This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

APCTP Pre2020-033 Spontaneous CP violation by modulus τ\tau
in A4A_{4} model of lepton flavors

Hiroshi Okada a,b111E-mail address: [email protected]  and   Morimitsu Tanimoto c222E-mail address: [email protected]

aAsia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea bDepartment of Physics, Pohang University of Science and Technology, Pohang 37673,
Republic of Korea
cDepartment of Physics, Niigata University, Niigata 950-2181, Japan


( Abstract
We discuss the modular A4A_{4} invariant model of leptons combining with the generalized CP symmetry. In our model, both CP and modular symmetries are broken spontaneously by the vacuum expectation value of the modulus τ\tau. The source of the CP violation is a non-trivial value of Re[τ]{\rm Re}[\tau] while other parameters of the model are real. The allowed region of τ\tau is in very narrow one close to the fixed point τ=i\tau=i for both normal hierarchy (NH) and inverted ones (IH) of neutrino masses. The CP violating Dirac phase δCP\delta_{CP} is predicted clearly in [98, 110][98^{\circ},\,110^{\circ}] and [250, 262][250^{\circ},\,262^{\circ}] for NH at 3σ3\,\sigma confidence level. On the other hand, δCP\delta_{CP} is in [95,100][95^{\circ},100^{\circ}] and [260, 265][260^{\circ},\,265^{\circ}] for IH at 5σ5\,\sigma confidence level. The predicted mi\sum m_{i} is in [82, 102][82,\,102] meV for NH and mi=[134, 180]\sum m_{i}=[134,\,180] meV for IH. The effective mass mee\langle m_{ee}\rangle for the 0νββ0\nu\beta\beta decay is predicted in [12.5, 20.5][12.5,\,20.5] meV and [54, 67][54,\,67] meV for NH and IH, respectively. )

1 Introduction

The non-Abelian discrete symmetries are attractive ones to understand flavors of quarks and leptons. The S3S_{3} flavor symmetry was a pioneer for the quark flavor mixing [2, 1]. It was also discussed to understand the large mixing angle [3] in the oscillation of atmospheric neutrinos [4]. For the last twenty years, the non-Abelian discrete symmetries of flavors have been developed, that is motivated by the precise observation of flavor mixing angles of leptons [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Among them, the A4A_{4} flavor model is an attractive one because the A4A_{4} group is the minimal one including a triplet irreducible representation, which allows for a natural explanation of the existence of three families of quarks and leptons [15, 16, 17, 18, 19, 20, 21]. However, it is difficult to obtain clear predictions of the A4A_{4} flavor symmetry because of a lot of free parameters associated with scalar flavon fields.

Recently, a new approach to the lepton flavor problem has been put forward based on the invariance under the modular transformation [22], where the model of the finite modular group Γ3A4\Gamma_{3}\simeq A_{4} has been presented. In this approach, fermion matrices are written in terms of modular forms which are holomorphic functions of the modulus τ\tau. This work inspired further studies of the modular invariance approach to the lepton flavor problem.

The finite groups S3S_{3}, A4A_{4}, S4S_{4}, and A5A_{5} are realized in modular groups [23]. Modular invariant flavor models have been also proposed on the Γ2S3\Gamma_{2}\simeq S_{3} [24], Γ4S4\Gamma_{4}\simeq S_{4} [25] and Γ5A5\Gamma_{5}\simeq A_{5} [26]. Phenomenological discussions of the neutrino flavor mixing have been done based on A4\rm A_{4} [27, 28, 29], S4\rm S_{4} [30, 31, 32] and A5\rm A_{5} [33]. A clear prediction of the neutrino mixing angles and the CP violating phase was given in the simple lepton mass matrices with the A4\rm A_{4} modular symmetry [28]. On the other hand, the Double Covering groups T\rm T^{\prime} [34, 35] and S4\rm S_{4}^{\prime} [36, 37] were realized in the modular symmetry. Furthermore, modular forms for Δ(96)\Delta(96) and Δ(384)\Delta(384) were constructed [38], and the extension of the traditional flavor group was discussed with modular symmetries [39]. The level 77 finite modular group Γ7PSL(2,Z7)\rm\Gamma_{7}\simeq PSL(2,Z_{7}) was also presented for the lepton mixing [40]. Based on those works, phenomenological studies have been developed in many works [48, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80] while theoretical investigations have been also proceeded [81, 83, 82, 85, 84, 86].

In order to test the modular symmetry of flavors, the prediction of the CP violating Dirac phase is important. The CP transformation is non-trivial if the non-Abelian discrete flavor symmetry is set in the Yukawa sector of a Lagrangian. Then, we should discuss so called the generalized CP symmetry in the flavor space [87, 88, 89, 90, 91]. It can predict the CP violating phase [92]. The modular invariance has been also studied combining with the generalized CP symmetry in flavor theories [93, 94]. It provides a powerful framework to predict CP violating phases of quarks and leptons.

In our work, we present the modular A4A_{4} invariant model with the generalized CP symmetry. Both CP and modular symmetries are broken spontaneously by the vacuum expectation value (VEV) of the modulus τ\tau. We discuss the phenomenological implication of this model, that is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing angles [95, 96] and the CP violating Dirac phase of leptons, which is expected to be observed at T2K and NOν\nuA experiments [97, 98].

The paper is organized as follows. In section 2, we give a brief review on the generalized CP transformation in the modular symmetry. In section 3, we present the CP invariant lepton mass matrix in the A4A_{4} modular symmetry. In section 4, we show the phenomenological implication of our model. Section 5 is devoted to the summary. In Appendix A, we present the tensor product of the A4A_{4} group. In Appendix B, we show the modular forms for weight 22 and 44. In Appendix C, we show how to determine the coupling coefficients of the charged lepton sector. In Appendix D , we present how to obtain the Dirac CPCP phase, the Majorana phases and the effective mass of the 0νββ0\nu\beta\beta decay.

2 Generalized CP transformation in modular symmetry

2.1 Generalized CP symmetry

Let us start with discussing the generalised CPCP symmetry [92, 99]. The CP transformation is non-trivial if the non-Abelian discrete flavor symmetry GG is set in the Yukawa sector of a Lagrangian. Let us consider the chiral superfields. The CP is a discrete symmetry which involves both Hermitian conjugation of a chiral superfield ψ(x)\psi(x) and inversion of spatial coordinates,

ψ(x)𝐗𝐫ψ¯(xP),\psi(x)\rightarrow{\bf X}_{\bf r}\overline{\psi}(x_{P})\ , (1)

where xP=(t,𝐱)x_{P}=(t,-{\bf x}) and 𝐗𝐫{\bf X_{r}} is a unitary transformations of ψ(x)\psi(x) in the irreducible representation 𝐫\bf r of the discrete flavor symmetry GG. If 𝐗𝐫{\bf X_{r}} is the unit matrix, the CPCP transformation is the trivial one. This is the case for the continuous flavor symmetry [99]. However, in the framework of the non-Abelian discrete family symmetry, non-trivial choices of 𝐗𝐫{\bf X_{r}} are possible. The unbroken CPCP transformations of 𝐗𝐫{\bf X_{r}} form the group HCPH_{CP}. Then, 𝐗𝐫{\bf X_{r}} must be consistent with the flavor symmetry transformation,

ψ(x)ρ𝐫(g)ψ(x),gG,\psi(x)\rightarrow{\rho}_{\bf r}(g)\psi(x)\ ,\quad g\in G\ , (2)

where ρ𝐫(g){\rho}_{\bf{r}}(g) is the representation matrix for gg in the irreducible representation 𝐫\bf{r}.

The consistent condition is obtained as follows. At first, perform a CPCP transformation ψ(x)𝐗𝐫ψ¯(xP)\psi(x)\rightarrow{\bf X}_{\bf r}\overline{\psi}(x_{P}), then apply a flavor symmetry transformation, ψ¯(xP)ρ𝐫(g)ψ¯(xP)\overline{\psi}(x_{P})\rightarrow{\rho}_{\bf r}^{*}(g)\overline{\psi}(x_{P}), and finally perform an inverse CP transformation. The whole transformation is written as ψ(x)𝐗𝐫ρ(g)𝐗𝐫1ψ(x)\psi(x)\rightarrow{\bf X}_{\bf r}\rho^{*}(g){\bf X}^{-1}_{\bf r}\psi(x), which must be equivalent to some flavor symmetry ψ(x)ρ𝐫(g)ψ(x)\psi(x)\rightarrow{\rho}_{\bf r}(g^{\prime})\psi(x). Thus, one obtains [100]

𝐗𝐫ρ𝐫(g)𝐗𝐫1=ρ𝐫(g),g,gG.{\bf X}_{\bf r}\rho_{\bf r}^{*}(g){\bf X}^{-1}_{\bf r}={\rho}_{\bf r}(g^{\prime})\ ,\qquad g,\,g^{\prime}\in G\ . (3)

This equation defines the consistency condition, which has to be respected for consistent implementation of a generalized CP symmetry along with a flavor symmetry [102, 101]. This chain CPgCP1CP\rightarrow g\rightarrow CP^{-1} maps the group element gg onto gg^{\prime} and preserves the flavor symmetry group structure. That is a homomorphism v(g)=gv(g)=g^{\prime} of GG. Assuming the presence of faithful representations 𝐫\bf r, Eq. (3) defines a unique mapping of GG to itself. In this case, v(g)v(g) is an automorphism of GG [101].

It has been also shown that the full symmetry group is isomorphic to a semi-direct product of GG and HCPH_{CP}, that is GHCPG\rtimes H_{CP}, where HCP2CPH_{CP}\simeq\mathbb{Z}_{2}^{CP}, is the group generated by the generalised CPCP transformation under the assumption of 𝐗𝐫\bf X_{r} being a symmetric matrix [102].

2.2 Modular symmetry

The modular group Γ¯\bar{\Gamma} is the group of linear fractional transformations γ\gamma acting on the modulus τ\tau, belonging to the upper-half complex plane as:

τγτ=aτ+bcτ+d,wherea,b,c,dandadbc=1,Im[τ]>0,\tau\longrightarrow\gamma\tau=\frac{a\tau+b}{c\tau+d}\ ,~{}~{}{\rm where}~{}~{}a,b,c,d\in\mathbb{Z}~{}~{}{\rm and}~{}~{}ad-bc=1,~{}~{}{\rm Im}[\tau]>0~{}, (4)

which is isomorphic to PSL(2,)=SL(2,)/{I,I}PSL(2,\mathbb{Z})=SL(2,\mathbb{Z})/\{\rm I,-I\} transformation. This modular transformation is generated by SS and TT,

S:τ1τ,T:ττ+1,\displaystyle S:\tau\longrightarrow-\frac{1}{\tau}\ ,\qquad\qquad T:\tau\longrightarrow\tau+1\ , (5)

which satisfy the following algebraic relations,

S2=𝟙,(ST)3=𝟙.S^{2}=\mathbb{1}\ ,\qquad(ST)^{3}=\mathbb{1}\ . (6)

We introduce the series of groups Γ(N)\Gamma(N), called principal congruence subgroups, where NN is the level 1,2,3,1,2,3,\dots. These groups are defined by

Γ(N)={(abcd)SL(2,),(abcd)=(1001)(modN)}.\displaystyle\begin{aligned} \Gamma(N)=\left\{\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in SL(2,\mathbb{Z})~{},~{}~{}\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\begin{pmatrix}1&0\\ 0&1\end{pmatrix}~{}~{}({\rm mod}N)\right\}\end{aligned}. (7)

For N=2N=2, we define Γ¯(2)Γ(2)/{I,I}\bar{\Gamma}(2)\equiv\Gamma(2)/\{\rm I,-I\}. Since the element I\rm-I does not belong to Γ(N)\Gamma(N) for N>2N>2, we have Γ¯(N)=Γ(N)\bar{\Gamma}(N)=\Gamma(N). The quotient groups defined as ΓNΓ¯/Γ¯(N)\Gamma_{N}\equiv\bar{\Gamma}/\bar{\Gamma}(N) are finite modular groups. In these finite groups ΓN\Gamma_{N}, TN=𝟙T^{N}=\mathbb{1} is imposed. The groups ΓN\Gamma_{N} with N=2,3,4,5N=2,3,4,5 are isomorphic to S3S_{3}, A4A_{4}, S4S_{4} and A5A_{5}, respectively [23].

Modular forms fi(τ)f_{i}(\tau) of weight kk are the holomorphic functions of τ\tau and transform as

fi(τ)(cτ+d)kρ(γ)ijfj(τ),γG,f_{i}(\tau)\longrightarrow(c\tau+d)^{k}\rho(\gamma)_{ij}f_{j}(\tau)\,,\quad\gamma\in G\,, (8)

under the modular symmetry, where ρ(γ)ij\rho(\gamma)_{ij} is a unitary matrix under ΓN\Gamma_{N}.

