This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Approximate Two-Sphere One-Cylinder Inequality in Parabolic Periodic Homogenization

Yiping Zhang111Email:[email protected]
Academy of Mathematics and Systems Science, CAS;
University of Chinese Academy of Sciences;
Beijing 100190, P.R. China
Abstract

In this paper, for a family of second-order parabolic equations with rapidly oscillating and time-dependent periodic coefficients, we are interested in an approximate two-sphere one-cylinder inequality for these solutions in parabolic periodic homogenization, which implies an approximate quantitative propagation of smallness. The proof relies on the asymptotic behavior of fundamental solutions and the Lagrange interpolation technique.

1 Introduction

Quantitative propagation of smallness is one of the central issues in the quantitative study of solutions of elliptic and parabolic equations. It can be stated as follows: a solution uu of a PDE Lu=0Lu=0 on a domain XX can be made arbitrarily small on any given compact subset of XX by making it sufficiently small on an arbitrary given subdomain YY. There are many important applications in quantitative propagation of smallness, such as the stability estimates for the Cauchy problem [1] and the Hausdorff measure estimates of nodal sets of eigenfunctions [17], [18].

For solutions of second order parabolic equations

(t)u=tui(aij(x,t)ju)+biiu+cu=0,\left(\partial_{t}-\mathcal{L}\right)u=\partial_{t}u-\partial_{i}\left(a_{ij}(x,t)\partial_{j}u\right)+b_{i}\partial_{i}u+cu=0, (1.1)

(the summation convention is used throughout the paper). There exists a large literature on the three cylinder inequality for solutions to parabolic equations. If A(x,t)=(aij(x,t))A(x,t)=\left(a_{ij}(x,t)\right) is three times continuously differentiable with respect to xx and one time continuously differentiable with respect to tt, and bb and cc are bounded, then a not optimal three-cylinder inequality has been obtained in [11] and [20]. In [11], the three-cylinder inequality is derived by the Carleman estimates proved in [19]. In 2003, Vessella[21] has obtained the following optimal three-cylinder inequality:

uL2(QRT/2)C(uL2(QρT))κρ(uL2(QR0T))κρ,\left\|u\right\|_{L^{2}(Q_{R}^{T/2})}\leqslant C\left(||u||_{L^{2}(Q_{\rho}^{T})}\right)^{\kappa_{\rho}}\left(||u||_{L^{2}(Q_{R_{0}}^{T})}\right)^{\kappa_{\rho}}, (1.2)

for every 0<ρ<R<R00<\rho<R<R_{0}, under the assumptions that the derivatives A/t\partial A/\partial t, A/xi\partial A/\partial x^{i}, 2A/(txj)\partial^{2}A/(\partial t\partial x^{j}), 2A/(xixj)\partial^{2}A/(\partial x^{i}\partial x^{j}), for every i,j{1,,d}i,j\in\{1,\cdots,d\}, b=(b1,,bd)b=(b_{1},\cdots,b_{d}) and cc are bounded, where Qrt=Br×(t,t)Q_{r}^{t}=B_{r}\times(-t,t) with BrB_{r} the dd-dimensional open ball centered at 0 of radius rr and κρ|logρ|1\kappa_{\rho}\sim|\log\rho|^{-1} as ρ0\rho\rightarrow 0. The optimality of Equation (1.2)(1.2) consists in the growth rate of the exponent κρ\kappa_{\rho}. Later on, Escauriaza and Vessella [8] have obtained the inequality (1.2)(1.2) under the assumptions that AC1,1(n+1)A\in C^{1,1}(\mathbb{R}^{n+1}) , bb and cc are bounded. Moreover, Vessella [22] has obtained the following two-sphere one-cylinder inequality:

u(.,t0)L2(Bρ(x0))Cu(.,t0)L2(Br(x0))θuL2(BR(x0)×(t0R2,t0))1θ,\left\|u\left(.,t_{0}\right)\right\|_{L^{2}\left(B_{\rho}\left(x_{0}\right)\right)}\leqslant C\left\|u\left(.,t_{0}\right)\right\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)}^{\theta}\|u\|_{L^{2}\left(B_{R}\left(x_{0}\right)\times\left(t_{0}-R^{2},t_{0}\right)\right)}^{1-\theta}, (1.3)

under the assumptions that AA satisfies the Lipschitz continuity: |A(y,s)A(x,t)|C(|xy|+|ts|1/2)|A(y,s)-A(x,t)|\leq C\left(|x-y|+|t-s|^{1/2}\right), b=0b=0 and c=0c=0, where θ=(ClogRCr)1\theta=\left(C\log{\frac{R}{Cr}}\right)^{-1}, 0<r<ρ<R0<r<\rho<R and CC depends neither on uu nor on rr but may depend on ρ\rho and RR, see also [6], where the two-sphere one-cylinder inequality (1.3)(1.3) for time-dependent parabolic operators was first established. And the estimate (1.3)(1.3) has first been obtained by Landis and Oleinik [15], when AA does not depend on tt.

In general, the Carleman estimates are tools often used to obtain a three-cylinder inequality and the unique continuation properties for solutions. The Carleman estimates are weighted integral inequalities with suitable weight functions satisfying some convexity properties. The three-cylinder inequality is obtained by applying the Carleman estimates by choosing a suitable function. For Carleman estimates and the unique continuation properties for the parabolic operators, we refer readers to [4, 5, 7, 9, 22, 14] and their references therein for more results.

Recently, Guadie and Malinnikova [12] developed the three-ball inequality with the help of Poisson kernel for harmonic functions. This method also has been used in [13] to obtain an approximate three-ball inequality in elliptic periodic homogenization. Moreover, it is an interesting problem to extend the Carleman estimates to the homogenization equations and left for the future.

In this paper, we intend to develop an approximate two-sphere one-cylinder inequality for the LL^{\infty}-norm in parabolic periodic homogenization equation, parallel to the inequality (1.3)(1.3), with the different exponent θ\theta.

We consider a family of second-order parabolic equations in divergence form with rapidly oscillating and time-dependent periodic coefficients,

tuεdiv(A(x/ε,t/ε2)uε)=0,\partial_{t}u_{\varepsilon}-\operatorname{div}\left(A(x/\varepsilon,t/\varepsilon^{2})\nabla u_{\varepsilon}\right)=0, (1.4)

where 1>ε>01>\varepsilon>0 and A(y,s)=(aij(y,s))A(y,s)=(a_{ij}(y,s)) is a symmetric d×dd\times d matrix-valued function in d×\mathbb{R}^{d}\times\mathbb{R} for d2d\geq 2. Assume that A(y,s)A(y,s) satisfies the following assumptions:

(i) Ellipticity: For some 0<μ<10<\mu<1 and all (y,s)d×(y,s)\in\mathbb{R}^{d}\times\mathbb{R}, ξd\xi\in\mathbb{R}^{d}, it holds that

μ|ξ|2A(y,s)ξξμ1|ξ|2.\mu|\xi|^{2}\leq A(y,s)\xi\cdot\xi\leq\mu^{-1}|\xi|^{2}. (1.5)

(ii) 1-Periodicity:

A(y+z,s+t)=A(y,s)for (y,s)d× and (z,t)d×.A(y+z,s+t)=A(y,s)\quad\text{for }(y,s)\in\mathbb{R}^{d}\times\mathbb{R}\text{ and }(z,t)\in\mathbb{Z}^{d}\times\mathbb{Z}. (1.6)

(iii)Hölder continuity: There exist constants τ>0\tau>0 and 0<λ<10<\lambda<1 such that

|A(x,t)A(y,s)|τ(|xy|+|ts|1/2)λ|A(x,t)-A(y,s)|\leq\tau\left(|x-y|+|t-s|^{1/2}\right)^{\lambda} (1.7)

for any (x,t),(y,s)d×(x,t),(y,s)\in\mathbb{R}^{d}\times\mathbb{R}.

We are able to establish the following approximate two-sphere one-cylinder inequality in ellipsoids. The definition of ellipsoids ErE_{r} depending on the coefficients A(y,s)A(y,s) is given in Section 2.

Theorem 1.1.

(Interior two-sphere one-cylinder inequality) Let uεu_{\varepsilon} be a solution of (1.4)(1.4) in BR×(T,T)B_{{R}}\times(-T,T). For 0<r1<r2<r3/12<R/80<r_{1}<r_{2}<{r_{3}}/12<R/8, then there holds

supEr2|uε(,t0)|C{(supEr1|uε(,t0)|)α(supΩ~r3,t0|uε|)1α+r3r1[εr3log(2+r3ε)]αsupΩ~r3,t0|uε|},\sup_{E_{r_{2}}}|u_{\varepsilon}(\cdot,t_{0})|\leq C\left\{(\sup_{E_{r_{1}}}|u_{\varepsilon}(\cdot,t_{0})|)^{\alpha}(\sup_{\tilde{\Omega}_{{r_{3}},t_{0}}}|u_{\varepsilon}|)^{1-\alpha}+\frac{r_{3}}{r_{1}}\left[\frac{\varepsilon}{{r_{3}}}\log(2+\frac{r_{3}}{{\varepsilon}})\right]^{\alpha}\sup_{\tilde{\Omega}_{{r_{3}},t_{0}}}|u_{\varepsilon}|\right\}, (1.8)

where α=logr34r2logr32r1\alpha=\frac{\log\frac{{r_{3}}}{4r_{2}}}{\log\frac{{r_{3}}}{2r_{1}}}, and CC depends only on dd, μ\mu and (τ,λ)(\tau,\lambda), and Ω~r3,t0=Er3×(t0r32,t0)\tilde{\Omega}_{{r_{3}},t_{0}}=E_{r_{3}}\times(t_{0}-{r_{3}}^{2},t_{0}) is a subdomain of BR×(T,T)B_{R}\times(-T,T) with RR and TT fixed.

A direct consequence of Theorem 1.1 is the following approximate two-sphere one-cylinder inequality in balls.

Corollary 1.2.

Let uεu_{\varepsilon} be a solution of (1.4)(1.4) in BR×(T,T)B_{R}\times(-T,T). For 0<r1<r2<μr3/12<μR/80<r_{1}<r_{2}<\mu{r_{3}}/12<\mu R/8, then there holds

supBr2|uε(,t0)|C{(supBr1|uε(,t0)|)α(supΩr3,t0|uε|)1α+r3r1[εr3log(2+r3ε)]αsupΩr3,t0|uε|},\sup_{B_{r_{2}}}|u_{\varepsilon}(\cdot,t_{0})|\leq C\left\{(\sup_{B_{r_{1}}}|u_{\varepsilon}(\cdot,t_{0})|)^{\alpha}(\sup_{{\Omega}_{{r_{3}},t_{0}}}|u_{\varepsilon}|)^{1-\alpha}+\frac{r_{3}}{r_{1}}\left[\frac{\varepsilon}{{r_{3}}}\log(2+\frac{r_{3}}{{\varepsilon}})\right]^{\alpha}\sup_{{\Omega}_{{r_{3}},t_{0}}}|u_{\varepsilon}|\right\}, (1.9)

where α=logC1r3r2logr32r1\alpha=\frac{\log\frac{C_{1}{r_{3}}}{r_{2}}}{\log\frac{{r_{3}}}{2r_{1}}}, and CC depends only on dd, μ\mu and (τ,λ)(\tau,\lambda) and and Ωr3,t0=Br3×(t0r32,t0){\Omega}_{{r_{3}},t_{0}}=B_{r_{3}}\times(t_{0}-r_{3}^{2},t_{0}) is a subdomain of BR×(T,T)B_{R}\times(-T,T) with RR and TT fixed.

Remark 1.3.

Compared with the Lipschitz regularity needed to obtain the inequality (1.3)(1.3), only Hölder continuity is imposed to obtain the inequality (1.9)(1.9), with the different exponent θ\theta. Moreover, as ε0\varepsilon\rightarrow 0 with r3r_{3} fixed, the inequality (1.9)(1.9) converges to the standard two-sphere one-cylinder inequality (1.3)(1.3) (with the different exponent θ\theta). However, if r3εr_{3}\backsim\varepsilon, then the inequality (1.9)(1.9) gives us nothing, since in the (ε,ε2)(\varepsilon,\varepsilon^{2})-scale, the operator tdiv(A(x/ε,t/ε2))\partial_{t}-\operatorname{div}\left(A(x/\varepsilon,t/\varepsilon^{2})\nabla\cdot\right) behaves like the classical operator tdiv(A(x,t))\partial_{t}-\operatorname{div}\left(A(x,t)\nabla\cdot\right) after a change of variables, where the Lipschitz regularity needed to obtain the two-sphere one-cylinder inequality.

This interpolation method may also apply to the parabolic equation with potential. Namely, let uεu_{\varepsilon} satisfies the following equation

tuεdiv(A(x/ε,t/ε2)uε)+Vεuε=0,\partial_{t}u_{\varepsilon}-\operatorname{div}\left(A(x/\varepsilon,t/\varepsilon^{2})\nabla u_{\varepsilon}\right)+V^{\varepsilon}u_{\varepsilon}=0, (1.10)

where Vε=V(x/ε)V^{\varepsilon}=V(x/\varepsilon) with VV being 1-periodic and VLd+22(Z)V\in L^{\frac{d+2}{2}}(Z) with Z=[0,1)dZ=[0,1)^{d}. Note that VV is independent of the variable tt. Consequently, we are able to establish the following approximate two-sphere one-cylinder inequality in ellipsoids for the solution to (1.10)(1.10).

