This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Andreev Reflection in Fermi Arc Surface States of Weyl Semimetals

Yue Zheng National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China    Wei Chen Corresponding author: [email protected] National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China    D. Y. Xing National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract

Fermi arc surface states are the hallmark of Weyl semimetals, whose identification is usually challenged by their coexistence with gapless bulk states. Surface transport measurements by fabricating setups on the sample boundary provide a natural solution to this problem. Here, we study the Andreev reflection (AR) in a planar normal metal-superconductor junction on the Weyl semimetal surface with a pair of Fermi arcs. For a conserved transverse momentum, the occurrence of normal reflection depends on the relative orientation between the Fermi arcs and the normal of the junction, which is a direct result of the disconnected Fermi arcs. Consequently, a crossover from the suppressed to perfect AR occurs with varying the orientation of the planar junction, giving rise to a change from double-peak to plateau structure in conductance spectra. Moreover, such a crossover can be facilitated by imposing a magnetic field, making electrons slide along the Fermi arcs so as to switch between two regimes of the AR. Our results provide a decisive signature for the detection of Fermi arcs and open the possibilities of exploring novel phenomenology through their interplay with superconductivity.

I introduction

In 1929, Hermann Weyl proposed a new type of massless fermion with definite chirality Weyl (1929). After that, great efforts have been made in pursuing such elemental particles in high-energy particle physics Armitage et al. (2018), yet up until now, no candidate Weyl fermion has been reported Kajita (2016); McDonald (2016). In recent years instead, Weyl fermions are surprisingly found in an alternative form of quasi-particle excitations in a class of solid-state materials with conic band crossing, called Weyl semimetals (WSMs) Wan et al. (2011). The discovery of WSM opens up a new avenue for the study of relativistic Weyl fermion in condensed matter physics Murakami (2007); Burkov and Balents (2011); Weng et al. (2015); Huang et al. (2015a); Lv et al. (2015a); Xu et al. (2015a, b, c, 2016a); Deng et al. (2016); Yang et al. (2015); Huang et al. (2016); Tamai et al. (2016); Jiang et al. (2017); Belopolski et al. (2016); Lv et al. (2015b); Junwei et al. (2019). It provides an interesting platform for the experimental testing of predictions made by quantum field theory Adler (1969); Bell and Jackiw (1969); Nielsen and Ninomiya (1983) in terms of anomalous transport and optical properties in the condensed matter context Zyuzin and Burkov (2012); Aji (2012); Son and Spivak (2013); Chernodub et al. (2014); Zhou et al. (2013); Burkov (2015); Ma and Pesin (2015); Zhong et al. (2016); Spivak and Andreev (2016); Hirschberger et al. (2016); Huang et al. (2015b); Shekhar et al. (2015); Du et al. (2016); Wang et al. (2016a); Zhang et al. (2016); Chen and Franz (2016); Shuhei et al. (2014); Zhang et al. (2018); Breunig et al. (2019).

Refer to caption
Figure 1: (a,b) Schematic of the planar normal metal (N)-superconductor (S) junction on top of the WSM and the scattering of particles at the interface. The trajectories of electron (solid circle) and hole (dashed circle) are sketched as the solid and dashed lines, respectively. (c) Two regions I and II for AR are defined by the transverse momentum kzk_{z}. (d) Band structures for a fixed kzk_{z} in region I and II. The red solid and blue dashed lines are the electron and hole surface states.

In addition to its high-energy counterpart, WSM also exhibits unique properties that exist only in the condensed matter context, especially the emergence of Fermi arc (FA) surface states on the sample boundaries Wan et al. (2011). In WSMs, Weyl points always appear in pairs with opposite topological charge (chirality) Nielsen and Ninomiya (1983), the FA spanning between each pair in the surface Brillouin zone Wan et al. (2011). Such disconnected FAs cannot be realized in any noninteracting 2D bulk states so that its emergence can serve as the hallmark of WSMs Huang et al. (2015a); Lv et al. (2015a); Xu et al. (2015a, b, c, 2016a); Deng et al. (2016); Yang et al. (2015); Huang et al. (2016); Tamai et al. (2016); Jiang et al. (2017); Belopolski et al. (2016); Lv et al. (2015b); Junwei et al. (2019). It was recently shown that the configurations of the FA are sensitive to the details of the sample boundary Morali et al. (2019); Yang et al. (2019); Ekahana et al. (2020), which opens the possibility for engineering FA and exploring its applications through surface modification. With this prospect, it is of great importance to extract and analyze clear signatures of the FA from measurement information in the presence of gapless bulk states. Surface transport measurements provide a natural solution to this goal because the setups contact directly to the sample boundaries Chen et al. (2018a, 2020).

In this work, we propose that Andreev reflection (AR) in a planar normal metal (N)-superconductor (S) junction on the WSM surface can provide a unique signature of the FA. The junction consists of two parallel N and S strip electrodes mediated by the topological surface states in between; see Fig. 1(a). For the unclosed FA, there generally exist two regions of different AR scenarios, referred to as I and II in Fig. 1(c). In region I, no normal reflection channel is available [Fig. 1(a)] so that there is a perfect AR with probability equal to unity within the energy gap [cf. Fig. 2(c)], in spite of the interface barrier. On the contrary, AR is strongly suppressed in region II by normal reflection at the boundary of the S [Fig. 1(b)] which results in a pair of resonant peaks of the AR probability at the gap edges [cf. Fig. 2(a)]. The proportion of electrons in two regions relies on the relative orientation between the WSM and the normal of the planar junction. This leads to a crossover between the double-peak and plateau structures in the conductance spectra by changing the orientation of the planar junction in different samples [Fig. 2(d)]. Two limiting cases occur as the electrons reside entirely in region I or II [Figs. 2(a) and 2(c)]. Remarkably, such a crossover can be greatly facilitated by imposing a magnetic field to a properly orientated planar junction such that the two AR regions coexist. The magnetic field drives electrons sliding along the FA and simultaneously opens up a transport channel in the bulk, i.e., the chiral Landau band, connected with the surface FA Potter et al. (2014). As a result, part of the electrons can switch between the two AR regions while the remaining ones penetrate the bulk with negligible contribution to the surface transport signature. In this way, the same crossover behavior of the conductance can be achieved along with a reduction of its magnitude. The AR spectra have the advantage that two scenarios can be clearly revealed by different shapes of the conductance rather than its magnitude, which provides a distinctive and robust signature of the FAs.

The rest of this paper is organized as follows. In Sec. II, we introduce the model and calculation details. In Sec. III, we show that a crossover of the conductance from the suppressed to perfect AR can be achieved by varying the orientation of the planar junction. We show that such an effect can be facilitated by the magnetic field in Sec. IV. Finally, some remarks are given in Sec. V.

