This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Angular Momentum Memory Effect

Xinliang An Department of Mathematics, National University of Singapore, Singapore 119076    Taoran He Department of Mathematics, National University of Singapore, Singapore 119076    Dawei Shen Laboratoire Jacques-Louis Lions, Sorbonne Université, 75252 Paris, France
Abstract

Utilizing recent mathematical advances in proving stability of Minkowski spacetime with minimal decay rates and nonlinear stability of Kerr black holes with small angular momentum, we investigate the detailed asymptotic behaviors of gravitational waves generated in these spacetimes. Here we report and propose a new angular momentum memory effect along future null infinity. This accompanies Christodoulou’s nonlinear displacement memory effect and the spin memory effect. The connections and differences to these effects are also addressed.

Introduction.—Rapid progress has been made in the hyperbolic theory of mathematical general relativity. In particular, Kerr nonlinear stability with small angular momentum has been recently proven by Klainerman-Szeftel, Giorgi-Klainerman-Szeftel and the third author in the series of works KS:Kerr1 ; KS:Kerr2 ; KS:main ; GKS ; Shen . In addition, the global stability of Minkowski spacetime, first revealed by Christodoulou-Klainerman Ch-Kl , has been reproved under minimal decay assumptions of initial data by the third author Shenglobal . Detailed explicit hyperbolic estimates have been provided. With these, we revisit the field of memory effects of gravitational waves. In particular, in this article, we extend Christodoulou’s displacement memory Ch and Bieri’s extension BieriMemory to broader settings. Employing the newly defined intrinsic angular momentum introduced by Klainerman-Szeftel in KS:Kerr2 , we identify a new angular momentum memory effect. Links and differences to the spin memory effect PSZ are also discussed. In a later section, we also translate our results into Newman-Penrose (NP) formalism.

Preliminaries.—In a 3+13+1 dimensional Lorentzian manifold (,𝐠)(\mathcal{M},{\bf g}), we study the Einstein vacuum equations:

𝐑𝐢𝐜μν(𝐠)=0withμ,ν{1,2,3,4}.\operatorname{{\bf Ric}}_{\mu\nu}({\bf g})=0\quad\mbox{with}\quad\mu,\nu\in\{1,2,3,4\}. (1)

We foliate the spacetime \mathcal{M} by maximal hypersurfaces Σt\Sigma_{t} as level sets of a time function tt and by outgoing null cones CuC_{u} as level sets of an optical function uu. The intersections of Σt\Sigma_{t} and CuC_{u} are 2-spheres denoted by S(t,u)S(t,u) with u,t0u\in\mathbb{R},t\geq 0. We define the area radius of S(t,u)S(t,u) by r:=|S(t,u)|/4πr:=\sqrt{{|S(t,u)|}/{4\pi}}. Let TT be the future-oriented unit vector normal to Σt\Sigma_{t}, and NN be the outward unit normal vector of S(t,u)S(t,u) that is tangential to Σt\Sigma_{t}. With TT and NN, we set the associated null frame to be (e1,e2,e3,e4)(e_{1},e_{2},e_{3},e_{4}). Here (e4,e3):=(T+N,TN)(e_{4},e_{3}):=(T+N,T-N) and (e1,e2)(e_{1},e_{2}) is an orthonormal frame on S(t,u)S(t,u). With A,B{1,2}A,B\in\{1,2\} and 𝐃{\bf D} being the covariant derivative, we further introduce the null decomposition of the Ricci coefficients.

χ¯AB\displaystyle{\underline{\chi}}_{AB} :=𝐠(𝐃Ae3,eB),χAB:=𝐠(𝐃Ae4,eB),\displaystyle:={\bf g}({\bf D}_{A}e_{3},e_{B}),\qquad\quad\;\chi_{AB}:={\bf g}({\bf D}_{A}e_{4},e_{B}),
trχ¯\displaystyle\operatorname{tr}{\underline{\chi}} :=δABχ¯AB,χ¯^AB:=χ¯AB12trχ¯𝐠AB,\displaystyle:=\delta^{AB}{\underline{\chi}}_{AB},\qquad\qquad\;\;\;\;{\widehat{{\underline{\chi}}}}_{AB}:={\underline{\chi}}_{AB}-\frac{1}{2}\operatorname{tr}{\underline{\chi}}\,{\bf g}_{AB},
trχ\displaystyle\operatorname{tr}\chi :=δABχAB,χ^AB:=χAB12trχ𝐠AB,\displaystyle:=\delta^{AB}\chi_{AB},\qquad\qquad\;\;\;\;{\widehat{\chi}}_{AB}:=\chi_{AB}-\frac{1}{2}\operatorname{tr}\chi\,{\bf g}_{AB},
ω¯\displaystyle{\underline{\omega}} :=14𝐠(𝐃3e3,e4),ω:=14𝐠(𝐃4e4,e3),\displaystyle:=\frac{1}{4}{\bf g}({\bf D}_{3}e_{3},e_{4}),\qquad\quad\,\,\,\;\,\;\omega:=\frac{1}{4}{\bf g}({\bf D}_{4}e_{4},e_{3}),
η¯A\displaystyle{\underline{\eta}}_{A} :=12𝐠(𝐃4e3,eA),ηA:=12𝐠(𝐃3e4,eA),\displaystyle:=\frac{1}{2}{\bf g}({\bf D}_{4}e_{3},e_{A}),\qquad\quad\;\;\eta_{A}:=\frac{1}{2}{\bf g}({\bf D}_{3}e_{4},e_{A}),
ζA\displaystyle\zeta_{A} :=12𝐠(𝐃eAe4,e3),ξ¯A:=12𝐠(𝐃3e3,eA),\displaystyle:=\frac{1}{2}{\bf g}({\bf D}_{e_{A}}e_{4},e_{3}),\qquad\quad\,{\underline{\xi}}_{A}:=\frac{1}{2}{\bf g}({\bf D}_{3}e_{3},e_{A}),

and curvature components

αAB\displaystyle\alpha_{AB} :=𝐑(eA,e4,eB,e4),α¯AB:=𝐑(eA,e3,eB,e3),\displaystyle:=\mathbf{R}(e_{A},e_{4},e_{B},e_{4}),\quad\;\;\,\underline{\alpha}_{AB}:=\mathbf{R}(e_{A},e_{3},e_{B},e_{3}),
βA\displaystyle\beta_{A} :=12𝐑(eA,e4,e3,e4),β¯A:=12𝐑(eA,e3,e3,e4),\displaystyle:=\frac{1}{2}\mathbf{R}(e_{A},e_{4},e_{3},e_{4}),\;\;\quad\;\underline{\beta}_{A}:=\frac{1}{2}\mathbf{R}(e_{A},e_{3},e_{3},e_{4}),
ρ\displaystyle\rho :=14𝐑(e3,e4,e3,e4),σ:=14𝐑(e3,e4,e3,e4),\displaystyle:=\frac{1}{4}\mathbf{R}(e_{3},e_{4},e_{3},e_{4}),\quad\;\;\;\;\;\;\sigma:=\frac{1}{4}{{}^{*}\mathbf{R}}(e_{3},e_{4},e_{3},e_{4}),

where 𝐑{}^{*}\mathbf{R} denotes the Hodge dual of Riemann tensor 𝐑\mathbf{R}. We also denote \nabla as the induced covariant derivative on S(t,u)S(t,u) and let 3ψ\nabla_{3}\psi and 4ψ\nabla_{4}\psi represent the projections of 𝐃3ψ{\bf D}_{3}\psi and 𝐃4ψ{\bf D}_{4}\psi to S(t,u)S(t,u).

