This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Applications of Interpolation theory to the regularity of some quasilinear PDEs

Irshaad Ahmed Alberto Fiorenza Maria Rosaria Formica Amiran Gogatishvili  and  Abdallah El Hamidi
Abstract.

english

We present some regularity results on the gradient of the weak or entropic-renormalized solution uu to the homogeneous Dirichlet problem for the quasilinear equations of the form

div(|u|p2u)+V(x;u)=f,-{\rm div\,}(|\nabla u|^{p-2}\nabla u)+V(x;u)=f,

where Ω\Omega is a bounded smooth domain of n\mathbb{R}^{n}, VV is a nonlinear potential and ff belongs to non-standard spaces like Lorentz-Zygmund spaces.

Moreover, we collect some well-known and new results of the identication of some interpolation spaces and we enrich some contents with details.

1. Introduction

Let Ω\Omega be a bounded smooth domain of n\mathbb{R}^{n}, n2n\geq 2. We study the regularity on the gradient of the solutions to the quasilinear Dirichlet problem

Δpu+V(x;u)=finΩ,u=0onΩ,-\Delta_{p}u+V(x;u)=f\ \ \ {\rm in}\ \Omega,\ \ \ \ u=0\ \ {\rm on}\ \ \partial\Omega, (1.1)

where Δpu=div(|u|p2u)\Delta_{p}u={\rm div\,}(|\nabla u|^{p-2}\nabla u) is the pp-Laplacian operator, 1<p<1<p<\infty, V:Ω×V:\Omega\times\mathbb{R}\to\mathbb{R} is a Carathéodory function such that

  1. (H1)

    the mapping xΩV(x;σ)x\in\Omega\to V(x;\sigma) is in L(Ω)L^{\infty}(\Omega) for every σ\sigma\in\mathbb{R};

  2. (H2)

    the mapping σV(x;σ)\sigma\in\mathbb{R}\to V(x;\sigma) is continuous and non decreasing for almost every xΩx\in\Omega and V(x;0)=0V(x;0)=0.

The datum ff of the equation will be assumed in non-standard spaces, such as Lorentz-Zygmund spaces or GΓG\Gamma spaces.

Most of our regularity results are based on applications of results on nonlinear interpolation of α\alpha-Hölderian mappings between interpolation spaces with logarithm functors, which extend some results proved in [56, 57] by Luc Tartar, who first gave interpolation results on nonlinear Hölderian mappings (which include Lipschitz mappings) and applied them to PDEs. Other results concerning interpolation of Lipschitz operators and other applications of Interpolation theory, also in PDEs, were given in [14, 41, 42, 44].

In Section 2 we define the spaces involved and recall some properties. In Section 3 we define the interpolation spaces with logarithm function and we identify some interpolation spaces between couples of Lebesgue or Lorentz spaces, recovering spaces as Lorentz–Zygmund spaces or GΓG\Gamma-spaces. In Section 4 we give results concerning interpolation of Hölderian mappings to couple of spaces with a logarithm function and in Section 5 we study the action of these mappings on those couples. Finally in Section 6, 7 and 8 we provide applications of these results to regularity on the gradient of the weak or entropic-renormalized solution uu to quasilinear Dirichlet problem (1.1). We also show that the mapping 𝒯:𝒯f=u{\mathcal{T}}:\ {\mathcal{T}}f=\nabla u is locally or globally α\alpha-Hölderian under suitable values of α\alpha and appropriate assumptions on VV. We will exibit only some proofs, to give an idea of the tools involved.

2. Definitions of some functional spaces

Let Ω\Omega be a bounded open set of n\mathbb{R}^{n}, with Lebesgue measure |Ω||\Omega|.

Here and in the sequel, if A1A_{1} and A2A_{2} are two quantities depending on some parameters, we write A1A2A_{1}\lesssim A_{2} if there exists c>0c>0 independent of the parameters such that A1cA2A_{1}\leq cA_{2}, and A1A2A_{1}\simeq A_{2} if and only if A1A2A_{1}\lesssim A_{2} and A2A1A_{2}\lesssim A_{1}.

Moreover sometimes, for simplicity of notations, for a function space XX on Ω\Omega we will only write XX instead of X(Ω)X(\Omega).

Definition 2.1.

Decreasing rearrangement.
For a measurable function f:Ωf:\Omega\to\mathbb{R}, for any t0t\geq 0, the distribution function of ff is

Df(t)=|{xΩ:|f(x)|t}|,D_{f}(t)=|\{x\in\Omega\,:\,|f(x)|\geq t\}|,

and the decreasing rearrangement of ff is defined by

f(s)=inf{t:Df(t)s},s(0,|Ω|),f_{*}(s)=\inf\{t\,:\,D_{f}(t)\leq s\},\ \ \forall\,s\in(0,|\Omega|),

(with the convention inf=+\inf\emptyset=+\infty).

The maximal function ff_{**} of ff is defined by

f(s)=1s0sf(t)𝑑t.f_{**}(s)=\frac{1}{s}\int_{0}^{s}f_{*}(t)\,dt.
Definition 2.2.

Lorentz spaces (see, e.g., [7]).
Let 1p<+1\leq p<+\infty and 1q+1\leq q\leq+\infty. The Lorentz space Lp,q(Ω)L^{p,q}(\Omega) is defined as the set of all measurable functions ff on Ω\Omega for which the quantity

fp,q=fLp,q(Ω)=t1p1qf(t)Lq(0,|Ω|)||f||_{p,q}=||f||_{L^{p,q}(\Omega)}=||t^{\frac{1}{p}-\frac{1}{q}}f_{*}(t)||_{L^{q}(0,|\Omega|)}

is finite, where ||||Lq(0,|Ω|)||\cdot||_{L^{q}(0,|\Omega|)} is the norm in the Lebesgue space LqL^{q}.

For 1<p<+1<p<+\infty, the following equivalence holds,

fp,qt1p1qf(t)Lq(0,|Ω|)={(0|Ω|[t1pf(t)]qdtt)1qif 1q<+sup0<t<|Ω|t1pf(t)ifq=+||f||_{p,q}\simeq||t^{\frac{1}{p}-\frac{1}{q}}f_{**}(t)||_{L^{q}(0,|\Omega|)}=\left\{\begin{array}[]{ll}\displaystyle\left(\int_{0}^{|\Omega|}[t^{\frac{1}{p}}f_{**}(t)]^{q}\,\frac{dt}{t}\right)^{\frac{1}{q}}&\hbox{if}\ 1\leq q<+\infty\\ \displaystyle\sup_{0<t<|\Omega|}t^{\frac{1}{p}}f_{**}(t)&\hbox{if}\ q=+\infty\end{array}\right.

up to multiplicative constants.

In particular,

Lp,p(Ω)=Lp(Ω).L^{p,p}(\Omega)=L^{p}(\Omega).

The inclusions among Lorentz spaces are given by

Lp,q(Ω)Lp,r(Ω),if 1<p<+, 1q<r+;L^{p,q}(\Omega)\subset L^{p,r}(\Omega),\ \ \ \hbox{if}\ 1<p<+\infty,\ \ 1\leq q<r\leq+\infty;
Lp,q(Ω)Lr,s(Ω),if 1<r<p<+, 1q,s+.L^{p,q}(\Omega)\subset L^{r,s}(\Omega),\ \ \ \hbox{if}\ 1<r<p<+\infty,\ \ 1\leq q,s\leq+\infty.

In particular, for 1q<p<r+1\leq q<p<r\leq+\infty, we have

Lr(Ω)Lp,q(Ω)Lp(Ω)Lp,r(Ω)Lp,(Ω)Lq(Ω).L^{r}(\Omega)\subset L^{p,q}(\Omega)\subset L^{p}(\Omega)\subset L^{p,r}(\Omega)\subset L^{p,\infty}(\Omega)\subset L^{q}(\Omega).
Definition 2.3.

Lorentz-Zygmund spaces (see, e.g., [7]).
Assume now, for simplicity, |Ω|=1|\Omega|=1, 0<p,q+,λ0<p,q\leq+\infty,\ \lambda\in\mathbb{R}. The Lorentz-Zygmund space Lp,q(logL)λ(Ω)L^{p,q}(\log L)^{\lambda}(\Omega) consists of all Lebesgue measurable functions ff on Ω\Omega such that

fLp,q(logL)λ(Ω)={(01[t1p(1logt)λf(t)]qdtt)1q,if 0<q<+sup0<t<1t1p(1logt)λf(t),ifq=+\|f\|_{L^{p,q}(\log L)^{\lambda}(\Omega)}=\left\{\begin{array}[]{ll}\left(\displaystyle\int_{0}^{1}\left[t^{\frac{1}{p}}(1-\log t)^{\lambda}f_{*}(t)\right]^{q}\frac{dt}{t}\right)^{\frac{1}{q}},&\hbox{if}\ 0<q<+\infty\\ \displaystyle\sup_{0<t<1}t^{\frac{1}{p}}(1-\log t)^{\lambda}f_{*}(t)\,,&\hbox{if}\ \ q=+\infty\end{array}\right.

is finite.

These spaces reduce to the Lorentz spaces for λ=0\lambda=0 and to the Zygmund spaces for p=qp=q,  0<p<+0<p<+\infty:

Lp,q(logL)0(Ω)=Lp,q(Ω), 0<p,q+,(λ=0)L^{p,q}(\log L)^{0}(\Omega)=L^{p,q}(\Omega),\ \ \ 0<p,q\leq+\infty,\ \ \ (\lambda=0)
Lp,p(logL)λ(Ω)=Lp(logL)λ(Ω), 0<p<+,(λ).L^{p,p}(\log L)^{\lambda}(\Omega)=L^{p}(\log L)^{\lambda}(\Omega),\ \ \ 0<p<+\infty,\ \ \ (\lambda\in\mathbb{R}).

When p=1p=1 and λ=1\lambda=1 the Zygmund space L1(logL)1(Ω)L^{1}(\log L)^{1}(\Omega) is also denoted simply by L(logL)(Ω)L(\log L)(\Omega).

Inclusion relations (see [6, pp.31-33]): for 0<p+0<p\leq+\infty,  0<q,s+0<q,s\leq+\infty,  λ1,λ2\lambda_{1},\lambda_{2}\in\mathbb{R},

  • Lp,q(logL)λ1Lr,s(logL)λ2, 0<r<p+;\displaystyle L^{p,q}(\log L)^{\lambda_{1}}\subset L^{r,s}(\log L)^{\lambda_{2}},\ \ \ 0<r<p\leq+\infty;

  • Lp,q(logL)λ1Lp,s(logL)λ2\displaystyle L^{p,q}(\log L)^{\lambda_{1}}\subset L^{p,s}(\log L)^{\lambda_{2}}

    whenever either qs,λ1λ2q\leq s,\ \lambda_{1}\geq\lambda_{2}  or   q>s,λ1+1q>λ2+1s\ q>s,\ \lambda_{1}+\dfrac{1}{q}>\lambda_{2}+\dfrac{1}{s};

  • L,q(logL)λ1L,s(logL)λ2, 0<q<s,λ1+1q=λ2+1s\displaystyle L^{\infty,q}(\log L)^{\lambda_{1}}\subset L^{\infty,s}(\log L)^{\lambda_{2}},\ \ 0<q<s\leq\infty,\ \ \lambda_{1}+\dfrac{1}{q}=\lambda_{2}+\dfrac{1}{s}.

In particular, for 0<q<p<r<0<q<p<r<\infty and for any ε>0\varepsilon>0, as consequence of the previous results, the following chain of inclusions holds (see [49, p.192]:

Lp(logL)1q1p+εLp,qLpLp,q(logL)1p1qε,L^{p}(\log L)^{\frac{1}{q}-\frac{1}{p}+\varepsilon}\subset L^{p,q}\subset L^{p}\subset L^{p,q}(\log L)^{\frac{1}{p}-\frac{1}{q}-\varepsilon},
Lp,r(logL)1p1r+εLpLp,rLp(logL)1r1pε.L^{p,r}(\log L)^{\frac{1}{p}-\frac{1}{r}+\varepsilon}\subset L^{p}\subset L^{p,r}\subset L^{p}(\log L)^{\frac{1}{r}-\frac{1}{p}-\varepsilon}.

All the previous inclusions are the sharpest possible in the sense that we can nowhere permit that ε=0\varepsilon=0.

Definition 2.4.

Grand and small Lebesgue spaces (see [36, 16, 26, 25] and references therein).
Suppose |Ω|=1|\Omega|=1. Let 1<p<1<p<\infty and α>0\alpha>0. The grand Lebesgue space Lp),α(Ω)L^{p),\alpha}(\Omega) is the set of all measurable functions such that the norm

fLp),α(Ω)=fp),α=sup0<ε<p1(εαΩ|f|pε𝑑x)1pε||f||_{L^{p),\alpha}(\Omega)}=||f||_{p),\alpha}=\sup_{0<\varepsilon<p-1}\left(\varepsilon^{\alpha}\int_{\Omega}|f|^{p-\varepsilon}\,dx\right)^{\frac{1}{p-\varepsilon}}

is finite. For α=1\alpha=1 this space was defined by C. Sbordone and T. Iwaniec in [38] and it is denoted by Lp),1=Lp)L^{p),1}=L^{p)}.

The small Lebesgue space L(p,α(Ω)L^{(p^{\prime},\alpha}(\Omega), where p=pp1p^{\prime}=\frac{p}{p-1}, was introduced by A. Fiorenza in [24] as the associate space to the grand Lebesgue space Lp),α(Ω)L^{p),\alpha}(\Omega), that is ||||L(p,α(Ω)=||||(p,α||\cdot||_{L^{(p^{\prime},\alpha}(\Omega)}=||\cdot||_{(p^{\prime},\alpha} is the smallest functional defined on the measurable functions such that a kind of Hölder type inequality holds:

Ωf(x)g(x)𝑑xfLp),α(Ω)gL(p,α(Ω).\int_{\Omega}f(x)\,g(x)\,dx\leq||f||_{L^{p),\alpha}(\Omega)}||g||_{L^{(p^{\prime},\alpha}(\Omega)}.

We have therefore (Lp),α)=L(p,α(L^{p),\alpha})^{{}^{\prime}}=L^{(p^{\prime},\alpha}. The equivalence with the following quasi-norms hold (see [28, 16]):

fLp),α(Ω)\displaystyle||f||_{L^{p),\alpha}(\Omega)} \displaystyle\simeq sup0<t<1(1logt)αp(t1fp(σ)𝑑σ)1p\displaystyle\sup_{0<t<1}(1-\log t)^{-\frac{\alpha}{p}}\left(\int_{t}^{1}f^{p}_{*}(\sigma)\,d\sigma\right)^{\frac{1}{p}}
gL(p,α(Ω)\displaystyle||g||_{L^{(p^{\prime},\alpha}(\Omega)} \displaystyle\simeq 01(1logt)αp1(0tfp(σ)𝑑σ)1pdtt.\displaystyle\int_{0}^{1}(1-\log t)^{\frac{\alpha}{p}-1}\left(\int_{0}^{t}f^{p^{\prime}}_{*}(\sigma)\,d\sigma\right)^{\frac{1}{p^{\prime}}}\,\frac{dt}{t}.

The space L(p,1L^{(p,1} is denoted by L(pL^{(p}.

These spaces and their generalizations have an important role in applications to PDEs, in Calculus of Variations, and also in Probability and Statistics (see, e. g, [31, 32, 33] and references therein).

Definition 2.5.

Generalized Gamma spaces with double weights (see [26, 3]).
Suppose |Ω|=1|\Omega|=1. Let w1,w2w_{1},\ w_{2} be two weights on (0,1)(0,1), m[1,+]m\in[1,+\infty], 1p<+1\leq p<+\infty. Assume the conditions:

(c1)  k>0:w2(2t)Kw2(t),t(0,1/2)\exists\,k>0\,:\,w_{2}(2t)\leq Kw_{2}(t),\ \forall t\in(0,1/2) ;
(c2)  0tw2(σ)𝑑σLmp(0,1;w1)\displaystyle\int_{0}^{t}w_{2}(\sigma)d\sigma\in L^{\frac{m}{p}}(0,1;w_{1}).

The generalized Gamma space GΓ(p,m;w1,w2)(Ω)=GΓ(p,m;w1,w2)G\Gamma(p,m;w_{1},w_{2})(\Omega)=G\Gamma(p,m;w_{1},w_{2}) with double weights is the set of all measurable functions f:Ωf:\Omega\to\mathbb{R} such that

(0tfp(σ)w2(σ)𝑑σ)1pLm(0,1;w1),\left(\int_{0}^{t}f_{*}^{p}(\sigma)w_{2}(\sigma)\,d\sigma\right)^{\frac{1}{p}}\in L^{m}(0,1;w_{1}),

endowed with the quasi-norm

fGΓ(p,m;w1,w2)=[01w1(t)(0tfp(σ)w2(σ)𝑑σ)mp𝑑t]1m,||f||_{G\Gamma(p,m;w_{1},w_{2})}=\left[\int_{0}^{1}w_{1}(t)\Big{(}\int_{0}^{t}f_{*}^{p}(\sigma)w_{2}(\sigma)d\sigma\Big{)}^{\frac{m}{p}}dt\right]^{\frac{1}{m}},

with the usual change when m=m=\infty.

If w2=1w_{2}=1 we denote GΓ(p,m;w1,1)=GΓ(p,m;w1).G\Gamma(p,m;w_{1},1)=G\Gamma(p,m;w_{1}).

