This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Approximate controllability of semilinear impulsive evolution equations

Javad A. Asadzade [email protected] Nazim I. Mahmudov [email protected] Department of Mathematics, Eastern Mediterranean University, Mersin 10, 99628, T.R. North Cyprus, Turkey Research Center of Econophysics, Azerbaijan State University of Economics (UNEC), Istiqlaliyyat Str. 6, Baku, 1001, Azerbaijan
Abstract

Several dynamical systems in fields such as engineering, chemistry, biology, and physics show impulsive behavior by reason of unexpected changes at specific times. These behaviors are described by differential systems under impulse effects. The current paper examines approximate controllability for semi-linear impulsive differential and neutral differential equations in Hilbert spaces. By applying a fixed-point method and semigroup theory, a new sufficient condition is provided for the (π’œ\mathcal{A}-controllability) approximate controllability of neutral and impulsive differential equations (IDEs). To demonstrate the value of the suggested consequences, three examples are presented, offering improvements over some recent findings.

keywords:
Approximate controllability, existence and uniqueness, impulsive systems.

1 Introduction

Impulsive behavior is a feature of many evolutionary processes, in which systems experience sudden, major disruptions at specific times. They effectively account for the impact of these sudden events on system states and provide an accurate representation of the dynamic behavior and properties of many processes. Numerous fields, including as computer science, genetics, population studies, artificial intelligence, neural networks, robotics, telecommunications, and biological systems, commonly use these kinds of impulsive dynamic systems. For a more thorough examination of impulsive systems, see monograph [2].

In dynamic control systems, controllability is a basic property. When a system has an appropriate set of control functions, it may transition between any begining state and any target end state in the space of its state in a finite period.

Recently, interest has surged in the π’œ\mathcal{A}-controllability of IDEs, in which the state is influenced by impulses at a finite time intervals. This topic has gained traction, with an expanding body of literature (see [2], [3], [6]-[14]). Notable contributions have been made by researchers such as George et al. [5],Benzaid and Sznaier [4],Muni and George [14], Xie and Wang [10], Guan et al. [6], [7], Han et al. [11], Zhao and Sun [12], [13], among others.

In this paper, we analyze a criterion for π’œ\mathcal{A}-controllability of systems modeled by linear IDEs in abstract spaces. It is assumed that the generator of a C0C_{0}-semigroup is the operator AA influencing the state. A system is said to be π’œ\mathcal{A}-controllable if it can be moved from any beginning condition to a state that is close to a desired one.

We establish a criterion for the π’œ\mathcal{A}-controllability of linear IDEs by framing the problem as the limit of optimal control problems and redefining it in terms of the convergence of resolvent operators. The π’œ\mathcal{A}-controllability of a variety of semilinear IDEs has been extensively studied using the so called resolvent condition, that is easy to apply. The analysis becomes more complex when impulses are introduced, even if this condition corresponds to π’œ\mathcal{A}-controllability in situations without impulses.

The necessary idea in the design and study of control systems is controllability. Many different approaches have been used to explore the π’œ\mathcal{A}-controllability deterministic/stochastic differential systems in infinite-dimensional environments. There are two main types of controllability that are extensively applicable in the context of infinite dimensions: exact controllability and π’œ\mathcal{A}-controllability. A system can be directed into an arbitrarily small region of the ultimate state if it is π’œ\mathcal{A}-controllable, whereas it can reach a specific final state within a particular timeframe if it is exactly controllable. More prevalent and more appropriate for real-world uses are systems with π’œ\mathcal{A}-controllability. Studying approximation controllability in infinite-dimensional control systems is therefore essential.

During the past few years, necessary advancements have been made regarding the π’œ\mathcal{A}-controllability of deterministic and stochastic impulsive systems (see, for instance, [24],[25], [26] , [27], [28], etc.). These studies have established sufficient conditions for the π’œ\mathcal{A}-controllability of semilinear systems by employing the resolvent operator condition introduced in [15], [16], particularly when the corresponding linear system is π’œ\mathcal{A}-controllable.

The resolvent condition is straightforward to apply and has been widely used in research on the π’œ\mathcal{A}-controllability of various semilinear IDEs. Without the presence of impulses, this condition aligns with the π’œ\mathcal{A}-controllability of the linear component of the corresponding semilinear evolution control system (see [15], [16]). However, the inclusion of impulses adds significant complexity to the analysis. To date, there has been no study on the π’œ\mathcal{A}-controllability of controlled semilinear systems with control incorporated into the impulses. This paper marks the first effort to tackle this issue for semilinear deterministic systems. In this work, we investigate the π’œ\mathcal{A}-controllability of the following semilinear IDEs:

{ξ′​(t)=A​ξ​(t)+Ω​u​(t)+κ​(t,ξ​(t)),tβˆˆβ„=[0,b]βˆ–{t1,…,tp},Δ​ξ​(tk+1)=Bk+1​ξ​(tk+1)+Dk+1​vk+1,k=0,…,pβˆ’1,ξ​(0)=ΞΎ0.\begin{cases}\xi^{\prime}(t)=A\xi(t)+\Omega u(t)+\kappa(t,\xi(t)),&t\in\mathscr{I}=[0,b]\setminus\{t_{1},\dots,t_{p}\},\\ \Delta\xi(t_{k+1})=B_{k+1}\xi(t_{k+1})+D_{k+1}v_{k+1},&k=0,\dots,p-1,\\ \xi(0)=\xi_{0}.\end{cases} (1.1)

Here ξ​(β‹…)∈H\xi(\cdot)\in H is in a Hilbert space . The control u​(β‹…)u(\cdot) is an element of L2​([0,b],U)L^{2}([0,b],U), where ( H,β€–ΞΎβ€–=⟨ξ,ξ⟩H,\|\xi\|=\sqrt{\langle\xi,\xi\rangle} ) and UU are Hilbert spaces, and vk∈Uv_{k}\in U for k=1,…,pk=1,\ldots,p.


In this setting, AA acts as a generator of a C0C_{0}-semigroup S​(t)S(t) of continuous linear operators in HH. The operators are: Ω∈L​(U,H)\Omega\in L(U,H), Bk∈L​(H,H)B_{k}\in L(H,H), and Dk∈L​(U,H)D_{k}\in L(U,H).


At each point of discontinuity tkt_{k} (for k=1,…,pk=1,\ldots,p with 0=t0<t1<t2<β‹―<tn<tp+1=b0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}<t_{p+1}=b), the state variable undergoes a jump, defined by Δ​ξ​(tk)=ξ​(tk+)βˆ’ΞΎβ€‹(tkβˆ’)\Delta\xi(t_{k})=\xi(t_{k}^{+})-\xi(t_{k}^{-}). Here, ξ​(tkΒ±)=limhβ†’0±ξ​(tk+h)\xi(t_{k}^{\pm})=\lim_{h\to 0^{\pm}}\xi(t_{k}+h), assuming that ξ​(tkβˆ’)=ξ​(tk)\xi(t_{k}^{-})=\xi(t_{k}).


For operator compositions, ∏j=1kAj\prod_{j=1}^{k}A_{j} represents the sequence A1,A2,…,AkA_{1},A_{2},\ldots,A_{k}, while for j=k+1j=k+1 to kk, ∏j=k+1kAj=1\prod_{j=k+1}^{k}A_{j}=1. Likewise, ∏j=k1Aj\prod_{j=k}^{1}A_{j} refers to the sequence Ak,Akβˆ’1,…,A1A_{k},A_{k-1},\ldots,A_{1}, and ∏j=kk+1Aj=1\prod_{j=k}^{k+1}A_{j}=1.


It is important to highlight that when HH is an infinite-dimensional Hilbert space, under some natural conditions, the following linear IDEs:

{ξ′​(t)=A​ξ​(t)+Ω​u​(t),tβˆˆβ„=[0,b]βˆ–{t1,…,tp},Δ​ξ​(tk+1)=Bk+1​ξ​(tk+1)+Dk+1​vk+1,k=0,…,pβˆ’1,ξ​(0)=ΞΎ0.\displaystyle\begin{cases}\xi^{\prime}(t)=A\xi(t)+\Omega u(t),&t\in\mathscr{I}=[0,b]\setminus\{t_{1},\dots,t_{p}\},\\ \Delta\xi(t_{k+1})=B_{k+1}\xi(t_{k+1})+D_{k+1}v_{k+1},&k=0,\dots,p-1,\\ \xi(0)=\xi_{0}.\end{cases} (1.2)

is π’œ\mathcal{A}-controllable, as noted in [18]. This aspect is crucial for our article.

π’œ\mathcal{A}-controllability of neutral impulsive systems addresses the ability to drive the state of systems with both neutral (i.e., dependent on both the state and its derivatives) and impulsive (i.e., experiencing sudden changes at certain moments) characteristics to within an arbitrarily close distance of a desired target state.

In neutral impulsive systems, the dynamics are influenced not only by the present state but also by its delayed effects or derivatives, which adds complexity to the control problem. The occurrence of impulses introduces further complexity as it creates discontinuities in the system’s trajectory. To study π’œ\mathcal{A}-controllability in these systems, mathematical techniques such as fixed-point theory, semigroup theory, and resolvent operator methods are typically applied. These approaches allow for deriving sufficient conditions that ensure that, despite delays and impulses, the system’s state can be steered as close as desired to any given target.

Furthermore, we examine the π’œ\mathcal{A}-controllability of neutral IDEs, expressed in the following form:

{dd​t​[ξ​(t)+σ​(t,ξ​(t))]=A​[ξ​(t)+σ​(t,ξ​(t))]+Ω​u​(t)+κ​(t,ξ​(t)),tβˆˆβ„=[0,b]βˆ–{t1,…,tp},Δ​ξ​(tk+1)=Bk+1​ξ​(tk+1)+Dk+1​vk+1,k=0,…,pβˆ’1,ξ​(t)=φ​(t),t∈[βˆ’Ο„,0].\begin{cases}\frac{d}{dt}[\xi(t)+\sigma(t,\xi(t))]=A[\xi(t)+\sigma(t,\xi(t))]+\Omega u(t)+\kappa(t,\xi(t)),&t\in\mathscr{I}=[0,b]\setminus\{t_{1},\dots,t_{p}\},\\ \Delta\xi(t_{k+1})=B_{k+1}\xi(t_{k+1})+D_{k+1}v_{k+1},&k=0,\dots,p-1,\\ \xi(t)=\varphi(t),&t\in[-\tau,0].\end{cases} (1.3)

In summary, our manuscript is structured as follows:

In Section 2, essential definitions, hypothesis, and theorems that underpin our main results are provided. Following this, Section 3 focuses on establishing the existence of solutions and the π’œ\mathcal{A}-controllability of semi-limear IDEs. Then, Section 4 extends these findings to neutral impulsive systems, presenting analogous results. Finally, in the concluding sections, we explore applications related to impulsive wave and heat equations, and we illustrate the solution of an impulsive semilinear equation in finite-dimensional spaces.

2 Theoretical background

Let the value of (1.1) at the terminal time bb be represented by ΞΎb​(ΞΎ0;u)\xi_{b}(\xi_{0};u), which corresponds to the control uu and the initial state ΞΎ0\xi_{0}. We define the set

ℛ​(b,ΞΎ0)={ΞΎb​(ΞΎ0;u)​(0):u​(β‹…)∈L2​([0,b],U)},\mathcal{R}(b,\xi_{0})=\{\xi_{b}(\xi_{0};u)(0):u(\cdot)\in L^{2}([0,b],U)\},

which is referred to as the reachable set of (1.1) at final time bb. The closure of this set in the space HH is indicated by ℛ​(b,ΞΎ0)Β―\overline{\mathcal{R}(b,\xi_{0})}.

Definition 2.1.

We say that (1.1) is π’œ\mathcal{A}-controllable on [0,b][0,b] if ℛ​(b,ΞΎ0)Β―=H\overline{\mathcal{R}(b,\xi_{0})}=H.

For the sake of simplicity, let us define the operators as follows:

Ξ“tpb\displaystyle\Gamma^{b}_{t_{p}} =∫tpbS​(bβˆ’s)β€‹Ξ©β€‹Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​𝑑s,Ξ“~tpb=S​(bβˆ’tp)​Dp​Dpβˆ—β€‹Sβˆ—β€‹(bβˆ’tp),\displaystyle=\int_{t_{p}}^{b}S(b-s)\Omega\Omega^{*}S^{*}(b-s)ds,\quad\tilde{\Gamma}^{b}_{t_{p}}=S(b-t_{p})D_{p}D^{*}_{p}S^{*}(b-t_{p}),
Θ0tp\displaystyle\Theta^{t_{p}}_{0} =S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)β€‹Ξ©β€‹Ξ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)​𝑑s\displaystyle=S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\Omega\Omega^{*}S^{*}(t_{k}-s)ds
Γ—(ℐ+Biβˆ—)β€‹βˆk=i+1pSβˆ—β€‹(tkβˆ’tkβˆ’1)​(ℐ+Bkβˆ—)​Sβˆ—β€‹(bβˆ’tp),\displaystyle\times(\mathcal{I}+B^{*}_{i})\prod_{k=i+1}^{p}S^{*}(t_{k}-t_{k-1})(\mathcal{I}+B^{*}_{k})S^{*}(b-t_{p}),
Θ~0tp\displaystyle\tilde{\Theta}^{t_{p}}_{0} =S​(bβˆ’tp)β€‹βˆ‘i=2p∏j=pi(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​Diβˆ’1​Diβˆ’1βˆ—β€‹βˆk=ipSβˆ—β€‹(tkβˆ’tkβˆ’1)​(ℐ+Bkβˆ—)​Sβˆ—β€‹(bβˆ’tp).\displaystyle=S(b-t_{p})\sum_{i=2}^{p}\prod_{j=p}^{i}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})D_{i-1}D^{*}_{i-1}\prod_{k=i}^{p}S^{*}(t_{k}-t_{k-1})(\mathcal{I}+B^{*}_{k})S^{*}(b-t_{p}).

(A0)(A_{0}) α​(α​I+Ξ“tpb+Ξ“~tpb+Θ0tp+Θ~0tp)βˆ’1β†’0\alpha\Big{(}\alpha I+\Gamma^{b}_{t_{p}}+\tilde{\Gamma}^{b}_{t_{p}}+\Theta^{t_{p}}_{0}+\tilde{\Theta}^{t_{p}}_{0}\Big{)}^{-1}\to 0 as Ξ±β†’0+\alpha\to 0^{+} in the strong operator topology.

Assumption (A0)(A_{0}) is equivalent to the π’œ\mathcal{A}-controllablility of (1.2) on [0,b][0,b], see [18] (Theorem 13).

To simplify our discussion, we will now adopt the following notation:

K=β€–Bβ€–,M=max⁑{β€–S​(t)β€–:0≀t≀b},C=max⁑{β€–Biβ€–,f​o​ri=1,…,p},\displaystyle K=\|B\|,\quad M=\max\Big{\{}\|S(t)\|:0\leq t\leq b\Big{\}},\quad C=\max\Big{\{}\|B_{i}\|,\quad for\quad i=1,\dots,p\Big{\}},
β€–Ξ»iβ€–=∫0b|Ξ»i​(s)|​𝑑s,M~=βˆ‘r=1p+1Mr,N=max⁑{M~,Mp+1​(1+C)p,M+βˆ‘r=1pβˆ’1Mr+2​(1+C)r+2},\displaystyle\|\lambda_{i}\|=\int_{0}^{b}|\lambda_{i}(s)|ds,\quad\tilde{M}=\sum_{r=1}^{p+1}M^{r},\quad N=\max\Big{\{}\tilde{M},M^{p+1}(1+C)^{p},M+\sum_{r=1}^{p-1}M^{r+2}(1+C)^{r+2}\Big{\}},
k=max⁑{1,M​N,M​N​b,N​K​b},am=3​k​K​N2​λm,bm=3​N​λm,cm=max⁑{am,bm},\displaystyle k=\max\{1,MN,MNb,NKb\},\quad a_{m}=3kKN^{2}\lambda_{m},\quad b_{m}=3N\lambda_{m},\quad c_{m}=\max\{a_{m},b_{m}\},
d1=3​k​K​N​[β€–hβ€–+N​‖ξ0β€–],d2=3​N​‖ξ0β€–+3​N​D​V,d=max⁑{d1,d2},\displaystyle d_{1}=3kKN\Big{[}\|h\|+N\|\xi_{0}\|\Big{]},\quad d_{2}=3N\|\xi_{0}\|+3NDV,\quad d=\max\{d_{1},d_{2}\},
D=max⁑{β€–Diβ€–,f​o​ri=1,…,p},V=max⁑{β€–viβ€–,f​o​ri=1,…,p}\displaystyle D=\max\Big{\{}\|D_{i}\|,\quad for\quad i=1,\dots,p\Big{\}},\quad V=\max\Big{\{}\|v_{i}\|,\quad for\quad i=1,\dots,p\Big{\}}

We introduce the following hypothesis:

(A1)(A_{1}): A:D​(A)βŠ‚Hβ†’HA:D(A)\subset H\to H generates a semigroup S​(t),t>0S(t),t>0 on HH, which is compact.

