cdots,n,\partial\}\},

and if ηm1(n),σm1(n)\eta^{(n)}_{m-1},\sigma^{(n)}_{m-1} are already defined, we set

ηm(n):=inf{tσm1(n):Xt=}ζ\eta^{(n)}_{m}:=\inf\{t\geq\sigma^{(n)}_{m-1}:X_{t-}=\infty\}\wedge\zeta

and

σm(n):=inf{tηm(n):Xt{0,1,,n,}}.\sigma^{(n)}_{m}:=\inf\{t\geq\eta^{(n)}_{m}:X_{t}\in\{0,1,\cdots,n,\partial\}\}.

For nn\in\mathbb{N} and every ωΩ\omega\in\Omega, by performing the C(ηm(n)(ω),σm(n)(ω))C(\eta^{(n)}_{m}(\omega),\sigma^{(n)}_{m}(\omega))-transformation on Xt(ω)X_{t}(\omega), we obtain a new trajectory, denoted by Xt(n)(ω)X^{(n)}_{t}(\omega).

By following the approach of [15, Lemma 7.1], we can derive that

X(n):=(Ω,,Xt(n),(x)x¯)X^{(n)}:=\left(\Omega,{\mathscr{F}},X^{(n)}_{t},(\mathbb{P}_{x})_{x\in\overline{\mathbb{N}}_{\partial}}\right) (6.1)

is a Doob process with instantaneous distribution π(n)=0(Xσ(n))\pi^{(n)}=\mathbb{P}_{0}(X_{\sigma^{(n)}}\in\cdot). Note that the parameters of X(n)X^{(n)} are (see, e.g., [20, §7.12, Theorem 2] or [15, Lemma 8.1])

γ(n)=γ,β(n)=0\gamma^{(n)}=\gamma,\quad\beta^{(n)}=0 (6.2)

and

νk(n)=νk, 0kn1,νn(n)=β2+kn(cck)νkccn,\displaystyle\nu^{(n)}_{k}=\nu_{k},\;0\leq k\leq n-1,\quad\nu^{(n)}_{n}=\frac{\frac{\beta}{2}+\sum_{k\geq n}(c_{\infty}-c_{k})\nu_{k}}{c_{\infty}-c_{n}}, (6.3)
νk(n)=0,kn+1.\displaystyle\nu^{(n)}_{k}=0,\;k\geq n+1.

It is straightforward to verify that this special approximating sequence of triples satisfies the conditions in Definition 5.1, if and only if β=0\beta=0 (see also [20, §7.12, Theorem 2]). When β>0\beta>0 (which is applicable only for the case where \infty is regular), it can be obtained that

limnν(n)(1uαmin)=ν(1uαmin)+βαμ(uαmin)\lim_{n\rightarrow\infty}\nu^{(n)}(1-u^{\text{min}}_{\alpha})=\nu(1-u^{\text{min}}_{\alpha})+\beta\alpha\mu(u^{\text{min}}_{\alpha}) (6.4)

and

limnν(n)(Rαminf)=ν(Rαminf)+βμ(fuαmin),fC(¯)\lim_{n\rightarrow\infty}\nu^{(n)}(R^{\text{min}}_{\alpha}f)=\nu(R^{\text{min}}_{\alpha}f)+\beta\mu(fu^{\text{min}}_{\alpha}),\quad f\in C(\overline{\mathbb{N}}) (6.5)

by virtue of (see, e.g., [20, §7.10, (3) and (9)] or [7, Theorem 8.1])

limnΦnkmin(α)ccn=2uαmin(k)μk,limn1uαmin(n)ccn=2αμ(uαmin).\lim_{n\rightarrow\infty}\frac{\Phi^{\text{min}}_{nk}(\alpha)}{c_{\infty}-c_{n}}=2u^{\text{min}}_{\alpha}(k)\mu_{k},\quad\lim_{n\rightarrow\infty}\frac{1-u^{\text{min}}_{\alpha}(n)}{c_{\infty}-c_{n}}=2\alpha\mu(u^{\text{min}}_{\alpha}). (6.6)

Therefore, whether β=0\beta=0 or β>0\beta>0, each condition in Theorem 3.2 holds true for Wang’s approximation.