In [1] we define the GΓ(p,m;w1,w2)G\Gamma(p,m;w_{1},w_{2}) spaces with a slight modification.

The scale of GΓ(p,m;w1,w2)G\Gamma(p,m;w_{1},w_{2}) spaces is very general and covers many well-known scales of spaces. In next examples we collect some particular cases.

Examples.

  1. (1)

    If ww is an integrable weight on (0,1)(0,1), then GΓ(p,m;w)=LpG\Gamma(p,m;w)=L^{p} (see [29, Remark 1, p.798]).

  2. (2)

    Let 1p,q<1\leq p,q<\infty,  w1w_{1} an integrable weight on (0,1)(0,1), w2(t)=tqp1w_{2}(t)=t^{\frac{q}{p}-1}. Then

    GΓ(q,m;w1,w2)=Lp,q.G\Gamma(q,m;w_{1},w_{2})=L^{p,q}.

    In fact, the conditions (c1) and (c2) are satisfied. The first is obvious, the second derives from

    01w1(t)(0tσqp1𝑑σ)mq𝑑t01tmpw1(t)𝑑t01w1(t)𝑑t<.\int_{0}^{1}w_{1}(t)\left(\int_{0}^{t}\sigma^{\frac{q}{p}-1}\,d\sigma\right)^{\frac{m}{q}}dt\simeq\int_{0}^{1}t^{\frac{m}{p}}w_{1}(t)\,dt\leq\int_{0}^{1}w_{1}(t)\,dt<\infty.

    Now, if fLp,qf\in L^{p,q}, we have

    fGΓ(q,m;w1,w2)\displaystyle||f||_{G\Gamma(q,m;w_{1},w_{2})} =\displaystyle= [01w1(t)(0tfq(σ)σqp1𝑑σ)mq𝑑t]1m\displaystyle\left[\int_{0}^{1}w_{1}(t)\Big{(}\int_{0}^{t}f_{*}^{q}(\sigma)\,\sigma^{\frac{q}{p}-1}\,d\sigma\Big{)}^{\frac{m}{q}}dt\right]^{\frac{1}{m}}
    \displaystyle\leq fLp,q(01w1(t)𝑑t)1m<,\displaystyle||f||_{L^{p,q}}\left(\int_{0}^{1}w_{1}(t)\,dt\right)^{\frac{1}{m}}<\infty,

    since w1w_{1} is integrable on (0,1)(0,1). Therefore fGΓ(q,m;w1,w2)f\in G\Gamma(q,m;w_{1},w_{2}).

    For the reverse inclusion GΓ(q,m;w1,w2)Lp,qG\Gamma(q,m;w_{1},w_{2})\subseteq L^{p,q} see [3, Prop. 2.1].

  3. (3)

    If m=pm=p,  w(t)=t1(1logt)θp2w(t)=t^{-1}(1-\log t)^{\theta p-2} and θ>1p\theta>\frac{1}{p}, we have

    GΓ(p,p;t1(1logt)θp2)=Lp(logL)θ1pG\Gamma(p,p;t^{-1}(1-\log t)^{\theta p-2})=L^{p}(\log L)^{\theta-\frac{1}{p}}

    (see [26, Proposition 6.2]), which can be written also in this form

    GΓ(p,p;t1(1logt)θp1)=Lp(logL)θG\Gamma(p,p;t^{-1}(1-\log t)^{\theta p-1})=L^{p}(\log L)^{\theta}

    (see [19, Lemma 3.5]).

  4. (4)

    GΓ(p,1;t1(1logt)θp1)=L(p,θG\Gamma(p,1;t^{-1}(1-\log t)^{\frac{\theta}{p^{\prime}}-1})=L^{(p,\theta},   p=pp1p^{\prime}=\frac{p}{p-1}  (see [27, p.813]).

  5. (5)

    If m=1,p>1,γ,βm=1,\ p>1,\ \gamma,\beta\in\mathbb{R}, γ>1\gamma>-1,  γ+βp+1>0\gamma+\frac{\beta}{p}+1>0,
    θ=p(γ+βp+1)\theta=p^{\prime}\left(\gamma+\frac{\beta}{p}+1\right),  w1(t)=t1(1logt)γw_{1}(t)=t^{-1}(1-\log t)^{\gamma}, w2(t)=(1logt)βw_{2}(t)=(1-\log t)^{\beta}, then

    GΓ(p,1;w1,w2)=L(p,θG\Gamma(p,1;w_{1},w_{2})=L^{(p,\theta}

    (see [3, Corollary 2.7, p.10]).

  6. (6)

    If m,p[1,)m,p\in[1,\infty),  γ,β\gamma,\beta\in\mathbb{R}, γ>1\gamma>-1,  γ+βmp+1<0\gamma+\beta\frac{m}{p}+1<0,
     w1(t)=t1(1logt)γw_{1}(t)=t^{-1}(1-\log t)^{\gamma}, w2(t)=(1logt)βw_{2}(t)=(1-\log t)^{\beta}, then

    fGΓ(p,m;w1,w2)m01(1logt)γ+βmp+1(t1fp(x)𝑑x)mpdtt||f||^{m}_{G\Gamma(p,m;w_{1},w_{2})}\simeq\int_{0}^{1}(1-\log t)^{\gamma+\beta\frac{m}{p}+1}\left(\int_{t}^{1}f_{*}^{p}(x)\,dx\right)^{\frac{m}{p}}\,\frac{dt}{t}

    (see [3, Lemma 2.4, p.9]).

Here we collect some properties of inclusion among the spaces defined above.

L(pLpLp,Lp)Lp,(logL)1p(see [28, p.669]).L^{(p}\subsetneq L^{p}\subsetneq L^{p,\infty}\subsetneq L^{p)}\subsetneq L^{p,\infty}(\log L)^{-\frac{1}{p}}\ \ \hbox{(see \cite[cite]{[\@@bibref{}{Fiorenza-Karadzhov}{}{}, p.669]})}.
ε>0Lp+εβ>1Lp(logL)βθp1L(p,θ(Ω)Lp(logL)θp1Lp(Ω)\bigcup_{\varepsilon>0}L^{p+\varepsilon}\subsetneq\bigcup_{\beta>1}L^{p}(\log L)^{\frac{\beta\theta}{p^{\prime}-1}}\subsetneq L^{(p,\theta}(\Omega)\subsetneq L^{p}(\log L)^{\frac{\theta}{p^{\prime}-1}}\subsetneq L^{p}(\Omega)

(see [25, p.26]).

LpLp(logL)θLp),θα>1Lp(logL)αθ0<ε<p1LpεL^{p}\subsetneq L^{p}(\log L)^{-\theta}\subsetneq L^{p),\theta}\subsetneq\bigcap_{\alpha>1}L^{p}(\log L)^{-\alpha\theta}\subsetneq\bigcap_{0<\varepsilon<p-1}L^{p-\varepsilon}

(see [25, p.24]).

3. Interpolation spaces with logarithm function

3.1. Preliminaries

Let (X0,||||0),(X1,||||1)(X_{0},||\cdot||_{0}),\ (X_{1},||\cdot||_{1}) be two normed spaces continuously embedded in a same Hausdorff topological vector space, that is, (X0,X1)(X_{0},X_{1}) is a compatible couple.

For fX0+X1,t>0f\in X_{0}+X_{1},\ t>0, the Peetre KK-functional is defined by

K(f,t)=˙K(f,t;X0,X1)=inff=f0+f1(f0X0+tf1X1),K(f,t)\dot{=}K(f,t;X_{0},X_{1})=\inf_{f=f_{0}+f_{1}}\Big{(}||f_{0}||_{X_{0}}+t||f_{1}||_{X_{1}}\Big{)},

where the infimum extends over all decompositions f=f0+f1f=f_{0}+f_{1} of ff with f0X0f_{0}\in X_{0} and f1X1f_{1}\in X_{1}.

For 0θ1, 1q+,α,0\leq\theta\leq 1,\ \ 1\leq q\leq+\infty,\ \ \alpha\in\mathbb{R}, the logarithmic interpolation space (X0,X1)θ,q;α(X_{0},X_{1})_{\theta,q;\alpha} is the set of all functions fX0+X1f\in X_{0}+X_{1} such that

fθ,q;α=tθ1q(1logt)αK(f,t)Lq(0,1)<.||f||_{\theta,q;\alpha}=||t^{-\theta-\frac{1}{q}}(1-\log t)^{\alpha}K(f,t)||_{L^{q}(0,1)}<\infty.

For the limiting cases it only makes sense to consider θ=0\theta=0 and α1/q\alpha\geq-1/q or θ=1\theta=1 and α<1/q\alpha<-1/q or θ=1,q=\theta=1,q=\infty and α=0\alpha=0.

We refer, for example, to [8, 20, 35].

The spaces (X0,X1)0,q;α(X_{0},X_{1})_{0,q;\alpha} and (X0,X1)1,q;α(X_{0},X_{1})_{1,q;\alpha} produce spaces which are “very close” to X0X_{0} and to X1X_{1} respectively.

If X1X0X_{1}\subset X_{0} and α=0\alpha=0, the space (X0,X1)θ,q;0(X_{0},X_{1})_{\theta,q;0} reduces to the classical real interpolation space (X0,X1)θ,q(X_{0},X_{1})_{\theta,q} defined by J. Peetre.

We recall some properties (see [8, p.46]).

  1. (1)

    (X0,X1)θ,q=(X1,X0)1θ,q(X_{0},X_{1})_{\theta,q}=(X_{1},X_{0})_{1-\theta,q}

  2. (2)

    (X0,X1)θ,q(X0,X1)θ,r(X_{0},X_{1})_{\theta,q}\subset(X_{0},X_{1})_{\theta,r}  if  1qr+1\leq q\leq r\leq+\infty.

  3. (3)

    If X1X0X_{1}\subset X_{0} and θ0<θ1\theta_{0}<\theta_{1}, then (X0,X1)θ1,q(X0,X1)θ0,q(X_{0},X_{1})_{\theta_{1},q}\subset(X_{0},X_{1})_{\theta_{0},q}.

Theorem 3.2.

(Associate space of an interpolation space).

Let X0,X1X_{0},X_{1} be two Banach function spaces, such that X1X0X_{1}\subset X_{0}. Let 1q<+,α, 0<θ<11\leq q<+\infty,\ \alpha\in\mathbb{R},\ 0<\theta<1. Then

[(X0,X1)θ,q;α]=(X1,X0)1θ,q;α,1q+1q=1,[(X_{0},X_{1})_{\theta,q;\alpha}]^{{}^{\prime}}=(X_{1}^{{}^{\prime}},X_{0}^{{}^{\prime}})_{1-\theta,q^{\prime};-\alpha},\ \ \ \frac{1}{q}+\frac{1}{q^{\prime}}=1,

where XiX^{{}^{\prime}}_{i} is the associate space of Xi,i=0,1X_{i},\ i=0,1.

3.3. Identifications of some interpolation spaces

Here we collect some well known and new results concerning the interpolation spaces between Lebesgue, Lorentz, Lorentz-Zygmund, small Lebesgue and GΓG\Gamma spaces.

Let 0<θ<1, 1q+0<\theta<1,\ 1\leq q\leq+\infty.
We have (see, e.g., [8, Theorem 5.2.1, Theorem 5.3.1], [58, Theorem 2, p.134], [7, Theorem 1.9, p.300])

Lq\displaystyle L^{q} =\displaystyle= (Lp0,Lp1)θ,q, 1p0<p1,1q=1θp0+θp1.\displaystyle(L^{p_{0}},L^{p_{1}})_{\theta,q},\ \ \ 1\leq p_{0}<p_{1}\leq\infty,\ \ \frac{1}{q}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}. (3.1)

In particular,

Lq\displaystyle L^{q} =\displaystyle= (L1,L)11q,q, 1<q<\displaystyle(L^{1},L^{\infty})_{1-\frac{1}{q},q},\ \ \ 1<q<\infty (3.2)
Lq\displaystyle L^{q} =\displaystyle= (Lp,L)θ,q, 1p<q<,θ=1pq.\displaystyle(L^{p},L^{\infty})_{\theta,q},\ \ \ 1\leq p<q<\infty,\ \ \ \theta=1-\frac{p}{q}. (3.3)

For 1p0<p1, 1q0,q1,1p=1θp0+θp11\leq p_{0}<p_{1}\leq\infty,\ 1\leq q_{0},q_{1}\leq\infty,\ \ \displaystyle\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}},

Lp,q\displaystyle L^{p,q} =\displaystyle= (Lp0,Lp1)θ,q=(Lp0,q0,Lp1,q1)θ,q;\displaystyle(L^{p_{0}},L^{p_{1}})_{\theta,q}=(L^{p_{0},q_{0}},L^{p_{1},q_{1}})_{\theta,q}; (3.4)

if p0=p1=pp_{0}=p_{1}=p,

Lp,q\displaystyle L^{p,q} =\displaystyle= (Lp,q0,Lp,q1)θ,q,with1q=1θq0+θq1.\displaystyle(L^{p,q_{0}},L^{p,q_{1}})_{\theta,q},\ \ \ \hbox{with}\ \ \displaystyle\frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}. (3.5)
Theorem 3.4.

(Interpolation with logarithm function between
Lorentz spaces
) ([2, p. 908-909])

Let 1p0<p11\leq p_{0}<p_{1}\leq\infty,  1q0,q11\leq q_{0},q_{1}\leq\infty,  1q<1\leq q<\infty,  α\alpha\in\mathbb{R}.
Let 0<θ<10<\theta<1 and α\alpha\in\mathbb{R}, or α1q\alpha\geq-\frac{1}{q} and θ=0\theta=0, or θ=1\theta=1 and α<1q\alpha<-\frac{1}{q}.
Then the following identifications hold.

(1.)  Case 0<θ<10<\theta<1 and α\alpha\in\mathbb{R}.

f(Lp0,q0,Lp1,q1)θ,q;α(01[t1θp0+θp1f(t)(1logt)α]qdtt)1q,\displaystyle||f||_{\left(L^{p_{0},q_{0}},\ L^{p_{1},q_{1}}\right)_{\theta,q;\alpha}}\simeq\left(\int_{0}^{1}\left[t^{\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}}f_{*}(t)(1-\log t)^{\alpha}\right]^{q}\,\frac{dt}{t}\right)^{\frac{1}{q}},

which implies

(Lp0,q0,Lp1,q1)θ,q;α=Lpθ,q(logL)α,1pθ=1θp0+θp1.\displaystyle\left(L^{p_{0},q_{0}},\ L^{p_{1},q_{1}}\right)_{\theta,q;\alpha}=L^{p_{\theta},q}(\log L)^{\alpha},\ \ \ \frac{1}{p_{\theta}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}. (3.6)

As particular cases, for 1r<p<m, 1q<,α1\leq r<p<m\leq\infty,\ \ 1\leq q<\infty,\ \alpha\in\mathbb{R}, we have

Lp,q(logL)α\displaystyle L^{p,q}(\log L)^{\alpha} =\displaystyle= (Lr,,Lm)θ,q;α,1p=1θr+θm,\displaystyle(L^{r,\infty},L^{m})_{\theta,q;\alpha},\ \ \ \displaystyle\frac{1}{p}=\frac{1-\theta}{r}+\frac{\theta}{m}, (3.7)
Lp,q(logL)α\displaystyle L^{p,q}(\log L)^{\alpha} =\displaystyle= (L1,Lm)θ,q;α,θ=m(11p),m=mm1\displaystyle(L^{1},L^{m})_{\theta,q;\alpha},\ \ \ \theta=m^{\prime}\left(1-\frac{1}{p}\right),\ \ m^{\prime}=\frac{m}{m-1} (3.8)
Lp,q(logL)α\displaystyle L^{p,q}(\log L)^{\alpha} =\displaystyle= (Lr,,L)θ,q;α=(Lr,L)θ,q;α,θ=1rp.\displaystyle(L^{r,\infty},L^{\infty})_{\theta,q;\alpha}=(L^{r},L^{\infty})_{\theta,q;\alpha},\ \ \ \displaystyle\theta=1-\frac{r}{p}. (3.9)

(2.)  Limiting case θ=0\theta=0, with α1q\alpha\geq-\dfrac{1}{q} and 1q0<1\leq q_{0}<\infty.

f(Lp0,q0,Lp1,q1)0,q;α(01[(0tsq0p01fq0(s)𝑑s)1q0(1logt)α]qdtt)1q,||f||_{\left(L^{p_{0},q_{0}},\ L^{p_{1},q_{1}}\right)_{0,q;\alpha}}\simeq\left(\int_{0}^{1}\left[\left(\int_{0}^{t}s^{\frac{q_{0}}{p_{0}}-1}f_{*}^{q_{0}}(s)ds\right)^{\frac{1}{q_{0}}}(1-\log t)^{\alpha}\right]^{q}\,\frac{dt}{t}\right)^{\frac{1}{q}},

which yields

(Lp0,q0,Lp1,q1)0,q;α=GΓ(q0,q;w1,w2),\displaystyle\left(L^{p_{0},q_{0}},\ L^{p_{1},q_{1}}\right)_{0,q;\alpha}=G\Gamma(q_{0},q;w_{1},w_{2}), (3.10)

where w1(t)=t1(1logt)αq,w2(t)=tq0p01,t(0,1)w_{1}(t)=t^{-1}(1-\log t)^{\alpha q},\ w_{2}(t)=t^{\frac{q_{0}}{p_{0}}-1},\ t\in(0,1).