We remark that the final angular momentum afa_{f} and final mass mfm_{f} of the spacetime are determined by taking the limit of geometrically constructed parameters associated to a family of finite admissible General Covariant Modulated (GCM) spacetimes. This construction is anchored on a GCM sphere SS_{*}. Klainerman-Szeftel KS:Kerr2 introduced the associated angular momentum of SS_{*} as

J:=r5(curlβ)=1.\displaystyle J:=r^{5}(\operatorname{curl}\beta)_{\ell=1}. (2)

Here ()=1(\cdot)_{\ell=1} denotes the projection onto =1\ell=1 modes on the sphere. In their proof of Kerr stability, the definition of JJ and its evolution play a crucial role. The intrinsic geometry of SS_{*} is uniquely determined by the uniformization theorem and its extrinsic properties are fixed by GCM conditions. For other definitions of angular momentum, interested readers are referred to CWY ; CWWY ; Rizzi .

Stability of Minkowski—The global nonlinear stability of Minkowski spacetime for the Einstein vacuum equations has been first established by Christodoulou-Klainerman Ch-Kl in 1993. In 2007, Bieri Bieri provided an important extension that requires one less derivative and weaker decay requirement for initial data compared to Ch-Kl . In Shenglobal , the third author extended the results of Bieri to minimal decay assumptions, as stated in Theorem 1 below. The proofs presented in Ch-Kl ; Bieri ; Shenglobal are based on the maximal-null foliation. In 2003, Klainerman-Nicolò Kl-Ni revisited Minkowski stability in the exterior region of an outgoing null cone using the double null foliation. Later on, the third author ShenMink reproved the stability of Minkowski in this exterior region with more general initial data. For the latest updates and more related details about stability of Minkowski, interested readers are referred to ShenMink ; Shenglobal and references therein.

Theorem 1 (Global stability of Minkowski Shenglobal ).

Let s(1,2]s\in(1,2] and consider a ss–asymptotically flat initial data set (Σ0,g,k)(\Sigma_{0},g,k), i.e.,

gij=δij+o(rs12),kij=o(rs+12),i,j{1,2,3}.\displaystyle g_{ij}=\delta_{ij}+o(r^{-\frac{s-1}{2}}),\quad k_{ij}=o(r^{-\frac{s+1}{2}}),\quad i,j\in\{1,2,3\}.

Then, the nonlinear stability of Minkowski holds true in the future of Σ0\Sigma_{0}. Moreover, we have the following asymptotic behaviors in the exterior region:

Γg=O(rs+12),Γb,Γw=O(r1|u|s12),\displaystyle\Gamma_{g}=O(r^{-\frac{s+1}{2}}),\qquad\Gamma_{b},\,\Gamma_{w}=O(r^{-1}|u|^{-\frac{s-1}{2}}),

where

Γg\displaystyle\Gamma_{g} :={rtrχ,rtrχ¯,χ^,ω,ω¯,ζ,η¯,rα,rβ,rρ,rσ},\displaystyle:=\left\{r\nabla\operatorname{tr}\chi,\,r\nabla\operatorname{tr}{\underline{\chi}},\,{\widehat{\chi}},\,\omega,\,{\underline{\omega}},\,\zeta,\,{\underline{\eta}},\,r\alpha,\,r\beta,\,r\rho,\,r\sigma\right\},
Γb\displaystyle\Gamma_{b} :={η,trχ2r,trχ¯+2r,ξ¯},Γw:={χ¯^,rβ¯,uα¯}.\displaystyle:=\left\{\eta,\,\operatorname{tr}\chi-\frac{2}{r},\,\operatorname{tr}{\underline{\chi}}+\frac{2}{r},\,{\underline{\xi}}\right\},\;\;\Gamma_{w}:=\left\{{\widehat{{\underline{\chi}}}},\,r\underline{\beta},\,u\underline{\alpha}\right\}.

In this paper, we report that we can improve estimates in Theorem 1 as below. These improvements of the extra decay rates in rr enable us to demonstrate the weighted asymptotic limits of various geometric quantities. In particular, with these limits, we establish the formula for the angular momentum memory effect.

Lemma 2.

Under the same assumptions as in Theorem 1, we have the following improved decay estimates

Γb\displaystyle\Gamma_{b} =O(rs+12).\displaystyle=O(r^{-\frac{s+1}{2}}). (3)
Proof.

To derive decay estimates in (3), it suffices to construct a maximal-null foliation from a solved last slice Σ\Sigma_{*} and integrate Γb\Gamma_{b} along e4e_{4} backwardly from Σ\Sigma_{*}. ∎

We summarize these improved hyperbolic estimates as

Theorem 3.

Let s(1,3)(3,4)s\in(1,3)\cup(3,4) and require the initial data set (Σ0,g,k)(\Sigma_{0},g,k) to be ss–asymptotically flat. Then, the spacetimes arising from these initial data are associated with the following asymptotic behaviors:

Γg,Γb=O(rs+12+r32),Γw=O(r1|u|s12),Γr=O(rs+1δ2+r2|u|3s2),\displaystyle\begin{split}\Gamma_{g},\,\Gamma_{b}&=O\left(r^{-\frac{s+1}{2}}+r^{-\frac{3}{2}}\right),\;\;\Gamma_{w}=O(r^{-1}|u|^{-\frac{s-1}{2}}),\\ \Gamma_{r}&=O\left(r^{-\frac{s+1-\delta}{2}}+r^{-2}|u|^{\frac{3-s}{2}}\right),\end{split} (4)

where Γr:=ΓgΓb{η,ξ¯,ω¯}\Gamma_{r}:=\Gamma_{g}\cup\Gamma_{b}\setminus\{\eta,\,{\underline{\xi}},\,{\underline{\omega}}\} and 0<δ|s3|0<\delta\ll|s-3|.

Proof.