II model and calculation details

We consider a WSM with four Weyl points, which can be captured by the effective two-band model as Chen et al. (2020)

HW0(𝒌)=M1(k12kx2)σx+vykyσy+M2(k02ky2kz2)σz,\begin{split}H^{0}_{W}(\bm{k})&=M_{1}(k^{2}_{1}-k^{2}_{x})\sigma_{x}+v_{y}k_{y}\sigma_{y}+M_{2}(k^{2}_{0}-k^{2}_{y}-k^{2}_{z})\sigma_{z},\\ \end{split} (1)

where vyv_{y} is the velocity in the yy direction, k0,1k_{0,1} and M1,2M_{1,2} are parameters, σx,y,z\sigma_{x,y,z} are the Pauli matrices in the pseudo-spin space. The two bands are degenerate at four Weyl points 𝒌W=(±k1,0,±k0)\bm{k}_{W}=({\pm}k_{1},0,{\pm}k_{0}). The main results of this work are associated with the relative orientation between the FAs and the planar junction. We define θ\theta as the azimuthal angle between the symmetry axis of the FA and the normal of the junction (set to the xx axis); see Fig. 1(c). Experimentally, this can be alternatively realized by fabricating various planar junctions along different directions. The FAs with azimuthal angle θ\theta correspond to the rotated Hamiltonian HW(𝒌)=HW0(Uy1𝒌)H_{W}(\bm{k})=H_{W}^{0}(U_{y}^{-1}\bm{k}) with Uy(θ)=(cosθ0sinθ010sinθ0cosθ)U_{y}(\theta)=\left(\begin{smallmatrix}\cos\theta&0&-\sin\theta\\ 0&1&0\\ {\sin\theta}&0&{\cos\theta}\end{smallmatrix}\right) as the rotation operator around the yy-axis Chen et al. (2013).

The configurations of the FAs are revealed by the spectra function 𝒜(E)=(1/π)ImGR(E)\mathcal{A}(E)=-(1/\pi)\text{Im}G^{R}(E), where GR(E)G^{R}(E) is the retarded Green’s function, under the open boundary condition in the yy direction. To yield curved FAs similar to those in real materials Koepernik et al. (2016); Belopolski et al. (2017); Haubold et al. (2017); Ekahana et al. (2020), an on-site potential is imposed to the top layer of the WSM lattice, which modifies the dispersion of the surface statesChen et al. (2020) through surface band bending effectBianchi et al. (2010); King et al. (2011); Benia et al. (2011) . The FAs for different azimuthal angle θ\theta are shown in Figs. 2(a)-2(c).

To investigate the AR, we write the Hamiltonian for the whole system in Nambu space. The electron and hole components are decoupled in the WSM so that the Bogoliubov-de-Gennes Hamiltonian takes a diagonal form of W(𝒌)=[HW0(𝒌),0;0,HW0(𝒌)]\mathcal{H}_{W}(\bm{k})=[H_{W}^{0}(\bm{k}),0;0,-H_{W}^{0*}(-\bm{k})]. For a given kzk_{z}, the Hamiltonian W(𝒌)\mathcal{H}_{W}(\bm{k}) defines a 2D slice in momentum space. Edge states induced by the non-trivial band topology of the bulk states emerge as the kzk_{z} slice intersects the FAs under the open boundary condition Yang et al. (2011), which provide scattering channels for electrons (holes). Throughout the work, all the results are calculated using a lattice version of this model obtained by substituting ki=x,y,za1sinkiak_{i=x,y,z}\rightarrow a^{-1}\sin k_{i}a and ki22a2(1coskia)k_{i}^{2}\rightarrow 2a^{-2}(1-\cos k_{i}a), with aa the lattice constant of the fictitious cubic lattice (see Appendix A for details).

We then discuss the transport process of the 2D slices with different kzk_{z}. Generally, the FA can be divided into two parts, according to whether the normal reflection channels exist or not; see Fig. 1(c). In region I, only a single chiral edge state exists for each kzk_{z} so that no normal reflection can occur; see Fig. 1(d). However, a hole channel is available for the AR, which corresponds to the electron-paired state with opposite kzk_{z} as sketched by the blue dashed circle in Fig. 1(c). As a result, perfect AR with unity probability can be realized. Such a band structure for a given kzk_{z} breaks particle-hole symmetry, which cannot be realized in any 2D system. It appears only as a subsystem of the whole 3D WSM, where two paired electrons are from opposite kzk_{z} slices carrying zero net momentum. As all the kzk_{z} channels are taken into account, the particle-hole symmetry retains. In region II, both normal reflection and AR channels exist as shown in Figs. 1(c) and 1(d), similar to a conventional metal. Given that the normal reflection generally occurs at the boundary of the S electrode due to the interface barrier or momentum mismatch, a suppression of AR is expected in region II, giving rise to two resonant peaks at the edges of the band gap.

Refer to caption
Figure 2: (a)-(c) Upper panel: Fermi arc spectra for different azimuthal angle θ\theta. Lower panel: Corresponding AR probabilities for different kzk_{z} channels. (d) Crossover of the conductance spectra from suppressed to perfect AR with the variation of θ\theta. The calculation parameters are a=1a=1 nm, M1=M2=1.25M_{1}=M_{2}=1.25 eV nm2, vy=0.66v_{y}=-0.66 eV nm, k0=k1=0.4k_{0}=k_{1}=0.4 nm-1, tN=0.8t_{N}=0.8 eV, tS=0.1t_{S}=0.1 eV, C=1C=1 eV, μ1=2.2\mu_{1}=2.2 eV and μ2=2.05\mu_{2}=2.05 eV, Δ=5\Delta=5 meV. Here, the energy unit is chosen as Δe=Δe|kz=0\Delta_{e}=\Delta_{e}|_{k_{z}=0} for θ=0\theta=0.

We solve the transport problem through the surface planar junction as shown in Fig. 1(a). The N electrode deposited on top of the WSM is described by the effective Hamiltonian as N(𝒌)=(C𝒌2μN)τz\mathcal{H}_{N}(\bm{k})=(C\bm{k}^{2}-\mu_{N})\tau_{z} with CC determined by the effective mass of the electron, μN\mu_{N} the chemical potential, and τx,y,z\tau_{x,y,z} the Pauli matrices in Nambu space. Similarly, the S bar is captured by S(𝒌)=(C𝒌2μS)τz+Δτx\mathcal{H}_{S}(\bm{k})=(C\bm{k}^{2}-\mu_{S})\tau_{z}+\Delta\tau_{x} with a different chemical potential μS\mu_{S} and a finite ss-wave pair potential Δ\Delta. Due to the proximity effect, an effective superconducting gap Δe(kz)\Delta_{e}(k_{z}) can be induced in the FA under the S electrode (see Appendix B for details). We assume that the size of both strip electrodes in the zz direction is much larger than the Fermi wavelength and their boundaries are smooth enough that the transverse momentum kzk_{z} is approximately conserved during scattering. Then by taking kzk_{z} as a parameter, the 3D system can be decomposed into a set of 2D slices labelled by kzk_{z}, thus simplifying the transport calculation.