(A2)(A_{2}): The function ΞΊ:ℐ×Hβ†’H\kappa:\mathscr{I}\times H\to H is continuous, and βˆƒ\exists Ξ»m​(β‹…)∈L1​(ℐ,R+)\lambda_{m}(\cdot)\in L^{1}(\mathscr{I},R^{+}) and Ο†m​(β‹…)∈L1​(H,R+),m=1,…,q\varphi_{m}(\cdot)\in L^{1}(H,R^{+}),m=1,\dots,q, such that

‖κ​(t,ξ​(t))β€–β‰€βˆ‘m=1qΞ»m​(t)​φm​(ΞΎ)βˆ€(t,ΞΎ)βˆˆβ„Γ—H.\displaystyle\|\kappa(t,\xi(t))\|\leq\sum_{m=1}^{q}\lambda_{m}(t)\varphi_{m}(\xi)\quad\forall(t,\xi)\in\mathscr{I}\times H.

(A3)(A_{3}): For every Ξ±>0\alpha>0,

lim suprβ†’βˆž(rβˆ’βˆ‘m=1qcmα​sup{Ο†m​(ΞΎ):‖ξ‖≀r})=∞.\limsup_{r\to\infty}\left(r-\sum_{m=1}^{q}\frac{c_{m}}{\alpha}\sup\left\{\varphi_{m}(\xi):\|\xi\|\leq r\right\}\right)=\infty.

(A4)(A_{4}): The function ΞΊ:ℐ×Hβ†’H\kappa:\mathscr{I}\times H\to H is uniformly bounded and continuous, meaning that there is a N1>0N_{1}>0 such that

‖κ​(t,ΞΎ)‖≀N1for all​(t,ΞΎ)βˆˆβ„Γ—H.\|\kappa(t,\xi)\|\leq N_{1}\quad\text{for all}\ (t,\xi)\in\mathscr{I}\times H.

In the following paragraph, we will indicate that system (1.1) is π’œ\mathcal{A}-controllable if, for every Ξ±>0\alpha>0, there is a ξ​(β‹…)∈P​C​([0,b],H)\xi(\cdot)\in PC([0,b],H) so that

ξ​(t)={S​(t)​ξ​(0)+∫0tS​(tβˆ’s)​[Ω​u​(s)+κ​(s,ξ​(s))]​𝑑s,0≀t≀t1,S​(tβˆ’tk)​ξ​(tk+)+∫tktS​(tβˆ’s)​[Ω​u​(s)+κ​(s,ξ​(s))]​𝑑s,tk<t≀tk+1,k=1,2,…,p,\displaystyle\xi(t)=\begin{cases}S(t)\xi(0)+\int_{0}^{t}S(t-s)\big{[}\Omega u(s)+\kappa(s,\xi(s))\big{]}ds,\quad 0\leq t\leq t_{1},\\ \\ S(t-t_{k})\xi(t^{+}_{k})+\int_{t_{k}}^{t}S(t-s)\big{[}\Omega u(s)+\kappa(s,\xi(s))\big{]}ds,\quad t_{k}<t\leq t_{k+1},\quad k=1,2,\dots,p,\\ \end{cases} (2.1)

where

ξ​(tk+)=\displaystyle\xi(t^{+}_{k})= ∏j=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​Ω​u​(s)​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\Omega u(s)ds
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds (2.2)
+\displaystyle+ βˆ‘i=2k∏j=ki(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​Diβˆ’1​viβˆ’1+Dk​vk,\displaystyle\sum_{i=2}^{k}\prod_{j=k}^{i}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})D_{i-1}v_{i-1}+D_{k}v_{k},
uα​(s)\displaystyle u_{\alpha}(s) =(βˆ‘k=1pΞ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)β€‹βˆi=k+1pSβˆ—β€‹(tiβˆ’tiβˆ’1)​Sβˆ—β€‹(bβˆ’tp)​χ(tkβˆ’1,tk)+Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​χ(tp,b))​φ~Ξ±,\displaystyle=\bigg{(}\sum_{k=1}^{p}\Omega^{*}S^{*}(t_{k}-s)\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}+\Omega^{*}S^{*}(b-s)\chi_{(t_{p},b)}\bigg{)}\tilde{\varphi}_{\alpha}, (2.3)
vpΞ±=Dpβˆ—β€‹Sβˆ—β€‹(bβˆ’tp)​φ~Ξ±,vkΞ±=Dkβˆ—β€‹βˆi=kpSβˆ—β€‹(tiβˆ’tiβˆ’1)​(I+Biβˆ—)​Sβˆ—β€‹(bβˆ’tp)​φ~Ξ±,k=1,…,pβˆ’1,\displaystyle v^{\alpha}_{p}=D^{*}_{p}S^{*}(b-t_{p})\tilde{\varphi}_{\alpha},\quad v^{\alpha}_{k}=D^{*}_{k}\prod_{i=k}^{p}S^{*}(t_{i}-t_{i-1})(I+B^{*}_{i})S^{*}(b-t_{p})\tilde{\varphi}_{\alpha},\quad k=1,\dots,p-1, (2.4)
Ο†~α​(ξ​(β‹…))=\displaystyle\tilde{\varphi}_{\alpha}(\xi(\cdot))= (αℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1(hβˆ’S(bβˆ’tp)∏j=p1(ℐ+Bj)S(tjβˆ’tjβˆ’1)ΞΎ0\displaystyle\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}\bigg{(}h-S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
βˆ’\displaystyle- S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds
βˆ’\displaystyle- ∫tpbS(bβˆ’s)ΞΊ(s,ΞΎ(s))ds).\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s,\xi(s))ds\bigg{)}.

For piecewise continuous functions, which are functions that may have somer discontinuities on an interval, the Ascoli–ArzelΓ  theorem can be adapted, but certain conditions are required to account for these discontinuities. We present an extended version of the Ascoli–ArzelΓ  theorem, as demonstrated by W. Wei, X. Xiang, and Y. Peng in their work on P​C​(I,𝔛)PC(I,\mathfrak{X}) in [22], where 𝔛\mathfrak{X} denotes a Banach space. This extended version generalizes the classical result to the space of piecewise continuous functions, providing conditions under which a set in P​C​(I,𝔛)PC(I,\mathfrak{X}) is relatively compact.

Theorem 2.1.

(Ascoli–ArzelΓ  theorem Assume π”šβŠ†P​C​(I,𝔛)\mathfrak{W}\subseteq PC(I,\mathfrak{X}). If the following conditions are held:

  1. 1.

    Uniform Boundedness: The set π”š\mathfrak{W} is a uniformly bounded subset of P​C​(I,𝔛)PC(I,\mathfrak{X}).

  2. 2.

    Equicontinuity on subintervals: The set π”š\mathfrak{W} is equicontinuous in Ii=(ti,ti+1)I_{i}=(t_{i},t_{i+1}), where i=0,1,2,…,ni=0,1,2,\dots,n, with t0=0t_{0}=0 and tn+1=Tt_{n+1}=T.

  3. 3.

    Control at Discontinuities: π”šβ€‹(t)={ξ​(t)βˆ£ΞΎβˆˆπ”š,t∈Iβˆ–D}\mathfrak{W}(t)=\{\xi(t)\mid\xi\in\mathfrak{W},\ t\in I\setminus D\}, π”šβ€‹(ti+0)={ξ​(ti+0)βˆ£ΞΎβˆˆπ”š}\mathfrak{W}(t_{i}+0)=\{\xi(t_{i}+0)\mid\xi\in\mathfrak{W}\}, and π”šβ€‹(tiβˆ’0)={ξ​(tiβˆ’0)βˆ£ΞΎβˆˆπ”š}\mathfrak{W}(t_{i}-0)=\{\xi(t_{i}-0)\mid\xi\in\mathfrak{W}\} are relatively compact subsets of 𝔛\mathfrak{X}.

Then π”šβŠ†P​C​(I,𝔛)\mathfrak{W}\subseteq PC(I,\mathfrak{X}) is a relatively compact.

This result is significant in applications involving piecewise continuous functions, as it allows for compactness considerations in the presence of discontinuities. It is particularly useful in the analysis of impulsive systems in control theory and differential equations, where piecewise continuous functions model sudden state changes.

3 π’œ\mathcal{A}-controllability of IDEs

The Schauder Fixed-Point Theorem (SFPT) is a foundational result in functional analysis that provides conditions under which a function has at least one fixed point. It is particularly useful in proving the existence of solutions to various types of issues in analysis and differential equations.

In the following theorem to show existence of solution we apply SFPT.

Theorem 3.1.

Under assumptions A1βˆ’A3A_{1}-A_{3} the system (1.1) has a solution on ℐ\mathscr{I} for every 0<Ξ±<10<\alpha<1; that is, FΞ±F_{\alpha} has a fixed point.

Proof.

The major purpose of this section is to establish the requirements for the solvability of system (2.1) and (2.3) for Ξ±>0\alpha>0. In the space P​C​(ℐ,H)PC(\mathscr{I},H), we consider the set

Br​(Ξ±)={ξ​(β‹…)∈P​C​(ℐ,H)βˆ£ΞΎβ€‹(0)=ΞΎ0,‖ξ‖≀r​(Ξ±)},B_{r(\alpha)}=\{\xi(\cdot)\in PC(\mathscr{I},H)\mid\xi(0)=\xi_{0},\|\xi\|\leq r(\alpha)\},

where r​(Ξ±)>0r(\alpha)>0 is a constant.

We introduce an operator FΞ±,Ξ±>0F_{\alpha},\alpha>0 on P​C​(ℐ,H)PC(\mathscr{I},H) in the following way

Fα​(ΞΎ)=z,F_{\alpha}(\xi)=z,

such that

z​(t)={S​(t)​ξ​(0)+∫0tS​(tβˆ’s)​[Ω​v​(s)+κ​(s,ξ​(s))]​𝑑s,0≀t≀t1,S​(tβˆ’tk)​ξ​(tk+)+∫tktS​(tβˆ’s)​[Ω​v​(s)+κ​(s,ξ​(s))]​𝑑s,tk<t≀tk+1,k=1,2,…,p,\displaystyle z(t)=\begin{cases}S(t)\xi(0)+\int_{0}^{t}S(t-s)\big{[}\Omega v(s)+\kappa(s,\xi(s))\big{]}ds,\quad 0\leq t\leq t_{1},\\ \\ S(t-t_{k})\xi(t^{+}_{k})+\int_{t_{k}}^{t}S(t-s)\big{[}\Omega v(s)+\kappa(s,\xi(s))\big{]}ds,\quad t_{k}<t\leq t_{k+1},\quad k=1,2,\dots,p,\\ \end{cases} (3.1)

where

ξ​(tk+)=\displaystyle\xi(t^{+}_{k})= ∏j=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​Ω​uα​(s)​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\Omega u_{\alpha}(s)ds
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds (3.2)
+\displaystyle+ βˆ‘i=2k∏j=ki(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​Diβˆ’1​viβˆ’1+Dk​vk.\displaystyle\sum_{i=2}^{k}\prod_{j=k}^{i}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})D_{i-1}v_{i-1}+D_{k}v_{k}.
v​(s)\displaystyle v(s) =(βˆ‘k=1pΞ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)β€‹βˆi=k+1pSβˆ—β€‹(tiβˆ’tiβˆ’1)​Sβˆ—β€‹(bβˆ’tp)​χ(tkβˆ’1,tk)+Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​χ(tp,b))​φ~Ξ±,\displaystyle=\bigg{(}\sum_{k=1}^{p}\Omega^{*}S^{*}(t_{k}-s)\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}+\Omega^{*}S^{*}(b-s)\chi_{(t_{p},b)}\bigg{)}\tilde{\varphi}_{\alpha}, (3.3)

where

Ο†~Ξ±=\displaystyle\tilde{\varphi}_{\alpha}= (αℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1(hβˆ’S(bβˆ’tp)∏j=p1(ℐ+Bj)S(tjβˆ’tjβˆ’1)ΞΎ0\displaystyle\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}\bigg{(}h-S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
βˆ’\displaystyle- S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds
βˆ’\displaystyle- ∫tpbS(bβˆ’s)ΞΊ(s,ΞΎ(s))ds)\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s,\xi(s))ds\bigg{)}

To enhance clarity, the proof of the theorem will be broken down into two steps due to its length and complexity.


Step 1. For any Ξ±>0\alpha>0 βˆƒ\exists r​(Ξ±)>0r(\alpha)>0 constant such that the mapping FΞ±F_{\alpha} satisfies: FΞ±:Br​(Ξ±)β†’Br​(Ξ±).F_{\alpha}:B_{r(\alpha)}\rightarrow B_{r(\alpha)}. Let

Ξ¦m​(r)=sup{Ο†m​(ΞΎ):β€–y‖≀r,y∈H}.\displaystyle\Phi_{m}(r)=\sup\Big{\{}\varphi_{m}(\xi):\|y\|\leq r,y\in H\Big{\}}.

By assumption (A3)(A_{3}), for any Ξ±>0\alpha>0 βˆƒ\exists r​(Ξ±)>0r(\alpha)>0 such that

dΞ±+βˆ‘m=1qcmα​Φm​(r​(Ξ±))≀r​(Ξ±).\displaystyle\frac{d}{\alpha}+\sum_{m=1}^{q}\frac{c_{m}}{\alpha}\Phi_{m}(r(\alpha))\leq r(\alpha).

If ξ​(β‹…)∈Br​(Ξ±)\xi(\cdot)\in B_{r(\alpha)}, then we obtain

β€–v​(s)β€–\displaystyle\|v(s)\| β‰€β€–βˆ‘k=1pΞ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)β€‹βˆi=k+1pSβˆ—β€‹(tiβˆ’tiβˆ’1)​Sβˆ—β€‹(bβˆ’tp)​χ(tkβˆ’1,tk)+Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​χ(tp,b)‖​‖φ~Ξ±β€–\displaystyle\leq\bigg{\|}\sum_{k=1}^{p}\Omega^{*}S^{*}(t_{k}-s)\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}+\Omega^{*}S^{*}(b-s)\chi_{(t_{p},b)}\bigg{\|}\|\tilde{\varphi}_{\alpha}\|
β‰€β€–Ξ©βˆ—β€–β€‹βˆ‘r=1p+1Mr​‖φ~α‖≀1α​K​M~βˆ₯hβˆ’S​(bβˆ’tp)β€‹βˆj=p1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle\leq\|\Omega^{*}\|\sum_{r=1}^{p+1}M^{r}\|\tilde{\varphi}_{\alpha}\|\leq\frac{1}{\alpha}K\tilde{M}\bigg{\|}h-S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
βˆ’\displaystyle- S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds
βˆ’\displaystyle- ∫tpbS(bβˆ’s)ΞΊ(s,ΞΎ(s))dsβˆ₯≀1Ξ±KM~βˆ₯hβˆ’S(bβˆ’tp)∏j=p1(ℐ+Bj)S(tjβˆ’tjβˆ’1)ΞΎ0\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s,\xi(s))ds\bigg{\|}\leq\frac{1}{\alpha}K\tilde{M}\bigg{\|}h-S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
βˆ’\displaystyle- S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)β€‹βˆ‘m=1qΞ»m​(s)​φm​(ξ​(s))​d​s\displaystyle S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))ds
βˆ’\displaystyle- ∫tpbS(bβˆ’s)βˆ‘m=1qΞ»m(s)Ο†m(ΞΎ(s))dsβˆ₯≀1Ξ±KM~[βˆ₯hβˆ₯+Mp+1(1+C)pβˆ₯ΞΎ0βˆ₯\displaystyle\int_{t_{p}}^{b}S(b-s)\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))ds\bigg{\|}\leq\frac{1}{\alpha}K\tilde{M}\bigg{[}\|h\|+M^{p+1}(1+C)^{p}\|\xi_{0}\|
+βˆ‘r=1pβˆ’1Mr+2(1+C)r+2∫0bβˆ‘m=1qΞ»m(s)Ο†m(ΞΎ(s))ds+M∫0bβˆ‘m=1qΞ»m(s)Ο†m(ΞΎ(s))ds]\displaystyle+\sum_{r=1}^{p-1}M^{r+2}(1+C)^{r+2}\int_{0}^{b}\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))ds+M\int_{0}^{b}\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))ds\bigg{]}
≀1α​K​M~​[β€–hβ€–+Mp+1​(1+C)p​‖ξ0β€–+(M+βˆ‘r=1pβˆ’1Mr+2​(1+C)r+2)β€‹βˆ‘m=1qβ€–Ξ»m‖​Φm​(r​(Ξ±))]\displaystyle\leq\frac{1}{\alpha}K\tilde{M}\bigg{[}\|h\|+M^{p+1}(1+C)^{p}\|\xi_{0}\|+\Big{(}M+\sum_{r=1}^{p-1}M^{r+2}(1+C)^{r+2}\Big{)}\sum_{m=1}^{q}\|\lambda_{m}\|\Phi_{m}(r(\alpha))\bigg{]}
≀1α​K​M~​[β€–hβ€–+Mp+1​(1+C)p​‖ξ0β€–]+1α​K​M~​[(M+βˆ‘r=1pβˆ’1Mr+2​(1+C)r+2)β€‹βˆ‘m=1qβ€–Ξ»m‖​Φm​(r​(Ξ±))]\displaystyle\leq\frac{1}{\alpha}K\tilde{M}\bigg{[}\|h\|+M^{p+1}(1+C)^{p}\|\xi_{0}\|\bigg{]}+\frac{1}{\alpha}K\tilde{M}\bigg{[}\Big{(}M+\sum_{r=1}^{p-1}M^{r+2}(1+C)^{r+2}\Big{)}\sum_{m=1}^{q}\|\lambda_{m}\|\Phi_{m}(r(\alpha))\bigg{]}
≀1α​K​N​[β€–hβ€–+N​‖ξ0β€–]+1α​K​N2β€‹βˆ‘m=1qβ€–Ξ»m‖​Φm​(r​(Ξ±))≀d3​k​α+13​kβ€‹βˆ‘m=1qcmα​Φm​(r​(Ξ±))\displaystyle\leq\frac{1}{\alpha}KN\Big{[}\|h\|+N\|\xi_{0}\|\Big{]}+\frac{1}{\alpha}KN^{2}\sum_{m=1}^{q}\|\lambda_{m}\|\Phi_{m}(r(\alpha))\leq\frac{d}{3k\alpha}+\frac{1}{3k}\sum_{m=1}^{q}\frac{c_{m}}{\alpha}\Phi_{m}(r(\alpha))
=13​k​(dΞ±+βˆ‘m=1qcmα​Φm​(r​(Ξ±)))≀r​(Ξ±)3​k.\displaystyle=\frac{1}{3k}\bigg{(}\frac{d}{\alpha}+\sum_{m=1}^{q}\frac{c_{m}}{\alpha}\Phi_{m}(r(\alpha))\bigg{)}\leq\frac{r(\alpha)}{3k}.