Theorem 1 and Lemma 2 directly imply that (4) holds in the case s(1,2]s\in(1,2]. The estimates for Γg\Gamma_{g}, Γb\Gamma_{b} and Γw\Gamma_{w} in (4) in the cases s(2,3)s\in(2,3) and s(3,4)s\in(3,4) follow from Bieri and ShenMink , respectively. Next, utilizing the incoming null structure equations and Bianchi equations, we derive

3Γr=r1Γw={O(r2|u|s12),s(3,4),O(rs+1δ2|u|1+δ2),s(1,3).\displaystyle\nabla_{3}\Gamma_{r}=r^{-1}\Gamma_{w}=\begin{cases}&O\left(r^{-2}|u|^{-\frac{s-1}{2}}\right),\qquad\quad s\in(3,4),\\ &O\left(r^{-\frac{s+1-\delta}{2}}|u|^{-1+\frac{\delta}{2}}\right),\quad s\in(1,3).\end{cases}

Integrating it by uu, we then obtain the estimate for Γr\Gamma_{r} in (4) as stated. ∎

Stability of Kerr.—The Kerr black hole is a 22–parameter family of solutions (K(a,M),𝐠a,M)(K(a,M),{\bf g}_{a,M}) discovered by Kerr Kerr that solve (1). In Boyer-Lindquist coordinates, its metric ga,Mg_{a,M} takes the form of

𝐠a,M=(Δa2sin2θ)q2dt24aMrq2sin2θdtdφ+q2Δdr2+q2dθ2+Σ2q2sin2θdφ2\displaystyle\begin{split}{\bf g}_{a,M}=&-\frac{(\Delta-a^{2}\sin^{2}\theta)}{q^{2}}dt^{2}-\frac{4aMr}{q^{2}}\sin^{2}\theta dtd\varphi\\ &+\frac{q^{2}}{\Delta}dr^{2}+q^{2}d\theta^{2}+\frac{\Sigma^{2}}{q^{2}}\sin^{2}\theta d\varphi^{2}\end{split} (5)

with q2:=r2+a2cos2θq^{2}:=r^{2}+a^{2}\cos^{2}\theta, Δ:=r2+a22Mr\quad\Delta:=r^{2}+a^{2}-2Mr and Σ2:=(r2+a2)2a2sin2θΔ\quad\Sigma^{2}:=(r^{2}+a^{2})^{2}-a^{2}\sin^{2}{\theta}\Delta.

The nonlinear stability of Kerr black holes remains open for a long time, until a breakthrough emerged recently with the confirmation of Kerr stability for small angular momentum. This is due to a series of works by Klainerman-Szeftel, Giorgi-Klainerman-Szeftel and the third author KS:Kerr1 ; KS:Kerr2 ; KS:main ; GKS ; Shen . The main results can be stated as follows:

Theorem 4 (Kerr stability with small angular momentum KS:main ).

Let (Σ0,g,k)(\Sigma_{0},g,k) be a perturbed initial data set of a Kerr metric 𝐠a,M{\bf g}_{a,M} with |a|M|a|\ll M. The future globally hyperbolic development of (Σ0,g,k)(\Sigma_{0},g,k) has a complete future null infinity +\mathscr{I}_{+} and converges in its causal past J(+)J^{-}(\mathscr{I}_{+}) to another nearby Kerr solution 𝐠af,Mf{\bf g}_{a_{f},M_{f}}. Moreover, in the region r|u|1+δr\geq|u|^{1+\delta}, the following decay estimates hold

trχwidecheck,trχ¯widecheck,χ^,ζ,η¯,η,ξ=O(r2|u|12δ),ξ¯,χ¯^,ω¯,rβ¯,α¯=O(r1|u|1δ),ρ,σ=O(r3),α,β=O(r72δ).\displaystyle\begin{split}\widecheck{\operatorname{tr}\chi},\,\widecheck{\operatorname{tr}{\underline{\chi}}},\,{\widehat{\chi}},\,\zeta,\,{\underline{\eta}},\,\eta,\,\xi&=O(r^{-2}|u|^{-\frac{1}{2}-\delta}),\\ {\underline{\xi}},\,{\widehat{{\underline{\chi}}}},\,{\underline{\omega}},\,r\underline{\beta},\,\underline{\alpha}&=O(r^{-1}|u|^{-1-\delta}),\\ \rho,\,\sigma&=O(r^{-3}),\\ \alpha,\,\beta&=O(r^{-\frac{7}{2}-\delta}).\end{split} (6)

Here trχ𝑤𝑖𝑑𝑒𝑐ℎ𝑒𝑐𝑘:=trχ2r\widecheck{\operatorname{tr}\chi}:=\operatorname{tr}\chi-\frac{2}{r} and trχ¯𝑤𝑖𝑑𝑒𝑐ℎ𝑒𝑐𝑘:=trχ¯+2r(12Mfr)\widecheck{\operatorname{tr}{\underline{\chi}}}:=\operatorname{tr}{\underline{\chi}}+\frac{2}{r}\left(1-\frac{2M_{f}}{r}\right).

Main equations.—Here we list the equations that we work with. For tensor fields defined on a 22–sphere SS, we denote by 𝔰0\mathfrak{s}_{0} the set of pairs of scalar functions, 𝔰1\mathfrak{s}_{1} the set of 11–forms and 𝔰2\mathfrak{s}_{2} the set of symmetric traceless 22–tensors.

Definition 5.

For a given ξ𝔰1\xi\in\mathfrak{s}_{1}, we define

divξ:=δABAξB,curlξ:=ABAξB.\displaystyle\operatorname{div}\xi:=\delta^{AB}\nabla_{A}\xi_{B},\qquad\operatorname{curl}\xi:=\in^{AB}\nabla_{A}\xi_{B}.

The Hodge operators are also denoted as

d1ξ\displaystyle d_{1}\xi :=(divξ,curlξ),ξ𝔰1,\displaystyle:=(\operatorname{div}\xi,\operatorname{curl}\xi),\qquad\qquad\qquad\,\xi\in\mathfrak{s}_{1},
(d2U)A\displaystyle(d_{2}U)_{A} :=BUAB,U𝔰2,\displaystyle:=\nabla^{B}U_{AB},\qquad\qquad\qquad\quad\;\;\,\,U\in\mathfrak{s}_{2},
d1(f,f)A\displaystyle d_{1}^{*}(f,f_{*})_{A} :=Af+ABBf,(f,f)𝔰0.\displaystyle:=-\nabla_{A}f+\in_{AB}\nabla_{B}f_{*},\;\;\;\,(f,f_{*})\in\mathfrak{s}_{0}.

For later use, we list following equations based on the null-frame decompositions of Einstein vacuum equations.

Proposition 6.

The Codazzi and torsion equations read

divχ^\displaystyle\operatorname{div}{\widehat{\chi}} =12trχ+12trχζβ+χ^ζ,\displaystyle=\frac{1}{2}\nabla\operatorname{tr}\chi+\frac{1}{2}\operatorname{tr}\chi\,\zeta-\beta+{\widehat{\chi}}\cdot\zeta, (7)
curlζ\displaystyle\operatorname{curl}\zeta =σ12χ^χ¯^,\displaystyle=\sigma-\frac{1}{2}{\widehat{\chi}}\wedge{\widehat{{\underline{\chi}}}}, (8)

where χ^χ¯^:=ABχ^Aχ¯^CBC{\widehat{\chi}}\wedge{\widehat{{\underline{\chi}}}}:=\in^{AB}{\widehat{\chi}}_{A}{}^{C}\,{\widehat{{\underline{\chi}}}}_{CB}. We also have

3β+trχ¯β=d1(ρ,σ)+2ω¯β+ξ¯α+2χ^β¯+3(ηρ+ησ).\displaystyle\begin{split}\nabla_{3}\beta+\operatorname{tr}{\underline{\chi}}\,\beta=&-d_{1}^{*}(\rho,-\sigma)+2{\underline{\omega}}\cdot\beta+{\underline{\xi}}\cdot\alpha\\ &+2{\widehat{\chi}}\cdot\underline{\beta}+3(\eta\rho+{{}^{*}\eta}\sigma).\end{split} (9)
Proof.