As particular case, for 1<p1<p\leq\infty, p0=q0=1p_{0}=q_{0}=1,  p1=q1=pp_{1}=q_{1}=p, we have

(L1,Lp)0,q;α=GΓ(1,q;w1).(L^{1},L^{p})_{0,q;\alpha}=G\Gamma(1,q;w_{1}). (3.11)

If 1<q0=p0<p1<1<q_{0}=p_{0}<p_{1}<\infty,  1q11\leq q_{1}\leq\infty,  q=1q=1,   α>1\alpha>-1,  α0=p0(α+1)\alpha_{0}=p^{\prime}_{0}(\alpha+1),  1p0+1p0=1\dfrac{1}{p_{0}}+\dfrac{1}{p^{\prime}_{0}}=1, we have the small Lebesgue spaces (see also [4, Theorem 4.5])

(Lp0,Lp1,q1)0,1;α=L(p0,α0(Ω),(L^{p_{0}},L^{p_{1},q_{1}})_{0,1;\alpha}=L^{(p_{0},\alpha_{0}}(\Omega), (3.12)

since

f(Lp0,Lp1,q1)0,1;α01(0tfp0(s)𝑑s)1p0(1logt)α0p01dttfL(p0,α0(Ω).||f||_{\left(L^{p_{0}},\ L^{p_{1},q_{1}}\right)_{0,1;\alpha}}\!\simeq\!\int_{0}^{1}\left(\int_{0}^{t}f_{*}^{p_{0}}(s)ds\right)^{\frac{1}{p_{0}}}\!(1-\log t)^{\frac{\alpha_{0}}{p_{0}^{\prime}}-1}\,\frac{dt}{t}\simeq||f||_{L^{(p_{0},\alpha_{0}}(\Omega)}.

In the case q=1q=1,  p1=q1p_{1}=q_{1} and p0=q0p_{0}=q_{0}, we recover (see [26, Propositions 4.1 and 4.2, p.437])

(Lp0,Lp1)0,1;αp01=L(p0,α(Ω), 1<p0<p1.(L^{p_{0}},L^{p_{1}})_{0,1;\frac{\alpha}{p_{0}^{\prime}}-1}=L^{(p_{0},\alpha}(\Omega),\ \ 1<p_{0}<p_{1}\leq\infty.

(3.)  Limiting case θ=0\theta=0, with α1q\alpha\geq-\dfrac{1}{q} and q0=q_{0}=\infty.

f(Lp0,,Lp1,q1)0,q;α(01(esssup0<s<ts1p0f(s))q(1logt)αqdtt)1q.||f||_{\left(L^{p_{0},\infty},\ L^{p_{1},q_{1}}\right)_{0,q;\alpha}}\simeq\left(\int_{0}^{1}\left(\operatorname*{ess\,sup}_{0<s<t}s^{\frac{1}{p_{0}}}\,f_{*}(s)\right)^{q}(1-\log t)^{\alpha q}\,\frac{dt}{t}\right)^{\frac{1}{q}}.

Therefore, we have

(Lp0,,Lp1,q1)0,q;α=GΓ(,q;w1,w2),(L^{p_{0},\infty},\ L^{p_{1},q_{1}})_{0,q;\alpha}=G\Gamma(\infty,q;w_{1},w_{2}), (3.13)

where w1(t)=t1(1logt)αqw_{1}(t)=t^{-1}(1-\log t)^{\alpha q},  w2(t)=t1p0w_{2}(t)=t^{\frac{1}{p_{0}}},   t(0,1)t\in(0,1).

(4.)  Limiting case θ=1\theta=1, with α<1q\alpha<-\frac{1}{q} and 1q1<1\leq q_{1}<\infty.

f(Lp0,q0,Lp1,q1)1,q;α(01(t1sq1p11fq1(s)𝑑s)qq1(1logt)αqdtt)1q.||f||_{\left(L^{p_{0},q_{0}},\ L^{p_{1},q_{1}}\right)_{1,q;\alpha}}\simeq\left(\int_{0}^{1}\left(\int_{t}^{1}s^{\frac{q_{1}}{p_{1}}-1}f_{*}^{q_{1}}(s)ds\right)^{\frac{q}{q_{1}}}(1-\log t)^{\alpha q}\,\frac{dt}{t}\right)^{\frac{1}{q}}.

If, in particular, q1=p1<q_{1}=p_{1}<\infty,  α=γq+βp1\alpha=\dfrac{\gamma}{q}+\dfrac{\beta}{p_{1}}  with  γ>1\gamma>-1, β\beta\in\mathbb{R},  γ+βqp1+1<0\gamma+\beta\dfrac{q}{p_{1}}+1<0, so that α<1/q\alpha<-1/q, we have

f(Lp0,q0,Lp1)1,q;α(01(t1fp1(s)𝑑s)qp1(1logt)γ+βqp1dtt)1q||f||_{\left(L^{p_{0},q_{0}},\ L^{p_{1}}\right)_{1,q;\alpha}}\simeq\left(\int_{0}^{1}\left(\int_{t}^{1}f_{*}^{p_{1}}(s)ds\right)^{\frac{q}{p_{1}}}(1-\log t)^{\gamma+\beta\frac{q}{p_{1}}}\,\frac{dt}{t}\right)^{\frac{1}{q}}

and, from [3, Lemma 2.4, p.9],

(Lp0,q0,Lp1)1,q;α=GΓ(p1,q;w1,w2).\left(L^{p_{0},q_{0}},\ L^{p_{1}}\right)_{1,q;\alpha}=G\Gamma(p_{1},q;w_{1},w_{2}). (3.14)

with w1(t)=t1(1logt)γw_{1}(t)=t^{-1}(1-\log t)^{\gamma},  w2(t)=(1logt)βw_{2}(t)=(1-\log t)^{\beta}.

(5.)  Limiting case θ=1\theta=1, with α<1q\alpha<-\dfrac{1}{q} and q1=+q_{1}=+\infty.

f(Lp0,q0,Lp1,)1,q;α(01(esssup0<s<ts1p1f(s))q(1logt)αqdtt)1q.||f||_{\left(L^{p_{0},q_{0}},\ L^{p_{1},\infty}\right)_{1,q;\alpha}}\simeq\left(\int_{0}^{1}\left(\operatorname*{ess\,sup}_{0<s<t}s^{\frac{1}{p_{1}}}\,f_{*}(s)\right)^{q}(1-\log t)^{\alpha q}\,\frac{dt}{t}\right)^{\frac{1}{q}}.

Therefore we have

(Lp0,q0,Lp1,)1,q;α=GΓ(,q;w1,w2),(L^{p_{0},q_{0}},\ L^{p_{1},\infty})_{1,q;\alpha}=G\Gamma(\infty,q;w_{1},w_{2}), (3.15)

where w1(t)=t1(1logt)αqw_{1}(t)=t^{-1}(1-\log t)^{\alpha q},  w2(t)=t1p1w_{2}(t)=t^{\frac{1}{p_{1}}},   t(0,1)t\in(0,1).

The following result can be found in [35, Lemma 5.5, pag.100], in the more general setting of the Lorentz-Karamata spaces, of which the Lorentz-Zygmund spaces are a special case.

Theorem 3.5.

(Interpolation with logarithm function between
Lorentz-Zygmund spaces
)

Let 1p0<p1+, 1q0,q1, 1q<1\leq p_{0}<p_{1}\leq+\infty,\ 1\leq q_{0},q_{1}\leq\infty,\ 1\leq q<\infty, 0<θ<10<\theta<1,  α0,α1,α\alpha_{0},\alpha_{1},\alpha\in\mathbb{R}. Then

(Lp0,q0(logL)α0,Lp1,q1(logL)α1)θ,q;α=Lpθ,q(logL)αθ\left(L^{p_{0},q_{0}}(\log L)^{\alpha_{0}},\ L^{p_{1},q_{1}}(\log L)^{\alpha_{1}}\right)_{\theta,q;\alpha}=L^{p_{\theta},q}(\log L)^{\alpha_{\theta}} (3.16)

with 1pθ=1θp0+θp1\dfrac{1}{p_{\theta}}=\dfrac{1-\theta}{p_{0}}+\dfrac{\theta}{p_{1}}  and   αθ=(1θ)α0+θα1+α.\alpha_{\theta}=(1-\theta)\alpha_{0}+\theta\alpha_{1}+\alpha.

In particular, for α0=α1=0\alpha_{0}=\alpha_{1}=0, we recover (3.6) in case (1.)

(Lp0,q0,Lp1,q1)θ,q;α=Lpθ,q(logL)α.\displaystyle\left(L^{p_{0},q_{0}},\ L^{p_{1},q_{1}}\right)_{\theta,q;\alpha}=L^{p_{\theta},q}(\log L)^{\alpha}. (3.17)
Proof.

In [35], for Ωn\Omega\subset\mathbb{R}^{n} bounded with |Ω|=1|\Omega|=1, the Lorentz-Karamata spaces are defined through

fLp,q;b(Ω):=t1p1qb(t)f(t)Lq(0,1),\|f\|_{L_{p,q;b}(\Omega)}:=||t^{\frac{1}{p}-\frac{1}{q}}b(t)f_{*}(t)||_{L^{q}(0,1)}, (3.18)

where b(t)b(t) is a slowly varying function on (0,1)(0,1). It has been proved that

(Lp0,q0;b0,Lp1,q1;b1)θ,q;b=Lpθ,q;bθ#\left(L_{p_{0},q_{0};b_{0}},L_{p_{1},q_{1};b_{1}}\right)_{\theta,q;b}=L_{p_{\theta},q;b_{\theta}^{\#}} (3.19)

where

1pθ=1θp0+θp1\frac{1}{p_{\theta}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} (3.20)

and

bθ#(t)=b01θ(t)b1θ(t)b(t1p01p1b0(t)b1(t)),for allt(0,1).b_{\theta}^{\#}(t)=b_{0}^{1-\theta}(t)\,b_{1}^{\theta}(t)\,b\left(t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}}\frac{b_{0}(t)}{b_{1}(t)}\right),\ \ \hbox{for all}\ \ t\in(0,1). (3.21)

Choosing b0(t)=(1logt)α0b_{0}(t)=(1-\log t)^{\alpha_{0}},  b1(t)=(1logt)α1b_{1}(t)=(1-\log t)^{\alpha_{1}},  b(t)=(1logt)αb(t)=(1-\log t)^{\alpha}, we have

Lp0,q0;b0(Ω)=Lp0,q0(logL)α0(Ω),Lp1,q1(logL)α1(Ω)=Lp1,q1(logL)α1(Ω).L_{p_{0},q_{0};b_{0}}(\Omega)=L^{p_{0},q_{0}}(\log L)^{\alpha_{0}}(\Omega),\ \ \ L^{p_{1},q_{1}}(\log L)^{\alpha_{1}}(\Omega)=L^{p_{1},q_{1}}(\log L)^{\alpha_{1}}(\Omega).

Therefore, the left hand side of (3.19) becomes

(Lp0,q0(logL)α0,Lp1,q1(logL)α1)θ,q;α.\left(L^{p_{0},q_{0}}(\log L)^{\alpha_{0}},L^{p_{1},q_{1}}(\log L)^{\alpha_{1}}\right)_{\theta,q;\alpha}.

Now, to identify the space Lpθ,q;bθ#L_{p_{\theta},q;b_{\theta}^{\#}}, we determine bθ#b_{\theta}^{\#}:

bθ#(t)=(1logt)α0(1θ)+α1θ[1log(t1p01p1(1logt)α0α1)]α.b_{\theta}^{\#}(t)=(1-\log t)^{\alpha_{0}(1-\theta)+\alpha_{1}\theta}[1-\log(t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}}(1-\log t)^{\alpha_{0}-\alpha_{1}})]^{\alpha}.

It is easy to see that

limt0+1log(t1p01p1(1logt)α0α1)1logt=1p01p1\lim_{t\to 0^{+}}\frac{1-\log(t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}}(1-\log t)^{\alpha_{0}-\alpha_{1}})}{1-\log t}=\frac{1}{p_{0}}-\frac{1}{p_{1}}

since

limt0+1(1p01p1)logt1logt=1p01p1,limt0+(α0α1)log(1logt)1logt=0.\lim_{t\to 0^{+}}\frac{1-\left(\frac{1}{p_{0}}-\frac{1}{p_{1}}\right)\log t}{1-\log t}=\frac{1}{p_{0}}-\frac{1}{p_{1}},\ \ \lim_{t\to 0^{+}}\frac{(\alpha_{0}-\alpha_{1})\log(1-\log t)}{1-\log t}=0.

Therefore

bθ#(t)(1logt)α0(1θ)+α1θ(1logt)α=(1logt)α0(1θ)+α1θ+α,b_{\theta}^{\#}(t)\simeq(1-\log t)^{\alpha_{0}(1-\theta)+\alpha_{1}\theta}(1-\log t)^{\alpha}=(1-\log t)^{\alpha_{0}(1-\theta)+\alpha_{1}\theta+\alpha},

hence

Lpθ,q;bθ#=Lpθ,q(logL)α0(1θ)+α1θ+α=Lpθ,q(logL)αθ.L_{p_{\theta},q;b_{\theta}^{\#}}=L^{p_{\theta},q}(\log L)^{\alpha_{0}(1-\theta)+\alpha_{1}\theta+\alpha}=L^{p_{\theta},q}(\log L)^{\alpha_{\theta}}.

In the limiting case p0=p1p_{0}=p_{1} and q0=q1q_{0}=q_{1}, the following description of interpolation spaces between Lorentz–Zygmund spaces is given in [1, (7.2), p.21], where GΓG\Gamma spaces are defined in slightly different way, but that here we rewrite according our notations.

Let 0<p,q,r<0<p,q,r<\infty,  0<θ<10<\theta<1,  α,β,α<β\alpha,\beta\in\mathbb{R},\ \alpha<\beta. Let

w1(t)=t1(1lnt)θr(βα)1,w2(t)=tq/p1(1lnt)αq,0<t<1.w_{1}(t)=t^{-1}(1-\ln t)^{\theta r(\beta-\alpha)-1},\ \ \ \ w_{2}(t)=t^{q/p-1}(1-\ln t)^{\alpha q},\quad 0<t<1.

Then

(Lp,q(logL)α,Lp,q(logL)β)θ,r=GΓ(q,r;w1,w2).\left(L^{p,q}(\log L)^{\alpha},L^{p,q}(\log L)^{\beta}\right)_{\theta,r}=G\Gamma(q,r;w_{1},w_{2}). (3.22)

4. Interpolation of Hölderian mappings

Let 0<α10<\alpha\leq 1 and X,YX,Y two normed spaces. A mapping

𝒯:XY{\mathcal{T}}:X\to Y

is globally α\alpha-Hölderian, with Hölder constant cc, if

c>0:𝒯a𝒯bYcabXα,a,bX.\exists\,c>0\ :\ ||{\mathcal{T}}a-{\mathcal{T}}b||_{Y}\leq c||a-b||^{\alpha}_{X},\ \ \forall\,a,b\in X.

In the sequel we will consider four normed spaces X1X0X_{1}\subset X_{0}, Y1Y0Y_{1}\subset Y_{0} and

𝒯:XiYi,i=0,1,{\mathcal{T}}:X_{i}\to Y_{i},\ \ i=0,1,

a nonlinear mapping satisfying, for 0<α10<\alpha\leq 1 and β>0\beta>0, the following conditions:

  1. (1)

    𝒯a𝒯bY0f(aX0,bX0)abX0α,a,bX0||{\mathcal{T}}a-{\mathcal{T}}b||_{Y_{0}}\leq f(||a||_{X_{0}},||b||_{X_{0}})||a-b||^{\alpha}_{X_{0}},\ \ \forall\,a,b\in X_{0},

  2. (2)

    𝒯aY1g(aX0)aX1β,aX1,||{\mathcal{T}}a||_{Y_{1}}\leq g(||a||_{X_{0}})||a||_{X_{1}}^{\beta},\ \ \forall\,a\in X_{1},

where gg is a continuous increasing function on +\mathbb{R}_{+}, ff is continuous on +2\mathbb{R}_{+}^{2} and increasing for any σ+\sigma\in\mathbb{R}_{+}.

We put

G(σ)=max{g(2σ);f(σ,2σ)},σ+.G(\sigma)=\max\{g(2\sigma);f(\sigma,2\sigma)\},\ \ \sigma\in\mathbb{R}_{+}. (4.1)

In the next Theorems we extend some Tartar’s results contained in [56, 57].

Theorem 4.1.

Let λ\lambda\in\mathbb{R} and 0<α10<\alpha\leq 1. Let X1X0X_{1}\subset X_{0}, Y1Y0Y_{1}\subset Y_{0} be normed spaces and assume that X1X_{1} is dense in X0X_{0}. If

𝒯:XiYi,is globallyα-Hölderian,i=0,1,{\mathcal{T}}:X_{i}\to Y_{i},\ \ \hbox{is globally}\ \ \alpha\hbox{-H\"{o}lderian},\ \ i=0,1,

then, for 0θ10\leq\theta\leq 1 and 1p+1\leq p\leq+\infty,

𝒯:(X0,X1)θ,p;λ(Y0,Y1)θ,pα;λαisα-Hölderian,{\mathcal{T}}:(X_{0},X_{1})_{\theta,p;\lambda}\to(Y_{0},Y_{1})_{\theta,\frac{p}{\alpha};\lambda\alpha}\ \ \hbox{is}\ \ \alpha\hbox{-H\"{o}lderian},

i.e.   𝒯a𝒯bθ,pα;λαcabθ,p;λα,a,b(X0,X1)θ,p;λ\displaystyle||{\mathcal{T}}a-{\mathcal{T}}b||_{\theta,\frac{p}{\alpha};\lambda\alpha}\leq c\,||a-b||^{\alpha}_{\theta,p;\lambda},\ \ \ \forall\,a,b\in(X_{0},X_{1})_{\theta,p;\lambda}

Theorem 4.2.