III Conductance

We first study the transport properties of the 2D slices of the system labelled by kzk_{z}. For a hybridized square lattice, the Hamiltonian at a given kzk_{z} is set as W(𝒌)\mathcal{H}_{W}(\bm{k}), N(𝒌)\mathcal{H}_{N}(\bm{k}), and S(𝒌)\mathcal{H}_{S}(\bm{k}) for different parts. The coupling between the N (S) and the WSM is described by coupling strength tNt_{N} (tSt_{S}) between two outmost lattice layers of contacting areas. The lattice Hamiltonian for calculation is elucidated in Appendix A. The thickness of the WSM and the N (S) electrode in the yy direction is 100 nm and 50 nm, respectively. The width of the hopping area between the WSM and the N electrode is W=20W=20 nm, the separation between two electrodes is L=40L=40 nm [cf. Fig. 1(b)] and the hopping between the WSM and the S electrode extends to infinity in the xx direction. An on-site potential of 66 eV is introduced at the boundary line of the S electrode to simulate the interface barrier or the momentum mismatch in the planar junction. Both the WSM and N (S) electrodes connect to the leads extending to infinity in the ±x\pm x directions. In the energy scale smaller than Δe(kz)\Delta_{e}(k_{z}), the current is dominated by the AR. For the two-dimensional lattice with fixed kzk_{z}, the scattering process can be described by

[ψi,eoutψi,hout]=j[reeijrehijrheijrhhij][ψj,einψj,hin],\left[{\begin{array}[]{*{20}{c}}{\psi_{i,e}^{{\rm{out}}}}\\ {\psi_{i,h}^{{\rm{out}}}}\\ \end{array}}\right]=\sum\limits_{j}{\left[{\begin{array}[]{*{20}{c}}{r_{ee}^{ij}}&{r_{eh}^{ij}}\\ {r_{he}^{ij}}&{r_{hh}^{ij}}\\ \end{array}}\right]\left[{\begin{array}[]{*{20}{c}}{\psi_{j,e}^{{\rm{in}}}}\\ {\psi_{j,h}^{{\rm{in}}}}\\ \end{array}}\right]}, (2)

with ψi,e(h)in(out)\psi^{in(out)}_{i,e(h)} represents the income (outgoing) wave amplitudes of electrons (holes) at the N electrode, rheijr^{ij}_{he} describes the scattering amplitude from electrons of channel jj to holes of channel ii at the same lead. Then the AR probability can be calculated by taking the trace of the electron-to-hole reflection matrix, Akz(E)=Tr[r^he(E,kz)r^he(E,kz)]=i,j|rheij(E,kz)|2\text{A}_{k_{z}}(E)=\text{Tr}[\hat{r}_{he}^{\dagger}(E,k_{z})\hat{r}_{he}(E,k_{z})]=\sum\limits_{i,j}{|r_{he}^{ij}(E,k_{z}){|^{2}}}, using KWANT Groth et al. (2014), which describes the AR process that an electron is incident from the N electrode and a hole is reflected back. We plot Akz(E)\text{A}_{k_{z}}(E) in Figs. 2(a)-2(c) for different orientations of the FAs. In the limiting case of θ=0\theta=0 in Fig. 2(a), all kzk_{z} is in region II, so that the AR is strongly suppressed, leaving only two resonant peaks at E=±ΔeE=\pm\Delta_{e}. Note that Δe(kz)\Delta_{e}(k_{z}) slightly varies with kzk_{z}, so that the positions of resonant peaks for different kzk_{z} do not coincide. It stems from that the surface states labeled by kzk_{z} possess different spreading in the yy direction, which determines the effective coupling between the surface states and the superconductor. Therefore, the proximity effect and the induced gap Δe(kz)\Delta_{e}(k_{z}) varies with kzk_{z}; see Appendix B for details. In a general case, e.g., θ=0.15π\theta=0.15\pi in Fig. 2(b), region I and II coexist [cf. Fig. 1(c)]. As kzk_{z} lies in region I, perfect AR occurs with nearly unity probability within Δe\Delta_{e} ; In stark contrast, for kzk_{z} in region II, the AR probability exhibits double-spike behavior, which indicates a strong normal reflection. In the opposite limit, e.g., θ=0.25π\theta=0.25\pi in Fig. 2(c), all the electrons reside in region I, and so the AR probability exhibits a perfect AR plateau within Δe\Delta_{e}. The AR probability is slightly smaller than unity which stems from that in our simulation, the incident channels of the FA are not fully occupied by the electrons injected from the N electrod. Nevertheless, the perfect AR can be manifested in the subgap plateau of its probability.

The crossover from suppressed to perfect AR can be probed by the conductance spectra. Imposing a bias voltage VV between the N and S electrodes drives a current JJ in the S; see Fig. 1(a). The differential conductance G=J/VG=\partial J/\partial V at zero temperature can be obtained by summing the contributions from all the kzk_{z} channels as

G(eV)=kzgkz;gkz(eV)=e2h(Nkz+AkzBkz),G(eV)=\sum_{k_{z}}g_{k_{z}};\ \ g_{k_{z}}(eV)=\frac{{e^{2}}}{h}(\text{N}_{k_{z}}+\text{A}_{k_{z}}-\text{B}_{k_{z}}), (3)

where the conductance gkzg_{k_{z}} for each kzk_{z} channel is calculated by the Blonder-Tinkham-Klapwijk formula Blonder et al. (1982). Nkz\text{N}_{k_{z}} is the number of incident channels below the Fermi energy in the N electrode and Bkz(E)=Tr[r^ee(E,kz)r^ee(E,kz)]=i,j|reeij(E,kz)|2\text{B}_{k_{z}}(E)=\text{Tr}[\hat{r}_{ee}^{\dagger}(E,k_{z})\hat{r}_{ee}(E,k_{z})]=\sum\limits_{i,j}{|r_{ee}^{ij}(E,k_{z}){|^{2}}} is the normal reflection probability.

The absolute value of conductance GG relies on sample details such as the length of the strip electrodes, which is not important to our main conclusion. We plot the normalized conductance G/G0G/G_{0} with G0=GΔ=0G_{0}=G_{\Delta=0} in Fig. 2(d) for different θ\theta. The conductance spectra are contributed by all the kzk_{z} channels, thus depending on the weight of two AR regions. In the limiting case of θ=0\theta=0, all the kzk_{z} channels are in region II, giving rise to a double-peak structure in the conductance spectra, the conductance within the gap being strongly suppressed. As θ\theta increases from zero, a portion of kzk_{z} channels transfer from region II to I so that the AR probability with either double-spike or plateau shape exists for different kzk_{z} channels [Fig. 2(b)]. Consequently, the conductance peaks are lowered accompanied by a rise of the conductance plateau within the gap. As θ\theta exceeds the threshold tan1(k0/k1)\tan^{-1}(k_{0}/k_{1}), all the electrons reside in region I with perfect AR. Therefore, the conductance exhibits a plateau within the gap corresponding to perfect AR in all the kzk_{z} channels. The crossover from the double-peak to plateau structure in the conductance spectra originates from the high anisotropy of FA configurations and thus provides a unique signature of the FA.

Refer to caption
Figure 3: (a,b) Particles slide along the FA and switch between two AR regions driven by the Lorentz force. (c,d) Trajectories of particles in real space corresponding to the upper panels. Conductances for different magnetic fields in the (e) y-y and (f) yy directions. All the parameters are the same as those in Fig. 2.