Theorem 1.4.

(Interior two-sphere one-cylinder inequality) Let uεu_{\varepsilon} be a solution of (1.10)(1.10) in BR×(T,T)B_{{R}}\times(-T,T). For 0<r1<r2<r3/12<R/80<r_{1}<r_{2}<{r_{3}}/12<R/8, and εr3\varepsilon\leq r_{3}, then there holds

supEr2|uε(,t0)|C{(supEr1|uε(,t0)|)α(supΩ~r3,t0|uε|)1α+r3r1[εr3log(2+r3ε)]αsupΩ~r3,t0|uε|},\sup_{E_{r_{2}}}|u_{\varepsilon}(\cdot,t_{0})|\leq C\left\{(\sup_{E_{r_{1}}}|u_{\varepsilon}(\cdot,t_{0})|)^{\alpha}(\sup_{\tilde{\Omega}_{{r_{3}},t_{0}}}|u_{\varepsilon}|)^{1-\alpha}+\frac{r_{3}}{r_{1}}\left[\frac{\varepsilon}{{r_{3}}}\log(2+\frac{r_{3}}{{\varepsilon}})\right]^{\alpha}\sup_{\tilde{\Omega}_{{r_{3}},t_{0}}}|u_{\varepsilon}|\right\}, (1.11)

where α=logr34r2logr32r1\alpha=\frac{\log\frac{{r_{3}}}{4r_{2}}}{\log\frac{{r_{3}}}{2r_{1}}}, and CC depends only on dd, μ\mu, RR, TT and (τ,λ)(\tau,\lambda), and Ω~r3,t0=Er3×(t0r32,t0)\tilde{\Omega}_{{r_{3}},t_{0}}=E_{r_{3}}\times(t_{0}-{r_{3}}^{2},t_{0}) is a subdomain of BR×(T,T)B_{R}\times(-T,T) with RR and TT fixed.

Remark 1.5.

1.It should be noticed that the unique continuation property of the solution uu to the equation tudiv(A(x,t)u)+Vu=0\partial_{t}u-\operatorname{div}(A(x,t)\nabla u)+Vu=0 has been obtained under the assumption that AC2,1A\in C^{2,1} and VLlocd+22(dxdt)V\in L^{\frac{d+2}{2}}_{loc}(dxdt) in [16]. To some extend, we have extended this result to parabolic equation in homogenization. We may refer readers to [4, 5, 7, 16, 14] and their references therein for more results about the nonzero potential.

2. The method used in Theorem 1.4 can easily apply to the equation div(A(x/ε)uε)+Vεuε=0-\operatorname{div}\left(A(x/\varepsilon)\nabla u_{\varepsilon}\right)+V^{\varepsilon}u_{\varepsilon}=0 with suitable VεV^{\varepsilon}.

2 Preliminaries

Let ε=div(Aε(x,t))\mathcal{L}_{\varepsilon}=-\operatorname{div}\left(A_{\varepsilon}(x,t)\nabla\right), where Aε(x,t)=A(x/ε,t/ε2)A_{\varepsilon}(x,t)=A(x/\varepsilon,t/\varepsilon^{2}). Assume that A(y,s)A(y,s) is 1-periodic in (y,s)(y,s) and satisfies the ellipticity condition (1.5)(1.5). For 1jd1\leq j\leq d, the corrector χj=χj(y,s)\chi_{j}=\chi_{j}(y,s) is defined as the weak solution to the following cell problem:

{(s+1)(χj)=1(yj) in Y,χj=χjβ(y,s) is 1 -periodic in (y,s),Yχjβ=0,\left\{\begin{array}[]{l}\left(\partial_{s}+\mathcal{L}_{1}\right)\left(\chi_{j}\right)=-\mathcal{L}_{1}\left(y_{j}\right)\quad\text{ in }Y,\\ \chi_{j}=\chi_{j}^{\beta}(y,s)\text{ is }1\text{ -periodic in }(y,s),\\ \int_{Y}\chi_{j}^{\beta}=0,\end{array}\right. (2.1)

where Y=[0,1)d+1.Y=[0,1)^{d+1}. Note that

(s+1)(χj+yj)=0in d+1.\left(\partial_{s}+\mathcal{L}_{1}\right)\left(\chi_{j}+y_{j}\right)=0\ \text{in }\mathbb{R}^{d+1}. (2.2)

By the rescaling property of t+ε\partial_{t}+\mathcal{L}_{\varepsilon}, we obtain that

(t+ε)(εχj(x/ε,t/ε2)+yj)=0in d+1.\left(\partial_{t}+\mathcal{L}_{\varepsilon}\right)\left(\varepsilon\chi_{j}(x/\varepsilon,t/\varepsilon^{2})+y_{j}\right)=0\ \text{in }\mathbb{R}^{d+1}. (2.3)

Moreover, if A=A(y,s)A=A(y,s) is Hölder continuous in (y,s)(y,s), then by standard regularity for s+1\partial_{s}+\mathcal{L}_{1}, χj(y,s)\nabla\chi_{j}(y,s) is Hölder continuous in (y,s)(y,s), thus χj(y,s)\nabla\chi_{j}(y,s) is bounded.

Let A^=(a^ij)\widehat{A}=(\widehat{a}_{ij}), where 1i,jd1\leq i,j\leq d, and

a^ij=Y(aij+aikχjyk)𝑑y𝑑s.\widehat{a}_{ij}=\fint_{Y}\left(a_{ij}+a_{ik}\frac{\partial\chi_{j}}{\partial y_{k}}\right)dyds. (2.4)

It is known that the constant matrix A^\widehat{A} satisfies the ellipticity condition,

μ|ξ|2a^ijξiξj,for any ξd,\mu|\xi|^{2}\leq\widehat{a}_{ij}\xi_{i}\xi_{j},\quad\quad\text{for any }\xi\in\mathbb{R}^{d},

and |a^ij|μ1|\widehat{a}_{ij}|\leq\mu_{1}, where μ1\mu_{1} depends only on dd and μ\mu [2]. It is also true or easy to verify that (aij^)(\widehat{a_{ij}}) is symmetric if (aij)(a_{ij}) is symmetric. Denote

0=div(A^).\mathcal{L}_{0}=-\operatorname{div}(\widehat{A}\nabla).

Then t+0\partial_{t}+\mathcal{L}_{0} is the homogenized operator for the family of parabolic operators t+ε\partial_{t}+\mathcal{L}_{\varepsilon}, with 1>ε>01>\varepsilon>0. Since A^\widehat{A} is symmetric and positive definite, there exists a d×dd\times d matrix SS with det(S)>0\det(S)>0 such that SA^ST=Id×dS\widehat{A}S^{T}=I_{d\times d}. Note that A^1=STS\widehat{A}^{-1}=S^{T}S and

A^1x,x=|Sx|2.\langle\widehat{A}^{-1}x,x\rangle=|Sx|^{2}. (2.5)

We introduce a family of ellipsoids as

Er(A^)={xn:A^1x,x<r2}.E_{r}(\widehat{A})=\{x\in\mathbb{R}^{n}:\langle\widehat{A}^{-1}x,x\rangle<r^{2}\}. (2.6)

It is easy to see that

Bμr(0)Er(0)Bμ1r(0).B_{\sqrt{\mu}r}(0)\subset E_{r}(0)\subset B_{\sqrt{\mu_{1}}r}(0). (2.7)

We will write Er(A^)E_{r}(\widehat{A}) as ErE_{r} if the context is understood.

To move forward, let Γε(x,t;y,s)\Gamma_{\varepsilon}(x,t;y,s) and Γ0(x,t;y,s)\Gamma_{0}(x,t;y,s) denote the fundamental solutions for the parabolic operators t+ε\partial_{t}+\mathcal{L}_{\varepsilon}, with 1>ε>01>\varepsilon>0 and the homogenized operator t+0\partial_{t}+\mathcal{L}_{0}, respectively. Moreover, it is easy to see that

Γ0(x,t;y,s)=1(2π)d(ts)d/2|S|exp{|SxSy|24(ts)},\Gamma_{0}(x,t;y,s)=\frac{1}{\left(2\sqrt{\pi}\right)^{d}}\left(t-s\right)^{-d/2}|S|\exp\left\{-\frac{|Sx-Sy|^{2}}{4(t-s)}\right\}, (2.8)

for any x,ydx,y\in\mathbb{R}^{d} and <s<t<-\infty<s<t<\infty with the matrix SS defined in (2.5)(2.5).

The following lemmas state the asymptotic behaviors of Γε(x,t;y,s)\Gamma_{\varepsilon}(x,t;y,s) with 1>ε>01>\varepsilon>0, whose proof could be found in [10].

Lemma 2.1.

Suppose that the coefficient matrix AA satisfies the assumptions (1.5)(1.5) and (1.6)(1.6), then

|Γε(x,t;y,s)Γ0(x,t;y,s)|Cε(ts)d+12exp{κ|xy|2ts}\left|\Gamma_{\varepsilon}(x,t;y,s)-\Gamma_{0}(x,t;y,s)\right|\leq\frac{C\varepsilon}{(t-s)^{\frac{d+1}{2}}}\exp\left\{-\frac{\kappa|x-y|^{2}}{t-s}\right\} (2.9)

for any x,ydx,y\in\mathbb{R}^{d} and <s<t<-\infty<s<t<\infty, where κ>0\kappa>0 depends only on μ\mu. The constant C depends only on dd and μ\mu.

The next lemma states the asymptotic behaviors of xΓε(x,t;y,s)\nabla_{x}\Gamma_{\varepsilon}(x,t;y,s) and yΓε(x,t;y,s)\nabla_{y}\Gamma_{\varepsilon}(x,t;y,s).

Lemma 2.2.

Suppose that the coefficient matrix AA satisfies the assumptions (1.5)(1.5), (1.6)(1.6) and (1.7)(1.7), then

|xΓε(x,t;y,s)(I+χ(x/ε,t/ε2))xΓ0(x,t;y,s)|\displaystyle\left|\nabla_{x}\Gamma_{\varepsilon}(x,t;y,s)-\left(I+\nabla\chi\left(x/\varepsilon,t/\varepsilon^{2}\right)\right)\nabla_{x}\Gamma_{0}(x,t;y,s)\right| (2.10)
Cε(ts)d+22log(2+ε1|ts|1/2)exp{κ|xy|2ts}\displaystyle\quad\leq\frac{C\varepsilon}{(t-s)^{\frac{d+2}{2}}}\log\left(2+\varepsilon^{-1}|t-s|^{1/2}\right)\exp\left\{-\frac{\kappa|x-y|^{2}}{t-s}\right\}

for any x,ydx,y\in\mathbb{R}^{d} and <s<t<-\infty<s<t<\infty, where κ>0\kappa>0 depends only on μ\mu. The constant C depends only on dd, μ\mu and (τ,λ)(\tau,\lambda) in (1.7)(1.7). Similarly, there holds

|yΓε(x,t;y,s)(I+χ~(y/ε,s/ε2))yΓ0(x,t;y,s)|\displaystyle\left|\nabla_{y}\Gamma_{\varepsilon}(x,t;y,s)-\left(I+\nabla\widetilde{\chi}\left(y/\varepsilon,-s/\varepsilon^{2}\right)\right)\nabla_{y}\Gamma_{0}(x,t;y,s)\right| (2.11)
Cε(ts)d+22log(2+ε1|ts|1/2)exp{κ|xy|2ts},\displaystyle\quad\leq\frac{C\varepsilon}{(t-s)^{\frac{d+2}{2}}}\log\left(2+\varepsilon^{-1}|t-s|^{1/2}\right)\exp\left\{-\frac{\kappa|x-y|^{2}}{t-s}\right\},

where χ~(y,s)\tilde{\chi}(y,s) denote the correctors for t+~ε\partial_{t}+\tilde{\mathcal{L}}_{\varepsilon} with ~ε=div(A(x/ε,t/ε2))\tilde{\mathcal{L}}_{\varepsilon}=-\operatorname{div}\left(A(x/\varepsilon,-t/\varepsilon^{2})\nabla\right).

With the summation convention this means that for 1i,jd1\leq i,j\leq d,

|Γε(x,t;y,s)xiΓ0(x,t;y,s)xiχj(x/ε,t/ε2)xiΓ0(x,t;y,s)xj|\left|\frac{\partial\Gamma_{\varepsilon}(x,t;y,s)}{\partial x_{i}}-\frac{\partial\Gamma_{0}(x,t;y,s)}{\partial x_{i}}-\frac{\partial\chi_{j}\left(x/\varepsilon,t/\varepsilon^{2}\right)}{\partial x_{i}}\frac{\partial\Gamma_{0}(x,t;y,s)}{\partial x_{j}}\right| (2.12)

is bounded by the RHS of (2.10)(2.10). And the similar result holds for yΓε(x,t;y,s)\nabla_{y}\Gamma_{\varepsilon}(x,t;y,s).