Let λ\lambda\in\mathbb{R}, 0<α10<\alpha\leq 1 and β>0\beta>0, with αβ\alpha\leq\beta. Let X1X0X_{1}\subset X_{0}, Y1Y0Y_{1}\subset Y_{0} be normed spaces and

𝒯:XiYi,i=0,1,{\mathcal{T}}:X_{i}\to Y_{i},\ \ i=0,1,

a mapping satisfying the assumptions (1) and (2).

Then, for 0θ10\leq\theta\leq 1 and 1p+1\leq p\leq+\infty,

𝒯maps(X0,X1)θ,p;λinto(Y0,Y1)θαβ,pα;λα{\mathcal{T}}\ \ \hbox{maps}\ \ (X_{0},X_{1})_{\theta,p;\lambda}\ \ \hbox{into}\ \ (Y_{0},Y_{1})_{\theta\frac{\alpha}{\beta},\frac{p}{\alpha};\lambda\alpha}

and

𝒯aθαβ,pα;λα[(1+aX0βα)G(aX0)]aθ,p;λα.||{\mathcal{T}}a||_{\theta\frac{\alpha}{\beta},\frac{p}{\alpha};\lambda\alpha}\lesssim[(1+||a||_{X_{0}}^{\beta-\alpha})\,G(||a||_{X_{0}})]\,||a||^{\alpha}_{\theta,p;\lambda}.

5. Estimates of the KK -functional related to the mapping 𝒯\mathcal{T}

Here we study the action of the nonlinear mappings 𝒯\mathcal{T} on the KK-funtional, defined in Section 3 (see [2, Section 2.1].

Theorem 5.1.

Let 0<α10<\alpha\leq 1,  β>0\beta>0. Let X1X0X_{1}\subset X_{0}, Y1Y0Y_{1}\subset Y_{0}, be four normed spaces and

𝒯:XiYi,i=0,1,{\mathcal{T}}:X_{i}\to Y_{i},\ \ i=0,1,

a nonlinear mapping satisfying the assumptions (1) and (2) in Section 4 and the function GG defined in (4.1). Then, aX0\forall\,a\in X_{0},  t>0\forall\,t>0, we have

K(𝒯a,tβ,Y0,Y1)=K(𝒯a,tβ)G(aX0)([K(a,t)]β+[K(a,t)]α).K\big{(}{\mathcal{T}}a,t^{\beta},Y_{0},Y_{1}\big{)}=K({\mathcal{T}}a,t^{\beta})\leq G(||a||_{X_{0}})\left([K(a,t)]^{\beta}+[K(a,t)]^{\alpha}\right).

Moreover, if βα\beta\geq\alpha,  then

K(𝒯a,tβ)G(aX0)(1+aX0βα)[K(a,t)]α.K({\mathcal{T}}a,t^{\beta})\leq G(||a||_{X_{0}})(1+||a||_{X_{0}}^{\beta-\alpha})[K(a,t)]^{\alpha}.

As a particular case we have the following consequences.

Corollary 5.2.

Let 0<α10<\alpha\leq 1,  β>0\beta>0. Let X1X0X_{1}\subset X_{0}, Y1Y0Y_{1}\subset Y_{0}, be four normed spaces. Assume that the mapping 𝒯:X0Y0{\mathcal{T}}:X_{0}\to Y_{0} is globally α\alpha-Hölderian with constant M0M_{0}, i.e.

𝒯a𝒯bY0M0abX0α,a,bX0,||{\mathcal{T}}a-{\mathcal{T}}b||_{Y_{0}}\leq M_{0}||a-b||^{\alpha}_{X_{0}},\ \ \ \forall\,a,b\in X_{0},

and 𝒯{\mathcal{T}} maps X1X_{1} into Y1Y_{1}, in the sense that M1>0,β>0\exists\,M_{1}>0,\ \beta>0  s.t.

𝒯aY1M1aX1β.||{\mathcal{T}}a||_{Y_{1}}\leq M_{1}||a||_{X_{1}}^{\beta}.

Then

K(𝒯a,tβ)max(M0;M1)([K(a,t)]β+[K(a,t)]α),aX0,t>0.K({\mathcal{T}}a,t^{\beta})\leq\max(M_{0};M_{1})\Big{(}[K(a,t)]^{\beta}+[K(a,t)]^{\alpha}\Big{)},\ \ \forall\,a\in X_{0},\ \forall\,t>0.

Moreover, if βα\beta\geq\alpha, then

K(𝒯a,tβ)max(M0;M1)(1+aX0βα)[K(a,t)]α.K({\mathcal{T}}a,t^{\beta})\leq\max(M_{0};M_{1})\,(1+||a||_{X_{0}}^{\beta-\alpha})\,[K(a,t)]^{\alpha}.
Corollary 5.3.

Let 0<α10<\alpha\leq 1. Let X1X0X_{1}\subset X_{0}, Y1Y0Y_{1}\subset Y_{0}, be four normed spaces. Assume that the mapping

𝒯:XiYi,i=0,1,{\mathcal{T}}:X_{i}\to Y_{i},\ \ \ i=0,1,

is globally α\alpha-Hölderian with constant MiM_{i}, for i=0,1i=0,1,   i.e.

𝒯a𝒯bYiMiabXiα,a,bXi.||{\mathcal{T}}a-{\mathcal{T}}b||_{Y_{i}}\leq M_{i}||a-b||^{\alpha}_{X_{i}},\ \ \forall\,a,b\in X_{i}.

Then, aX0,bX1,t>0\forall\,a\in X_{0},\ \forall\,b\in X_{1},\ \forall\,t>0, we have

K(𝒯a𝒯b,tα)2max(M0;M1)[K(ab,t)]α.K({\mathcal{T}}a-{\mathcal{T}}b,t^{\alpha})\leq 2\max(M_{0};M_{1})\,[K(a-b,t)]^{\alpha}.

Furthermore, if X1X_{1} is dense in X0X_{0}, then the above inequality holds also for all bX0b\in X_{0}.

6. Applications to the regularity of the solution of a pp-Laplacian equation

The Marcinkiewicz interpolation theorems for linear operators acting on Lebesgue spaces turned out to be a powerful tool for studying regularity of solutions for linear PDEs in LpL^{p}-spaces. The KK-method introduced by J. Peetre ([46, 48]) allowed to extend the study of regularity of solutions of linear equations on spaces different from LpL^{p}-spaces. The main difficulty to apply Peetre’s definition is the identification of the interpolation spaces between two normed spaces embedded in a same topological space. In [3, 26, 27, 25] we did such a study with applications to linear PDEs using non-standard spaces as grand or small Lebesgue spaces and GΓG\Gamma-spaces.

In [57] L. Tartar gave interpolation results on nonlinear Hölderian mappings (which include Lipschitz mappings) with applications to semi-linear PDEs.

Other results concerning interpolation of Lipschitz operators and other applications of Interpolation theory, also in PDEs, can be found, e.g., in [14, 41, 42, 43, 44, 47].

6.1. The quasilinear pp-Laplacian equation

In the sequel we will consider Ω\Omega a bounded smooth domain of n\mathbb{R}^{n},  n2n\geq 2,  1<p<+1<p<+\infty,   1p+1p=1\dfrac{1}{p}+\dfrac{1}{p^{\prime}}=1. Recall that W1,p(Ω)W^{1,p}(\Omega) is the classical Sobolev space of all real-valued functions fLp(Ω)f\in L^{p}(\Omega) whose first-order weak (or distributional) partial derivatives on Ω\Omega belong to Lp(Ω)L^{p}(\Omega), normed by

fW1,p(Ω)=fLp(Ω)+fLp(Ω).||f||_{W^{1,p}(\Omega)}=||f||_{L^{p}(\Omega)}+||\nabla f||_{L^{p}(\Omega)}.

The space W01,p(Ω)W_{0}^{1,p}(\Omega) denotes the closure of C0(Ω)C_{0}^{\infty}(\Omega) in W1,p(Ω)W^{1,p}(\Omega); rougly speaking W01,p(Ω)W_{0}^{1,p}(\Omega) is a subspace of W1,p(Ω)W^{1,p}(\Omega) consisting of functions which vanish on the boundary of Ω\Omega. Its dual is W1,p(Ω)=(W01,p(Ω))W^{-1,p^{\prime}}(\Omega)=(W_{0}^{1,p}(\Omega))^{\prime}.

We provide applications of the results described in Sections 3, 4 and 5 to regularity on the gradient of the weak or entropic-renormalized solution uu to the quasilinear equation of the form

div(|u|p2u)+V(x;u)=f,u=0onΩ,-{\rm div\,}(|\nabla u|^{p-2}\nabla u)+V(x;u)=f,\ \ \ \ u=0\ {\rm on}\ \partial\Omega, (6.1)

associated to the Dirichlet homogeneous condition on the boundary, where 1<p<1<p<\infty, VV is a nonlinear potential and ff belongs to non-standard spaces such as Lorentz-Zygmund spaces.

More precisely, we assume that V:Ω×V:\Omega\times\mathbb{R}\to\mathbb{R} is a Carathéodory function satisfying:

  1. (H1)

    the mapping xΩV(x;σ)x\in\Omega\to V(x;\sigma) is in L(Ω)L^{\infty}(\Omega) for every σ\sigma\in\mathbb{R};

  2. (H2)

    the mapping σV(x;σ)\sigma\in\mathbb{R}\to V(x;\sigma) is continuous and non decreasing for almost every xΩx\in\Omega and V(x;0)=0V(x;0)=0.

The pp-laplacian is strong coercive, that is satisfies the following inequality, which can be found in [17, Lemma 4.10, p.264].

For p2p\geq 2, there exists a constant αp>0\alpha_{p}>0 such that, for all ξ,ξn\xi,\xi^{\prime}\in\mathbb{R}^{n},

(|ξ|p2ξ|ξ|p2ξ,ξξ)nαp|ξξ|p,(|\xi|^{p-2}\xi-|\xi^{\prime}|^{p-2}\xi^{\prime},\xi-\xi^{\prime})_{\mathbb{R}^{n}}\geq\alpha_{p}|\xi-\xi^{\prime}|^{p}, (6.2)

where the symbol (,)n(\cdot,\cdot)_{\mathbb{R}^{n}} in the left-hand side denotes the inner product in n\mathbb{R}^{n} and |||\cdot| is the associated norm.

The next Proposition follows from Leray–Lions’method for monotone operators (see [40]) or the usual fixed point theorem of Leray–Schauder’s type (see [34]).

Proposition 6.2.

(weak solution)
Let fL1(Ω)W1,p(Ω)f\in L^{1}(\Omega)\cap W^{-1,p^{\prime}}(\Omega),  1<p<+1<p<+\infty,   1p+1p=1\dfrac{1}{p}+\dfrac{1}{p^{\prime}}=1.

Then there exists a unique weak solution of the Dirichlet problem (6.1), i.e. a unique uW01,p(Ω)u\in W^{1,p}_{0}(\Omega) such that

Ωφ(x)V(x;u)𝑑x+Ω|u|p2uφdx=Ωfφ𝑑x,φW01,p(Ω)L(Ω)\begin{gathered}\int_{\Omega}\varphi(x)V(x;u)dx+\int_{\Omega}|\nabla u|^{p-2}\nabla u\cdot\nabla\varphi dx=\int_{\Omega}f\varphi\,dx,\\ \ \ \ \forall\,\varphi\in W^{1,p}_{0}(\Omega)\cap L^{\infty}(\Omega)\end{gathered} (6.3)
Remark 6.3.

We observe that if p>np>n then L1(Ω)W1,p(Ω)L^{1}(\Omega)\subset W^{-1,p^{\prime}}(\Omega). In this case it is well known that, if the datum ff of (6.1) is in L1(Ω)L^{1}(\Omega), there is existence and uniqueness of the weak solution, which is bounded (thanks to the Sobolev embedding). The existence follows from the classical results on operators acting between Sobolev spaces in duality (see, e.g., [40, p.107], [11, 15, 39]).

If 1<p<n1<p<n then L(p)(Ω)W1,p(Ω)L^{(p^{*})^{\prime}}(\Omega)\subset W^{-1,p^{\prime}}(\Omega), where p=npnpp^{*}=\frac{np}{n-p}, and also L(p)(Ω)L1(Ω)L^{(p^{*})^{\prime}}(\Omega)\subset L^{1}(\Omega). Therefore, if the datum ff of (6.1) is in L(p)(Ω)L^{(p^{*})^{\prime}}(\Omega), we have fL1(Ω)W1,p(Ω)f\in L^{1}(\Omega)\cap W^{-1,p^{\prime}}(\Omega), hence Proposition 6.2 can be applied.

If p=np=n then Lq(Ω)W1,p(Ω)L^{q^{\prime}}(\Omega)\subset W^{-1,p^{\prime}}(\Omega) for any q[1,[q\in[1,\infty[, where q=qq1q^{\prime}=\frac{q}{q-1}. Therefore, if fLq(Ω)f\in L^{q^{\prime}}(\Omega), for the same above reasons, we can apply Proposition 6.2.

Remark 6.4.

In the case p=np=n and ff in L1(Ω)L^{1}(\Omega) the Iwaniec-Sbordone’s method guarantees existence and uniqueness of the weak solution of (6.1); see, e.g., [36], where the authors use the Hodge decomposition in a smart way in a variety of questions (see also [21, 45]); see [30] for the particular case p=n=2p=n=2).

For the above Remark, the meaningful case is

p<n,p<n,

even if all our next results remain still true for pnp\geq n.

We define a nonlinear mapping

𝒯:L1(Ω)W1,p(Ω)[Lp(Ω)]nf𝒯f=u.\begin{matrix}{\mathcal{T}}:&L^{1}(\Omega)\cap W^{-1,p^{\prime}}(\Omega)&\longrightarrow&\big{[}L^{p}(\Omega)\big{]}^{n}\\[8.53581pt] &f&\longmapsto&{\mathcal{T}}f=\nabla u.\end{matrix} (6.4)

We intend to extend the mapping 𝒯\mathcal{T} over all L1(Ω)L^{1}(\Omega).

If p<np<n and ff is only in L1(Ω)L^{1}(\Omega), the formulation by equation (6.3) cannot ensure the uniqueness of the solution.

This case attracted the interest of several researchers, who tried to find a satisfying notion of solution in order to get both existence and uniqueness of the solution (see, for instance, [5, 9, 10, 12, 18, 50, 52]).

Here we focus our attention to the so-called entropic-renormalized solutions, considered by Jean Michel Rakotoson in [51, 52] (see also [5]), which are defined as follows.

Definition 6.5.

(Entropic-renormalized solution)

Let Ωn\Omega\subset\mathbb{R}^{n} be a bounded smooth domain.

For all k>0k>0, we consider the truncation operator Tk:T_{k}:\mathbb{R}\to\mathbb{R} defined by

Tk(σ)={|k+σ||kσ|}/2,T_{k}(\sigma)=\{|k+\sigma|-|k-\sigma|\}/2, (6.5)

and we define 𝕊01,p\mathbb{S}^{1,p}_{0} as the set of all measurable functions v:Ωv:\Omega\to\mathbb{R} satisfying:

1.  tan1(v)W01,1(Ω){\rm tan}^{-1}(v)\in W^{1,1}_{0}(\Omega);

2.  k>0,Tk(v)W01,p(Ω)\forall\,k>0,\ T_{k}(v)\in W^{1,p}_{0}(\Omega);

3.  supk>0k1pTk(v)Lp(Ω)<\displaystyle\sup_{k>0}k^{-\frac{1}{p}}||\nabla T_{k}(v)||_{L^{p}(\Omega)}<\infty.

A function uu defined on Ω\Omega is an entropic-renormalized solution of the Dirichlet problem

Δpu+V(x;u)=fL1(Ω),u=0onΩ-\Delta_{p}u+V(x;u)=f\in L^{1}(\Omega),\quad\quad u=0\quad{\rm on}\ \partial\Omega (6.6)

if

(1)   u𝕊01,p(Ω)u\in\mathbb{S}^{1,p}_{0}(\Omega), V(,u)L1(Ω).V(\cdot,u)\in L^{1}(\Omega).

(2)   ηW1,r(Ω),r>n,φW01,p(Ω)L(Ω)\forall\,\eta\in W^{1,r}(\Omega),\ r>n,\ \ \forall\,\varphi\in W^{1,p}_{0}(\Omega)\cap L^{\infty}(\Omega) and all BW1,()B\in W^{1,\infty}(\mathbb{R}) with B(0)=0B(0)=0, B(σ)=0B^{\prime}(\sigma)=0 for all σ\sigma such |σ|σ0>0|\sigma|\geq\sigma_{0}>0, one has:

Ω|u|p2u(ηB(uφ))dx+ΩV(x;u)ηB(uφ)𝑑x=ΩfηB(uφ)𝑑x\!\int_{\Omega}|\nabla u|^{p-2}\nabla u\cdot\nabla\Big{(}\eta B(u-\varphi)\Big{)}dx+\int_{\Omega}V(x;u)\eta B(u-\varphi)dx=\!\int_{\Omega}f\eta B(u-\varphi)dx (6.7)
Remark 6.6.