6.2. Weak convergence for Skorohod topology

It is worth noting that the expression (6.1) for the Doob process is not the realization given in (2.17). However, it can be easily proven that the mapping induced by (6.1),

𝒳(n):(Ω,)(D¯[0,),(D¯[0,);d)),ωX(n)(ω),\mathcal{X}^{(n)}:(\Omega,{\mathscr{F}})\rightarrow\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty),\mathscr{B}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d\right)\right),\quad\omega\mapsto X^{(n)}_{\cdot}(\omega), (6.7)

is measurable. Therefore, similar to what is stated in §2.6, given an initial distribution λn𝒫()\lambda_{n}\in\mathcal{P}(\mathbb{N}_{\partial}), X(n)X^{(n)} can be realized as a probability measure on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty), denoted by λn(n):=λn(𝒳(n))1\mathbb{P}^{(n)}_{\lambda_{n}}:=\mathbb{P}_{\lambda_{n}}\circ\left(\mathcal{X}^{(n)}\right)^{-1}.

Although Wang’s approximation may not satisfy the conditions in Definition 5.1, we can still prove its weak convergence on the Skorohod topology. This is because, upon examining the proof in §5, we can see that the essential role of Definition 5.1 is to ensure the first statement of Lemma 5.4 holds, as well as guaranteeing the resolvent convergence.

Theorem 6.1.

Let XX be a Feller QQ-process and X(n)X^{(n)} be its approximating sequence of Doob processes given in (6.1). If λ(n)𝒫()\lambda^{(n)}\in\mathcal{P}(\mathbb{N}_{\partial}) converges weakly to λ𝒫()\lambda\in\mathcal{P}(\mathbb{N}_{\partial}), then λ(n)(n)\mathbb{P}^{(n)}_{\lambda^{(n)}} converges weakly to λ\mathbb{P}_{\lambda} on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) equipped with the Skorohod topology, i.e.,

limnD¯[0,)F(w)λ(n)(n)(dw)=D¯[0,)F(w)λ(dw)\lim_{n\rightarrow\infty}\int_{D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)}F(w)\mathbb{P}^{(n)}_{\lambda^{(n)}}(dw)=\int_{D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)}F(w)\mathbb{P}_{\lambda}(dw) (6.8)

for all FCb(D¯[0,);d)F\in C_{b}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d\right).

Proof.

Our goal is to show that the first statement of Lemma 5.4 still holds true. It suffices to examine the case β>0\beta>0, and consider g=Rαh𝒟()g=R_{\alpha}h\in\mathcal{D}(\mathscr{L}) with h𝐂h\in\mathbf{C} satisfying

β2g+()+k(g()g(k))νk+γg()=0,\frac{\beta}{2}g^{+}(\infty)+\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu_{k}+\gamma g(\infty)=0,

where g+():=limkg()g(k)cckg^{+}(\infty):=\lim_{k\rightarrow\infty}\frac{g(\infty)-g(k)}{c_{\infty}-c_{k}}. Note that the measure ν(n)\nu^{(n)} is given by (6.3).

