This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Analyzing zero-inflated clustered longitudinal ordinal outcomes using GEE-type models with an application to dental fluorosis studies

Shoumi Sarkar Department of Biostatistics, University of Florida, Gainesville, Florida Anish Mukherjee Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, Kentucky Jeremy Gaskins Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, Kentucky Steven Levy Department of Preventive and Community Dentistry, University of Iowa, Iowa City, Iowa Peihua Qiu Department of Biostatistics, University of Florida, Gainesville, Florida Somnath Datta111To whom correspondence should be addressed ([email protected]) Department of Biostatistics, University of Florida, Gainesville, Florida
Abstract

Motivated by the Iowa Fluoride Study (IFS) dataset, which comprises zero-inflated multi-level ordinal responses on tooth fluorosis, we develop an estimation scheme leveraging generalized estimating equations (GEEs) and James-Stein shrinkage. Previous analyses of this cohort study primarily focused on caries (count response) or employed a Bayesian approach to the ordinal fluorosis outcome. This study is based on the expanded dataset that now includes observations for age 23, whereas earlier works were restricted to ages 9, 13, and/or 17 according to the participants’ ages at the time of measurement. The adoption of a frequentist perspective enhances the interpretability to a broader audience. Over a choice of several covariance structures, separate models are formulated for the presence (zero versus non-zero score) and severity (non-zero ordinal scores) of fluorosis, which are then integrated through shared regression parameters. This comprehensive framework effectively identifies risk or protective effects of dietary and non-dietary factors on dental fluorosis.

Keywords: generalized estimating equations, zero inflation, ordinal data analysis, longitudinal data analysis, dental fluorosis

1 Introduction

Dental fluorosis is a developmental condition of the tooth enamel caused by excessive fluoride exposure during enamel formation. It manifests as a spectrum of changes in tooth appearance, ranging from faint white streaks to severe enamel discoloration and surface damage. While the prevalence of dental fluorosis has increased globally due to widespread fluoride exposure, its study presents unique statistical challenges because of its ordinal nature, multilevel structure, and the presence of an excess of zero scores (indicating no fluorosis).

This paper is motivated by the Iowa Fluoride Study (IFS), a longitudinal cohort study initiated in the early 1990s to investigate the relationships between fluoride exposure, dental fluorosis, and caries outcomes. The IFS dataset comprises longitudinal observations of fluorosis recorded from multiple tooth surfaces and teeth in children aged 9, 13, 17, and, for the first time, 23. Past analyses have focused primarily on caries as a count response or utilized Bayesian approaches to model the ordinal fluorosis outcome [Choo-Wosoba and Datta, 2018, Choo-Wosoba et al., 2018, Kang et al., 2021b, a, 2023]. However, a frequentist approach, such as generalized estimating equations (GEEs), offers complementary advantages, including broader interpretability for practitioners and researchers unfamiliar with Bayesian frameworks.

The IFS fluorosis data is particularly challenging due to its complex structure: responses are hierarchical (surface-level data nested within teeth and individuals), longitudinal (repeated over time), and zero-inflated (a significant proportion of children show no fluorosis). Traditional statistical models struggle to address this combination of features simultaneously. Mixture models have been used to handle zero-inflation, often incorporating a binary component to distinguish between susceptible and non-susceptible populations [Kelley and Anderson, 2008]. However, few studies have integrated these methods with multilevel, ordinal, and longitudinal structures.

In this paper, we propose a novel frequentist approach based on GEEs to analyze zero-inflated, clustered longitudinal ordinal outcomes. Our methodology employs a two-part modeling framework: (1) a presence model to assess factors influencing the occurrence of fluorosis (binary outcome: fluorosis present versus absent) and (2) a severity model for the ordinal response, extending McCullagh’s proportional odds model. The two parts are unified by shared regression coefficients, estimated using an innovative averaging strategy that combines information from the presence and severity components. GEEs are particularly suited for this application because they account for within-individual correlations while enabling population-averaged inference.

This paper contributes to the literature in several ways. First, it demonstrates the utility of a frequentist GEE-based framework for analyzing complex dental datasets with zero-inflated ordinal outcomes. Second, it applies this approach to an expanded IFS dataset, incorporating observations at age 23 for the first time. Finally, it provides practical insights into the associations between fluoride exposure, dietary factors, and dental fluorosis. Simulation studies are used to validate the proposed approach, and model selection criteria guide the choice of the optimal covariance structure.

By addressing the statistical complexities of the IFS dataset, this work aims to enhance our understanding of the determinants of dental fluorosis and inform future research and public health interventions.

2 Methods and Modelling

2.1 Notation

The FRI scores, represented as YitjkY_{itjk}, are categorized as longitudinally clustered ordinal outcomes. These scores range across L+1L+1 levels, designated from l=0l=0 to l=Ll=L, where l=0l=0 signifies no/negligible fluorosis in a specific zone, and increasing values correlate with higher fluorosis severity. Each child is assigned a cluster/ID, indicated by i=1,,Ni=1,...,N, and dental visits are marked by time t=1,,Tt=1,...,T. The dataset considers JJ teeth, each denoted by j=1,,Jj=1,...,J, grouped within each (i,t)(i,t) pair. Data for each tooth are collected across k=1,,Kk=1,...,K different surface zones, forming a part of the (i,t,j)(i,t,j) groupings. Ideally, a complete dataset would encompass NTJKNTJK observations, but some (i,t,j,k)(i,t,j,k) data points may be absent in practice.

We define two variables based on YitjkY_{itjk}: WP,itjk=I[Yitjk>0]W_{P,itjk}=I[Y_{itjk}>0], which denotes presence or absence of fluorosis of the tooth, serving as the response for a “presence” model; and WS,itjk=Yitjk|Yitjk>0W_{S,itjk}=Y_{itjk}|Y_{itjk}>0, denoting the severity of fluorosis given that it is present, serving as the response for a “severity” model. For observations in any cluster with the same time tt of dental visit, we define ρP,t,jk,jk\rho_{P,t,jk,j^{\prime}k^{\prime}} and ρS,t,jk,jk\rho_{S,t,jk,j^{\prime}k^{\prime}} as the correlation between observations at tooth and zone locations (j,k)(j,k) and (j,k)(j^{\prime},k^{\prime}) under the presence and severity models respectively (details of this parameter specification is provided in Section 2.4). Intercepts αP,t\alpha_{P,t} and regression coefficients β𝐏,𝐭=(βP,t,1,βP,t,2,,βP,t,q)\mathbf{\beta_{P,t}}=(\beta_{P,t,1},\beta_{P,t,2},...,\beta_{P,t,q}) are employed to define the linear predictor for the separate presence piece; intercepts αS,t,1|2,αS,t,L1|L\alpha_{S,t,1|2},\cdots\alpha_{S,t,L-1|L} and regression coefficients β𝐒,𝐭=(βS,t,1,βS,t,2,,βS,t,q)\mathbf{\beta_{S,t}}=(\beta_{S,t,1},\beta_{S,t,2},...,\beta_{S,t,q}) are employed in the linear predictor for the separate severity piece. The subscripts tt in the regression coefficients indicate the effects of the predictors at specific times of dental visits, t=1,,Tt=1,\cdots,T. We also introduce a combined estimation scheme, where the severity effects are linked to the presence effects by a common “amplifying” factor γt\gamma_{t}, with βS,it=γtβP,t,i\beta_{S,it}=\gamma_{t}\beta_{P,t,i}.

