This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Anisotropic Enhancement of Lower Critical Field in Ultraclean Crystals of Spin-Triplet Superconductor UTe2

K. Ishihara [email protected]    M. Kobayashi    K. Imamura Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan    M. Konczykowski Laboratoire des Solides Irradiés, CEA/DRF/IRAMIS, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, F-91128 Palaiseau, France    H. Sakai    P. Opletal    Y. Tokiwa    Y. Haga Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan    K. Hashimoto    T. Shibauchi [email protected] Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
Abstract

The paramagnetic spin-triplet superconductor UTe2 has attracted significant attention because of its exotic superconducting properties including an extremely high upper critical field and possible chiral superconducting states. Recently, ultraclean single crystals of UTe2 have become available, and thus measurements on these crystals are crucial to elucidate the intrinsic superconducting properties. Here, we report the thermodynamic critical field HcH_{\rm c}, the lower critical field Hc1H_{\rm c1}, and the upper critical field Hc2H_{\rm c2} at low fields of these high-quality single crystals. From the comparison of the anisotropies in Hc1H_{\rm c1} and Hc2H_{\rm c2}, we find that the experimental Hc1H_{\rm c1} values with the magnetic field along bb- and cc-axes are anomalously enhanced, showing unusual low-temperature upturns. We propose an effect of the strong Ising-like ferromagnetic fluctuations on the vortex line energy as the origin of the anisotropic enhancement of Hc1H_{\rm c1}.

The superconducting state of UTe2 has been intensively investigated because of its spin-triplet nature with a paramagnetic normal state Ran et al. (2019a); Aoki et al. (2022a). The spin-triplet pairing state induces an extremely high upper critical field (Hc2H_{\rm c2}) beyond the Pauli limit Ran et al. (2019a, b) and multiple superconducting phases under hydrostatic pressure or magnetic field Braithwaite et al. (2019); Thomas et al. (2020); Aoki et al. (2020); Kinjo et al. ; Rosuel et al. ; Sakai et al. . Furthermore, chiral spin-triplet states are discussed in scanning tunneling microscopy Jiao et al. (2020), polar Kerr effect Hayes et al. (2021), surface impedance Bae et al. (2021), and penetration depth studies Ishihara et al. . As for the pairing interactions, the anisotropic Hc2H_{\rm c2} and reentrant superconductivity Ran et al. (2019b); Knebel et al. (2019) suggest that ferromagnetic fluctuations are at play analogous to the ferromagnetic superconductors Aoki et al. (2019), which is supported by the nuclear magnetic resonance (NMR) and muon spin rotation (μ\muSR) measurements Tokunaga et al. (2019); Sundar et al. (2019); Tokunaga et al. (2022). On the other hand, recent neutron scattering studies revealed the presence of antiferromagnetic fluctuations related to superconductivity Duan et al. (2020); Knafo et al. (2021a); Duan et al. (2021). Thus, the nature of magnetic fluctuations and their relationship to superconductivity are still unclear.

What has complicated systematic understandings of the superconducting state in UTe2 are the inhomogeneity of crystals and the presence of magnetic impurities. Single crystals grown by the conventional chemical vapor transport (CVT) method sometimes show double superconducting transitions likely induced by inhomogeneity Hayes et al. (2021); Thomas et al. (2021); Rosa et al. (2022) and a small increase in magnetic susceptibility at low temperatures, which reflects the presence of U vacancies acting as magnetic impurities Ran et al. (2019a); Rosa et al. (2022); Knafo et al. (2021b); Tokunaga et al. (2022); Haga et al. (2022). Recently, Sakai et al. developed another crystal growth method called the molten salt flux (MSF) method and succeeded in obtaining high-quality single crystals of UTe2 with a transition temperature Tc=2.1T_{\rm c}=2.1 K, a residual resistivity ratio as high as 1,000, and low magnetic impurity density Sakai et al. (2022). In these ultraclean crystals, novel superconducting and normal state properties have been reported in addition to the observation of de Haas-van Alphen oscillations Sakai et al. ; Tokiwa et al. ; Aoki et al. (2022b). Therefore, measurements on the high-quality single crystals are crucial to clarify the superconducting nature in UTe2.

In this study, we investigate the thermodynamic critical field (HcH_{\rm c}), the lower critical field (Hc1H_{\rm c1}), and Hc2H_{\rm c2} in high-quality MSF single crystals. Regarding the Ginzburg-Landau (GL) theory, the anisotropies in Hc1H_{\rm c1} and Hc2H_{\rm c2} should be opposed because the critical fields satisfy Hc1Hc2=Hc2(lnκ+0.5)H_{\rm c1}H_{\rm c2}=H_{\rm c}^{2}(\ln\kappa+0.5), where κ\kappa is the GL parameter, and HcH_{\rm c} is independent of field directions. In contrast, we find that the anisotropy of Hc1H_{\rm c1} does not follow the expectations from that of Hc2H_{\rm c2}. Quantitatively, the above GL relation holds for 𝑯𝒂{\bm{H}}\parallel{\bm{a}}, while it is obviously violated for 𝑯𝒃{\bm{H}}\parallel{\bm{b}}. Furthermore, Hc1H_{\rm c1} for 𝑯𝒃{\bm{H}}\parallel{\bm{b}} and 𝑯𝒄{\bm{H}}\parallel{\bm{c}} show unusual upturns at low temperatures. To explain these anomalous behaviors of the critical fields, we propose an anisotropic enhancement of Hc1H_{\rm c1} induced by the Ising-like ferromagnetic fluctuations in UTe2.