In the case where |ν|>0|\nu|>0, we can define χn\chi_{n} and gng_{n} by the same method as in the proof of Lemma 5.4. Note that gn𝐂ng_{n}\in\mathbf{C}_{n}. Therefore, it is sufficient to prove that limnχn=0\lim_{n\rightarrow\infty}\chi_{n}=0. In fact, it follows from (5.6), (6.4), and (6.5) that

limn\displaystyle\lim_{n\rightarrow\infty} k(g()g(k))νk(n)\displaystyle\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu^{(n)}_{k}
=Rαh()ν(1uαmin)+Rαh()βαμ(uαmin)ν(Rαminh)βμ(huαmin)\displaystyle=R_{\alpha}h(\infty)\cdot\nu(1-u^{\text{min}}_{\alpha})+R_{\alpha}h(\infty)\cdot\beta\alpha\mu(u^{\text{min}}_{\alpha})-\nu(R^{\text{min}}_{\alpha}h)-\beta\mu(hu^{\text{min}}_{\alpha})
=k(g()g(k))νk+Rαh()βαμ(uαmin)βμ(huαmin).\displaystyle=\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu_{k}+R_{\alpha}h(\infty)\cdot\beta\alpha\mu(u^{\text{min}}_{\alpha})-\beta\mu(hu^{\text{min}}_{\alpha}).

By utilizing the generalized dominated convergence theorem (see [9, §2.3, Exercise 20]), we can deduce from (6.6) that

(Rαminh)+()=limnkΦnkmin(α)h(k)cnc=2μ(uαh).\left(R^{\text{min}}_{\alpha}h\right)^{+}(\infty)=\lim_{n\rightarrow\infty}\sum_{k\in\mathbb{N}}\frac{\Phi^{\text{min}}_{nk}(\alpha)h(k)}{c_{n}-c_{\infty}}=-2\mu(u_{\alpha}h).

Thus, according to (2.14) and (6.6), we have

g+()\displaystyle g^{+}(\infty) =(Rαminh)+()+Rαh()limn1uαmin(n)n\displaystyle=\left(R^{\text{min}}_{\alpha}h\right)^{+}(\infty)+R_{\alpha}h(\infty)\lim_{n\rightarrow\infty}\frac{1-u^{\text{min}}_{\alpha}(n)}{n}
=2μ(uαminh)+2αμ(uαmin)Rαh().\displaystyle=-2\mu(u_{\alpha}^{\text{min}}h)+2\alpha\mu(u^{\text{min}}_{\alpha})R_{\alpha}h(\infty).

Therefore,

limn\displaystyle\lim_{n\rightarrow\infty} (k(g()g(k))νk(n)+γ(n)g())\displaystyle\left(\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu^{(n)}_{k}+\gamma^{(n)}g(\infty)\right)
=β2g+()+k(g()g(k))νk+γg()=0.\displaystyle=\frac{\beta}{2}g^{+}(\infty)+\sum_{k\in\mathbb{N}}(g(\infty)-g(k))\nu_{k}+\gamma g(\infty)=0.

This establishes limnχn=0\lim_{n\rightarrow\infty}\chi_{n}=0.

In the case where |ν|=0|\nu|=0, we take a sequence of functions gng_{n} as follows:

gn(n):=g()+2γβg()(ccn),gn(k):=g(k),kn.g_{n}(n):=g(\infty)+\frac{2\gamma}{\beta}g(\infty)\cdot(c_{\infty}-c_{n}),\quad g_{n}(k):=g(k),\;k\neq n.

It is straightforward to verify that gn𝐂ng_{n}\in\mathbf{C}_{n} and gng0\|g_{n}-g\|_{\infty}\rightarrow 0. ∎