2.2 Methods

2.2.1 Generalized Estimating Equations (GEEs)

Generalized Estimating Equations (GEEs) proposed by Liang and Zeger [1986] extend the Generalized Linear Model (GLM) framework to analyze longitudinal and clustered data. GEEs are designed to handle correlated observations; this makes them particularly useful in situations where repeated measures are collected on the same subject. Observations in these subject-specific “clusters” are not necessarily independent. GEEs use quasi-likelihood methods, focusing on the mean structure and correlation rather than fully specifying the joint distribution of the data. Parameter estimates in are obtained iteratively until convergence. In a setting with repeated measures on NN subjects, a GEE is of the following form:

𝝍(𝜷)=i=1N𝐃𝐢T𝐕𝐢1(𝐘𝐢𝝁𝒊)=0\bm{\psi}(\bm{\beta})=\sum_{i=1}^{N}\mathbf{D_{i}}^{T}\mathbf{V_{i}}^{-1}(\mathbf{Y_{i}}-\bm{\mu_{i}})=0 (1)

where 𝜷\bm{\beta} are parameters, 𝐘𝐢\mathbf{Y_{i}} is the vector of responses for subject ii, 𝝁𝒊=E(𝐘𝐢)=𝐗𝐢β\bm{\mu_{i}}=E(\mathbf{Y_{i}})=\mathbf{X_{i}^{\prime}\beta} is the mean response, 𝐗𝐢\mathbf{X_{i}} denotes covariates for subject ii, 𝐃𝐢=𝝁𝒊𝜷\mathbf{D_{i}}=\frac{\partial\bm{\mu_{i}}}{\partial\bm{\beta}} is the matrix of derivatives, 𝐕𝐢\mathbf{V_{i}} is the working covariance matrix. A working correlation structure 𝐕𝐢\mathbf{V_{i}} is specified for repeated measurements within cluster ii. GEEs provide consistent parameter estimates despite the misspecification of 𝐕𝐢\mathbf{V_{i}}. This robustness is valuable when the true correlation structure is unknown or complex.

2.2.2 Hurdle Model

A hurdle model is a two-part model used to handle datasets with a substantial number of zero observations. It consists of a zero model and a conditional non-zero outcome model. Our modeling approach in the subsequent sections is inspired by the hurdle model, where all “zeroes” are viewed as originating from a single source.

P(Yitjk=litjk)\displaystyle P(Y_{itjk}=l_{itjk}) ={P(Yitjk=0)litjk=0P(Yitjk=litjk)litjk=1,2,,L1\displaystyle=\begin{cases}P(Y_{itjk}=0)&l_{itjk}=0\\ P(Y_{itjk}=l_{itjk})&l_{itjk}=1,2,...,L-1\end{cases} (2)

In the context of our study, the zero model, which we will refer to as our “presence” model, determines whether fluorosis is present or absent. The “non-zero” model conditioning on a non-zero FRI score outcome (indicating the presence of some level of observable fluorosis) is known as the “severity” model. This model specifically quantifies the degree of fluorosis in affected teeth or zones.

In Section (2.3), we will introduce presence models that address all zero/non-zero FRI scores, and severity models that handles the non-zero outcomes. A combined modeling scheme that connects both of these components is then proposed.

2.3 Modelling

2.3.1 Presence Model

The presence model utilizes WP,itjk=I(Yitjk0)W_{P,itjk}=I(Y_{itjk}\neq 0), the indicator variable for the presence of fluorosis. In general, it can be expressed through McCullagh’s model [McCullagh, 1980]:

μP,tijk=P(WP,itjk=0)=F(αP,t+𝐱𝐏,𝐢𝐭𝐣𝐤𝜷𝑷,𝒕)\mu_{P,tijk}={P(W_{P,itjk}=0)}=F(\alpha_{P,t}+\mathbf{x^{\prime}_{P,itjk}}\bm{\beta_{P,t}}) (3)

We will illustrate the case where F(.)F(.) is the logistic CDF, that is, F(t)=exp(t)1+exp(t)F(t)=\frac{\exp(t)}{1+\exp(t)}. This specification corresponds to the case of logistic regression. Accordingly, we have

P(WP,itjk0)=exp((αP,t+𝐱𝐏,𝐢𝐭𝐣𝐤𝜷𝑷,𝒕))1+exp((αP,t+𝐱𝐏,𝐢𝐭𝐣𝐤𝜷𝑷,𝒕))log(P(WP,itjk=0)P(WP,itjk0)missing)=αP,t+𝐱𝐏,𝐢𝐭𝐣𝐤𝜷𝑷,𝒕{P(W_{P,itjk}\neq 0)}=\frac{\exp{(\alpha_{P,t}+\mathbf{x^{\prime}_{P,itjk}}\bm{\beta_{P,t}}})}{1+\exp{(\alpha_{P,t}+\mathbf{x^{\prime}_{P,itjk}}\bm{\beta_{P,t}}})}\iff\log\bigg(\frac{P(W_{P,itjk}=0)}{P(W_{P,itjk}\neq 0)}\bigg{missing})=\alpha_{P,t}+\mathbf{x^{\prime}_{P,itjk}}\bm{\beta_{P,t}} (4)

Corresponding to each time point t=1,,Tt=1,\cdots,T, parameter estimates for αP,t\alpha_{P,t} and 𝜷𝑷,𝒕\bm{\beta_{P,t}} are obtained from the following GEE; by specifying cluster correlation matrices, this approach accounts for correlations in the observations, an improvement over ordinary logistic regression.