High-quality single crystals are grown by the MSF method as described in Ref. Sakai et al. (2022). Crystals #A1 and #A2 in this study are the same samples as crystal #A1 in Ref. Ishihara et al. and crystal #M7-1 in Ref. Sakai et al. (2022), respectively, and crystal #A3 for the Hc2H_{\rm c2} measurement is picked up from the same batch with the crystal used in the de Haas-van Alphen experiments Aoki et al. (2022b). Crystals #A1 and #A2 have a cuboid shape with dimensions 455×250×95455\times 250\times 95μ\mum3 and 1400×285×1651400\times 285\times 165μ\mum3, respectively. HcH_{\rm c} is calculated from the specific heat measured by the long-relaxation method where a Cernox resistor is used as a thermometer, a heater, and a sample stage Tanaka et al. (2022). Hc1H_{\rm c1} is measured by a miniature Hall-sensor array probe tailored in a GaAs/AlGaAs heterostructure Shibauchi et al. (2007); Okazaki et al. (2009, 2010); Putzke et al. (2014). The distance of neighboring sensers is 20 μ\mum so that we can measure the local magnetic induction and the first flux penetration field HpH_{\rm p} near crystal edges. Hc2H_{\rm c2} is estimated from specific heat data C(T)C(T) near TcT_{\rm c} measured in the Physical Property Measurement System (Quantum Design). The same single crystal piece appropriately shaped relative to the principal axes was used for all the field directions relative to the crystal orientation.

Refer to caption
Figure 1: (a) Specific heat CC divided by temperature TT as a function of temperature measured in crystal #A1. (b) Temperature dependence of the thermodynamic critical field calculated from the specific heat data. The black broken line represents the initial slope of HcH_{\rm c} estimated near TcT_{\rm c}.

Figure 1(a) shows the temperature dependence of C/TC/T of crystal #A1. A sharp peak at 2.1 K and a small residual value at low temperatures confirm that this crystal is ultraclean. HcH_{\rm c} can be calculated via Hc2(T)=2μ0TTc(SnSsc)𝑑TH_{\rm c}^{2}(T)=2\mu_{0}\int_{T}^{T_{\rm c}}(S_{\rm n}-S_{\rm sc})dT, where μ0\mu_{0} is the permeability of vacuum and SscS_{\rm sc} and SnS_{\rm n} are the electronic entropy in the superconducting and normal states, respectively, calculated from the specific heat. Note that, to satisfy the entropy balance, we assume linear temperature dependence of the electronic contribution of C/TC/T in the normal state below TcT_{\rm c} (see Supplemental Material). The obtained μ0Hc(0)=77.6\mu_{0}H_{\rm c}(0)=77.6 mT shown in Fig. 1(b) is higher than the reported value in a low-TcT_{\rm c} crystal Paulsen et al. (2021), reflecting the higher quality of our crystal.

Figure 2 represents external magnetic-field dependence of the local magnetic induction BedgeB_{\rm edge} near the crystal edges of crystal #A1. The typical behaviors of the Hall resistance of the Hall-array probe near the crystal edges are shown in the insets in Fig. 2. The linear dependence at the low field region originates from the finite distance between the Hall sensor and the crystal. By subtracting the linear function, we can derive the local magnetic induction BedgeB_{\rm edge}. At lower fields, Bedge=0B_{\rm edge}=0 because of the Meissner state. As the magnetic field increases, the BedgeB_{\rm edge} value deviates from zero at HpH_{\rm p} depicted as black triangles in Fig. 2. We found that the HpH_{\rm p} value does not depend on the crystal positions (see Supplemental Material), confirming that our measurements are free from surface pinning or geometrical barriers of superconducting vortices. Here, we note that HpH_{\rm p} is lower than the bulk Hc1H_{\rm c1} because of the demagnetization effect. The relation between HpH_{\rm p} and Hc1H_{\rm c1} has been precisely studied Brandt (1999), and we can evaluate Hc1H_{\rm c1} from HpH_{\rm p} through

Hc1=Hptanh0.36t/w,H_{\rm c1}=\frac{H_{\rm p}}{\tanh\sqrt{0.36t/w}}, (1)

where tt and ww are the sample thickness and width, respectively.