IV magnetic field effect

Such a crossover can be more easily observed by imposing a magnetic field BB in the yy direction. In this way, only a single sample with properly orientated planar junction is required. Here, we take θ=0.15π\theta=0.15\pi. The incident electrons in the right-moving channels will slide along the FA by the Lorentz force, leading to a switching between two AR regions. Specifically, for B<0B<0, a portion of electrons originally in region I are driven into region II, resulting in a transition from perfect to suppressed AR accordingly; see Fig. 3(a). Meanwhile, some of the electrons originally in region II are pushed into the chiral Landau bands of the bulk due to the surface-bulk connection at the Weyl points Potter et al. (2014); see Fig. 3(c). Those electrons cannot reach the S electrode so that they do not contribute to the current JJ flowing into the S. On the other hand, some of the reflected electrons also enter the bulk [cf. Fig. 3(a)] and they do affect the conductance spectra via the competition with the AR process. In short, the magnetic field increases the proportion of the transport electrons in region II but reduces the total number of current carriers. This is well reflected in the conductance spectra of Fig. 3(e), where with increasing BB, there are a more visible double-peak structure and a decrease of the conductance amplitude. As BB exceeds a critical value, all electrons reside in region II. If BB increases further to the saturation value Bc=Kz/(eL)B_{c}=\hbar K_{z}/(eL), all electrons will transfer into the bulk and there will be no surface electron transport. Here KzK_{z} is the span of the FA in the kzk_{z} direction [Fig. 3(a)] and LL is the distance between the N and S electrodes [Fig, 1(b)]. For the parameters Kz0.71K_{z}\simeq 0.71 nm-1 in Fig. 2(b) and L=40L=40 nm, the saturated magnetic field is evaluated to be Bc11.7B_{c}\simeq 11.7 Tesla (see Appendix C for details).

Similarly, for B>0B>0, electrons originally in region II are driven into region I [Fig. 3(b)], which induces a transition from the double-spike to plateau structure of the AR probability. Consequently, a plateau-like conductance spectrum gradually form with increasing BB, accompanied by a reduction of its overall magnitude due to the transfer of electrons from region I into the bulk [Fig. 3(d)]; see Fig. 3(f). The response of the AR spectra to the magnetic field stems from the unique surface-bulk connection so that it provides another unambiguous evidence of the FA.

In the calculation, we adopt the Landau gauge 𝑨=(0,0,Bx)\bm{A}=({0,0,Bx}) so that the Peierls substitution 𝒌i±e𝑨/\bm{k}\rightarrow-i\bm{\nabla}\pm e\bm{A}/\hbar (taking e>0e>0) for both the electron and hole parts retains the kzk_{z} conservation. The number of electrons that do not reach the S electrode is subtracted from Nkz\text{N}_{k_{z}} in Eq. (3) by tracking their trajectory in the x-x direction on the bottom surface, and the number of electrons transferring to the bulk for the normal reflection is included in Bkz\text{B}_{k_{z}} by tracking their trajectory in the xx direction on the bottom surface as well. To include the reduction of the conductance due to the magnetic field, all results in Figs. 3(e) and 3(f) are normalized by the same G0|B=0G_{0}|_{B=0}. For a strong magnetic field BBcB\simeq B_{c}, all the incident electrons go into the bulk so that the current JJ flowing into the S electrode is quenched.

V discussion

Some remarks are made below about the experimental implementation of our proposal. The surface planar NS junction can be achieved by state-of-the-art fabrication techniques Li et al. (2020); Chen et al. (2018b); Ghatak et al. (2018). We considered the WSM with a pair of FAs here, which have been reported in NbIrTe4 (TaIrTe4) Koepernik et al. (2016); Belopolski et al. (2017); Haubold et al. (2017); Ekahana et al. (2020), WP2 Yao et al. (2019), MoTe2 Wang et al. (2016b), and YbMnBi2 Borisenko et al. (2019). The main conclusion can be generalized to the situation with more Weyl nodes straightforwardly, as the main results stem from the anisotropy of the open FAs and the proximity effect between the superconductor and the FAs, which do not rely on the number of the Weyl nodes. For the multiple pairs of Weyl nodes, the present results still hold as long as the two regions of the Andreev reflection, without or with backscattering channels [region I and II in Fig. 1(c)], can be well separated in the reciprocal space denoted by kzk_{z}, then the switching between them can be achieved in the same way by tuning θ\theta or BB. The FA with a regular shape is beneficial to our proposal, in which the monotonic change of kzk_{z} channels between two AR regions can be revealed visibly in the conductance spectra. This requires a big separation between Weyl points in momentum space Sun et al. (2015); Koepernik et al. (2016); Chang et al. (2016); Yao et al. (2019); Borisenko et al. (2019); Sie et al. (2019). In our calculations, for simplicity, zero chemical potential was taken in the WSM, where there is a vanishing density of bulk states. In real materials with finite density of bulk states, our main results remain unchanged as long as the FAs are well separated from the bulk states in the surface Brillouin zone. The presence of bulk states will only cause certain leakage of surface electrons, but does not change the current qualitative results. Finally, we focused on spin-degenerate FA in this work, and for the FA with fine spin textures Lv et al. (2015c); Xu et al. (2016b), the analysis of AR will be modified by including the spin degree of freedom.

Acknowledgements.
We thank Xiangang Wan and Feng Tang for helpful discussions. This work was supported by the National Natural Science Foundation of China under Grant No. 12074172 (W.C.), the startup grant at Nanjing University (W.C.), the State Key Program for Basic Researches of China under Grants No. 2017YFA0303203 (D.Y.X.) and the Excellent Programme at Nanjing University.

Appendix A Lattice model for numerical calculation

We elucidate the model and parameters for the device sketched in Fig. 1(a). The numerical calculations are performed on a cubit lattice model of Eq. (1) through the mapping ki=x,y,za1sinkiak_{i=x,y,z}\rightarrow a^{-1}\sin k_{i}a and ki22a2(1coskia)k_{i}^{2}\rightarrow 2a^{-2}(1-\cos k_{i}a), with aa the lattice constant of the fictitious cubic lattice. Performing Fourier transformation in both the xx and yy directions yields

HWlatt=iψiHiiψi+iψiHi,i+x^ψi+x^+iψiHi,i+y^ψi+y^+H.c.,\begin{split}H^{\text{latt}}_{W}=\sum_{i}\psi_{i}^{\dagger}H_{ii}\psi_{i}+\sum_{i}\psi_{i}^{\dagger}H_{i,i+\hat{x}}\psi_{i+\hat{x}}\\ +\sum_{i}\psi_{i}^{\dagger}H_{i,i+\hat{y}}\psi_{i+\hat{y}}+H.c.,\end{split} (4)

where ψi=(ψ1,i,ψ2,i)T\psi_{i}=(\psi_{1,i},\psi_{2,i})^{\text{T}} are the Fermi operators with two pseudospin components, and the on-site and nearest-neighbor hopping matrices are

Hii=M2(k024a2+2a2coskza)σz+M1(k122a2)σxHi,i+x^=M1σxa2,Hi,i+y^=M2σza2+vyσy2ai.\begin{split}\begin{aligned} &H_{ii}=M_{2}(k_{0}^{2}-\frac{4}{a^{2}}+\frac{2}{a^{2}}\cos k_{z}a)\sigma_{z}+M_{1}(k_{1}^{2}-\frac{2}{a^{2}})\sigma_{x}\\ &H_{i,i+\hat{x}}=\frac{M_{1}\sigma_{x}}{a^{2}},\ \ \ H_{i,i+\hat{y}}=\frac{M_{2}\sigma_{z}}{a^{2}}+\frac{v_{y}\sigma_{y}}{2ai}.\end{aligned}\end{split} (5)