𝝍𝑷,𝒕(αP,t,𝜷𝑷,𝒕)=ip=1Np,t𝑫𝒑,𝒊𝒑,𝒕𝑻𝑽𝒑,𝒊𝒑,𝒕𝟏(𝑾𝑷,𝒊𝒑,𝒕𝝁𝒑,𝒊𝒑,𝒕),where t=1,T\bm{\psi_{P,t}}(\alpha_{P,t},\bm{\beta_{P,t}})=\sum_{i_{p}=1}^{N_{p,t}}\bm{D_{p,i_{p},t}^{T}}\bm{V_{p,i_{p},t}^{-1}}(\bm{W_{P,i_{p},t}-\mu_{p,i_{p},t}}),\text{where }t=1,\cdots T (5)

Here, 𝑾𝑷,𝒊𝒑,𝒕\bm{W_{P,i_{p},t}} denotes the vector of WP,tijkW_{P,tijk} for fixed tt and ii, stacked over the levels j=1,,Jj=1,\cdots,J and k=1,,Kk=1,\cdots,K. 𝝁𝑷,𝒊𝒑,𝒕=𝑬(𝑾𝑷,𝒊𝒑,𝒕)\bm{\mu_{P,i_{p},t}=E(W_{P,i_{p},t}}), which is also a vector of μP,tijk\mu_{P,tijk} for fixed tt and ii, stacked over the levels of j=1,,Jj=1,\cdots,J and k=1,,Kk=1,\cdots,K. 𝑽𝒑,𝒊𝒑,𝒕=𝑨𝒑,𝒊𝒑,𝒕𝟏/𝟐𝑹𝒑,𝒊𝒑,𝒕𝑨𝒑,𝒊𝒑,𝒕𝟏/𝟐\bm{V_{p,i_{p},t}=A^{1/2}_{p,i_{p},t}R_{p,i_{p},t}A^{1/2}_{p,i_{p},t}}, where 𝑹𝒑,𝒊𝒑,𝒕\bm{R_{p,i_{p},t}} denotes the working cluster correlation matrix of cluster ii at time of dental visit tt and 𝑨𝒑,𝒊𝒑,𝒕\bm{A_{p,i_{p},t}} denotes Var(𝑾𝑷,𝒊𝒑,𝒕)Var(\bm{W_{P,i_{p},t}}), the variance-covariance matrix of 𝑾𝑷,𝒊𝒑,𝒕\bm{W_{P,i_{p},t}}. The entries of 𝑹𝒑,𝒊𝒑,𝒕\bm{R_{p,i_{p},t}} are specific to the chosen working correlation structure, and are detailed in Section 2.4. Additional details on the GEE components can be found in the Appendix (Section 6).

2.3.2 Severity Model

The severity model, modelling WS,itjkW_{S,itjk}, uses a proportional odds framework to model the conditional probability of different severity levels. The model is specified as

log(P(WS,itjkl)P(WS,itjk>l)missing)=αS,t,l|l+1+𝐱𝐒,𝐢𝐭𝐣𝐤𝜷𝑺,𝒕,\log\bigg(\frac{P(W_{S,itjk}\leq l)}{P(W_{S,itjk}>l)}\bigg{missing})=\alpha_{S,t,l|l+1}+\mathbf{x^{\prime}_{S,itjk}}\bm{\beta_{S,t}}, (6)

so

μS,i,tjk,l=P(WS,itjkl)=exp(αS,t,l|l+1+𝐱𝐒,𝐢𝐭𝐣𝐤𝜷𝑺,𝒕)1+exp(αS,t,l|l+1+𝐱𝐒,𝐢𝐭𝐣𝐤𝜷𝑺,𝒕)\mu_{S,i,tjk,l}=P(W_{S,itjk}\leq l)=\frac{\exp(\alpha_{S,t,l|l+1}+\mathbf{x^{\prime}_{S,itjk}}\bm{\beta_{S,t}})}{1+\exp(\alpha_{S,t,l|l+1}+\mathbf{x^{\prime}_{S,itjk}}\bm{\beta_{S,t}})} (7)

Estimates for αS,t,1|2,,αS,t,L1|L,\alpha_{S,t,1|2},\cdots,\alpha_{S,t,L-1|L}, and 𝜷𝑺,𝒕\bm{\beta_{S,t}} are obtained from the following GEEs:

𝝍𝑺,𝒕(αS,t,1|2,,αS,t,L1|L,𝜷𝑺,𝒕)=i=1Ns𝑫𝑺,𝒊𝒕𝑻𝑽𝑺,𝒊𝒕𝟏(𝒁𝑺,𝒊𝒕𝝅𝑺,𝒊𝒕),with t=1,,T\bm{\psi_{S,t}}(\alpha_{S,t,1|2},\cdots,\alpha_{S,t,L-1|L},\bm{\beta_{S,t}})=\sum_{i=1}^{N_{s}}\bm{D_{S,it}^{T}}\bm{V_{S,it}^{-1}}(\bm{Z_{S,it}-\pi_{S,it}}),\text{with }t=1,\cdots,T (8)

where 𝒁𝑺,𝒊𝒕=(𝒁𝑺,𝒕,𝟏𝟏𝟏,,𝒁𝑺,𝒊,𝒕𝒋𝒌,,𝒁𝑺,𝒕,𝑵𝑱𝑲)T\bm{Z_{S,it}=(Z_{S,t,111},\cdots,Z_{S,i,tjk},\cdots,Z_{S,t,NJK}})^{T}, with 𝒁𝑺,𝒊,𝒕𝒋𝒌=(ZS,i,tjk,1,ZS,i,tjk,2,ZS,i,tjk,3)T\bm{Z_{S,i,tjk}}=(Z_{S,i,tjk,1},Z_{S,i,tjk,2},Z_{S,i,tjk,3})^{T}, where ZS,i,tjk,l=I[WS,itjk=l]Z_{S,i,tjk,l}=I[W_{S,itjk}=l], l=1,,Ll=1,\cdots,L. 𝝅𝑺,𝒊𝒕=E[𝒁𝑺,𝒊𝒕]=(πS,t,111,,πS,i,tjk,,πS,t,NJK)T\bm{\pi_{S,it}}=E[\bm{Z_{S,it}}]=(\pi_{S,t,111},\cdots,\pi_{S,i,tjk},\cdots,\pi_{S,t,NJK})^{T} with 𝝅𝑺,𝒊,𝒕𝒋𝒌=(πS,i,tjk,1,πS,i,tjk,2,πS,i,tjk,3)T\bm{\pi_{S,i,tjk}}=(\pi_{S,i,tjk,1},\pi_{S,i,tjk,2},\pi_{S,i,tjk,3})^{T}, where πS,i,tjk,l=P[WS,itjk=l]=μS,i,tjk,l+1μS,i,tjk,l\pi_{S,i,tjk,l}=P[W_{S,itjk}=l]=\mu_{S,i,tjk,l+1}-\mu_{S,i,tjk,l}, l=1,,L1l=1,\cdots,L-1.

𝑽𝑺,𝒊𝒕=𝑨𝑺,𝒊𝒕𝟏/𝟐𝑹𝑺,𝒊𝒕𝑨𝑺,𝒊𝒕𝟏/𝟐\bm{V_{S,it}=A^{1/2}_{S,it}R_{S,it}A^{1/2}_{S,it}}, where 𝑹𝑺,𝒊𝒕\bm{R_{S,it}} denotes the working cluster correlation matrix of cluster ii at time of dental visit tt and 𝑨𝑺,𝒊𝒑,𝒕\bm{A_{S,i_{p},t}} denotes Var(𝒁𝑺,𝒊𝒕)Var(\bm{Z_{S,it}}), the variance-covariance matrix of 𝒁𝑺,𝒊𝒕\bm{Z_{S,it}}. The entries of 𝑹𝑺,𝒊𝒕\bm{R_{S,it}}, specific to the chosen working correlation structure, are detailed in Section 2.4. Additional details on the GEE components can be found in the Appendix (Section 6).