Refer to caption
Figure 2: (a-c) The insets show a typical magnetic field dependence of the Hall resistivity near a crystal edge with the magnetic field along each crystallographic axis. The black broken line is the linear fitting of the data at the low-field region. The main panels show the local magnetic induction measured in crystal #A1 with the magnetic field along aa-, bb-, and cc-axes, respectively. The black rectangles are the first penetration field HpH_{\rm p}. The data are shifted vertically for clarity, and the black broken lines show Bedge=0B_{\rm edge}=0 for each measurement temperature.
Refer to caption
Figure 3: (a-c) Lower critical field as a function of temperature with the magnetic field along aa-, bb-, and cc-axes, respectively, evaluated from Eq. (1). The black broken lines represent the initial slope of the lower critical field expected from the usual GL relations. The black solid line in (a) is obtained by multiplying the normalized superfluid density (λb2(0)/λb2(T)+λc2(0)/λc2(T))/2(\lambda_{b}^{2}(0)/\lambda_{b}^{2}(T)+\lambda_{c}^{2}(0)/\lambda_{c}^{2}(T))/2 by a constant value calculated from the temperature dependence of the anisotropic penetration depth measurements Ishihara et al. . The filled squares and open circles are the data obtained in crystals #A1 and #A2, respectively.

The obtained Hc1iH_{\rm c1}^{i} with the magnetic field along ii-axis is shown in Fig. 3. Considering the usual relation

μ0Hc1=ϕ04πλ2(lnκ+0.5),\mu_{0}H_{\rm c1}=\frac{\phi_{0}}{4\pi\lambda^{2}}(\ln\kappa+0.5), (2)

Hc1(T)H_{\rm c1}(T) is expected to scale with the normalized superfluid density ρs(T)λ2(T)\rho_{s}(T)\propto\lambda^{-2}(T) when the temperature dependence of the GL parameter, κ\kappa, is small. The black solid line in Fig. 3(a) is the normalized superfluid density for 𝑯𝒂{\bm{H}}\parallel{\bm{a}}, ρsa=(λb2(0)/λb2(T)+λc2(0)/λc2(T))/2\rho_{s}^{a}=(\lambda_{b}^{2}(0)/\lambda_{b}^{2}(T)+\lambda_{c}^{2}(0)/\lambda_{c}^{2}(T))/2, calculated from the anisotropic penetration depth measurements Ishihara et al. . It is obvious that Hc1H_{\rm c1} and ρsa\rho_{s}^{a} show similar TT dependence, confirming the consistency of Hc1H_{\rm c1} and penetration depth measurements. On the other hand, the Hc1H_{\rm c1} data along bb- and cc-axes show an anomalous concave temperature dependence around 0.5 K, which is not detected in the penetration depth measurements. The origin of this unusual TT dependence will be discussed later. We note that, although the absolute value of Hc1cH_{\rm c1}^{c} in crystal #A1 may have an estimation error of the demagnetization effect because of its plate-like shape, we obtain very similar Hc1c(T)H_{\rm c1}^{c}(T) in another crystal #A2 [Fig. 3(c)], confirming the correct estimation of Hc1cH_{\rm c1}^{c} values in these crystals.

First, we compare the anisotropies in Hc1H_{\rm c1} and Hc2H_{\rm c2}. As mentioned before, the GL theory implies that the anisotropies in these critical fields are opposite as long as we discuss the initial slope near TcT_{\rm c} where the GL formalism is valid. Figure 4 depicts Hc2i(T)H_{\rm c2}^{i}(T) with the magnetic field along ii-axis near Tc=2.1T_{\rm c}=2.1 K. The slope of Hc2(T)H_{\rm c2}(T) along aa-axis significantly changes with decreasing temperature in the low-field region, which has been already reported in previous studies Rosuel et al. ; Kittaka et al. (2020). Focusing on the initial slope, we find the anisotropy of Hc2b>Hc2a>Hc2cH_{\rm c2}^{b}>H_{\rm c2}^{a}>H_{\rm c2}^{c}. In contrast, from the initial slope of Hc1H_{\rm c1} data (see Fig. 3), we obtain the anisotropy Hc1c>Hc1b>Hc1aH_{\rm c1}^{c}>H_{\rm c1}^{b}>H_{\rm c1}^{a}, the order of which is not as expected from the anisotropy of Hc2H_{\rm c2}. We note that, while the anisotropy in Hc1H_{\rm c1} is similar to the previous study of global magnetization measurements in a lower-quality sample Paulsen et al. (2021), the absolute values of Hc1H_{\rm c1} in this study are considerably larger. This point is important to discuss the origin of the discrepancy between the anisotropies of Hc1H_{\rm c1} and Hc2H_{\rm c2} as described below.

Refer to caption
Figure 4: Upper critical field in the low-field region with the magnetic field along aa-axis (red), bb-axis (blue), and cc-axis (green) in crystal #A3. The data are obtained by specific heat measurements on a high-quality crystal with Tc=2.1T_{\rm c}=2.1 K. The broken lines are the initial slopes obtained by the linear fitting of the data near TcT_{\rm c}.