The next lemma will be frequently used in the proof of Theorem 1.1.

Lemma 2.3.

Let uεu_{\varepsilon} be a weak solution of tuε+εuε=0\partial_{t}u_{\varepsilon}+\mathcal{L}_{\varepsilon}u_{\varepsilon}=0 in BR×(T,T)B_{R}\times(-T,T), then

tr32tE4r3/5\E3r3/4|uε|2(x,s)𝑑x𝑑sCr3duεL(Er3×(tr32,t))2,\int_{t-r_{3}^{2}}^{t}\int_{E_{4{r_{3}}/5}\backslash E_{3{r_{3}}/4}}|\nabla u_{\varepsilon}|^{2}(x,s)dxds\leq Cr_{3}^{d}||u_{\varepsilon}||^{2}_{L^{\infty}\left(E_{r_{3}}\times(t-r_{3}^{2},t)\right)}, (2.13)

where CC depends only on μ\mu and dd, and Er3×(tr32,t)E_{r_{3}}\times(t-r_{3}^{2},t) is a subdomain of BR×(T,T)B_{R}\times(-T,T).

Proof.

The proof is standard. Choosing a cut-off function φ[0,1]\varphi\in[0,1] such that φ(x)=1\varphi(x)=1 if xE4r3/5\E3r3/4x\in E_{4{r_{3}}/5}\backslash E_{3{r_{3}}/4}, and φ(x)=0\varphi(x)=0 if xEr3/2{d\Er3}x\in E_{{r_{3}}/2}\cup\{\mathbb{R}^{d}\backslash E_{r_{3}}\} together with |φ|C/r3|\nabla\varphi|\leq C/{r_{3}}, then multiplying the equation tuε+εuε=0\partial_{t}u_{\varepsilon}+\mathcal{L}_{\varepsilon}u_{\varepsilon}=0 by φ2uε\varphi^{2}u_{\varepsilon} and integrating the resulting equation over BR×(tr32,t)B_{R}\times(t-r_{3}^{2},t) leads to

BRφ2uε2(x,t)𝑑x+tr32tBRφ2|uε|2(x,s)𝑑x𝑑s\displaystyle\int_{B_{R}}\varphi^{2}u_{\varepsilon}^{2}(x,t)dx+\int_{t-r_{3}^{2}}^{t}\int_{B_{R}}\varphi^{2}|\nabla u_{\varepsilon}|^{2}(x,s)dxds (2.14)
\displaystyle\leq CBRφ2uε2(x,tr32)𝑑x+Ctr32tBR|φ|2uε2(x,s)𝑑x𝑑s\displaystyle C\int_{B_{R}}\varphi^{2}u_{\varepsilon}^{2}(x,t-{r_{3}}^{2})dx+C\int_{t-{r_{3}}^{2}}^{t}\int_{B_{R}}|\nabla\varphi|^{2}u_{\varepsilon}^{2}(x,s)dxds
\displaystyle\leq Cr3duεL(Er3×(tr32,t))2.\displaystyle Cr_{3}^{d}||u_{\varepsilon}||^{2}_{L^{\infty}\left(E_{r_{3}}\times(t-r_{3}^{2},t)\right)}.

Thus we have completed the proof of (2.13)(2.13) after noting the choice of φ\varphi. ∎

3 Approximate two-sphere one-cylinder inequality

Following [12], we are going to apply the Lagrange interpolation method to obtain the approximate two-sphere one-cylinder inequality. Actually, the similar method in [12] has been used by the author in [13] to obtain the approximate three-ball inequality in elliptic periodic homogenization. First, let us briefly review the standard Lagrange interpolation method in numerical analysis. Set

Φm(z)=(zp1)(zp2)(zpm)\Phi_{m}(z)=(z-p_{1})(z-p_{2})\cdots(z-p_{m}) (3.1)

for z,pj𝒞z,p_{j}\in\mathcal{C} with j=1,,mj=1,\cdots,m. Let 𝒟\mathcal{D} ba a simply connected open domain in the complex plane 𝒞\mathcal{C} that contains the nodes p~,p1,,pm\tilde{p},p_{1},\cdots,p_{m}. Assume that ff is an analytic function without poles in the closure of 𝒟\mathcal{D}. By well-known calculations, it holds that

1zp~=j=1mΦj1(p~)Φj(z)+Φm(p~)(zp~)Φm(z).\frac{1}{z-\tilde{p}}=\sum_{j=1}^{m}\frac{\Phi_{j-1}(\tilde{p})}{\Phi_{j}(z)}+\frac{\Phi_{m}(\tilde{p})}{(z-\tilde{p})\Phi_{m}(z)}. (3.2)

Multiplying the last identify by 12πif(z)\frac{1}{2\pi i}f(z) and integrating along the boundary of 𝒟\mathcal{D} leads to

12πi𝒟f(z)zp~𝑑z=j=1mΦj1(p~)2πi𝒟f(z)Φj(z)𝑑z+(Rmf)(p~),\frac{1}{2\pi i}\int_{\partial\mathcal{D}}\frac{f(z)}{z-\tilde{p}}dz=\sum_{j=1}^{m}\frac{\Phi_{j-1}(\tilde{p})}{2\pi i}\int_{\partial\mathcal{D}}\frac{f(z)}{\Phi_{j}(z)}dz+\left(R_{m}f\right)(\tilde{p}), (3.3)

where

(Rmf)(p~)=12πi𝒟Φm(p~)f(z)(zp~)Φm(z)𝑑z.\left(R_{m}f\right)(\tilde{p})=\frac{1}{2\pi i}\int_{\partial\mathcal{D}}\frac{\Phi_{m}(\tilde{p})f(z)}{(z-\tilde{p})\Phi_{m}(z)}dz. (3.4)

By the residue theorem, there holds that

(Rmf)(p~)\displaystyle\left({R}_{m}f\right)(\tilde{p}) =j=1mΦm(p~)(pjp~)Φm(pj)f(pj)+f(p~)\displaystyle=\sum_{j=1}^{m}\frac{\Phi_{m}(\tilde{p})}{\left(p_{j}-\tilde{p}\right)\Phi_{m}^{\prime}\left(p_{j}\right)}f\left(p_{j}\right)+f(\tilde{p}) (3.5)
=j=1mijmp~pipjpif(pj)+f(p~),\displaystyle=-\sum_{j=1}^{m}\prod_{i\neq j}^{m}\frac{\tilde{p}-p_{i}}{p_{j}-p_{i}}f\left(p_{j}\right)+f(\tilde{p}),

where (Rmf)(p~)\left(R_{m}f\right)(\tilde{p}) is called the interpolation error. See chapter 4 in [3] for more information.

In order to obtain the approximate two-sphere one-cylinder inequality for the solution in (1.4)(1.4), we consider the Lagrange interpolation for f(h)=Γ0(hx0r1r2,t0;y,s)f(h)=\Gamma_{0}(hx_{0}\frac{r_{1}}{r_{2}},t_{0};y,s), where 0<r1<r2<r3/12<R/80<r_{1}<r_{2}<{{r_{3}}}/{12}<R/8 and (x0,t0)(x_{0},t_{0}) is a fixed point such that A^1x0,x0=|Sx0|<r2\sqrt{\langle\widehat{A}^{-1}x_{0},x_{0}\rangle}=|Sx_{0}|<r_{2}. In view of (3.5)(3.5), we need to estimate the error term (RmΓ0)(x0,t0;y,s)(R_{m}\Gamma_{0})(x_{0},t_{0};y,s) of the approximation. Following the idea in [13], we choose points xi=hix0r1r2x_{i}=h_{i}x_{0}\frac{r_{1}}{r_{2}} on the segment [0,x0r1r2][0,x_{0}\frac{r_{1}}{r_{2}}] with hi(0,1)h_{i}\in(0,1), then xiEr1x_{i}\in E_{r_{1}}, i=1,,mi=1,\cdots,m. Select pi=hip_{i}=h_{i} in the definition of Φm\Phi_{m} in (3.1)(3.1) and p~=r2/r1\tilde{p}=r_{2}/r_{1}. Define

ci=jimr2r11hjhihj.c_{i}=\prod_{j\neq i}^{m}\frac{r_{2}r_{1}^{-1}-h_{j}}{h_{i}-h_{j}}. (3.6)

Since 0<hi<10<h_{i}<1, direct computation shows that

|ci|(r2r11)m1|Φm(hi)|.|c_{i}|\leq\frac{\left(r_{2}r_{1}^{-1}\right)^{m-1}}{|\Phi_{m}^{\prime}(h_{i})|}. (3.7)

To estimate |ci||c_{i}|, we choose hih_{i} to be the Chebyshev nodes, which means, hi=cos((2i1)π2m)h_{i}=\cos\left(\frac{(2i-1)\pi}{2m}\right), i=1,,mi=1,\cdots,m. Then we can write

Φm(h)=21mTm(h),\Phi_{m}(h)=2^{1-m}T_{m}(h),

where TmT_{m} is the Chebyshev polynomial of the first kind. There also holds that

Φm(h)=m21mUm1(t),\Phi_{m}^{\prime}(h)=m2^{1-m}U_{m-1}(t), (3.8)

where Um1U_{m-1} is the Chebyshev polynomial of the second kind. See e.g. section 3.2.3 in [3]. At each hih_{i}, there hold

Um1(hi)=Um1(cos((2i1)π2m))=sin(2i1)π2sin(2i1)π2m=(1)i1sin(2i1)π2m.U_{m-1}(h_{i})=U_{m-1}\left(\cos\left(\frac{(2i-1)\pi}{2m}\right)\right)=\frac{\sin{\frac{(2i-1)\pi}{2}}}{\sin{\frac{(2i-1)\pi}{2m}}}=\frac{(-1)^{i-1}}{\sin\frac{(2i-1)\pi}{2m}}. (3.9)

According to (3.8)(3.8) and (3.9)(3.9), there holds

|Φm(hi)|m21m.|\Phi_{m}^{\prime}(h_{i})|\geq m2^{1-m}. (3.10)

Therefore, by (3.7)(3.7), we have

|ci|(m)1(2r2r1)m1 for i=1,,m.|c_{i}|\leq(m)^{-1}\left(\frac{2r_{2}}{r_{1}}\right)^{m-1}\text{ for }i=1,\cdots,m. (3.11)

To estimate the error term (RmΓ0)(x0,t0;y,s)(R_{m}\Gamma_{0})(x_{0},t_{0};y,s), we do an analytic extension of the function f(h)=Γ0(hx0r1r2,t0;y,s)f(h)=\Gamma_{0}(hx_{0}\frac{r_{1}}{r_{2}},t_{0};y,s) to the disc 𝒟r33r1\mathcal{D}_{\frac{{r_{3}}}{3r_{1}}} of radius r33r1\frac{{r_{3}}}{3r_{1}} centered at the origin in the complex plane 𝒞\mathcal{C}. According to (2.8)(2.8), we have

f(z)=1(2π)d(ts)d/2|S|exp{(zr1r2Sx0Sy)24(ts)},f(z)=\frac{1}{\left(2\sqrt{\pi}\right)^{d}}\left(t-s\right)^{-d/2}|S|\exp\left\{-\frac{(z\frac{r_{1}}{r_{2}}Sx_{0}-Sy)^{2}}{4(t-s)}\right\}, (3.12)

where (zr1r2Sx0Sy)2=(zr1r2Sx0Sy)(zr1r2Sx0Sy)=i=1d(zr1r2(Sx0)i(Sy)i)2(z\frac{r_{1}}{r_{2}}Sx_{0}-Sy)^{2}=(z\frac{r_{1}}{r_{2}}Sx_{0}-Sy)\cdot(z\frac{r_{1}}{r_{2}}Sx_{0}-Sy)=\sum_{i=1}^{d}(z\frac{r_{1}}{r_{2}}(Sx_{0})_{i}-(Sy)_{i})^{2}. Note that |zr1r2Sx0|r33|z\frac{r_{1}}{r_{2}}Sx_{0}|\leq\frac{{r_{3}}}{3} in the disc 𝒟r33r1\mathcal{D}_{\frac{{r_{3}}}{3r_{1}}}, then there holds

|f(z)|C~(ts)d/2exp{Cr32ts}for yE4r3/5\E3r3/4,|f(z)|\leq\tilde{C}\left(t-s\right)^{-d/2}\exp\left\{-\frac{Cr_{3}^{2}}{t-s}\right\}\quad\text{for }y\in E_{4{r_{3}}/5}\backslash E_{3{r_{3}}/4}, (3.13)

where CC and C~\tilde{C} depend only on dd.