If fLp(Ω)f\in L^{p^{\prime}}(\Omega) then the formulation (6.7) is equivalent to the formulation (6.3), i.e. a weak solution is an entropic-renormalized solution (see [51] or [45] for the case p=np=n). In [5, 9, 12, 50, 53] existence and uniqueness of an entropic-renormalized solution have been proved.

Theorem 6.7.

Let fL1(Ω)f\in L^{1}(\Omega) and V:Ω×V:\Omega\times\mathbb{R}\to\mathbb{R} a Caratheodory function satisfying the assumptions (H1) and (H2). Then there exists a unique entropic-renormalized solution of the equation (6.6).

Moreover, let uju_{j} be a sequence of the solutions of (6.6) with respective data fjf_{j}, jj\in\mathbb{N}. If the sequence (fj)(f_{j}) converges to ff in L1(Ω)L^{1}(\Omega), then the sequence (uj(x))(\nabla u_{j}(x)) converges to u(x)\nabla u(x) almost everywhere in Ω\Omega (up to subsequences still denoted by {uj}\{u_{j}\}). When p>21np>2-\dfrac{1}{n}, the solution uW01,1(Ω).u\in W^{1,1}_{0}(\Omega).

The next Proposition gathers well known results (see [13, 14, 23, 54, 55]).

We shall need the following additional growth assumption on VV.

(H3)   There exist a constant c>0c>0 and m1[p1,m¯1[m_{1}\in[p-1,\overline{m}_{1}[, where

m¯1={(p1)(1+1np)ifp<n<+ifpn,\overline{m}_{1}=\begin{cases}(p-1)\left(1+\dfrac{1}{n-p}\right)&if\ p<n\\ <+\infty&if\ p\geq n,\end{cases}

such that

|V(x,σ)|c|σ|m1,σ,a.e.xΩ.|V(x,\sigma)|\leq c|\sigma|^{m_{1}},\qquad\forall\,\,\sigma\in\mathbb{R},\ a.e.\ x\in\Omega.
Proposition 6.8.

Let uu be the solution of the Dirichlet problem (6.6), with fLp(Ω)f\in L^{p^{\prime}}(\Omega). Let us assume that VV satisfies (H1) and (H2).

  • If fLnp,1p1(Ω)f\in L^{\frac{n}{p},\frac{1}{p-1}}(\Omega) and pnp\leq n, then uL(Ω)u\in L^{\infty}(\Omega) and

    uL(Ω)cfLnp,1p1(Ω)1p1.\displaystyle||u||_{L^{\infty}(\Omega)}\leq c||f||^{\frac{1}{p-1}}_{L^{\frac{n}{p},\frac{1}{p-1}}(\Omega)}. (6.8)
  • If fL1,1p1(Ω)f\in L^{1,\frac{1}{p-1}}(\Omega) and p>np>n, then uL(Ω)u\in L^{\infty}(\Omega) and

    uL(Ω)cfL1,1p1(Ω)1p1.\displaystyle||u||_{L^{\infty}(\Omega)}\leq c||f||^{\frac{1}{p-1}}_{L^{1,\frac{1}{p-1}}(\Omega)}. (6.9)
  • If VV satisfies also the growth assumption (H3) and fLn,1(Ω)f\in L^{n,1}(\Omega), n3n\geq 3, then

    uL(Ω)c(1+fL1m1+1pp1)fLn,1(Ω)1p1.||\nabla u||_{L^{\infty}(\Omega)}\leq c\Big{(}1+||f||^{\frac{m_{1}+1-p}{p-1}}_{L^{1}}\Big{)}||f||^{\frac{1}{p-1}}_{L^{n,1}(\Omega)}. (6.10)

    All the constants denoted by cc depend only on p,Ω,Vp,\Omega,V.

Remark 6.9.

We observe that, for p>nLpL1,1p1p>n\ \Rightarrow\ L^{p^{\prime}}\subset L^{1,\frac{1}{p-1}}.

For p2Ln,1Lpp\geq 2\ \Rightarrow\ L^{n,1}\subset L^{p^{\prime}} since, if p>np>n, we have p<nnp^{\prime}<n^{\prime}\leq n; if 2pn2\leq p\leq n, then pp1pn\frac{p}{p-1}\leq p\leq n, hence pnp^{\prime}\leq n.

The following Lemma provides estimates for the potential VV.

Lemma 6.10.

Let uu be a weak solution of (6.1):

Δpu+V(x;u)=f,u=0onΩ.-\Delta_{p}u+V(x;u)=f,\quad\quad u=0\quad{\rm on}\ \partial\Omega.

Assume that VV satisfies (H1), (H2), (H3). Let m1m_{1} the number defined in condition (H3).

Let m3=nnp(p1)m_{3}=\displaystyle\frac{n}{n-p}(p-1)  if 1<p<n1<p<n  or  m3[nm1,+[m_{3}\in[nm_{1},+\infty[  if  pnp\geq n.

  • If  uL(Ω)u\in L^{\infty}(\Omega), then

    V(;u())Ln,11p1uuLm3,1m1+1pp1.||V(\cdot;u(\cdot))||_{L^{n,1}}^{\frac{1}{p-1}}\lesssim||u||_{\infty}\cdot||u||_{L^{m_{3},1}}^{\frac{m_{1}+1-p}{p-1}}. (6.11)
  • If  fLn,1(Ω)f\in L^{n,1}(\Omega), then

    ||V(;u()||Ln,11p1||f||Ln,11p1||f||L1m1+1pp1.||V(\cdot;u(\cdot)||^{\frac{1}{p-1}}_{L^{n,1}}\lesssim||f||_{L^{n,1}}^{\frac{1}{p-1}}\cdot||f||_{L^{1}}^{\frac{m_{1}+1-p}{p-1}}. (6.12)

We point out that the proof of (6.10) in Proposition 6.8 is consequence of Cianchi-Maz’ya estimate and (6.12) in Lemma 6.10. In fact, if uu is a weak solution of (6.1) for fLn,1(Ω)f\in L^{n,1}(\Omega), then Δpu=fV(;u)Ln,1-\Delta_{p}u=f-V(\cdot;u)\in L^{n,1}. By Cianchi-Maz’ya result (see [14, Theorem 4.4]) and our estimate (6.12), we have

uL\displaystyle||\nabla u||_{L^{\infty}} \displaystyle\lesssim fV(;u)Ln,11p1fLn,11p1+V(;u)Ln,11p1\displaystyle||f-V(\cdot;u)||^{\frac{1}{p-1}}_{L^{n,1}}\lesssim||f||_{L^{n,1}}^{\frac{1}{p-1}}+||V(\cdot;u)||_{L^{n,1}}^{\frac{1}{p-1}}
\displaystyle\lesssim fLn,11p1+fLn,11p1fL1m1+1pp1\displaystyle||f||_{L^{n,1}}^{\frac{1}{p-1}}+||f||_{L^{n,1}}^{\frac{1}{p-1}}\cdot||f||_{L^{1}}^{\frac{m_{1}+1-p}{p-1}}
\displaystyle\lesssim (1+fL1m1+1pp1)fLn,1(Ω)1p1.\displaystyle\Big{(}1+||f||^{\frac{m_{1}+1-p}{p-1}}_{L^{1}}\Big{)}||f||^{\frac{1}{p-1}}_{L^{n,1}(\Omega)}.

7. The Hölderian mappings for the case p2p\geq 2

In this Section we apply our previuos results to Hölderian mappings in order to obtain regularity results on the gradient of the solution of the equation (6.6):

div(|u|p2u)+V(x;u)=fL1,u=0onΩ.-{\rm div\,}(|\nabla u|^{p-2}\nabla u)+V(x;u)=f\in L^{1},\ \ \ \ u=0\ {\rm on}\ \partial\Omega.

We recall again that, even if the next results remain valid in the case pnp\geq n, we will consider only the meaningful case

p<n.p<n.

For the case pnp\geq n, the number p=npnpp^{*}=\frac{np}{n-p} appearing in the case p<np<n, should be replaced by any finite number.

Recall also that

p=pp1,n=nn1,(p)=npnpn+p.p^{\prime}=\frac{p}{p-1},\ \ \ n^{\prime}=\frac{n}{n-1},\ \ \ (p^{*})^{\prime}=\frac{np}{np-n+p}.
Theorem 7.1.

Let 2p<n2\leq p<n, f1,f2L1(Ω)f_{1},f_{2}\in L^{1}(\Omega) and u1,u2u_{1},u_{2} be the corresponding entropic-renormalized solution of (6.6). Then

  1. (1)

    Ω|Tk(u1u2)|p𝑑xcΩ|f1f2|𝑑x\displaystyle\int_{\Omega}|\nabla T_{k}(u_{1}-u_{2})|^{p}\,dx\leq c\int_{\Omega}|f_{1}-f_{2}|\,dx,

  2. (2)

    u1,u2W01,1(Ω)u_{1},u_{2}\in W_{0}^{1,1}(\Omega)  and  (u1u2)Ln(p1),(Ω)cf1f2L1(Ω)1p1\displaystyle||\nabla(u_{1}-u_{2})||_{L^{n^{\prime}(p-1),\infty}(\Omega)}\leq c||f_{1}-f_{2}||^{\frac{1}{p-1}}_{L^{1}(\Omega)},

where n=nn1n^{\prime}=\frac{n}{n-1} and cc is a constant depending only on p,Ω,Vp,\Omega,V.

As a consequence we have

Corollary 7.2.

(of Theorem 7.1)

Assume (H1) and (H2) and let uu be the unique entropic-renormalized solution of the Dirichlet problem (6.6). Let 𝒯{\mathcal{T}} be the mapping f𝒯ff\mapsto{\mathcal{T}}f, with

𝒯f=u.{\mathcal{T}}f=\nabla u.

For 2p<n2\leq p<n we extend the mapping

𝒯:L1(Ω)[Ln(p1),(Ω)]n{\mathcal{T}}:L^{1}(\Omega)\longrightarrow[L^{n^{\prime}(p-1),\infty}(\Omega)]^{n}

and 𝒯{\mathcal{T}} is  1p1\frac{1}{p-1}-Hölderian, i.e.

c(p,Ω)>0:𝒯f1𝒯f2Ln(p1),c(p,Ω)f1f2L1(Ω)1p1,\exists\,c(p,\Omega)>0\ :\ ||{\mathcal{T}}f_{1}-{\mathcal{T}}f_{2}||_{L^{n^{\prime}(p-1),\infty}}\leq c(p,\Omega)||f_{1}-f_{2}||^{\frac{1}{p-1}}_{L^{1}(\Omega)},

where n=nn1n^{\prime}=\frac{n}{n-1}.

Remark 7.3.

If 2p<n2\leq p<n then Lp(Ω)Ln(p1),(Ω)L^{p}(\Omega)\subset L^{n^{\prime}(p-1),\infty}(\Omega), since n<pn^{\prime}<p^{\prime} and hence n(p1)<pn^{\prime}(p-1)<p.

Theorem 7.4.

Assume (H1) and (H2) and let uu be the unique entropic-renormalized solution of the Dirichlet problem (6.6). Let 𝒯{\mathcal{T}} be the mapping f𝒯ff\mapsto{\mathcal{T}}f, with

𝒯f=u.{\mathcal{T}}f=\nabla u.

For 2p<n2\leq p<n the previous mapping in Corollary 7.2 is also 1p1\frac{1}{p-1}-Hölderian from L(p)L^{(p^{*})^{\prime}} into [Lp(Ω)]n[L^{p}(\Omega)]^{n},

𝒯:L(p)[Lp(Ω)]n,{\mathcal{T}}:L^{(p^{*})^{\prime}}\to[L^{p}(\Omega)]^{n},
i.e.cp>0:||𝒯f1𝒯f2||Lpcp||f1f2||L(p)1p1,{\rm i.e.}\ \exists\,c_{p}>0\ :\ ||{\mathcal{T}}f_{1}-{\mathcal{T}}f_{2}||_{L^{p}}\leq c_{p}||f_{1}-f_{2}||^{\frac{1}{p-1}}_{L^{(p^{*})^{\prime}}},

where p=pp1,p=npnp,(p)=npnpn+pp^{\prime}=\frac{p}{p-1},\ \ \ p^{*}=\frac{np}{n-p},\ \ \ (p^{*})^{\prime}=\frac{np}{np-n+p}.

Proof.

The proof is based on the strong coercivity of the pp-laplacian and the Poincaré-Sobolev inequality. In fact, for p2p\geq 2, we recall that, from (6.2), there exists a constant αp>0\alpha_{p}>0 such that, ξn\forall\,\xi\in\mathbb{R}^{n},   ξn\forall\,\xi^{\prime}\in\mathbb{R}^{n},

(|ξ|p2ξ|ξ|p2ξ,ξξ)nαp|ξξ|p.\Big{(}|\xi|^{p-2}\xi-|\xi^{\prime}|^{p-2}\xi^{\prime},\xi-\xi^{\prime}\Big{)}_{\mathbb{R}^{n}}\geq\alpha_{p}|\xi-\xi^{\prime}|^{p}.

Therefore, for two data f1f_{1} and f2f_{2} in Lp(Ω)L^{p^{\prime}}(\Omega), dropping the non negative term, we have

cpΩ|𝒯f1𝒯f2|p𝑑xΩ(|u1|p2u1|u2|p2u2,(u1u2))𝑑x\displaystyle\!\!\!\!\!c_{p}\!\int_{\Omega}|{\mathcal{T}}f_{1}-{\mathcal{T}}f_{2}|^{p}dx\leq\!\int_{\Omega}\Big{(}|\nabla u_{1}|^{p-2}\nabla u_{1}-|\nabla u_{2}|^{p-2}\nabla u_{2},\nabla(u_{1}-u_{2})\Big{)}dx
=\displaystyle= Ω(u1u2)div(|u1|p2u1|u2|p2u2)𝑑x\displaystyle\!-\int_{\Omega}(u_{1}-u_{2})\cdot{\rm div\,}\Big{(}|\nabla u_{1}|^{p-2}\nabla u_{1}-|\nabla u_{2}|^{p-2}\nabla u_{2}\Big{)}\,dx
=\displaystyle= Ω[div(|u1|p2u1)(u1u2)+div(|u2|p2u2)(u1u2)]𝑑x\displaystyle\!\!\!\!\!\int_{\Omega}\!\left[-{\rm div\,}(|\nabla u_{1}|^{p-2}\nabla u_{1})\cdot(u_{1}-u_{2})\!+\!{\rm div\,}(|\nabla u_{2}|^{p-2}\nabla u_{2})\cdot(u_{1}-u_{2})\right]dx
=\displaystyle= Ω[(f1V(x,u1))(u1u2)+(f2+V(x,u2))(u1u2)]𝑑x\displaystyle\!\!\int_{\Omega}\left[(f_{1}-V(x,u_{1}))\cdot(u_{1}-u_{2})+(-f_{2}+V(x,u_{2}))\cdot(u_{1}-u_{2})\right]dx
=\displaystyle= Ω[(f1f2)(u1u2)+(V(x,u2)V(x,u1))(u1u2)]𝑑x\displaystyle\!\int_{\Omega}\left[(f_{1}-f_{2})(u_{1}-u_{2})+(V(x,u_{2})-V(x,u_{1}))\cdot(u_{1}-u_{2})\right]\,dx
\displaystyle\leq Ω(f1f2)(u1u2)𝑑x,\displaystyle\int_{\Omega}(f_{1}-f_{2})(u_{1}-u_{2})\,dx,

where in the last inequality we have used the monotonicity of VV with respect to the second variable, which implies (V(x,u2)V(x,u1))(u1u2)0(V(x,u_{2})-V(x,u_{1}))\cdot(u_{1}-u_{2})\leq 0.

By Poincaré–Sobolev inequality we have

Ω(f1f2)(u1u2)𝑑xc1pf1f2L(p)𝒯f1𝒯f2Lp\int_{\Omega}(f_{1}-f_{2})(u_{1}-u_{2})\,dx\leq c_{1p}||f_{1}-f_{2}||_{L^{(p^{*})^{\prime}}}||{\mathcal{T}}f_{1}-{\mathcal{T}}f_{2}||_{L^{p}}

so that

𝒯f1𝒯f2Lp(Ω)c2pf1f2L(p)1p1.||{\mathcal{T}}f_{1}-{\mathcal{T}}f_{2}||_{L^{p}(\Omega)}\leq c_{2p}||f_{1}-f_{2}||^{\frac{1}{p-1}}_{L^{(p^{*})^{\prime}}}.

Theorem 7.5.

Assume (H1) and (H2) and let uu the unique entropic-renormalized solution of the Dirichlet problem (6.6).

Let 2p<n2\leq p<n,   r[1,+]r\in[1,+\infty],  1k(p)1\leq k\leq(p^{*})^{\prime}  and  θ=p(11k)\theta=p^{*}\Big{(}1-\dfrac{1}{k}\Big{)}.