Superstring theory on the torus T2T^{2} or orbifold T2/ZNT^{2}/Z_{N} has the modular symmetry [103, 104, 105, 106, 107, 108]. Its low energy effective field theory is described in terms of supergravity theory, and string-derived supergravity theory has also the modular symmetry. Under the modular transformation of Eq. (4), chiral superfields ψi\psi_{i} (ii denotes flavors) transform as [109],

ψi(cτ+d)kIρ(γ)ijψj.\psi_{i}\longrightarrow(c\tau+d)^{-k_{I}}\rho(\gamma)_{ij}\psi_{j}\,. (9)

We study global supersymmetric models, e.g., minimal supersymmetric extensions of the Standard Model (MSSM). The superpotential which is built from matter fields and modular forms is assumed to be modular invariant, i.e., to have a vanishing modular weight. For given modular forms this can be achieved by assigning appropriate weights to the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral matter fields ψi\psi_{i} with the modular weight k-k is given simply by

Kmatter=1[i(τ¯τ)]ki|ψi|2,K^{\rm matter}=\frac{1}{[i(\bar{\tau}-\tau)]^{k}}\sum_{i}|\psi_{i}|^{2}, (10)

where the superfield and its scalar component are denoted by the same letter, and τ¯=τ\bar{\tau}=\tau^{*} after taking VEV of τ\tau. Therefore, the canonical form of the kinetic terms is obtained by changing the normalization of parameters [28]. The general Kähler potential consistent with the modular symmetry possibly contains additional terms [110]. However, we consider only the simplest form of the Kähler potential.

For Γ3A4\Gamma_{3}\simeq A_{4}, the dimension of the linear space k(Γ(3)){\cal M}_{k}(\Gamma{(3)}) of modular forms of weight kk is k+1k+1 [111, 112, 113], i.e., there are three linearly independent modular forms of the lowest non-trivial weight 22, which form a triplet of the A4A_{4} group, 𝐘𝟑(2)(τ)=(Y1(τ),Y2(τ),Y3(τ))T{\bf Y^{(\rm 2)}_{\bf 3}}(\tau)=(Y_{1}(\tau),\,Y_{2}(\tau),\,Y_{3}(\tau))^{T}. As shown in Appendix A, these modular forms have been explicitly obtained [22] in the symmetric base of the A4A_{4} generators SS and TT for the triplet representation:

S=13(122212221),T=(1000ω000ω2),\displaystyle\begin{aligned} S=\frac{1}{3}\begin{pmatrix}-1&2&2\\ 2&-1&2\\ 2&2&-1\end{pmatrix},\end{aligned}\qquad\qquad\begin{aligned} T=\begin{pmatrix}1&0&0\\ 0&\omega&0\\ 0&0&\omega^{2}\end{pmatrix},\end{aligned} (11)

where ω=exp(i23π)\omega=\exp(i\frac{2}{3}\pi) .

2.3 CP transformation of the modulus τ\tau

The CP transformation in the modular symmetry was given by using the generalized CP symmetry [93]. We summarize the discussion in Ref.[93] briefly. Consider the CP and modular transformation γ\gamma of the chiral superfield ψ(x)\psi(x) assigned to an irreducible unitary representation 𝐫\bf r of ΓN\Gamma_{N}. The chain CPγCP1=γΓ¯CP\rightarrow\gamma\rightarrow CP^{-1}=\gamma^{\prime}\in\bar{\Gamma} is expressed as:

ψ(x)\displaystyle\psi(x) CP𝐗𝐫ψ¯(xP)𝛾(cτ+d)k𝐗𝐫ρ𝐫(γ)ψ¯(xP)\displaystyle\xrightarrow{\,CP\,}{\bf X}_{\bf r}\overline{\psi}(x_{P})\xrightarrow{\ \gamma\ }(c\tau^{*}+d)^{-k}{\bf X}_{\bf r}\,{\rho}_{\bf r}^{*}(\gamma)\overline{\psi}(x_{P})
CP1(cτCP1+d)k𝐗𝐫ρ𝐫(γ)𝐗𝐫1ψ(x),\displaystyle\xrightarrow{\,CP^{-1}\,}(c\tau^{*}_{CP^{-1}}+d)^{-k}{\bf X}_{\bf r}\,{\rho}_{\bf r}^{*}(\gamma){\bf X}_{\bf r}^{-1}\psi(x)\,, (12)

where τCP1\tau_{CP^{-1}} is the operation of CP1CP^{-1} on τ\tau. The result of this chain transformation should be equivalent to a modular transformation γ\gamma^{\prime} which maps ψ(x)\psi(x) to (cτ+d)kρ𝐫(γ)ψ(x)(c^{\prime}\tau+d^{\prime})^{-k}{\rho}_{\bf r}(\gamma^{\prime})\psi(x). Therefore, one obtains

𝐗𝐫ρ𝐫(γ)𝐗𝐫1=(cτ+dcτCP1+d)kρ𝐫(γ).\displaystyle{\bf X}_{\bf r}\rho_{\bf r}^{*}(\gamma){\bf X}^{-1}_{\bf r}=\left(\frac{c^{\prime}\tau+d^{\prime}}{c\tau^{*}_{CP^{-1}}+d}\right)^{-k}{\rho}_{\bf r}(\gamma^{\prime})\,. (13)

Since 𝐗𝐫{\bf X}_{\bf r}, ρ𝐫\rho_{\bf r} and ρ𝐫\rho_{\bf r^{\prime}} are independent of τ\tau, the overall coefficient on the right-hand side of Eq. (13) has to be a constant (complex) for non-zero weight kk:

cτ+dcτCP1+d=1λ,\displaystyle\frac{c^{\prime}\tau+d^{\prime}}{c\tau^{*}_{CP^{-1}}+d}=\frac{1}{\lambda^{*}}\,, (14)

where |λ|=1|\lambda|=1 due to the unitarity of ρ𝐫\rho_{\bf r} and ρ𝐫\rho_{\bf r^{\prime}}. The values of λ\lambda, cc^{\prime} and dd^{\prime} depend on γ\gamma.

Taking γ=S\gamma=S (c=1c=1, d=0d=0) , and denoting c(S)=Cc^{\prime}(S)=C, d(S)=Dd^{\prime}(S)=D while keeping λ(S)=λ\lambda(S)=\lambda, we find τ=(λτCP1D)/C\tau=(\lambda\tau^{*}_{CP^{-1}}-D)/C from Eq. (14), and consequently,

τCP1τCP1=λ(Cτ+D),τCPτCP=1C(λτD).\displaystyle\tau\xrightarrow{\,CP^{-1}\,}\tau_{CP^{-1}}=\lambda(C\tau^{*}+D)\,,\qquad\tau\xrightarrow{\,CP\,}\tau_{CP}=\frac{1}{C}(\lambda\tau^{*}-D)\,. (15)

Let us act with chain CPTCP1CP\rightarrow T\rightarrow CP^{-1} on the mudular τ\tau itself:

τCPτCP=1C(λτD)𝑇1C(λ(τ+1)D)CP1τ+λC.\displaystyle\tau\xrightarrow{\,CP\,}\tau_{CP}=\frac{1}{C}(\lambda\tau^{*}-D)\xrightarrow{\ T\ }\frac{1}{C}(\lambda(\tau^{*}+1)-D)\xrightarrow{\,CP^{-1}\,}\tau+\frac{\lambda}{C}\,. (16)

The resulting transformation has to be a modular transformation, therefore λ/C\lambda/C is an integer. Since |λ|=1|\lambda|=1, we find |C|=1|C|=1 and λ=±1\lambda=\pm 1. After choosing the sign of CC as C=1C=\mp 1 so that Im[τCP]>0{\rm Im}[\tau_{CP}]>0, the CP transformation of Eq. (15) turns to

τCPnτ,\displaystyle\tau\xrightarrow{\,CP\,}n-\tau^{*}\,, (17)

where nn is an integer. The chain CPSCP1=γ(S)CP\rightarrow S\rightarrow CP^{-1}=\gamma^{\prime}(S) imposes no furher restrictions on τCP\tau_{CP}. It is always possible to redefine the CP transformation in such a way that n=0n=0 by using the freedom of TT transformation. Therefore, we define that the modulus τ\tau transforms under CP as

τCPτ,\displaystyle\tau\xrightarrow{\,CP\,}-\tau^{*}\,, (18)

without loss of generality.

The same transformation of τ\tau was also derived from the higher dimensional theories [94]. The four-dimensional CP symmetry can be embedded into (4+d)(4+d) dimensions as higher dimensional proper Lorentz symmetry with positive determinant. That is, one can combine the four-dimensional CP transformation and dd-dimensional transformation with negative determinant so as to obtain (4+d)(4+d) dimensional proper Lorentz transformation. For example in six-dimensional theory, we denote the two extra coordinates by a complex coordinate zz. The four-dimensional CP symmetry with zzz\rightarrow z^{*} or zzz\rightarrow-z^{*} is a six-dimensional proper Lorentz symmetry. Note that z=x+τyz=x+\tau y, where xx and yy are real coordinates. The latter transformation zzz\rightarrow-z^{*} maps the upper half plane Im[τ]>0{\rm Im}[\tau]>0 to the same half plane. Hence, we consider the transformation zzz\rightarrow-z^{*}(ττ)(\tau\rightarrow-\tau^{*}) as the CP symmetry.

2.4 CP transformation of modular multiplets

Chiral superfields and modular forms transform in Eqs. (8) and (9), respectively, under a modular transformation. Chiral superfields also transform in Eq. (1) under the CP transformation. The CP transformation of modular forms were given in Ref.[93] as follows. Define a modular multiplet of the irreducible representation 𝐫\bf r of ΓN\Gamma_{N} with weight kk as 𝐘𝐫(k)(τ)\bf Y^{\rm(k)}_{\bf r}(\tau), which is transformed as:

𝐘𝐫(k)(τ)CP𝐘𝐫(k)(τ),\displaystyle\bf Y^{\rm(k)}_{\bf r}(\tau)\xrightarrow{\,{\rm CP}\,}Y^{\rm(k)}_{\bf r}(-\tau^{*})\,, (19)

under the CP transformation. The complex conjugated CP transformed modular forms 𝐘𝐫(k)(τ)\bf Y^{\rm(k)*}_{\bf r}(-\tau^{*}) transform almost like the original multiplets 𝐘𝐫(k)(τ)\bf Y^{\rm(k)}_{\bf r}(\tau) under a modular transformation, namely:

𝐘𝐫(k)(τ)𝛾𝐘𝐫(k)((γτ))=(cτ+d)kρ𝐫(u(γ))𝐘𝐫(k)(τ),\displaystyle\bf Y^{\rm(k)*}_{\bf r}(-\tau^{*})\xrightarrow{\ \gamma\ }Y^{\rm(k)*}_{\bf r}(-(\gamma\tau)^{*})={\rm(c\tau+d)^{k}}\rho_{\bf{r}}^{*}({\rm u}(\gamma))Y^{\rm(k)*}_{\bf r}(-\tau^{*})\,, (20)

where u(γ)CPγCP1u(\gamma)\equiv CP\gamma CP^{-1}. Using the consistency condition of Eq. (3), we obtain

𝐗𝐫𝐓𝐘𝐫(k)(τ)𝛾(cτ+d)kρ𝐫(γ)𝐗𝐫𝐓𝐘𝐫(k)(τ).\displaystyle\bf X_{r}^{T}Y^{\rm(k)*}_{\bf r}(-\tau^{*})\xrightarrow{\ \gamma\ }{\rm(c\tau+d)^{k}}\rho_{\bf{r}}(\gamma)X_{r}^{T}Y^{\rm(k)*}_{\bf r}(-\tau^{*})\,. (21)

Therefore, if there exist a unique modular multiplet at a level NN, weight kk and representation 𝐫\bf r, which is satisfied for N=2N=255 with weight 22, we can express the modular form 𝐘𝐫(k)(τ)\bf Y^{\rm(k)}_{\bf r}(\tau) as:

𝐘𝐫(k)(τ)=κ𝐗𝐫𝐓𝐘𝐫(k)(τ),\displaystyle\bf Y^{\rm(k)}_{\bf r}(\tau)={\rm\kappa}X_{r}^{T}Y^{\rm(k)*}_{\bf r}(-\tau^{*})\,, (22)

where κ\kappa is a proportional coefficient. Since 𝐘𝐫(k)((τ))=𝐘𝐫(k)(τ)\bf Y^{\rm(k)}_{\bf r}(-(-\tau^{*})^{*})=\bf Y^{\rm(k)}_{\bf r}(\tau), Eq. (22) gives 𝐗𝐫𝐗𝐫=|κ|2𝟙𝐫\bf X_{r}^{*}X_{r}={\rm|\kappa|^{2}}\mathbb{1}_{r}. Therefore, the matrix 𝐗𝐫\bf X_{r} is symmetric one, and κ=eiϕ\kappa=e^{i\phi} is a phase, which can be absorbed in the normalization of modular forms. In conclusion, the CP transformation of modular forms is given as:

𝐘𝐫(k)(τ)CP𝐘𝐫(k)(τ)=𝐗𝐫𝐘𝐫(k)(τ).\displaystyle\bf Y^{\rm(k)}_{\bf r}(\tau)\xrightarrow{\,{\rm CP}\,}Y^{\rm(k)}_{\bf r}(-\tau^{*})=X_{r}Y^{\rm(k)*}_{\bf r}(\tau)\,. (23)

It is also emphasized that 𝐗𝐫=𝟙𝐫\bf X_{r}=\mathbb{1}_{r} satisfies the consistency condition Eq. (3) in a basis that generators of SS and TT of ΓN\Gamma_{N} are represented by symmetric matrices because of ρ𝐫(S)=ρ𝐫(S)=ρ𝐫(S1)=ρ𝐫(S)\rho^{*}_{\bf{r}}(S)=\rho^{\dagger}_{\bf{r}}(S)=\rho_{\bf{r}}(S^{-1})=\rho_{\bf{r}}(S) and ρ𝐫(T)=ρ𝐫(T)=ρ𝐫(T1)\rho^{*}_{\bf{r}}(T)=\rho^{\dagger}_{\bf{r}}(T)=\rho_{\bf{r}}(T^{-1}).