Similarly, with the notations above, consider the Lagrange interpolation for g(h)=yΓ0(hx0r1r2,t0;y,s)g(h)=\nabla_{y}\Gamma_{0}(hx_{0}\frac{r_{1}}{r_{2}},t_{0};y,s), and we do an analytic extension of the g(h)g(h) to the disc 𝒟r33r1\mathcal{D}_{\frac{{r_{3}}}{3r_{1}}}. Then according to (2.8)(2.8) again, there holds

g(z)=S(zr1r2Sx0Sy)2(2π)d(ts)d/21|S|exp{(zr1r2Sx0Sy)24(ts)},g(z)=\frac{S\left(z\frac{r_{1}}{r_{2}}Sx_{0}-Sy\right)}{2\left(2\sqrt{\pi}\right)^{d}}\left(t-s\right)^{-d/2-1}|S|\exp\left\{-\frac{(z\frac{r_{1}}{r_{2}}Sx_{0}-Sy)^{2}}{4(t-s)}\right\}, (3.14)

where S(zr1r2Sx0Sy)S(z\frac{r_{1}}{r_{2}}Sx_{0}-Sy) is a vector with Sik(zr1r2Sijx0,jSijyj)S_{ik}\cdot(z\frac{r_{1}}{r_{2}}S_{ij}x_{0,j}-S_{ij}y_{j}) being its kk-th position. Note that |zr1r2Sx0|r33|z\frac{r_{1}}{r_{2}}Sx_{0}|\leq\frac{{r_{3}}}{3} in the disc 𝒟r33r1\mathcal{D}_{\frac{{r_{3}}}{3r_{1}}}, then we have

|g(z)|C~r3(ts)d/21exp{Cr32ts}for yE4r3/5\E3r3/4,|g(z)|\leq\tilde{C}{r_{3}}\left(t-s\right)^{-d/2-1}\exp\left\{-\frac{Cr_{3}^{2}}{t-s}\right\}\quad\text{for }y\in E_{4{r_{3}}/5}\backslash E_{3{r_{3}}/4}, (3.15)

where CC and C~\tilde{C} depend only on dd.

The following lemma gives the interpolation error terms (Rm(yΓ0))(x,t;y,s)(R_{m}(\nabla_{y}\Gamma_{0}))(x,t;y,s) and (RmΓ0)(x,t;y,s)(R_{m}\Gamma_{0})(x,t;y,s) for yΓ0(x,t;y,s)\nabla_{y}\Gamma_{0}(x,t;y,s) and Γ0(x,t;y,s)\Gamma_{0}(x,t;y,s), respectively.

Lemma 3.1.

If x0Er2x_{0}\in E_{r_{2}} and yE4r3/5\E3r3/4y\in E_{4{r_{3}}/5}\backslash E_{3{r_{3}}/4} with 0<r1<r2<r3/12<R/80<r_{1}<r_{2}<{r_{3}}/12<R/8 and <s<t<-\infty<s<t<\infty, then there hold

|(RmΓ0)(x0,t;y,s)|C~4mr2mr3m(ts)d/2exp{Cr32ts},|(R_{m}\Gamma_{0})(x_{0},t;y,s)|\leq\frac{\tilde{C}4^{m}r_{2}^{m}}{{r_{3}}^{m}}(t-s)^{-d/2}\exp\left\{-\frac{Cr_{3}^{2}}{t-s}\right\}, (3.16)

and

|(Rm(yΓ0))(x0,t;y,s)|C~4mr2mr3m1(ts)d/21exp{Cr32ts},|(R_{m}(\nabla_{y}\Gamma_{0}))(x_{0},t;y,s)|\leq\frac{\tilde{C}4^{m}r_{2}^{m}}{{r_{3}}^{m-1}}(t-s)^{-d/2-1}\exp\left\{-\frac{Cr_{3}^{2}}{t-s}\right\}, (3.17)

where CC and C~\tilde{C} depend only on dd.

Proof.

First, to see (3.16)(3.16). According to (3.1)(3.1) and noting that pi=hi(0,1)p_{i}=h_{i}\in(0,1) with i=1,,mi=1,\cdots,m, it is easy to see that

|Φm(z)|((r33r1)1)m on the circle |z|=r33r1|\Phi_{m}(z)|\geq\left(\left(\frac{r_{3}}{3r_{1}}\right)-1\right)^{m}\text{ on the circle }|z|=\frac{r_{3}}{3r_{1}} (3.18)

and

|Φm(r2/r1)|(r2/r1)m.|\Phi_{m}(r_{2}/r_{1})|\leq(r_{2}/r_{1})^{m}. (3.19)

In view of (3.4)(3.4)-(3.6)(3.6) and (3.18)(3.18)-(3.19)(3.19), we have

|(RmΓ0)(x0,t;y,s)|\displaystyle\left|(R_{m}\Gamma_{0})(x_{0},t;y,s)\right| =|Γ0(x0,t;y,s)i=1mciΓ0(xi,t;y,s)|\displaystyle=|\Gamma_{0}(x_{0},t;y,s)-\sum_{i=1}^{m}c_{i}\Gamma_{0}(x_{i},t;y,s)| (3.20)
=|f(r2/r1)i=1mcif(hi)|\displaystyle=|f\left(r_{2}/r_{1}\right)-\sum_{i=1}^{m}c_{i}f\left(h_{i}\right)|
=|12πi|z|=r33r1Φm(r2r11)f(z)(zr2r11)Φm(z)𝑑z|\displaystyle=|\frac{1}{2\pi i}\int_{|z|=\frac{{r_{3}}}{3r_{1}}}\frac{\Phi_{m}\left(r_{2}r_{1}^{-1}\right)f(z)}{\left(z-r_{2}r_{1}^{-1}\right)\Phi_{m}(z)}dz|
C(r2/r1)m(3r1)m(r33r2)(r33r1)mr3(ts)d/2exp{Cr32ts}\displaystyle\leq C\frac{(r_{2}/r_{1})^{m}(3r_{1})^{m}}{({r_{3}}-3r_{2})({r_{3}}-3r_{1})^{m}}\cdot{r_{3}}(t-s)^{-d/2}\exp\left\{-\frac{Cr_{3}^{2}}{t-s}\right\}
C~4mr2mr3m(ts)d/2exp{Cr32ts},\displaystyle\leq\frac{\tilde{C}4^{m}r_{2}^{m}}{{r_{3}}^{m}}(t-s)^{-d/2}\exp\left\{-\frac{Cr_{3}^{2}}{t-s}\right\},

where we have used estimate (3.13)(3.13), the assumption that 0<r1<r2<r3/12<R/80<r_{1}<r_{2}<{r_{3}}/12<R/8 in the last inequality, and the constants C~\tilde{C} and CC in the last inequality depend on dd.

Similarly, for (Rm(y)Γ0(x,t;y,s)(R_{m}(\nabla_{y})\Gamma_{0}(x,t;y,s), there holds

|(Rm(yΓ0))(x0,t;y,s)|\displaystyle\left|(R_{m}(\nabla_{y}\Gamma_{0}))(x_{0},t;y,s)\right| =|yΓ0(x0,t;y,s)i=1mciyΓ0(xi,t;y,s)|\displaystyle=|\nabla_{y}\Gamma_{0}(x_{0},t;y,s)-\sum_{i=1}^{m}c_{i}\nabla_{y}\Gamma_{0}(x_{i},t;y,s)| (3.21)
=|g(r2/r1)i=1mcig(hi)|\displaystyle=|g\left(r_{2}/r_{1}\right)-\sum_{i=1}^{m}c_{i}g\left(h_{i}\right)|
=|12πi|z|=r32r1Φm(r2r11)g(z)(zr2r11)Φm(z)𝑑z|\displaystyle=|\frac{1}{2\pi i}\int_{|z|=\frac{{r_{3}}}{2r_{1}}}\frac{\Phi_{m}\left(r_{2}r_{1}^{-1}\right)g(z)}{\left(z-r_{2}r_{1}^{-1}\right)\Phi_{m}(z)}dz|
C~4mr2mr3m1(ts)d/21exp{Cr32ts},\displaystyle\leq\frac{\tilde{C}4^{m}r_{2}^{m}}{{r_{3}}^{m-1}}(t-s)^{-d/2-1}\exp\left\{-\frac{Cr_{3}^{2}}{t-s}\right\},

where we have used estimate (3.15)(3.15) instead of (3.13)(3.13), compared to (3.20)(3.20), and the assumption that 0<r1<r2<r3/12<R/80<r_{1}<r_{2}<{r_{3}}/12<R/8 in the last inequality, and the constants C~\tilde{C} and CC in the last inequality depend on dd. Thus we have completed the proof of Lemma 3.1. ∎

To continue the proof of Theorem 1.1, since uεu_{\varepsilon} satisfies

tuεdiv(Aεuε)=0in BR×(T,T),\partial_{t}u_{\varepsilon}-\operatorname{div}\left(A_{\varepsilon}\nabla u_{\varepsilon}\right)=0\quad\text{in }B_{{R}}\times(-T,T), (3.22)

then simple computation shows that

t(ηuε)div(Aε(ηuε))\displaystyle\partial_{t}\left(\eta u_{\varepsilon}\right)-\operatorname{div}\left(A_{\varepsilon}\nabla\left(\eta u_{\varepsilon}\right)\right) (3.23)
=div[(Aεη)uε]Aεuεη+uεtη\displaystyle=-\operatorname{div}\left[\left(A_{\varepsilon}\cdot\nabla\eta\right)u_{\varepsilon}\right]-A_{\varepsilon}\nabla u_{\varepsilon}\nabla\eta+u_{\varepsilon}\partial_{t}\eta
=:f~(x,t) in d×(,T),\displaystyle=:\tilde{f}(x,t)\quad\quad\text{ in }\mathbb{R}^{d}\times(-\infty,T),

where η[0,1]\eta\in[0,1] is a cut-off function such that η=η(x,t)=1\eta=\eta(x,t)=1 if (x,t)E3r3/4×(t0r32/2,t0)(x,t)\in E_{3{r_{3}}/4}\times(t_{0}-r_{3}^{2}/2,t_{0}), and η=0\eta=0 if (x,t)E4r3/5×{(t03r32/4,t0+r32/4)(x,t)\notin E_{4{r_{3}}/5}\times\{(t_{0}-3r_{3}^{2}/4,t_{0}+r_{3}^{2}/4) for some fixed t0t_{0} with |η|C/r3|\nabla\eta|\leq C/{r_{3}} and |tη|C/r32|\partial_{t}\eta|\leq C/r_{3}^{2}. Then

(ηuε)(x0,t0)\displaystyle\left(\eta u_{\varepsilon}\right)(x_{0},t_{0}) =t0r32t0dΓε(x0,t0;y,s)f~(y,s)𝑑y𝑑s\displaystyle=\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\Gamma_{\varepsilon}(x_{0},t_{0};y,s)\tilde{f}(y,s)dyds (3.24)
=t0r32t0dyΓε(x0,t0;y,s)(Aεη)uε𝑑y𝑑s\displaystyle=\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\nabla_{y}\Gamma_{\varepsilon}(x_{0},t_{0};y,s)\left(A_{\varepsilon}\cdot\nabla\eta\right)u_{\varepsilon}dyds
+t0r32t0dΓε(x0,t0;y,s)(uεsηAεuεη)𝑑y𝑑s\displaystyle\quad+\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\Gamma_{\varepsilon}(x_{0},t_{0};y,s)\left(u_{\varepsilon}\partial_{s}\eta-A_{\varepsilon}\nabla u_{\varepsilon}\nabla\eta\right)dyds
=:I1+I2,\displaystyle=:I_{1}+I_{2},

where x0Er2x_{0}\in E_{r_{2}} is a fixed point.

The summation convention that repeated indices are summed is used in the rest of this section.