For 0≀t≀t10\leq t\leq t_{1}, we have

β€–zβ€–\displaystyle\|z\| ≀M​‖ξ0β€–+M​K​b​‖vβ€–+Mβ€‹βˆ«0tβˆ‘m=1qΞ»m​(s)​φm​(ξ​(s))​d​s\displaystyle\leq M\|\xi_{0}\|+MKb\|v\|+M\int_{0}^{t}\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))ds
≀13​[d+βˆ‘m=1qcm​Φm​(r​(Ξ±))]+k​‖v‖≀α​r​(Ξ±)3+r​(Ξ±)3≀2​r​(Ξ±)3.\displaystyle\leq\frac{1}{3}\Big{[}d+\sum_{m=1}^{q}c_{m}\Phi_{m}(r(\alpha))\Big{]}+k\|v\|\leq\frac{\alpha r(\alpha)}{3}+\frac{r(\alpha)}{3}\leq\frac{2r(\alpha)}{3}.

For tk<t≀tk+1,k=1,2,…,pt_{k}<t\leq t_{k+1},k=1,2,\dots,p, we have

β€–zβ€–\displaystyle\|z\| ≀Mk+1​(1+C)k​‖ξ0β€–+βˆ‘r=1kβˆ’1Mr+2​(1+C)r+2​K​b​‖vβ€–\displaystyle\leq M^{k+1}(1+C)^{k}\|\xi_{0}\|+\sum_{r=1}^{k-1}M^{r+2}(1+C)^{r+2}Kb\|v\|
+βˆ‘r=1kβˆ’1Mr+2​(1+C)r+2β€‹βˆ«0bβˆ‘m=1qΞ»m​(s)​φm​(ξ​(s))​d​s\displaystyle+\sum_{r=1}^{k-1}M^{r+2}(1+C)^{r+2}\int_{0}^{b}\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))ds
+βˆ‘r=1kMr​(1+C)rβˆ’1​D​V+M​K​b​‖vβ€–\displaystyle+\sum_{r=1}^{k}M^{r}(1+C)^{r-1}DV+MKb\|v\|
+Mβ€‹βˆ«0bβˆ‘m=1qΞ»m​(s)​φm​(ξ​(s))​d​s\displaystyle+M\int_{0}^{b}\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))ds
≀Mk+1​(1+C)k​‖ξ0β€–+βˆ‘r=1kMr​(1+C)rβˆ’1​D​V\displaystyle\leq M^{k+1}(1+C)^{k}\|\xi_{0}\|+\sum_{r=1}^{k}M^{r}(1+C)^{r-1}DV
+(M+βˆ‘r=1kβˆ’1Mr+2​(1+C)r+2)​K​b​‖vβ€–\displaystyle+\bigg{(}M+\sum_{r=1}^{k-1}M^{r+2}(1+C)^{r+2}\bigg{)}Kb\|v\|
+(M+βˆ‘r=1kβˆ’1Mr+2​(1+C)r+2)β€‹βˆ‘m=1qβ€–Ξ»m‖​Φm​(r​(Ξ±))\displaystyle+\bigg{(}M+\sum_{r=1}^{k-1}M^{r+2}(1+C)^{r+2}\bigg{)}\sum_{m=1}^{q}\|\lambda_{m}\|\Phi_{m}(r(\alpha))
≀N​‖ξ0β€–+N​D​V+Nβ€‹βˆ‘m=1qβ€–Ξ»m‖​Φm​(r​(Ξ±))+N​K​b​‖vβ€–\displaystyle\leq N\|\xi_{0}\|+NDV+N\sum_{m=1}^{q}\|\lambda_{m}\|\Phi_{m}(r(\alpha))+NKb\|v\|
≀13​[d+βˆ‘m=1qcm​Φm​(r​(Ξ±))]+k​‖v‖≀α​r​(Ξ±)3+r​(Ξ±)3≀2​r​(Ξ±)3.\displaystyle\leq\frac{1}{3}\Big{[}d+\sum_{m=1}^{q}c_{m}\Phi_{m}(r(\alpha))\Big{]}+k\|v\|\leq\frac{\alpha r(\alpha)}{3}+\frac{r(\alpha)}{3}\leq\frac{2r(\alpha)}{3}.

So

β€–Fα​(ΞΎ)​(t)β€–=β€–z​(t)β€–+β€–v‖≀r​(Ξ±).\displaystyle\|F_{\alpha}(\xi)(t)\|=\|z(t)\|+\|v\|\leq r(\alpha).

Then FΞ±F_{\alpha} maps Br​(Ξ±)B_{r(\alpha)} into itself.

Step 2. For any Ξ±>0\alpha>0, the operator FΞ±F_{\alpha} maps the set Br​(Ξ±)B_{r(\alpha)} into a subset of itself that is relatively compact. Additionally, FΞ±F_{\alpha} possesses a fixed point within Br​(Ξ±)B_{r(\alpha)}.

In accordance with the Ascoli–ArzelΓ  theorem, it is necessary to show that


(i)(i) For βˆ€\forall tβˆˆβ„t\in\mathscr{I}, the set 𝒱​(t)={(Fα​ξ)​(t):ξ​(β‹…)∈Br​(Ξ±)}\mathcal{V}(t)=\{(F_{\alpha}\xi)(t):\xi(\cdot)\in B_{r(\alpha)}\} is relatively compact.


(i​i)(ii) The set 𝒱={(Fα​ξ)​(β‹…)βˆ£ΞΎβ€‹(β‹…)∈Br​(Ξ±)}\mathcal{V}=\{(F_{\alpha}\xi)(\cdot)\mid\xi(\cdot)\in B_{r(\alpha)}\} is equicontinuous on ℐ\mathscr{I}.

Let us prove part (i)(i). The case when t=0t=0 is straightforward, as 𝒱​(0)={ΞΎ0}\mathcal{V}(0)=\{\xi_{0}\}. Now, let tt be a fixed real number such that 0<t≀b0<t\leq b, and consider a real number Ο„\tau satisfying 0<Ο„<t0<\tau<t. Define

(Fατ​ξ)​(t)=S​(t)​ξ0+S​(Ο„)​𝒱​(tβˆ’Ο„).\displaystyle(F^{\tau}_{\alpha}\xi)(t)=S(t)\xi_{0}+S(\tau)\mathcal{V}(t-\tau). (3.4)

Since z​(tβˆ’r)z(t-r) is bounded on Br​(Ξ±)B_{r(\alpha)} and S​(t)S(t) is compact, the set

𝒱τ​(t)={(Fατ​ξ)​(t):ξ​(β‹…)∈Br​(Ξ±)}\mathcal{V}_{\tau}(t)=\{(F^{\tau}_{\alpha}\xi)(t):\xi(\cdot)\in B_{r(\alpha)}\}

is relatively compact in HH. This implies that there exists a finite set {yi∣1≀i≀n}\{y_{i}\mid 1\leq i\leq n\} in HH such that

𝒱τ​(t)βŠ‚β‹ƒi=1nN​(yi,Ξ΅2),\mathcal{V}_{\tau}(t)\subset\bigcup_{i=1}^{n}N\big{(}y_{i},\frac{\varepsilon}{2}\big{)},

where N​(yi,Ξ΅2)N\big{(}y_{i},\frac{\varepsilon}{2}\big{)} represents an open ball in HH with center ΞΎi\xi_{i} and radius Ξ΅/2\varepsilon/2. Additionally, for 0≀t≀t10\leq t\leq t_{1}, we have

β€–(Fα​ξ)​(t)βˆ’(Fατ​ξ)​(t)β€–\displaystyle\|(F_{\alpha}\xi)(t)-(F^{\tau}_{\alpha}\xi)(t)\| =β€–βˆ«tβˆ’Ο„tS​(tβˆ’s)​[Ω​v​(s)+κ​(s,ξ​(s))]​𝑑sβ€–\displaystyle=\bigg{\|}\int_{t-\tau}^{t}S(t-s)[\Omega v(s)+\kappa(s,\xi(s))]ds\bigg{\|}
≀M​K​τ​‖vβ€–+Mβ€‹βˆ«tβˆ’Ο„tβˆ‘m=1qΞ»m​(s)​φm​(ξ​(s))​d​s\displaystyle\leq MK\tau\|v\|+M\int_{t-\tau}^{t}\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))ds
≀M​K​τ​r​(Ξ±)3​k+Mβ€‹βˆ«tβˆ’Ο„tβˆ‘m=1qΞ»m​(s)​d​s​Φm​(r​(Ξ±))≀Ρ2.\displaystyle\leq MK\tau\frac{r(\alpha)}{3k}+M\int_{t-\tau}^{t}\sum_{m=1}^{q}\lambda_{m}(s)ds\Phi_{m}(r(\alpha))\leq\frac{\varepsilon}{2}.

Consider interval (t1,t2](t_{1},t_{2}] , we define

𝒱​(t1+0)\displaystyle\mathcal{V}(t_{1}+0) =𝒱​(t1βˆ’0)+B1​𝒱​(t1)+D1​v1\displaystyle=\mathcal{V}(t_{1}-0)+B_{1}\mathcal{V}(t_{1})+D_{1}v_{1}
=(I+B1)​𝒱​(t1)+D1​v1.\displaystyle=(I+B_{1})\mathcal{V}(t_{1})+D_{1}v_{1}.

Similarly, we have 𝒱​(t1+0)\mathcal{V}(t_{1}+0) is relatively compact. Let ξ​(t1)≑ξ1\xi(t_{1})\equiv\xi_{1}, then equation (3.4) reduces to

(Fατ​ξ)​(t)=S​(tβˆ’t1)​ξ1+S​(Ο„)​𝒱​(tβˆ’Ο„).\displaystyle(F^{\tau}_{\alpha}\xi)(t)=S(t-t_{1})\xi_{1}+S(\tau)\mathcal{V}(t-\tau).

Furthermore,

β€–(Fα​ξ)​(t)βˆ’(Fατ​ξ)​(t)‖≀M​K​τ​r​(Ξ±)3​k+Mβ€‹βˆ«tβˆ’Ο„tβˆ‘m=1qΞ»m​(s)​d​s​Φm​(r​(Ξ±))≀Ρ2,\displaystyle\|(F_{\alpha}\xi)(t)-(F^{\tau}_{\alpha}\xi)(t)\|\leq MK\tau\frac{r(\alpha)}{3k}+M\int_{t-\tau}^{t}\sum_{m=1}^{q}\lambda_{m}(s)ds\Phi_{m}(r(\alpha))\leq\frac{\varepsilon}{2},

thus 𝒱​(t)\mathcal{V}(t) is relatively compact for t∈(t1,t2]t\in(t_{1},t_{2}].

In general, given any tk∈D~={t1,…,tp}t_{k}\in\tilde{D}=\{t_{1},\dots,t_{p}\} for k=1,…,pk=1,\dots,p, we set

ξ​(tk+0)=ξ​(tk)\displaystyle\xi(t_{k}+0)=\xi(t_{k})

and

𝒱​(tk+0)\displaystyle\mathcal{V}(t_{k}+0) =𝒱​(tkβˆ’0)+Bk​𝒱​(tk)+Dk​vk=(I+Bk)​𝒱​(tk)+Dk​vk,k=1,…,p.\displaystyle=\mathcal{V}(t_{k}-0)+B_{k}\mathcal{V}(t_{k})+D_{k}v_{k}=(I+B_{k})\mathcal{V}(t_{k})+D_{k}v_{k},\quad k=1,\dots,p.

Such that , we know that 𝒱​(tk+0)\mathcal{V}(t_{k}+0) is relatively compact and the associated 𝒱τ​(t)\mathcal{V}_{\tau}(t) over the interval (tk,tk+1](t_{k},t_{k+1}] is given by

(Fατ​ξ)​(t)=S​(tβˆ’tk)​ξk+S​(Ο„)​𝒱​(tβˆ’Ο„),k=1,2,…,p.\displaystyle(F^{\tau}_{\alpha}\xi)(t)=S(t-t_{k})\xi_{k}+S(\tau)\mathcal{V}(t-\tau),\quad k=1,2,\dots,p.

Similarly, for tk<t≀tk+1,k=1,2,…,pt_{k}<t\leq t_{k+1},k=1,2,\dots,p, we have

β€–(Fα​ξ)​(t)βˆ’(Fατ​ξ)​(t)‖≀M​K​τ​r​(Ξ±)3​k+Mβ€‹βˆ«tβˆ’Ο„tβˆ‘m=1qΞ»m​(s)​d​s​Φm​(r​(Ξ±))≀Ρ2.\displaystyle\|(F_{\alpha}\xi)(t)-(F^{\tau}_{\alpha}\xi)(t)\|\leq MK\tau\frac{r(\alpha)}{3k}+M\int_{t-\tau}^{t}\sum_{m=1}^{q}\lambda_{m}(s)ds\Phi_{m}(r(\alpha))\leq\frac{\varepsilon}{2}.

Consequently, we obtain

𝒱​(t)βŠ‚β‹ƒi=1nN​(yi,Ξ΅),\mathcal{V}(t)\subset\bigcup_{i=1}^{n}N\big{(}y_{i},\varepsilon\big{)},

Thus, for every t∈[0,b]t\in[0,b], V​(t)V(t) is relatively compact in the Hilbert space HH.

To prove (i​i)(ii), we need to demonstrate that the set V={(Fα​ξ)​(β‹…)βˆ£ΞΎβ€‹(β‹…)∈Br​(Ξ±)}V=\{(F_{\alpha}\xi)(\cdot)\mid\xi(\cdot)\in B_{r(\alpha)}\} is equicontinuous on [0,b][0,b]. In fact, for 0<a1<a2≀b0<a_{1}<a_{2}\leq b, we achive

β€–v​(a2)βˆ’v​(a1)β€–\displaystyle\|v(a_{2})-v(a_{1})\| ≀βˆ₯βˆ‘k=1pΞ©βˆ—(Sβˆ—(tkβˆ’a2)βˆ’Sβˆ—(tkβˆ’a1))∏i=k+1pSβˆ—(tiβˆ’tiβˆ’1)Sβˆ—(bβˆ’tp)Ο‡(tkβˆ’1,tk)\displaystyle\leq\Bigg{\|}\sum_{k=1}^{p}\Omega^{*}\Big{(}S^{*}(t_{k}-a_{2})-S^{*}(t_{k}-a_{1})\Big{)}\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}
+Ξ©βˆ—(Sβˆ—(bβˆ’a2)βˆ’Sβˆ—(bβˆ’a1))Ο‡(tp,b)βˆ₯\displaystyle+\Omega^{*}\Big{(}S^{*}(b-a_{2})-S^{*}(b-a_{1})\Big{)}\chi_{(t_{p},b)}\bigg{\|}
Γ—1α​[β€–hβ€–+Mp+1​(1+C)p​‖ξ0β€–+(M+βˆ‘r=1pβˆ’1Mr+2​(1+C)r+2)β€‹βˆ‘m=1qβ€–Ξ»m‖​Φm​(r​(Ξ±))].\displaystyle\times\frac{1}{\alpha}\bigg{[}\|h\|+M^{p+1}(1+C)^{p}\|\xi_{0}\|+\Big{(}M+\sum_{r=1}^{p-1}M^{r+2}(1+C)^{r+2}\Big{)}\sum_{m=1}^{q}\|\lambda_{m}\|\Phi_{m}(r(\alpha))\bigg{]}.