2.3.3 Combined Modelling of Presence and Severity

We outline a combined modelling approach that integrates the presence and severity components by assuming a relationship β𝐒,𝐭=γtβ𝐏,𝐭\mathbf{\beta_{S,t}}=\gamma_{t}\mathbf{\beta_{P,t}} between their regression coefficients. The parameter β𝐏,𝐭\mathbf{\beta_{P,t}} signifies the effect that predictors exert on dental fluorosis in the presence piece. The scalar parameter γt\gamma_{t} serves as an amplifying factor in the severity piece, specifically augmenting the effect of predictors within the model’s severity dimension, as β𝐒,𝐭=γtβ𝐏,𝐭\mathbf{\beta_{S,t}}=\gamma_{t}\mathbf{\beta_{P,t}}. Specifically, we model

log(P(WP,itjk=0)P(WP,itjk0)missing)=αP,t+𝐱𝐏,𝐢𝐭𝐣𝐤𝜷𝑷,𝒕\log\bigg(\frac{P(W_{P,itjk}=0)}{P(W_{P,itjk}\neq 0)}\bigg{missing})=\alpha_{P,t}+\mathbf{x^{\prime}_{P,itjk}}\bm{\beta_{P,t}} (9)
log(P(WS,itjkl)P(WS,itjk>l)missing)=αS,t,l|l+1+𝐱𝐒,𝐢𝐭𝐣𝐤𝜷𝑺,𝒕,where β𝐒,𝐭=γtβ𝐏,𝐭\log\bigg(\frac{P(W_{S,itjk}\leq l)}{P(W_{S,itjk}>l)}\bigg{missing})=\alpha_{S,t,l|l+1}+\mathbf{x^{\prime}_{S,itjk}}\bm{\beta_{S,t}},\text{where }\mathbf{\beta_{S,t}}=\gamma_{t}\mathbf{\beta_{P,t}} (10)

In a two-step approach, the parameter γt\gamma_{t} is first estimated from separate estimates of presence and severity parameters. As the intercepts αP,t,αS,t,1|2,,αS,t,L|L1\alpha_{P,t},\alpha_{S,t,1|2},\cdots,\alpha_{S,t,L|L-1} are ancillary for the slope parameters, they are estimated from separate model pieces (presence and severity). Next, the shared parameters βP,t,1,,βP,t,q\beta_{P,t,1},\cdots,\beta_{P,t,q} are updated from combined estimating equations derived from averaging the GEEs of both models.

The intercepts αP,t,αS,t,1|2,,αS,t,L|L1\alpha_{P,t},\alpha_{S,t,1|2},\cdots,\alpha_{S,t,L|L-1} and γt\gamma_{t} estimated from separate model pieces. Specifically, γt{\gamma}_{t} is estimated as the ratio of the sum g=1qβ^S,t,g\sum_{g=1}^{q}\hat{\beta}_{S,t,g} of the coefficients of the severity model to sum g=1qβ^P,t,g\sum_{g=1}^{q}\hat{\beta}_{P,t,g} of the coefficients of the presence model, that is, γ^t=g=1qβ^S,t,gg=1qβ^P,t,g{\hat{\gamma}}_{t}=\frac{\sum_{g=1}^{q}\hat{\beta}_{S,t,g}}{\sum_{g=1}^{q}\hat{\beta}_{P,t,g}}, g=1,,qg=1,\cdots,q. Then, only the parameters in 𝜷𝑷,𝒕\bm{\beta_{P,t}} remain to be estimated. As β𝐒,𝐭\mathbf{\beta_{S,t}} depends on γt\gamma_{t} and β𝐏,𝐭\mathbf{\beta_{P,t}} and is estimated as β^𝐒,𝐭=γ^tβ^𝐏,𝐭\mathbf{\hat{\beta}_{S,t}}=\hat{\gamma}_{t}\mathbf{\hat{\beta}_{P,t}} once γt\gamma_{t} and β𝐏,𝐭\mathbf{\beta_{P,t}} are estimated.

The parameters in 𝜷𝑷,𝒕\bm{\beta_{P,t}} is derived by estimating the following combined estimating equation:

ψt(𝜷𝑷,𝒕)=ψp,t(𝜷𝑷,𝒕)+ψS,t(𝜷𝑺,𝒕),\psi_{t}(\bm{\beta_{P,t}})=\psi_{p,t}(\bm{\beta_{P,t}})+\psi_{S,t}(\bm{\beta_{S,t}}), (11)

where 𝜷𝑺,𝒕=γt𝜷𝑷,𝒕\bm{\beta_{S,t}}=\gamma_{t}\bm{\beta_{P,t}}. Applying the modified Newton-Raphson method, we update 𝜷𝑷,𝒕\bm{\beta_{P,t}} for t=1,,Tt=1,\cdots,T iteratively until convergence:

𝜷𝑷,𝒕(𝒉+𝟏)\displaystyle\bm{\beta_{P,t}^{(h+1)}} =𝜷𝑷,𝒕(𝒉)+(ip=1Np,t𝑫𝒑,𝒊𝒑,𝒕(𝒉)𝑻𝑽𝒑,𝒊𝒑,𝒕(𝒉)𝟏𝑫𝒑,𝒊𝒑,𝒕(𝒉)+is=1Ns𝑫𝑺,𝒊𝒔,𝒕(𝒉)𝑻𝑽𝑺,𝒊𝒔,𝒕(𝒉)𝟏𝑫𝑺,𝒊𝒔,𝒕(𝒉)+ψ(𝜷𝑷,𝒕(h))ψT(𝜷𝑷,𝒕(h)))1ψt(𝜷𝑷,𝒕(h))\displaystyle=\bm{\beta_{P,t}^{(h)}}+\bigg{(}\sum_{i_{p}=1}^{N_{p,t}}\bm{D_{p,i_{p},t}^{(h)T}V_{p,i_{p},t}^{(h)-1}D_{p,i_{p},t}^{(h)}}+\sum_{i_{s}=1}^{N_{s}}\bm{D_{S,i_{s},t}^{(h)T}V_{S,i_{s},t}^{(h)-1}D_{S,i_{s},t}^{(h)}}+\psi(\bm{\beta_{P,t}}^{(h)})\psi^{T}(\bm{\beta_{P,t}}^{(h)})\bigg{)}^{-1}\psi_{t}(\bm{\beta_{P,t}}^{(h)}) (12)

2.4 Correlation parameters

For any pair of clusters i=1,,Ni=1,\cdots,N and i=1,,Ni^{\prime}=1,\cdots,N and corresponding to each time of dental visit (t=1,,Tt=1,\cdots,T), ρP,t,jk,jk\rho_{P,t,jk,j^{\prime}k^{\prime}} denotes the correlation between WP,itjkW_{P,itjk} and WP,itjkW_{P,i^{\prime}tj^{\prime}k^{\prime}}. Likewise, ρS,t,jk,jk\rho_{S,t,jk,j^{\prime}k^{\prime}} denotes the correlation between WS,itjkW_{S,itjk} and WS,itjkW_{S,i^{\prime}tj^{\prime}k^{\prime}}. As clusters (individuals) are considered independent units, for a given time tt, this correlation depends on only (j,k)(j,k) and (j,k)(j^{\prime},k^{\prime}). In our GEE models, we will consider independence, exchangeable, AR-1, and jackknifed cluster correlation structures.