It is easy to see that

I1=\displaystyle I_{1}= t0r32t0dciyΓε(xi,t0;y,s)(Aεη)uε𝑑y𝑑s\displaystyle\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}c_{i}\nabla_{y}\Gamma_{\varepsilon}(x_{i},t_{0};y,s)(A_{\varepsilon}\cdot\nabla\eta)u_{\varepsilon}dyds (3.25)
+t0r32t0d[yΓε(x0,t0;y,s)(I+χ~ε)yΓ0(x0,t0;y,s)](Aεη)uε𝑑y𝑑s\displaystyle+\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\left[\nabla_{y}\Gamma_{\varepsilon}(x_{0},t_{0};y,s)-\left(I+\nabla\widetilde{\chi}_{\varepsilon}\right)\nabla_{y}\Gamma_{0}(x_{0},t_{0};y,s)\right]\left(A_{\varepsilon}\cdot\nabla\eta\right)u_{\varepsilon}dyds
+t0r32t0d(I+χ~ε)[yΓ0(x0,t0;y,s)ciyΓ0(xi,t0;y,s)](Aεη)uε𝑑y𝑑s\displaystyle+\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\left(I+\nabla\widetilde{\chi}_{\varepsilon}\right)\left[\nabla_{y}\Gamma_{0}(x_{0},t_{0};y,s)-c_{i}\nabla_{y}\Gamma_{0}(x_{i},t_{0};y,s)\right]\left(A_{\varepsilon}\cdot\nabla\eta\right)u_{\varepsilon}dyds
+t0r32t0dci[(I+χ~ε)yΓ0(xi,t0;y,s)yΓε(xi,t0;y,s)](Aεη)uε𝑑y𝑑s\displaystyle+\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}c_{i}\left[\left(I+\nabla\widetilde{\chi}_{\varepsilon}\right)\nabla_{y}\Gamma_{0}(x_{i},t_{0};y,s)-\nabla_{y}\Gamma_{\varepsilon}(x_{i},t_{0};y,s)\right]\left(A_{\varepsilon}\cdot\nabla\eta\right)u_{\varepsilon}dyds
=\displaystyle= :M0+M1+M2+M3,\displaystyle:M_{0}+M_{1}+M_{2}+M_{3},

where cic_{i} are defined in (3.6)(3.6) and xi=hix0r1r2x_{i}=h_{i}x_{0}\frac{r_{1}}{r_{2}} on the segment [0,x0r1r2][0,x_{0}\frac{r_{1}}{r_{2}}] with hi(0,1)h_{i}\in(0,1), i=1,,mi=1,\cdots,m and χ~ε=χ~(y/ε,s/ε2)\nabla\widetilde{\chi}_{\varepsilon}=\nabla\widetilde{\chi}\left(y/\varepsilon,-s/\varepsilon^{2}\right). Moreover, it is easy to see that xiEr1x_{i}\in E_{r_{1}}, i=1,,mi=1,\cdots,m. Similarly, we have

I2=\displaystyle I_{2}= t0r32t0dciΓε(xi,t0;y,s)(uεsηAεuεη)𝑑y𝑑s\displaystyle\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}c_{i}\Gamma_{\varepsilon}(x_{i},t_{0};y,s)\left(u_{\varepsilon}\partial_{s}\eta-A_{\varepsilon}\nabla u_{\varepsilon}\nabla\eta\right)dyds (3.26)
+t0r32t0d[Γε(x0,t0;y,s)Γ0(x0,t0;y,s)](uεsηAεuεη)𝑑y𝑑s\displaystyle+\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\left[\Gamma_{\varepsilon}(x_{0},t_{0};y,s)-\Gamma_{0}(x_{0},t_{0};y,s)\right]\left(u_{\varepsilon}\partial_{s}\eta-A_{\varepsilon}\nabla u_{\varepsilon}\nabla\eta\right)dyds
+t0r32t0d[Γ0(x0,t0;y,s)ciΓ0(xi,t0;y,s)](uεsηAεuεη)𝑑y𝑑s\displaystyle+\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\left[\Gamma_{0}(x_{0},t_{0};y,s)-c_{i}\Gamma_{0}(x_{i},t_{0};y,s)\right]\left(u_{\varepsilon}\partial_{s}\eta-A_{\varepsilon}\nabla u_{\varepsilon}\nabla\eta\right)dyds
+t0r32t0dci[Γ0(xi,t0;y,s)Γε(xi,t0;y,s)](uεsηAεuεη)𝑑y𝑑s\displaystyle+\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}c_{i}\left[\Gamma_{0}(x_{i},t_{0};y,s)-\Gamma_{\varepsilon}(x_{i},t_{0};y,s)\right]\left(u_{\varepsilon}\partial_{s}\eta-A_{\varepsilon}\nabla u_{\varepsilon}\nabla\eta\right)dyds
=\displaystyle= M~0+i=4i=9Mi,\displaystyle\tilde{M}_{0}+\sum_{i=4}^{i=9}M_{i},

with the same cic_{i}, xix_{i} and x0x_{0} as in (3.25)(3.25). Clearly, it follows from the representation formula (3.24)(3.24) that

M0+M~0=ci(ηuε)(xi,t0).M_{0}+\tilde{M}_{0}=c_{i}\left(\eta u_{\varepsilon}\right)(x_{i},t_{0}). (3.27)

Before we continue, we give some notations first. Denote E~\tilde{E} and Ω~r3,t0\tilde{\Omega}_{r_{3},t_{0}} by E4r3/5E3r3/4E_{4r_{3}/5}\setminus E_{3r_{3}/4} and Er3×(t0r32,t0)E_{r_{3}}\times(t_{0}-r_{3}^{2},t_{0}), respectively. Next, we need to estimate M1M_{1}-M9M_{9} term by term. In view of (3.25)(3.25), we have

|M1|\displaystyle|M_{1}| Ct0r32t0d|yΓε(x0,t0;y,s)(I+χ~ε)yΓ0(x0,t0;y,s)||η||uε|𝑑y𝑑s\displaystyle\leq C\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\left|\nabla_{y}\Gamma_{\varepsilon}(x_{0},t_{0};y,s)-\left(I+\nabla\widetilde{\chi}_{\varepsilon}\right)\nabla_{y}\Gamma_{0}(x_{0},t_{0};y,s)\right||\nabla\eta||u_{\varepsilon}|dyds (3.28)
Cεt0r32t0dlog(2+ε1|t0s|1/2)(t0s)d+22exp{κ|x0y|2t0s}|η||uε|𝑑y𝑑s\displaystyle\leq C\varepsilon\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\frac{\log\left(2+\varepsilon^{-1}|t_{0}-s|^{1/2}\right)}{(t_{0}-s)^{\frac{d+2}{2}}}\exp\left\{-\frac{\kappa|x_{0}-y|^{2}}{t_{0}-s}\right\}|\nabla\eta||u_{\varepsilon}|dyds
Cεt0r32t0dlog(2+ε1|t0s|1/2)(t0s)d+22exp{C|Sx0Sy|2t0s}|η||uε|𝑑y𝑑s\displaystyle\leq C\varepsilon\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\frac{\log\left(2+\varepsilon^{-1}|t_{0}-s|^{1/2}\right)}{(t_{0}-s)^{\frac{d+2}{2}}}\exp\left\{-\frac{C|Sx_{0}-Sy|^{2}}{t_{0}-s}\right\}|\nabla\eta||u_{\varepsilon}|dyds
Cεr3t0r32t0E~log(2+ε1|t0s|1/2)(t0s)d+22exp{C|Sx0Sy|2t0s}|uε|𝑑y𝑑s\displaystyle\leq\frac{C\varepsilon}{r_{3}}\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\tilde{E}}\frac{\log\left(2+\varepsilon^{-1}|t_{0}-s|^{1/2}\right)}{(t_{0}-s)^{\frac{d+2}{2}}}\exp\left\{-\frac{C|Sx_{0}-Sy|^{2}}{t_{0}-s}\right\}|u_{\varepsilon}|dyds
Cεr3d1t0r32t0log(2+ε1|t0s|1/2)(t0s)d+22exp{Cr32t0s}𝑑suεL(Ω~r3,t0)\displaystyle\leq C\varepsilon r_{3}^{d-1}\int_{t_{0}-r_{3}^{2}}^{t_{0}}\frac{\log\left(2+\varepsilon^{-1}|t_{0}-s|^{1/2}\right)}{(t_{0}-s)^{\frac{d+2}{2}}}\exp\left\{-\frac{Cr_{3}^{2}}{t_{0}-s}\right\}ds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}
Cεr311log(2+ε1s~1/2r3)s~d/21exp{Cs~}𝑑s~uεL(Ω~r3,t0)\displaystyle\leq C\varepsilon r_{3}^{-1}\int_{1}^{\infty}\log(2+\varepsilon^{-1}\tilde{s}^{-1/2}r_{3}){\tilde{s}}^{d/2-1}\exp\{-C\tilde{s}\}d\tilde{s}\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}
Cεr31log(2+ε1r3)uεL(Ω~r3,t0),\displaystyle\leq C\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})},

where we have used (2.11)(2.11) in Lemma 2.2 in the above inequality.

To estimate M2M_{2}, we first note that χ~ε\nabla\tilde{\chi}_{\varepsilon} is bounded, then according to Lemma 3.1, there holds

|M2|\displaystyle|M_{2}| C(4r2)mr3mt0r32t0E~(t0s)d/21exp{Cr32t0s}𝑑y𝑑suεL(Ω~r3,t0)\displaystyle\leq\frac{C(4r_{2})^{m}}{r_{3}^{m}}\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\tilde{E}}(t_{0}-s)^{-d/2-1}\exp\left\{-\frac{Cr_{3}^{2}}{t_{0}-s}\right\}dyds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})} (3.29)
C(4r2)mr3mdt0r32t0(t0s)d/21exp{Cr32t0s}𝑑suεL(Ω~r3,t0)\displaystyle\leq\frac{C(4r_{2})^{m}}{r_{3}^{m-d}}\int_{t_{0}-r_{3}^{2}}^{t_{0}}(t_{0}-s)^{-d/2-1}\exp\left\{-\frac{Cr_{3}^{2}}{t_{0}-s}\right\}ds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}
C(4r2)mr3m1s~d/21exp{Cs~}𝑑suεL(Ω~r3,t0)\displaystyle\leq\frac{C(4r_{2})^{m}}{r_{3}^{m}}\int_{1}^{\infty}{\tilde{s}}^{d/2-1}\exp\left\{-C\tilde{s}\right\}ds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}
C(4r2)mr3muεL(Ω~r3,t0).\displaystyle\leq\frac{C(4r_{2})^{m}}{r_{3}^{m}}||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}.

As for M3M_{3}, noting that xiEr1x_{i}\in E_{r_{1}} with i=1,,mi=1,\cdots,m, then the estimate (2.11)(2.11) and (3.11)(3.11) yields that

|M3|\displaystyle|M_{3}| Cεr3t0r32t0E~log(2+ε1|t0s|1/2)(t0s)d+22|ci|exp{κ|xiy|2t0s}𝑑y𝑑suεL(Ω~r3,t0)\displaystyle\leq\frac{C\varepsilon}{r_{3}}\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\tilde{E}}\frac{\log\left(2+\varepsilon^{-1}|t_{0}-s|^{1/2}\right)}{(t_{0}-s)^{\frac{d+2}{2}}}|c_{i}|\exp\left\{-\frac{\kappa|x_{i}-y|^{2}}{t_{0}-s}\right\}dyds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})} (3.30)
Cεr3t0r32t0E~log(2+ε1|t0s|1/2)(t0s)d+22|ci|exp{C|SxiSy|2t0s}𝑑y𝑑suεL(Ω~r3,t0)\displaystyle\leq\frac{C\varepsilon}{r_{3}}\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\tilde{E}}\frac{\log\left(2+\varepsilon^{-1}|t_{0}-s|^{1/2}\right)}{(t_{0}-s)^{\frac{d+2}{2}}}|c_{i}|\exp\left\{-\frac{C|Sx_{i}-Sy|^{2}}{t_{0}-s}\right\}dyds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}
Cεr3d1i|ci|t0r32t0log(2+ε1|t0s|1/2)(t0s)d+22exp{Cr32t0s}𝑑y𝑑suεL(Ω~r3,t0)\displaystyle\leq C\varepsilon r_{3}^{d-1}\sum_{i}|c_{i}|\int_{t_{0}-r_{3}^{2}}^{t_{0}}\frac{\log\left(2+\varepsilon^{-1}|t_{0}-s|^{1/2}\right)}{(t_{0}-s)^{\frac{d+2}{2}}}\exp\left\{-\frac{Cr_{3}^{2}}{t_{0}-s}\right\}dyds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}
Cε(2r2)m1r1m1r31log(2+ε1s~1/2r3)s~d/21exp{Cs~}𝑑s~uεL(Ω~r3,t0)\displaystyle\leq\frac{C\varepsilon(2r_{2})^{m-1}}{r_{1}^{m-1}r_{3}}\int_{1}^{\infty}\log(2+\varepsilon^{-1}\tilde{s}^{-1/2}r_{3}){\tilde{s}}^{d/2-1}\exp\{-C\tilde{s}\}d\tilde{s}\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}
C(2r2)m1r1m1εr31log(2+ε1r3)uεL(Ω~r3,t0).\displaystyle\leq\frac{C(2r_{2})^{m-1}}{r_{1}^{m-1}}\varepsilon{r_{3}}^{-1}\log(2+\varepsilon^{-1}r_{3})||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}.

Next, we give the estimate of I2I_{2} term by term in (3.26)(3.26). In view of (2.9)(2.9), then we have

|M4|\displaystyle|M_{4}| Cεr3d2t0r32t0(t0s)d+12exp{Cr32t0s}𝑑suεL(Ω~r3,t0)\displaystyle\leq C\varepsilon r_{3}^{d-2}\int_{t_{0}-r_{3}^{2}}^{t_{0}}(t_{0}-s)^{-\frac{d+1}{2}}\exp\left\{-\frac{Cr_{3}^{2}}{t_{0}-s}\right\}ds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})} (3.31)
Cεr3d21s~d32exp(Cs~)r3d+1𝑑s~uεL(Ω~r3,t0)\displaystyle\leq C\varepsilon r_{3}^{d-2}\int_{1}^{\infty}{\tilde{s}}^{\frac{d-3}{2}}\exp(-C\tilde{s})r_{3}^{-d+1}d\tilde{s}\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}
Cεr31uεL(Ω~r3,t0).\displaystyle\leq C\varepsilon r_{3}^{-1}||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}.

