This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Appendix for ”Estimate Non-Finite-Dependent Dynamic Discrete Choice Model with Unobserved Heterogeneity”

Yu (Jasmine) Hao 111[email protected] HKU Business School, Hong Kong University.
HKU Business School
   Hiro Kasahara222 [email protected] Vancouver School of Economics.
University of British Columbia.

1 Additional Simulation Results

1.1 Two-step Estimator

Table 1: Mean Estimates of Two-step estimator, X=6250X=6250, N=200,T=50N=200,T=50
θmVP0\theta^{\mathrm{VP0}}_{m} θmVP1\theta^{\mathrm{VP1}}_{m} θmVP2\theta^{\mathrm{VP2}}_{m} θmFC0\theta^{\mathrm{FC0}}_{m} θmFC1\theta^{\mathrm{FC1}}_{m} θmEC0\theta^{\mathrm{EC0}}_{m} θmEC1\theta^{\mathrm{EC1}}_{m} Time ρ\rho
γa=0\gamma_{a}=0(finite dependent model)
𝜽HM\boldsymbol{\theta}^{\mathrm{HM}} 0.499 1.001 -0.999 0.500 0.998 1.003 0.994 15.740 0.000e+0
(0.027) (0.038) (0.032) (0.047) (0.053) (0.055) (0.084) 15.350
𝜽1,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{1,0} 0.499 1.001 -0.999 0.501 0.998 1.004 0.991 1.679 6.317e-6
(0.030) (0.039) (0.033) (0.058) (0.056) (0.057) (0.096) 1.240
𝜽1,qBEAFD\boldsymbol{\theta}^{\mathrm{AFD}}_{1,q^{\mathrm{BE}}} 0.499 1.001 -0.999 0.501 0.998 1.004 0.991 32.484 6.317e-6
(0.030) (0.039) (0.033) (0.058) (0.056) (0.057) (0.096) 1.240
𝜽2,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{2,0} 0.499 1.001 -0.999 0.501 0.998 1.004 0.991 3.030 1.037e-11
(0.030) (0.039) (0.033) (0.058) (0.056) (0.057) (0.096) 2.470
𝜽3,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{3,0} 0.499 1.001 -0.999 0.501 0.998 1.004 0.991 4.374 1.720e-17
(0.030) (0.039) (0.033) (0.058) (0.056) (0.057) (0.096) 3.679
𝜽4,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{4,0} 0.499 1.001 -0.999 0.501 0.998 1.004 0.991 5.725 6.938e-19
(0.030) (0.039) (0.033) (0.058) (0.056) (0.057) (0.096) 4.905
𝜽5,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{5,0} 0.499 1.001 -0.999 0.501 0.998 1.004 0.991 7.062 6.848e-19
(0.030) (0.039) (0.033) (0.058) (0.056) (0.057) (0.096) 6.109
γa=1\gamma_{a}=1(non-finite dependent model)
𝜽HM\boldsymbol{\theta}^{\mathrm{HM}} 0.509 0.998 -0.999 0.523 0.996 0.987 1.008 15.918 0.000
(0.041) (0.030) (0.030) (0.103) (0.055) (0.075) (0.095) 15.647
𝜽1,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{1,0} 0.416 0.999 -0.999 0.235 0.998 0.988 1.008 1.508 1.024
(0.094) (0.031) (0.032) (0.286) (0.059) (0.077) (0.106) 1.065
𝜽1,qBEAFD\boldsymbol{\theta}^{\mathrm{AFD}}_{1,q^{\mathrm{BE}}} 0.456 0.998 -0.999 0.347 0.997 0.987 1.008 1.633 1.024
(0.063) (0.031) (0.032) (0.191) (0.059) (0.077) (0.106) 1.065
𝜽2,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{2,0} 0.478 0.997 -0.999 0.412 0.997 0.987 1.008 2.716 0.302
(0.053) (0.031) (0.032) (0.153) (0.059) (0.077) (0.106) 2.149
𝜽3,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{3,0} 0.491 0.997 -0.999 0.465 0.997 0.987 1.008 3.931 0.075
(0.050) (0.031) (0.032) (0.135) (0.059) (0.077) (0.106) 3.232
𝜽4,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{4,0} 0.494 0.997 -0.999 0.476 0.997 0.987 1.008 5.149 0.019
(0.050) (0.031) (0.032) (0.134) (0.059) (0.077) (0.106) 4.313
𝜽5,0AFD\boldsymbol{\theta}^{\mathrm{AFD}}_{5,0} 0.495 0.997 -0.999 0.478 0.997 0.987 1.008 6.354 0.005
(0.050) (0.031) (0.032) (0.134) (0.059) (0.077) (0.106) 5.384
  • 1

    The data is generated with θ=(θ0VP=0.5,θ1VP=1,θ2VP=1,θ0FC=0.5,θ1FC=1.0,θ0EC=1.0,θ1EC)\theta=(\theta_{0}^{VP}=0.5,\theta_{1}^{VP}=1,\theta_{2}^{VP}=-1,\theta_{0}^{FC}=0.5,\theta_{1}^{FC}=1.0,\theta_{0}^{EC}=1.0,\theta_{1}^{EC}).