For 0<a1<a2≀t10<a_{1}<a_{2}\leq t_{1}, we get

β€–z​(a2)βˆ’z​(a1)‖≀\displaystyle\|z(a_{2})-z(a_{1})\|\leq β€–S​(a2)βˆ’S​(a1)‖​‖ξ0β€–+K​Mβ€‹βˆ«a1a2β€–v​(s)‖​𝑑s\displaystyle\|S(a_{2})-S(a_{1})\|\|\xi_{0}\|+KM\int_{a_{1}}^{a_{2}}\|v(s)\|ds
+\displaystyle+ Kβ€‹βˆ«0a1β€–S​(a2βˆ’s)βˆ’S​(a1βˆ’s)‖​‖v​(s)‖​𝑑s\displaystyle K\int_{0}^{a_{1}}\|S(a_{2}-s)-S(a_{1}-s)\|\|v(s)\|ds
+\displaystyle+ Mβ€‹βˆ«a1a2βˆ‘m=1qΞ»m​(s)​φm​(ξ​(s))​d​s\displaystyle M\int_{a_{1}}^{a_{2}}\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))\,ds
+\displaystyle+ ∫0a1β€–S​(a2βˆ’s)βˆ’S​(a1βˆ’s)β€–β€‹βˆ‘m=1qΞ»m​(s)​φm​(ξ​(s))​d​s\displaystyle\int_{0}^{a_{1}}\|S(a_{2}-s)-S(a_{1}-s)\|\sum_{m=1}^{q}\lambda_{m}(s)\varphi_{m}(\xi(s))\,ds
≀\displaystyle\leq β€–S​(a2)βˆ’S​(a1)‖​‖ξ0β€–+K​Mβ€‹βˆ«a1a2β€–v​(s)‖​𝑑s\displaystyle\|S(a_{2})-S(a_{1})\|\|\xi_{0}\|+KM\int_{a_{1}}^{a_{2}}\|v(s)\|ds (3.5)
+\displaystyle+ Kβ€‹βˆ«0a1β€–S​(a2βˆ’s)βˆ’S​(a1βˆ’s)‖​‖v​(s)‖​𝑑s\displaystyle K\int_{0}^{a_{1}}\|S(a_{2}-s)-S(a_{1}-s)\|\|v(s)\|ds
+\displaystyle+ Mβ€‹βˆ‘m=1q∫a1a2Ξ»m​(s)​𝑑s​Φm​(r​(Ξ±))\displaystyle M\sum_{m=1}^{q}\int_{a_{1}}^{a_{2}}\lambda_{m}(s)ds\Phi_{m}(r(\alpha))
+\displaystyle+ βˆ‘m=1q∫0a1β€–S​(a2βˆ’s)βˆ’S​(a1βˆ’s)‖​λm​(s)​𝑑s​Φm​(r​(Ξ±))\displaystyle\sum_{m=1}^{q}\int_{0}^{a_{1}}\|S(a_{2}-s)-S(a_{1}-s)\|\lambda_{m}(s)ds\Phi_{m}(r(\alpha))
=\displaystyle= I1+I2+I3+I4+I5.\displaystyle I_{1}+I_{2}+I_{3}+I_{4}+I_{5}.

For tk<a1<a2≀tk+1,k=1,2,…,pt_{k}<a_{1}<a_{2}\leq t_{k+1},\quad k=1,2,\dots,p, we get

β€–z​(a2)βˆ’z​(a1)‖≀\displaystyle\|z(a_{2})-z(a_{1})\|\leq β€–S​(a2)βˆ’S​(a1)‖​‖ξ​(tk+)β€–+K​Mβ€‹βˆ«a1a2β€–v​(s)‖​𝑑s+Kβ€‹βˆ«tka1β€–S​(a2βˆ’s)βˆ’S​(a1βˆ’s)‖​‖v​(s)‖​𝑑s\displaystyle\|S(a_{2})-S(a_{1})\|\|\xi(t_{k}^{+})\|+KM\int_{a_{1}}^{a_{2}}\|v(s)\|ds+K\int_{t_{k}}^{a_{1}}\|S(a_{2}-s)-S(a_{1}-s)\|\|v(s)\|ds
+\displaystyle+ Mβ€‹βˆ‘m=1q∫a1a2Ξ»m​(s)​𝑑s​Φm​(r​(Ξ±))+βˆ‘m=1q∫tka1β€–S​(a2βˆ’s)βˆ’S​(a1βˆ’s)‖​λm​(s)​𝑑s​Φm​(r​(Ξ±))\displaystyle M\sum_{m=1}^{q}\int_{a_{1}}^{a_{2}}\lambda_{m}(s)ds\Phi_{m}(r(\alpha))+\sum_{m=1}^{q}\int_{t_{k}}^{a_{1}}\|S(a_{2}-s)-S(a_{1}-s)\|\lambda_{m}(s)ds\Phi_{m}(r(\alpha))
≀\displaystyle\leq βˆ₯S(a2)βˆ’S(a1)βˆ₯{(1+C)kMkβˆ₯ΞΎ0βˆ₯+βˆ‘r=1kβˆ’1Mr+1(1+C)r+2Kbβˆ₯vβˆ₯\displaystyle\|S(a_{2})-S(a_{1})\|\Big{\{}(1+C)^{k}M^{k}\|\xi_{0}\|+\sum_{r=1}^{k-1}M^{r+1}(1+C)^{r+2}Kb\|v\|
+\displaystyle+ βˆ‘r=1kβˆ’1Mr+1(1+C)r+2βˆ‘m=1qβˆ₯Ξ»mβˆ₯Ξ¦m(r(Ξ±))+βˆ‘r=1kMrβˆ’1(1+C)rβˆ’1DV}\displaystyle\sum_{r=1}^{k-1}M^{r+1}(1+C)^{r+2}\sum_{m=1}^{q}\|\lambda_{m}\|\Phi_{m}(r(\alpha))+\sum_{r=1}^{k}M^{r-1}(1+C)^{r-1}DV\Big{\}} (3.6)
+\displaystyle+ K​Mβ€‹βˆ«a1a2β€–v​(s)‖​𝑑s+Kβ€‹βˆ«tka1β€–S​(a2βˆ’s)βˆ’S​(a1βˆ’s)‖​‖v​(s)‖​𝑑s\displaystyle KM\int_{a_{1}}^{a_{2}}\|v(s)\|ds+K\int_{t_{k}}^{a_{1}}\|S(a_{2}-s)-S(a_{1}-s)\|\|v(s)\|ds
+\displaystyle+ Mβ€‹βˆ‘m=1q∫a1a2Ξ»m​(s)​𝑑s​Φm​(r​(Ξ±))+βˆ‘m=1q∫tka1β€–S​(a2βˆ’s)βˆ’S​(a1βˆ’s)‖​λm​(s)​𝑑s​Φm​(r​(Ξ±))\displaystyle M\sum_{m=1}^{q}\int_{a_{1}}^{a_{2}}\lambda_{m}(s)ds\Phi_{m}(r(\alpha))+\sum_{m=1}^{q}\int_{t_{k}}^{a_{1}}\|S(a_{2}-s)-S(a_{1}-s)\|\lambda_{m}(s)ds\Phi_{m}(r(\alpha))
=\displaystyle= J1+J2+J3+J4+J5.\displaystyle J_{1}+J_{2}+J_{3}+J_{4}+J_{5}.

In equations (3.4) and (3.5), the right-hand sides are not influence on the selection of ξ​(β‹…)\xi(\cdot). As a2βˆ’a1β†’0a_{2}-a_{1}\to 0, both I2I_{2} and I4I_{4} (and similarly J2J_{2} and J4J_{4}) tend to zero. Since the semigroup S​(β‹…)S(\cdot) is compact, we can deduce that

S​(t2βˆ’s)βˆ’S​(t1βˆ’s)β†’0asa2βˆ’a1β†’0,S(t_{2}-s)-S(t_{1}-s)\to 0\quad\text{as}\quad a_{2}-a_{1}\to 0,

for any tt and ss where tβˆ’s>0t-s>0. This implies that I1β†’0I_{1}\to 0 and J1β†’0J_{1}\to 0. Additionally, employing the Lebesgue dominated convergence theorem, we conclude that

I3β†’0,I5β†’0,J3β†’0,andJ5β†’0asa2βˆ’a1β†’0,I_{3}\to 0,\quad I_{5}\to 0,\quad J_{3}\to 0,\quad\text{and}\quad J_{5}\to 0\quad\text{as}\quad a_{2}-a_{1}\to 0,

demonstrating that VV is equicontinuous. Consequently, the operator Fα​B​r​(Ξ±)F_{\alpha}Br(\alpha) is both equicontinuous and bounded. According to the Ascoli–ArzelΓ  theorem, Fα​B​r​(Ξ±)F_{\alpha}Br(\alpha) is relatively compact in P​C​(J,H)PC(J,H). Furthermore, for every Ξ±>0\alpha>0, the operator FΞ±F_{\alpha} is continuous on P​C​(J,H)PC(J,H), making FΞ±F_{\alpha} a compact, continuous operator on P​C​(J,H)PC(J,H). By the SFPT, it follows that FΞ±F_{\alpha} has a fixed point.

∎

Examine the subsequent linear system with κ​(β‹…)∈L1​(ℐ,H)\kappa(\cdot)\in L^{1}(\mathscr{I},H).

z​(t,ΞΎ0)\displaystyle z(t,\xi_{0}) ={S​(t)​ξ​(0)+∫0tS​(tβˆ’s)​[Ω​uα​(s)+κ​(s)]​𝑑s,0≀t≀t1,S​(tβˆ’tk)​ξ​(tk+)+∫tktS​(tβˆ’s)​[Ω​uα​(s)+κ​(s)]​𝑑s,tk<t≀tk+1,k=1,2,…,p,\displaystyle=\begin{cases}S(t)\xi(0)+\int_{0}^{t}S(t-s)\big{[}\Omega u_{\alpha}(s)+\kappa(s)\big{]}ds,\quad 0\leq t\leq t_{1},\\ \\ S(t-t_{k})\xi(t^{+}_{k})+\int_{t_{k}}^{t}S(t-s)\big{[}\Omega u_{\alpha}(s)+\kappa(s)\big{]}ds,\quad t_{k}<t\leq t_{k+1},\quad k=1,2,\dots,p,\\ \end{cases} (3.7)

where

ξ​(tk+)=\displaystyle\xi(t^{+}_{k})= ∏j=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​[Ω​uα​(s)+κ​(s)]​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)[\Omega u_{\alpha}(s)+\kappa(s)]ds
+\displaystyle+ βˆ‘i=2k∏j=ki(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​Diβˆ’1​viβˆ’1+Dk​vk.\displaystyle\sum_{i=2}^{k}\prod_{j=k}^{i}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})D_{i-1}v_{i-1}+D_{k}v_{k}.
Lemma 3.1.

If

p=\displaystyle p= hβˆ’S​(bβˆ’tp)β€‹βˆj=p1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle h-S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
βˆ’\displaystyle- S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s)​𝑑s\displaystyle S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s)ds
βˆ’\displaystyle- ∫tpbS​(bβˆ’s)​κ​(s)​𝑑s\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s)ds

and if uα​(β‹…)∈L2​(ℐ,U)u_{\alpha}(\cdot)\in L^{2}(\mathscr{I},U) is a control function defined by

uα​(s)\displaystyle u_{\alpha}(s) =(βˆ‘k=1pΞ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)β€‹βˆi=k+1pSβˆ—β€‹(tiβˆ’tiβˆ’1)​Sβˆ—β€‹(bβˆ’tp)​χ(tkβˆ’1,tk)+Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​χ(tp,b))​φ~Ξ±,\displaystyle=\bigg{(}\sum_{k=1}^{p}\Omega^{*}S^{*}(t_{k}-s)\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}+\Omega^{*}S^{*}(b-s)\chi_{(t_{p},b)}\bigg{)}\tilde{\varphi}_{\alpha}, (3.8)

where

Ο†~Ξ±=(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​p.\displaystyle\tilde{\varphi}_{\alpha}=\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}p.

Then

z​(b,ΞΎ0)βˆ’h=βˆ’Ξ±β€‹(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​p\displaystyle z(b,\xi_{0})-h=-\alpha\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}p (3.9)

and

z​(t,ΞΎ0)\displaystyle z(t,\xi_{0}) =S​(tβˆ’tk)β€‹βˆj=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle=S(t-t_{k})\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
+S​(tβˆ’tk)β€‹βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s)​𝑑s\displaystyle+S(t-t_{k})\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s)ds
+∫tktS​(tβˆ’s)​κ​(s)​𝑑s+(Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)​Sβˆ—β€‹(bβˆ’t)​(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​p.\displaystyle+\int_{t_{k}}^{t}S(t-s)\kappa(s)ds+\Big{(}\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}S^{*}(b-t)\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}p.
Proof.

Replacing (3.8) in (3.7), we acquire the following findings.

z​(t,ΞΎ0)=S​(tβˆ’tk)β€‹βˆj=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle z(t,\xi_{0})=S(t-t_{k})\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
+S​(tβˆ’tk)β€‹βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​B\displaystyle+S(t-t_{k})\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)B
Γ—(βˆ‘k=1pΞ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)β€‹βˆi=k+1pSβˆ—β€‹(tiβˆ’tiβˆ’1)​Sβˆ—β€‹(bβˆ’tp)​χ(tkβˆ’1,tk)+Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​χ(tp,b))​φ~α​d​s\displaystyle\times\bigg{(}\sum_{k=1}^{p}\Omega^{*}S^{*}(t_{k}-s)\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}+\Omega^{*}S^{*}(b-s)\chi_{(t_{p},b)}\bigg{)}\tilde{\varphi}_{\alpha}ds
+S​(tβˆ’tk)β€‹βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s)​𝑑s\displaystyle+S(t-t_{k})\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s)ds
+S​(tβˆ’tk)β€‹βˆ‘i=2k∏j=ki(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​Diβˆ’1​Diβˆ’1βˆ—β€‹βˆk=ipSβˆ—β€‹(tkβˆ’tkβˆ’1)​(I+Bkβˆ—)​Sβˆ—β€‹(bβˆ’tk)​φ~Ξ±\displaystyle+S(t-t_{k})\sum_{i=2}^{k}\prod_{j=k}^{i}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})D_{i-1}D^{*}_{i-1}\prod_{k=i}^{p}S^{*}(t_{k}-t_{k-1})(I+B^{*}_{k})S^{*}(b-t_{k})\tilde{\varphi}_{\alpha}
+S​(tβˆ’tk)​Dk​Dkβˆ—β€‹Sβˆ—β€‹(bβˆ’tk)​φ~Ξ±+∫tktS​(tβˆ’s)​κ​(s)​𝑑s\displaystyle+S(t-t_{k})D_{k}D^{*}_{k}S^{*}(b-t_{k})\tilde{\varphi}_{\alpha}+\int_{t_{k}}^{t}S(t-s)\kappa(s)ds
+∫tktS​(tβˆ’s)​B​(βˆ‘k=1pΞ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)β€‹βˆi=k+1pSβˆ—β€‹(tiβˆ’tiβˆ’1)​Sβˆ—β€‹(bβˆ’tp)​χ(tkβˆ’1,tk)+Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​χ(tp,b))​φ~α​𝑑s\displaystyle+\int_{t_{k}}^{t}S(t-s)B\bigg{(}\sum_{k=1}^{p}\Omega^{*}S^{*}(t_{k}-s)\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}+\Omega^{*}S^{*}(b-s)\chi_{(t_{p},b)}\bigg{)}\tilde{\varphi}_{\alpha}ds
=S​(tβˆ’tk)β€‹βˆj=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0+S​(tβˆ’tk)β€‹βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s)​𝑑s\displaystyle=S(t-t_{k})\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}+S(t-t_{k})\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s)ds
+∫tktS​(tβˆ’s)​κ​(s)​𝑑s+(Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)​Sβˆ—β€‹(bβˆ’t)​(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​p,\displaystyle+\int_{t_{k}}^{t}S(t-s)\kappa(s)ds+\Big{(}\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}S^{*}(b-t)\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}p,

where

p=\displaystyle p= hβˆ’S​(bβˆ’tp)β€‹βˆj=p1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle h-S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
βˆ’\displaystyle- S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds
βˆ’\displaystyle- ∫tpbS​(bβˆ’s)​κ​(s,ξ​(s))​𝑑s.\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s,\xi(s))ds.