See Propositions 7.3.2 and 7.4.1 in Ch-Kl . ∎

Future null infinity.—We denote the future null infinity by +\mathscr{I}_{+}. Based on the hyperbolic estimates in Shenglobal and KS:main , in the same fashion as to BieriMemory , we have

Proposition 7.

The following limits exist along +\mathscr{I}_{+}:

A¯\displaystyle{\underline{A}} :=limCu,rrα¯,B¯:=limCu,rr2β¯,\displaystyle:=\lim_{C_{u},r\to\infty}r\underline{\alpha},\qquad\qquad\quad\;{\underline{B}}:=\lim_{C_{u},r\to\infty}r^{2}\underline{\beta},
(Θ3,Z3)\displaystyle(\Theta_{3},Z_{3}) :=limCu,r3(r2χ^,r2ζ),Θ¯:=limCu,rrχ¯^,\displaystyle:=\lim_{C_{u},r\to\infty}\nabla_{3}(r^{2}{\widehat{\chi}},r^{2}\zeta),\quad{\underline{\Theta}}:=\lim_{C_{u},r\to\infty}r{\widehat{{\underline{\chi}}}},
(𝒫3,𝒬3)\displaystyle(\mathcal{P}_{3},\mathcal{Q}_{3}) :=limCu,r3(r3(ρ,σ)r32(χ^χ¯^,χ^χ¯^)).\displaystyle:=\lim_{C_{u},r\to\infty}\nabla_{3}\left(r^{3}(\rho,\sigma)-\frac{r^{3}}{2}({\widehat{\chi}}\cdot{\widehat{{\underline{\chi}}}},{\widehat{\chi}}\wedge{\widehat{{\underline{\chi}}}})\right).

We further define

(𝒫,𝒬,Θ,Z):=u(𝒫3,𝒬3,Θ3,Z3)𝑑u.(\mathcal{P},\mathcal{Q},\Theta,Z):=\int_{u}(\mathcal{P}_{3},\mathcal{Q}_{3},\Theta_{3},Z_{3})\,du. (10)

For any quantity XX defined along +\mathscr{I}_{+}, we also denote

X+:=limu+X(u,),X:=limuX(u,).\displaystyle X^{+}:=\lim_{u\to+\infty}X(u,\cdot),\qquad X^{-}:=\lim_{u\to-\infty}X(u,\cdot).

Multiply by an appropriate weight rpr^{p} and letting rr\to\infty along CuC_{u}, we deduce the following lemma.

Lemma 8.

The following equations hold along +\mathscr{I}_{+}:

Θ3\displaystyle\Theta_{3} =Θ¯,\displaystyle=-{\underline{\Theta}}, (11)
divΘ¯\displaystyle\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}} =B¯,\displaystyle={\underline{B}}, (12)
(𝒫3,𝒬3)\displaystyle(\mathcal{P}_{3},\mathcal{Q}_{3}) =d1B¯+12(|Θ¯|2,0),\displaystyle=-\overset{\circ}{d}_{1}{\underline{B}}+\frac{1}{2}\left(|{\underline{\Theta}}|^{2},0\right), (13)
curlZ\displaystyle\overset{\circ}{\operatorname{curl}}\,Z =𝒬,\displaystyle=\mathcal{Q}, (14)

with :=limCu,rr\overset{\circ}{\nabla}:=\lim_{C_{u},r\to\infty}r\nabla.

Displacement memory effect.—We state the displacement nonlinear memory effect, which was established by Christodoulou in Ch and Blanchet-Damour in BD , extended by Bieri in BieriMemory to slow decaying scenario with s=2s=2, and further extended here in the setting of our Theorem 3 with s(1,3)s\in(1,3).

Theorem 9.

The difference Θ+Θ\Theta^{+}-\Theta^{-} is uniquely determined by the elliptic system

d1d2(Θ+Θ)\displaystyle\overset{\circ}{d}_{1}\overset{\circ}{d}_{2}(\Theta^{+}-\Theta^{-}) =(𝒫+𝒫4F,𝒬+𝒬),\displaystyle=(\mathcal{P}^{+}-\mathcal{P}^{-}-4F,\,\mathcal{Q}^{+}-\mathcal{Q}^{-}), (15)

where F():=18u|Θ¯(u,)|2𝑑uF(\cdot):=\frac{1}{8}\int_{u}|{\underline{\Theta}}(u,\cdot)|^{2}du. Furthermore, it holds

Θ+Θ=O(|u|3s2).\Theta^{+}-\Theta^{-}=O(|u|^{\frac{3-s}{2}}). (16)
Proof.

It follows from (11), (12) and (13) that

d1d2Θ3=(𝒫3,𝒬3)12(|Θ¯|2,0).\displaystyle\overset{\circ}{d}_{1}\overset{\circ}{d}_{2}\Theta_{3}=(\mathcal{P}_{3},\mathcal{Q}_{3})-\frac{1}{2}\left(|{\underline{\Theta}}|^{2},0\right).

Integrating it by uu, we then deduce (15) as stated.

To estimate the size of Θ+Θ\Theta^{+}-\Theta^{-}, from Theorem 3 and Proposition 7 we have

Θ¯=O(|u|s12).\displaystyle{\underline{\Theta}}=O(|u|^{-\frac{s-1}{2}}).

Applying (11), we infer

Θ+Θ=uO(|u|s12)𝑑u=O(|u|3s2).\displaystyle\Theta^{+}-\Theta^{-}=\int_{u}O(|u|^{-\frac{s-1}{2}})\,du=O(|u|^{\frac{3-s}{2}}).

This concludes the proof of Theorem 9. ∎

The difference Θ+Θ\Theta^{+}-\Theta^{-} is proportional to the permanent displacement of test masses in a gravitational wave detector. See Ch for more details. Theorem 9 reveals that for s(1,3)s\in(1,3), this memory effect grows as |u|3s2|u|^{\frac{3-s}{2}} and it is caused by the growth of the so-called electric memory 𝒫+𝒫\mathcal{P}^{+}-\mathcal{P}^{-} and magnetic memory 𝒬+𝒬\mathcal{Q}^{+}-\mathcal{Q}^{-}. These two memories are introduced by Bieri in BieriMemory with s=2s=2. One is also referred to BieriGarfinkle for broader discussions. Theorem 9 further generalizes her result to the range s(1,3)s\in(1,3).

A new angular momentum memory.—In this paper, we also investigate the evolution of the angular momentum defined in KS:Kerr2 along the future null infinity +\mathscr{I}_{+} based on hyperbolic estimates established in Theorem 3 with s(3,4)s\in(3,4) and Theorem 4. We find and report a new formula for the change of angular momentum along +\mathscr{I}_{+}, which is named as the angular momentum memory effect.

Theorem 10.

Along +\mathscr{I}_{+}, the following limit exists

𝒥3:=limCu,r3J.\mathcal{J}_{3}:=\lim_{C_{u},r\to\infty}\nabla_{3}J.