As for M5M_{5}, we have

|M5|\displaystyle|M_{5}| C(t0r32t0d|Γε(x0,t0;y,s)Γ0(x0,t0;y,s)|2|η|𝑑y𝑑s)1/2\displaystyle\leq C\left(\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\left|\Gamma_{\varepsilon}(x_{0},t_{0};y,s)-\Gamma_{0}(x_{0},t_{0};y,s)\right|^{2}|\nabla\eta|dyds\right)^{1/2} (3.32)
×(t0r32t0d|uε|2|η|𝑑y𝑑s)1/2\displaystyle\quad\times\left(\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\left|\nabla u_{\varepsilon}\right|^{2}|\nabla\eta|dyds\right)^{1/2}
Cεr3d/21(t0r32t0(t0s)d1exp{Cr32t0s}𝑑s)1/2(t0r32t0E~|uε|2𝑑y𝑑s)1/2\displaystyle\leq C\varepsilon r_{3}^{d/2-1}\left(\int_{t_{0}-r_{3}^{2}}^{t_{0}}(t_{0}-s)^{-d-1}\exp\left\{-\frac{Cr_{3}^{2}}{t_{0}-s}\right\}ds\right)^{1/2}\left(\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\tilde{E}}|\nabla u_{\varepsilon}|^{2}dyds\right)^{1/2}
Cεr31uεL(Ω~r3,t0),\displaystyle\leq C\varepsilon r_{3}^{-1}||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})},

where we have used (2.9)(2.9) in the second inequality and (2.13)(2.13) in the third inequality.

Due to (3.16)(3.16) and similar to the estimate of M2M_{2}, we have

|M6|\displaystyle|M_{6}| C~(4r2)mr3md+2t0r32t0(t0s)d/2exp{Cr32t0s}𝑑suεL(Ω~r3,t0)\displaystyle\leq\frac{\tilde{C}(4r_{2})^{m}}{r_{3}^{m-d+2}}\int_{t_{0}-r_{3}^{2}}^{t_{0}}(t_{0}-s)^{-d/2}\exp\left\{-\frac{Cr_{3}^{2}}{t_{0}-s}\right\}ds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})} (3.33)
C(4r2)mr3muεL(Ω~r3,t0).\displaystyle\leq\frac{C(4r_{2})^{m}}{r_{3}^{m}}||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}.

According to (3.16)(3.16) and (2.13)(2.13), then there holds

|M7|\displaystyle|M_{7}| C(t0r32t0d|Γ0(x0,t0;y,s)ciΓ0(xi,t0;y,s)|2|η|𝑑y𝑑s)1/2\displaystyle\leq C\left(\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\left|\Gamma_{0}(x_{0},t_{0};y,s)-c_{i}\Gamma_{0}(x_{i},t_{0};y,s)\right|^{2}|\nabla\eta|dyds\right)^{1/2} (3.34)
×(t0r32t0d|uε|2|η|𝑑y𝑑s)1/2\displaystyle\quad\times\left(\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\left|\nabla u_{\varepsilon}\right|^{2}|\nabla\eta|dyds\right)^{1/2}
C~(4r2)mr3m+1d(t0r32t0(t0s)dexp{Cr32t0s}𝑑s)1/2uεL(Ω~r3,t0)\displaystyle\leq\frac{\tilde{C}(4r_{2})^{m}}{r_{3}^{m+1-d}}\left(\int_{t_{0}-r_{3}^{2}}^{t_{0}}(t_{0}-s)^{-d}\exp\left\{-\frac{Cr_{3}^{2}}{t_{0}-s}\right\}ds\right)^{1/2}\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}
C(4r2)mr3muεL(Ω~r3,t0).\displaystyle\leq\frac{C(4r_{2})^{m}}{r_{3}^{m}}||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}.

Similarly, in view of (2.9)(2.9) and (3.11)(3.11), we have

|M8|\displaystyle|M_{8}| Cεr3d2i|ci|t0r32t0(t0s)d+12exp{Cr32t0s}𝑑suεL(Ω~r3,t0)\displaystyle\leq C\varepsilon r_{3}^{d-2}\sum_{i}|c_{i}|\int_{t_{0}-r_{3}^{2}}^{t_{0}}(t_{0}-s)^{-\frac{d+1}{2}}\exp\left\{-\frac{Cr_{3}^{2}}{t_{0}-s}\right\}ds\cdot||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})} (3.35)
Cε(2r2)m1r3r1m1uεL(Ω~r3,t0).\displaystyle\leq\frac{C\varepsilon(2r_{2})^{m-1}}{r_{3}r_{1}^{m-1}}||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}.

Moreover, similar to the proof of M5M_{5} and (3.11)(3.11), we have

|M9|Cε(2r2)m1r3r1m1uεL(Ω~r3,t0).|M_{9}|\leq\frac{C\varepsilon(2r_{2})^{m-1}}{r_{3}r_{1}^{m-1}}||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})}. (3.36)

Consequently, noting that i|ci|(2r2)m1/r1m1\sum_{i}|c_{i}|\leq(2r_{2})^{m-1}/{r_{1}}^{m-1}, then combining (3.24)(3.24)-(3.36)(3.36) yields that

|uε(x0,t0)|\displaystyle|u_{\varepsilon}(x_{0},t_{0})|\leq (2r2)m1r1m1supEr1|uε(,t0)|+C(4r2)mr3muεL(Ω~r3,t0)\displaystyle\frac{(2r_{2})^{m-1}}{{r_{1}}^{m-1}}\sup_{E_{r_{1}}}|u_{\varepsilon}(\cdot,t_{0})|+\frac{C(4r_{2})^{m}}{r_{3}^{m}}||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})} (3.37)
+C(2r2)mr1mεr31log(2+ε1r3)uεL(Ω~r3,t0),\displaystyle+\frac{C(2r_{2})^{m}}{r_{1}^{m}}\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})||u_{\varepsilon}||_{L^{\infty}(\tilde{\Omega}_{r_{3},t_{0}})},

where CC does not depend on mm, r1r_{1}, r2r_{2} or r3r_{3}. Note that we choose the coefficient of the third term in the RHS of (3.37)(3.37) is (2r2)mr1m\frac{(2r_{2})^{m}}{r_{1}^{m}} instead of (2r2)m1r1m1\frac{(2r_{2})^{m-1}}{r_{1}^{m-1}}, which can be done due to 0<r1<r20<r_{1}<r_{2}, and that will simply the computation when minimizing the summation (of course, one could use (2r2)m1r1m1\frac{(2r_{2})^{m-1}}{r_{1}^{m-1}} to obtain a more accurate conclusion). Since x0Er2x_{0}\in E_{r_{2}} is an arbitrary point, then it follows that

supEr2|uε(,t0)|\displaystyle\sup_{E_{r_{2}}}|u_{\varepsilon}(\cdot,t_{0})|\leq C{(2r2)m1r1m1supEr1|uε(,t0)|+(4r2)mr3msupΩ~r3,t0|uε|\displaystyle C\left\{\frac{(2r_{2})^{m-1}}{{r_{1}}^{m-1}}\sup_{E_{r_{1}}}|u_{\varepsilon}(\cdot,t_{0})|+\frac{(4r_{2})^{m}}{r_{3}^{m}}\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|u_{\varepsilon}|\right. (3.38)
+(2r2)mr1mεr31log(2+ε1r3)supΩ~r3,t0|uε|}.\displaystyle\quad\quad\left.+\frac{(2r_{2})^{m}}{r_{1}^{m}}\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|u_{\varepsilon}|\right\}.

Now we need to minimize the summation of the terms in the RHS of (3.38)(3.38) by choosing the suitable integer value mm. Actually, the similar proof can be found in [13], we give it just for completeness. For simplicity, let

supEr1|uε(,t0)|=δ,supΩ~r3,t0|uε|=N.\sup_{E_{r_{1}}}|u_{\varepsilon}(\cdot,t_{0})|=\delta,\quad\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|u_{\varepsilon}|=N. (3.39)

First, choose mm such that

δ(2r2r1)m=N(4r2r3)m,\delta\left(\frac{2r_{2}}{r_{1}}\right)^{m}=N\left(\frac{4r_{2}}{r_{3}}\right)^{m}, (3.40)

which gives

m=log(N/δ)log[r3/(2r1)].m=\frac{\log({N/\delta})}{\log[{r_{3}/(2r_{1})}]}.

Consequently, define

m0=log(N/δ)log[r3/(2r1)]+1,m_{0}=\left\lfloor\frac{\log({N/\delta})}{\log[{r_{3}/(2r_{1})}]}\right\rfloor+1, (3.41)

where \lfloor\cdot\rfloor denotes its integer part. We minimize the above terms by considering two cases.

Case 1. εr31log(2+ε1r3)(2r2r1)m0(4r2r3)m0\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\left(\frac{2r_{2}}{r_{1}}\right)^{m_{0}}\leq\left(\frac{4r_{2}}{r_{3}}\right)^{m_{0}}.

In this case, let m=m0m=m_{0} in (3.38)(3.38). Then the third term can be absorbed into the second one in the right hand side of (3.38)(3.38). Consequently, since 0<r1<r2<r3/120<r_{1}<r_{2}<r_{3}/12 and log(N/δ)log[r3/(2r1)]m0log(N/δ)log[r3/(2r1)]+1\frac{\log({N/\delta})}{\log[{r_{3}/(2r_{1})}]}\leq m_{0}\leq\frac{\log({N/\delta})}{\log[{r_{3}/(2r_{1})}]}+1, it follows that

supEr2|uε|\displaystyle\sup_{E_{r_{2}}}\left|u_{\varepsilon}\right| C{δ(2r2r1)m01+N(4r2r3)m0}\displaystyle\leq C\left\{\delta\left(\frac{2r_{2}}{r_{1}}\right)^{m_{0}-1}+N\left(\frac{4r_{2}}{r_{3}}\right)^{m_{0}}\right\} (3.42)
C{δ(2r2r1)log(N/δ)log[r3/(2r1)]+N(4r2r3)log(N/δ)log[r3/(2r1)]}\displaystyle\leq C\left\{\delta\left(\frac{2r_{2}}{r_{1}}\right)^{\frac{\log({N/\delta})}{\log[{r_{3}/(2r_{1})}]}}+N\left(\frac{4r_{2}}{r_{3}}\right)^{\frac{\log({N/\delta})}{\log[{r_{3}/(2r_{1})}]}}\right\}
CN1αδα,\displaystyle\leq CN^{1-\alpha}\delta^{\alpha},

where

α=logr34r2logr32r1.\alpha=\frac{\log{\frac{r_{3}}{4r_{2}}}}{\log\frac{r_{3}}{2r_{1}}}. (3.43)

Case 2. εr31log(2+ε1r3)(2r2r1)m0>(4r2r3)m0\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\left(\frac{2r_{2}}{r_{1}}\right)^{m_{0}}>\left(\frac{4r_{2}}{r_{3}}\right)^{m_{0}}.

In this case, from the definition of m0m_{0}, there holds that

εr31log(2+ε1r3)>2δr1Nr3.\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})>\frac{2\delta r_{1}}{Nr_{3}}. (3.44)

That is,

supEr1|uε(,t0)|εr31log(2+ε1r3)r32r1supΩ~r3,t0|uε|.\sup_{E_{r_{1}}}|u_{\varepsilon}(\cdot,t_{0})|\leq\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\frac{r_{3}}{2r_{1}}\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|u_{\varepsilon}|. (3.45)

Then, we choose m^\widehat{m} such that

εr31log(2+ε1r3)(2r2r1)m^=(4r2r3)m^,\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\left(\frac{2r_{2}}{r_{1}}\right)^{\widehat{m}}=\left(\frac{4r_{2}}{r_{3}}\right)^{\widehat{m}}, (3.46)

which gives

m^=log[εr31log(2+ε1r3)]log2r1r3.\widehat{m}=\frac{\log[{\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})}]}{\log\frac{2r_{1}}{r_{3}}}.

Therefore, we can choose

m1=log[εr31log(2+ε1r3)]log2r1r3+1.m_{1}=\left\lfloor\frac{\log[{\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})}]}{\log\frac{2r_{1}}{r_{3}}}\right\rfloor+1. (3.47)

Taking m=m1m=m_{1} in (3.38)(3.38), then the second term can be absorbed into the third term in the RHS of (3.38)(3.38). In view of (3.45)(3.45), and noting 0<r1<r2<r3/120<r_{1}<r_{2}<r_{3}/12 and log[εr31log(2+ε1r3)]log2r1r3m1log[εr31log(2+ε1r3)]log2r1r3+1\frac{\log[{\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})}]}{\log\frac{2r_{1}}{r_{3}}}\leq m_{1}\leq\frac{\log[{\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})}]}{\log\frac{2r_{1}}{r_{3}}}+1, then we have

supEr2|uε(x,t0)|\displaystyle\quad\sup_{E_{r_{2}}}|u_{\varepsilon}(x,t_{0})| (3.48)
C{(2r2r1)m11εr31log(2+ε1r3)r3r1N+εr31log(2+ε1r3)(2r2r1)m1N}\displaystyle\leq C\left\{\left(\frac{2r_{2}}{r_{1}}\right)^{m_{1}-1}\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\frac{r_{3}}{r_{1}}N+\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\left(\frac{2r_{2}}{r_{1}}\right)^{m_{1}}N\right\}
Cr3r1exp{log2r2r1log[εr31log(2+ε1r3)]log2r1r3}εr31log(2+ε1r3)N\displaystyle\leq C\frac{r_{3}}{r_{1}}\exp\left\{\frac{\log\frac{2r_{2}}{r_{1}}\cdot\log\left[\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\right]}{\log\frac{2r_{1}}{r_{3}}}\right\}\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})N
Cr3r1[εr31log(2+ε1r3)]1+log2r2r1log2r1r3N\displaystyle\leq C\frac{r_{3}}{r_{1}}\left[\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\right]^{1+\frac{\log\frac{2r_{2}}{r_{1}}}{\log\frac{2r_{1}}{r_{3}}}}N
=Cr3r1[εr31log(2+ε1r3)]αN,\displaystyle=C\frac{r_{3}}{r_{1}}\left[\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\right]^{\alpha}N,

where

α=logr34r2logr32r1.\alpha=\frac{\log{\frac{r_{3}}{4r_{2}}}}{\log\frac{r_{3}}{2r_{1}}}. (3.49)

Notice that 0<α<10<\alpha<1 according to the assumption of r1,r2r_{1},r_{2} and r3r_{3}. Consequently, combining the two cases above yields the result of Theorem 1.1. And Corollary 1.2 directly follows from Theorem 1.1 and the estimate (2.7)(2.7).