By substituting t=bt=b into the latter equation and solving for z​(b;ΞΎ0)βˆ’hz(b;\xi_{0})-h, we obtain at equation (3.9).


z​(b,ΞΎ0)\displaystyle z(b,\xi_{0}) =S​(bβˆ’tk)β€‹βˆj=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle=S(b-t_{k})\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
+S​(bβˆ’tk)β€‹βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s)​𝑑s\displaystyle+S(b-t_{k})\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s)ds
+∫tktS​(bβˆ’s)​κ​(s)​𝑑s+(Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)​(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​p,\displaystyle+\int_{t_{k}}^{t}S(b-s)\kappa(s)ds+\Big{(}\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}p,
z​(b,ΞΎ0)βˆ’h\displaystyle z(b,\xi_{0})-h =S​(bβˆ’tk)β€‹βˆj=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle=S(b-t_{k})\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
+S​(bβˆ’tk)β€‹βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s)​𝑑s\displaystyle+S(b-t_{k})\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s)ds
+∫tktS​(bβˆ’s)​κ​(s)​𝑑sβˆ’h+pβˆ’Ξ±β€‹(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​p\displaystyle+\int_{t_{k}}^{t}S(b-s)\kappa(s)ds-h+p-\alpha\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}p
=βˆ’Ξ±β€‹(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​p.\displaystyle=-\alpha\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}p.

∎

Theorem 3.2.

Let the linear system (1.2) be π’œ\mathcal{A}-controllable on ℐ\mathscr{I}. If the conditions A0A_{0}, A1A_{1}, and A4A_{4} hold, then the semilinear impulsive system (1.1) is π’œ\mathcal{A}-controllable.

Proof.

It is clear that the conditions A2A_{2} and A3A_{3} can be derived from A0A_{0}. Let ΞΎΞ±βˆ—β€‹(β‹…)\xi^{*}_{\alpha}(\cdot) represent a fixed point of FΞ±F_{\alpha} within Br​(Ξ±)B_{r}{(\alpha)}. Consequently, ΞΎΞ±βˆ—β€‹(β‹…)\xi^{*}_{\alpha}(\cdot) serves as a mild solution to (1.1) over the interval [0,b][0,b], subject to the control

uΞ±βˆ—β€‹(s)\displaystyle u^{*}_{\alpha}(s) =(βˆ‘k=1pΞ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)β€‹βˆi=k+1pSβˆ—β€‹(tiβˆ’tiβˆ’1)​Sβˆ—β€‹(bβˆ’tp)​χ(tkβˆ’1,tk)+Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​χ(tp,b))​φ~Ξ±βˆ—,\displaystyle=\bigg{(}\sum_{k=1}^{p}\Omega^{*}S^{*}(t_{k}-s)\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}+\Omega^{*}S^{*}(b-s)\chi_{(t_{p},b)}\bigg{)}\tilde{\varphi}^{*}_{\alpha}, (3.10)

where

Ο†~Ξ±βˆ—=\displaystyle\tilde{\varphi}^{*}_{\alpha}= (αℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1(hβˆ’S(bβˆ’tp)∏j=p1(ℐ+Bj)S(tjβˆ’tjβˆ’1)ΞΎ0\displaystyle\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}\bigg{(}h-S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
βˆ’\displaystyle- S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ΞΎΞ±βˆ—β€‹(s))​𝑑s\displaystyle S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi^{*}_{\alpha}(s))ds
βˆ’\displaystyle- ∫tpbS(bβˆ’s)ΞΊ(s,ΞΎΞ±βˆ—(s))ds)\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s,\xi^{*}_{\alpha}(s))ds\bigg{)}

and holds the following equality:

ΞΎΞ±βˆ—β€‹(b)=hβˆ’Ξ±β€‹(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​p​(ΞΎΞ±βˆ—β€‹(β‹…)).\displaystyle\xi^{*}_{\alpha}(b)=h-\alpha\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}p(\xi^{*}_{\alpha}(\cdot)).

To put it differently, by Lemma 3.1 ΞΎΞ±=ΞΎΞ±βˆ—β€‹(b)βˆ’h\xi_{\alpha}=\xi^{*}_{\alpha}(b)-h is a solution of the equation

α​ξα+(Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)​ξα=α​hΞ±\displaystyle\alpha\xi_{\alpha}+\big{(}\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\big{)}\xi_{\alpha}=\alpha h_{\alpha}

with

hΞ±=\displaystyle h_{\alpha}= βˆ’p​(ΞΎΞ±βˆ—β€‹(β‹…))=S​(bβˆ’tp)β€‹βˆj=p1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle-p(\xi^{*}_{\alpha}(\cdot))=S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
+\displaystyle+ S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ΞΎΞ±βˆ—β€‹(s))​𝑑s\displaystyle S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi^{*}_{\alpha}(s))ds
+\displaystyle+ ∫tpbS​(bβˆ’s)​κ​(s,ΞΎΞ±βˆ—β€‹(s))​𝑑sβˆ’h.\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s,\xi^{*}_{\alpha}(s))ds-h.

By A4A_{4}

∫0bβˆ₯ΞΊ(s,ΞΎΞ±βˆ—(s)βˆ₯S2ds≀N12b,\displaystyle\int_{0}^{b}\|\kappa(s,\xi^{*}_{\alpha}(s)\|S^{2}ds\leq N_{1}^{2}b,

As a result, the sequence {κ​(β‹…,ΞΎΞ±βˆ—β€‹(β‹…))}\{\kappa(\cdot,\xi^{*}_{\alpha}(\cdot))\} is bounded and contained within L2​(ℐ,H)L^{2}(\mathscr{I},H). Therefore, there is a subsequence, which we continue to denote by {κ​(β‹…,ΞΎΞ±βˆ—β€‹(β‹…))}\{\kappa(\cdot,\xi^{*}_{\alpha}(\cdot))\}, that weakly converges to κ​(β‹…)\kappa(\cdot) in L2​(ℐ,H)L^{2}(\mathscr{I},H). Subsequently, applying Corollary 3.3 from [21], we derive the following result:

β€–hΞ±βˆ’h¯‖≀\displaystyle\|h_{\alpha}-\bar{h}\|\leq sup0≀t≀bβˆ₯S​(tβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​(κ​(s,ΞΎΞ±βˆ—β€‹(s))βˆ’ΞΊβ€‹(s))​𝑑s\displaystyle\sup_{0\leq t\leq b}\bigg{\|}S(t-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)(\kappa(s,\xi^{*}_{\alpha}(s))-\kappa(s))ds
+\displaystyle+ ∫tptS(tβˆ’s)(ΞΊ(s,ΞΎΞ±βˆ—(s))βˆ’ΞΊ(s))dsβˆ₯β†’0,\displaystyle\int_{t_{p}}^{t}S(t-s)(\kappa(s,\xi^{*}_{\alpha}(s))-\kappa(s))ds\bigg{\|}\to 0,

where

hΒ―\displaystyle\bar{h} =S​(bβˆ’tp)β€‹βˆj=p1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​ξ0\displaystyle=S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})\xi_{0}
+\displaystyle+ S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s)​𝑑s\displaystyle S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s)ds
+\displaystyle+ ∫tpbS​(bβˆ’s)​κ​(s)​𝑑sβˆ’h\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s)ds-h

Then from

β€–ΞΎΞ±βˆ—β€‹(b)βˆ’h‖≀\displaystyle\|\xi^{*}_{\alpha}(b)-h\|\leq ‖α​(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​hΒ―β€–\displaystyle\Big{\|}\alpha\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}\bar{h}\Big{\|}
+\displaystyle+ ‖α​(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1‖​‖p​(ΞΎΞ±βˆ—β€‹(β‹…))βˆ’hΒ―β€–\displaystyle\Big{\|}\alpha\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}\Big{\|}\|p(\xi^{*}_{\alpha}(\cdot))-\bar{h}\|
≀\displaystyle\leq ‖α​(α​ℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1​hΒ―β€–+β€–p​(ΞΎΞ±βˆ—β€‹(β‹…))βˆ’hΒ―β€–β†’0,\displaystyle\Big{\|}\alpha\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}\bar{h}\Big{\|}+\|p(\xi^{*}_{\alpha}(\cdot))-\bar{h}\|\to 0,

as Ξ±β†’0+\alpha\to 0^{+}. This establishes the π’œ\mathcal{A}-controllability of (1.1). ∎

4 π’œ\mathcal{A}-controllability of neutral IDEs

Impulsive neutral functional differential equations naturally extend ordinary IDEs by incorporating both delayed effects and sudden disruptions. These equations effectively represent real-world models where the dynamics depend on historical states as well as on instantaneous disturbances. Impulsive neutral systems have seen a sharp rise in interest recently, mostly due to its useful applications in real-world industries like as chemical science, bioengineering, circuit theory, and other areas.

This paragraph will represent that the system (1.2) is π’œ\mathcal{A}-controllable if a function ξ​(β‹…)∈P​C​([βˆ’h,b],H)\xi(\cdot)\in PC([-h,b],H) exists for any Ξ±>0\alpha>0 that satisfies the following requirements:

uα​(s)\displaystyle u_{\alpha}(s) =(βˆ‘k=1pΞ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)β€‹βˆi=k+1pSβˆ—β€‹(tiβˆ’tiβˆ’1)​Sβˆ—β€‹(bβˆ’tp)​χ(tkβˆ’1,tk)+Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​χ(tp,b))​Ψ~Ξ±,\displaystyle=\bigg{(}\sum_{k=1}^{p}\Omega^{*}S^{*}(t_{k}-s)\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}+\Omega^{*}S^{*}(b-s)\chi_{(t_{p},b)}\bigg{)}\tilde{\Psi}_{\alpha}, (4.1)
vpΞ±=Dpβˆ—β€‹Sβˆ—β€‹(bβˆ’tp)​Ψ~Ξ±,vkΞ±=Dkβˆ—β€‹βˆi=kpSβˆ—β€‹(tiβˆ’tiβˆ’1)​(I+Biβˆ—)​Sβˆ—β€‹(bβˆ’tp)​Ψ~Ξ±,k=1,…,pβˆ’1,\displaystyle v^{\alpha}_{p}=D^{*}_{p}S^{*}(b-t_{p})\tilde{\Psi}_{\alpha},\quad v^{\alpha}_{k}=D^{*}_{k}\prod_{i=k}^{p}S^{*}(t_{i}-t_{i-1})(I+B^{*}_{i})S^{*}(b-t_{p})\tilde{\Psi}_{\alpha},\quad k=1,\dots,p-1, (4.2)
Ξ¨~α​(ξ​(β‹…))=\displaystyle\tilde{\Psi}_{\alpha}(\xi(\cdot))= (αℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1(hβˆ’S(bβˆ’tp)∏j=p1(ℐ+Bj)S(tjβˆ’tjβˆ’1)[Ο†(0)+Οƒ(0,Ο†)]\displaystyle\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}\bigg{(}h-S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})[\varphi(0)+\sigma(0,\varphi)]
+\displaystyle+ σ​(b,ΞΎb)βˆ’S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle\sigma(b,\xi_{b})-S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds
βˆ’\displaystyle- ∫tpbS(bβˆ’s)ΞΊ(s,ΞΎ(s))ds),\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s,\xi(s))ds\bigg{)},
ξ​(t)={S​(t)​[φ​(0)+σ​(0,Ο†)]βˆ’Οƒβ€‹(b,ΞΎb)+∫0tS​(tβˆ’s)​[Ω​u​(s)+κ​(s,ξ​(s))]​𝑑s,0≀t≀t1,S​(tβˆ’tk)​ξ​(tk+)+∫tktS​(tβˆ’s)​[Ω​u​(s)+κ​(s,ξ​(s))]​𝑑s,tk<t≀tk+1,k=1,2,…,p,\displaystyle\xi(t)=\begin{cases}S(t)[\varphi(0)+\sigma(0,\varphi)]-\sigma(b,\xi_{b})+\int_{0}^{t}S(t-s)\big{[}\Omega u(s)+\kappa(s,\xi(s))\big{]}ds,\quad 0\leq t\leq t_{1},\\ \\ S(t-t_{k})\xi(t^{+}_{k})+\int_{t_{k}}^{t}S(t-s)\big{[}\Omega u(s)+\kappa(s,\xi(s))\big{]}ds,\quad t_{k}<t\leq t_{k+1},\quad k=1,2,\dots,p,\\ \end{cases} (4.3)

where

ξ​(tk+)=\displaystyle\xi(t^{+}_{k})= ∏j=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​[φ​(0)+σ​(0,Ο†)]βˆ’Οƒβ€‹(b,ΞΎb)\displaystyle\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})[\varphi(0)+\sigma(0,\varphi)]-\sigma(b,\xi_{b})
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​Ω​u​(s)​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\Omega u(s)ds
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds (4.4)
+\displaystyle+ βˆ‘i=2k∏j=ki(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​Diβˆ’1​viβˆ’1+Dk​vk.\displaystyle\sum_{i=2}^{k}\prod_{j=k}^{i}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})D_{i-1}v_{i-1}+D_{k}v_{k}.

where, we consider a sequence of intervals 0=t0<t1<β‹―<tp<tp+1=b0=t_{0}<t_{1}<\dots<t_{p}<t_{p+1}=b, such that ξ​(tk)\xi(t_{k}) and ξ​(tk+)\xi(t_{k}^{+}) denote the left and right limits of ξ​(t)\xi(t) at t=tkt=t_{k}, respectively. Let C=C​([βˆ’h,0],H)C=C([-h,0],H) represent the set of continuous functions Ο†:[βˆ’Ο„,0]β†’H\varphi:[-\tau,0]\to H, equipped with the norm βˆ₯Ο†βˆ₯=sup{|Ο†(0)|:βˆ’Ο„β‰€0≀0}\|\varphi\|=\sup\{|\varphi(0)|:-\tau\leq 0\leq 0\}. For each piecewise continuous function yy defined on the interval [βˆ’Ο„,b]βˆ–{t1,…,tp}[-\tau,b]\setminus\{t_{1},\ldots,t_{p}\}, and for tβˆˆβ„t\in\mathscr{I}, we achive ΞΎt∈P​C\xi_{t}\in PC for t∈[0,b]t\in[0,b], with ΞΎS​(ΞΈ)=ξ​(t+ΞΈ)\xi_{S}(\theta)=\xi(t+\theta) for θ∈[βˆ’Ο„,0]\theta\in[-\tau,0]. For any k=0,1,…,pk=0,1,\dots,p, let ℐk=[tk,tk+1]\mathscr{I}_{k}=[t_{k},t_{k+1}]. The space P​C​(ℐk,H)PC(\mathscr{I}_{k},H) consists of all continuous functions from ℐk\mathscr{I}_{k} to HH, with the norm βˆ₯ΞΎβˆ₯ℐk=sup{|ΞΎ(t)|:tβˆˆβ„k}\|\xi\|_{\mathscr{I}_{k}}=\sup\{|\xi(t)|:t\in\mathscr{I}_{k}\}.

Next, define the space PC([βˆ’Ο„,b],H)={ΞΎ:[βˆ’Ο„,b]β†’H:ΞΎk∈PC(ℐk,H),k=0,…,pPC([-\tau,b],H)=\{\xi:[-\tau,b]\to H:\xi_{k}\in PC(\mathscr{I}_{k},H),\,k=0,\dots,p and there are ξ​(t+)\xi(t^{+}) and ξ​(tkβˆ’)\xi(t_{k}^{-}) such that ΞΎ(tk)=ΞΎ(tk+),k=1,…,p}\xi(t_{k})=\xi(t_{k}^{+}),k=1,\dots,p\}, which is a Banach space with the norm βˆ₯ΞΎβˆ₯P​C​([βˆ’Ο„,b],H)=sup{βˆ₯ΞΎkβˆ₯ℐk:k=0,…,p}\|\xi\|_{PC([-\tau,b],H)}=\sup\{\|\xi_{k}\|_{\mathscr{I}_{k}}:k=0,\dots,p\}, where ΞΎk\xi_{k} is the restriction of yy to ℐk\mathscr{I}_{k} for k=0,…,pk=0,\dots,p.

Concering ΞΊ\kappa and Οƒ\sigma, we assume the following hypotheses:

(i)(i) There are Ξ»m​(β‹…)∈L1​(ℐ,R+)\lambda_{m}(\cdot)\in L^{1}(\mathscr{I},R^{+}) and ψm​(β‹…)∈L1​(P​C,R+),m=1,…,q\psi_{m}(\cdot)\in L^{1}(PC,R^{+}),m=1,\dots,q, for which

‖κ​(t,Ο†)β€–β‰€βˆ‘m=1qΞ»m​(t)β€‹Οˆm​(ΞΎ)βˆ€(t,Ο†)βˆˆβ„Γ—H.\displaystyle\|\kappa(t,\varphi)\|\leq\sum_{m=1}^{q}\lambda_{m}(t)\psi_{m}(\xi)\quad\forall(t,\varphi)\in\mathscr{I}\times H.