The CP transformations of chiral superfields and modular multiplets are summalized as follows:

τCPτ,ψ(x)CPXrψ¯(xP),𝐘𝐫(k)(τ)CP𝐘𝐫(k)(τ)=𝐗𝐫𝐘𝐫(k)(τ),\displaystyle\tau\xrightarrow{\,{\rm CP}\,}-\tau^{*}\,,\qquad\psi(x)\xrightarrow{\,{\rm CP}\,}X_{r}\overline{\psi}(x_{P})\,,\qquad\bf Y^{\rm(k)}_{\bf r}(\tau)\xrightarrow{\,{\rm CP}\,}Y^{\rm(k)}_{\bf r}(-\tau^{*})=X_{r}Y^{\rm(k)*}_{\bf r}(\tau)\,, (24)

where 𝐗𝐫=𝟙𝐫\bf X_{r}=\mathbb{1}_{r} can be taken in the base of symmetric generators of SS and TT. We use this CP transformation of modular forms to construct the CP invariant mass matrices in the next section.

3 CP invariant mass matrix in A4A_{4} modular symmetry

Let us discuss the CP invariant lepton mass matrix in the framework of the A4A_{4} modular symmetry. We assign the A4A_{4} representation and weight for superfields of leptons in Table 1, where the three left-handed lepton doublets compose a A4A_{4} triplet LL, and the right-handed charged leptons ece^{c}, μc\mu^{c} and τc\tau^{c} are A4A_{4} singlets. The weights of the superfields of left-handed leptons and right-handed charged leptons are 2-2 and 0, respectively. Then, the simple lepton mass matrices for charged leptons and neutrinos are obtained [75].

LL (ec,μc,τc)(e^{c},\mu^{c},\tau^{c}) HuH_{u} HdH_{d} 𝐘𝐫(2),𝐘𝐫(4)\bf Y_{r}^{\rm(2)},\ \ Y_{r}^{\rm(4)}
SU(2)SU(2) 𝟐\bf 2 𝟏\bf 1 𝟐\bf 2 𝟐\bf 2 𝟏\bf 1
A4A_{4} 𝟑\bf 3 (1, 1′′, 1) 𝟏\bf 1 𝟏\bf 1 𝟑,{𝟑,𝟏,𝟏}\bf 3,\ \{3,1,1^{\prime}\}
kk 2-2 (0, 0, 0)(0,\ 0,\ 0) 0 0 2,42,\qquad 4
Table 1: Representations and weights kk for MSSM fields and modular forms of weight 22 and 44.

The superpotential of the charged lepton mass term is given in terms of modular forms of weight 22, 𝐘𝟑(2)\bf Y^{\rm(2)}_{3}. It is given as:

wE\displaystyle w_{E} =αeecHd𝐘𝟑(2)L+βeμcHd𝐘𝟑(2)L+γeτcHd𝐘𝟑(2)L,\displaystyle=\alpha_{e}e^{c}H_{d}{\bf Y^{\rm(2)}_{3}}L+\beta_{e}\mu^{c}H_{d}{\bf Y^{\rm(2)}_{3}}L+\gamma_{e}\tau^{c}H_{d}{\bf Y^{\rm(2)}_{3}}L~{}, (25)

where LL is the left-handed A4A_{4} triplet leptons. We can take real for αe\alpha_{e}, βe\beta_{e} and γe\gamma_{e}. Under CP, the superfields transform as:

ecCPX𝟏e¯c,μcCPX𝟏′′μ¯c,τcCPX𝟏τ¯c,LCPX𝟑L¯,HdCPηdH¯d,\displaystyle e^{c}\xrightarrow{\,CP\,}\,X_{\bf 1}^{*}\,\overline{e}^{c}\,,\quad\mu^{c}\xrightarrow{\,CP\,}X_{\bf 1^{\prime\prime}}^{*}\,\overline{\mu}^{c}\,,\quad\tau^{c}\xrightarrow{\,CP\,}\,X_{\bf 1^{\prime}}^{*}\,\overline{\tau}^{c}\,,\quad L\xrightarrow{\,CP\,}\,X_{\bf 3}\overline{L}\,,\quad H_{d}\xrightarrow{\,CP\,}\,\eta_{d}\,\overline{H}_{d}\,, (26)

and we can take ηd=1\eta_{d}=1 without loss of generality. Since the representations of SS and TT are symmetric as seen in Eq. (11), we can choose X𝟑=𝟙X_{\bf 3}=\mathbb{1} and X𝟏=X𝟏=X𝟏′′=𝟙X_{\bf 1}=X_{\bf 1^{\prime}}=X_{\bf 1^{\prime\prime}}=\mathbb{1}.

Taking (eL,μL,τL)(e_{L},\mu_{L},\tau_{L}) in the flavor base, the charged lepton mass matrix MEM_{E} is simply written as:

ME(τ)=vd(αe000βe000γe)(Y1(τ)Y3(τ)Y2(τ)Y2(τ)Y1(τ)Y3(τ)Y3(τ)Y2(τ)Y1(τ))RL,\displaystyle\begin{aligned} M_{E}(\tau)=v_{d}\begin{pmatrix}\alpha_{e}&0&0\\ 0&\beta_{e}&0\\ 0&0&\gamma_{e}\end{pmatrix}\begin{pmatrix}Y_{1}(\tau)&Y_{3}(\tau)&Y_{2}(\tau)\\ Y_{2}(\tau)&Y_{1}(\tau)&Y_{3}(\tau)\\ Y_{3}(\tau)&Y_{2}(\tau)&Y_{1}(\tau)\end{pmatrix}_{RL}\ ,\end{aligned} (27)

where vdv_{d} is VEV of the neutral component of HdH_{d}, and coefficients αe\alpha_{e}, βe\beta_{e} and γe\gamma_{e} are taken to be real without loss of generality. Under CP transformation, the mass matrix MEM_{E} is transformed following from Eq. (24) as:

ME(τ)CPME(τ)=ME(τ)=vd(αe000βe000γe)(Y1(τ)Y3(τ)Y2(τ)Y2(τ)Y1(τ)Y3(τ)Y3(τ)Y2(τ)Y1(τ))RL.\displaystyle\begin{aligned} M_{E}(\tau)\xrightarrow{\,CP\,}M_{E}(-\tau^{*})=M_{E}^{*}(\tau)=v_{d}\begin{pmatrix}\alpha_{e}&0&0\\ 0&\beta_{e}&0\\ 0&0&\gamma_{e}\end{pmatrix}\begin{pmatrix}Y_{1}(\tau)^{*}&Y_{3}(\tau)^{*}&Y_{2}(\tau)^{*}\\ Y_{2}(\tau)^{*}&Y_{1}(\tau)^{*}&Y_{3}(\tau)^{*}\\ Y_{3}(\tau)^{*}&Y_{2}(\tau)^{*}&Y_{1}(\tau)^{*}\end{pmatrix}_{RL}\ .\end{aligned} (28)

Let us discuss the neutrino mass matrix. Suppose neutrinos to be Majorana particles. By using the Weinberg operator, the superpotential of the neutrino mass term, wνw_{\nu} is given as:

wν\displaystyle w_{\nu} =1Λ(HuHuLL𝐘𝐫(4))𝟏,\displaystyle=-\frac{1}{\Lambda}(H_{u}H_{u}LL{\bf Y_{r}^{\rm(4)}})_{\bf 1}~{}, (29)

where Λ\Lambda is a relevant cutoff scale. Since the left-handed lepton doublet has weight 2-2, the superpotential is given in terms of modular forms of weight 44, 𝐘𝟑(4){\bf Y_{3}^{\rm(4)}}, 𝐘𝟏(4){\bf Y_{1}^{\rm(4)}} and 𝐘𝟏(4){\bf Y_{1^{\prime}}^{\rm(4)}}.

By putting vuv_{u} for VEV of the neutral component of HuH_{u} and using the tensor products of A4A_{4} in Appendix A, we have

wν\displaystyle w_{\nu} =vu2Λ[(2νeνeνμντντνμ2ντντνeνμνμντ2νμνμντνeνeντ)𝐘𝟑(4)\displaystyle=\frac{v_{u}^{2}}{\Lambda}\left[\begin{pmatrix}2\nu_{e}\nu_{e}-\nu_{\mu}\nu_{\tau}-\nu_{\tau}\nu_{\mu}\\ 2\nu_{\tau}\nu_{\tau}-\nu_{e}\nu_{\mu}-\nu_{\mu}\nu_{\tau}\\ 2\nu_{\mu}\nu_{\mu}-\nu_{\tau}\nu_{e}-\nu_{e}\nu_{\tau}\end{pmatrix}\otimes{\bf Y_{3}^{\rm(4)}}\right.
+(νeνe+νμντ+ντνμ)g1ν𝐘𝟏(4)+(νeντ+νμνμ+ντνe)g2ν𝐘𝟏(4)]\displaystyle\left.+\ (\nu_{e}\nu_{e}+\nu_{\mu}\nu_{\tau}+\nu_{\tau}\nu_{\mu})\otimes g^{\nu}_{1}{\bf Y_{1}^{\rm(4)}}+(\nu_{e}\nu_{\tau}+\nu_{\mu}\nu_{\mu}+\nu_{\tau}\nu_{e})\otimes g^{\nu}_{2}{\bf Y_{1^{\prime}}^{\rm(4)}}\right]
=\displaystyle= vu2Λ[(2νeνeνμντντνμ)Y1(4)+(2ντντνeνμνμνe)Y3(4)+(2νμνμντνeνeντ)Y2(4)\displaystyle\frac{v_{u}^{2}}{\Lambda}\left[(2\nu_{e}\nu_{e}-\nu_{\mu}\nu_{\tau}-\nu_{\tau}\nu_{\mu})Y_{1}^{(4)}+(2\nu_{\tau}\nu_{\tau}-\nu_{e}\nu_{\mu}-\nu_{\mu}\nu_{e})Y_{3}^{(4)}+(2\nu_{\mu}\nu_{\mu}-\nu_{\tau}\nu_{e}-\nu_{e}\nu_{\tau})Y_{2}^{(4)}\right.
+(νeνe+νμντ+ντνμ)g1ν𝐘𝟏(4)+(νeντ+νμνμ+ντνe)g2ν𝐘𝟏(4)],\displaystyle\left.+\ (\nu_{e}\nu_{e}+\nu_{\mu}\nu_{\tau}+\nu_{\tau}\nu_{\mu})g^{\nu}_{1}{\bf Y_{1}^{\rm(4)}}+(\nu_{e}\nu_{\tau}+\nu_{\mu}\nu_{\mu}+\nu_{\tau}\nu_{e})g^{\nu}_{2}{\bf Y_{1^{\prime}}^{\rm(4)}}\right]\ , (30)

where 𝐘𝟑(4){\bf Y_{3}^{\rm(4)}}, 𝐘𝟏(4){\bf Y_{1}^{\rm(4)}} and 𝐘𝟏(4){\bf Y_{1^{\prime}}^{\rm(4)}} are given in Eq. (LABEL:weight4) of Appendix B, and g1νg^{\nu}_{1}, g2νg^{\nu}_{2} are complex parameters in general. The neutrino mass matrix is written as follows:

Mν(τ)=vu2Λ[(2Y1(4)(τ)Y3(4)(τ)Y2(4)(τ)Y3(4)(τ)2Y2(4)(τ)Y1(4)(τ)Y2(4)(τ)Y1(4)(τ)2Y3(4)(τ))+g1ν𝐘𝟏(4)(τ)(100001010)+g2ν𝐘𝟏(4)(τ)(001010100)],\displaystyle M_{\nu}(\tau)=\frac{v_{u}^{2}}{\Lambda}\left[\begin{pmatrix}2Y_{1}^{(4)}(\tau)&-Y_{3}^{(4)}(\tau)&-Y_{2}^{(4)}(\tau)\\ -Y_{3}^{(4)}(\tau)&2Y_{2}^{(4)}(\tau)&-Y_{1}^{(4)}(\tau)\\ -Y_{2}^{(4)}(\tau)&-Y_{1}^{(4)}(\tau)&2Y_{3}^{(4)}(\tau)\end{pmatrix}+g^{\nu}_{1}{\bf Y_{1}^{\rm(4)}(\tau)}\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix}+g^{\nu}_{2}{\bf Y_{1^{\prime}}^{\rm(4)}(\tau)}\begin{pmatrix}0&0&1\\ 0&1&0\\ 1&0&0\end{pmatrix}\right]\,, (31)

which is the same one in Ref.[75]. Under CP transformation, the mass matrix MνM_{\nu} is transformed following from Eq. (24) as:

Mν(τ)CPMν(τ)=Mν(τ)\displaystyle M_{\nu}(\tau)\xrightarrow{\,CP\,}M_{\nu}(-\tau^{*})=M^{*}_{\nu}(\tau)
=vu2Λ[(2Y1(4)(τ)Y3(4)(τ)Y2(4)(τ)Y3(4)(τ)2Y2(4)(τ)Y1(4)(τ)Y2(4)(τ)Y1(4)(τ)2Y3(4)(τ))+g1ν𝐘𝟏(4)(τ)(100001010)+g2ν𝐘𝟏(4)(τ)(001010100)].\displaystyle=\frac{v_{u}^{2}}{\Lambda}\left[\begin{pmatrix}2Y_{1}^{(4)*}(\tau)&-Y_{3}^{(4)*}(\tau)&-Y_{2}^{(4)*}(\tau)\\ -Y_{3}^{(4)*}(\tau)&2Y_{2}^{(4)*}(\tau)&-Y_{1}^{(4)*}(\tau)\\ -Y_{2}^{(4)*}(\tau)&-Y_{1}^{(4)*}(\tau)&2Y_{3}^{(4)*}(\tau)\end{pmatrix}+g^{\nu*}_{1}{\bf Y_{1}^{\rm(4)*}(\tau)}\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix}+g^{\nu*}_{2}{\bf Y_{1^{\prime}}^{\rm(4)*}(\tau)}\begin{pmatrix}0&0&1\\ 0&1&0\\ 1&0&0\end{pmatrix}\right]. (32)

In a CP conserving modular invariant theory, both CP and modular symmetries are broken spontaneously by VEV of the modulus τ\tau. However, there exist certain values of τ\tau which conserve CP while breaking the modular symmetry. Obviously, this is the case if τ\tau is left invariant by CP, i.e.