To discuss possible origins of this apparent inconsistency in critical field anisotropies, we calculate the lower critical field Hc1calH_{\rm c1}^{\rm cal} expected from HcH_{\rm c} and Hc2H_{\rm c2} values via the following GL relations,

Hc2\displaystyle H_{\rm c2} =\displaystyle= 2κHc\displaystyle\sqrt{2}\kappa H_{\rm c} (3)
Hc1cal\displaystyle H_{\rm c1}^{\rm cal} =\displaystyle= Hc2κ(lnκ+0.5).\displaystyle\frac{H_{\rm c}}{\sqrt{2}\kappa}\left(\ln\kappa+0.5\right). (4)

The results are shown in Fig. 3 as the black broken lines. We can clearly find in Fig. 3(a) that Hc1calH_{\rm c1}^{\rm cal} along aa-axis matches well with the experimental Hc1H_{\rm c1} value, meaning that the experimental critical fields (HcH_{\rm c}, Hc1H_{\rm c1}, and Hc2H_{\rm c2}) along aa-axis satisfy the usual thermodynamic relations of Eqs. (3,4). This result suggests that the significant change in the slope of Hc2aH_{\rm c2}^{a} near TcT_{\rm c} shown in Fig. 4 is an intrinsic property of UTe2 possibly induced by the reduction of ferromagnetic fluctuations with 𝑯𝒂{\bm{H}}\parallel{\bm{a}}Rosuel et al. . In the previous study, because the critical fields violated the above GL relations, the authors assumed a magnetic field effect on TcT_{\rm c}, dTc/dHdT_{\rm c}/dHPaulsen et al. (2021). However, our results consistent with the GL relations for HaH\parallel a indicate that the dTc/dHdT_{\rm c}/dH effect is negligible as long as we focus on the initial slopes of the critical fields.

In contrast to Hc1aH_{\rm c1}^{a}, however, the initial slope of Hc1bH_{\rm c1}^{b} is significantly larger than the expected Hc1calH_{\rm c1}^{\rm cal} value. In addition to the steep initial slope, Hc1bH_{\rm c1}^{b} and Hc1cH_{\rm c1}^{c} in ultraclean UTe2 show an unusual increase below 0.5 K, which has not been observed previously. A similar Hc1(T)H_{\rm c1}(T) behavior was reported in multi-band iron-based superconductors Song et al. (2011); Adamski et al. (2017) and the chiral superconductor candidates, UPt3Vincent et al. (1991); Amann et al. (1998) and PrOs4Sb12Cichorek et al. (2005). We emphasize that the increase of Hc1(T)H_{\rm c1}(T) at low temperatures in these materials was observed regardless of the magnetic field directions, which is clearly different from the case in UTe2 where the increase is discernible only in 𝑯𝒃{\bm{H}}\parallel{\bm{b}} and 𝑯𝒄{\bm{H}}\parallel{\bm{c}}. Moreover, magnetic penetration depth measurements in PrOs4Sb12 also show a kink at lower temperatures Chia et al. (2003), while the anisotropic penetration depth in UTe2 shows smooth TT dependence around 0.5 K Ishihara et al. . Thus, while the enhancement of Hc1H_{\rm c1} at low temperatures in the previous studies on the various superconductors reflects the increase of superfluid density, the anomalous Hc1(T)H_{\rm c1}(T) in UTe2 likely has a different origin which induces a large anisotropy.

Because the Hc1H_{\rm c1} value is determined by the vortex line energy, the unusual Hc1b(T)H_{\rm c1}^{b}(T) and Hc1c(T)H_{\rm c1}^{c}(T) behaviors can be related to an exotic vortex state. As for the vortices in UTe2, recent scanning SQUID measurements on the (011)-plane observed pinned vortices and antivortices even in a zero-field cooling condition, which can be related to the presence of strong and slow magnetic fluctuations detected in μ\muSR and NMR studies Iguchi et al. . Moreover, optical Kerr effect measurements on the (001)-plane suggest the presence of magnetized vortices induced by strong magnetic fluctuations. From these results, we consider that the enhancement of Hc1b(T)H_{\rm c1}^{b}(T) and Hc1c(T)H_{\rm c1}^{c}(T) is related to the strong Ising-like ferromagnetic fluctuations along aa-axis inducing an exotic vortex state in UTe2. We note that anomalous low-TT behavior has been also detected in 1/T1T1/T_{1}T of NMR measurements Nakamine et al. (2019) and zero-field relaxation rate of μ\muSR measurements Sundar et al. (2019, ).