  • 2

    The first row reports the mean of estimates across 100 Monte Carlo simulations, and the second row reports the standardized mean squared error of the estimates.

  • 3

    The second row of the time column with the HM estimator reports the time used for matrix inversion. The second rows of the AFD estimators reports the total time used to solve the optimal weight(weights).

1.2 Sequential Estimator for Two-type Finite Mixture Model

Table 2: Mean Estimator and Squared Bias, X=15552X=15552, with N=200,T=50N=200,T=50
θmVP0\theta^{\mathrm{VP0}}_{m} θmVP1\theta^{\mathrm{VP1}}_{m} θmVP2\theta^{\mathrm{VP2}}_{m} θmFC0\theta^{\mathrm{FC0}}_{m} θmFC1\theta^{\mathrm{FC1}}_{m} θmEC0\theta^{\mathrm{EC0}}_{m} θmEC1\theta^{\mathrm{EC1}}_{m} αm\alpha_{m}
𝜽NPL\boldsymbol{\theta}^{\mathrm{NPL}} Type 1 0.497 1.002 -0.995 0.496 0.992 0.992 0.992 0.403
(0.061) (0.045) (0.046) (0.144) (0.126) (0.081) (0.149)
Type 2 1.547 1.035 -1.033 0.588 1.001 0.967 1.057 0.597
(0.170) (0.127) (0.095) (0.387) (0.220) (0.303) (0.513)
Time: 4133.250, Iter: 9.150
𝜽1AFDSEQ\boldsymbol{\theta}^{\mathrm{AFD-SEQ}}_{1} Type 1 0.454 1.002 -0.994 0.378 0.993 0.992 0.993 0.403
(0.076) (0.045) (0.045) (0.188) (0.126) (0.080) (0.152)
Type 2 1.444 1.033 -1.032 0.285 1.002 0.960 1.064 0.597
(0.171) (0.126) (0.093) (0.419) (0.220) (0.307) (0.518)
Time: 651.808, Iter: 17.050, ρ\rho: 1.375
𝜽2AFDSEQ\boldsymbol{\theta}^{\mathrm{AFD-SEQ}}_{2} Type 1 0.451 1.002 -0.994 0.370 0.993 0.992 0.993 0.403
(0.078) (0.045) (0.045) (0.193) (0.126) (0.080) (0.152)
Type 2 1.442 1.033 -1.032 0.278 1.002 0.960 1.064 0.597
(0.171) (0.126) (0.093) (0.422) (0.220) (0.307) (0.518)
Time: 1633.743, Iter: 9.000, ρ\rho: 0.369
𝜽3AFDSEQ\boldsymbol{\theta}^{\mathrm{AFD-SEQ}}_{3} Type 1 0.458 1.002 -0.994 0.400 0.993 0.991 0.993 0.403
MBE 1 (0.074) (0.045) (0.046) (0.175) (0.126) (0.080) (0.152)
Type 2 1.459 1.033 -1.032 0.350 1.002 0.961 1.062 0.597
MBE 2 (0.167) (0.126) (0.093) (0.390) (0.220) (0.306) (0.516)
Time: 1282.364, Iter: 8.300, ρ\rho: 0.084
  • 1

    nM=200,nT=50nM=200,nT=50, based on 2020 Monte Carlo simulations.

  • 2

    The true parameters are θ1=(θ0VP=0.5,θ1VP=1,θ2VP=1,θ0FC=0.5,θ1FC=1.0,θ0EC=1.0,θ1EC)=1.0\theta_{1}=(\theta_{0}^{VP}=0.5,\theta_{1}^{VP}=1,\theta_{2}^{VP}=-1,\theta_{0}^{FC}=0.5,\theta_{1}^{FC}=1.0,\theta_{0}^{EC}=1.0,\theta_{1}^{EC})=1.0, θ2=(θ0VP=1.5,θ1VP=1,θ2VP=1,θ0FC=0.5,θ1FC=1.0,θ0EC=1.0,θ1EC)=1.0\theta_{2}=(\theta_{0}^{VP}=1.5,\theta_{1}^{VP}=1,\theta_{2}^{VP}=-1,\theta_{0}^{FC}=0.5,\theta_{1}^{FC}=1.0,\theta_{0}^{EC}=1.0,\theta_{1}^{EC})=1.0.