(i​i)(ii) For each Ξ±>0\alpha>0,

lim suprβ†’βˆž(rβˆ’βˆ‘m=1qcΒ―mα​sup{ψm​(Ο†):‖φ‖≀r})=∞.\limsup_{r\to\infty}\left(r-\sum_{m=1}^{q}\frac{\bar{c}_{m}}{\alpha}\sup\left\{\psi_{m}(\varphi):\|\varphi\|\leq r\right\}\right)=\infty.

(i​i​i)(iii) The function ΞΊ:ℐ×Cβ†’H\kappa:\mathscr{I}\times C\to H uniformly bounded and continuous, meaning that there is a N2>0N_{2}>0 for which

‖κ​(t,Ο†)‖≀N2βˆ€(t,Ο†)βˆˆβ„Γ—C.\|\kappa(t,\varphi)\|\leq N_{2}\quad\forall\ (t,\varphi)\in\mathscr{I}\times C.

(i​v)(iv) The function Οƒ:ℐ×Cβ†’H\sigma:\mathscr{I}\times C\to H is uniformly bounded and continuous, meaning that there is a N3>0N_{3}>0 for which

‖σ​(t,Ο†)‖≀N3βˆ€(t,Ο†)βˆˆβ„Γ—C.\|\sigma(t,\varphi)\|\leq N_{3}\quad\forall\ (t,\varphi)\in\mathscr{I}\times C.
Theorem 4.1.

Suppose that the linear IDE (1.2) is π’œ\mathcal{A}-controllable on the interval [0,b][0,b]. If the semigroup S​(t)S(t) is compact and the conditions (i)βˆ’(i​v)(i)-(iv) are held, then the system given by equation (1.3) will also be π’œ\mathcal{A}-controllable.

Proof.

For Ξ±>0\alpha>0, we assign the operator FΞ±F_{\alpha} on P​C​([βˆ’Ο„,b],H)PC([-\tau,b],H) as

Fα​(ΞΎ)=z,F_{\alpha}(\xi)=z,

such that

z​(t)={S​(t)​[φ​(0)+σ​(0,Ο†)]βˆ’Οƒβ€‹(b,ΞΎb)+∫0tS​(tβˆ’s)​[Ω​uα​(s)+κ​(s,ξ​(s))]​𝑑s,0≀t≀t1,S​(tβˆ’tk)​ξ​(tk+)+∫tktS​(tβˆ’s)​[Ω​uα​(s)+κ​(s,ξ​(s))]​𝑑s,tk<t≀tk+1,k=1,2,…,p,\displaystyle z(t)=\begin{cases}S(t)[\varphi(0)+\sigma(0,\varphi)]-\sigma(b,\xi_{b})+\int_{0}^{t}S(t-s)\big{[}\Omega u_{\alpha}(s)+\kappa(s,\xi(s))\big{]}ds,\quad 0\leq t\leq t_{1},\\ \\ S(t-t_{k})\xi(t^{+}_{k})+\int_{t_{k}}^{t}S(t-s)\big{[}\Omega u_{\alpha}(s)+\kappa(s,\xi(s))\big{]}ds,\quad t_{k}<t\leq t_{k+1},\quad k=1,2,\dots,p,\\ \end{cases} (4.5)
v0​(ΞΈ)=φ​(ΞΈ),θ∈[βˆ’Ο„,0],\displaystyle v_{0}(\theta)=\varphi(\theta),\quad\theta\in[-\tau,0], (4.6)

where

ξ​(tk+)=\displaystyle\xi(t^{+}_{k})= ∏j=k1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​[φ​(0)+σ​(0,Ο†)]βˆ’Οƒβ€‹(b,ΞΎb)\displaystyle\prod_{j=k}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})[\varphi(0)+\sigma(0,\varphi)]-\sigma(b,\xi_{b})
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​Ω​uα​(s)​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\Omega u_{\alpha}(s)ds
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds (4.7)
+\displaystyle+ βˆ‘i=2k∏j=ki(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​Diβˆ’1​viβˆ’1+Dk​vk,\displaystyle\sum_{i=2}^{k}\prod_{j=k}^{i}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})D_{i-1}v_{i-1}+D_{k}v_{k},
uα​(s)\displaystyle u_{\alpha}(s) =(βˆ‘k=1pΞ©βˆ—β€‹Sβˆ—β€‹(tkβˆ’s)β€‹βˆi=k+1pSβˆ—β€‹(tiβˆ’tiβˆ’1)​Sβˆ—β€‹(bβˆ’tp)​χ(tkβˆ’1,tk)+Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’s)​χ(tp,b))​Ψ~Ξ±,\displaystyle=\bigg{(}\sum_{k=1}^{p}\Omega^{*}S^{*}(t_{k}-s)\prod_{i=k+1}^{p}S^{*}(t_{i}-t_{i-1})S^{*}(b-t_{p})\chi_{(t_{k-1},t_{k})}+\Omega^{*}S^{*}(b-s)\chi_{(t_{p},b)}\bigg{)}\tilde{\Psi}_{\alpha}, (4.8)
Ξ¨~α​(ξ​(β‹…))=\displaystyle\tilde{\Psi}_{\alpha}(\xi(\cdot))= (αℐ+Θ0tp+Ξ“tpb+Θ~0tp+Ξ“~tpb)βˆ’1(hβˆ’S(bβˆ’tp)∏j=p1(ℐ+Bj)S(tjβˆ’tjβˆ’1)[Ο†(0)+Οƒ(0,Ο†)]\displaystyle\Big{(}\alpha\mathcal{I}+\Theta^{t_{p}}_{0}+\Gamma^{b}_{t_{p}}+\tilde{\Theta}^{t_{p}}_{0}+\tilde{\Gamma}^{b}_{t_{p}}\Big{)}^{-1}\bigg{(}h-S(b-t_{p})\prod_{j=p}^{1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})[\varphi(0)+\sigma(0,\varphi)]
+\displaystyle+ σ​(b,ΞΎb)βˆ’S​(bβˆ’tp)β€‹βˆ‘i=1p∏j=pi+1(ℐ+Bj)​S​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tiS​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle\sigma(b,\xi_{b})-S(b-t_{p})\sum_{i=1}^{p}\prod_{j=p}^{i+1}(\mathcal{I}+B_{j})S(t_{j}-t_{j-1})(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}S(t_{i}-s)\kappa(s,\xi(s))ds
βˆ’\displaystyle- ∫tpbS(bβˆ’s)ΞΊ(s,ΞΎ(s))ds).\displaystyle\int_{t_{p}}^{b}S(b-s)\kappa(s,\xi(s))ds\bigg{)}.

It is not difficult to indicate that if FF admits a fixed point for all Ξ±>0\alpha>0 using the procedure from the prior section, then one can conclude that system (1.2) is π’œ\mathcal{A}-controllable by applying the approach found in Theorem 3.2. ∎

Future research on the π’œ\mathcal{A}-controllability of neutral IDEs could focus on the following areas:

Fractional Neutral Systems: Extending controllability results to impulsive neutral systems with fractional derivatives to address processes with memory and hereditary properties.

Variable-Order Dynamics: Exploring impulsive neutral systems with variable-order derivatives to model complex, time-dependent dynamics more accurately.

Stochastic Influences: Investigating the controllability of impulsive neutral systems under stochastically perturbed uncertainties.

Nonlinear and Multi-Valued Maps: Studying systems with nonlinear or multi-valued operators to address challenges in fields like material science, population dynamics, and control engineering.

Infinite-Dimensional Systems: Analyzing impulsive neutral systems in infinite-dimensional spaces, such as those governed by PDEs or delay differential equations.

Optimal Control Strategies: Combining controllability analysis with optimization techniques to design efficient control strategies for resource-constrained systems.

Applications with Non-Compactness Measures: Focusing on systems where the measure of non-compactness is critical, providing deeper insights into approximate controllability in more complex settings.

Hybrid and Switched Neutral Systems: Examining the controllability of hybrid and switched impulsive neutral systems to reflect diverse operational modes and transitions.

5 Applications

Theorem 5.1.

If bβˆ’tpβ‰₯2​πb-t_{p}\geq 2\pi, Ξ³mβ‰ 0\gamma_{m}\not=0 for m=1,2,…m=1,2,\dots under the assumptions A0,A1A_{0},A_{1} and A4A_{4}, then system (5.1)

{βˆ‚2η​(t,ΞΈ)βˆ‚S2=βˆ‚2η​(t,ΞΈ)βˆ‚ΞΈ2+h​u​(t)+κ​(t,η​(t,ΞΈ)),η​(t,0)=η​(t,Ο€)≑0,η​(0,ΞΈ)=a​(ΞΈ),βˆ‚Ξ·β€‹(0,ΞΈ)βˆ‚t=b​(ΞΈ),Δ​η​(ti,ΞΈ)=ai​(ΞΈ),Ξ”β€‹βˆ‚Ξ·β€‹(ti,ΞΈ)βˆ‚t=bi​(ΞΈ),i=1,…,p.\displaystyle\begin{cases}\frac{\partial^{2}\eta(t,\theta)}{\partial S^{2}}=\frac{\partial^{2}\eta(t,\theta)}{\partial\theta^{2}}+hu(t)+\kappa(t,\eta(t,\theta)),\\ \eta(t,0)=\eta(t,\pi)\equiv 0,\\ \eta(0,\theta)=a(\theta),\quad\frac{\partial\eta(0,\theta)}{\partial t}=b(\theta),\\ \Delta\eta(t_{i},\theta)=a_{i}(\theta),\quad\Delta\frac{\partial\eta(t_{i},\theta)}{\partial t}=b_{i}(\theta),\quad i=1,\dots,p.\end{cases} (5.1)

is π’œ\mathcal{A}-controllable on ℐ\mathscr{I}.

Proof.

To analyze the system, we start by expanding the initial conditions a​(ΞΈ)a(\theta) and b​(ΞΈ)b(\theta) in terms of a Fourier series:

a​(ΞΈ)=βˆ‘m=1∞αm​sin⁑(m​θ),b​(ΞΈ)=βˆ‘m=1∞βm​sin⁑(m​θ),θ∈(0,Ο€).a(\theta)=\sum_{m=1}^{\infty}\alpha_{m}\sin(m\theta),\quad b(\theta)=\sum_{m=1}^{\infty}\beta_{m}\sin(m\theta),\quad\theta\in(0,\pi).

Where, Ξ±m\alpha_{m} and Ξ²m\beta_{m} are the Fourier coefficients that capture the spatial dependence of the initial data.


For the corresponding linear system, we can express η​(t,ΞΈ)\eta(t,\theta) as a series involving trigonometric functions of time tt and spatial functions sin⁑(m​θ)\sin(m\theta):

η​(t,ΞΈ)=βˆ‘m=1∞(Ξ±m​cos⁑(m​t)+Ξ²mm​sin⁑(m​t))​sin⁑(m​θ).\eta(t,\theta)=\sum_{m=1}^{\infty}\left(\alpha_{m}\cos(mt)+\frac{\beta_{m}}{m}\sin(mt)\right)\sin(m\theta).

The time derivative of η​(t,ΞΈ)\eta(t,\theta) is given by:

βˆ‚Ξ·β€‹(t,ΞΈ)βˆ‚t=βˆ‘m=1∞(βˆ’m​αm​sin⁑(m​t)+Ξ²m​cos⁑(m​t))​sin⁑(m​θ).\frac{\partial\eta(t,\theta)}{\partial t}=\sum_{m=1}^{\infty}\left(-m\alpha_{m}\sin(mt)+\beta_{m}\cos(mt)\right)\sin(m\theta).

Define the Hilbert space HH of initial conditions as the set of pairs (ab)\begin{pmatrix}a\\ b\end{pmatrix} of functions with expansions a​(ΞΈ)a(\theta) and b​(ΞΈ)b(\theta) such that

βˆ‘m=1∞(m2​|Ξ±m|2+|Ξ²m|2)<∞.\sum_{m=1}^{\infty}\left(m^{2}|\alpha_{m}|^{2}+|\beta_{m}|^{2}\right)<\infty.

This space HH is equipped with the dot product

⟨(ab),(a~b~)⟩=βˆ‘m=1∞(S(m2Ξ±mΞ±~m+Ξ²mΞ²~m).\left\langle\begin{pmatrix}a\\ b\end{pmatrix},\begin{pmatrix}\tilde{a}\\ \tilde{b}\end{pmatrix}\right\rangle=\sum_{m=1}^{\infty}\left(S(m^{2}\alpha_{m}\tilde{\alpha}_{m}+\beta_{m}\tilde{\beta}_{m}\right).

For the linearized system, the semigroup of solutions S​(t)S(t) can be defined as:

S​(t)​(ab)=βˆ‘m=1∞(cos⁑(m​t)1m​sin⁑(m​t)βˆ’m​sin⁑(m​t)cos⁑(m​t))​(Ξ±mΞ²m)​sin⁑(m​θ),tβ‰₯0.S(t)\begin{pmatrix}a\\ b\end{pmatrix}=\sum_{m=1}^{\infty}\begin{pmatrix}\cos(mt)&\frac{1}{m}\sin(mt)\\ -m\sin(mt)&\cos(mt)\end{pmatrix}\begin{pmatrix}\alpha_{m}\\ \beta_{m}\end{pmatrix}\sin(m\theta),\quad t\geq 0.

This semigroup represents the evolution of initial states under the linear part of the system and is significative βˆ€\forall tβˆˆβ„t\in\mathbb{R} and Sβˆ—β€‹(t)=Sβˆ’1​(t)=S​(βˆ’t),t∈RS^{*}(t)=S^{-1}(t)=S(-t),\quad t\in R.


Using Duhamel’s principle, the mild solution of the nonlinear system can be written as:

(Ξ·1​(t)Ξ·2​(t))=S​(t)​(ab)+∫0tS​(tβˆ’s)​(0h)​u​(s)​𝑑s+∫0tS​(tβˆ’s)​(0κ​(s,η​(s,ΞΈ)))​𝑑s.\begin{pmatrix}\eta_{1}(t)\\ \eta_{2}(t)\end{pmatrix}=S(t)\begin{pmatrix}a\\ b\end{pmatrix}+\int_{0}^{t}S(t-s)\begin{pmatrix}0\\ h\end{pmatrix}u(s)\,ds+\int_{0}^{t}S(t-s)\begin{pmatrix}0\\ \kappa(s,\eta(s,\theta))\end{pmatrix}ds.

In this context, we define the control space as U=ℝU=\mathbb{R}, with the operator Ξ©:ℝ→H\Omega:\mathbb{R}\to H specified by Ω​u=(0h)​u\Omega u=\begin{pmatrix}0\\ h\end{pmatrix}u for uβˆˆβ„u\in\mathbb{R}. Moreover, the semigroup satisfies the property Sβˆ—β€‹(t)=S​(βˆ’t)S^{*}(t)=S(-t) for all tβ‰₯0t\geq 0.

Given the expression

Ξ©βˆ—β€‹Sβˆ—β€‹(bβˆ’t)​(ab)=βˆ‘m=1∞γm​(m​αm​sin⁑(m​(bβˆ’t))+Ξ²m​cos⁑(m​(bβˆ’t))),tp≀t≀b,\Omega^{*}S^{*}(b-t)\begin{pmatrix}a\\ b\end{pmatrix}=\sum_{m=1}^{\infty}\gamma_{m}\left(m\alpha_{m}\sin(m(b-t))+\beta_{m}\cos(m(b-t))\right),\quad t_{p}\leq t\leq b,

where, we define the right-hand series as φ​(t)\varphi(t) for 0≀t≀bβˆ’tp0\leq t\leq b-t_{p}, representing a continuous and periodic function with period 2​π2\pi. Furthermore, the coefficients satisfy

m​γm​αm=1Ο€β€‹βˆ«02​πφ​(t)​cos⁑(m​t)​𝑑t,Ξ³m​βm=1Ο€β€‹βˆ«02​πφ​(t)​sin⁑(m​t)​𝑑t,m=1,2,…m\gamma_{m}\alpha_{m}=\frac{1}{\pi}\int_{0}^{2\pi}\varphi(t)\cos(mt)\,dt,\quad\gamma_{m}\beta_{m}=\frac{1}{\pi}\int_{0}^{2\pi}\varphi(t)\sin(mt)\,dt,\quad m=1,2,\dots

Assuming bβ‰₯tp+2​πb\geq t_{p}+2\pi and φ​(t)=0\varphi(t)=0 for 0≀t≀bβˆ’tp0\leq t\leq b-t_{p}, we obtain m​γm​αm=0m\gamma_{m}\alpha_{m}=0 and Ξ³m​βm=0\gamma_{m}\beta_{m}=0 for m=1,2,…m=1,2,\dots. Since Ξ³mβ‰ 0\gamma_{m}\neq 0, it follows that Ξ±m=Ξ²m=0\alpha_{m}=\beta_{m}=0 for all mm, leading to the conclusion a=b=0a=b=0.