The relationship between strong magnetic fluctuations and the enhancement in Hc1H_{\rm c1} has been investigated in BaFe2(As1-xPx)2Putzke et al. (2014). In this system, an antiferromagnetic quantum critical point (QCP) appears at x=0.3x=0.3 where λ(0)\lambda(0) shows a sharp peak reflecting the strong mass enhancement Hashimoto et al. (2012). In contrast, Hc1H_{\rm c1} also shows a peak at QCP, contradicting with the expected behavior from Eq. (2). This discrepancy suggests that the vortex line energy is significantly enhanced by the strong magnetic fluctuations near QCP. Thus, considering the presence of strong anisotropic ferromagnetic fluctuations in UTe2, the vortex line energy can be anisotropically enhanced by the Ising-like magnetic fluctuations. Indeed, the normal-state NMR measurements in UTe2Tokunaga et al. (2019) reported that 1/T1T1/T_{1}T shows a pronounced low-TT enhancement for 𝑯𝒃{\bm{H}}\parallel{\bm{b}} and 𝑯𝒄{\bm{H}}\parallel{\bm{c}}, which is absent for 𝑯𝒂{\bm{H}}\parallel{\bm{a}}. This shows a good correspondence with the anisotropic Hc1H_{\rm c1} enhancement.

In conclusion, we measured the critical fields, Hc(T)H_{\rm c}(T), Hc1(T)H_{\rm c1}(T), and Hc2(T)H_{\rm c2}(T), in high-quality single crystals of UTe2 with Tc=2.1T_{\rm c}=2.1 K. While the three critical fields for 𝑯𝒂{\bm{H}}\parallel{\bm{a}} satisfy the usual GL relations near TcT_{\rm c}, the experimental Hc1bH_{\rm c1}^{b} and Hc1cH_{\rm c1}^{c} are larger than the expected values, which become more apparent below 0.5 K. These results indicate that the anisotropic ferromagnetic fluctuations in UTe2 significantly enhance the vortex line energy with 𝑯𝒃{\bm{H}}\parallel{\bm{b}} and 𝑯𝒄{\bm{H}}\parallel{\bm{c}}. Our experimental results not only suggest that an exotic vortex state caused by anisotropic ferromagnetic fluctuations is realized in UTe2, but also promote further studies on magnetic fluctuations in high-quality single crystals of UTe2 with low magnetic impurity density.

We thank J.-P. Brison for fruitful discussions. This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) (Nos. JP22H00105, JP22K20349, JP21H01793, JP19H00649, JP18H05227), Grant-in-Aid for Scientific Research on innovative areas “Quantum Liquid Crystals” (No. JP19H05824), Grant-in-Aid for Scientific Research for Transformative Research Areas (A) “Condensed Conjugation” (No. JP20H05869) from Japan Society for the Promotion of Science (JSPS), and CREST (No. JPMJCR19T5) from Japan Science and Technology (JST).