Note that kzk_{z} is conserved during scattering which is treated as a parameter. Similarly, the lattice models for the normal metal and superconductor are

HNlatt=i(6Ca22Ca2coskzaμN)didiiCa2(didi+x^+didi+y^)+H.c.,HSlatt=i(6Ca22Ca2coskzaμS)ciciiCa2(cici+x^+cici+y^)+iΔcici+H.c.,\begin{split}\begin{aligned} H^{\text{latt}}_{N}&=\sum\limits_{i}{(\frac{{6C}}{{{a^{2}}}}-\frac{{2C}}{{{a^{2}}}}\cos{k_{z}a}-{\mu_{N}})d_{i}^{\dagger}{d_{i}}}\\ &-\sum\limits_{i}{\frac{C}{{{a^{2}}}}}(d_{i}^{\dagger}{d_{i+\hat{x}}}+d_{i}^{\dagger}{d_{i+\hat{y}}})+\text{H.c.},\\ H^{\text{latt}}_{S}&=\sum\limits_{i}{(\frac{{6C}}{{{a^{2}}}}-\frac{{2C}}{{{a^{2}}}}\cos{k_{z}a}-{\mu_{S}})c_{i}^{\dagger}{c_{i}}}\\ &-\sum\limits_{i}{\frac{C}{{{a^{2}}}}}(c_{i}^{\dagger}{c_{i+\hat{x}}}+c_{i}^{\dagger}{c_{i+\hat{y}}})+\sum\limits_{i}{\Delta{c^{\dagger}_{i}}{c^{\dagger}_{i}}}+\text{H.c.},\end{aligned}\end{split} (6)

where did_{i}, cic_{i} are electron operators for the normal metal and the superconductor, respectively. The coupling between the outmost layers of the WSM and the N(S) is described as

HT=itN[diψ1,i+y^+diψ2,i+y^]+itS[ciψ1,i+y^+ciψ2,i+y^]+H.c..\begin{split}\begin{aligned} H_{T}&=\sum\limits_{i}{{t_{N}}[d_{i}^{\dagger}{\psi_{1,i+\hat{y}}}+d_{i}^{\dagger}{\psi_{2,i+\hat{y}}}]}\\ &+\sum\limits_{i}{{t_{S}}[c_{i}^{\dagger}{\psi_{1,i+\hat{y}}}+c_{i}^{\dagger}{\psi_{2,i+\hat{y}}}]}+\text{H.c.}.\end{aligned}\end{split} (7)

Appendix B Superconducting proximity effect of the surface states

Refer to caption
Figure 4: The dispersion of f𝒌f_{\bm{k}_{\parallel}} along yy-direction for different kzk_{z} channels, here kx=k1k_{x}=k_{1}, other parameters are the same as those in Fig. 2.

In this section, we employ a tunneling model description to calculate the effective pair potential Δe(kz)\Delta_{e}(k_{z}) in the surface states of the WSM induced by the superconductor deposited above. We will show that the pair potential Δe(kz)\Delta_{e}(k_{z}) generally possesses a kzk_{z} dependence. Next we work on the continuous model instead of the discrete one and the whole Hamiltonian contains three terms as

H=HS+HW+Ht,HS=𝒌ε𝒌c𝒌c𝒌+(Δc𝒌c𝒌+H.c.),HW=0𝑑y𝒌ψ𝒌(y)HW0(𝒌,iy)ψ𝒌(y),Ht=𝒌,kya=1,20𝑑y[t(y)c𝒌ψa𝒌(y)+H.c.],\begin{split}H&=H_{S}+H_{W}+H_{t},\\ {H_{S}}&=\sum\limits_{\bm{k}}{{\varepsilon_{\bm{k}}}c_{\bm{k}}^{\dagger}}{c_{\bm{k}}}+(\Delta c_{\bm{k}}^{\dagger}c_{-{\bm{k}}}^{\dagger}+H.c.),\\ H_{W}&=\int_{-\infty}^{0}dy\sum_{\bm{k}_{\|}}\psi^{\dagger}_{\bm{k}_{\|}}(y)H_{W}^{0}(\bm{k}_{\|},-i\partial_{y})\psi_{\bm{k}_{\|}}(y),\\ {H_{t}}&=\sum\limits_{\bm{k}_{\|},k_{y}}\sum_{a=1,2}{\int_{-\infty}^{0}{dy\left[{t(y)c_{\bm{k}}^{\dagger}{\psi_{{{a\bm{k}}_{\parallel}}}}(y)+\text{H.c.}}\right]}},\end{split} (8)

where HSH_{S}, HW0(𝒌,iy)H_{W}^{0}(\bm{k}_{\|},-i\partial_{y}) [cf. Eq. (1)] and HtH_{t} describe the superconductor, the WSM and the coupling between them with the strength t(y)t(y), respectively, and ψ𝒌(y)=[ψ1𝒌(y),ψ2𝒌(y)]T\psi_{\bm{k}_{\|}}(y)=[\psi_{1\bm{k}_{\|}}(y),\psi_{2\bm{k}_{\|}}(y)]^{\text{T}} is the two-component Fermi operator in the WSM that is interpreted by the in-plane momentum 𝒌=(kx,kz)\bm{k}_{\|}=({k_{x},k_{z}}) and spatial coordinate yy in the perpendicular direction. We assume a good quality of contact between the superconductor and the WSM such that 𝒌=(kx,kz)\bm{k}_{\|}=({k_{x},k_{z}}) is conserved during tunneling.

The coupling between the superconductor and the surface states strongly relies on the spatial distribution of the latter, which gives rise to the proximity effect. Moreover, the pairing occurs mainly around the Fermi level (here it is the zero energy) so that it is sufficient to look at the surface states at the Fermi energy. We solve the surface states for a semi-infinite Weyl semimetal with the upper surface set to y=0y=0. Applying the substitution kyiyk_{y}\to-i\partial_{y} to Eq. (1) and taking vy=1v_{y}=1 for simplicity, the surface states ϕ𝒌(y)\phi_{\bm{k}_{\parallel}}(y) with zero energy and kz(k0,k0)k_{z}\in(-k_{0},k_{0}) is solved by the equation H(kx,iy,kz)ϕ𝒌(y)=0H({k_{x}},-i{\partial_{y}},{k_{z}})\phi_{\bm{k}_{\parallel}}(y)=0, which gives