Independent cluster correlation:

ρP,t,jk,jk={1j=j,k=k0otherwise\rho_{P,t,jk,j^{\prime}k^{\prime}}=\begin{cases}1&j=j^{\prime},k=k^{\prime}\\ 0&\text{otherwise}\end{cases}
ρS,t,jk,jk={1j=j,k=k0otherwise\rho_{S,t,jk,j^{\prime}k^{\prime}}=\begin{cases}1&j=j^{\prime},k=k^{\prime}\\ 0&\text{otherwise}\end{cases}

Exchangeable cluster correlation:

ρP,t,jk,jk={1j=j,k=kρP,t,exchotherwise\rho_{P,t,jk,j^{\prime}k^{\prime}}=\begin{cases}1&j=j^{\prime},k=k^{\prime}\\ \rho_{P,t,exch}&\text{otherwise}\\ \end{cases}
ρS,t,jk,jk={1j=j,k=kρS,t,exchotherwise\rho_{S,t,jk,j^{\prime}k^{\prime}}=\begin{cases}1&j=j^{\prime},k=k^{\prime}\\ \rho_{S,t,exch}&\text{otherwise}\\ \end{cases}

AR(1) cluster correlation:

ρP,t,jk,jk={1j=jρP,t,AR1|jj|otherwise\rho_{P,t,jk,j^{\prime}k^{\prime}}=\begin{cases}1&j=j^{\prime}\\ {\rho_{P,t,AR1}}^{|j-j^{\prime}|}&\text{otherwise}\\ \end{cases}
ρS,t,jk,jk={1j=jρS,t,AR1|jj|otherwise\rho_{S,t,jk,j^{\prime}k^{\prime}}=\begin{cases}1&j=j^{\prime}\\ {\rho_{S,t,AR1}}^{|j-j^{\prime}|}&\text{otherwise}\\ \end{cases}

Jackknifed cluster correlation:

ρP,t,jk,jk={1j=j,k=kρP,t,jk,jk,jackknifeotherwise\rho_{P,t,jk,j^{\prime}k^{\prime}}=\begin{cases}1&j=j^{\prime},k=k^{\prime}\\ {\rho_{P,t,jk,j^{\prime}k^{\prime},jackknife}}&\text{otherwise}\end{cases}
ρS,t,jk,jk={1j=j,k=kρS,t,jk,jk,jackknifeotherwise\rho_{S,t,jk,j^{\prime}k^{\prime}}=\begin{cases}1&j=j^{\prime},k=k^{\prime}\\ {\rho_{S,t,jk,j^{\prime}k^{\prime},jackknife}}&\text{otherwise}\end{cases}

The severity models transform WS,itjkW_{S,itjk} to the corresponding set of indicators
𝒁𝑺,𝒊𝒕𝒋𝒌=(ZS,itjk,1,ZS,itjk,2,ZS,itjk,3)\bm{Z_{S,itjk}}=(Z_{S,itjk,1},Z_{S,itjk,2},Z_{S,itjk,3}). 𝒁𝑺,𝒊𝒕𝒋𝒌\bm{Z_{S,itjk}} follows a Multinomial distribution with one trial and probabilities (πS,itjk,1,πS,itjk,2,πS,itjk,3)(\pi_{S,itjk,1},\pi_{S,itjk,2},\pi_{S,itjk,3}). The following covariances arise for the indicator variables (ZS,itjk,1,ZS,itjk,2,ZS,itjk,3)(Z_{S,itjk,1},Z_{S,itjk,2},Z_{S,itjk,3}) of severity level corresponding to the (t,i,j,k)(t,i,j,k)-th observation.

Cov(ZS,itjk,l,ZS,itjk,l)={πS,itjk,lπS,itjk,lllπS,itjk,l(1πS,itjk,l)l=lCov(Z_{S,itjk,l},Z_{S,itjk,l^{\prime}})=\begin{cases}-\pi_{S,itjk,l}\pi_{S,itjk,l^{\prime}}&l\neq l^{\prime}\\ \pi_{S,itjk,l}(1-\pi_{S,itjk,l})&l=l^{\prime}\end{cases}

Clearly, for l=ll=l^{\prime}, Cov(ZS,itjk,l,ZS,itjk,l)=Var(ZS,itjk,l)Cov(Z_{S,itjk,l},Z_{S,itjk,l^{\prime}})=Var(Z_{S,itjk,l}). Thus the corresponding correlations are

θitjk,l,l=Cor(ZS,itjk,l,ZS,itjk,l)={1l=lCov(ZS,itjk,l,ZS,itjk,l)Var(ZS,itjk,l)Var(ZS,itjk,l)ll\theta_{itjk,l,l^{\prime}}=Cor(Z_{S,itjk,l},Z_{S,itjk,l^{\prime}})=\begin{cases}1&l=l^{\prime}\\ \frac{Cov(Z_{S,itjk,l},Z_{S,itjk,l^{\prime}})}{\sqrt{Var(Z_{S,itjk,l})Var(Z_{S,itjk,l^{\prime}})}}&l\neq l^{\prime}\end{cases}

Then

ρS,t,jkl,jkl=Cor(ZS,itjk,l,ZS,itjk,l)={ρS,t,jk,jkθitjk,l,li=i,j=j,k=kρS,t,jk,jkotherwise\rho_{S,t,jkl,j^{\prime}k^{\prime}l^{\prime}}=Cor(Z_{S,itjk,l},Z_{S,itjk,l^{\prime}})=\begin{cases}\rho_{S,t,jk,j^{\prime}k^{\prime}}\theta_{itjk,l,l^{\prime}}&i=i^{\prime},j=j^{\prime},k=k^{\prime}\\ \rho_{S,t,jk,j^{\prime}k^{\prime}}&\text{otherwise}\end{cases}

comprise the components of the working cluster correlation 𝑹𝑺,𝒊𝒕\bm{R_{S,it}} of severity model (7).