References

  • Ran et al. (2019a) S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz, S. R. Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione,  and N. P. Butch, Science 365, 684 (2019a).
  • Aoki et al. (2022a) D. Aoki, J.-P. Brison, J. Flouquet, K. Ishida, G. Knebel, Y. Tokunaga,  and Y. Yanase, J. Phys.: Condens. Matter 34, 243002 (2022a).
  • Ran et al. (2019b) S. Ran, I.-L. Liu, Y. S. Eo, D. J. Campbell, P. M. Neves, W. T. Fuhrman, S. R. Saha, C. Eckberg, H. Kim, D. Graf, F. Balakirev, J. Singleton, J. Paglione,  and N. P. Butch, Nat. Phys. 15, 1250 (2019b).
  • Braithwaite et al. (2019) D. Braithwaite, M. Vališka, G. Knebel, G. Lapertot, J.-P. Brison, A. Pourret, M. E. Zhitomirsky, J. Flouquet, F. Honda,  and D. Aoki, Commun. Phys. 2, 147 (2019).
  • Thomas et al. (2020) S. M. Thomas, F. B. Santos, M. H. Christensen, T. Asaba, F. Ronning, J. D. Thompson, E. D. Bauer, R. M. Fernandes, G. Fabbris,  and P. F. S. Rosa, Sci. Adv. 6, eabc8709 (2020).
  • Aoki et al. (2020) D. Aoki, F. Honda, G. Knebel, D. Braithwaite, A. Nakamura, D. Li, Y. Homma, Y. Shimizu, Y. J. Sato, J.-P. Brison,  and J. Flouquet, J. Phys. Soc. Jpn. 89, 053705 (2020).
  • (7) K. Kinjo, H. Fujibayashi, S. Kitagawa, K. Ishida, Y. Tokunaga, H. Sakai, S. Kambe, A. Nakamura, Y. Shimizu, Y. Homma, D. X. Li, F. Honda, D. Aoki, K. Hiraki, M. Kimata,  and T. Sasaki, arXiv:2206.02444 .
  • (8) A. Rosuel, C. Marcenat, G. Knebel, T. Klein, A. Pourret, N. Marquardt, Q. Niu, S. Rousseau, A. Demuer, G. Seyfarth, G. Lapertot, D. Aoki, D. Braithwaite, J. Flouquet,  and J.-P. Brison, arXiv:2205.04524 .
  • (9) H. Sakai, Y. Tokiwa, P. Opletal, M. Kimata, S. Awaji, T. Sasaki, D. Aoki, S. Kambe, Y. Tokunaga,  and Y. Haga, arXiv:2210.05909 .
  • Jiao et al. (2020) L. Jiao, S. Howard, S. Ran, Z. Wang, J. O. Rodriguez, M. Sigrist, Z. Wang, N. P. Butch,  and V. Madhavan, Nature 579, 523 (2020).
  • Hayes et al. (2021) I. M. Hayes, D. S. Wei, T. Metz, J. Zhang, Y. S. Eo, S. Ran, S. R. Saha, J. Collini, N. P. Butch, D. F. Agterberg, A. Kapitulnik,  and J. Paglione, Science 373, 797 (2021).
  • Bae et al. (2021) S. Bae, H. Kim, Y. S. Eo, S. Ran, I.-l. Liu, W. T. Fuhrman, J. Paglione, N. P. Butch,  and S. M. Anlage, Nat. Commun. 12, 2644 (2021).
  • (13) K. Ishihara, M. Roppongi, M. Kobayashi, Y. Mizukami, H. Sakai, Y. Haga, K. Hashimoto,  and T. Shibauchi, arXiv:2105.13721 .
  • Knebel et al. (2019) G. Knebel, W. Knafo, A. Pourret, Q. Niu, M. Vališka, D. Braithwaite, G. Lapertot, M. Nardone, A. Zitouni, S. Mishra, I. Sheikin, G. Seyfarth, J.-P. Brison, D. Aoki,  and J. Flouquet, J. Phys. Soc. Jpn. 88, 063707 (2019).
  • Aoki et al. (2019) D. Aoki, K. Ishida,  and J. Flouquet, J. Phys. Soc. Jpn. 88, 022001 (2019).
  • Tokunaga et al. (2019) Y. Tokunaga, H. Sakai, S. Kambe, T. Hattori, N. Higa, G. Nakamine, S. Kitagawa, K. Ishida, A. Nakamura, Y. Shimizu, Y. Homma, D. Li, F. Honda,  and D. Aoki, J. Phys. Soc. Jpn. 88, 073701 (2019).
  • Sundar et al. (2019) S. Sundar, S. Gheidi, K. Akintola, A. M. Côté, S. R. Dunsiger, S. Ran, N. P. Butch, S. R. Saha, J. Paglione,  and J. E. Sonier, Phys. Rev. B 100, 140502(R) (2019).
  • Tokunaga et al. (2022) Y. Tokunaga, H. Sakai, S. Kambe, Y. Haga, Y. Tokiwa, P. Opletal, H. Fujibayashi, K. Kinjo, S. Kitagawa, K. Ishida, A. Nakamura, Y. Shimizu, Y. Homma, D. Li, F. Honda,  and D. Aoki, J. Phys. Soc. Jpn. 91, 023707 (2022).
  • Duan et al. (2020) C. Duan, K. Sasmal, M. B. Maple, A. Podlesnyak, J.-X. Zhu, Q. Si,  and P. Dai, Phys. Rev. Lett. 125, 237003 (2020).
  • Knafo et al. (2021a) W. Knafo, G. Knebel, P. Steffens, K. Kaneko, A. Rosuel, J.-P. Brison, J. Flouquet, D. Aoki, G. Lapertot,  and S. Raymond, Phys. Rev. B 104, L100409 (2021a).
  • Duan et al. (2021) C. Duan, R. E. Baumbach, A. Podlesnyak, Y. Deng, C. Moir, A. J. Breindel, M. B. Maple, E. M. Nica, Q. Si,  and P. Dai, Nature 600, 636 (2021).
  • Thomas et al. (2021) S. M. Thomas, C. Stevens, F. B. Santos, S. S. Fender, E. D. Bauer, F. Ronning, J. D. Thompson, A. Huxley,  and P. F. S. Rosa, Phys. Rev. B 104, 224501 (2021).