  1. (1)

    If 0<θ<10<\theta<1, i.e. 1<k<(p)1<k<(p^{*})^{\prime}, then

    𝒯f1𝒯f2Lk(p1),r(p1)cf1f2Lk,r1p1,||{\mathcal{T}}f_{1}-{\mathcal{T}}f_{2}||_{L^{k^{*}(p-1),r(p-1)}}\leq c||f_{1}-f_{2}||_{L^{k,r}}^{\frac{1}{p-1}},

    for f1,f2f_{1},\ f_{2} in Lk,r(Ω)L^{k,r}(\Omega), with k=nknkk^{*}=\dfrac{nk}{n-k}.

    In particular, if fLk,r(Ω)f\in L^{k,r}(\Omega), then u[Lk(p1),r(p1)(Ω)]n\nabla u\in[L^{k^{*}(p-1),r(p-1)}(\Omega)]^{n}.

  2. (2)

    If θ=0\theta=0, i.e. k=1k=1, then

    𝒯:GΓ(1,r;t1)GΓ(,r(p1);t1,t1n(p1)){\mathcal{T}}:G\Gamma(1,r;t^{-1})\to G\Gamma(\infty,r(p-1);t^{-1},t^{\frac{1}{n^{\prime}(p-1)}})

    is 1p1\frac{1}{p-1}-Hölderian.

  3. (3)

    If θ=1\theta=1, i.e. k=(p)k=(p^{*})^{\prime}, then

    𝒯:GΓ((p),r;v,w)GΓ(p,r(p1);v1,w1){\mathcal{T}}:G\Gamma((p^{*})^{\prime},r;v,w)\to G\Gamma(p,r(p-1);v_{1},w_{1})

    is 1p1\frac{1}{p-1}-Hölderian, where

    v=t1(1logt)γ,w=(1logt)β,γ>1,β,γ+βr(p)+1<0,v=t^{-1}(1-\log t)^{\gamma},\ w=(1-\log t)^{\beta},\ \gamma>-1,\ \beta\in\mathbb{R},\ \gamma+\beta\dfrac{r}{(p^{*})^{\prime}}+1<0,
    v1=t1(1logt)γ1,w1=(1logt)β1,γ1>1,β1,γ1+β1r(p1)p+1<0\!\!\!v_{1}=t^{-1}(1-\log t)^{\gamma_{1}}\!,w_{1}=(1-\log t)^{\beta_{1}}\!,\gamma_{1}>-1,\beta_{1}\in\mathbb{R},\gamma_{1}+\frac{\beta_{1}r(p-1)}{p}+1<0

    and such that

    γr+β(p)=γ1r+β1(p1)p.\frac{\gamma}{r}+\frac{\beta}{(p^{*})^{\prime}}=\frac{\gamma_{1}}{r}+\frac{\beta_{1}(p-1)}{p}. (7.1)
Proof.
𝒯:L1(Ω)[Ln(p1),(Ω)]nis1p1-Hölderian(by Corollary 7.2){\mathcal{T}}:L^{1}(\Omega)\to[L^{n^{\prime}(p-1),\infty}(\Omega)]^{n}\ \ \hbox{is}\ \ \frac{1}{p-1}\hbox{-H\"{o}lderian}\ \ \hbox{(by Corollary \ref{cor_extensionT})}
𝒯:L(p)(Ω)[Lp(Ω)]nis1p1-Hölderian(by Theorem 7.4).{\mathcal{T}}:L^{(p^{*})^{\prime}}(\Omega)\to[L^{p}(\Omega)]^{n}\ \ \hbox{is}\ \ \frac{1}{p-1}\hbox{-H\"{o}lderian}\ \ \hbox{(by Theorem \ref{ThTholerianp*'p})}.

It is known from (3.4) that, for 0<θ<10<\theta<1,

Lk,r(Ω)=(L1,L(p))θ,r,θ=p(11k)L^{k,r}(\Omega)=(L^{1},L^{(p^{*})^{\prime}})_{\theta,r}\,,\ \ \ \ \theta=p^{*}\Big{(}1-\dfrac{1}{k}\Big{)}

since 1k=1θ+θ(p)1k=1θ+θ(11p) 11k=θp\frac{1}{k}=1-\theta+\frac{\theta}{(p^{*})^{\prime}}\ \ \Rightarrow\ \ \frac{1}{k}=1-\theta+\theta\left(1-\frac{1}{p^{*}}\right)\ \ \Rightarrow\ \ 1-\frac{1}{k}=\frac{\theta}{p^{*}}

and 0<θ<1 1<k<(p)0<\theta<1\ \ \Rightarrow\ \ 1<k<(p*)^{\prime}.

Moreover, again from (3.4), we have

Lk(p1),r(p1)=(Ln(p1),,Lp)θ,r(p1),L^{k^{*}(p-1),r(p-1)}=\left(L^{n^{\prime}(p-1),\infty},L^{p}\right)_{\theta,r(p-1)},

in fact 1k(p1)=1θn(p1)+θp\frac{1}{k^{*}(p-1)}=\frac{1-\theta}{n^{\prime}(p-1)}+\frac{\theta}{p}, with k=nknkk^{*}=\dfrac{nk}{n-k} since k<(p)=npnpn+p<nk<(p^{*})^{\prime}=\frac{np}{np-n+p}<n.

It is easy to see that

1θn(p1)+θp\displaystyle\frac{1-\theta}{n^{\prime}(p-1)}+\frac{\theta}{p} =\displaystyle= n1n(p1)+θ(1pn1n(p1))\displaystyle\frac{n-1}{n(p-1)}+\theta\left(\frac{1}{p}-\frac{n-1}{n(p-1)}\right)
=\displaystyle= n1n(p1)+θ(npnnp+pnp(p1))\displaystyle\frac{n-1}{n(p-1)}+\theta\left(\frac{np-n-np+p}{np(p-1)}\right)
=\displaystyle= n1n(p1)θ(np)np(p1)=npp(11k)npnp(np)np(p1)\displaystyle\frac{n-1}{n(p-1)}-\frac{\theta(n-p)}{np(p-1)}=\frac{np-p-\left(1-\frac{1}{k}\right)\frac{np}{n-p}(n-p)}{np(p-1)}
=\displaystyle= nknk1p1=1k(p1).\displaystyle\frac{n-k}{nk}\cdot\frac{1}{p-1}=\frac{1}{k^{*}(p-1)}.

Then, for f1,f2f_{1},\ f_{2} in Lk,r(Ω)L^{k,r}(\Omega), from Theorem 4.1 with λ=0\lambda=0 and α=1p1\alpha=\frac{1}{p-1}, L(p)L1L^{(p^{*})^{\prime}}\subset L^{1},  LpLn(p1),L^{p}\subset L^{n^{\prime}(p-1),\infty}, we have

𝒯:(L1,L(p))θ,r[(Ln(p1),,Lp)θ,r(p1)]n{\mathcal{T}}:(L^{1},L^{(p^{*})^{\prime}})_{\theta,r}\to\left[\left(L^{n^{\prime}(p-1),\infty},L^{p}\right)_{\theta,r(p-1)}\right]^{n}

is also 1p1\frac{1}{p-1}-Hölderian, which implies

𝒯:Lk,r(Ω)[Lk(p1),r(p1)(Ω)]n{\mathcal{T}}:L^{k,r}(\Omega)\to[L^{k^{*}(p-1),r(p-1)}(\Omega)]^{n}

and

𝒯f1𝒯f2θ,r(p1)f1f2θ,r1p1,||{\mathcal{T}}f_{1}-{\mathcal{T}}f_{2}||_{\theta,r(p-1)}\lesssim||f_{1}-f_{2}||^{\frac{1}{p-1}}_{\theta,r},

which yields

𝒯f1𝒯f2Lk(p1),r(p1)(Ω)f1f2Lk,r(Ω)1p1,||{\mathcal{T}}f_{1}-{\mathcal{T}}f_{2}||_{L^{k^{*}(p-1),r(p-1)}(\Omega)}\lesssim||f_{1}-f_{2}||^{\frac{1}{p-1}}_{L^{k,r}(\Omega)},

since the bounded functions are dense in Lk,r(Ω)L^{k,r}(\Omega).

For θ=0\theta=0 we have from Theorem 4.1, with λ=0\lambda=0 and α=1p1\alpha=\frac{1}{p-1},

𝒯:(L1,L(p))0,r[(Ln(p1),,Lp)0,r(p1)]n{\mathcal{T}}:(L^{1},L^{(p^{*})^{\prime}})_{0,r}\to\left[\left(L^{n^{\prime}(p-1),\infty},L^{p}\right)_{0,r(p-1)}\right]^{n}

and the assertion follows by (3.11) and (3.13) since

(L1,L(p))0,r=GΓ(1,r;t1),(L^{1},L^{(p^{*})^{\prime}})_{0,r}=G\Gamma(1,r;t^{-1}),
(Ln(p1),,Lp)0,r(p1)=GΓ(,r(p1);t1,t1n(p1)).\left(L^{n^{\prime}(p-1),\infty},L^{p}\right)_{0,r(p-1)}=G\Gamma(\infty,r(p-1);t^{-1},t^{\frac{1}{n^{\prime}(p-1)}}).

For θ=1\theta=1 we have from Theorem 4.1, with λ<1r\lambda<-\frac{1}{r} and α=1p1\alpha=\frac{1}{p-1},

𝒯:(L1,L(p))1,r;λ[(Ln(p1),,Lp)1,r(p1);λp1]n{\mathcal{T}}:(L^{1},L^{(p^{*})^{\prime}})_{1,r;\lambda}\to\left[\left(L^{n^{\prime}(p-1),\infty},L^{p}\right)_{1,r(p-1);\frac{\lambda}{p-1}}\right]^{n}

and the assertion follows by (3.14) since

(L1,L(p))1,r;λ=GΓ((p),r;t1(1logt)γ,(1logt)β),(L^{1},L^{(p^{*})^{\prime}})_{1,r;\lambda}=G\Gamma((p^{*})^{\prime},r;t^{-1}(1-\log t)^{\gamma},(1-\log t)^{\beta}),
(Ln(p1),,Lp)1,r(p1);λp1=GΓ(p,r(p1);t1(1logt)γ1,(1logt)β1),\left(L^{n^{\prime}(p-1),\infty},L^{p}\right)_{1,r(p-1);\frac{\lambda}{p-1}}=G\Gamma(p,r(p-1);t^{-1}(1-\log t)^{\gamma_{1}},(1-\log t)^{\beta_{1}}),

where

λ=γr+β(p)\lambda=\dfrac{\gamma}{r}+\dfrac{\beta}{(p^{*})^{\prime}},   γ>1\gamma>-1, β\beta\in\mathbb{R},  γ+βr(p)+1<0\gamma+\beta\dfrac{r}{(p^{*})^{\prime}}+1<0, so that λ<1/r\lambda<-1/r,

λp1=γ1r(p1)+β1p\frac{\lambda}{p-1}=\dfrac{\gamma_{1}}{r(p-1)}+\dfrac{\beta_{1}}{p},   γ1>1\gamma_{1}>-1, β1\beta_{1}\in\mathbb{R},  γ1+β1r(p1)p+1<0\gamma_{1}+\beta_{1}\dfrac{r(p-1)}{p}+1<0, so that λp1<1r(p1)\frac{\lambda}{p-1}<-\frac{1}{r(p-1)}, i.e. λ<1/r\lambda<-1/r,

with the condition (7.1):

γr+β(p)=γ1r+β1(p1)p,with(p)=npnpn+p.\frac{\gamma}{r}+\frac{\beta}{(p^{*})^{\prime}}=\frac{\gamma_{1}}{r}+\frac{\beta_{1}(p-1)}{p},\ \ \ \ \hbox{with}\ \ (p^{*})^{\prime}=\frac{np}{np-n+p}.

Remark 7.6.

In the case k=r]1,(p)[k=r\in]1,(p^{*})^{\prime}[ we improve previous known results, in fact the usual estimate was only obtained in [Lr(p1)(Ω)]n[L^{r^{*}(p-1)}(\Omega)]^{n} (see [13]) and Lr(p1),r(p1)(Ω)Lr(p1)(Ω)L^{r^{*}(p-1),r(p-1)}(\Omega)\subset L^{r^{*}(p-1)}(\Omega).

Remark 7.7.

If p=2nn+1p=\frac{2n}{n+1}, we have p<np<n and (p)=npnpn+p=p(p^{*})^{\prime}=\frac{np}{np-n+p}=p. Therefore, in this particular case, the condition (7.1) is certainly satisfied if γ=γ1\gamma=\gamma_{1} and β=β1(p1)\beta=\beta_{1}(p-1).

The identification of interpolation spaces between couples of Lebesgue or Lorentz spaces, recovering spaces such as Lorentz–Zygmund spaces or GΓG\Gamma spaces, permit us to obtain precise regularity of the gradient of an entropic-renormalized solution.

Theorem 7.8.

Let 2p<n2\leq p<n. Assume (H1) and (H2) and let uu the unique entropic-renormalized solution of the Dirichlet problem (6.6).

Let 𝒯{\mathcal{T}} the mapping f𝒯ff\mapsto{\mathcal{T}}f, with

𝒯f=u.{\mathcal{T}}f=\nabla u.
(1):

Let 0<θ<10<\theta<1,  1q<,λ1\leq q<\infty,\ \lambda\in\mathbb{R},  1pθ=(1θ)n(p1)+θp\displaystyle\frac{1}{p_{\theta}}=\frac{(1-\theta)}{n^{\prime}(p-1)}+\frac{\theta}{p},  n=nn1n^{\prime}=\displaystyle\frac{n}{n-1}.

Then

𝒯:Lppθ,q(logL)λ[Lpθ,q(p1)(logL)λp1]n\displaystyle{\mathcal{T}}:L^{\frac{p^{*}}{p^{*}-\theta},q}(\log L)^{\lambda}\to\left[L^{p_{\theta},q(p-1)}(\log L)^{\frac{\lambda}{p-1}}\right]^{n}

is 1p1\frac{1}{p-1}-Hölderian, where p=npnpp^{*}=\frac{np}{n-p}.

(2):

Let θ=0\theta=0,  λ1p\lambda\geq-\frac{1}{p}. Then

𝒯:GΓ(1,p;t1(1logt)λp)(Ln(p1),(Ω),Lp(Ω))0,p(p1);λp1{\mathcal{T}}:G\Gamma(1,p;t^{-1}(1-\log t)^{\lambda p})\to(L^{n^{\prime}(p-1),\infty}(\Omega),L^{p}(\Omega))_{0,p(p-1);\frac{\lambda}{p-1}}

is 1p1\frac{1}{p-1}-Hölderian. Moreover, observing that

(Ln(p1),;Lp)0,p(p1);λp1=GΓ(,p(p1);t1(1logt)λp,t1n(p1)),(L^{n^{\prime}(p-1),\infty};L^{p})_{0,p(p-1);\frac{\lambda}{p-1}}=G\Gamma(\infty,p(p-1);t^{-1}(1-\log t)^{\lambda p},t^{\frac{1}{n^{\prime}(p-1)}}),

an equivalent norm of u\nabla u, for σ\sigma such that 1σ=ppn1p\frac{1}{\sigma}=\frac{p^{\prime}}{pn^{\prime}}-\frac{1}{p}, is given by

u(Ln(p1),(Ω),Lp(Ω))0,p(p1);λp1\displaystyle\|\nabla u\|_{(L^{n^{\prime}(p-1),\infty}(\Omega),L^{p}(\Omega))_{0,p(p-1);\frac{\lambda}{p-1}}}
[01(sup0<s<tσsppn|u|(s)(1logt)λp1)p(p1)dtt]1p(p1).\displaystyle\approx\left[\int_{0}^{1}\left(\sup_{0<s<t^{\sigma}}s^{\frac{p^{\prime}}{pn^{\prime}}}|\nabla u|_{*}(s)(1-\log t)^{\frac{\lambda}{p-1}}\right)^{p(p-1)}\frac{dt}{t}\right]^{\frac{1}{p(p-1)}}.
(3):

Let θ=1\theta=1,  λ<1p\lambda<-\frac{1}{p}. Then

𝒯:(L1(Ω),L(p)(Ω))1,p;λ(Ln(p1),(Ω),Lp(Ω))1,p(p1);λp1{\mathcal{T}}:(L^{1}(\Omega),L^{(p^{*})^{\prime}}(\Omega))_{1,p;\lambda}\to(L^{n^{\prime}(p-1),\infty}(\Omega),L^{p}(\Omega))_{1,p(p-1);\frac{\lambda}{p-1}}

is 1p1\frac{1}{p-1}-Hölderian and we have

[01((t1|u|(s)p𝑑s)1p(1logt)λp1)p(p1)dtt]1p(p1)\displaystyle\left[\int_{0}^{1}\left(\left(\int_{t}^{1}|\nabla u|_{\ast}(s)^{p}ds\right)^{\frac{1}{p}}(1-\log t)^{\frac{\lambda}{p-1}}\right)^{p(p-1)}\frac{dt}{t}\right]^{\frac{1}{p(p-1)}}
\displaystyle\leq c[01((t1f(s)(p)𝑑s)1(p)(1logt)λ)pdtt]1p\displaystyle c\left[\int_{0}^{1}\left(\left(\int_{t}^{1}f_{\ast}(s)^{(p^{*})^{\prime}}ds\right)^{\frac{1}{(p^{*})^{\prime}}}(1-\log t)^{\lambda}\right)^{p}\frac{dt}{t}\right]^{\frac{1}{p}}
Proof.

Let 0<θ<10<\theta<1.