According to the Skorohod representation theorem (see [6, §3, Theorem 1.8]), if (6.8) holds, then there exist D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)-valued random variables 𝒳~\tilde{\mathcal{X}} and 𝒳~(n)\tilde{\mathcal{X}}^{(n)} on a probability space (Ω~,~,~)(\tilde{\Omega},\tilde{\mathcal{F}},\tilde{\mathbb{P}}), such that 𝒳~\tilde{\mathcal{X}} and 𝒳~(n)\tilde{\mathcal{X}}^{(n)} have distributions λ\mathbb{P}_{\lambda} and λ(n)(n)\mathbb{P}_{\lambda^{(n)}}^{(n)}, respectively, and 𝒳~(n)\tilde{\mathcal{X}}^{(n)} converges to 𝒳~\tilde{\mathcal{X}}, ~\tilde{\mathbb{P}}-a.s. If λn=λ\lambda_{n}=\lambda, then 𝒳(n)\mathcal{X}^{(n)} defined in (6.7) and 𝒳\mathcal{X} given by (2.18) are on the same probability space (Ω,,λ)(\Omega,\mathcal{F},\mathbb{P}_{\lambda}). In this case, it raises the question whether (𝒳(n),𝒳)\left(\mathcal{X}^{(n)},\mathcal{X}\right) can be the Skorohod representation of (λ(n),λ)\left(\mathbb{P}_{\lambda^{(n)}},\mathbb{P}_{\lambda}\right)? To verify this fact, it is equivalent to show that

d(𝒳(n)(ω),𝒳(ω))0d\left(\mathcal{X}^{(n)}(\omega),\mathcal{X}(\omega)\right)\rightarrow 0 (6.9)

holds for λ\mathbb{P}_{\lambda}-a.s. ω\omega. Although (6.12) provides a pointwise convergence in time tt for λ\mathbb{P}_{\lambda}-a.s. ω\omega, establishing the convergence in the Skorohod topology seems still challenging. Typically, a sufficient condition for the dd-convergence (6.9) is the local uniform convergence with respect to time tt. However, this condition is not guaranteed by (6.12).

6.3. Skorohod representation on topology for convergence in measure

Finally, let us consider another simpler metric dd^{\prime} on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) inducing the topology for convergence in (Lebesgue) measure. Under this metric, the sequence X(n)X^{(n)} for Wang’s approximation converges not only weakly but almost surely to XX.

For w,wD¯[0,)w,w^{\prime}\in D_{\overline{\mathbb{N}}_{\partial}}[0,\infty), define

d(w,w):=j=112j0j|w(t)w(t)|1+|w(t)w(t)|𝑑t.d^{\prime}\left(w,w^{\prime}\right):=\sum_{j=1}^{\infty}\frac{1}{2^{j}}\int_{0}^{j}\frac{|w(t)-w^{\prime}(t)|}{1+|w(t)-w^{\prime}(t)|}dt.

According to, e.g., [9, §2.4, Exercise 32], dd^{\prime} is a metric on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty), and additionally, d(wn,w)0d\left(w_{n},w\right)\rightarrow 0 if and only if for any T>0T>0, (wn(t))0tT(w_{n}(t))_{0\leq t\leq T} converges to (w(t))0tT(w(t))_{0\leq t\leq T} in (Lebesgue) measure on [0,T][0,T]. Note that the Borel σ\sigma-algebra (D¯[0,);d)\mathscr{B}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d^{\prime}\right) generated by dd^{\prime} is also identical to σ{πt:t0}\sigma\{\pi_{t}:t\geq 0\}, the σ\sigma-algebra generated by all projection maps πt(w)=w(t)\pi_{t}(w)=w(t); see, e.g., [4, §8.6]. Thus, (D¯[0,);d)=(D¯[0,);d)\mathscr{B}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d^{\prime}\right)=\mathscr{B}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d\right), and we do not need to change the expressions for the maps 𝒳\mathcal{X} and 𝒳(n)\mathcal{X}^{(n)} given by (2.18) and (6.7).

It should be noted that in the following theorem, we do not require the target QQ-process XX to be a Feller QQ-process.

Theorem 6.2.