  • Rosa et al. (2022) P. F. S. Rosa, A. Weiland, S. S. Fender, B. L. Scott, F. Ronning, J. D. Thompson, E. D. Bauer,  and S. M. Thomas, Commun. Mater. 3, 33 (2022).
  • Knafo et al. (2021b) W. Knafo, M. Nardone, M. Vališka, A. Zitouni, G. Lapertot, D. Aoki, G. Knebel,  and D. Braithwaite, Commun. Phys. 4, 40 (2021b).
  • Haga et al. (2022) Y. Haga, P. Opletal, Y. Tokiwa, E. Yamamoto, Y. Tokunaga, S. Kambe,  and H. Sakai, J. Phys.: Condens. Matter 34, 175601 (2022).
  • Sakai et al. (2022) H. Sakai, P. Opletal, Y. Tokiwa, E. Yamamoto, Y. Tokunaga, S. Kambe,  and Y. Haga, Phys. Rev. Materials 6, 073401 (2022).
  • (27) Y. Tokiwa, P. Opletal, H. Sakai, K. Kubo, E. Yamamoto, S. Kambe, M. Kimata, S. Awaji, T. Sasaki, D. Aoki, Y. Tokunaga,  and Y. Haga, arXiv:2210.11769 .
  • Aoki et al. (2022b) D. Aoki, H. Sakai, P. Opletal, Y. Tokiwa, J. Ishizuka, Y. Yanase, H. Harima, A. Nakamura, D. Li, Y. Homma, Y. Shimizu, G. Knebel, J. Flouquet,  and Y. Haga, J. Phys. Soc. Jpn. 91, 083704 (2022b).
  • Tanaka et al. (2022) O. Tanaka, Y. Mizukami, R. Harasawa, K. Hashimoto, K. Hwang, N. Kurita, H. Tanaka, S. Fujimoto, Y. Matsuda, E.-G. Moon,  and T. Shibauchi, Nat. Phys. 18, 429 (2022).
  • Shibauchi et al. (2007) T. Shibauchi, M. Konczykowski, C. J. van der Beek, R. Okazaki, Y. Matsuda, J. Yamaura, Y. Nagao,  and Z. Hiroi, Phys. Rev. Lett. 99, 257001 (2007).
  • Okazaki et al. (2009) R. Okazaki, M. Konczykowski, C. J. van der Beek, T. Kato, K. Hashimoto, M. Shimozawa, H. Shishido, M. Yamashita, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, T. Shibauchi,  and Y. Matsuda, Phys. Rev. B 79, 064520 (2009).
  • Okazaki et al. (2010) R. Okazaki, M. Shimozawa, H. Shishido, M. Konczykowski, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, Y. Yanase, T. Shibauchi,  and Y. Matsuda, J. Phys. Soc. Jpn. 79, 084705 (2010).
  • Putzke et al. (2014) C. Putzke, P. Walmsley, J. D. Fletcher, L. Malone, D. Vignolles, C. Proust, S. Badoux, P. See, H. E. Beere, D. A. Ritchie, S. Kasahara, Y. Mizukami, T. Shibauchi, Y. Matsuda,  and A. Carrington, Nat. Commun. 5, 5679 (2014).
  • Paulsen et al. (2021) C. Paulsen, G. Knebel, G. Lapertot, D. Braithwaite, A. Pourret, D. Aoki, F. Hardy, J. Flouquet,  and J.-P. Brison, Phys. Rev. B 103, L180501 (2021).
  • Brandt (1999) E. H. Brandt, Phys. Rev. B 60, 11939 (1999).
  • Kittaka et al. (2020) S. Kittaka, Y. Shimizu, T. Sakakibara, A. Nakamura, D. Li, Y. Homma, F. Honda, D. Aoki,  and K. Machida, Phys. Rev. Research 2, 032014(R) (2020).
  • Song et al. (2011) Y. J. Song, J. S. Ghim, J. H. Yoon, K. J. Lee, M. H. Jung, H.-S. Ji, J. H. Shim, Y. Bang,  and Y. S. Kwon, EPL 94, 57008 (2011).
  • Adamski et al. (2017) A. Adamski, C. Krellner,  and M. Abdel-Hafiez, Phys. Rev. B 96, 100503(R) (2017).
  • Vincent et al. (1991) E. Vincent, J. Hammann, L. Taillefer, K. Behnia, N. Keller,  and J. Flouquet, J. Phys.: Condens. Matter 3, 3517 (1991).
  • Amann et al. (1998) A. Amann, A. C. Mota, M. B. Maple,  and H. vonLöhneysen, Phys. Rev. B 57, 3640 (1998).
  • Cichorek et al. (2005) T. Cichorek, A. C. Mota, F. Steglich, N. A. Frederick, W. M. Yuhasz,  and M. B. Maple, Phys. Rev. Lett. 94, 107002 (2005).
  • Chia et al. (2003) E. E. M. Chia, M. B. Salamon, H. Sugawara,  and H. Sato, Phys. Rev. Lett. 91, 247003 (2003).
  • (43) Y. Iguchi, H. Man, S. M. Thomas, F. Ronning, P. F. S. Rosa,  and K. A. Moler, arXiv:2210.09562 .
  • Nakamine et al. (2019) G. Nakamine, S. Kitagawa, K. Ishida, Y. Tokunaga, H. Sakai, S. Kambe, A. Nakamura, Y. Shimizu, Y. Homma, D. Li, F. Honda,  and D. Aoki, J. Phys. Soc. Jpn. 88, 113703 (2019).
  • (45) S. Sundar, N. Azari, M. Goeks, S. Gheidi, M. Abedi, M. Yakovlev, S. R. Dunsiger, J. M. Wilkinson, S. J. Blundell, T. E. Metz, I. M. Hayes, S. R. Saha, S. Lee, A. J. Woods, R. Movshovich, S. M. Thomas, P. F. S. Rosa, N. P. Butch, J. Paglione,  and J. E. Sonier, arXiv:2207.13725 .
  • Hashimoto et al. (2012) K. Hashimoto, K. Cho, T. Shibauchi, S. Kasahara, Y. Mizukami, R. Katsumata, Y. Tsuruhara, T. Terashima, H. Ikeda, M. A. Tanatar, H. Kitano, N. Salovich, R. W. Giannetta, P. Walmsley, A. Carrington, R. Prozorov,  and Y. Matsuda, Science 336, 1554 (2012).