ϕ𝒌(y)=fkz(y)(αβ),\begin{split}\phi_{\bm{k}_{\parallel}}(y)=f_{k_{z}}(y)\left({\begin{array}[]{*{20}{c}}\alpha\\ \beta\\ \end{array}}\right),\end{split} (9)

with fkz(y)=eλ1yeλ2yf_{k_{z}}(y)={e^{\lambda_{1}y}}-{e^{\lambda_{2}y}} the distribution function in the yy direction and λ1,2=12|M2|±14M22+kz2k02{\lambda_{1,2}}{\rm{=}}\frac{1}{{2{\rm{|}}{{M}_{2}}{\rm{|}}}}\pm\sqrt{\frac{1}{{4M_{2}^{2}}}+k_{z}^{2}-k_{0}^{2}}. The spinor (α,β)T(\alpha,\beta)^{\text{T}} is a function of 𝒌\bm{k}_{\parallel}, with kx=±k1k_{x}=\pm k_{1} corresponding to two straight Fermi arcs solved by the continuous model (1). One can see that fkz(y)f_{k_{z}}(y) exhibits a kzk_{z} dependence, which is also shown in the Fig. 4. Physically, the 2D slices labeled by kzk_{z} have different mass terms or gaps in the bulk, which lead to different spreading of the surface states. Here only the low energy surface states are of interest and then HW0H_{W}^{0} reduces to

Hsurf=𝒌ϵ𝒌γ𝒌γ𝒌,γ𝒌=𝑑yfkz(y)[αψ1𝒌(y)+βψ2𝒌(y)],\begin{split}H_{\text{surf}}&=\sum_{\bm{k}_{\|}}\epsilon_{\bm{k}_{\|}}\gamma^{\dagger}_{\bm{k}_{\|}}\gamma_{\bm{k}_{\|}},\\ \gamma^{\dagger}_{\bm{k}_{\|}}&=\int dyf_{k_{z}}(y)[\alpha\psi^{\dagger}_{1\bm{k}_{\|}}(y)+\beta\psi^{\dagger}_{2\bm{k}_{\|}}(y)],\end{split} (10)

with ϵ𝒌\epsilon_{\bm{k}_{\|}} the energy of the surface states for kz(k0,k0)k_{z}\in(-k_{0},k_{0}), and γ𝒌\gamma_{\bm{k}_{\|}} the corresponding Fermi operator.

For the low-energy scale of order Δ\Delta, we can interpret the field operator ψ𝒌(y)\psi_{\bm{k}_{\parallel}}(y) by the surface states as

ψ𝒌(y)γ𝒌ϕ𝒌(y).\psi_{\bm{k}_{\|}}(y)\simeq\gamma_{\bm{k}_{\|}}\phi_{\bm{k}_{\|}}(y). (11)

Then the tunneling term reduces to

Ht=𝒌,kyV𝒌c𝒌γ𝒌+H.c.,V𝒌=𝑑yt(y)fkz(y)(α+β),\begin{split}H_{t}=\sum_{\bm{k}_{\|},k_{y}}V_{\bm{k}_{\|}}c^{\dagger}_{\bm{k}}\gamma_{\bm{k}_{\|}}+\text{H.c.},\\ V_{\bm{k}_{\|}}=\int dyt(y)f_{k_{z}}(y)(\alpha+\beta),\end{split} (12)

where V𝒌V_{\bm{k}_{\|}} is the effective coupling between the surface states and the superconductor. It strongly depends on the distribution function fkz(y)f_{k_{z}}(y) of the surface states and thus on kzk_{z}. Starting from the effective tunneling Hamiltonian, one can solve the self-energy of the surface states due to its proximity to the superconductor.

The self-energy of the surface states in Nambu space can be expressed as

Σsurf(ω)=T^gS(ω)T^,gS(𝒌;ω)=ω+ε𝒌τz+Δτxω2ε𝒌2Δ2,\begin{split}{\Sigma_{\rm{surf}}}(\omega)={\hat{T}^{\dagger}}{g_{S}}(\omega)\hat{T},\\ {g_{S}}({\bm{k}};\omega)=\frac{{\omega+{\varepsilon_{\bm{k}}}{\tau_{z}}+\Delta{\tau_{x}}}}{{{\omega^{2}}-\varepsilon_{\bm{k}}^{2}-{\Delta^{2}}}},\end{split} (13)

where gS(𝒌,ω)g_{S}(\bm{k},\omega) is the bare Green’s function in the superconductor and T^=V𝒌τz\hat{T}=V_{\bm{k}_{\|}}\tau_{z} represents the tunneling terms from the surface states to the superconductor in HtH_{t}. We obtain the self-energy after some algebra as

Σsurf(𝒌,ω)=|V𝒌|2kyτzgS(𝒌,ω)τz{\Sigma_{\rm{surf}}}({{\bm{k}}_{\parallel}},\omega)=|{V_{{{\bm{k}}_{\parallel}}}}{|^{2}}\sum_{k_{y}}\tau_{z}g_{S}(\bm{k},\omega)\tau_{z} (14)

Define the 1D density of states as N𝒌(ε)=[ε/ky]1{N_{{\bm{k}_{\parallel}}}}(\varepsilon)={\left[{\partial\varepsilon/\partial{k_{y}}}\right]^{-1}} and take its value approximately to be that at the Fermi energy N𝒌(0){N_{{{\bm{k}}_{\parallel}}}}(0), which yields

Σsurf(𝒌,ω)=ξ(ω)[ωΔτx],ξ(ω)=|V𝒌|2πN𝒌(0)(Δ2ω2)12.\begin{split}{\Sigma_{\rm{surf}}}({{\bm{k}}_{\parallel}},\omega)&=-\xi(\omega)\left[{\omega-\Delta{\tau_{x}}}\right],\\ \xi(\omega)&=|{V_{{{\bm{k}}_{\parallel}}}}{|^{2}}\pi{N_{{{\bm{k}}_{\parallel}}}}(0){({\Delta^{2}}-{\omega^{2}})^{-\frac{1}{2}}}.\end{split} (15)

Then we obtain the full Green’s function of the surface states as

Gsurf(𝒌,ω)=χ(ω)ωHsurfeff,Hsurfeff=ϵ𝒌χ(ω)τz+Δeτx,χ(ω)=1/(1+ξ)\begin{split}{G_{\rm{surf}}}({{\bm{k}}_{\parallel}},\omega)&=\frac{\chi(\omega)}{{\omega-H_{\rm{surf}}^{\rm{eff}}}},\\ H_{\rm{surf}}^{\rm{eff}}&=\epsilon_{\bm{k}_{\|}}\chi(\omega){\tau_{z}}+{\Delta_{e}}\tau_{x},\\ \chi(\omega)&=1/(1+\xi)\end{split} (16)

where the effective Hamiltonian of the surface states HsurfeffH_{\text{surf}}^{\text{eff}} involves the proximity effect, from which we obtains the pairing potential in the surface states as

Δe(kz,ω)=ξ1+ξΔ.{\Delta_{e}}(k_{z},\omega)=\frac{\xi}{{1+\xi}}\Delta. (17)

We focus on the weak coupling limit ξ<<1\xi<<1 and the effective pairing potential reduces to

Δe(kz,ω)ξ(kz,ω)Δ.{\Delta_{e}}(k_{z},\omega)\simeq\xi(k_{z},\omega)\Delta. (18)

Note from Eq. (15) that ξ|V𝒌|2\xi\propto|V_{\bm{k}_{\|}}|^{2} which increases as kzk_{z} deviates from ±k0\pm k_{0}, so that Δe(kz)\Delta_{e}(k_{z}) also varies with kzk_{z}, which explains the slight splitting of the resonant peaks for different kzk_{z} slice in Fig. 2(a).