Moreover, we have

𝒥3=(ΘΘ¯)=1+2(curl(ΘdivΘ¯))=1.\displaystyle\mathcal{J}_{3}=(\Theta\wedge{\underline{\Theta}})_{\ell=1}+2\left(\overset{\circ}{\operatorname{curl}}\,(\Theta\cdot\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}})\right)_{\ell=1}. (17)

Furthermore, letting 𝒥:=u𝒥3𝑑u\mathcal{J}:=\int_{u}\mathcal{J}_{3}\,du, we have

𝒥+𝒥=u(ΘΘ¯+2curl(ΘdivΘ¯))=1𝑑u.\mathcal{J}^{+}-\mathcal{J}^{-}=\int_{u}\left(\Theta\wedge{\underline{\Theta}}+2\,\overset{\circ}{\operatorname{curl}}\,(\Theta\cdot\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}})\right)_{\ell=1}du. (18)
Proof.

Differentiating the Codazzi equation (7) by rcurlr\operatorname{curl} and projecting it onto =1\ell=1 modes, we obtain

r(curldivχ^)=1+r(curlβ)=1=(curlζ)=1+ΓrΓr.\displaystyle r(\operatorname{curl}\operatorname{div}{\widehat{\chi}})_{\ell=1}+r(\operatorname{curl}\beta)_{\ell=1}=(\operatorname{curl}\zeta)_{\ell=1}+\Gamma_{r}\cdot\Gamma_{r}.

Noticing that (d1d2U)=1=0(d_{1}d_{2}U)_{\ell=1}=0 for any U𝔰2U\in\mathfrak{s}_{2}, we deduce

r(curlβ)=1=(curlζ)=1+ΓrΓr.r(\operatorname{curl}\beta)_{\ell=1}=(\operatorname{curl}\zeta)_{\ell=1}+\Gamma_{r}\cdot\Gamma_{r}. (19)

By virtue of properties of =1\ell=1 modes, for any scalar function hh, we have

((r2Δ+2)h)=1=0.\displaystyle\left((r^{2}\Delta+2)h\right)_{\ell=1}=0.

Hence, it follows from (8) and (19) that

r2(Δσ)=1\displaystyle r^{2}(\Delta\sigma)_{\ell=1} =2(σ)=1+((r2Δ+2)σ)=1\displaystyle=-2(\sigma)_{\ell=1}+\left((r^{2}\Delta+2)\sigma\right)_{\ell=1}
=2(curlζ)=1(χ^χ¯^)=1\displaystyle=-2(\operatorname{curl}\zeta)_{\ell=1}-({\widehat{\chi}}\wedge{\widehat{{\underline{\chi}}}})_{\ell=1}
=(2rcurlβ+χ^χ¯^)=1+ΓrΓr.\displaystyle=-(2r\operatorname{curl}\beta+{\widehat{\chi}}\wedge{\widehat{{\underline{\chi}}}})_{\ell=1}+\Gamma_{r}\cdot\Gamma_{r}.

Together with (2), this implies

(r5Δσ+r3χ^χ¯^)=1=trχ¯J+r3ΓrΓr.\displaystyle(r^{5}\Delta\sigma+r^{3}{\widehat{\chi}}\wedge{\widehat{{\underline{\chi}}}})_{\ell=1}=\operatorname{tr}{\underline{\chi}}\,J+r^{3}\,\Gamma_{r}\cdot\Gamma_{r}. (20)

Next, differentiating (9) by r5curlr^{5}\operatorname{curl}, we deduce

r43(rcurlβ)+trχ¯(r5curlβ)\displaystyle r^{4}\nabla_{3}(r\operatorname{curl}\beta)+\operatorname{tr}{\underline{\chi}}(r^{5}\operatorname{curl}\beta)
=\displaystyle= r5curld1(ρ,σ)+2r5curl(χ^β¯)+r3ΓrΓb\displaystyle-r^{5}\operatorname{curl}d_{1}^{*}(\rho,-\sigma)+2r^{5}\operatorname{curl}({\widehat{\chi}}\cdot\underline{\beta})+r^{3}\,\Gamma_{r}\cdot\Gamma_{b}
=\displaystyle= r5Δσ+2r5curl(χ^β¯)+r3ΓrΓb.\displaystyle-r^{5}\Delta\sigma+2r^{5}\operatorname{curl}({\widehat{\chi}}\cdot\underline{\beta})+r^{3}\,\Gamma_{r}\cdot\Gamma_{b}.

Combining with (2) and (20), we then obtain

r43(rcurlβ)=1+trχ¯J\displaystyle r^{4}\nabla_{3}(r\operatorname{curl}\beta)_{\ell=1}+\operatorname{tr}{\underline{\chi}}\,J
=\displaystyle= r5(Δσ)=1+2r5(curl(χ^β¯))=1+r3ΓrΓb\displaystyle-r^{5}(\Delta\sigma)_{\ell=1}+2r^{5}(\operatorname{curl}({\widehat{\chi}}\cdot\underline{\beta}))_{\ell=1}+r^{3}\,\Gamma_{r}\cdot\Gamma_{b}
=\displaystyle= r3(χ^χ¯^)=1trχ¯J+2r5(curl(χ^β¯))=1+r3ΓrΓb.\displaystyle r^{3}({\widehat{\chi}}\wedge{\widehat{{\underline{\chi}}}})_{\ell=1}-\operatorname{tr}{\underline{\chi}}\,J+2r^{5}(\operatorname{curl}({\widehat{\chi}}\cdot\underline{\beta}))_{\ell=1}+r^{3}\,\Gamma_{r}\cdot\Gamma_{b}.

Applying (2) and (4), we derive for s(3,4)s\in(3,4)

3J\displaystyle\nabla_{3}J =r43(rcurlβ)=1+2trχ¯J+r3ΓrΓb\displaystyle=r^{4}\nabla_{3}(r\operatorname{curl}\beta)_{\ell=1}+2\operatorname{tr}{\underline{\chi}}\,J+r^{3}\,\Gamma_{r}\cdot\Gamma_{b}
=r3(χ^χ¯^)=1+2r5(curl(χ^β¯))=1\displaystyle=r^{3}({\widehat{\chi}}\wedge{\widehat{{\underline{\chi}}}})_{\ell=1}+2r^{5}(\operatorname{curl}({\widehat{\chi}}\cdot\underline{\beta}))_{\ell=1}
+r3O(rs+1δ2)O(r32).\displaystyle+r^{3}\,O\left(r^{-\frac{s+1-\delta}{2}}\right)\,O\left(r^{-\frac{3}{2}}\right). (21)

Taking rr\to\infty and employing Proposition 7, we conclude

𝒥3=(ΘΘ¯)=1+2(curl(ΘB¯))=1.\displaystyle\mathcal{J}_{3}=(\Theta\wedge{\underline{\Theta}})_{\ell=1}+2\left(\overset{\circ}{\operatorname{curl}}\,\left(\Theta\cdot{\underline{B}}\right)\right)_{\ell=1}.

The desired equality (17) follows by inserting (12). Integrating (17) in uu, we present the formula of the angular momentum memory (18). ∎

Notice that when s(2,3)s\in(2,3), if r2χ^r^{2}{\widehat{\chi}} tends to Θ\Theta at +\mathscr{I}_{+}, then (17) still holds. The hyperbolic estimates in Theorem 3 and Theorem 4 further enable us to measure the size of 𝒥+𝒥\mathcal{J}^{+}-\mathcal{J}^{-}.