Let XX be a QQ-process and X(n)X^{(n)} be its approximating sequence of Doob processes given in (6.1). For any λ𝒫()\lambda\in\mathcal{P}(\mathbb{N}_{\partial}), it holds in the sense of λ\mathbb{P}_{\lambda}-a.s. that

limnd(𝒳(n),𝒳)=0.\lim_{n\rightarrow\infty}d^{\prime}\left(\mathcal{X}^{(n)},\mathcal{X}\right)=0. (6.10)

Furthermore, if λ(n)𝒫()\lambda^{(n)}\in\mathcal{P}(\mathbb{N}_{\partial}) converges weakly to λ𝒫()\lambda\in\mathcal{P}(\mathbb{N}_{\partial}), then λ(n)(n)\mathbb{P}^{(n)}_{\lambda^{(n)}} converges weakly to λ\mathbb{P}_{\lambda} on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) equipped with the topology induced by dd^{\prime}, i.e.,

limnD¯[0,)F(w)λ(n)(n)(dw)=D¯[0,)F(w)λ(dw)\lim_{n\rightarrow\infty}\int_{D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)}F(w)\mathbb{P}^{(n)}_{\lambda^{(n)}}(dw)=\int_{D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)}F(w)\mathbb{P}_{\lambda}(dw) (6.11)

for all FCb(D¯[0,);d)F\in C_{b}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d^{\prime}\right), where Cb(D¯[0,);d)C_{b}\left(D_{\overline{\mathbb{N}}_{\partial}}[0,\infty);d^{\prime}\right) denotes the family of all bounded continuous functions on D¯[0,)D_{\overline{\mathbb{N}}_{\partial}}[0,\infty) with respect to the metric dd^{\prime}.

Proof.

As established in [20, §6.4] (the non-honest case is examined in [15, Theorem A.1]), the following convergence holds true: for any ii\in\mathbb{N}_{\partial},

i(limnXt(n)=Xt,t0)=1.\mathbb{P}_{i}\left(\lim_{n\rightarrow\infty}X^{(n)}_{t}=X_{t},\forall t\geq 0\right)=1. (6.12)

Thus, for λ\mathbb{P}_{\lambda}-a.s. ωΩ\omega\in\Omega and any T>0T>0, (Xt(n)(ω))0tT(X^{(n)}_{t}(\omega))_{0\leq t\leq T} converges to (Xt(ω))0tT(X_{t}(\omega))_{0\leq t\leq T} pointwise in tt. This convergence clearly implies the convergence in (Lebesgue) measure on [0,T][0,T]. Therefore, (6.10) is established.

In order to prove (6.11), we define for i¯i\in\overline{\mathbb{N}}_{\partial},

g(n)(i):=D¯[0,)F(w)i(n)(dw)=ΩF(𝒳(n)(ω))i(dω)g^{(n)}(i):=\int_{D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)}F(w)\mathbb{P}^{(n)}_{i}(dw)=\int_{\Omega}F\left(\mathcal{X}^{(n)}(\omega)\right)\mathbb{P}_{i}(d\omega)

and

g(i):=D¯[0,)F(w)i(dw)=ΩF(𝒳(ω))i(dω).g(i):=\int_{D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)}F(w)\mathbb{P}_{i}(dw)=\int_{\Omega}F\left(\mathcal{X}(\omega)\right)\mathbb{P}_{i}(d\omega).

By utilizing (6.10) and the dominated convergence theorem, we have limng(n)(i)=g(i)\lim_{n\rightarrow\infty}g^{(n)}(i)=g(i) for any ii\in\mathbb{N}_{\partial}. It follows from [4, Theorem 8.12] that g(n),gC(¯)g^{(n)},g\in C(\overline{\mathbb{N}}_{\partial}). Thus, limnλ(n)(g)=λ(g)\lim_{n\rightarrow}\lambda^{(n)}(g)=\lambda(g). To obtain (6.11), it remains to show

limn(λ(n)(g(n))λ(n)(g))=0.\lim_{n\rightarrow\infty}\left(\lambda^{(n)}(g^{(n)})-\lambda^{(n)}(g)\right)=0.