4 Parabolic equation with potential in homogenization

In this section, we give the proof of Theorem 1.4. Denote (V)=ZV(z)𝑑z\mathcal{M}(V)=\int_{Z}V(z)dz, and vε=e(V)tuεv_{\varepsilon}=e^{\mathcal{M}(V)t}u_{\varepsilon}. Then it is easy to see that vεv_{\varepsilon} satisfying

tvεdiv(A(x/ε,t/ε2)vε)=((V)V(x/ε))vε.\partial_{t}v_{\varepsilon}-\operatorname{div}\left(A(x/\varepsilon,t/\varepsilon^{2})\nabla v_{\varepsilon}\right)=(\mathcal{M}(V)-V(x/\varepsilon))v_{\varepsilon}. (4.1)

Then simple computation shows that

t(ηvε)div(Aε(ηvε))\displaystyle\partial_{t}\left(\eta v_{\varepsilon}\right)-\operatorname{div}\left(A_{\varepsilon}\nabla\left(\eta v_{\varepsilon}\right)\right) (4.2)
=div[(Aεη)vε]Aεvεη+uεtη+((V)V(x/ε))vεη\displaystyle=-\operatorname{div}\left[\left(A_{\varepsilon}\cdot\nabla\eta\right)v_{\varepsilon}\right]-A_{\varepsilon}\nabla v_{\varepsilon}\nabla\eta+u_{\varepsilon}\partial_{t}\eta+(\mathcal{M}(V)-V(x/\varepsilon))v_{\varepsilon}\eta
=:g~(x,t) in d×(,T),\displaystyle=:\tilde{g}(x,t)\quad\quad\text{ in }\mathbb{R}^{d}\times(-\infty,T),

where η[0,1]\eta\in[0,1] is a cut-off function such that η=η(x,t)=1\eta=\eta(x,t)=1 if (x,t)E3r3/4×(t0r32/2,t0)(x,t)\in E_{3{r_{3}}/4}\times(t_{0}-r_{3}^{2}/2,t_{0}), and η=0\eta=0 if (x,t)E4r3/5×(t03r32/4,t0+r32/4)(x,t)\notin E_{4{r_{3}}/5}\times(t_{0}-3r_{3}^{2}/4,t_{0}+r_{3}^{2}/4) for some fixed t0t_{0} with |η|C/r3|\nabla\eta|\leq C/{r_{3}} and |tη|C/r32|\partial_{t}\eta|\leq C/r_{3}^{2}. Then

(ηvε)(x0,t0)\displaystyle\left(\eta v_{\varepsilon}\right)(x_{0},t_{0}) =t0r32t0dΓε(x0,t0;y,s)g~(y,s)𝑑y𝑑s\displaystyle=\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\Gamma_{\varepsilon}(x_{0},t_{0};y,s)\tilde{g}(y,s)dyds (4.3)
=t0r32t0dyΓε(x0,t0;y,s)(Aεη)vε𝑑y𝑑s\displaystyle=\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\nabla_{y}\Gamma_{\varepsilon}(x_{0},t_{0};y,s)\left(A_{\varepsilon}\cdot\nabla\eta\right)v_{\varepsilon}dyds
+t0r32t0dΓε(x0,t0;y,s)(uεsηAεuεη)𝑑y𝑑s\displaystyle\quad+\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\Gamma_{\varepsilon}(x_{0},t_{0};y,s)\left(u_{\varepsilon}\partial_{s}\eta-A_{\varepsilon}\nabla u_{\varepsilon}\nabla\eta\right)dyds
+t0r32t0dΓε(x0,t0;y,s)((V)V(y/ε))vεη𝑑y𝑑s\displaystyle\quad+\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\Gamma_{\varepsilon}(x_{0},t_{0};y,s)(\mathcal{M}(V)-V(y/\varepsilon))v_{\varepsilon}\eta dyds

where x0Er2x_{0}\in E_{r_{2}} is a fixed point. Noting that supp(((V)V(y/ε))vεη)Er3×(t0r32,t0+r32)\text{supp}((\mathcal{M}(V)-V(y/\varepsilon))v_{\varepsilon}\eta)\subset E_{r_{3}}\times(t_{0}-r_{3}^{2},t_{0}+r_{3}^{2}) and in view the proof of (3.16)(3.16), we can’t apply Lemma 3.1 to the last term on the RHS of (4.3)(4.3) to estimate the following term

t0r32t0d(Γ0(x0,t0;y,s)ciΓ0(xi,t0;y,s))((V)V(y/ε))vεη𝑑y𝑑s.\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}(\Gamma_{0}(x_{0},t_{0};y,s)-c_{i}\Gamma_{0}(x_{i},t_{0};y,s))(\mathcal{M}(V)-V(y/\varepsilon))v_{\varepsilon}\eta dyds.

However, thanks to the term (V)V(y/ε)\mathcal{M}(V)-V(y/\varepsilon), which will give us the term O(ε)O(\varepsilon) after integrating by parts. In view of (3.25)(3.25)-(3.27)(3.27), we need only to estimate the following term

I3=:t0r32t0d(Γε(x0,t0;y,s)ciΓε(xi,t0;y,s))((V)V(y/ε))vεηdyds.I_{3}=:\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}(\Gamma_{\varepsilon}(x_{0},t_{0};y,s)-c_{i}\Gamma_{\varepsilon}(x_{i},t_{0};y,s))(\mathcal{M}(V)-V(y/\varepsilon))v_{\varepsilon}\eta dyds. (4.4)

Let ψ(z)W2,d+22(Z)\psi(z)\in W^{2,\frac{d+2}{2}}(Z) and be 1-periodic, solving the following equation

Δzψ(z)=(V)V(z) in Z=[0,1)d, with Zψ(z)𝑑z=0.\Delta_{z}\psi(z)=\mathcal{M}(V)-V(z)\text{ in $Z=[0,1)^{d}$, with }\int_{Z}\psi(z)dz=0. (4.5)

Then we have

I3=\displaystyle I_{3}= ε2t0r32t0dΔyψ(y/ε)(Γε(x0,t0;y,s)ciΓε(xi,t0;y,s))vεη𝑑y𝑑s\displaystyle\varepsilon^{2}\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\Delta_{y}\psi(y/\varepsilon)(\Gamma_{\varepsilon}(x_{0},t_{0};y,s)-c_{i}\Gamma_{\varepsilon}(x_{i},t_{0};y,s))v_{\varepsilon}\eta dyds (4.6)
=\displaystyle= εt0r32t0dzψ(y/ε)y(Γε(x0,t0;y,s)ciΓε(xi,t0;y,s))vεηdyds\displaystyle-\varepsilon\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\nabla_{z}\psi(y/\varepsilon)\nabla_{y}(\Gamma_{\varepsilon}(x_{0},t_{0};y,s)-c_{i}\Gamma_{\varepsilon}(x_{i},t_{0};y,s))v_{\varepsilon}\eta dyds
εt0r32t0dzψ(y/ε)(Γε(x0,t0;y,s)ciΓε(xi,t0;y,s))yvεηdyds\displaystyle-\varepsilon\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\nabla_{z}\psi(y/\varepsilon)(\Gamma_{\varepsilon}(x_{0},t_{0};y,s)-c_{i}\Gamma_{\varepsilon}(x_{i},t_{0};y,s))\nabla_{y}v_{\varepsilon}\eta dyds
εt0r32t0dzψ(y/ε)(Γε(x0,t0;y,s)ciΓε(xi,t0;y,s))vεyηdyds\displaystyle-\varepsilon\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}\nabla_{z}\psi(y/\varepsilon)(\Gamma_{\varepsilon}(x_{0},t_{0};y,s)-c_{i}\Gamma_{\varepsilon}(x_{i},t_{0};y,s))v_{\varepsilon}\nabla_{y}\eta dyds
=\displaystyle= I4+I5+I6.\displaystyle I_{4}+I_{5}+I_{6}.

Similar to the estimate of M2M_{2} in (3.29)(3.29), the term I6I_{6} is easy to handle which we omit it here. In view of the definition of φ\varphi, (3.11)(3.11), and 0<r1<r2<r3/120<r_{1}<r_{2}<r_{3}/12, with r3εr_{3}\geq\varepsilon, we have

|I4|\displaystyle|I_{4}|\leq Cεt0r32t0d|zψε|(|y(Γε(x0,t0;y,s)||ciΓε(xi,t0;y,s)|)|vε|ηdyds\displaystyle C\varepsilon\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}|\nabla_{z}\psi^{\varepsilon}|\left(|\nabla_{y}(\Gamma_{\varepsilon}(x_{0},t_{0};y,s)|-|c_{i}\Gamma_{\varepsilon}(x_{i},t_{0};y,s)|\right)|v_{\varepsilon}|\eta dyds (4.7)
\displaystyle\leq Cεi|ci|supΩ~r3,t0|vε|t0r32t0Er3|zψε|(t0s)1+d2exp{C|y|2t0s}𝑑y𝑑s\displaystyle C\varepsilon\sum_{i}|{c_{i}}|\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|v_{\varepsilon}|\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{E_{r_{3}}}|\nabla_{z}\psi^{\varepsilon}|{(t_{0}-s)^{-\frac{1+d}{2}}}\exp\left\{-\frac{C|y|^{2}}{t_{0}-s}\right\}dyds
\displaystyle\leq Cεi|ci|zψεLp1(Ω~r3,t0)supΩ~r3,t0|vε|\displaystyle C\varepsilon\sum_{i}|{c_{i}}|||\nabla_{z}\psi^{\varepsilon}||_{L^{p_{1}^{\prime}}(\tilde{\Omega}_{{r_{3}},t_{0}})}\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|v_{\varepsilon}|
×(t0r32t0Er3t0s(ts)d2(1p1)p12exp{C|y|2}𝑑y𝑑s)1/p1\displaystyle\quad\times\left(\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{E_{\frac{r_{3}}{t_{0}-s}}}{(t-s)^{\frac{d}{2}(1-p_{1})-\frac{p_{1}}{2}}}\exp\left\{-C|y|^{2}\right\}dyds\right)^{1/p_{1}}
\displaystyle\leq Cεr3(2r2r1)m1supΩ~r3,t0|vε|,\displaystyle C\varepsilon r_{3}(\frac{2r_{2}}{r_{1}})^{m-1}\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|v_{\varepsilon}|,

with 1<p1<d+1d1<p_{1}<\frac{d+1}{d} close to d+1d\frac{d+1}{d} and ψε=ψ(y/ε)\psi^{\varepsilon}=\psi(y/\varepsilon), where we have used x0yEr3x_{0}-y\in E_{r_{3}} and xiyEr3x_{i}-y\in E_{r_{3}} if yE4r3/5y\in E_{4r_{3}/5}, x0Er2x_{0}\in E_{r_{2}} and xiEr1x_{i}\in E_{r_{1}} for i=1,,mi=1,\cdots,m, and the size estimates |yΓε(x,t;y,s)|C(ts)d+12exp{κ|xy|2ts}|\nabla_{y}\Gamma_{\varepsilon}(x,t;y,s)|\leq C(t-s)^{-\frac{d+1}{2}}\exp\left\{-\frac{\kappa|x-y|^{2}}{t-s}\right\} if aija_{ij} is Hölder continuous [10], as well as the following inequality