2 Characterization of Weight Solving

2.1 Two periods ”almost finite dependence”

It is possible for us to maximize two-period weight simultaneously so that the objective function becomes

min𝐰1,𝐰2𝐅~𝐅(𝐰1)𝐅(𝐰2)\min_{\mathbf{w}_{1},\mathbf{w}_{2}}\lVert\mathbf{\tilde{F}}\mathbf{F}(\mathbf{w}_{1})\mathbf{F}(\mathbf{w}_{2})\rVert

Note that d𝒟𝐰1(d,i)f(i|d,i)=d𝒟/{0}𝐰1(d,i)f~(i|d,i)+f(i|0,i)\sum_{d^{\dagger}\in\mathcal{D}}\mathbf{w}_{1}(d^{\dagger},i^{\dagger})f(i^{\dagger\dagger}|d^{\dagger},i^{\dagger})=\sum_{d^{\dagger}\in\mathcal{D}/\{0\}}\mathbf{w}_{1}(d^{\dagger},i^{\dagger})\tilde{f}(i^{\dagger\dagger}|d^{\dagger},i^{\dagger})+f(i^{\dagger\dagger}|0,i^{\dagger}). The (d,i,j)(d,i,j)-th element of the objective function, which is the (ij)(ij)-th element of 𝐅~(d)𝐅(𝐰1)𝐅(𝐰2)\mathbf{\tilde{F}}(d)\mathbf{F}(\mathbf{w}_{1})\mathbf{F}(\mathbf{w}_{2}) is

[𝐅~(d)𝐅(𝐰1)𝐅(𝐰2)]ij=i𝒳,i𝒳f~(i|d,i)(d𝒟/{0}w1(d,i)f~(i|d,i)+f(i|0,i))f𝐰1(i|i)×(d𝒟/{0}w2(d,i)f~(j|d,i)+f(j|0,i))f𝐰2(j|i)=(𝐰1+)𝐇(d,i,j)𝐰2++(𝐰1+)𝐡𝟏(d,i,j)+(𝐰2+)𝐡𝟐(d,i,j)+𝐡𝟎(d,i,j).\begin{split}&[\mathbf{\tilde{F}}(d)\mathbf{F}(\mathbf{w}_{1})\mathbf{F}(\mathbf{w}_{2})]_{ij}\\ &=\sum_{\begin{subarray}{c}i^{\dagger}\in\mathcal{X},\\ i^{\dagger\dagger}\in\mathcal{X}\end{subarray}}\tilde{f}(i^{\dagger}|d,i)\underbrace{\left(\sum_{d^{\dagger}\in\mathcal{D}/\{0\}}\mathrm{w}^{1}(d^{\dagger},i^{\dagger})\tilde{f}(i^{\dagger\dagger}|d^{\dagger},i^{\dagger})+f(i^{\dagger\dagger}|0,i^{\dagger})\right)}_{f^{\mathbf{w}_{1}}(i^{\dagger\dagger}|i^{\dagger})}\\ &\times\underbrace{\left(\sum_{d^{\dagger\dagger}\in\mathcal{D}/\{0\}}\mathrm{w}^{2}(d^{\dagger\dagger},i^{\dagger\dagger})\tilde{f}(j|d^{\dagger\dagger},i^{\dagger\dagger})+f(j|0,i^{\dagger\dagger})\right)}_{f^{\mathbf{w}_{2}}(j|i^{\dagger\dagger})}\\ &=(\mathbf{w}_{1}^{+})^{\top}\mathbf{H}(d,i,j)\mathbf{w}_{2}^{+}+(\mathbf{w}_{1}^{+})^{\top}\mathbf{h^{1}}(d,i,j)+(\mathbf{w}_{2}^{+})^{\top}\mathbf{h^{2}}(d,i,j)+\mathbf{h^{0}}(d,i,j).\end{split} (1)

where 𝐰1+=[w1(1,1),w1(1,X),,w1(D,1),w1(D,X)]\mathbf{w}_{1}^{+}=[\mathrm{w}^{1}(1,1)\ldots,\mathrm{w}^{1}(1,X),\ldots,\mathrm{w}^{1}(D,1)\ldots,\mathrm{w}^{1}(D,X)]^{\top} and
𝐰2+=[w2(1,1),w2(1,X),,w2(D,1),w2(D,X)]\mathbf{w}_{2}^{+}=[\mathrm{w}^{2}(1,1)\ldots,\mathrm{w}^{2}(1,X),\ldots,\mathrm{w}^{2}(D,1)\ldots,\mathrm{w}^{2}(D,X)]^{\top} are (DX)×1\big{(}DX\big{)}\times 1 vectors such that for each state xx, we leave w(0,x)w(0,x) out.