𝒯:L1(Ω)[Ln(p1),(Ω)]nis1p1Hölderian(by Corollary 7.2){\mathcal{T}}:L^{1}(\Omega)\longrightarrow[L^{n^{\prime}(p-1),\infty}(\Omega)]^{n}\ \ \hbox{is}\ \ \frac{1}{p-1}-\hbox{H\"{o}lderian}\ \ \ \hbox{(by Corollary \ref{cor_extensionT})}
𝒯:L(p)(Ω)[Lp(Ω)]nis1p1-Hölderian(by Theorem 7.4){\mathcal{T}}:L^{(p^{*})^{\prime}}(\Omega)\to[L^{p}(\Omega)]^{n}\ \ \hbox{is}\ \ \frac{1}{p-1}\hbox{-H\"{o}lderian}\ \ \hbox{(by Theorem \ref{ThTholerianp*'p})}

The smooth functions are dense in the Lorentz-Zygmund spaces Lp,q(logL)λL^{p,q}(\log L)^{\lambda}​, 1p,q<1\leq p,q<\infty. Then

𝒯:(L1(Ω),L(p)(Ω))θ,q;λ(Ln(p1),(Ω),Lp(Ω))θ,qα;λα{\mathcal{T}}:(L^{1}(\Omega),L^{(p^{*})^{\prime}}(\Omega))_{\theta,q;\lambda}\to(L^{n^{\prime}(p-1),\infty}(\Omega),L^{p}(\Omega))_{\theta,\frac{q}{\alpha};\lambda\alpha}

is α=1p1\alpha=\dfrac{1}{p-1}- Hölderian.

Moreover, we identify

(L1(Ω),L(p)(Ω))θ,q;λ=Lppθ,q(logL)λ=Lnpnpθ(np),q(logL)λ(by (3.8)),(L^{1}(\Omega),L^{(p^{*})^{\prime}}(\Omega))_{\theta,q;\lambda}=L^{\frac{p^{*}}{p^{*}-\theta},q}(\log L)^{\lambda}=L^{\frac{np}{np-\theta(n-p)},q}(\log L)^{\lambda}\ \ \ \ \hbox{(by \eqref{identification_L_L_LZ_3_parameters})},
(Ln(p1),;Lp)θ,qα;λα=Lpθ,qα(logL)λα,1pθ=1θn(p1)+θp(by (3.7)).(L^{n^{\prime}(p-1),\infty};L^{p})_{\theta,\frac{q}{\alpha};\lambda\alpha}=L^{p_{\theta},\frac{q}{\alpha}}(\log L)^{\lambda\alpha},\ \ \ \frac{1}{p_{\theta}}=\frac{1-\theta}{n^{\prime}(p-1)}+\frac{\theta}{p}\ \ \ \ \hbox{(by \eqref{identification_LrinftyLm})}.

Then, by Theorem 4.1 with α=1p1\alpha=\frac{1}{p-1}, we get

𝒯:Lppθ,q(logL)λ[Lpθ,q(p1)(logL)λp1]nis1p1-Hölderian.{\mathcal{T}}:L^{\frac{p^{*}}{p^{*}-\theta},q}(\log L)^{\lambda}\to\left[L^{p_{\theta},q(p-1)}(\log L)^{\frac{\lambda}{p-1}}\right]^{n}\ \ \hbox{is}\ \ \frac{1}{p-1}\hbox{-H\"{o}lderian}.

In the case θ=0\theta=0,  λ1p\lambda\geq-\frac{1}{p}, by (3.11), we have

(L1(Ω),L(p)(Ω))0,p;λ=GΓ(1,p;t1(1logt)λp)(L^{1}(\Omega),L^{(p^{*})^{\prime}}(\Omega))_{0,p;\lambda}=G\Gamma(1,p;t^{-1}(1-\log t)^{\lambda p})

and L(p)L^{(p^{*})^{\prime}} is dense therein. By (3.13),

(Ln(p1),;Lp)0,p(p1);λp1=GΓ(,p(p1);t1(1logt)λp,t1n(p1)).(L^{n^{\prime}(p-1),\infty};L^{p})_{0,p(p-1);\frac{\lambda}{p-1}}=G\Gamma(\infty,p(p-1);t^{-1}(1-\log t)^{\lambda p},t^{\frac{1}{n^{\prime}(p-1)}}).

Therefore, by Theorem 4.1, with α=1p1\alpha=\frac{1}{p-1}, the mapping

𝒯:(L1(Ω),L(p)(Ω))0,p;λ(Ln(p1),;Lp)0,p(p1);λp1{\mathcal{T}}:(L^{1}(\Omega),L^{(p^{*})^{\prime}}(\Omega))_{0,p;\lambda}\to(L^{n^{\prime}(p-1),\infty};L^{p})_{0,p(p-1);\frac{\lambda}{p-1}}

is 1p1\dfrac{1}{p-1}- Hölderian. By the identification of the above interpolation spaces, we have

𝒯:GΓ(1,p;t1(1logt)λp)GΓ(,p(p1);t1(1logt)λp,t1n(p1)){\mathcal{T}}:G\Gamma(1,p;t^{-1}(1-\log t)^{\lambda p})\to G\Gamma(\infty,p(p-1);t^{-1}(1-\log t)^{\lambda p},t^{\frac{1}{n^{\prime}(p-1)}})

and the assertion follows.

The same argument holds for θ=1\theta=1. ∎

Remark 7.9.

We observe that, in the case 0<θ<10<\theta<1, for λ=0\lambda=0, we recover the conclusion of Theorem 7.5, in fact k=ppθk=\frac{p^{*}}{p^{*}-\theta} and 1k(p1)=1pθ\frac{1}{k^{*}(p-1)}=\frac{1}{p_{\theta}}, so in this case, for q=rq=r, we have

Lppθ,q(logL)λ=Lk,r,Lpθ,q(p1)(logL)λp1=Lk(p1),r(p1),L^{\frac{p^{*}}{p^{*}-\theta},q}(\log L)^{\lambda}=L^{k,r},\ \ \ L^{p_{\theta},q(p-1)}(\log L)^{\frac{\lambda}{p-1}}=L^{k^{*}(p-1),r(p-1)},

while, for λ0\lambda\neq 0, we have

Lppθ,q(logL)λLk,r,Lpθ,q(p1)(logL)λp1Lk(p1),r(p1)ifλ>0,L^{\frac{p^{*}}{p^{*}-\theta},q}(\log L)^{\lambda}\subset L^{k,r},\ \ \ L^{p_{\theta},q(p-1)}(\log L)^{\frac{\lambda}{p-1}}\subset L^{k^{*}(p-1),r(p-1)}\ \ \hbox{if}\ \lambda>0,
Lk,rLppθ,q(logL)λ,Lk(p1),r(p1)Lpθ,q(p1)(logL)λp1ifλ<0L^{k,r}\subset L^{\frac{p^{*}}{p^{*}-\theta},q}(\log L)^{\lambda},\ \ \ L^{k^{*}(p-1),r(p-1)}\subset L^{p_{\theta},q(p-1)}(\log L)^{\frac{\lambda}{p-1}}\ \ \hbox{if}\ \lambda<0

(see inclusion relations in Section 2).

Remark 7.10.

We observe that, by (3.14),

(L1,L(p))1,p;λ=GΓ((p),p;t1(1logt)γ1,(1logt)β1),(L^{1},L^{(p^{*})^{\prime}})_{1,p;\lambda}=G\Gamma((p^{*})^{\prime},p;t^{-1}(1-\log t)^{\gamma_{1}},(1-\log t)^{\beta_{1}}),
(Ln(p1),,Lp)1,p(p1);λp1=GΓ(p,p(p1);t1(1logt)γ2,(1logt)β2)(L^{n^{\prime}(p-1),\infty},L^{p})_{1,p(p-1);\frac{\lambda}{p-1}}=G\Gamma(p,p(p-1);t^{-1}(1-\log t)^{\gamma_{2}},(1-\log t)^{\beta_{2}})

where

λ=γ1p+β1(p)\lambda=\frac{\gamma_{1}}{p}+\frac{\beta_{1}}{(p^{*})^{\prime}}γ1>1\gamma_{1}>-1,  β1\beta_{1}\in\mathbb{R},  γ1+β1p(p)+1<0\gamma_{1}+\beta_{1}\frac{p}{(p^{*})^{\prime}}+1<0,  λ<1p\lambda<-\frac{1}{p},

λ=γ2p+β2(p1)p\lambda=\frac{\gamma_{2}}{p}+\frac{\beta_{2}(p-1)}{p}γ2>1\gamma_{2}>-1β2\beta_{2}\in\mathbb{R},  γ2+β2(p1)+1<0\gamma_{2}+\beta_{2}(p-1)+1<0λ<1p\lambda<-\frac{1}{p},

γ1γ2+(β1β2)(p1)+β1pn=0.\gamma_{1}-\gamma_{2}+(\beta_{1}-\beta_{2})(p-1)+\beta_{1}\frac{p}{n}=0.

The last condition follows by the equality

γ1p+β1(p)=γ2p+β2(p1)p,with(p)=npnpn+p.\frac{\gamma_{1}}{p}+\frac{\beta_{1}}{(p^{*})^{\prime}}=\frac{\gamma_{2}}{p}+\frac{\beta_{2}(p-1)}{p},\ \ \ \ \hbox{with}\ \ (p^{*})^{\prime}=\frac{np}{np-n+p}.

To obtain boundedness of the solution in a more general situation, stated in next Theorem, we need to assume the growth condition (H3).

Theorem 7.11.

Let 2p<n2\leq p<n. Assume (H1), (H2) and (H3) and let uu the entropic-renormalized solution of the Dirichlet problem (6.6).

Let 𝒯{\mathcal{T}} the mapping f𝒯ff\mapsto{\mathcal{T}}f, with

𝒯f=u.{\mathcal{T}}f=\nabla u.

Let  1<q<+1<q<+\infty, λ\lambda\in\mathbb{R},  0θ<10\leq\theta<1.

  • If fLnnθ,q(logL)λ\displaystyle f\in L^{\frac{n^{\prime}}{n^{\prime}-\theta},q}(\log L)^{\lambda},  0<θ<10<\theta<1, then

    uLn(p1)(1θ)(n1),q(p1)(logL)λp1.\nabla u\in L^{\frac{n(p-1)}{(1-\theta)(n-1)},q(p-1)}(\log L)^{\frac{\lambda}{p-1}}.
  • If fGΓ(1,q;t1(1logt)λq)\displaystyle f\in G\Gamma(1,q;t^{-1}(1-\log t)^{\lambda q}), then

    uGΓ(,q(p1);t1(1logt)λq,t1n(p1)).\nabla u\in G\Gamma(\infty,q(p-1);t^{-1}(1-\log t)^{\lambda q},t^{\frac{1}{n^{\prime}(p-1)}}).
Proof.
𝒯:L1(Ω)[Ln(p1),(Ω)]nis1p1Hölderian(by Corollary 7.2),{\mathcal{T}}:L^{1}(\Omega)\longrightarrow[L^{n^{\prime}(p-1),\infty}(\Omega)]^{n}\ \ \hbox{is}\ \ \frac{1}{p-1}-\hbox{H\"{o}lderian}\ \ \hbox{(by Corollary \ref{cor_extensionT})},
𝒯:Ln,1(Ω)[L(Ω)]n,is bounded (by (6.10) in Proposition 6.8).{\mathcal{T}}:L^{n,1}(\Omega)\longrightarrow[L^{\infty}(\Omega)]^{n},\ \ \ \hbox{is bounded (by \eqref{gradientbounded} in Proposition \ref{prop_u_bounded})}.

Using Theorem 4.1, that is

𝒯:(X0,X1)θ,q;λ(Y0,Y1)θαβ,qα;λα{\mathcal{T}}:(X_{0},X_{1})_{\theta,q;\lambda}\to(Y_{0},Y_{1})_{\theta\frac{\alpha}{\beta},\frac{q}{\alpha};\lambda\alpha}

is bounded, for β=α=1p1\beta=\alpha=\frac{1}{p-1}, we have

𝒯:(L1(Ω),Ln,1(Ω))θ,q;λ(Ln(p1),(Ω),L(Ω))θ,q(p1);λp1{\mathcal{T}}:(L^{1}(\Omega),L^{n,1}(\Omega))_{\theta,q;\lambda}\longrightarrow(L^{n^{\prime}(p-1),\infty}(\Omega),L^{\infty}(\Omega))_{\theta,q(p-1);\frac{\lambda}{p-1}}

is bounded.

If 0<θ<10<\theta<1, from (3.6) and (3.9) respectively, we have

(L1,Ln,1)θ,q;λ=Lnnθ,q(logL)λ(L^{1},L^{n,1})_{\theta,q;\lambda}=L^{\frac{n^{\prime}}{n^{\prime}-\theta},q}(\log L)^{\lambda}
(Ln(p1),,L)θ,q(p1);λp1=Ln(p1)1θ,q(p1)(logL)λp1.(L^{n^{\prime}(p-1),\infty},L^{\infty})_{\theta,q(p-1);\frac{\lambda}{p-1}}=L^{\frac{n^{\prime}(p-1)}{1-\theta},q(p-1)}(\log\,L)^{\frac{\lambda}{p-1}}.

If θ=0\theta=0, by (3.10) and (3.13) respectively, we have

(L1(Ω),Ln,1(Ω))0,q;λ=GΓ(1,q;t1(1logt)λq),(L^{1}(\Omega),L^{n,1}(\Omega))_{0,q;\lambda}=G\Gamma(1,q;t^{-1}(1-\log t)^{\lambda q}),
(Ln(p1),;Lp)0,q(p1);λp1=GΓ(,q(p1);t1(1logt)λq,t1n(p1)).(L^{n^{\prime}(p-1),\infty};L^{p})_{0,q(p-1);\frac{\lambda}{p-1}}=G\Gamma(\infty,q(p-1);t^{-1}(1-\log t)^{\lambda q},t^{\frac{1}{n^{\prime}(p-1)}}).

Remark 7.12.

We recall that, as point out at the beginning of Section 7, all the previous results are also true for pnp\geq n, and in this case the symbol pp^{*} must be considered as any finite number. Hence, if in (1) of Theorem 7.8 we consider pnp\geq n and chose p=np^{*}=n^{\prime}, comparing the result with the first one in Theorem 7.11 for pnp\geq n, we have the datum ff in the same space Lnnθ,q(logL)λL^{\frac{n^{\prime}}{n^{\prime}-\theta},q}(\log L)^{\lambda}, while the gradient of the solution uu in Theorem 7.11 belongs to a smaller space, since

Ln(p1)(1θ)(n1),q(p1)(logL)λp1Lpθ,q(p1)(logL)λp1L^{\frac{n(p-1)}{(1-\theta)(n-1)},q(p-1)}(\log L)^{\frac{\lambda}{p-1}}\subset L^{p_{\theta},q(p-1)}(\log L)^{\frac{\lambda}{p-1}}

with 1pθ=(1θ)n(p1)+θp\frac{1}{p_{\theta}}=\frac{(1-\theta)}{n^{\prime}(p-1)}+\frac{\theta}{p}.

Moreover, n(p1)(1θ)(n1)n1θ>n\frac{n(p-1)}{(1-\theta)(n-1)}\geq\frac{n}{1-\theta}>n  for  pnp\geq n and 0<θ<10<\theta<1. Therefore uLr\nabla u\in L^{r},  r>nr>n, and by Sobolev theorem, it follows that the solution uu is bounded.

8. The Hölderian mappings for the case 1<p<21<p<2

Some of results for 2p<n2\leq p<n remain true in the case 1<p<21<p<2. The fundamental changes concern the Hölder properties than can exist but are not sharp as for the case p2p\geq 2, and the Hölder constant appearing depends on the data.

Theorem 8.1.

(local Lipschitz contraction)

Let 1<p<21<p<2,  n2,p=npnp,(p)=npnp+pnn\geq 2,\ p^{*}=\frac{np}{n-p},\ \ (p^{*})^{{}^{\prime}}=\frac{np}{np+p-n}.

Let f1,f2L(p)(Ω)f_{1},f_{2}\in L^{(p^{*})^{{}^{\prime}}}(\Omega) and VV satisfies (H1) and (H2).

Let ui,i=1,2u_{i},\ i=1,2, be the weak solution of

Δpui+V(x;ui)=fi,ui=0onΩ.-\Delta_{p}u_{i}+V(x;u_{i})=f_{i},\quad\quad u_{i}=0\quad{\rm on}\ \partial\Omega.

Then

  • u1Lpcf1L(p)1p1,u2Lpcf2L(p)1p1||\nabla{u_{1}}||_{L^{p}}\leq c||f_{1}||^{\frac{1}{p-1}}_{L^{(p^{*})^{{}^{\prime}}}},\ \ \ \ ||\nabla{u_{2}}||_{L^{p}}\leq c||f_{2}||^{\frac{1}{p-1}}_{L^{(p^{*})^{{}^{\prime}}}}

  • (u1u2)Lpc(u1Lp+u2Lp)2pf1f2L(p)||\nabla(u_{1}-u_{2})||_{L^{p}}\leq c\Big{(}||\nabla u_{1}||_{L^{p}}+||\nabla u_{2}||_{L^{p}}\Big{)}^{2-p}||f_{1}-f_{2}||_{L^{(p^{*})^{{}^{\prime}}}}.

Here the constant cc depends only on pp and Ω\Omega.

Corollary 8.2.