Supplemental Material

I Calculation of HcH_{\rm c} from specific heat

Refer to caption
Figure S 5: (a) Electronic specific heat CeC_{\rm e} divided by temperature TT as a function of TT obtained by subtracting the T3T^{3} component from the total specific heat. The orange line represents an extrapolation curve toward T=0T=0. The black broken line is Ce/TC_{\rm e}/T in the normal state including a small linear term below TcT_{\rm c}. (b) Temperature dependence of entropy in the normal state (black broken line) and the superconducting state (red markers).

Figure S5(a) shows the electronic specific heat of crystal #A1 evaluated by subtracting a CT3C\propto T^{3} component from the total specific heat in Fig. 1(a). To calculate the entropy in the superconducting state SscS_{\rm sc}, we extrapolated the data toward T=0T=0 using the fitting function Ce/T=a+bT2C_{\rm e}/T=a+bT^{2} in the low-TT region (the orange curve in Fig. S5(a)). The residual value a=6.3a=6.3 mJK-2mol-1 is much smaller than the reported values in the CVT crystals [2,23], confirming the ultraclean nature of our crystals. The SscS_{\rm sc} values calculated from the extrapolated Ce/TC_{\rm e}/T data are the red markers in Fig. S5(b). Then, we need to evaluate the normal state entropy SnS_{\rm n} to obtain Hc(T)H_{\rm c}(T). In general, SscS_{\rm sc} and SnS_{\rm n} should be equal at TcT_{\rm c} because the superconducting transition is of second order. However, we find that this entropy balance is violated assuming that Ce/TC_{\rm e}/T is completely constant in the normal state below TcT_{\rm c}. This result is caused by the small residual value at T=0T=0 and an upturn behavior in the low-TT region observed in previous studies [36,45]. To satisfy the entropy balance, for simplicity, we introduced a small linear TT dependence below TcT_{\rm c} in Ce/TC_{\rm e}/T of the normal state. We consider that, since this linear term is small compared with the TT dependence of Ce/TC_{\rm e}/T in the superconducting state, the TT dependence of Ce/TC_{\rm e}/T in the normal state does not affect much the estimation of Hc(T)H_{\rm c}(T). Finally, we obtain Ce/TC_{\rm e}/T in the normal state and SnS_{\rm n} shown in Fig. S5(a) and (b) as the black broken lines, respectively. As mentioned in the main text, we can calculate HcH_{\rm c} through the equation, Hc2(T)=2μ0TTc(SnSsc)𝑑TH_{\rm c}^{2}(T)=2\mu_{0}\int_{T}^{T_{\rm c}}(S_{\rm n}-S_{\rm sc})dT.

II Position dependence of the local magnetic induction

Refer to caption
Figure S 6: (a-c) Local magnetic induction near the crystal edges and in the bulk as a function of external magnetic field at 1 K for 𝑯𝒂{\bm{H}}\parallel{\bm{a}}, 𝑯𝒃{\bm{H}}\parallel{\bm{b}}, and 𝑯𝒄{\bm{H}}\parallel{\bm{c}}, respectively. The black arrows are HpH_{\rm p} estimated from the edge data.

When the surface pinning or geometrical barriers of superconducting vortices are present, HpH_{\rm p} is much enhanced from Hc1H_{\rm c1} value and shows a large position dependence [31-33]. To consider this effect, we measured the position dependence of HpH_{\rm p}. Figure S6(a-c) shows local magnetic induction near edges (open squares) and in the bulk (filled circles) as a function of external magnetic field at 1 K for 𝑯𝒂{\bm{H}}\parallel{\bm{a}}, 𝑯𝒃{\bm{H}}\parallel{\bm{b}}, and 𝑯𝒄{\bm{H}}\parallel{\bm{c}}, respectively. Because the distance of neighboring Hall bars is 20 μ\mum, the bulk data reflect the magnetic induction away from the crystal edges by at least 20 μ\mum. Obviously, we find that the HpH_{\rm p} values are almost independent on the positions. This result support that our measurements are not affected by the surface pinning or geometrical barriers of the superconducting vortices.

Regarding the Bean model, the magnetic induction BB satisfies the relation, B(HHp)2B\propto(H-H_{\rm p})^{2}, above HpH_{\rm p}. Thus, we fitted B1/2(H)B^{1/2}(H) with a linear function in a B>0B>0 region and defined HpH_{\rm p} as the crossing point of the fitting line and B=0B=0.