Theorem 11.

In both settings of Theorem 3 with 3<s<43<s<4 and Theorem 4, it holds

𝒥+𝒥=O(1).\mathcal{J}^{+}-\mathcal{J}^{-}=O(1). (22)
Proof.

Employing (4) and (16), we deduce

(ΘΘ¯+2curl(ΘdivΘ¯))=1\displaystyle\left(\Theta\wedge{\underline{\Theta}}+2\,\overset{\circ}{\operatorname{curl}}\,(\Theta\cdot\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}})\right)_{\ell=1} =O(|u|1s2)O(|u|3s2)\displaystyle=O(|u|^{\frac{1-s}{2}})\,O(|u|^{\frac{3-s}{2}})
=O(|u|2s).\displaystyle=O(|u|^{2-s}).

Plugging it in (18), we have for s(3,4)s\in(3,4)

𝒥+𝒥=uO(|u|2s)𝑑u=O(1).\displaystyle\mathcal{J}^{+}-\mathcal{J}^{-}=\int_{u}O(|u|^{2-s})\,du=O(1).

In the stability of Kerr regime, by virtue of (6) in Theorem 4, we conclude

𝒥+𝒥=uO(|u|322δ)𝑑u=O(1)\displaystyle\mathcal{J}^{+}-\mathcal{J}^{-}=\int_{u}O(|u|^{-\frac{3}{2}-2\delta})\,du=O(1)

as stated. ∎

Consequently, Theorem 11 indicates that 𝒥+𝒥\mathcal{J}^{+}-\mathcal{J}^{-} can be precisely measured in perturbed Minkowski spacetimes with s(3,4)s\in(3,4) and in the context of Kerr stability with small angular momentum KS:main . However, when s(2,3)s\in(2,3), the term on the right of (17) is not integrable, thus 𝒥+\mathcal{J}^{+} diverges.

Newman-Penrose formalism.—We proceed to rewrite nonlinear displacement memory (15) and our new angular momentum memory (18) in NP formalism. This formalism has been first introduced in NP . With the following tetrad:

l:=e4,n:=12e3,m:=e1+ie22,m¯:=e1ie22,\displaystyle l:=e_{4},\;\;\;\;n:=\frac{1}{2}e_{3},\;\;\;\;m:=\frac{e_{1}+ie_{2}}{\sqrt{2}},\;\;\;\;{\overline{m}}:=\frac{e_{1}-ie_{2}}{\sqrt{2}},

we define the spin coefficients as below:

σ(NP):=𝐠(𝐃ml,m),λ(NP):=𝐠(𝐃m¯n,m¯),β(NP):=12(𝐠(𝐃ml,n)𝐠(𝐃mm,m¯)),α(NP):=12(𝐠(𝐃m¯l,n)𝐠(𝐃m¯m,m¯)).\displaystyle\begin{split}{}^{\text{(NP)}}\sigma&:=-{\bf g}({\bf D}_{m}l,m),\qquad{}^{\text{(NP)}}\lambda:={\bf g}({\bf D}_{\overline{m}}n,{\overline{m}}),\\ {}^{\text{(NP)}}\beta&:=-\frac{1}{2}\left({\bf g}({\bf D}_{m}l,n)-{\bf g}({\bf D}_{m}m,{\overline{m}})\right),\\ {}^{\text{(NP)}}\alpha&:=-\frac{1}{2}\left({\bf g}({\bf D}_{\overline{m}}l,n)-{\bf g}({\bf D}_{\overline{m}}m,{\overline{m}})\right).\end{split} (23)

We also denote the Weyl-NP scalar as

Ψ2(NP):=𝐑(l,m,m¯,n).{}^{\text{(NP)}}\Psi_{2}:=\mathbf{R}(l,m,{\overline{m}},n). (24)

By definition, we can express σ(NP),λ(NP),Ψ2(NP){}^{\text{(NP)}}\sigma,{}^{\text{(NP)}}\lambda,{}^{\text{(NP)}}\Psi_{2} in terms of the Ricci coefficients and curvature components defined before as

σ(NP)=(χ^11+iχ^12),λ(NP)=12(χ¯^11iχ¯^12),Ψ2(NP)+σ(NP)λ(NP)=12(ρiσ+12(χ^χ¯^iχ^χ¯^)).\displaystyle\begin{split}&{}^{\text{(NP)}}\sigma=-({\widehat{\chi}}_{11}+i{\widehat{\chi}}_{12}),\qquad{}^{\text{(NP)}}\lambda=\frac{1}{2}({\widehat{{\underline{\chi}}}}_{11}-i{\widehat{{\underline{\chi}}}}_{12}),\\ &{}^{\text{(NP)}}\Psi_{2}+{}^{\text{(NP)}}\sigma{}^{\text{(NP)}}\lambda=\frac{1}{2}\Big{(}\rho-i\sigma+\frac{1}{2}({\widehat{\chi}}\cdot{\widehat{{\underline{\chi}}}}-i{\widehat{\chi}}\wedge{\widehat{{\underline{\chi}}}})\Big{)}.\end{split} (25)

Taking into account the asymptotic behaviors of χ^,χ¯^{\widehat{\chi}},{\widehat{{\underline{\chi}}}} and ρ,σ\rho,\sigma, we set

X^:=limCu,rr2σ(NP),X¯^:=limCu,rrλ(NP),Y:=limCu,rr3(Ψ2(NP)+σ(NP)λ(NP)).\displaystyle\begin{split}{\widehat{X}}&:=\lim_{C_{u},r\to\infty}r^{2}\,{}^{\text{(NP)}}\sigma,\qquad{\widehat{\underline{X}}}:=\lim_{C_{u},r\to\infty}r\,{}^{\text{(NP)}}\lambda,\\ Y&:=\lim_{C_{u},r\to\infty}r^{3}\left({}^{\text{(NP)}}\Psi_{2}+{}^{\text{(NP)}}\sigma{}^{\text{(NP)}}\lambda\right).\end{split} (26)

We denote the angular derivatives δ:=m\delta:=\nabla_{m} and δ¯:=m¯{\overline{\delta}}:=\nabla_{\overline{m}}. It is also convenient to introduce the below corresponding spin derivatives for k=1,2k=1,2:

δk=δ+k(β(NP)α¯(NP)),δ¯k=δ¯+k(β¯(NP)α(NP)).\delta_{k}=\delta+k\left({}^{\text{(NP)}}\beta-{}^{\text{(NP)}}\overline{\alpha}\right),\;\;{\overline{\delta}}_{k}={\overline{\delta}}+k\left({}^{\text{(NP)}}\overline{\beta}-{}^{\text{(NP)}}\alpha\right).

With the assistance of spin derivatives, we can rewrite the Hodge operators d1d_{1} and d2d_{2} in the complex form:

Lemma 12.