As an illustration, let 𝑩𝑺,𝒊𝒕𝒋𝒌\bm{B_{S,itjk}} denote the within-observation correlation matrix for the severity indicator variables of the (i,t,j,k)(i,t,j,k)-th observation, with 𝑩𝑺,𝒊𝒕𝒋𝒌=(1θitjk,1,2θitjk,1,3θitjk,2,11θitjk,2,3θitjk,3,1θitjk,3,21)\bm{B_{S,itjk}}=\begin{pmatrix}1&\theta_{itjk,1,2}&\theta_{itjk,1,3}\\ \theta_{itjk,2,1}&1&\theta_{itjk,2,3}\\ \theta_{itjk,3,1}&\theta_{itjk,3,2}&1\\ \end{pmatrix}, where θitjk,l,l=Cor(ZS,itjk,l,ZS,itjk,l)\theta_{itjk,l,l^{\prime}}=Cor(Z_{S,itjk,l},Z_{S,itjk,l^{\prime}}). We then define 𝑩𝑺,𝒊𝒕=(𝑩𝑺,𝒊𝒕𝟏𝟏𝟎𝟎𝟎𝑩𝑺,𝒊𝒕𝟏𝟐𝟎𝟎𝟎𝑩𝑺,𝒊𝒕𝑱𝑲)\bm{B_{S,it}}=\begin{pmatrix}\bm{B_{S,it11}}&\bm{0}&\cdots&\bm{0}\\ \bm{0}&\bm{B_{S,it12}}&\cdots&\bm{0}\\ \vdots&\vdots&\ddots&\vdots\\ \bm{0}&\bm{0}&\cdots&\bm{B_{S,itJK}}\\ \end{pmatrix}. Let 𝚽𝒊𝒕\bm{\Phi_{it}} denote the JK×JKJK\times JK matrix of between-observation correlation structure for cluster ii at time tt. For instance, for exchangeable correlation, 𝚽𝑺,𝒊𝒕=(1ρS,t,exchρS,t,exchρS,t,exch1ρS,t,exchρS,t,exchρS,t,exch1)\bm{\Phi_{S,it}}=\begin{pmatrix}1&\rho_{S,t,exch}&\cdots&\rho_{S,t,exch}\\ \rho_{S,t,exch}&1&\cdots&\rho_{S,t,exch}\\ \vdots&\vdots&\ddots&\vdots\\ \rho_{S,t,exch}&\rho_{S,t,exch}&\cdots&1\\ \end{pmatrix}. Then 𝑹𝑺,𝒊𝒕=(𝚽𝑺,𝒊𝒕𝑱𝒏𝒊)𝑩𝑺,𝒊𝒕\bm{R_{S,it}}=(\bm{\Phi_{S,it}}\otimes\bm{J_{n_{i}}})\circ\bm{B_{S,it}}, where \otimes denotes the Kronecker product and \circ denotes the Hadamard (elementwise) product.

2.4.1 Estimation of correlation parameters

The correlation parameters are estimated according to the following schemes proposed by Liang and Zeger [1986].

Let rP,tijk=wP,tijkμP,tijkVar(WP,tijk)r_{P,tijk}=\frac{w_{P,tijk}-\mu_{P,tijk}}{\sqrt{Var(W_{P,tijk})}} and rS,tijk,l=ZS,tijk,lπS,tijk,lVar(ZS,tijk,l)r_{S,tijk,l}=\frac{Z_{S,tijk,l}-\pi_{S,tijk,l}}{\sqrt{Var(Z_{S,tijk,l})}}.

We define

ϕP,t=1i=1Nj,j=1Jp,tik,k=1Kp,ti1i=1Nj,j=1Jp,tik,k=1Kp,tir^P,tijk2\phi_{P,t}=\frac{1}{\sum_{i=1}^{N}\sum_{j,j^{\prime}=1}^{J_{p,t_{i}}}\sum_{k,k^{\prime}=1}^{K_{p,t_{i}}}1}\sum_{i=1}^{N}\sum_{j,j^{\prime}=1}^{J_{p,t_{i}}}\sum_{k,k^{\prime}=1}^{K_{p,t_{i}}}\hat{r}^{2}_{P,tijk} (13)

and

ϕS,t=1i=1Nl=1Lj=1JS,tik=1KS,ti1i=1Nl=1Lj=1JS,tik=1KS,tir^S,tijk,l2{\phi}_{S,t}=\frac{1}{\sum_{i=1}^{N}\sum_{l=1}^{L}\sum_{j=1}^{J_{S,ti}}\sum_{\begin{subarray}{c}k=1\end{subarray}}^{K_{S,ti}}1}\sum_{i=1}^{N}\sum_{l=1}^{L}\sum_{j=1}^{J_{S,ti}}\sum_{\begin{subarray}{c}k=1\end{subarray}}^{K_{S,ti}}\hat{r}^{2}_{S,tijk,l} (14)

. Then, for the exchangeable cluster correlation structure,

ρ^P,t,exch=1i=1Nj,j=1JP,tik,k=1jj,kkKP,ti1ϕP,ti=1Nj,j=1jjJP,tik,k=1kkKP,tir^P,tijkr^P,tijk\hat{\rho}_{P,t,exch}=\frac{1}{\sum_{i=1}^{N}\sum_{j,j^{\prime}=1}^{J_{P,ti}}\sum_{\begin{subarray}{c}k,k^{\prime}=1\\ j\neq j,k\neq k\end{subarray}}^{K_{P,ti}}1}{\phi}_{P,t}\sum_{i=1}^{N}\sum_{\begin{subarray}{c}j,j^{\prime}=1\\ j\neq j^{\prime}\end{subarray}}^{J_{P,ti}}\sum_{\begin{subarray}{c}k,k^{\prime}=1\\ k\neq k\end{subarray}}^{K_{P,ti}}\hat{r}_{P,tijk}\hat{r}_{P,tij^{\prime}k^{\prime}}

ρ^S,t,exch=1i=1Nl,l=1Lj,j=1JS,tik,k=1ll,jj,kkKS,ti1ϕS,ti=1Nl,l=1Lj,j=1JS,tik,k=1ll,jj,kkKS,tir^S,tijk,lr^S,tijk,l\hat{\rho}_{S,t,exch}=\frac{1}{\sum_{i=1}^{N}\sum_{l,l^{\prime}=1}^{L}\sum_{j,j^{\prime}=1}^{J_{S,ti}}\sum_{\begin{subarray}{c}k,k^{\prime}=1\\ l\neq l^{\prime},j\neq j^{\prime},k\neq k\end{subarray}}^{K_{S,ti}}1}{\phi}_{S,t}\sum_{i=1}^{N}\sum_{l,l^{\prime}=1}^{L}\sum_{j,j^{\prime}=1}^{J_{S,ti}}\sum_{\begin{subarray}{c}k,k^{\prime}=1\\ l\neq l^{\prime},j\neq j^{\prime},k\neq k\end{subarray}}^{K_{S,ti}}\hat{r}_{S,tijk,l}\hat{r}_{S,tij^{\prime}k^{\prime},l^{\prime}}

For the AR(1) cluster correlation structure, ρP,t,AR1\rho_{P,t,AR1} is estimated from the slope of the regression of log(r^P,tijkr^P,tijk)\log(\hat{r}_{P,tijk}\hat{r}_{P,tij^{\prime}k^{\prime}}) on |jj||j-j^{\prime}|. Likewise, ρS,t,AR1\rho_{S,t,AR1} is estimated from the slope of the regression of log(r^S,tijk,lr^S,tijk,l)\log(\hat{r}_{S,tijk,l}\hat{r}_{S,tij^{\prime}k^{\prime},l}) on |jj||j-j^{\prime}|.