Thus, by Theorem 3.2, we conclude that the wave equation (5.1) is π’œ\mathcal{A}-controllable. ∎


Example 5.1.

Analyze a control system that is subject to impulsive effects and is regulated by the heat equation:

{βˆ‚Ξ·β€‹(t,z)βˆ‚t=βˆ‚2η​(t,z)βˆ‚z2+Ω​u​(t,z)+κ​(t,η​(t,z)),0<z<Ο€,η​(t,0)=η​(t,Ο€)=0,t∈[0,b]βˆ–{t1,…,tp},η​(0,z)=Ξ·0​(z),z∈[0,Ο€],Δ​η​(tk,z)=βˆ’Ξ·β€‹(tk,z)βˆ’vk​(z),z∈(0,Ο€),k=1,…,pβˆ’1.\displaystyle\begin{cases}\frac{\partial\eta(t,z)}{\partial t}=\frac{\partial^{2}\eta(t,z)}{\partial z^{2}}+\Omega u(t,z)+\kappa(t,\eta(t,z)),\quad 0<z<\pi,\\ \eta(t,0)=\eta(t,\pi)=0,\quad t\in[0,b]\setminus\{t_{1},\dots,t_{p}\},\\ \eta(0,z)=\eta_{0}(z),\quad z\in[0,\pi],\\ \Delta\eta(t_{k},z)=-\eta(t_{k},z)-v_{k}(z),\quad z\in(0,\pi),\quad k=1,\dots,p-1.\end{cases} (5.2)

Let H=L2​[0,Ο€]H=L^{2}[0,\pi], and consider the operator A:Hβ†’HA:H\rightarrow H defined by A​η=Ξ·β€²β€²A\eta=\eta^{\prime\prime}. The domain of AA is given by

D​(A)={w∈H:w​ and ​w′​ are absolutely continuous, ​wβ€²β€²βˆˆH,Β and ​w​(0)=w​(Ο€)=0}.D(A)=\{w\in H:w\text{ and }w^{\prime}\text{ are absolutely continuous, }w^{\prime\prime}\in H,\text{ and }w(0)=w(\pi)=0\}.

Let AA be an operator on H=L2​[0,Ο€]H=L^{2}[0,\pi] defined by

A​w=βˆ’βˆ‘n=1∞n2β€‹βŸ¨w,enβŸ©β€‹en,w∈D​(A),Aw=-\sum_{n=1}^{\infty}n^{2}\langle w,e_{n}\rangle e_{n},\quad w\in D(A),

where Ξ»n=n2\lambda_{n}=n^{2}, and en​(z)=2π​sin⁑(n​z)e_{n}(z)=\sqrt{\frac{2}{\pi}}\sin(nz) for 0≀z≀π0\leq z\leq\pi, n=1,2,…n=1,2,\dots.

Given an initial state v0∈L2​[0,Ο€]v_{0}\in L^{2}[0,\pi], let the impulsive term defined as Δ​η​(tk,z)=βˆ’Ξ·β€‹(tk,z)βˆ’vk​(z)\Delta\eta(t_{k},z)=-\eta(t_{k},z)-v_{k}(z), such that Bk=Dk=βˆ’IB_{k}=D_{k}=-I and let ΞΊ\kappa be a function that is Lipschitz continuous and satisfies linear growth conditions. It is a recognized fact that AA generates a compact semigroup S​(t)S(t) in HH, represented as

S​(t)​w=βˆ‘n=1∞eβˆ’n2β€‹βŸ¨w,enβŸ©β€‹en,w∈H.S(t)w=\sum_{n=1}^{\infty}e^{-n^{2}}\langle w,e_{n}\rangle e_{n},\quad w\in H.

Define an infinite-dimensional space UU by

U={u:u=βˆ‘n=2∞un​en,βˆ‘n=2∞un2<∞},U=\left\{u:u=\sum_{n=2}^{\infty}u_{n}e_{n},\quad\sum_{n=2}^{\infty}u_{n}^{2}<\infty\right\},

with the norm β€–uβ€–U=(βˆ‘n=2∞un2)1/2\|u\|_{U}=\left(\sum_{n=2}^{\infty}u_{n}^{2}\right)^{1/2}. Then define a mapping Ξ©:Uβ†’H\Omega:U\to H by

Ω​u=2​u2​e1+βˆ‘n=2∞un​en.\Omega u=2u_{2}e_{1}+\sum_{n=2}^{\infty}u_{n}e_{n}.

Due to the compactness of the semigroup S​(t)S(t) generated by AA, the associated linear system lacks exact controllability but achieves π’œ\mathcal{A}-controllability, as noted in [18]. This implies that we can express system (5.2) in the abstract form of equation (1.1). According to Theorem 3.2, this system is therefore π’œ\mathcal{A}-controllable over the interval [0,b][0,b].


Example 5.2.

We examine the controlled neutral differential equation under the impulsive effects that follows:

{βˆ‚βˆ‚t​[η​(t,z)βˆ’Ξ»1​(t,η​(tβˆ’Ο„,z))]=βˆ‚2βˆ‚z2​[η​(t,z)βˆ’Ξ»1​(t,η​(tβˆ’Ο„,z))]+ν​(t,z)+Ξ»2​(t,η​(tβˆ’Ο„,z)),0<z<1,η​(t,0)=η​(t,1)=0,t>1,η​(t,z)=φ​(t,z),t∈[βˆ’Ο„,0],Δ​η​(tk,z)=βˆ’Ξ·β€‹(tk,z)βˆ’vk​(z),k=1,…,pβˆ’1.\displaystyle\begin{cases}\frac{\partial}{\partial t}\big{[}\eta(t,z)-\lambda_{1}(t,\eta(t-\tau,z))\big{]}=\frac{\partial^{2}}{\partial z^{2}}\big{[}\eta(t,z)-\lambda_{1}(t,\eta(t-\tau,z))\big{]}\\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+\nu(t,z)+\lambda_{2}(t,\eta(t-\tau,z)),&0<z<1,\\ \eta(t,0)=\eta(t,1)=0,&t>1,\\ \eta(t,z)=\varphi(t,z),&t\in[-\tau,0],\\ \Delta\eta(t_{k},z)=-\eta(t_{k},z)-v_{k}(z),&k=1,\dots,p-1.\end{cases} (5.3)

Let σ​(t,w​(t))​(z)=Ξ»1​(t,w​(tβˆ’z))\sigma(t,w(t))(z)=\lambda_{1}(t,w(t-z)) and κ​(t,w​(t))​(z)=Ξ»2​(t,w​(tβˆ’z))\kappa(t,w(t))(z)=\lambda_{2}(t,w(t-z)). Define the operator (Ω​u)​(t)​(z)=ν​(t,z)(\Omega u)(t)(z)=\nu(t,z)\,, where z∈(0,1)z\in(0,1).

Consider H=L2​[0,1]H=L^{2}[0,1] and set the operator A:Hβ†’HA:H\to H by the differential equation:

d2​wd​z2=A​w\frac{d^{2}w}{dz^{2}}=Aw

with the domain

D​(A)={w∈H∣w​ is absolutely continuous, ​d2​wd​z2∈H,d​wd​t​(0)=d​wd​t​(1)=0}.D(A)=\Big{\{}w\in H\mid w\text{ is absolutely continuous, }\frac{d^{2}w}{dz^{2}}\in H,\,\frac{dw}{dt}(0)=\frac{dw}{dt}(1)=0\Big{\}}.

The operator AA has eigenvalues given by Ξ·n=βˆ’n2​π2\eta_{n}=-n^{2}\pi^{2} for nβ‰₯0n\geq 0 and corresponding eigenvectors en​(z)=2​cos⁑(n​π​z)e_{n}(z)=\sqrt{2}\cos(n\pi z) for nβ‰₯1n\geq 1, with e0=1e_{0}=1, forming an orthonormal basis for L2​(0,1)L^{2}(0,1). It is well known that AA generates a compact semigroup S​(t)S(t) in HH, defined by:

S​(t)​w=∫01w​(v)​𝑑v+βˆ‘n=1∞eβˆ’n2​π2​t​cos⁑(π​n​z)β€‹βˆ«01cos⁑(π​n​z)​w​(v)​𝑑v,w∈H.S(t)w=\int_{0}^{1}w(v)\,dv+\sum_{n=1}^{\infty}e^{-n^{2}\pi^{2}t}\cos(\pi nz)\int_{0}^{1}\cos(\pi nz)w(v)\,dv,\quad w\in H.

The functions Ξ»1,Ξ»2:[0,1]Γ—[0,1]β†’[0,1]\lambda_{1},\lambda_{2}:[0,1]\times[0,1]\to[0,1] are continuous, and there are constants k1k_{1} and k2k_{2} such that:

β€–Ξ»1​(t,w​(tβˆ’z))‖≀k1andβ€–Ξ»2​(t,w​(tβˆ’z))‖≀k2.\|\lambda_{1}(t,w(t-z))\|\leq k_{1}\quad\text{and}\quad\|\lambda_{2}(t,w(t-z))\|\leq k_{2}.

Therefore, Equation (5.3) can be rewritten in the form of (1.3) using the previously defined operator AA, functions Οƒ\sigma, and function ΞΊ\kappa. The linear system associated with Equation (5.3) exhibits ((π’œ\mathcal{A}-controllability. According to Theorem 4.1, we accomplish that the system represented by (5.3) is indeed π’œ\mathcal{A}-controllable.


In the following example, we present specific case that illustrates the solution of equation (1.1) within finite-dimensional Hilbert spaces. This approach clarifies the influence of impulses on the solution of the equation. By comparing the non-impulsive case with the impulsive cases, it becomes evident how each impulse and control input affects the system’s dynamics over time.

Example 5.3.

It is obvious that, in the finite-dimensional Hilbet space the solution of equation (1.1) is given by:

ξ​(t)={eA​t​ξ​(0)+∫0teA​(tβˆ’s)​[Ω​u​(s)+κ​(s,ξ​(s))]​𝑑s,0≀t≀t1,eA​(tβˆ’tk)​ξ​(tk+)+∫tkteA​(tβˆ’s)​[Ω​u​(s)+κ​(s,ξ​(s))]​𝑑s,tk<t≀tk+1,k=1,2,…,p,\displaystyle\xi(t)=\begin{cases}e^{At}\xi(0)+\int_{0}^{t}e^{A(t-s)}\big{[}\Omega u(s)+\kappa(s,\xi(s))\big{]}ds,\quad 0\leq t\leq t_{1},\\ \\ e^{A(t-t_{k})}\xi(t^{+}_{k})+\int_{t_{k}}^{t}e^{A(t-s)}\big{[}\Omega u(s)+\kappa(s,\xi(s))\big{]}ds,\quad t_{k}<t\leq t_{k+1},\quad k=1,2,\dots,p,\\ \end{cases} (5.4)

where

ξ​(tk+)=\displaystyle\xi(t^{+}_{k})= ∏j=k1(ℐ+Bj)​eA​(tjβˆ’tjβˆ’1)​ξ0\displaystyle\prod_{j=k}^{1}(\mathcal{I}+B_{j})e^{A(t_{j}-t_{j-1})}\xi_{0}
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​eA​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tieA​(tiβˆ’s)​Ω​u​(s)​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})e^{A(t_{j}-t_{j-1})}(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}e^{A(t_{i}-s)}\Omega u(s)ds
+\displaystyle+ βˆ‘i=1k∏j=ki+1(ℐ+Bj)​eA​(tjβˆ’tjβˆ’1)​(ℐ+Bi)β€‹βˆ«tiβˆ’1tieA​(tiβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle\sum_{i=1}^{k}\prod_{j=k}^{i+1}(\mathcal{I}+B_{j})e^{A(t_{j}-t_{j-1})}(\mathcal{I}+B_{i})\int_{t_{i-1}}^{t_{i}}e^{A(t_{i}-s)}\kappa(s,\xi(s))ds (5.5)
+\displaystyle+ βˆ‘i=2k∏j=ki(ℐ+Bj)​eA​(tjβˆ’tjβˆ’1)​Diβˆ’1​viβˆ’1+Dk​vk.\displaystyle\sum_{i=2}^{k}\prod_{j=k}^{i}(\mathcal{I}+B_{j})e^{A(t_{j}-t_{j-1})}D_{i-1}v_{i-1}+D_{k}v_{k}.

Let H=ℝ2H=\mathbb{R}^{2}. The initial condition is given by ξ​(0)=(10)\xi(0)=\begin{pmatrix}1\\ 0\end{pmatrix}. Define the operator AA generating the semigroup S​(t)S(t) as:

A=(01βˆ’10)A=\begin{pmatrix}0&1\\ -1&0\end{pmatrix}

This operator represents a rotation and defines the semigroup:

S​(t)=eA​t=(cos⁑(t)sin⁑(t)βˆ’sin⁑(t)cos⁑(t))S(t)=e^{At}=\begin{pmatrix}\cos(t)&\sin(t)\\ -\sin(t)&\cos(t)\end{pmatrix}

Let the control function u​(t)u(t) and nonlinear function κ​(t,ξ​(t))\kappa(t,\xi(t)) be defined as:

u​(t)=(10),κ​(t,ξ​(t))=(00.1​ξ12​(t))for ​t∈[0,2],u(t)=\begin{pmatrix}1\\ 0\end{pmatrix},\quad\kappa(t,\xi(t))=\begin{pmatrix}0\\ 0.1\xi_{1}^{2}(t)\end{pmatrix}\quad\text{for }t\in[0,2],

where ΞΎ=(ΞΎ1ΞΎ2)\xi=\begin{pmatrix}\xi_{1}\\ \xi_{2}\end{pmatrix}.

Assume there is a single impulsive point at t1=1t_{1}=1. And we define the impulsive operator B1B_{1}, D1D_{1} and the function v1v_{1} as:

B1=(000βˆ’0.5),D1=(10),v1=1.B_{1}=\begin{pmatrix}0&0\\ 0&-0.5\end{pmatrix},\quad D_{1}=\begin{pmatrix}1\\ 0\end{pmatrix},\quad v_{1}=1.

1. For 0≀t<t10\leq t<t_{1}: We compute ξ​(t)\xi(t) using equation (​5.4​)\eqref{eq22}:

ξ​(t)=S​(t)​ξ​(0)+∫0tS​(tβˆ’s)​[Ω​u​(s)+κ​(s,ξ​(s))]​𝑑s\xi(t)=S(t)\xi(0)+\int_{0}^{t}S(t-s)\left[\Omega u(s)+\kappa(s,\xi(s))\right]ds

The BB operator can be taken as:

B=(1000)B=\begin{pmatrix}1&0\\ 0&0\end{pmatrix}

Thus, the solution in this interval becomes:

ξ​(t)\displaystyle\xi(t) =(cos⁑(t)βˆ’sin⁑(t))+∫0t(cos⁑(tβˆ’s)sin⁑(tβˆ’s)βˆ’sin⁑(tβˆ’s)cos⁑(tβˆ’s))​(10.1​ξ12​(s))​𝑑s\displaystyle=\begin{pmatrix}\cos(t)\\ -\sin(t)\end{pmatrix}+\int_{0}^{t}\begin{pmatrix}\cos(t-s)&\sin(t-s)\\ -\sin(t-s)&\cos(t-s)\end{pmatrix}\begin{pmatrix}1\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds

2. For t=1t=1: We compute ξ​(t1+)\xi(t^{+}_{1}) using equation (​5.3​)\eqref{eq33}:

ξ​(t1+)\displaystyle\xi(t^{+}_{1}) =(ℐ+B1)​S​(1)​ξ​(0)+(ℐ+B1)β€‹βˆ«01S​(1βˆ’s)​[Ω​u​(s)+κ​(s,ξ​(s))]​𝑑s+D1​v1\displaystyle=(\mathcal{I}+B_{1})S(1)\xi(0)+(\mathcal{I}+B_{1})\int_{0}^{1}S(1-s)[\Omega u(s)+\kappa(s,\xi(s))]ds+D_{1}v_{1}
=(1000.5)​(cos⁑(1)βˆ’sin⁑(1))+(1000.5)β€‹βˆ«01(cos⁑(1βˆ’s)sin⁑(1βˆ’s)βˆ’sin⁑(1βˆ’s)cos⁑(1βˆ’s))​(10.1​ξ12​(s))​𝑑s+(10)\displaystyle=\begin{pmatrix}1&0\\ 0&0.5\end{pmatrix}\begin{pmatrix}\cos(1)\\ -\sin(1)\end{pmatrix}+\begin{pmatrix}1&0\\ 0&0.5\end{pmatrix}\int_{0}^{1}\begin{pmatrix}\cos(1-s)&\sin(1-s)\\ -\sin(1-s)&\cos(1-s)\end{pmatrix}\begin{pmatrix}1\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds+\begin{pmatrix}1\\ 0\end{pmatrix}
β‰ˆ(1,5403βˆ’0.42075)+(1000.5)β€‹βˆ«01(cos⁑(1βˆ’s)sin⁑(1βˆ’s)βˆ’sin⁑(1βˆ’s)cos⁑(1βˆ’s))​(10.1​ξ12​(s))​𝑑s.\displaystyle\approx\begin{pmatrix}1,5403\\ -0.42075\end{pmatrix}+\begin{pmatrix}1&0\\ 0&0.5\end{pmatrix}\int_{0}^{1}\begin{pmatrix}\cos(1-s)&\sin(1-s)\\ -\sin(1-s)&\cos(1-s)\end{pmatrix}\begin{pmatrix}1\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds.