Given ξ𝔰1\xi\in\mathfrak{s}_{1} and U𝔰2U\in\mathfrak{s}_{2}, we have

δ¯1(ξ1+iξ2)=divξ+icurlξ2,\displaystyle{\overline{\delta}}_{1}(\xi_{1}+i\xi_{2})=\frac{\operatorname{div}\xi+i\operatorname{curl}\xi}{\sqrt{2}},
δ¯2(U11+iU12)=(divU)1+i(divU)22.\displaystyle{\overline{\delta}}_{2}(U_{11}+iU_{12})=\frac{(\operatorname{div}U)_{1}+i(\operatorname{div}U)_{2}}{\sqrt{2}}.

With these preparations, we now reformulate the memory effects (15) and (18) in NP formalism.

Proposition 13.

Along the future null infinity +\mathscr{I}_{+}, the Christodoulou’s memory effect shows

δ¯1δ¯2(X^+X^)\displaystyle\overset{\circ}{{\overline{\delta}}}_{1}\overset{\circ}{{\overline{\delta}}}_{2}({\widehat{X}}^{+}-{\widehat{X}}^{-}) =(Y¯+Y¯)+2+|X¯^|2.\displaystyle=-\left(\overline{Y}^{+}-\overline{Y}^{-}\right)+2\int_{-\infty}^{+\infty}|{\widehat{\underline{X}}}|^{2}. (27)

Our newly introduced angular momentum effect reads

𝒥+𝒥\displaystyle\mathcal{J}^{+}-\mathcal{J}^{-} =4+Im(X^X¯^2δ¯1(X^δ2X¯^))=1.\displaystyle=4\int_{-\infty}^{+\infty}\operatorname{Im}\left({\widehat{X}}\,{\widehat{\underline{X}}}-2\overset{\circ}{{\overline{\delta}}}_{1}({\widehat{X}}\overset{\circ}{\delta}_{2}{\widehat{\underline{X}}})\right)_{\ell=1}. (28)

Here the symbol is defined in Lemma 8.

Proof.

From (LABEL:NPidentities) and (26), we have

X^\displaystyle{\widehat{X}} =(Θ11+iΘ12),X¯^=12(Θ¯11iΘ¯12),\displaystyle=-(\Theta_{11}+i\Theta_{12}),\qquad{\widehat{\underline{X}}}=\frac{1}{2}({\underline{\Theta}}_{11}-i{\underline{\Theta}}_{12}),
Y\displaystyle Y =12(𝒫i𝒬).\displaystyle=\frac{1}{2}(\mathcal{P}-i\mathcal{Q}).

In view of Lemma 12, a directly computation yields

δ¯1δ¯2X^=\displaystyle\overset{\circ}{{\overline{\delta}}}_{1}\overset{\circ}{{\overline{\delta}}}_{2}{\widehat{X}}= 12δ¯1((divΘ)1+i(divΘ)2)\displaystyle-\frac{1}{\sqrt{2}}\overset{\circ}{{\overline{\delta}}}_{1}\left((\overset{\circ}{\operatorname{div}}\,\Theta)_{1}+i(\overset{\circ}{\operatorname{div}}\,\Theta)_{2}\right)
=\displaystyle= 12(divdivΘ+icurldivΘ).\displaystyle-\frac{1}{2}\left(\overset{\circ}{\operatorname{div}}\,\overset{\circ}{\operatorname{div}}\,\Theta+i\,\overset{\circ}{\operatorname{curl}}\,\overset{\circ}{\operatorname{div}}\,\Theta\right).

Plugging this into (15), we obtain

δ¯1δ¯2(X^+X^)=\displaystyle\overset{\circ}{{\overline{\delta}}}_{1}\overset{\circ}{{\overline{\delta}}}_{2}({\widehat{X}}^{+}-{\widehat{X}}^{-})= 12(𝒫+𝒫4F+i(𝒬+𝒬))\displaystyle-\frac{1}{2}\big{(}\mathcal{P}^{+}-\mathcal{P}^{-}-4F+i(\mathcal{Q}^{+}-\mathcal{Q}^{-})\big{)}
=\displaystyle= (Y¯+Y¯)+2+|X¯^|2\displaystyle-(\overline{Y}^{+}-\overline{Y}^{-})+2\int_{-\infty}^{+\infty}|{\widehat{\underline{X}}}|^{2}

as stated. To prove (28) for the angular momentum memory, we first observe that

Im(X^X¯^)\displaystyle\operatorname{Im}({\widehat{X}}\,{\widehat{\underline{X}}}) =12(Θ11Θ¯12+Θ12Θ¯11)=14ΘΘ¯.\displaystyle=-\frac{1}{2}(-\Theta_{11}{\underline{\Theta}}_{12}+\Theta_{12}{\underline{\Theta}}_{11})=\frac{1}{4}\Theta\wedge{\underline{\Theta}}. (29)

Applying Lemma 12 again, we then deduce

X^(δ2X¯^)\displaystyle{\widehat{X}}\left(\overset{\circ}{\delta}_{2}{\widehat{\underline{X}}}\right) =122(Θ11+iΘ12)((divΘ¯)1i(divΘ¯)2)\displaystyle=-\frac{1}{2\sqrt{2}}(\Theta_{11}+i\Theta_{12})\left((\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}})_{1}-i(\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}})_{2}\right)
=122((ΘdivΘ¯)1+i(ΘdivΘ¯)2),\displaystyle=-\frac{1}{2\sqrt{2}}\left((\Theta\cdot\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}})_{1}+i(\Theta\cdot\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}})_{2}\right),

which renders

Im(δ¯1(X^δ2X¯^))=14curl(ΘdivΘ¯).\operatorname{Im}\left(\overset{\circ}{{\overline{\delta}}}_{1}({\widehat{X}}\,\overset{\circ}{\delta}_{2}{\widehat{\underline{X}}})\right)=-\frac{1}{4}\overset{\circ}{\operatorname{curl}}\,(\Theta\cdot\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}}). (30)

Combining (29) and (30), we infer

Im(X^X¯^2δ¯1(X^δ2X¯^))=14ΘΘ¯+12curl(ΘdivΘ¯).\displaystyle\operatorname{Im}\left({\widehat{X}}\,{\widehat{\underline{X}}}-2\overset{\circ}{{\overline{\delta}}}_{1}({\widehat{X}}\overset{\circ}{\delta}_{2}{\widehat{\underline{X}}})\right)=\frac{1}{4}\Theta\wedge{\underline{\Theta}}+\frac{1}{2}\overset{\circ}{\operatorname{curl}}\,\left(\Theta\cdot\overset{\circ}{\operatorname{div}}\,{\underline{\Theta}}\right).