(of Theorem 8.1)

Under the same assumptions as in Theorem 8.1, there exists a constant cc depending only on pp and Ω\Omega such that

(u1u2)Lpc(f1L(p)1p1+f2L(p)1p1)2pf1f2L(p).||\nabla(u_{1}-u_{2})||_{L^{p}}\leq c\Big{(}||f_{1}||^{\frac{1}{p-1}}_{L^{(p^{*})^{\prime}}}+||f_{2}||^{\frac{1}{p-1}}_{L^{(p^{*})^{\prime}}}\Big{)}^{2-p}||f_{1}-f_{2}||_{L^{(p^{*})^{{}^{\prime}}}}. (8.1)

In particular,

𝒯:L(p)(Ω)[Lp(Ω)]nis locally Lipschitz.{\mathcal{T}}:L^{(p^{*})^{{}^{\prime}}}(\Omega)\to[L^{p}(\Omega)]^{n}\ \ \ \hbox{is locally Lipschitz}.
Theorem 8.3.

Let 1<p<21<p<2,  r[1,+]r\in[1,+\infty] and kk such that (p)<k<n(p^{*})^{{}^{\prime}}<k<n. Assume (H1), (H2) and (H3).

Let uu be the entropic-renormalized solution of the equation

Δpu+V(x;u)=f,u=0onΩ.-\Delta_{p}u+V(x;u)=f,\quad\quad u=0\quad{\rm on}\ \partial\Omega.

Then, the non linear mapping 𝒯{\mathcal{T}} is bounded from Lk,r(Ω)L^{k,r}(\Omega) into Lk1,r(Ω)L^{k_{1},r}(\Omega),

with  k1=p1θ(p1)k_{1}=\dfrac{p}{1-\theta(p-1)},     θ=1(p)1k1(p)1n]0,1[.\theta=\dfrac{\frac{1}{(p^{*})^{\prime}}-\frac{1}{k}}{\frac{1}{(p^{*})^{\prime}}-\frac{1}{n}}\in]0,1[.

Proof.

From Corollary 8.2 we have

𝒯:L(p)(Ω)[Lp(Ω)]nis locally Lipschitz{\mathcal{T}}:L^{(p^{*})^{{}^{\prime}}}(\Omega)\to[L^{p}(\Omega)]^{n}\ \ \ \hbox{is locally Lipschitz}

and (8.1) holds. By Proposition 6.8 we have

𝒯:Ln,1(Ω)[L(Ω)]nis bounded.{\mathcal{T}}:L^{n,1}(\Omega)\to[L^{\infty}(\Omega)]^{n}\ \ \ \hbox{is bounded}.

By Theorem 4.2 with λ=0\lambda=0, α=1\alpha=1, β=1p1\beta=\frac{1}{p-1} we have that

𝒯maps(X0,X1)θ,r;λinto(Y0,Y1)θαβ,rα;λα,{\mathcal{T}}\ \ \hbox{maps}\ \ (X_{0},X_{1})_{\theta,r;\lambda}\ \ \hbox{into}\ \ (Y_{0},Y_{1})_{\theta\frac{\alpha}{\beta},\frac{r}{\alpha};\lambda\alpha},

i.e.

𝒯:(L(p)(Ω),Ln,1(Ω))θ,r(Lp(Ω),L(Ω))θ(p1),r{\mathcal{T}}:(L^{(p^{*})^{{}^{\prime}}}(\Omega),L^{n,1}(\Omega))_{\theta,r}\to(L^{p}(\Omega),L^{\infty}(\Omega))_{\theta(p-1),r}

is a locally bounded mapping, with θ]0,1[\theta\in]0,1[. The assertion follows from (3.4), since

(L(p)(Ω),Ln,1(Ω))θ,r=Lk,r(Ω),1k=1θ(p)+θn(L^{(p^{*})^{{}^{\prime}}}(\Omega),L^{n,1}(\Omega))_{\theta,r}=L^{k,r}(\Omega),\ \ \ \ \frac{1}{k}=\frac{1-\theta}{(p^{*})^{\prime}}+\frac{\theta}{n}

and

(Lp(Ω),L(Ω))θ(p1),r=Lk1,r(Ω),1k1=1θ(p1)p.(L^{p}(\Omega),L^{\infty}(\Omega))_{\theta(p-1),r}=L^{k_{1},r}(\Omega),\ \ \ \ \frac{1}{k_{1}}=\frac{1-\theta(p-1)}{p}.

For other results concerning equations with data in Lorentz spaces, see, e.g., [22, 37].

9. Conclusion

We conclude by highlighting that in [2] also applications to the anisotropic equation and variable exponents version of the pp-Laplacian are given. We refer the reader to the paper [2] for the results.

Anisotropic equation

{Δpu+V(x;u)=finΩu=0onΩ,\begin{cases}-\Delta_{\vec{p}}u+V(x;u)=f&\ {\rm in}\ \Omega\\ u=0&\ {\rm on}\ \partial\Omega,\end{cases}

where

Δpu=i=1nxi(|uxi|pi2uxi),\Delta_{\vec{p}}u=-\sum_{i=1}^{n}\frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}-2}\frac{\partial u}{\partial x_{i}}\right),

p=(p1,,pn){\vec{p}}=(p_{1},\ldots,p_{n}),   1<pi<+1<p_{i}<+\infty,   p=(p1,,pn)\vec{p^{\prime}}=(p^{{}^{\prime}}_{1},\ldots,p^{{}^{\prime}}_{n}),  pip^{{}^{\prime}}_{i} is the conjugate of pip_{i}.

Variable exponents version the pp-Laplacian

{Δp()u+V(x;u)=finΩu=0onΩ,\begin{cases}-\Delta_{p(\cdot)}u+V(x;u)=f&\ {\rm in}\ \Omega\\ u=0&\ {\rm on}\ \partial\Omega,\end{cases}

where Δp()u=div(|u|p(x)2u)\Delta_{p(\cdot)}u={\rm div\,}(|\nabla u|^{p(x)-2}\nabla u).

References

  • [1] I. Ahmed, A. Fiorenza, and M.R. Formica. Interpolation of Generalized Gamma Spaces in a Critical Case. J. Fourier Anal. Appl., 28(3), 2022. Art. 54. doi:10.1007/s00041-022-09947-1.
  • [2] I. Ahmed, A. Fiorenza, M.R. Formica, A. Gogatishvili, A. El Hamidi, and J.M. Rakotoson. Quasilinear PDEs, Interpolation Spaces and Hölderian mappings. Analysis Math., 49(4):895–950, 2023. doi:10.1007/s10476-023-0245-z.
  • [3] I. Ahmed, A. Fiorenza, M.R. Formica, A. Gogatishvili, and J.M. Rakotoson. Some new results related to Lorentz GΓG\Gamma spaces and interpolation. J. Math. Anal. Appl., 483(2), 2020. Art. 123623. doi:10.1016/j.jmaa.2019.123623.
  • [4] I. Ahmed, A. Fiorenza, and A. Hafeez. Some interpolation formulae for Grand and Small Lorentz Spaces. Mediterr. J. Math., 17, 2020. Art. 57. doi:10.1007/s00009-020-1495-7.
  • [5] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L. Vázquez. An L1L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22(2):241–273, 1995. URL: http://www.numdam.org/item/ASNSP_1995_4_22_2_241_0.
  • [6] C. Bennett and K. Rudnick. On Lorentz-Zygmund spaces. Dissertationes Math. (Rozprawy Mat.), 175, pp. 67, 1980.
  • [7] C. Bennett and R. Sharpley. Interpolation of operators. Pure and Applied Mathematics, vol. 129. Academic Press, Inc., Boston, MA, 1988.
  • [8] J. Bergh and J. Löfström. Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.
  • [9] D. Blanchard and F. Murat. Renormalised solutions of nonlinear parabolic problems with L1L^{1} data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A, 127(6):1137–1152, 1997. doi:10.1017/S0308210500026986.
  • [10] L. Boccardo, J. I. Diaz, D. Giachetti, and F. Murat. Existence of a solution for a weaker form of a nonlinear elliptic equation. In Recent advances in nonlinear elliptic and parabolic problems (Nancy, 1988), Pitman Res. Notes Math. Ser., vol. 208. Longman Sci. Tech., Harlow, 1989, 229–246.
  • [11] L. Boccardo and T. Gallouët. Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal., 87(1):149–169, 1989. doi:10.1016/0022-1236(89)90005-0.
  • [12] J. Carrillo and P. Wittbold. Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differential Equations, 156(1):93–121, 1999. doi:10.1006/jdeq.1998.3597.
  • [13] A. Cianchi and V.G. Maz’ya. Global boundedness of the gradient for a class of nonlinear elliptic systems. Arch. Ration. Mech. Anal., 212:129–177, 2014. doi:10.1007/s00205-013-0705-x.
  • [14] A. Cianchi and V.G. Maz’ya. Gradient regularity via rearrangements for pp-Laplacian type elliptic boundary value problems. J. Eur. Math. Soc., 16(3):571–595, 2014. doi:10.4171/JEMS/440.
  • [15] A. Dall’Aglio. Approximated solutions of equations with L1L^{1} data. application to the HH-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl., 170(IV):207–240, 1996. doi:10.1007/BF01758989.
  • [16] G. Di Fratta and A. Fiorenza. A direct approach to the duality of grand and small Lebesgue spaces. Nonlinear Anal., 70(7):2582–2592, 2009. doi:10.1016/j.na.2008.03.044.
  • [17] J. I. Díaz. Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations. Res. Notes in Math., vol. 106. Pitman, Boston, MA, 1985.
  • [18] R. J. DiPerna and P.L. Lions. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. (2), 130(2):321–366, 1989. doi:10.2307/1971423.
  • [19] O. Dominguez. Tractable embeddings of besov spaces into small lebesgue spaces. Math. Nachr., 289(14-15):1739–1759, 2016. doi:10.1002/mana.201500244.
  • [20] W. D. Evans, B. Opic, and L. Pick. Real interpolation with logarithmic functors. J. Inequal. Appl., 7(2):187–269, 2002.
  • [21] A. Ferone, M. A. Jalal, J. M. Rakotoson, and R. Volpicelli. Some refinements of the Hodge decomposition and applications to Neumann problems and uniqueness. Adv. Math. Sci. Appl., 11(1):17–37, 2001. doi:10.1016/S0893-9659(00)00115-4.
  • [22] V. Ferone and F. Murat. Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces. J. Differential Equations, 256(2):577–608, 2014. doi:10.1016/j.jde.2013.09.013.
  • [23] V. Ferone, M. R. Posteraro, and J. M. Rakotoson. LL^{\infty}-estimates for nonlinear elliptic problems with pp-growth in the gradient. J. Inequal. Appl., 3(2):109–125, 1999.
  • [24] A. Fiorenza. Duality and reflexivity in grand Lebesgue spaces. Collect. Math., 51(2):131–148, 2000.
  • [25] A. Fiorenza, M. R. Formica, and A. Gogatishvili. On grand and small Lebesgue and Sobolev spaces and some applications to PDE’s. Differ. Equ. Appl., 10(1):21–46, 2018. doi:10.7153/dea-2018-10-03.
  • [26] A. Fiorenza, M. R. Formica, A. Gogatishvili, T. Kopaliani, and J. M. Rakotoson. Characterization of interpolation between Grand, small or classical Lebesgue spaces. Nonlinear Anal., 177(part B):422–453, 2018. doi:10.1016/j.na.2017.09.005.
  • [27] A. Fiorenza, M. R. Formica, and J. M. Rakotoson. Pointwise estimates for GΓG\Gamma-functions and applications. Differential Integral Equations, 30:809–824, 2017. doi:10.57262/die/1504231274.
  • [28] A. Fiorenza and G.E. Karadzhov. Grand and small Lebesgue spaces and their analogs. Z. Anal. Anwendungen, 23(4):657–681, 2004.
  • [29] A. Fiorenza and J. M. Rakotoson. Some estimates in GΓ(p,m,w)G\Gamma(p,m,w) spaces. J. Math. Anal. Appl., 340:793–805, 2008. doi:doi:10.1016/j.jmaa.2007.09.013.
  • [30] A. Fiorenza and C. Sbordone. Existence and uniqueness results for solutions of nonlinear equations with right hand side in L1L^{1}. Studia Math., 127(3):223–231, 1998. doi:10.4064/sm-127-3-223-231.
  • [31] M.R. Formica, Y.V. Kozachenko, E. Ostrovsky, and L. Sirota. Exponential tail estimates in the law of ordinary logarithm (LOL) for triangular arrays of random variables. Lith. Math. J., 60(3):330–358, 2020.
  • [32] M.R. Formica, E. Ostrovsky, and L. Sirota. Grand Lebesgue spaces are really Banach algebras relative to the convolution on unimodular locally compact groups equipped with Haar measure. Math. Nachr., 294(9):1702–1714, 2021. doi:10.1002/mana.201900181.
  • [33] M.R. Formica, E. Ostrovsky, and L. Sirota. Grand quasi Lebesgue spaces. J. Math. Anal. Appl., 504(1), 2021, 125369. doi:10.1016/j.jmaa.2021.125369.
  • [34] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 1983.
  • [35] A. Gogatishvili, B. Opic, and W. Trebels. Limiting reiteration for real interpolation with slowly varying functions. Math. Nachr., 278(1-2):86–107, 2005. doi:10.1002/mana.200310228.
  • [36] L. Greco, T. Iwaniec, and C. Sbordone. Inverting the pp-harmonic operator. Manuscripta Math., 92(2):249–258, 1997. doi:10.1007/BF02678192.
  • [37] N. Grenon, F. Murat, and A. Porretta. A priori estimates and existence for elliptic equations with gradient dependent terms. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13(1):137–205, 2014. doi:10.2422/2036-2145.201106_012.
  • [38] T. Iwaniec and C. Sbordone. On the integrability of the Jacobian under minimal hypotheses. Arch. Rational Mech. Anal., 119(2):129–143, 1992. doi:10.1007/BF00375119.
  • [39] J. Leray and J.L. Lions. Quelques résultats de visik sur les problèmes elliptiques non linéaires par les méthodes de minty-browder. Bull. Soc. Math. France, 93:97–107, 1965.
  • [40] J.L. Lions. Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires. Dunod et Gauthier-Villars, Paris, 1969.
  • [41] L. Maligranda. Interpolation of locally Hölder operators. Studia Math., 78(3):289–296, 1984. doi:10.4064/sm-78-3-289-296.
  • [42] L. Maligranda. On interpolation of nonlinear operators. Comment. Math. Prace Mat., 28(2):253–275, 1989.
  • [43] L. Maligranda. A Bibliography on “Interpolation of Operators and Applications” (1926-1990). Högskolan i Luleå, Luleå, 1990.
  • [44] L. Maligranda, L. E. Persson, and J. Wyller. Interpolation and partial differential equations. J. Math. Phys., 35(9):5035–5046, 1994. doi:10.1063/1.530829.
  • [45] A. Miranville, A. Piétrus, and J. M. Rakotoson. Equivalence of formulations and uniqueness in a TT-set for quasi-linear equations with measures as data. Nonlinear Anal., 46(5):609–627, 2001. doi:10.1016/S0362-546X(00)00128-0.
  • [46] J. Peetre. A theory of interpolation of normed spaces, volume No. 39 of Notas de Matemática [Mathematical Notes]. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.
  • [47] J. Peetre. Interpolation of Lipschitz operators and metric spaces. Mathematica (Cluj), 12(35):325–334, 1970.
  • [48] J. Peetre. A new approach in interpolation spaces. Studia Math., 34:23–42, 1970. doi:10.4064/sm-34-1-23-42.
  • [49] L. E. Persson. An exact description of Lorentz spaces. Acta Sci. Math., 46:177–195, 1983.
  • [50] J.M. Rakotoson. Generalized solutions in a new type of sets for problems with measures as data. Differential Integral Equations, 6(1):27–36, 1993. doi:10.57262/die/1371214977.
  • [51] J.M. Rakotoson. Uniqueness of renormalized solutions in a TT-set for the L1L^{1}-data problem and the link between various formulations. Indiana Univ. Math. J., 43:685–702, 1994. URL: http://www.jstor.org/stable/24898096.
  • [52] J.M. Rakotoson. Propriétés qualitatives de solutions d’équation à donnée mesure dans un TT-ensemble. C. R. Acad. Sci. Paris Sér. I Math., 323(4):335–340, 1996.
  • [53] J.M. Rakotoson. Notion of \mathbb{R}-solutions and some measure data equations. Course in Naples, May-June, 2000.
  • [54] J.M. Rakotoson. Réarrangement Relatif: Un instrument d’estimations dans les problèmes aux limites. Math. Appl. (Berlin), vol. 64. Springer-Verlag (Berlin), 2008.
  • [55] J.M. Rakotoson. Réarrangement relatif revisité. hal-03277063, 2021.
  • [56] L. Tartar. Interpolation non linéaire. In Actes du Colloque d’Analyse Fonctionnelle (Univ. Bordeaux, Bordeaux, 1971), Supplément au Bull. Soc. Math. France, Mémoire 31-32, vol. 100, pp. 375–380. Soc. Math. France, Paris, 1972. doi:10.24033/msmf.104.
  • [57] L. Tartar. Interpolation non linéaire et régularité. J. Funct. Anal., 9(4):469–489, 1972. doi:10.1016/0022-1236(72)90022-5.
  • [58] H. Triebel. Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam-New York-Oxford,, 1978.