(Er3|zψε|p1𝑑z)1/p1\displaystyle\left(\int_{E_{r_{3}}}|\nabla_{z}\psi^{\varepsilon}|^{p^{\prime}_{1}}dz\right)^{1/p^{\prime}_{1}} =εd/p1(Er3/ε|zψ(z)|p1𝑑z)1/p1\displaystyle=\varepsilon^{d/p^{\prime}_{1}}\left(\int_{E_{r_{3}/\varepsilon}}|\nabla_{z}\psi(z)|^{p^{\prime}_{1}}dz\right)^{1/p^{\prime}_{1}} (4.8)
Cr3d/p1(Z|zψ(z)|p1𝑑z)1/p1\displaystyle\leq Cr_{3}^{d/p^{\prime}_{1}}\left(\int_{Z}|\nabla_{z}\psi(z)|^{p^{\prime}_{1}}dz\right)^{1/p^{\prime}_{1}}
Cp1r3d/p1ψW2,d+22(Z)\displaystyle\leq C_{p_{1}}r_{3}^{d/p^{\prime}_{1}}||\psi||_{W^{2,\frac{d+2}{2}}(Z)}
Cp1r3d/p1VLd+22(Z),\displaystyle\leq C_{p_{1}}r_{3}^{d/p^{\prime}_{1}}||V||_{L^{\frac{d+2}{2}}(Z)},

where we have used the Sobolev embedding (since p1(d+1,)p_{1}^{\prime}\in(d+1,\infty) close to d+1d+1, and then p1<dd+22dd+22p_{1}^{\prime}<\frac{d\frac{d+2}{2}}{d-\frac{d+2}{2}}), as well as εr3\varepsilon\leq r_{3} in the above inequality. Similarly, in view of (4.6)(4.6) and (3.11)(3.11), there holds

|I5|\displaystyle|I_{5}| (4.9)
\displaystyle\leq Cεt0r32t0d|zψε|(|Γε(x0,t0;y,s)|+|ciΓε(xi,t0;y,s)|)|yvε|η𝑑y𝑑s\displaystyle C\varepsilon\int_{t_{0}-r_{3}^{2}}^{t_{0}}\int_{\mathbb{R}^{d}}|\nabla_{z}\psi^{\varepsilon}|\left(|\Gamma_{\varepsilon}(x_{0},t_{0};y,s)|+|c_{i}\Gamma_{\varepsilon}(x_{i},t_{0};y,s)|\right)|\nabla_{y}v_{\varepsilon}|\eta dyds
\displaystyle\leq Cε(2r2r1)m1yvεLp3(Ω)zψεLp4(Ω)(Ω~((ts)d2p2exp{C|y|2ts})𝑑y𝑑s)1/p2\displaystyle C\varepsilon(\frac{2r_{2}}{r_{1}})^{m-1}||\nabla_{y}v_{\varepsilon}||_{L^{p_{3}}(\Omega^{\prime})}||\nabla_{z}\psi^{\varepsilon}||_{L^{p_{4}}({\Omega^{\prime}})}\left(\int_{\tilde{\Omega}}\left({(t-s)^{-\frac{d}{2}p_{2}}}\exp\left\{-\frac{C|y|^{2}}{t-s}\right\}\right)dyds\right)^{1/p_{2}}
\displaystyle\leq Cε(2r2r1)m1vεLp3(Ωr3,t0)zψεLp4(Ω~r3,t0)(t0r32t0(ts)d2p2+d2𝑑s)1/p2\displaystyle C\varepsilon(\frac{2r_{2}}{r_{1}})^{m-1}||\nabla v_{\varepsilon}||_{L^{p_{3}}(\Omega^{\prime}_{r_{3},t_{0}})}||\nabla_{z}\psi^{\varepsilon}||_{L^{p_{4}}(\tilde{\Omega}_{{r_{3}},t_{0}})}\left(\int_{t_{0}-r_{3}^{2}}^{t_{0}}{(t-s)^{-\frac{d}{2}p_{2}+\frac{d}{2}}}ds\right)^{1/p_{2}}
\displaystyle\leq Cεr3(2r2r1)m1supΩ~r3,t0|vε|,\displaystyle C\varepsilon r_{3}(\frac{2r_{2}}{r_{1}})^{m-1}\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|v_{\varepsilon}|,

with Ω=:E4r3/5×(t03r32/4,t0)\Omega^{\prime}=:E_{4r_{3}/5}\times(t_{0}-3r_{3}^{2}/4,t_{0}) and Ω~=Ω~r3,t0=:Er3×(t0r32,t0)\tilde{\Omega}=\tilde{\Omega}_{r_{3},t_{0}}=:E_{r_{3}}\times(t_{0}-r_{3}^{2},t_{0}), p2(1,+2d)p_{2}\in(1,+\frac{2}{d}) close to 1+2d1+\frac{2}{d} and p3p_{3} sufficiently large, close to \infty with 1p2+1p3+1p4=1\frac{1}{p_{2}}+\frac{1}{p_{3}}+\frac{1}{p_{4}}=1. Note that p4>d+22p_{4}>\frac{d+2}{2} close to d+22\frac{d+2}{2}. And we have used, in the estimate (4.9)(4.9), the size estimate |Γε(x,t;y,s)|C(ts)d2exp{κ|xy|2ts}|\Gamma_{\varepsilon}(x,t;y,s)|\leq C(t-s)^{-\frac{d}{2}}\exp\left\{-\frac{\kappa|x-y|^{2}}{t-s}\right\}, (4.8)(4.8) as well as the the following estimates for vε\nabla v_{\varepsilon},

(Lp3(Ωr3,t0)|vε|p3)1/p3\displaystyle\left(\fint_{L^{p_{3}}(\Omega^{\prime}_{r_{3},t_{0}})}|\nabla v_{\varepsilon}|^{p_{3}}\right)^{1/p_{3}} Cr31supΩ~r3,t0|vε|+Cr3(Ω~r3,t0|((V)V(x/ε))vε|d+22)2d+2\displaystyle\leq Cr_{3}^{-1}\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|v_{\varepsilon}|+Cr_{3}\left(\fint_{\tilde{\Omega}_{r_{3},t_{0}}}|(\mathcal{M}(V)-V(x/\varepsilon))v_{\varepsilon}|^{\frac{d+2}{2}}\right)^{\frac{2}{d+2}} (4.10)
Cr31supΩ~r3,t0|vε|,\displaystyle\leq Cr_{3}^{-1}\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|v_{\varepsilon}|,

which may be proved by the estimates |yΓε(x,t;y,s)|C(ts)d+12exp{κ|xy|2ts}|\nabla_{y}\Gamma_{\varepsilon}(x,t;y,s)|\leq C(t-s)^{-\frac{d+1}{2}}\exp\left\{-\frac{\kappa|x-y|^{2}}{t-s}\right\} and

Ω~r3,t0|((V)V(x/ε))|d+22C+Ω~r3,t0|V(x/ε)|d+22C+Z|V(z)|d+22,\fint_{\tilde{\Omega}_{r_{3},t_{0}}}|(\mathcal{M}(V)-V(x/\varepsilon))|^{\frac{d+2}{2}}\leq C+\fint_{\tilde{\Omega}_{r_{3},t_{0}}}|V(x/\varepsilon)|^{\frac{d+2}{2}}\leq C+\fint_{Z}|V(z)|^{\frac{d+2}{2}},

if r3εr_{3}\geq\varepsilon. Thus, combining (4.7)(4.7) and (4.9)(4.9) yields that

|I3|Cεr3(2r2r1)m1supΩ~r3,t0|vε|.|I_{3}|\leq C\varepsilon r_{3}(\frac{2r_{2}}{r_{1}})^{m-1}\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|v_{\varepsilon}|. (4.11)

Consequently, in view of (3.37)(3.37), we actually have

supEr2|vε(,t0)|\displaystyle\sup_{E_{r_{2}}}|v_{\varepsilon}(\cdot,t_{0})|\leq C{(2r2)m1r1m1supEr1|vε(,t0)|+(4r2)mr3msupΩ~r3,t0|vε|\displaystyle C\left\{\frac{(2r_{2})^{m-1}}{{r_{1}}^{m-1}}\sup_{E_{r_{1}}}|v_{\varepsilon}(\cdot,t_{0})|+\frac{(4r_{2})^{m}}{r_{3}^{m}}\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|v_{\varepsilon}|\right. (4.12)
+(2r2)mr1mεr31log(2+ε1r3)supΩ~r3,t0|vε|}.\displaystyle\quad\quad\left.+\frac{(2r_{2})^{m}}{r_{1}^{m}}\varepsilon r_{3}^{-1}\log(2+\varepsilon^{-1}r_{3})\sup_{\tilde{\Omega}_{r_{3},t_{0}}}|v_{\varepsilon}|\right\}.

Then, totally similar to the discussion of Theorem 1.1, there holds

supEr2|vε(,t0)|C{(supEr1|vε(,t0)|)α(supΩ~r3,t0|vε|)1α+r3r1[εr3log(2+r3ε)]αsupΩ~r3,t0|vε|},\sup_{E_{r_{2}}}|v_{\varepsilon}(\cdot,t_{0})|\leq C\left\{(\sup_{E_{r_{1}}}|v_{\varepsilon}(\cdot,t_{0})|)^{\alpha}(\sup_{\tilde{\Omega}_{{r_{3}},t_{0}}}|v_{\varepsilon}|)^{1-\alpha}+\frac{r_{3}}{r_{1}}\left[\frac{\varepsilon}{{r_{3}}}\log(2+\frac{r_{3}}{{\varepsilon}})\right]^{\alpha}\sup_{\tilde{\Omega}_{{r_{3}},t_{0}}}|v_{\varepsilon}|\right\}, (4.13)

this together with vε=uεe(V)tv_{\varepsilon}=u_{\varepsilon}e^{\mathcal{M}(V)t} and T<t<T-T<t<T gives the desired estimate (1.11)(1.11), thus completes this proof.

Acknowledgements

The author thanks Prof. Luis Escauriaza for helpful discussions.

References

  • [1] Giovanni Alessandrini, Luca Rondi, Edi Rosset, and Sergio Vessella. The stability for the cauchy problem for elliptic equations. Inverse problems, 25(12):123004, 2009.
  • [2] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou. Asymptotic analysis for periodic structures, volume 374. American Mathematical Soc., 2011.
  • [3] Ake Bjorck and Germund Dahlquist. Numerical methods in scientific computing. Vol. 1. Numerical Methods in Scientific Computing, Vol. I, SIAM, ISBN 978-0-89871-644-3, 2008.
  • [4] Luis Escauriaza. Carleman inequalities and the heat operator. Duke Mathematical Journal, 104(1):113–127, 2000.
  • [5] Luis Escauriaza and Francisco Javier Munoz Fernandez. Unique continuation for parabolic operators. Arkiv för Matematik, 41(1):35–60, 2003.
  • [6] Luis Escauriaza, Francisco Javier Munoz Fernandez, and Sergio Vessella. Doubling properties of caloric functions. Applicable Analysis, 85:205–223, 2006.
  • [7] Luis Escauriaza and Luis Vega. Carleman inequalities and the heat operator ii. Indiana University Mathematics Journal, 50(3):1149–1169, 2001.
  • [8] Luis Escauriaza and Sergio Vessella. Optimal three cylinder inequalities for solutions to parabolic equations with lipschitz leading coefficients. Contemporary Mathematics, 333:79–88, 2003.
  • [9] F J Fernandez. Unique continuation for parabolic operators. ii. Communications in Partial Differential Equations, 28:1597–1604, 2003.
  • [10] Jun Geng and Zhongwei Shen. Asymptotic expansions of fundamental solutions in parabolic homogenization. Analysis &\& PDE, 13(1):147–170, 2020.
  • [11] R J Glagoleva. Some properties of the solutions of a linear second order parabolic equation. Mathematics of The Ussr-sbornik, 3(1):41–67, 1967.
  • [12] Maru Guadie and Eugenia Malinnikova. On three balls theorem for discrete harmonic functions. Computational Methods and Function Theory, 14(4):721–734, 2014.
  • [13] Carlos E Kenig and Jiuyi Zhu. Propagation of smallness in elliptic periodic homogenization. arXiv: Analysis of PDEs, 2019.
  • [14] Herbert Koch and Daniel Tataru. Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients. Communications in Partial Differential Equations, 34(4):305–366, 2009.
  • [15] E M Landis and O A Oleinik. Generalized analyticity and some related properties of solutions of elliptic and parabolic equations. Russian Mathematical Surveys, 29(2):195–212, 1974.
  • [16] Fang Hua Lin. A uniqueness theorem for parabolic equations. Communications on Pure &\& Applied Mathematics, 43(1):127–136, 1990.
  • [17] Fang-Hua Lin. Nodal sets of solutions of elliptic and parabolic equations. Communications on Pure and Applied Mathematics, 44(3):287–308, 1991.
  • [18] Alexander Logunov. Nodal sets of laplace eigenfunctions: polynomial upper estimates of the hausdorff measure. Annals of Mathematics, 187(1):221–239, 2018.
  • [19] Li Te-y an. An inequality for parabolic operator. Sci sinica, pages 1425–1467, 1963.
  • [20] A A Varin. Three-cylinder theorem for a certain class of semilinear parabolic equations. Mathematical Notes, 51(1):21–27, 1992.
  • [21] Sergio Vessella. Carleman estimates, optimal three cylinder inequality, and unique continuation properties for solutions to parabolic equations. Communications in Partial Differential Equations, 28:637–676, 2003.
  • [22] Sergio Vessella. Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates. Inverse Problems, 24(2):023001, 2008.