τCPτ=τ,\displaystyle\tau\xrightarrow{\,CP\,}-\tau^{*}=\tau\,\,, (33)

which indicates τ\tau lies on the imaginary axis, Re[τ]=0{\rm Re}[\tau]=0. In addition to Re[τ]=0{\rm Re}[\tau]=0, CP is conserved at the boundary of the fundamental domain. Then, one has

ME(τ)=ME(τ),Mν(τ)=Mν(τ),\displaystyle M_{E}(\tau)=M_{E}^{*}(\tau)\,,\qquad\qquad M_{\nu}(\tau)=M_{\nu}^{*}(\tau)\,, (34)

which leads to g1νg^{\nu}_{1} and g2νg^{\nu}_{2} being real. Since parameters αe\alpha_{e}, βe\beta_{e}, γe\gamma_{e} are also real, the source of the CP violation is only non-trivial Re[τ]{\rm Re}[\tau] after breaking the modular symmetry. In the next section, we present numerical analysis of the CP violation by investigating the value of the modulus τ\tau.

4 Numerical results of leptonic CP violation

We have presented the CP invariant lepton mass matrices in the A4A_{4} modular symmetry. These mass matrices are the same ones in Ref.[75] except for parameters g1νg_{1}^{\nu} and g2νg_{2}^{\nu} being real. If the CP violation will be confirmed at the experiments of neutrino oscillations, the CP symmetry should be broken spontaneously by VEV of the modulus τ\tau. Thus, VEV of τ\tau breaks the CP symmetry as well as the modular invariance. The source of the CP violation is only the real part of τ\tau. This situation is different from the previous work in Ref.[75], where imaginary parts of g1νg_{1}^{\nu} and g2νg_{2}^{\nu} also break the CP symmetry explicitly. Our phenomenological concern is whether the spontaneous CP violation is realized due to the value of τ\tau, which is consistent with observed lepton mixing angles and neutrino masses. If this is the case, the CP violating Dirac phase and Majorana phases are predicted clearly under the fixed value of τ\tau.

Parameter ratios αe/γe\alpha_{e}/\gamma_{e} and βe/γe\beta_{e}/\gamma_{e} are given in terms of charged lepton masses and τ\tau as shown in Appendix C. Therefore, the lepton mixing angles, the Dirac phase and Majorana phases are given by our model parameters g1νg^{\nu}_{1} and g2νg^{\nu}_{2} in addition to the value of τ\tau.

As the input charged lepton masses, we take Yukawa couplings of charged leptons at the GUT scale 2×10162\times 10^{16} GeV, where tanβ=5\tan\beta=5 is taken as a bench mark [114, 115]:

ye=(1.97±0.024)×106,yμ=(4.16±0.050)×104,yτ=(7.07±0.073)×103,\displaystyle y_{e}=(1.97\pm 0.024)\times 10^{-6},\quad y_{\mu}=(4.16\pm 0.050)\times 10^{-4},\quad y_{\tau}=(7.07\pm 0.073)\times 10^{-3}, (35)

where lepton masses are given by m=yvHm_{\ell}=y_{\ell}v_{H} with vH=174v_{H}=174 GeV.

 observable best fit ±1σ\pm 1\,\sigma for NH best fit ±1σ\pm 1\,\sigma for IH
sin2θ12\sin^{2}\theta_{12} 0.3040.012+0.0120.304^{+0.012}_{-0.012} 0.3040.012+0.0130.304^{+0.013}_{-0.012}
sin2θ23\sin^{2}\theta_{23} 0.5730.020+0.0160.573^{+0.016}_{-0.020} 0.5750.019+0.0160.575^{+0.016}_{-0.019}
sin2θ13\sin^{2}\theta_{13} 0.022190.00063+0.000620.02219^{+0.00062}_{-0.00063} 0.022380.00062+0.000630.02238^{+0.00063}_{-0.00062}
Δmsol2\Delta m_{\rm sol}^{2} 7.420.20+0.21×105eV27.42^{+0.21}_{-0.20}\times 10^{-5}{\rm eV}^{2} 7.420.20+0.21×105eV27.42^{+0.21}_{-0.20}\times 10^{-5}{\rm eV}^{2}
Δmatm2\Delta m_{\rm atm}^{2}     2.5170.028+0.026×103eV22.517^{+0.026}_{-0.028}\times 10^{-3}{\rm eV}^{2} 2.4980.028+0.028×103eV2-2.498^{+0.028}_{-0.028}\times 10^{-3}{\rm eV}^{2}
Table 2: The best fit ±1σ\pm 1\,\sigma of neutrino parameters from NuFIT 5.0 for NH and IH [116].

We also input the lepton mixing angles and neutrino mass parameters which are given by NuFit 5.0 in Table 2 [116]. In our analysis, δCP\delta_{CP} is output because its observed range is too wide at 3σ3\,\sigma confidence level. We investigate two possible cases of neutrino masses mim_{i}, which are the normal hierarchy (NH), m3>m2>m1m_{3}>m_{2}>m_{1}, and the inverted hierarchy (IH), m2>m1>m3m_{2}>m_{1}>m_{3}. Neutrino masses and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix UPMNSU_{\rm PMNS} [95, 96] are obtained by diagonalizing MEMEM_{E}^{\dagger}M_{E} and MνMνM_{\nu}^{\dagger}M_{\nu}. We also investigate the effective mass for the 0νββ0\nu\beta\beta decay, mee\langle m_{ee}\rangle (see Appendix D) and the sum of three neutrino masses mi\sum m_{i} since it is constrained by the recent cosmological data, which is the upper-bound mi120\sum m_{i}\leq 120 meV obtained at the 95% confidence level [117, 118].

4.1 Case of normal hierarchy of neutrino masses

Let us discuss numerical results for NH of neutrino masses. The ratios αe/γe\alpha_{e}/\gamma_{e} and βe/γe\beta_{e}/\gamma_{e} are given after fixing charged lepton masses and τ\tau as shown in Appendix C. However, in practice, we scan αe/γe\alpha_{e}/\gamma_{e} and βe/γe\beta_{e}/\gamma_{e} to obtain the observed charged lepton mass ratio and include them in χ2\chi^{2} fit as well as three mixing angles and Δmatm2/Δmsol2\Delta m_{\rm atm}^{2}/\Delta m_{\rm sol}^{2}.

We have already studied the lepton mass matrices in Eqs. (27) and (31) phenomenologically at the nearby fixed points of the modulus because the spontaneous CP violation in Type IIB string theory is possibly realized at nearby fixed points, where the moduli stabilization is performed in a controlled way [119, 120]. There are two fixed points in the fundamental domain of PSL(2,)PSL(2,\mathbb{Z}), τ=i\tau=i and τ=ω\tau=\omega. Indeed, the viable τ\tau of our lepton mass matrices is found around τ=i\tau=i [75].

Based on this result of Ref. [75], we scan τ\tau around ii while neutrino couplings g1νg^{\nu}_{1} and g2νg^{\nu}_{2} are scanned in the real space of [10, 10][-10,\,10]. As a measure of good-fit, we adopt the sum of one-dimensional χ2\chi^{2} function for four accurately known dimensionless observables Δmatm2/Δmsol2\Delta m_{\rm atm}^{2}/\Delta m_{\rm sol}^{2}, sin2θ12\sin^{2}\theta_{12}, sin2θ23\sin^{2}\theta_{23} and sin2θ13\sin^{2}\theta_{13} in NuFit 5.0 [116]. In addition, we employ Gaussian approximations for fitting me/mτm_{e}/m_{\tau} and mμ/mτm_{\mu}/m_{\tau} by using the data of PDG [121].

In Fig. 1 we show the allowed region on the Re[τ]{\rm Re}\,[\tau] – Im[τ]{\rm Im}\,[\tau] plane, where three mixing angles and Δmatm2/Δmsol2\Delta m_{\rm atm}^{2}/\Delta m_{\rm sol}^{2} are consistent with observed ones. The green, yellow and red regions correspond to 2σ2\sigma, 3σ3\sigma and 5σ5\sigma confidence levels, respectively.

Refer to caption
Figure 1: Allowed regions of τ\tau for NH. Green, yellow and red correspond to 2σ2\sigma, 3σ3\sigma, 5σ5\sigma confidence levels, respectively. The solid curve is the boundary of the fundamental domain, |τ|=1|\tau|=1.
Refer to caption
Figure 2: The allowed region of g1νg^{\nu}_{1} and g2νg^{\nu}_{2}, which are real parameters, for NH. Colors denote same ones in Fig. 1.

The allowed region of τ\tau is restricted in the narrow regions. This result is contrast to the previous one in Ref. [75], where non-trivial phases of g1νg^{\nu}_{1} and g2νg^{\nu}_{2} enlarged the allowed region of τ\tau. The predicted range of τ\tau is in Re[τ]=±[0.073,0.083]{\rm Re}\,[\tau]=\pm[0.073,0.083] and Im[τ]=[1.006,1.014]{\rm Im}\,[\tau]=[1.006,1.014] at 3σ3\,\sigma confidence level (yellow), which are close to the fixed point τ=i\tau=i.

The allowed region of g1νg^{\nu}_{1} and g2νg^{\nu}_{2} is also shown in Fig. 2, where g1νg^{\nu}_{1} is in the rather wide region of [0.18,0.18][-0.18,0.18] while g2νg^{\nu}_{2} is restricted in [0.87,0.79][-0.87,-0.79] at 3σ3\,\sigma confidence level (yellow).

Due to restricted Re[τ]{\rm Re}\,[\tau], the CP violating Dirac phase δCP\delta_{CP}, which is defined in Appendix D, is predicted clearly. In Fig. 3, we show prediction of δCP\delta_{CP} versus the sum of neutrino masses mi\sum m_{i}. It is remarked that δCP\delta_{CP} is almost independent of mi\sum m_{i}. The predicted ranges of δCP\delta_{CP} are narrow such as [98,110][98^{\circ},110^{\circ}] and [250,262][250^{\circ},262^{\circ}] at 3σ3\,\sigma confidence level (yellow). The predicted ranges [98,110][98^{\circ},110^{\circ}] and [250,262][250^{\circ},262^{\circ}] correspond to Re[τ]=(0.073{\rm Re}\,[\tau]=(0.0730.083)0.083) and Re[τ]=(0.073{\rm Re}\,[\tau]=-(0.0730.083)0.083), respectively. The predicted mi\sum m_{i} is in [82, 102][82,\,102] meV for 3σ3\,\sigma confidence level (yellow). The minimal cosmological model, ΛCDM+mi{\rm\Lambda CDM}+\sum m_{i}, provides the upper-bound mi<120\sum m_{i}<120 meV [117, 118]. Thus, our predicted sum of neutrino masses is consistent with the cosmological bound 120120  meV.

In Fig. 4, we show the allowed region on the sin2θ23\sin^{2}\theta_{23} – mi\sum m_{i} plane. Since mi\sum m_{i} depends on the value of sin2θ23\sin^{2}\theta_{23} significantly, the crucial test of our prediction will be available in the near future.

Refer to caption
Figure 3: The prediction of δCP\delta_{CP} versus mi\sum m_{i} for NH. Colors denote same ones in Fig. 1.
Refer to caption
Figure 4: The allowed region on sin2θ23\sin^{2}\theta_{23}mi\sum m_{i} plane for NH. Colors denote same ones in Fig. 1.