3. For 1<t≀21<t\leq 2: Now we compute ξ​(t)\xi(t):

ξ​(t)\displaystyle\xi(t) =S​(tβˆ’1)​ξ​(t1+)+∫1tS​(tβˆ’s)​[Ω​u​(s)+κ​(s,ξ​(s))]​𝑑s\displaystyle=S(t-1)\xi(t^{+}_{1})+\int_{1}^{t}S(t-s)\left[\Omega u(s)+\kappa(s,\xi(s))\right]ds
β‰ˆ(cos⁑(tβˆ’1)sin⁑(tβˆ’1)βˆ’sin⁑(tβˆ’1)cos⁑(tβˆ’1))​(1,5403βˆ’0.42075)\displaystyle\approx\begin{pmatrix}\cos(t-1)&\sin(t-1)\\ -\sin(t-1)&\cos(t-1)\end{pmatrix}\begin{pmatrix}1,5403\\ -0.42075\end{pmatrix}
+(cos⁑(tβˆ’1)sin⁑(tβˆ’1)βˆ’sin⁑(tβˆ’1)cos⁑(tβˆ’1))​(1000.5)β€‹βˆ«01(cos⁑(1βˆ’s)sin⁑(1βˆ’s)βˆ’sin⁑(1βˆ’s)cos⁑(1βˆ’s))​(10.1​ξ12​(s))​𝑑s\displaystyle+\begin{pmatrix}\cos(t-1)&\sin(t-1)\\ -\sin(t-1)&\cos(t-1)\end{pmatrix}\begin{pmatrix}1&0\\ 0&0.5\end{pmatrix}\int_{0}^{1}\begin{pmatrix}\cos(1-s)&\sin(1-s)\\ -\sin(1-s)&\cos(1-s)\end{pmatrix}\begin{pmatrix}1\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds
+∫1t(cos⁑(tβˆ’s)sin⁑(tβˆ’s)βˆ’sin⁑(tβˆ’s)cos⁑(tβˆ’s))​(10.1​ξ12​(s))​𝑑s.\displaystyle+\int_{1}^{t}\begin{pmatrix}\cos(t-s)&\sin(t-s)\\ -\sin(t-s)&\cos(t-s)\end{pmatrix}\begin{pmatrix}1\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds.

The final form of ξ​(t)\xi(t) will depend on the computations made in the integral from 11 to tt.

This example demonstrates a finite-dimensional impulsive system with a single impulse at t1=1t_{1}=1. The solution illustrates how the system evolves continuously until the impulse occurs and then adjusts the state variable accordingly. And their graph describe in Figure 1 and 2 with impulsive and non impulsive cases.

Refer to caption
Figure 1:
Refer to caption
Figure 2:

4. For u​(t)=0u(t)=0:

If u​(t)u(t) is set to zero, the control function changes to:

u​(t)=(00)u(t)=\begin{pmatrix}0\\ 0\end{pmatrix}

In this scenario, the equations for the impulsive system need to be adjusted. Specifically, the equation for ξ​(t)\xi(t) for 0≀t<t10\leq t<t_{1} becomes:

ξ​(t)\displaystyle\xi(t) =S​(t)​ξ​(0)+∫0tS​(tβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle=S(t)\xi(0)+\int_{0}^{t}S(t-s)\kappa(s,\xi(s))ds
=(cos⁑(t)βˆ’sin⁑(t))+∫0t(cos⁑(tβˆ’s)sin⁑(tβˆ’s)βˆ’sin⁑(tβˆ’s)cos⁑(tβˆ’s))​(00.1​ξ12​(s))​𝑑s\displaystyle=\begin{pmatrix}\cos(t)\\ -\sin(t)\end{pmatrix}+\int_{0}^{t}\begin{pmatrix}\cos(t-s)&\sin(t-s)\\ -\sin(t-s)&\cos(t-s)\end{pmatrix}\begin{pmatrix}0\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds

This implies that the state evolution is governed solely by the semigroup dynamics and the nonlinear function κ​(s,ξ​(s))\kappa(s,\xi(s)), without any external control input.

For the impulse effect at t=1t=1, we compute ξ​(t1+)\xi(t^{+}_{1}) as follows:

ξ​(t1+)\displaystyle\xi(t^{+}_{1}) =(ℐ+B1)​S​(1)​ξ​(0)+∫01S​(1βˆ’s)​κ​(s,ξ​(s))​𝑑s+D1​v1\displaystyle=(\mathcal{I}+B_{1})S(1)\xi(0)+\int_{0}^{1}S(1-s)\kappa(s,\xi(s))ds+D_{1}v_{1}
=(1000.5)​(cos⁑(1)βˆ’sin⁑(1))+(1000.5)β€‹βˆ«01(cos⁑(1βˆ’s)sin⁑(1βˆ’s)βˆ’sin⁑(1βˆ’s)cos⁑(1βˆ’s))​(00.1​ξ12​(s))​𝑑s+(10)\displaystyle=\begin{pmatrix}1&0\\ 0&0.5\end{pmatrix}\begin{pmatrix}\cos(1)\\ -\sin(1)\end{pmatrix}+\begin{pmatrix}1&0\\ 0&0.5\end{pmatrix}\int_{0}^{1}\begin{pmatrix}\cos(1-s)&\sin(1-s)\\ -\sin(1-s)&\cos(1-s)\end{pmatrix}\begin{pmatrix}0\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds+\begin{pmatrix}1\\ 0\end{pmatrix}
β‰ˆ(1,5403βˆ’0.42075)+(1000.5)β€‹βˆ«01(cos⁑(1βˆ’s)sin⁑(1βˆ’s)βˆ’sin⁑(1βˆ’s)cos⁑(1βˆ’s))​(00.1​ξ12​(s))​𝑑s.\displaystyle\approx\begin{pmatrix}1,5403\\ -0.42075\end{pmatrix}+\begin{pmatrix}1&0\\ 0&0.5\end{pmatrix}\int_{0}^{1}\begin{pmatrix}\cos(1-s)&\sin(1-s)\\ -\sin(1-s)&\cos(1-s)\end{pmatrix}\begin{pmatrix}0\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds.

For the interval 1<t≀21<t\leq 2, the state evolves according to:

ξ​(t)\displaystyle\xi(t) =S​(tβˆ’1)​ξ​(t1+)+∫1tS​(tβˆ’s)​κ​(s,ξ​(s))​𝑑s\displaystyle=S(t-1)\xi(t^{+}_{1})+\int_{1}^{t}S(t-s)\kappa(s,\xi(s))ds
β‰ˆ(cos⁑(tβˆ’1)sin⁑(tβˆ’1)βˆ’sin⁑(tβˆ’1)cos⁑(tβˆ’1))​(1,5403βˆ’0.42075)\displaystyle\approx\begin{pmatrix}\cos(t-1)&\sin(t-1)\\ -\sin(t-1)&\cos(t-1)\end{pmatrix}\begin{pmatrix}1,5403\\ -0.42075\end{pmatrix}
+(cos⁑(tβˆ’1)sin⁑(tβˆ’1)βˆ’sin⁑(tβˆ’1)cos⁑(tβˆ’1))​(1000.5)β€‹βˆ«01(cos⁑(1βˆ’s)sin⁑(1βˆ’s)βˆ’sin⁑(1βˆ’s)cos⁑(1βˆ’s))​(00.1​ξ12​(s))​𝑑s\displaystyle+\begin{pmatrix}\cos(t-1)&\sin(t-1)\\ -\sin(t-1)&\cos(t-1)\end{pmatrix}\begin{pmatrix}1&0\\ 0&0.5\end{pmatrix}\int_{0}^{1}\begin{pmatrix}\cos(1-s)&\sin(1-s)\\ -\sin(1-s)&\cos(1-s)\end{pmatrix}\begin{pmatrix}0\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds
+∫1t(cos⁑(tβˆ’s)sin⁑(tβˆ’s)βˆ’sin⁑(tβˆ’s)cos⁑(tβˆ’s))​(00.1​ξ12​(s))​𝑑s.\displaystyle+\int_{1}^{t}\begin{pmatrix}\cos(t-s)&\sin(t-s)\\ -\sin(t-s)&\cos(t-s)\end{pmatrix}\begin{pmatrix}0\\ 0.1\xi^{2}_{1}(s)\end{pmatrix}ds.

This example demonstrates a finite-dimensional impulsive system with a single impulse at t1=1t_{1}=1. The solution illustrates how the system evolves continuously until the impulse occurs and then adjusts the state variable accordingly. And their graph describe in Figure 3 and 4 (u=0u=0) with impulsive and non impulsive cases.

Refer to caption
Figure 3:
Refer to caption
Figure 4:

6 Conclusion

The π’œ\mathcal{A}-controllability of some neutral and semi-linear differential equations with control under impulsive effects was examined in Hilbert spaces in this study. These impulsive semi-linear and neutral differential equations were found to have sufficient requirements for π’œ\mathcal{A}-controllability using semigroup theory and a fixed-point method. Three examples were given to illustrate how the findings can be used in practice, showing improvements over some recent findings.

π’œ\mathcal{A}-controllability of impulsive systems refers to the ability to steer the system’s state close to any desired target state, even if it cannot reach the target exactly, in systems that experience sudden changes (impulses) at specific times. These impulses represent abrupt eventsβ€”such as shocks or jumpsβ€”that cause an immediate alteration in the system’s state.

For impulsive systems, π’œ\mathcal{A}-controllability requires analyzing both the continuous dynamics of the system and the effects of impulses. To establish conditions for π’œ\mathcal{A}-controllability, techniques like fixed-point theorems, semigroup theory, and resolvent operators are often employed. These methods help characterize whether the system’s state can be controlled within a desired proximity to the target state despite the discontinuous behavior caused by impulses.

Challenges in solid mechanics, frequently involve non-monotonic and multi-valued constitutive laws, leading to fractional inclusions. The findings discussed here can be addressed to investigate the approximate and finite approximate controllability of neutral IDES and inclusions by appropriately defining a multi-valued map.

For future research directions, we plan to integrate the above analysis with topics such as fractional differential inclusions, fractional discrete calculus, and variable-order derivatives.

Future research on the controllability of IDEs systems could focus on the following directions:

Variable-Order Systems: Investigating impulsive systems with variable-order derivatives to capture dynamic processes with varying memory effects.

Fractional Dynamics: Extending controllability results to fractional impulsive systems, including those with distributed delays or complex boundary conditions.

Hybrid and Stochastic Systems: Exploring hybrid impulsive systems or systems under stochastic influences to address real-world uncertainties.

Nonlinear and Non-Monotone Dynamics: Studying nonlinear impulsive systems with multi-valued or non-monotone operators, including applications in solid mechanics and biological systems.

Optimization Techniques: Developing numerical and analytical methods to improve controllability in impulsive systems with constraints or limited resources.

Applications in Control Engineering: Applying theoretical results to practical scenarios in robotics, network control, and bio-inspired systems.

Measure of Non-Compactness: Exploring systems where the measure of non-compactness plays a role in characterizing approximate controllability.

Such investigations would enhance the understanding and application of impulsive systems in various fields.

References

  • [1] Zabczyk, J. (2020). Mathematical control theory. Springer International Publishing.
  • [2] Lakshmikantham, V., & Simeonov, P. S. (1989). Theory of impulsive differential equations (Vol. 6). World scientific.
  • [3] Pandit, S. G., & Deo, S. G. (2006). Differential systems involving impulses (Vol. 954). Springer.
  • [4] Benzaid, Z., & Sznaier, M. (1993, June). Constrained controllability of linear impulse differential systems. In 1993 American Control Conference (pp. 216-220). IEEE.
  • [5] George, R. K., Nandakumaran, A. K., & Arapostathis, A. (2000). A note on controllability of impulsive systems. Journal of Mathematical Analysis and Applications, 241(2), 276-283.
  • [6] Guan, Z. H., Qian, T. H., & Yu, X. (2002). On controllability and observability for a class of impulsive systems. Systems & Control Letters, 47(3), 247-257.
  • [7] Guan, Z. H., Qian, T. H., & Yu, X. (2002). Controllability and observability of linear time-varying impulsive systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(8), 1198-1208.
  • [8] Leela, S., McRae, F. A., & Sivasundaram, S. (1993). Controllability of impulsive differential equations. Journal of Mathematical Analysis and Applications, 177(1), 24-30.
  • [9] Xie, G., & Wang, L. (2004). Necessary and sufficient conditions for controllability and observability of switched impulsive control systems. IEEE Transactions on Automatic Control, 49(6), 960-966.
  • [10] Xie, G., & Wang, L. (2005). Controllability and observability of a class of linear impulsive systems. Journal of Mathematical Analysis and Applications, 304(1), 336-355.
  • [11] Han, J., Liu, Y., Zhao, S., & Yang, R. (2013). A note on the controllability and observability for piecewise linear time‐varying impulsive systems. Asian Journal of Control, 15(6), 1867-1870.
  • [12] Zhao, S., & Sun, J. (2009). Controllability and observability for a class of time-varying impulsive systems. Nonlinear Analysis: Real World Applications, 10(3), 1370-1380.
  • [13] Zhao, S., & Sun, J. (2010). Controllability and observability for impulsive systems in complex fields. Nonlinear Analysis: Real World Applications, 11(3), 1513-1521.
  • [14] S Muni, V., & K George, R. (2020). Controllability of linear impulsive systems–an eigenvalue approach. Kybernetika, 56(4), 727-752.
  • [15] Bashirov, A. E., & Mahmudov, N. I. (1999). On concepts of controllability for deterministic and stochastic systems. SIAM Journal on Control and Optimization, 37(6), 1808-1821.
  • [16] Mahmudov, N. I. (2003). ((Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM journal on control and optimization, 42(5), 1604-1622.
  • [17] Sakthivel, R., Ren, Y., & Mahmudov, N. I. (2011). On the Approximate controllability of semilinear fractional differential systems. Computers & Mathematics with Applications, 62(3), 1451-1459.
  • [18] Mahmudov, N. I. (2024). A study on Approximate controllability of linear impulsive equations in Hilbert spaces. Quaestiones Mathematicae, 1-16.
  • [19] Bainov, D., & Simeonov, P. (2017). Impulsive differential equations: periodic solutions and applications. Routledge.
  • [20] Asadzade, J.A., & Mahmudov, N.I. (2024). Approximate controllability of Linear Fractional Impulsive Evolution Equations in Hilbert Spaces. arXiv preprint arXiv:2406.15114
  • [21] Li, X., Yong, J., Li, X., & Yong, J. (1995). Control Problems in Infinite Dimensions. Optimal Control Theory for Infinite Dimensional Systems, 1-23.
  • [22] Wei, W., Xiang, X., & Peng, Y. (2006). Nonlinear impulsive integro-differential equations of mixed type and optimal controls. Optimization, 55(1-2), 141-156.
  • [23] Leiva, H. (2015). Approximate controllability of semilinear impulsive evolution equations. In Abstract and Applied Analysis (Vol. 2015, No. 1, p. 797439). Hindawi Publishing Corporation.
  • [24] Sakthivel, R., & Anandhi, E. R. (2010). Approximate controllability of impulsive differential equations with state-dependent delay. International Journal of Control, 83(2), 387-393.
  • [25] Grudzka, A., & Rykaczewski, K. (2015). On Approximate controllability of functional impulsive evolution inclusions in a Hilbert space. Journal of Optimization Theory and Applications, 166, 414-439.
  • [26] Vijayakumar, V. (2018). Approximate controllability results for impulsive neutral differential inclusions of Sobolev-type with infinite delay. International Journal of Control, 91(10), 2366-2386.
  • [27] Jeet, K., & Sukavanam, N. (2020). Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique. Applied Mathematics and Computation, 364, 124690.
  • [28] Shukla, A., Vijayakumar, V., & Nisar, K. S. (2022). A new exploration on the existence and ((Approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)r\in(1,2). Chaos, Solitons & Fractals, 154, 111615.