In fact, we have

λk(n)(g(n)(k)g(k))0,k,\lambda^{(n)}_{k}(g^{(n)}(k)-g(k))\rightarrow 0,\quad k\in\mathbb{N}_{\partial},

and

|λk(n)(g(n)(k)g(k))|2Fλk(n)2Fλk,k,\left|\lambda^{(n)}_{k}(g^{(n)}(k)-g(k))\right|\leq 2\|F\|_{\infty}\lambda^{(n)}_{k}\rightarrow 2\|F\|_{\infty}\lambda_{k},\quad k\in\mathbb{N}_{\partial},

where F:=supwD¯[0,)|F(w)|\|F\|_{\infty}:=\sup_{w\in D_{\overline{\mathbb{N}}_{\partial}}[0,\infty)}|F(w)|. Therefore, we can apply the generalized dominated convergence theorem (see [9, §2.3, Exercise 20]) to obtain

limn(λ(n)(g(n))λ(n)(g))=limnkλk(n)(g(n)(k)g(k))=0.\lim_{n\rightarrow\infty}\left(\lambda^{(n)}(g^{(n)})-\lambda^{(n)}(g)\right)=\lim_{n\rightarrow\infty}\sum_{k\in\mathbb{N}_{\partial}}\lambda^{(n)}_{k}(g^{(n)}(k)-g(k))=0.

This completes the proof of (6.11). ∎

References

  • [1] R. M. Blumenthal and R. Getoor. Markov processes and potential theory. Pure and Applied Mathematics, Vol. 29. Academic Press, New York-London, 1968.
  • [2] M.-F. Chen. From Markov chains to non-equilibrium particle systems. World Scientific, Mar. 2004.
  • [3] K. L. Chung. Markov chains with stationary transition probabilities. Second edition. Die Grundlehren der mathematischen Wissenschaften, Band 104. Springer-Verlag New York, Inc., New York, 1967.
  • [4] K. L. Chung and J. B. Walsh. Markov processes, Brownian motion, and time symmetry, volume 249 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, New York, New York, NY, second edition, 2005.
  • [5] J. L. Doob. Stochastic Processes. Wiley, 1953.
  • [6] S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence. Wiley Series in Probability and Statistics. Wiley, 1 edition, Mar. 1986.
  • [7] W. Feller. The birth and death processes as diffusion processes. J. Math. Pures Appl. (9), 38:301–345, 1959.
  • [8] W. Feller and H. P. McKean Jr. A diffusion equivalent to a countable Markov chain. P. Natl. Acad. Sci. Usa., 42:351–354, 1956.
  • [9] G. B. Folland. Real analysis. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, second edition, 1999.
  • [10] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet forms and symmetric Markov processes, volume 19 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, extended edition, 2011.
  • [11] N. Ikeda, M. Nagasawa, and S. Watanabe. A construction of Markov processes by piecing out. Proc. Japan Acad., 42:370–375, 1966.
  • [12] K. Itô and H. P. McKean Jr. Diffusion processes and their sample paths. Springer-Verlag, Berlin-New York, 1974.
  • [13] T. G. Kurtz. Extensions of Trotter’s operator semigroup approximation theorems. J. Funct. Anal., 3(3):354–375, 1969.
  • [14] L. Li. Ray-Knight compactification of birth and death processes. Stochastic Processes and their Applications, 177:104456, 2024.
  • [15] L. Li. Time-changed Feller’s Brownian motions are birth-death processes. (arXiv:2408.09364), Aug. 2024.
  • [16] P. Mandl. Analytical treatment of one-dimensional Markov processes. Die Grundlehren der mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968.
  • [17] D. Ray. Resolvents, transition functions, and strongly Markovian processes. Ann. of Math. (2), 70:43–72, 1959.
  • [18] L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. I. Cambridge Mathematical Library. Cambridge University Press, Cambridge, Cambridge, 2 edition, 2000.
  • [19] M. Sharpe. General theory of Markov processes, volume 133 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1988.
  • [20] Z. K. Wang and X. Q. Yang. Birth and death processes and Markov chains. Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1992.