In Fig. 5, we show the prediction of Majorana phases α21\alpha_{21} and α31\alpha_{31}, which are defined by Appendix D. The predicted [α21,α31][\alpha_{21},\,\alpha_{31}] are around [30,20][30^{\circ},20^{\circ}] and [330,340][330^{\circ},340^{\circ}] since the source of the CP violation, Re[τ]{\rm Re}\,[\tau] is in the narrow range Re[τ]=±[0.073,0.083]{\rm Re}\,[\tau]=\pm[0.073,0.083].

We can calculate the effective mass mee\langle m_{ee}\rangle for the 0νββ0\nu\beta\beta decay by using the Dirac phase and Majorana phases as seen in Appendix D. We show the predicted value of mee\langle m_{ee}\rangle versus sin2θ23\sin^{2}\theta_{23} as seen in Fig. 6. The predicted mee\langle m_{ee}\rangle is in [12.5, 20.5][12.5,\,20.5] meV for 3σ3\,\sigma confidence level (yellow). The prediction of mee20\langle m_{ee}\rangle\simeq 20 meV will be testable in the future experiments of the neutrinoless double beta decay.

Refer to caption
Figure 5: Predicted Majorana phases α21\alpha_{21} and α31\alpha_{31} for NH. Colors denote same ones in Fig. 1.
Refer to caption
Figure 6: The predicted mee\langle m_{ee}\rangle versus sin2θ23\sin^{2}\theta_{23} for NH. Colors denote same ones in Fig. 1.

It is important to understand the difference between the results in the present paper and the previous ones in Ref.[75], where imaginary parts of g1νg_{1}^{\nu} and g2νg_{2}^{\nu} also break the CP symmetry explicitly. The modulus τ\tau is severely restricted around Re[τ]=±0.08{\rm Re}\,[\tau]=\pm 0.08 and Im[τ]=1.01{\rm Im}\,[\tau]=1.01 in this work while it is allowed in rather wide region in the previous work. Indeed, the samller Re[τ]{\rm Re}\,[\tau] and the larger Im[τ]{\rm Im}\,[\tau] are allowed such as Re[τ]±0.03{\rm Re}\,[\tau]\simeq\pm 0.03 and Im[τ]1.1{\rm Im}\,[\tau]\simeq 1.1 in the previous results. Due to this restricted τ\tau in this work, δCP\delta_{CP} and the sum of neutrino masses mi\sum m_{i} are predicted clearly. On the other hand, the CP conservation is still allowed and mi\sum m_{i} could be larger than 120120 meV in the previous work. Moreover, the Dirac phase δCP\delta_{CP} depends on mi\sum m_{i}.

4.2 Case of inverted hierarchy of neutrino masses

We discuss the case of IH of neutrino masses. In Fig. 7, we show the allowed region on the Re[τ]{\rm Re}\,[\tau] – Im[τ]{\rm Im}\,[\tau] plane, where the red region corresponds to 5σ5\,\sigma confidence level like in Fig. 1. However, there are no green and yellow regions of 2σ2\,\sigma and 3σ3\,\sigma confidence levels.

Refer to caption
Figure 7: Allowed regions of τ\tau for IH. Red corresponds to 5σ5\,\sigma confidence level.
Refer to caption
Figure 8: The allowed region of g1νg^{\nu}_{1} and g2νg^{\nu}_{2}, which are real parameters, for IH.

The range of τ\tau is in Re[τ]=±[0.009, 0.012]{\rm Re}\,[\tau]=\pm[0.009,\,0.012] and Im[τ]=[1.076, 1.087]{\rm Im}\,[\tau]=[1.076,\,1.087] at 5σ5\,\sigma confidence level, which are close to τ=i\tau=i.

The allowed region of g1νg^{\nu}_{1} and g2νg^{\nu}_{2} is also shown in Fig. 8, where g1νg^{\nu}_{1} is restricted in the narrow range of [1.20,1.15][-1.20,\,-1.15] while g2νg^{\nu}_{2} is rather large as in [4.8, 9.6][4.8,\,9.6] for 5σ5\,\sigma.

In Fig. 9, we show prediction of δCP\delta_{CP} versus mi\sum m_{i}. It is remarked that δCP\delta_{CP} is almost independent of mi\sum m_{i}. The predicted range of δCP\delta_{CP} is in [95,100][95^{\circ},100^{\circ}] and [260,265][260^{\circ},265^{\circ}] at 5σ5\,\sigma confidence level while the sum of neutrino masses are in the range of [134, 180][134,\,180] meV. In our numerical result, there is no region of the sum of neutrino masses less than 120120 meV. The upper-bound of the minimal cosmological model, ΛCDM+mi{\rm\Lambda CDM}+\sum m_{i}, is mi<120\sum m_{i}<120 meV [117, 118], however, it becomes weaker when the data are analysed in the context of extended cosmological models [121]. The predicted sum of neutrino masses of IH may be still consistent with the cosmological bound.

Refer to caption
Figure 9: The prediction of δCP\delta_{CP} versus mi\sum m_{i} for IH.
Refer to caption
Figure 10: The allowed region on sin2θ23\sin^{2}\theta_{23}mi\sum m_{i} plane for IH.

We show the allowed region on the mi\sum m_{i} – sin2θ23\sin^{2}\theta_{23} plane in Fig. 10. The precise measurement of sin2θ23\sin^{2}\theta_{23} will provide a severe test for our prediction since sin2θ23>0.55\sin^{2}\theta_{23}>0.55 is obtained for IH.

In Fig. 11, we show the prediction of Majorana phases α21\alpha_{21} and α31\alpha_{31}. The predicted [α21,α31][\alpha_{21},\,\alpha_{31}] are restricted around [3,182][3^{\circ},182^{\circ}] and [356,178][356^{\circ},178^{\circ}]. We also show the predicted value of mee\langle m_{ee}\rangle versus sin2θ23\sin^{2}\theta_{23} as seen in Fig. 12. The predicted mee\langle m_{ee}\rangle is in [54, 67][54,\,67] meV for 5σ5\,\sigma confidence level.

As well as the case of NH, we comment on the difference between the results in the present paper and the previous ones in Ref.[75], where g1νg_{1}^{\nu} and g2νg_{2}^{\nu} are complex. Our results are obtained at more than 3σ3\,\sigma confidence level, on the other hand, the previous ones are at less than 3σ3\,\sigma confidence level. The modulus τ\tau is also severely restricted in this work while it is allowed in rather wide region in the previous work. The sum of neutrino masses mi\sum m_{i} is lager than 120120 meV in this work, on the other hand, it is allowed to be smaller than 120120 meV in the previous work. For example, it could be 9090 meV, and the Dirac phase δCP\delta_{CP} depends on mi\sum m_{i}.

Refer to caption
Figure 11: Predicted Majorana phases α21\alpha_{21} and α31\alpha_{31} for IH.
Refer to caption
Figure 12: The predicted mee\langle m_{ee}\rangle versus sin2θ23\sin^{2}\theta_{23} for IH.

4.3 Parameter samples of NH and IH

We show the numerical result of two samples for NH and IH, respectively. In Table 3, parameters and outputs of our calculations are presented for both NH and IH.

NH IH
τ\tau 0.0796+1.0065i-0.0796+1.0065\,i 0.0103+1.0812i0.0103+1.0812\,i
g1νg^{\nu}_{1} 0.1240.124 -1.17
g2νg^{\nu}_{2} 0.802-0.802 6.79
αe/γe\alpha_{e}/\gamma_{e} 6.82×1026.82\times 10^{-2} 6.76×1026.76\times 10^{-2}
βe/γe\beta_{e}/\gamma_{e} 1.02×1031.02\times 10^{-3} 1.02×1031.02\times 10^{-3}
sin2θ12\sin^{2}\theta_{12} 0.2900.290 0.2910.291
sin2θ23\sin^{2}\theta_{23} 0.5640.564 0.5790.579
sin2θ13\sin^{2}\theta_{13} 0.02250.0225 0.02190.0219
δCP\delta_{CP}^{\ell} 258258^{\circ} 262262^{\circ}
[α21,α31][\alpha_{21},\,\alpha_{31}] [330, 338][330^{\circ},\,338^{\circ}] [3.24, 182][3.24^{\circ},\,182^{\circ}]
mi\sum m_{i} 97.997.9 meV 153153 meV
mee\langle m_{ee}\rangle 19.219.2 meV 59.159.1 meV
χ2\chi^{2} 1.981.98 4.124.12
Table 3: Numerical values of parameters and observables at the sample points of NH and IH.

We also present the mixing matrices of charged leptons UEU_{E} and neutrinos UνU_{\nu} for the samples of Table 3. For NH, those are:

UE(0.9830.020+0.158i0.011+0.092i0.016+0.130i0.9580.255+0.001i0.016+0.129i0.239+0.001i0.962),Uν(0.8380.541+0.068i0.008+0.031i0.450+0.076i0.6880.5640.0008i0.2990.021i0.4780.020i0.825),\displaystyle\begin{aligned} U_{E}&\approx\begin{pmatrix}0.983&-0.020+0.158\,i&-0.011+0.092\,i\\ 0.016+0.130\,i&0.958&-0.255+0.001\,i\\ 0.016+0.129\,i&0.239+0.001\,i&0.962\end{pmatrix}\ ,\\ U_{\nu}&\approx\begin{pmatrix}0.838&-0.541+0.068\,i&-0.008+0.031\,i\\ 0.450+0.076\,i&0.688&0.564-0.0008\,i\\ -0.299-0.021\,i&-0.478-0.020\,i&0.825\end{pmatrix}\ ,\end{aligned} (36)

which are given in the diagonal base of the generator SS in order to see the hierarchical structure of flavor mixing [75]. The PMNS mixing matrix is given as UPMNS=UEUνU_{\rm PMNS}=U_{E}^{\dagger}\,U_{\nu}. The diagonal base of SS is obtained by using the following unitary matrix:

VS(16261613131312012),\displaystyle\begin{aligned} V_{S}\equiv\begin{pmatrix}-\frac{1}{\sqrt{6}}&\ \frac{2}{\sqrt{6}}&-\frac{1}{\sqrt{6}}\\ \ \,\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{3}}&\ \frac{1}{\sqrt{3}}\\ -\frac{1}{\sqrt{2}}&0&\ \frac{1}{\sqrt{2}}\end{pmatrix},\end{aligned} (37)

which leads to VSSVS=diag(1,1,1)V_{S}\,S\,V_{S}^{\dagger}={\rm diag}\,(1,\,-1,\,-1) [75]. Then, the charged lepton and neutrino mass matrices are transformed as VSMfMfVS(f=E,ν)V_{S}M_{f}^{\dagger}M_{f}V_{S}^{\dagger}\,(f=E,\,\nu).

For IH, the mixing matrices are:

UE(0.9830.155+0.019i0.091+0.011i0.127+0.015i0.9560.2640.001i0.128+0.0160.2480.001i0.960),Uν(0.8400.0007+0.542i0.0320.001i0.022+0.445i0.6910.5700.002i0.0160.310i0.4780.023i0.821),\displaystyle\begin{aligned} U_{E}&\approx\begin{pmatrix}0.983&0.155+0.019\,i&0.091+0.011\,i\\ 0.127+0.015\,i&0.956&-0.264-0.001\,i\\ -0.128+0.016\,&0.248-0.001\,i&0.960\end{pmatrix}\ ,\\ U_{\nu}&\approx\begin{pmatrix}0.840&0.0007+0.542\,i&0.032-0.001\,i\\ -0.022+0.445\,i&0.691&0.570-0.002\,i\\ -0.016-0.310\,i&-0.478-0.023\,i&0.821\end{pmatrix}\ ,\end{aligned} (38)

which are also given in the diagonal base of the generator SS.

For both NH and IH, the mixing matrix of charged leptons UEU_{E} is hierarchical one, on the other hand, two large mixing angles of 1–2 and 2–3 flavors appear in the neutrino mixing matrix UνU_{\nu}.

In our numerical calculations, we have not included the RGE effects in the lepton mixing angles and neutrino mass ratio Δmsol2/Δmatm2\Delta m_{\rm sol}^{2}/\Delta m_{\rm atm}^{2}. We suppose that those corrections are very small between the electroweak and GUT scales. This assumption is justified well in the case of tanβ5\tan\beta\leq 5 unless neutrino masses are almost degenerate [27].

5 Summary and discussions

The modular invariant A4A_{4} model of lepton flavors has been studied combining with the generalized CP symmetry. In our model, both CP and modular symmetries are broken spontaneously by VEV of the modulus τ\tau. The source of the CP violation is a non-trivial value of Re[τ]{\rm Re}[\tau] while parameters of neutrinos g1νg^{\nu}_{1} and g2νg^{\nu}_{2} are real.

We have found allowed region of τ\tau close to the fixed point τ=i\tau=i, which is consistent with the observed lepton mixing angles and lepton masses for NH at 2σ2\,\sigma confidence level. The CP violating Dirac phase δCP\delta_{CP} is predicted clearly in [98,110][98^{\circ},110^{\circ}] and [250,262][250^{\circ},262^{\circ}] at 3σ3\,\sigma confidence level. The predicted mi\sum m_{i} is in [82, 102][82,\,102] meV with 3σ3\,\sigma confidence level.