𝐇(d,i,j)(XD)×(XD) matrix =[f~(i|d,i)f~(i|d,i)f~(j|d,i)](d,i),(d,i),𝐡𝟏(XD)×1 row vector =[f(i|d,i)i𝒳f~(i|d,i)f(j|0,i)](d,i)),𝐡𝟐(XD)×1 row vector =[i𝒳f(i|d,i)f(i|0,i)f~(j|d,i)](d,i)),h0=i𝒳,i𝒳f(i|d,i)f(i|0,i)f~(j|0,i).\begin{split}\underbrace{\mathbf{H}(d,i,j)}_{(XD)\times(XD)\text{ matrix }}&=\Big{[}\tilde{f}(i^{\dagger}|d,i)\tilde{f}(i^{\dagger\dagger}|d^{\dagger},i^{\dagger})\tilde{f}(j|d^{\dagger\dagger},i^{\dagger\dagger})\Big{]}_{\big{(}d^{\dagger},i^{\dagger}\big{)},\big{(}d^{\dagger\dagger},i^{\dagger\dagger}\big{)}},\\ \underbrace{\mathbf{h^{1}}}_{(XD)\times 1\text{ row vector }}&=\Big{[}f(i^{\dagger}|d,i)\sum_{i^{\dagger\dagger}\in\mathcal{X}}\tilde{f}(i^{\dagger\dagger}|d^{\dagger},i^{\dagger})f(j|0,i^{\dagger\dagger})\Big{]}_{\big{(}d^{\dagger},i^{\dagger})\big{)}},\\ \underbrace{\mathbf{h^{2}}}_{(XD)\times 1\text{ row vector }}&=\Big{[}\sum_{i^{\dagger}\in\mathcal{X}}f(i^{\dagger}|d,i)f(i^{\dagger\dagger}|0,i^{\dagger})\tilde{f}(j|d^{\dagger\dagger},i^{\dagger\dagger})\Big{]}_{\big{(}d^{\dagger\dagger},i^{\dagger\dagger})\big{)}},\\ \mathrm{h}^{0}&=\sum_{\begin{subarray}{c}i^{\dagger}\in\mathcal{X},\\ i^{\dagger\dagger}\in\mathcal{X}\end{subarray}}f(i^{\dagger}|d,i)f(i^{\dagger\dagger}|0,i^{\dagger})\tilde{f}(j|0,i^{\dagger\dagger}).\end{split} (2)

Note that a 1-period finite dependence model is equivalent to the condition that that there exists 𝐰1+,𝐰2+\mathbf{w}_{1}^{+},\mathbf{w}_{2}^{+} such that:

d𝒟/{0},i𝒳,j𝒳((𝐰1+)𝐇(d,i,j)𝐰2++(𝐰1+)𝐡𝟏(d,i,j)+(𝐰2+)𝐡𝟐(d,i,j)+𝐡𝟎(d,i,j))2=0.\sum_{\begin{subarray}{c}d\in\mathcal{D}/\{0\},\\ i\in\mathcal{X},\\ j\in\mathcal{X}\end{subarray}}\left((\mathbf{w}_{1}^{+})^{\top}\mathbf{H}(d,i,j)\mathbf{w}_{2}^{+}+(\mathbf{w}_{1}^{+})^{\top}\mathbf{h^{1}}(d,i,j)+(\mathbf{w}_{2}^{+})^{\top}\mathbf{h^{2}}(d,i,j)+\mathbf{h^{0}}(d,i,j)\right)^{2}=0.

With the above expression, the objective of the minimization is

min𝐰1+,𝐰2+𝐅~𝐅(𝐰1)𝐅(𝐰2)=min𝐰1+,𝐰2+d𝒟/{0},i𝒳,j𝒳((𝐰1+)𝐇(d,i,j)𝐰2++(𝐰1+)𝐡𝟏(d,i,j)+(𝐰2+)𝐡𝟐(d,i,j)+𝐡𝟎(d,i,j))2.\begin{split}\min_{\mathbf{w}_{1}^{+},\mathbf{w}_{2}^{+}}\lVert\tilde{\mathbf{F}}\mathbf{F}(\mathbf{w}^{1})\mathbf{F}(\mathbf{w}^{2})\rVert&=\min_{\mathbf{w}_{1}^{+},\mathbf{w}_{2}^{+}}\sum_{\begin{subarray}{c}d\in\mathcal{D}/\{0\},\\ i\in\mathcal{X},\\ j\in\mathcal{X}\end{subarray}}\Big{(}(\mathbf{w}_{1}^{+})^{\top}\mathbf{H}(d,i,j)\mathbf{w}_{2}^{+}\\ &+(\mathbf{w}_{1}^{+})^{\top}\mathbf{h^{1}}(d,i,j)+(\mathbf{w}_{2}^{+})^{\top}\mathbf{h^{2}}(d,i,j)+\mathbf{h^{0}}(d,i,j)\Big{)}^{2}.\end{split}