For the jackknifed variance-covariance structure, we define
ρ^P,t,jk,jk,jackknife(i)=1i,i=1i,iiNj,j=1JP,tik,k=1KP,ti1ϕP,t,ii,i=1i,iiNj,j=1JP,tik,k=1KP,tir^P,tijkr^P,tijk\hat{\rho}_{P,t,jk,j^{\prime}k^{\prime},jackknife(-i)}=\frac{1}{\sum_{\begin{subarray}{c}i^{*},i^{**}=1\\ i^{*},i^{**}\neq i\end{subarray}}^{N}\sum_{j,j^{\prime}=1}^{J_{P,ti}}\sum_{k,k^{\prime}=1}^{K_{P,ti}}1}{\phi}_{P,t,-i}\sum_{\begin{subarray}{c}i^{*},i^{**}=1\\ i^{*},i^{**}\neq i\end{subarray}}^{N}\sum_{j,j^{\prime}=1}^{J_{P,ti}}\sum_{k,k^{\prime}=1}^{K_{P,ti}}\hat{r}_{P,t{i^{*}}jk}\hat{r}_{P,t{i^{**}}j^{\prime}k^{\prime}}, where ϕP,t,i\phi_{P,t,-i} corresponds to the quantity in 13 computed leaving out cluster ii.

Then ρ^P,t,jk,jk,jackknife=1Ni=1Nρ^P,t,jk,jk,jackknife(i)\hat{\rho}_{P,t,jk,j^{\prime}k^{\prime},jackknife}=\frac{1}{N}\sum_{i=1}^{N}\hat{\rho}_{P,t,jk,j^{\prime}k^{\prime},jackknife(-i)}. Likewise, ρ^S,t,jk,jk,jackknife=1Ni=1Nρ^S,t,jk,jk,jackknife(i)\hat{\rho}_{S,t,jk,j^{\prime}k^{\prime},jackknife}=\frac{1}{N}\sum_{i=1}^{N}\hat{\rho}_{S,t,jk,j^{\prime}k^{\prime},jackknife(-i)}, where

ρ^S,t,jk,jk,jackknife(i)=ϕS,t,ii,i=1i,iiNl,l=1L1j,j=1JS,tik,k=1KS,tir^S,tijk,lr^S,tijk,li,i=1i,iiNl,l=1L1j,j=1JS,tik,k=1KS,ti1,\displaystyle\hat{\rho}_{S,t,jk,j^{\prime}k^{\prime},jackknife(-i)}=\frac{{\phi}_{S,t,-i}\sum_{\begin{subarray}{c}i^{*},i^{**}=1\\ i^{*},i^{**}\neq i\end{subarray}}^{N}\sum_{l,l^{\prime}=1}^{L-1}\sum_{j,j^{\prime}=1}^{J_{S,ti}}\sum_{k,k^{\prime}=1}^{K_{S,ti}}\hat{r}_{S,t{i^{*}}jk,l}\hat{r}_{S,t{i^{**}}j^{\prime}k^{\prime},l^{\prime}}}{\sum_{\begin{subarray}{c}i^{*},i^{**}=1\\ i^{*},i^{**}\neq i\end{subarray}}^{N}\sum_{l,l^{\prime}=1}^{L-1}\sum_{j,j^{\prime}=1}^{J_{S,ti}}\sum_{k,k^{\prime}=1}^{K_{S,ti}}1}, (15)

with ϕS,t,i\phi_{S,t,-i} corresponding to the quantity in 14 computed leaving out cluster ii.

2.5 Updation of β𝐭\mathbf{\beta_{t}}’s using James-Stein’s estimator

Across dental visits at times t=1,,Tt=1,\cdots,T, the proposed models estimate effects βP,t,g\beta_{P,t,g} (for the presence component) and βS,t,g\beta_{S,t,g} (for the severity component), where g=1,,qg=1,\cdots,q. That is, each coefficient is estimated across the TT timepoints, representing the age-specific effects of protective and risk factors on dental fluorosis. To “borrow strength” across estimates at different timepoints and improve each time-specific estimator with respect to its mean squared error (MSE), we employ an empirical Bayes approach: we implement shrinkage with the positive-part James-Stein estimator [James and Stein, 1992] to adjust them towards their means across time.

We first outline the positive-part James-Stein estimator for our presence model. Let the vector 𝜷𝑷,𝒈\bm{\beta_{P,g}} denote the collection of time-specific coefficients for the gg-th predictor across timepoints t=1,,Tt=1,\cdots,T: 𝜷𝑷,𝒈=(βP,1,g,βP,2,g,βP,T,g)\bm{\beta_{P,g}}=(\beta_{P,1,g},\beta_{P,2,g},\cdots\beta_{P,T,g}) for g=1,,qg=1,\cdots,q. Let SE(β^P,t,g){SE}{(\hat{\beta}_{P,t,g}}) denote the standard error of β^P,t,g\hat{\beta}_{P,t,g}. Then 𝜷^𝑷,𝒈=(β^P,1,g,β^P,2,g,\bm{\hat{\beta}^{*}_{P,g}}=(\hat{\beta}^{*}_{P,1,g},\hat{\beta}^{*}_{P,2,g}, β^P,T,g)\cdots\hat{\beta}^{*}_{P,T,g}) where β^P,t,g=β^P,t,g/SE(β^P,t,g)\hat{\beta}^{*}_{P,t,g}=\hat{\beta}_{P,t,g}/{SE}{(\hat{\beta}_{P,t,g}}) for g=1,,qg=1,\cdots,q. Let the mean of the quantities in 𝜷^𝑷,𝒈\bm{\hat{\beta}^{*}_{P,g}} be denoted by β¯P,g=1Tt=1Tβ^P,t,g\bar{\beta}^{*}_{P,g}=\frac{1}{T}\sum_{t=1}^{T}\hat{\beta}^{*}_{P,t,g}.

Consequently, the positive-part James-Stein estimator for the severity estimates, where 𝜷^𝑷,𝒈𝑱𝑺\bm{\hat{\beta}^{*JS}_{P,g}} of 𝜷𝑷,𝒈\bm{\beta^{*}_{P,g}} is given by

𝜷^𝑷,𝒈𝑱𝑺=β¯P,g+(1(T2)𝜷^𝑷,𝒈2)+(𝜷^𝑷,𝒈β¯P,g),\bm{\hat{\beta}^{*JS}_{P,g}}=\bar{\beta}^{*}_{P,g}+\bigg{(}1-\frac{(T-2)}{||\bm{\hat{\beta}^{*}_{P,g}}||^{2}}\bigg{)}^{+}(\bm{\hat{\beta}^{*}_{P,g}}-\bar{\beta}^{*}_{P,g}), (16)

where (x)+=max(0,x)(x)^{+}=\max(0,x).