There is also allowed region of τ\tau close to the fixed point τ=i\tau=i for IH at 5σ5\,\sigma confidence level. The predicted δCP\delta_{CP} is in [95,100][95^{\circ},100^{\circ}] and [260,265][260^{\circ},265^{\circ}] at 5σ5\,\sigma confidence level. The sum of neutrino masses is predicted in mi=[134, 180]\sum m_{i}=[134,\,180] meV.

By using the predicted Dirac phase and the Majorana phases, we have obtained the effective mass mee\langle m_{ee}\rangle for the 0νββ0\nu\beta\beta decay, which are in [12.5, 20.5][12.5,\,20.5] meV for NH at 3σ3\,\sigma confidence level and in [54, 67][54,\,67] meV for IH at 5σ5\,\sigma confidence level. Since KamLAND-Zen experiment [122] presented the upper bound on the effective Majorana mass as mee<61\langle m_{ee}\rangle<61165165 meV by using a variety of nuclear matrix element calculations, the prediction of [54, 67][54,\,67] meV for IH will be tested in the near future. Furthermore, the prediction of mee20\langle m_{ee}\rangle\simeq 20 meV for NH will be also testable in the future experiments of the neutrinoless double beta decay.

Since the CP symmetry is conserved at the boundary of the fundamental domain, one may expect the size of CP violation to be small at the nearby fixed point of τ=i\tau=i. In order to estimate of the size of CP violation, we can calculate the rephasing invariant CP violating measure of leptons, JCPJ_{CP} [123, 124] from mass matrices directly [125]. By using aproximate forms of lepton mass matrices at nearby fixed points in Ref.[75], we have obtained the relation between the magnitude of JCPJ_{CP} and the deviation from τ=i\tau=i semi-quantitatively. In order to reproduce the almost maximal size |JCP|=0.03|J_{CP}|=0.03, it is enough to take ϵ=±𝒪(0.05)\epsilon=\pm{\cal O}(0.05) where ϵ\epsilon is supposed to be real in the definition of τ=i+ϵ\tau=i+\epsilon. Since it is important to study CP violation at nearby fixed points complehensively, we will present appropriate forms in another paper.

In our model, the modulus τ\tau dominates the CP violation. Therefore, the determination of τ\tau is the most important work. Although we have constrained τ\tau by observables of leptons phenomenologically, one also should pay attention to the recent theoretical work of the moduli stabilization from the viewpoint of modular flavor symmetries [126]. The study of modulus τ\tau is interesting to reveal the flavor theory in both theoretical and phenomenological aspects.

Acknowledgments

This research was supported by an appointment to the JRG Program at the APCTP through the Science and Technology Promotion Fund and Lottery Fund of the Korean Government. This was also supported by the Korean Local Governments - Gyeongsangbuk-do Province and Pohang City (H.O.). H. O. is sincerely grateful for the KIAS member.

Appendix

Appendix A Tensor product of A4A_{4} group

We take the generators of A4A_{4} group for the triplet as follows:

S=13(122212221),T=(1000ω000ω2),\displaystyle\begin{aligned} S=\frac{1}{3}\begin{pmatrix}-1&2&2\\ 2&-1&2\\ 2&2&-1\end{pmatrix},\end{aligned}\qquad\begin{aligned} T=\begin{pmatrix}1&0&0\\ 0&\omega&0\\ 0&0&\omega^{2}\end{pmatrix},\end{aligned} (39)

where ω=ei23π\omega=e^{i\frac{2}{3}\pi} for a triplet. In this base, the multiplication rule is

(a1a2a3)𝟑(b1b2b3)𝟑\displaystyle\begin{pmatrix}a_{1}\\ a_{2}\\ a_{3}\end{pmatrix}_{\bf 3}\otimes\begin{pmatrix}b_{1}\\ b_{2}\\ b_{3}\end{pmatrix}_{\bf 3} =(a1b1+a2b3+a3b2)𝟏(a3b3+a1b2+a2b1)𝟏\displaystyle=\left(a_{1}b_{1}+a_{2}b_{3}+a_{3}b_{2}\right)_{\bf 1}\oplus\left(a_{3}b_{3}+a_{1}b_{2}+a_{2}b_{1}\right)_{{\bf 1}^{\prime}}
(a2b2+a1b3+a3b1)𝟏′′\displaystyle\oplus\left(a_{2}b_{2}+a_{1}b_{3}+a_{3}b_{1}\right)_{{\bf 1}^{\prime\prime}}
13(2a1b1a2b3a3b22a3b3a1b2a2b12a2b2a1b3a3b1)𝟑12(a2b3a3b2a1b2a2b1a3b1a1b3)𝟑,\displaystyle\oplus\frac{1}{3}\begin{pmatrix}2a_{1}b_{1}-a_{2}b_{3}-a_{3}b_{2}\\ 2a_{3}b_{3}-a_{1}b_{2}-a_{2}b_{1}\\ 2a_{2}b_{2}-a_{1}b_{3}-a_{3}b_{1}\end{pmatrix}_{{\bf 3}}\oplus\frac{1}{2}\begin{pmatrix}a_{2}b_{3}-a_{3}b_{2}\\ a_{1}b_{2}-a_{2}b_{1}\\ a_{3}b_{1}-a_{1}b_{3}\end{pmatrix}_{{\bf 3}\ }\ ,
𝟏𝟏=𝟏,\displaystyle{\bf 1}\otimes{\bf 1}={\bf 1}\ ,\qquad 𝟏𝟏=𝟏′′,𝟏′′𝟏′′=𝟏,𝟏𝟏′′=𝟏,\displaystyle{\bf 1^{\prime}}\otimes{\bf 1^{\prime}}={\bf 1^{\prime\prime}}\ ,\qquad{\bf 1^{\prime\prime}}\otimes{\bf 1^{\prime\prime}}={\bf 1^{\prime}}\ ,\qquad{\bf 1^{\prime}}\otimes{\bf 1^{\prime\prime}}={\bf 1}\ , (40)

where

T(𝟏)=ω,T(𝟏′′)=ω2.\displaystyle T({\bf 1^{\prime})}=\omega\,,\qquad T({\bf 1^{\prime\prime}})=\omega^{2}. (41)

More details are shown in the review [6, 7].

Appendix B Modular forms in A4A_{4} symmetry

For Γ3A4\Gamma_{3}\simeq A_{4}, the dimension of the linear space k(Γ(3)){\cal M}_{k}(\Gamma{(3)}) of modular forms of weight kk is k+1k+1 [111, 112, 113], i.e., there are three linearly independent modular forms of the lowest non-trivial weight 22. These forms have been explicitly obtained [22] in terms of the Dedekind eta-function η(τ)\eta(\tau):

η(τ)=q1/24n=1(1qn),q=exp(i2πτ),\eta(\tau)=q^{1/24}\prod_{n=1}^{\infty}(1-q^{n})~{},\quad\qquad q=\exp\ (i2\pi\tau)~{}, (42)

where η(τ)\eta(\tau) is a so called modular form of weight 1/21/2. In what follows we will use the following base of the A4A_{4} generators SS and TT in the triplet representation:

S=13(122212221),T=(1000ω000ω2),\displaystyle\begin{aligned} S=\frac{1}{3}\begin{pmatrix}-1&2&2\\ 2&-1&2\\ 2&2&-1\end{pmatrix},\end{aligned}\qquad\qquad\begin{aligned} T=\begin{pmatrix}1&0&0\\ 0&\omega&0\\ 0&0&\omega^{2}\end{pmatrix},\end{aligned} (43)

where ω=exp(i23π)\omega=\exp(i\frac{2}{3}\pi) . The modular forms of weight 2 (k=2)(k=2) transforming as a triplet of A4A_{4}, 𝐘𝟑(2)(τ)=(Y1(τ)Y2(τ),Y3(τ))T{\bf Y^{\rm(2)}_{3}}(\tau)=(Y_{1}(\tau)\,Y_{2}(\tau),Y_{3}(\tau))^{T}, can be written in terms of η(τ)\eta(\tau) and its derivative [22]:

Y1(τ)\displaystyle Y_{1}(\tau) =\displaystyle= i2π(η(τ/3)η(τ/3)+η((τ+1)/3)η((τ+1)/3)+η((τ+2)/3)η((τ+2)/3)27η(3τ)η(3τ)),\displaystyle\frac{i}{2\pi}\left(\frac{\eta^{\prime}(\tau/3)}{\eta(\tau/3)}+\frac{\eta^{\prime}((\tau+1)/3)}{\eta((\tau+1)/3)}+\frac{\eta^{\prime}((\tau+2)/3)}{\eta((\tau+2)/3)}-\frac{27\eta^{\prime}(3\tau)}{\eta(3\tau)}\right),
Y2(τ)\displaystyle Y_{2}(\tau) =\displaystyle= iπ(η(τ/3)η(τ/3)+ω2η((τ+1)/3)η((τ+1)/3)+ωη((τ+2)/3)η((τ+2)/3)),\displaystyle\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau/3)}{\eta(\tau/3)}+\omega^{2}\frac{\eta^{\prime}((\tau+1)/3)}{\eta((\tau+1)/3)}+\omega\frac{\eta^{\prime}((\tau+2)/3)}{\eta((\tau+2)/3)}\right), (44)
Y3(τ)\displaystyle Y_{3}(\tau) =\displaystyle= iπ(η(τ/3)η(τ/3)+ωη((τ+1)/3)η((τ+1)/3)+ω2η((τ+2)/3)η((τ+2)/3)).\displaystyle\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau/3)}{\eta(\tau/3)}+\omega\frac{\eta^{\prime}((\tau+1)/3)}{\eta((\tau+1)/3)}+\omega^{2}\frac{\eta^{\prime}((\tau+2)/3)}{\eta((\tau+2)/3)}\right)\,.

The overall coefficient in Eq. (44) is one possible choice. It cannot be uniquely determined. The triplet modular forms of weight 22 have the following qq-expansions:

𝐘𝟑(2)(τ)=(Y1(τ)Y2(τ)Y3(τ))=(1+12q+36q2+12q3+6q1/3(1+7q+8q2+)18q2/3(1+2q+5q2+)).\displaystyle{\bf Y^{\rm(2)}_{3}}(\tau)=\begin{pmatrix}Y_{1}(\tau)\\ Y_{2}(\tau)\\ Y_{3}(\tau)\end{pmatrix}=\begin{pmatrix}1+12q+36q^{2}+12q^{3}+\dots\\ -6q^{1/3}(1+7q+8q^{2}+\dots)\\ -18q^{2/3}(1+2q+5q^{2}+\dots)\end{pmatrix}. (45)

They satisfy also the constraint [22]:

Y2(τ)2+2Y1(τ)Y3(τ)=0.\displaystyle Y_{2}(\tau)^{2}+2Y_{1}(\tau)Y_{3}(\tau)=0~{}. (46)

The modular forms of the higher weight, kk, can be obtained by the A4A_{4} tensor products of the modular forms with weight 2, 𝐘𝟑(2)(τ){\bf Y^{\rm(2)}_{3}}(\tau), as given in Appendix A. For weight 4, that is k=4k=4, there are five modular forms by the tensor product of 𝟑𝟑\bf 3\otimes 3 as:

where 𝐘𝟏′′(4)(τ){\bf Y^{\rm(4)}_{1^{\prime\prime}}}(\tau) vanishes due to the constraint of Eq. (46).