Refer to caption
Figure 5: (a) Particles slide along the FA and pushed into the Weyl node by the Lorentz force. (b) The electron trail in real space of the critical case that the incident electrons with kzk_{z} at a Weyl node are pushed into the other Weyl node just before coming out of the magnetic field, corresponding to (a).

Appendix C Semiclassical description of the magnetic field effects

In this Section, we evaluate the saturated magnetic field BcB_{c} based on a semiclassical picture. As shown in Fig. 5(a), once the magnetic field is employed, the incident electrons in the right-moving channels will be driven by the Lorentz force and slide along the Fermi arc. BcB_{c} is the critical value such that all electrons incident from the normal metal arrive the Weyl node and transfer into the bulk Landau band before they reach the superconductor. The semiclassical equation of motion is given by

𝒌˙z=(e)𝒗𝒙×𝑩\begin{split}\hbar\dot{\bm{k}}_{z}=(-e)\bm{v_{x}}\times\bm{B}\end{split} (19)

here vxv_{x} is the xx-direction velocity. Integrating the equation on both sides yields Δkz=eΔxB\hbar\Delta k_{z}=-e\Delta xB, which relates the change of the momentum kzk_{z} in the zz direction and the displacement Δx\Delta x in the xx direction. The saturated magnetic field is thus given by

Bc=KzeLx.\begin{split}B_{c}=\frac{\hbar K_{z}}{eL_{x}}.\end{split} (20)