Injecting the above expression in (18), we then finish the proof of Proposition 13. ∎

Physical discussions.—This part is devoted to the detection procedure of the memory effects in the laboratory. Gravitational memory effect can be measured by the interferometric gravitational wave detectors Ashtekar ; Ch . To measure Christodoulou’s memory effect, we consider two test masses m1m_{1} and m2m_{2} sitting initially at a right angle observed from a reference mass m0m_{0} with distances d0d_{0}. We assign Σt\Sigma_{t} with the normal coordinates (x1,x2,x3)(x_{1},x_{2},x_{3}) spread by the exponential map exp(x1e1+x2e2+x3N)\exp(x_{1}e_{1}+x_{2}e_{2}+x_{3}N) starting from m0m_{0}. Suppose that the source of gravitational wave is in the direction of NN. Thus, the horizontal plane (x1,x2)(x^{1},x^{2}) is tangent to St,uS_{t,u}. Denote (x(B)i)i=1,2,3(x^{i}_{(B)})_{i=1,2,3} to be the spatial coordinates of the test mass mBm_{B} with B=1,2B=1,2 and set the initial positions and initial velocities as (x(B)i)=d0δBi(x^{i}_{(B)})^{-}=d_{0}\delta_{B}^{i} and (x˙(B)i)=0(\dot{x}^{i}_{(B)})^{-}=0. According to Ch (and (5) in Rizzi ), we have

(x(B)A)+(x(B)A)=d0r(ΘAB+ΘAB),x˙(B)A=d02rΘ¯AB.\displaystyle\begin{split}(x^{A}_{(B)})^{+}-(x^{A}_{(B)})^{-}&=-\frac{d_{0}}{r}(\Theta^{+}_{AB}-\Theta^{-}_{AB}),\\ \dot{x}^{A}_{(B)}&=\frac{d_{0}}{2r}{\underline{\Theta}}_{AB}.\end{split} (31)

The spin memory effect was introduced by Pasterski-Strominger-Zhiboedov in PSZ . We calculate this effect in our setup and propose a possible device.

The spin memory effect in PSZ is designed to be detected by experimental equipment placed on a sphere with fixed area radius rr. We note that the experiment can also be carried out with a laser source, a half-transparent mirror, 3 mirrors placed as in Figure 1. We denote 𝒟\mathcal{D} to be a rectangular region with lengths L1,L2rL_{1},L_{2}\ll r. By placing a screen detector as in Figure 1, the total time delay Δτ\Delta\tau between the clockwise ray and the counterclockwise ray traveling around the loop 𝒟\partial\mathcal{D} can be measured.

Refer to caption
Figure 1: Measurement of spin memory effect

Proceeding as in (4.5) of PSZ , we obtain

Δτ=1|𝒟|u𝑑u𝒟ZA𝑑xA.\Delta\tau=\frac{1}{|\partial\mathcal{D}|}\int_{u}du\oint_{\partial\mathcal{D}}Z_{A}\,dx^{A}. (32)

Consequently, applying Green’s theorem, it follows

𝒟ZA𝑑xA\displaystyle\oint_{\partial\mathcal{D}}Z_{A}\,dx^{A} =𝒟curlZdx1dx2\displaystyle=\iint_{\mathcal{D}}\operatorname{curl}Z\,dx^{1}\wedge dx^{2}
=r1𝒟𝒬𝑑x1dx2,\displaystyle=r^{-1}\iint_{\mathcal{D}}\mathcal{Q}\,dx^{1}\wedge dx^{2},

where we used (14). Hence, back to (32), we deduce

Δτ=1r|𝒟|u𝑑u𝒟𝒬𝑑x1dx2.\Delta\tau=\frac{1}{r|\partial\mathcal{D}|}\int_{u}du\iint_{\mathcal{D}}\mathcal{Q}\,dx^{1}\wedge dx^{2}. (33)

Recall that, from (10) we have

𝒬=ulimCu,r3(r3σ)du12ΘΘ¯.\mathcal{Q}=\int_{u}\lim_{C_{u},r\to\infty}\nabla_{3}\left(r^{3}\sigma\right)du-\frac{1}{2}\Theta\wedge{\underline{\Theta}}.

Compared with (18), we can see that part of our angular momentum memory is reflected in the spin memory effect. The formula (33) also has an explanation rooted in the classic electromagnetic theory. The quantity 𝒬\mathcal{Q} represents the magnetic part of the memory effect. According to Faraday’s Law, when a closed loop is placed in a changing magnetic field, an electric current will be induced in the loop, which causes the time delay.

Acknowledgements.—The authors would like to thank Sergiu Klainerman and Jérémie Szeftel for many helpful discussions and remarks. The authors would also like to thank Jiandong Zhang for a valuable discussion on spin memory.

References

  • (1) A. Ashtekar, T. De Lorenzo, N. Khera and B. Krishna, Inferring the gravitational wave memory for binary coalescence events, Phys. Rev. D, 103 (2021), 044012.
  • (2) L. Bieri, An extension of the stability theorem of the Minkowski space in general relativity, PhD thesis, 17178, ETH, Zürich, (2007).
  • (3) L. Bieri, New effects in gravitational waves and memory, Phys. Rev. D, 103 (2021), 024043.
  • (4) L. Bieri and D. Garfinkle, An electromagnetic analog of gravitational wave memory, Classical Quant. Grav. 30 (19) (2013), 195009.
  • (5) L. Blanchet and T. Damour, Hereditary effects in gravitational radiation, Phys. Rev. D, 46 (10) (1992), 4304.
  • (6) P. N. Chen, M. T. Wang and S. T. Yau, Quasilocal angular momentum and center of mass in general relativity, Adv. Theor. Math. Phys. 20 (2016), 671–682.
  • (7) P. N. Chen, M. T. Wang, Y.-K. Wang and S. T. Yau, Supertranslation invariance of angular momentum, Adv. Theor. Math. Phys. 25, no. 3 (2021), 777–789.
  • (8) D. Christodoulou, Nonlinear Nature of Gravitation and Gravitational Wave Experiments, Phys. Rev. Lett. 67, no. 12 (1991), 1486–1489.
  • (9) D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of Minkowski Space, Princeton Mathematical Series 41, (1993).
  • (10) E. Giorgi, S. Klainerman and J. Szeftel, Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes, arXiv:2205.14808.
  • (11) R. P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Letters, 11, 237, (1963).
  • (12) S. Klainerman and F. Nicolò, The Evolution Problem in General Relativity. Prog. Theor. Phys., 25, Birkhauser, Boston, (2003).
  • (13) S. Klainerman and J. Szeftel, Global nonlinear stability of Schwarzschild spacetime under polarized perturbations, Annals of Mathematics Studies 210. Princeton University Press, (2020).
  • (14) S. Klainerman and J. Szeftel, Construction of GCM spheres in perturbations of Kerr, Ann. PDE 8 (2), Art. 17 (2022).
  • (15) S. Klainerman and J. Szeftel, Effective results in uniformization and intrinsic GCM spheres in perturbations of Kerr, Ann. PDE 8 (2), Art. 18 (2022).
  • (16) S. Klainerman and J. Szeftel, Kerr stability for small angular momentum, Pure Appl. Math. Q. 19 (3) (2023), 791–1678.
  • (17) E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962), 566–578.
  • (18) S. Pasterski, A. Strominger and A. Zhiboedov, New gravitational memories, J. High Energy Phys., 53, (2016).
  • (19) A. Rizzi, Angular momentum in General Relativity: A new definition, Phys. Rev. Lett. 81, no. 6 (1998) 1150–1153.
  • (20) D. Shen, Construction of GCM hypersurfaces in perturbations of Kerr, Ann. PDE 9 (1), Art. 11 (2023).
  • (21) D. Shen, Stability of Minkowski spacetime in exterior regions, Pure Appl. Math. Q. 20 (2) (2024), 757–868.
  • (22) D. Shen, Global stability of Minkowski spacetime with minimal decay, arXiv:2310.07483.