Appendix C Determination of αe/γe\alpha_{e}/\gamma_{e} and βe/γe\beta_{e}/\gamma_{e}

The coefficients αe\alpha_{e}, βe\beta_{e}, and γe\gamma_{e} in Eq.(27) are taken to be real positive without loss of generality. We show these parameters are described in terms of the modular parameter τ\tau and the charged lepton masses. We rewrite the mass matrix of Eq. (27) as

ME=vdγe(α^e000β^e0001)(Y1(τ)Y3(τ)Y2(τ)Y2(τ)Y1(τ)Y3(τ)Y3(τ)Y2(τ)Y1(τ)),\displaystyle\begin{aligned} M_{E}=v_{d}\gamma_{e}\begin{pmatrix}\hat{\alpha}_{e}&0&0\\ 0&\hat{\beta}_{e}&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}Y_{1}(\tau)&Y_{3}(\tau)&Y_{2}(\tau)\\ Y_{2}(\tau)&Y_{1}(\tau)&Y_{3}(\tau)\\ Y_{3}(\tau)&Y_{2}(\tau)&Y_{1}(\tau)\end{pmatrix}\,,\end{aligned} (47)

where α^eαe/γe\hat{\alpha}_{e}\equiv\alpha_{e}/\gamma_{e} and β^eβe/γe\hat{\beta}_{e}\equiv\beta_{e}/\gamma_{e}. Denoting charged lepton masses m1=mem_{1}=m_{e}, m2=mμm_{2}=m_{\mu} and m3=mτm_{3}=m_{\tau}, we have three equations as:

i=13mi2=Tr[MEME]\displaystyle{\sum_{i=1}^{3}m_{i}^{2}}={\rm Tr}[M_{E}^{\dagger}M_{E}] =vd2γe2(1+α^e2+β^e2)C1e,\displaystyle=v_{d}^{2}\gamma_{e}^{2}\ (1+\hat{\alpha}_{e}^{2}+\hat{\beta}_{e}^{2})\ C^{e}_{1}\,, (48)
i=13mi2=Det[MEME]\displaystyle{\prod_{i=1}^{3}m_{i}^{2}}={\rm Det}[M_{E}^{{\dagger}}M_{E}] =vd6γe6α^e2β^e2C2e,\displaystyle=v_{d}^{6}\gamma_{e}^{6}\ \hat{\alpha}^{2}_{e}\hat{\beta}^{2}_{e}\ C^{e}_{2}\,, (49)
χ=Tr[MEME]2Tr[(MEME)2]2\displaystyle\chi=\frac{{\rm Tr}[M_{E}^{{\dagger}}M_{E}]^{2}-{\rm Tr}[(M_{E}^{{\dagger}}M_{E})^{2}]}{2} =vd4γe4(α^e2+α^e2β^e2+β^e2)C3e,\displaystyle=v_{d}^{4}\gamma^{4}_{e}\ (\hat{\alpha}_{e}^{2}+\hat{\alpha}^{2}_{e}\hat{\beta}_{e}^{2}+\hat{\beta}_{e}^{2})~{}C^{e}_{3}\,, (50)

where χm12m22+m22m32+m32m12\chi\equiv m_{1}^{2}m_{2}^{2}+m_{2}^{2}m_{3}^{2}+m_{3}^{2}m_{1}^{2}. The coefficients C1eC^{e}_{1}, C2eC^{e}_{2} and C3eC^{e}_{3} depend only on Yi(τ)Y_{i}(\tau)’s, where Yi(τ)Y_{i}(\tau)’s are determined if the value of modulus τ\tau is fixed. Those are given explicitly as follows:

C1e=|Y1(τ)|2+|Y2(τ)|2+|Y3(τ)|2,C2e=|Y1(τ)3+Y2(τ)3+Y3(τ)33Y1(τ)Y2(τ)Y3(τ)|2,C3e=|Y1(τ)|4+|Y2(τ)|4+|Y3(τ)|4+|Y1(τ)Y2(τ)|2+|Y2(τ)Y3(τ)|2+|Y1(τ)Y3(τ)|22Re[Y1(τ)Y2(τ)Y32(τ)+Y12(τ)Y2(τ)Y3(τ)+Y1(τ)Y22(τ)Y3(τ)].\displaystyle\begin{aligned} C^{e}_{1}&=|Y_{1}(\tau)|^{2}+|Y_{2}(\tau)|^{2}+|Y_{3}(\tau)|^{2}\,,\\ C^{e}_{2}&=|Y_{1}(\tau)^{3}+Y_{2}(\tau)^{3}+Y_{3}(\tau)^{3}-3Y_{1}(\tau)Y_{2}(\tau)Y_{3}(\tau)|^{2}\,,\\ C^{e}_{3}&=|Y_{1}(\tau)|^{4}+|Y_{2}(\tau)|^{4}+|Y_{3}(\tau)|^{4}+|Y_{1}(\tau)Y_{2}(\tau)|^{2}+|Y_{2}(\tau)Y_{3}(\tau)|^{2}+|Y_{1}(\tau)Y_{3}(\tau)|^{2}\\ &-2{\rm Re}\left[Y_{1}^{*}(\tau)Y_{2}^{*}(\tau)Y_{3}^{2}(\tau)+Y_{1}^{2}(\tau)Y_{2}^{*}(\tau)Y_{3}^{*}(\tau)+Y_{1}^{*}(\tau)Y_{2}^{2}(\tau)Y_{3}^{*}(\tau)\right]\,.\end{aligned}

Then, we obtain two equations which describe α^e\hat{\alpha}_{e} and β^e\hat{\beta}_{e} in terms of masses and τ\tau:

(1+s)(s+t)t=(mi2/C1e)(χ/C3e)mi2/C2e,(1+s)2s+t=(mi2/C1e)2χ/C3e,\displaystyle\begin{aligned} \frac{(1+s)(s+t)}{t}&=\frac{(\sum m_{i}^{2}/C^{e}_{1})(\chi/C^{e}_{3})}{\prod m_{i}^{2}/C^{e}_{2}}~{},\quad\qquad\frac{(1+s)^{2}}{s+t}&=\frac{(\sum m_{i}^{2}/C^{e}_{1})^{2}}{\chi/C^{e}_{3}}~{},\end{aligned} (51)

where we redefine the parameters α^e2+β^e2=s\hat{\alpha}_{e}^{2}+\hat{\beta}_{e}^{2}=s and α^e2β^e2=t\hat{\alpha}_{e}^{2}\hat{\beta}_{e}^{2}=t. After fixing charged lepton masses and τ\tau, we obtain ss and tt numerically. They are related as follows:

α^e2=s±s24t2,β^e2=ss24t2.\displaystyle\hat{\alpha}_{e}^{2}=\frac{s\pm\sqrt{s^{2}-4t}}{2}\,,\quad\quad\hat{\beta}_{e}^{2}=\frac{s\mp\sqrt{s^{2}-4t}}{2}\,. (52)

Appendix D Majorana and Dirac phases and mee\langle m_{ee}\rangle in 0νββ0\nu\beta\beta decay

Supposing neutrinos to be Majorana particles, the PMNS matrix UPMNSU_{\text{PMNS}} [95, 96] is parametrized in terms of the three mixing angles θij\theta_{ij} (i,j=1,2,3;i<j)(i,j=1,2,3;~{}i<j), one CP violating Dirac phase δCP\delta_{\text{CP}} and two Majorana phases α21\alpha_{21}, α31\alpha_{31} as follows:

UPMNS=(c12c13s12c13s13eiδCPs12c23c12s23s13eiδCPc12c23s12s23s13eiδCPs23c13s12s23c12c23s13eiδCPc12s23s12c23s13eiδCPc23c13)(1000eiα212000eiα312),\displaystyle U_{\text{PMNS}}=\begin{pmatrix}c_{12}c_{13}&s_{12}c_{13}&s_{13}e^{-i\delta_{\text{CP}}}\\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{\text{CP}}}&c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{\text{CP}}}&s_{23}c_{13}\\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{\text{CP}}}&-c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{\text{CP}}}&c_{23}c_{13}\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&e^{i\frac{\alpha_{21}}{2}}&0\\ 0&0&e^{i\frac{\alpha_{31}}{2}}\end{pmatrix}, (53)

where cijc_{ij} and sijs_{ij} denote cosθij\cos\theta_{ij} and sinθij\sin\theta_{ij}, respectively.

The rephasing invariant CP violating measure of leptons [123, 124] is defined by the PMNS matrix elements UαiU_{\alpha i}. It is written in terms of the mixing angles and the CP violating phase as:

JCP=Im[Ue1Uμ2Ue2Uμ1]=s23c23s12c12s13c132sinδCP,J_{CP}=\text{Im}\left[U_{e1}U_{\mu 2}U_{e2}^{\ast}U_{\mu 1}^{\ast}\right]=s_{23}c_{23}s_{12}c_{12}s_{13}c_{13}^{2}\sin\delta_{\text{CP}}\,, (54)

where UαiU_{\alpha i} denotes the each component of the PMNS matrix.

There are also other invariants I1I_{1} and I2I_{2} associated with Majorana phases

I1=Im[Ue1Ue2]=c12s12c132sin(α212),I2=Im[Ue1Ue3]=c12s13c13sin(α312δCP).I_{1}=\text{Im}\left[U_{e1}^{\ast}U_{e2}\right]=c_{12}s_{12}c_{13}^{2}\sin\left(\frac{\alpha_{21}}{2}\right)\,,\quad I_{2}=\text{Im}\left[U_{e1}^{\ast}U_{e3}\right]=c_{12}s_{13}c_{13}\sin\left(\frac{\alpha_{31}}{2}-\delta_{\text{CP}}\right)\,. (55)

We can calculate δCP\delta_{\text{CP}}, α21\alpha_{21} and α31\alpha_{31} with these relations by taking account of

cosδCP=|Uτ1|2s122s232c122c232s1322c12s12c23s23s13,\displaystyle\cos\delta_{CP}=\frac{|U_{\tau 1}|^{2}-s_{12}^{2}s_{23}^{2}-c_{12}^{2}c_{23}^{2}s_{13}^{2}}{2c_{12}s_{12}c_{23}s_{23}s_{13}}\,,
Re[Ue1Ue2]=c12s12c132cos(α212),Re[Ue1Ue3]=c12s13c13cos(α312δCP).\displaystyle\text{Re}\left[U_{e1}^{\ast}U_{e2}\right]=c_{12}s_{12}c_{13}^{2}\cos\left(\frac{\alpha_{21}}{2}\right)\,,\qquad\text{Re}\left[U_{e1}^{\ast}U_{e3}\right]=c_{12}s_{13}c_{13}\cos\left(\frac{\alpha_{31}}{2}-\delta_{\text{CP}}\right)\,. (56)

In terms of this parametrization, the effective mass for the 0νββ0\nu\beta\beta decay is given as follows:

mee=|m1c122c132+m2s122c132eiα21+m3s132ei(α312δCP)|.\displaystyle\langle m_{ee}\rangle=\left|m_{1}c_{12}^{2}c_{13}^{2}+m_{2}s_{12}^{2}c_{13}^{2}e^{i\alpha_{21}}+m_{3}s_{13}^{2}e^{i(\alpha_{31}-2\delta_{CP})}\right|\,. (57)