References

  • Weyl (1929) H. Weyl, Proceedings of the National Academy of Sciences of the United States of America 15, 323 (1929).
  • Armitage et al. (2018) N. Armitage, E. Mele,  and A. Vishwanath, Reviews of Modern Physics 90, 015001 (2018).
  • Kajita (2016) T. Kajita, Rev. Mod. Phys. 88, 030501 (2016).
  • McDonald (2016) A. B. McDonald, Rev. Mod. Phys. 88, 030502 (2016).
  • Wan et al. (2011) X. Wan, A. M. Turner, A. Vishwanath,  and S. Y. Savrasov, Physical Review B 83, 205101 (2011).
  • Murakami (2007) S. Murakami, New Journal of Physics 9, 356 (2007).
  • Burkov and Balents (2011) A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
  • Weng et al. (2015) H. Weng, C. Fang, Z. Fang, B. A. Bernevig,  and X. Dai, Phys. Rev. X 5, 011029 (2015).
  • Huang et al. (2015a) S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, et al., Nature communications 6, 7373 (2015a).
  • Lv et al. (2015a) B. Lv, H. Weng, B. Fu, X. Wang, H. Miao, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, et al., Physical Review X 5, 031013 (2015a).
  • Xu et al. (2015a) S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, et al., Science 349, 613 (2015a).
  • Xu et al. (2015b) S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, et al., Nature Physics 11, 748 (2015b).
  • Xu et al. (2015c) S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang, G. Chang, C. Guo, G. Bian, Z. Yuan, H. Lu, T.-R. Chang, et al., Science advances 1, e1501092 (2015c).
  • Xu et al. (2016a) N. Xu, H. Weng, B. Lv, C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, et al., Nature communications 7, 11006 (2016a).
  • Deng et al. (2016) K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, et al., Nature Physics 12, 1105 (2016).
  • Yang et al. (2015) L. Yang, Z. Liu, Y. Sun, H. Peng, H. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. Guo, M. Rahn, et al., Nature physics 11, 728 (2015).
  • Huang et al. (2016) L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M.-T. Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, et al., Nature materials 15, 1155 (2016).
  • Tamai et al. (2016) A. Tamai, Q. Wu, I. Cucchi, F. Y. Bruno, S. Riccò, T. Kim, M. Hoesch, C. Barreteau, E. Giannini, C. Besnard, et al., Physical Review X 6, 031021 (2016).
  • Jiang et al. (2017) J. Jiang, Z. Liu, Y. Sun, H. Yang, C. Rajamathi, Y. Qi, L. Yang, C. Chen, H. Peng, C. Hwang, et al., Nature communications 8, 13973 (2017).
  • Belopolski et al. (2016) I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S.-Y. Xu, G. Chang, T.-R. Chang, H. Zheng, N. Alidoust, et al., Nature communications 7, 13643 (2016).
  • Lv et al. (2015b) B. Lv, N. Xu, H. Weng, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, C. Matt, F. Bisti, et al., Nature Physics 11, 724 (2015b).
  • Junwei et al. (2019) Junwei, C. Liu, L. Fang,  and Fu, Chinese Physics B 28, 47301 (2019).
  • Adler (1969) S. L. Adler, Phys. Rev. 177, 2426 (1969).
  • Bell and Jackiw (1969) J. S. Bell and R. Jackiw, Il Nuovo Cimento A (1965-1970) 60, 47 (1969).
  • Nielsen and Ninomiya (1983) H. B. Nielsen and M. Ninomiya, Physics Letters B 130, 389 (1983).
  • Zyuzin and Burkov (2012) A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133 (2012).
  • Aji (2012) V. Aji, Phys. Rev. B 85, 241101 (2012).
  • Son and Spivak (2013) D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).
  • Chernodub et al. (2014) M. N. Chernodub, A. Cortijo, A. G. Grushin, K. Landsteiner,  and M. A. H. Vozmediano, Phys. Rev. B 89, 081407 (2014).
  • Zhou et al. (2013) J.-H. Zhou, H. Jiang, Q. Niu,  and J.-R. Shi, Chinese Physics Letters 30, 027101 (2013).
  • Burkov (2015) A. Burkov, Journal of Physics: Condensed Matter 27, 113201 (2015).
  • Ma and Pesin (2015) J. Ma and D. A. Pesin, Phys. Rev. B 92, 235205 (2015).
  • Zhong et al. (2016) S. Zhong, J. E. Moore,  and I. Souza, Phys. Rev. Lett. 116, 077201 (2016).
  • Spivak and Andreev (2016) B. Z. Spivak and A. V. Andreev, Phys. Rev. B 93, 085107 (2016).
  • Hirschberger et al. (2016) M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. A. Belvin, B. A. Bernevig, R. J. Cava,  and N. P. Ong, Nature materials 15, 1161 (2016).
  • Huang et al. (2015b) X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai,  and G. Chen, Phys. Rev. X 5, 031023 (2015b).
  • Shekhar et al. (2015) C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, et al., Nature Physics 11, 645 (2015).
  • Du et al. (2016) J. Du, H. Wang, Q. Chen, Q. Mao, R. Khan, B. Xu, Y. Zhou, Y. Zhang, J. Yang, B. Chen, et al., Science China Physics, Mechanics & Astronomy 59, 657406 (2016).
  • Wang et al. (2016a) Z. Wang, Y. Zheng, Z. Shen, Y. Lu, H. Fang, F. Sheng, Y. Zhou, X. Yang, Y. Li, C. Feng,  and Z.-A. Xu, Phys. Rev. B 93, 121112 (2016a).
  • Zhang et al. (2016) C.-L. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C.-C. Lee, S.-M. Huang, et al., Nature communications 7, 1 (2016).
  • Chen and Franz (2016) A. Chen and M. Franz, Phys. Rev. B 93, 201105 (2016).
  • Shuhei et al. (2014) Shuhei, Uchida, Tetsuro, Habe, Yasuhiro,  and Asano, Journal of the Physical Society of Japan 83 (2014).
  • Zhang et al. (2018) S.-B. Zhang, F. Dolcini, D. Breunig,  and B. Trauzettel, Phys. Rev. B 97, 041116 (2018).
  • Breunig et al. (2019) D. Breunig, S.-B. Zhang, M. Stehno,  and B. Trauzettel, Phys. Rev. B 99, 174501 (2019).
  • Morali et al. (2019) N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham,  and H. Beidenkopf, arXiv preprint arXiv:1903.00509  (2019).
  • Yang et al. (2019) H. Yang, L. Yang, Z. Liu, Y. Sun, C. Chen, H. Peng, M. Schmidt, D. Prabhakaran, B. Bernevig, C. Felser, et al., Nature communications 10, 1 (2019).
  • Ekahana et al. (2020) S. A. Ekahana, Y. W. Li, Y. Sun, H. Namiki, H. F. Yang, J. Jiang, L. X. Yang, W. J. Shi, C. F. Zhang, D. Pei, C. Chen, T. Sasagawa, C. Felser, B. H. Yan, Z. K. Liu,  and Y. L. Chen, Phys. Rev. B 102, 085126 (2020).
  • Chen et al. (2018a) W. Chen, K. Luo, L. Li,  and O. Zilberberg, Physical review letters 121, 166802 (2018a).
  • Chen et al. (2020) G. Chen, O. Zilberberg,  and W. Chen, Phys. Rev. B 101, 125407 (2020).
  • Potter et al. (2014) A. C. Potter, I. Kimchi,  and A. Vishwanath, Nature communications 5, 1 (2014).
  • Chen et al. (2013) W. Chen, L. Jiang, R. Shen, L. Sheng, B. Wang,  and D. Xing, EPL (Europhysics Letters) 103, 27006 (2013).
  • Koepernik et al. (2016) K. Koepernik, D. Kasinathan, D. V. Efremov, S. Khim, S. Borisenko, B. Büchner,  and J. van den Brink, Phys. Rev. B 93, 201101 (2016).
  • Belopolski et al. (2017) I. Belopolski, P. Yu, D. S. Sanchez, Y. Ishida, T.-R. Chang, S. S. Zhang, S.-Y. Xu, H. Zheng, G. Chang, G. Bian, et al., Nature communications 8, 1 (2017).
  • Haubold et al. (2017) E. Haubold, K. Koepernik, D. Efremov, S. Khim, A. Fedorov, Y. Kushnirenko, J. van den Brink, S. Wurmehl, B. Büchner, T. K. Kim, M. Hoesch, K. Sumida, K. Taguchi, T. Yoshikawa, A. Kimura, T. Okuda,  and S. V. Borisenko, Phys. Rev. B 95, 241108 (2017).
  • Bianchi et al. (2010) M. Bianchi, D. Guan, S. Bao, J. Mi, B. B. Iversen, P. D. King,  and P. Hofmann, Nature communications 1, 1 (2010).
  • King et al. (2011) P. D. C. King, R. C. Hatch, M. Bianchi, R. Ovsyannikov, C. Lupulescu, G. Landolt, B. Slomski, J. H. Dil, D. Guan, J. L. Mi, E. D. L. Rienks, J. Fink, A. Lindblad, S. Svensson, S. Bao, G. Balakrishnan, B. B. Iversen, J. Osterwalder, W. Eberhardt, F. Baumberger,  and P. Hofmann, Phys. Rev. Lett. 107, 096802 (2011).
  • Benia et al. (2011) H. M. Benia, C. Lin, K. Kern,  and C. R. Ast, Phys. Rev. Lett. 107, 177602 (2011).
  • Yang et al. (2011) K.-Y. Yang, Y.-M. Lu,  and Y. Ran, Phys. Rev. B 84, 075129 (2011).
  • Groth et al. (2014) C. W. Groth, M. Wimmer, A. R. Akhmerov,  and X. Waintal, New Journal of Physics 16, 063065 (2014).
  • Blonder et al. (1982) G. E. Blonder, M. Tinkham,  and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
  • Li et al. (2020) C.-Z. Li, A.-Q. Wang, C. Li, W.-Z. Zheng, A. Brinkman, D.-P. Yu,  and Z.-M. Liao, Nature communications 11, 1 (2020).
  • Chen et al. (2018b) A. Q. Chen, M. J. Park, S. T. Gill, Y. Xiao, D. Reig-i Plessis, G. J. MacDougall, M. J. Gilbert,  and N. Mason, Nature communications 9, 1 (2018b).
  • Ghatak et al. (2018) S. Ghatak, O. Breunig, F. Yang, Z. Wang, A. A. Taskin,  and Y. Ando, Nano letters 18, 5124 (2018).
  • Yao et al. (2019) M.-Y. Yao, N. Xu, Q. S. Wu, G. Autès, N. Kumar, V. N. Strocov, N. C. Plumb, M. Radovic, O. V. Yazyev, C. Felser, J. Mesot,  and M. Shi, Phys. Rev. Lett. 122, 176402 (2019).
  • Wang et al. (2016b) Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava,  and B. A. Bernevig, Phys. Rev. Lett. 117, 056805 (2016b).
  • Borisenko et al. (2019) S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, K. Koepernik, T. Kim, M. Ali, J. van den Brink, M. Hoesch, A. Fedorov, et al., Nature communications 10, 1 (2019).
  • Sun et al. (2015) Y. Sun, S.-C. Wu, M. N. Ali, C. Felser,  and B. Yan, Phys. Rev. B 92, 161107 (2015).
  • Chang et al. (2016) G. Chang, S.-Y. Xu, D. S. Sanchez, S.-M. Huang, C.-C. Lee, T.-R. Chang, G. Bian, H. Zheng, I. Belopolski, N. Alidoust, H.-T. Jeng, A. Bansil, H. Lin,  and M. Z. Hasan, Science Advances 2 (2016), 10.1126/sciadv.1600295https://advances.sciencemag.org/content/2/6/e1600295.full.pdf .
  • Sie et al. (2019) E. J. Sie, C. M. Nyby, C. Pemmaraju, S. J. Park, X. Shen, J. Yang, M. C. Hoffmann, B. Ofori-Okai, R. Li, A. H. Reid, et al., Nature 565, 61 (2019).
  • Lv et al. (2015c) B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P. Richard, C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, J. H. Dil, J. Mesot, M. Shi, H. M. Weng,  and H. Ding, Phys. Rev. Lett. 115, 217601 (2015c).
  • Xu et al. (2016b) S.-Y. Xu, I. Belopolski, D. S. Sanchez, M. Neupane, G. Chang, K. Yaji, Z. Yuan, C. Zhang, K. Kuroda, G. Bian, C. Guo, H. Lu, T.-R. Chang, N. Alidoust, H. Zheng, C.-C. Lee, S.-M. Huang, C.-H. Hsu, H.-T. Jeng, A. Bansil, T. Neupert, F. Komori, T. Kondo, S. Shin, H. Lin, S. Jia,  and M. Z. Hasan, Phys. Rev. Lett. 116, 096801 (2016b).