References

  • [1] F. Wilczek and A. Zee, Phys. Lett.  70B (1977) 418 Erratum: [Phys. Lett.  72B (1978) 504].
  • [2] S. Pakvasa and H. Sugawara, Phys. Lett.  73B (1978) 61.
  • [3] M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Rev. D 57 (1998) 4429 [hep-ph/9709388].
  • [4] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett.  81 (1998) 1562 [hep-ex/9807003].
  • [5] G. Altarelli and F. Feruglio, Rev. Mod. Phys.  82 (2010) 2701 [arXiv:1002.0211 [hep-ph]].
  • [6] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor. Phys. Suppl.  183 (2010) 1 [arXiv:1003.3552 [hep-th]].
  • [7] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Lect. Notes Phys.  858 (2012) 1, Springer.
  • [8] D. Hernandez and A. Y. Smirnov, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445 [hep-ph]].
  • [9] S. F. King and C. Luhn, Rept. Prog. Phys.  76 (2013) 056201 [arXiv:1301.1340 [hep-ph]].
  • [10] S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys.  16, 045018 (2014) [arXiv:1402.4271 [hep-ph]].
  • [11] M. Tanimoto, AIP Conf. Proc.  1666 (2015) 120002.
  • [12] S. F. King, Prog. Part. Nucl. Phys.  94 (2017) 217 [arXiv:1701.04413 [hep-ph]].
  • [13] S. T. Petcov, Eur. Phys. J. C 78 (2018) no.9, 709 [arXiv:1711.10806 [hep-ph]].
  • [14] F. Feruglio and A. Romanino, arXiv:1912.06028 [hep-ph].
  • [15] E. Ma and G. Rajasekaran, Phys. Rev.  D 64, 113012 (2001) [arXiv:hep-ph/0106291].
  • [16] K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett.  B 552, 207 (2003) [arXiv:hep-ph/0206292].
  • [17] G. Altarelli and F. Feruglio, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165].
  • [18] G. Altarelli and F. Feruglio, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103].
  • [19] Y. Shimizu, M. Tanimoto and A. Watanabe, Prog. Theor. Phys.  126 (2011) 81 [arXiv:1105.2929 [hep-ph]].
  • [20] S. T. Petcov and A. V. Titov, Phys. Rev. D 97 (2018) no.11, 115045 [arXiv:1804.00182 [hep-ph]].
  • [21] S. K. Kang, Y. Shimizu, K. Takagi, S. Takahashi and M. Tanimoto, PTEP 2018, no. 8, 083B01 (2018) [arXiv:1804.10468 [hep-ph]].
  • [22] F. Feruglio, in From My Vast Repertoire …: Guido Altarelli’s Legacy, A. Levy, S. Forte, Stefano, and G. Ridolfi, eds., pp.227–266, 2019, arXiv:1706.08749 [hep-ph].
  • [23] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Nucl. Phys. B 858, 437 (2012) [arXiv:1112.1340 [hep-ph]].
  • [24] T. Kobayashi, K. Tanaka and T. H. Tatsuishi, Phys. Rev. D 98 (2018) no.1, 016004 [arXiv:1803.10391 [hep-ph]].
  • [25] J. T. Penedo and S. T. Petcov, Nucl. Phys. B 939 (2019) 292 [arXiv:1806.11040 [hep-ph]].
  • [26] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904 (2019) 174 [arXiv:1812.02158 [hep-ph]].
  • [27] J. C. Criado and F. Feruglio, SciPost Phys.  5 (2018) no.5, 042 [arXiv:1807.01125 [hep-ph]].
  • [28] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 1811 (2018) 196 [arXiv:1808.03012 [hep-ph]].
  • [29] G. J. Ding, S. F. King and X. G. Liu, JHEP 1909 (2019) 074 [arXiv:1907.11714 [hep-ph]].
  • [30] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904 (2019) 005 [arXiv:1811.04933 [hep-ph]].
  • [31] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 02 (2020), 097 [arXiv:1907.09141 [hep-ph]].
  • [32] X. Wang and S. Zhou, JHEP 05 (2020), 017 [arXiv:1910.09473 [hep-ph]].
  • [33] G. J. Ding, S. F. King and X. G. Liu, Phys. Rev. D 100 (2019) no.11, 115005 [arXiv:1903.12588 [hep-ph]].
  • [34] X. G. Liu and G. J. Ding, JHEP 1908 (2019) 134 [arXiv:1907.01488 [hep-ph]].
  • [35] P. Chen, G. J. Ding, J. N. Lu and J. W. F. Valle, arXiv:2003.02734 [hep-ph].
  • [36] P. P. Novichkov, J. T. Penedo and S. T. Petcov, [arXiv:2006.03058 [hep-ph]].
  • [37] X. G. Liu, C. Y. Yao and G. J. Ding, [arXiv:2006.10722 [hep-ph]].
  • [38] T. Kobayashi and S. Tamba, Phys. Rev. D 99 (2019) no.4, 046001 [arXiv:1811.11384 [hep-th]].
  • [39] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Phys. Lett. B 795 (2019) 7 [arXiv:1901.03251 [hep-th]].
  • [40] G. J. Ding, S. F. King, C. C. Li and Y. L. Zhou, JHEP 08 (2020), 164 [arXiv:2004.12662 [hep-ph]].
  • [41] T. Asaka, Y. Heo, T. H. Tatsuishi and T. Yoshida, JHEP 2001 (2020) 144 [arXiv:1909.06520 [hep-ph]].
  • [42] T. Asaka, Y. Heo and T. Yoshida, [arXiv:2009.12120 [hep-ph]].
  • [43] M. K. Behera, S. Mishra, S. Singirala and R. Mohanta, [arXiv:2007.00545 [hep-ph]].
  • [44] S. Mishra, [arXiv:2008.02095 [hep-ph]].
  • [45] F. J. de Anda, S. F. King and E. Perdomo, Phys. Rev. D 101 (2020) no.1, 015028 [arXiv:1812.05620 [hep-ph]].
  • [46] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, arXiv:1906.10341 [hep-ph].
  • [47] P. P. Novichkov, S. T. Petcov and M. Tanimoto, Phys. Lett. B 793 (2019) 247 [arXiv:1812.11289 [hep-ph]].
  • [48] I. de Medeiros Varzielas, S. F. King and Y. L. Zhou, Phys. Rev. D 101 (2020) no.5, 055033 [arXiv:1906.02208 [hep-ph]].
  • [49] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys. Lett. B 794 (2019) 114 [arXiv:1812.11072 [hep-ph]].
  • [50] H. Okada and M. Tanimoto, Phys. Lett. B 791 (2019) 54 [arXiv:1812.09677 [hep-ph]].
  • [51] H. Okada and M. Tanimoto, arXiv:1905.13421 [hep-ph].
  • [52] T. Nomura and H. Okada, Phys. Lett. B 797 (2019) 134799 [arXiv:1904.03937 [hep-ph]].
  • [53] H. Okada and Y. Orikasa, Phys. Rev. D 100 (2019) no.11, 115037 [arXiv:1907.04716 [hep-ph]].
  • [54] Y. Kariyazono, T. Kobayashi, S. Takada, S. Tamba and H. Uchida, Phys. Rev. D 100 (2019) no.4, 045014 [arXiv:1904.07546 [hep-th]].
  • [55] T. Nomura and H. Okada, arXiv:1906.03927 [hep-ph].
  • [56] H. Okada and Y. Orikasa, arXiv:1908.08409 [hep-ph].
  • [57] T. Nomura, H. Okada and O. Popov, Phys. Lett. B 803 (2020) 135294 [arXiv:1908.07457 [hep-ph]].
  • [58] J. C. Criado, F. Feruglio and S. J. D. King, JHEP 2002 (2020) 001 [arXiv:1908.11867 [hep-ph]].
  • [59] S. F. King and Y. L. Zhou, Phys. Rev. D 101 (2020) no.1, 015001 [arXiv:1908.02770 [hep-ph]].
  • [60] G. J. Ding, S. F. King, X. G. Liu and J. N. Lu, JHEP 1912 (2019) 030 [arXiv:1910.03460 [hep-ph]].
  • [61] I. de Medeiros Varzielas, M. Levy and Y. L. Zhou, [arXiv:2008.05329 [hep-ph]].
  • [62] D. Zhang, Nucl. Phys. B 952 (2020) 114935 [arXiv:1910.07869 [hep-ph]].
  • [63] T. Nomura, H. Okada and S. Patra, arXiv:1912.00379 [hep-ph].
  • [64] T. Kobayashi, T. Nomura and T. Shimomura, Phys. Rev. D 102 (2020) no.3, 035019 [arXiv:1912.00637 [hep-ph]].
  • [65] J. N. Lu, X. G. Liu and G. J. Ding, Phys. Rev. D 101 (2020) no.11, 115020 [arXiv:1912.07573 [hep-ph]].
  • [66] X. Wang, Nucl. Phys. B 957 (2020), 115105 [arXiv:1912.13284 [hep-ph]].
  • [67] S. J. D. King and S. F. King, JHEP 09 (2020), 043 [arXiv:2002.00969 [hep-ph]].
  • [68] M. Abbas, arXiv:2002.01929 [hep-ph].
  • [69] H. Okada and Y. Shoji, Phys. Dark Univ. 31 (2021), 100742 [arXiv:2003.11396 [hep-ph]].
  • [70] H. Okada and Y. Shoji, Nucl. Phys. B 961 (2020), 115216 [arXiv:2003.13219 [hep-ph]].
  • [71] G. J. Ding and F. Feruglio, JHEP 06 (2020), 134 [arXiv:2003.13448 [hep-ph]].
  • [72] T. Nomura and H. Okada, [arXiv:2007.04801 [hep-ph]].
  • [73] T. Nomura and H. Okada, arXiv:2007.15459 [hep-ph].
  • [74] H. Okada and M. Tanimoto, [arXiv:2005.00775 [hep-ph]].
  • [75] H. Okada and M. Tanimoto, [arXiv:2009.14242 [hep-ph]].
  • [76] K. I. Nagao and H. Okada, [arXiv:2008.13686 [hep-ph]].
  • [77] K. I. Nagao and H. Okada, [arXiv:2010.03348 [hep-ph]].
  • [78] C. Y. Yao, X. G. Liu and G. J. Ding, [arXiv:2011.03501 [hep-ph]].
  • [79] X. Wang, B. Yu and S. Zhou, [arXiv:2010.10159 [hep-ph]].
  • [80] M. Abbas, Phys. Atom. Nucl. 83 (2020) no.5, 764-769.
  • [81] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, Phys. Rev. D 100 (2019) no.11, 115045, Erratum: [Phys. Rev. D 101 (2020) no.3, 039904] [arXiv:1909.05139 [hep-ph]].
  • [82] H. P. Nilles, S. Ramos-Śanchez and P. K. S. Vaudrevange, JHEP 02 (2020), 045 [arXiv:2001.01736 [hep-ph]].
  • [83] H. P. Nilles, S. Ramos-Sánchez and P. K. S. Vaudrevange, Nucl. Phys. B 957 (2020), 115098 [arXiv:2004.05200 [hep-ph]].
  • [84] S. Kikuchi, T. Kobayashi, S. Takada, T. H. Tatsuishi and H. Uchida, Phys. Rev. D 102 (2020) no.10, 105010 [arXiv:2005.12642 [hep-th]].
  • [85] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada and H. Uchida, [arXiv:2007.06188 [hep-th]].
  • [86] K. Ishiguro, T. Kobayashi and H. Otsuka, [arXiv:2010.10782 [hep-th]].
  • [87] G. Ecker, W. Grimus and W. Konetschny, Nucl. Phys. B 191 (1981), 465-492.
  • [88] G. Ecker, W. Grimus and H. Neufeld, Nucl. Phys. B 247 (1984), 70-82.
  • [89] G. Ecker, W. Grimus and H. Neufeld, J. Phys. A 20 (1987), L807.
  • [90] H. Neufeld, W. Grimus and G. Ecker, Int. J. Mod. Phys. A 3 (1988), 603-616.
  • [91] W. Grimus and M. N. Rebelo, Phys. Rept. 281 (1997), 239-308 [arXiv:hep-ph/9506272 [hep-ph]].
  • [92] W. Grimus and L. Lavoura, Phys. Lett. B 579 (2004) 113. [hep-ph/0305309].
  • [93] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1907 (2019) 165 [arXiv:1905.11970 [hep-ph]].
  • [94] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys. Rev. D 101 (2020) no.5, 055046 [arXiv:1910.11553 [hep-ph]].
  • [95] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys.  28 (1962) 870.
  • [96] B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz.  53 (1967) 1717].
  • [97] K.  Abe et al. [T2K Collaboration], Nature 580 (2020) 339.
  • [98] P. Adamson et al. [NOvA Collaboration], Phys. Rev. Lett.  118 (2017) no.23, 231801 [arXiv:1703.03328 [hep-ex]].
  • [99] G. C. Branco, R. G. Felipe and F. R. Joaquim, Rev. Mod. Phys.  84 (2012) 515 [arXiv:1111.5332 [hep-ph]].
  • [100] M. Holthausen, M. Lindner and M. A. Schmidt, JHEP 1304 (2013) 122 [arXiv:1211.6953 [hep-ph]].
  • [101] M. C. Chen, M. Fallbacher, K. T. Mahanthappa, M. Ratz and A. Trautner, Nucl. Phys. B 883 (2014) 267 [arXiv:1402.0507 [hep-ph]].
  • [102] F. Feruglio, C. Hagedorn and R. Ziegler, JHEP 07 (2013), 027 [arXiv:1211.5560 [hep-ph]].
  • [103] J. Lauer, J. Mas and H. P. Nilles, Phys. Lett. B 226, 251 (1989); Nucl. Phys. B 351, 353 (1991).
  • [104] W. Lerche, D. Lust and N. P. Warner, Phys. Lett. B 231, 417 (1989).
  • [105] S. Ferrara, .D. Lust and S. Theisen, Phys. Lett. B 233, 147 (1989).
  • [106] D. Cremades, L. E. Ibanez and F. Marchesano, JHEP 0405, 079 (2004) [hep-th/0404229].
  • [107] T. Kobayashi and S. Nagamoto, Phys. Rev. D 96, no. 9, 096011 (2017) [arXiv:1709.09784 [hep-th]].
  • [108] T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba and T. H. Tatsuishi, Phys. Rev. D 97, no. 11, 116002 (2018) [arXiv:1804.06644 [hep-th]].
  • [109] S. Ferrara, D. Lust, A. D. Shapere and S. Theisen, Phys. Lett. B 225, 363 (1989).
  • [110] M. Chen, S. Ramos-Sánchez and M. Ratz, Phys. Lett. B 801 (2020), 135153 [arXiv:1909.06910 [hep-ph]].
  • [111] R. C. Gunning, Lectures on Modular Forms (Princeton University Press, Princeton, NJ, 1962).
  • [112] B. Schoeneberg, Elliptic Modular Functions (Springer-Verlag, 1974).
  • [113] N. Koblitz, Introduction to Elliptic Curves and Modular Forms (Springer-Verlag, 1984).
  • [114] S. Antusch and V. Maurer, JHEP 1311 (2013) 115 [arXiv:1306.6879 [hep-ph]].
  • [115] F. Björkeroth, F. J. de Anda, I. de Medeiros Varzielas and S. F. King, JHEP 1506 (2015) 141 [arXiv:1503.03306 [hep-ph]].
  • [116] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, JHEP 09 (2020), 178 [arXiv:2007.14792 [hep-ph]].
  • [117] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho and M. Lattanzi, Phys. Rev. D 96 (2017) no.12, 123503 [arXiv:1701.08172 [astro-ph.CO]].
  • [118] N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A6 [arXiv:1807.06209 [astro-ph.CO]].
  • [119] H. Abe, T. Kobayashi, S. Uemura and J. Yamamoto, Phys. Rev. D 102 (2020) no.4, 045005 [arXiv:2003.03512 [hep-th]].
  • [120] T. Kobayashi and H. Otsuka, Phys. Rev. D 102 (2020) no.2, 026004 [arXiv:2004.04518 [hep-th]].
  • [121] P. A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) no.8, 083C01.
  • [122] A. Gando et al. [KamLAND-Zen], Phys. Rev. Lett. 117 (2016) no.8, 082503, [Addendum: Phys. Rev. Lett.117 (2016) no.10, 109903], [arXiv:1605.02889 [hep-ex]].
  • [123] C. Jarlskog, Phys. Rev. Lett.  55 (1985) 1039.
  • [124] P. I. Krastev and S. T. Petcov, Phys. Lett. B 205 (1988) 84.
  • [125] Y. Shimizu, K. Takagi, S. Takahashi and M. Tanimoto, JHEP 04 (2019), 074 [arXiv:1901.06146 [hep-ph]].
  • [126] K. Ishiguro, T. Kobayashi and H. Otsuka, [arXiv:2011.09154 [hep-ph]].