Similarly, for severity coefficients 𝜷𝑺,𝒈=(βS,1,g,βS,2,g,βS,T,g)\bm{\beta_{S,g}}=(\beta_{S,1,g},\beta_{S,2,g},\cdots\beta_{S,T,g}) for g=1,,qg=1,\cdots,q, the standardized estimates are 𝜷^𝑺,𝒈=(β^S,1,g/SE(β^S,1,g),,\bm{\hat{\beta}^{*}_{S,g}}=(\hat{\beta}_{S,1,g}/SE({\hat{\beta}}_{S,1,g}),\cdots, β^S,T,g/SE(β^S,T,g))\hat{\beta}_{S,T,g}/SE(\hat{\beta}_{S,T,g})) with mean β¯S,g=1Tt=1TβS,t,g\bar{\beta}^{*}_{S,g}=\frac{1}{T}\sum_{t=1}^{T}\beta^{*}_{S,t,g}. This leads to their corresponding positive-part James-Stein estimators

𝜷^𝑺,𝒈𝑱𝑺=β¯S,g+(1(T2)𝜷𝑺,𝒈2)+(𝜷𝑺,𝒈β¯S,g)\bm{\hat{\beta}^{*JS}_{S,g}}=\bar{\beta}^{*}_{S,g}+\bigg{(}1-\frac{(T-2)}{||\bm{\beta^{*}_{S,g}}||^{2}}\bigg{)}^{+}(\bm{\beta^{*}_{S,g}}-\bar{\beta}^{*}_{S,g}) (17)

3 Analysis of the Iowa Fluoride Study data

3.1 An overview of the data

The Iowa Fluoride Study (IFS) is designed to investigate the relationship between dental fluorosis and various dietary and non-dietary factors in a cohort of Iowa school children. Dental fluorosis, a condition affecting tooth enamel, occurs due to excessive fluoride exposure during early childhood, though it only becomes visible years later after the teeth have erupted [Hong et al., 2006]. This study specifically focuses on the maxillary (upper jaw) incisors, which are among the first teeth to erupt and are significant due to their visibility and esthetic importance. Given their early eruption, the analysis considers exposures to fluoride and other factors between the ages of 0 and 5.

The Fluorosis Risk Index (FRI) is used to assess fluorosis severity, categorizing it into four levels: (0) no fluorosis; (1) less than 50% of the surface area covered by white striations; (2) more than 50% covered by white striations; and (3) substantial pitting, staining, and/or deformity. FRI scores were collected at three time points, corresponding to the ages of 9, 13, and 17. For each tooth, scores are recorded across four zones on the buccal (cheek-facing) surface: C (cervical third, nearest the gum), M (middle third), I (incisal third), and O (incisal edge, tip of the tooth). The distribution of FRI scores across different age groups are shown in Figure 1. There is a noticeable predominance of observations in the lowest fluorosis category, highlighting the relevance of our proposed modeling approach.

Refer to caption
Figure 1: FRI score distribution across age 9, 13, 17, and 23. The FRI categories include: 0=no fluorosis; 1=less than 50% covered by white striations; 2=more than 50% covered by white striations; 3=substantial pitting, staining and/or deformity, considered over the following surface zones (from root to tip): cervical third (C), middle third (M), incisal third (I), and occlusal table (O)

The dataset includes 606 children with available fluorosis outcomes at one or more of these time points and complete covariate information at age 5, resulting in a total of 21,407 surface zone observations. The cohort consists of 425 children assessed at age 9, 419 at age 13, 341 at age 17, and 253 at age 23. The analysis incorporates covariates on categorical variables for tooth location (tooth 7 upper right, lateral incisor as reference; 8 right central; 9 left central; 10 left lateral), tooth zone (I, C, M, or O, with zone I as the reference). Additionally, three continuous covariates measure fluoride exposure from home tap water, professional dental fluoride treatments, and all combined fluoride sources. Other predictors considered include patient age at the time of the dental examination, intake of sugary beverages, tooth brushing frequency, and dental visit frequency. Further details on these predictors are provided in the Appendix (Section 6).

3.2 Estimation Results

The estimation results for the presence and severity models, derived from both separate and combined modeling approaches, are presented in the Tables 1 - 16 below. The model names are abbreviated as A.c.tc.t, B.c.tc.t or C.cP{c_{P}}.cS.t{c_{S}}.t, reflecting the modeling scheme (A: separate presence model, B: separate severity model, C: combined modeling), the assumed correlation structure (c, cPc_{P}, cSc_{S} = 1 for independence, 2 for exchangeable, 3 for AR-1, 4 for jackknifing), and the age group (t=1,2,3,4t=1,2,3,4 corresponding to ages 9,13,17,239,13,17,23 respectively). Thus, model A.1.3 indicates the separate presence model with the exchangeable correlation structure for age group 1717. Similarly, model C.2.2.4 refers to the combined model with exchangeable presence and severity structures for age 23.

These tables provide estimates of the covariate effects on the presence and/or severity of fluorosis. Standard errors of effect estimates are computed via jackknifing over clusters, and are then used to produce standardized estimates. These standardized estimates are further refined by performing James-Stein shrinkage using estimates across different age groups within the same modeling scheme and choice of cluster correlation. The direction of the point estimates indicates the association type, where positive estimates suggest a protective effect of the covariate against fluorosis, and negative estimates imply that the covariate acts as a risk factor. While informative on the direction of association, these estimates do not provide information on statistical significance. To assess the significance of these predictors, we employ a clustered bootstrap procedure to compute 95% confidence intervals. To keep the computational burden in check, we employ a modest bootstrap sample size of B=100B=100, which is deemed adequate for our objectives. Covariates with confidence intervals that do not include zero are considered significant at the 5% level. Furthermore, to account for potential information loss in age-specific models, we utilize James-Stein shrinkage to update the estimates by borrowing strength from predictor estimates across other time points. The updated point estimates, along with their 95% confidence intervals obtained through bootstrapping, are also provided.

From the separate presence models (A.1.1–A.4.4, Tables 1–4), significant risk effects are observed for Total_mgF, Avg_homeppm, Tooth8, Tooth9, ZoneM, ZoneI, and ZoneO, with the risk increasing progressively from the innermost surface (Zone C) to the outermost tip (Zone O). Tooth10 demonstrates a protective effect for its surface zones. For older age groups (age 23), dental_age emerges as a significant protective effect.

From the separate severity models (B.1.1–B.4.1, Tables 5–8), the covariate effects generally align in direction with the presence models (A.1.1–A.4.4); however, significance is not observed for most factors, likely due to the smaller sample size. Notable exceptions include ZoneI and ZoneO, which exhibit significant risk effects, and SugarAddedBeverageOzPerDay, which becomes significant at later ages (ages 17 and 23).

The presence models from the combined modeling approaches (C.1.1.1–C.4.4.1, Tables 9–12) yield findings consistent with the separate models (A.1.1–A.4.4), identifying Avg_homeppm, Tooth8, Tooth9, ZoneM, ZoneI, and ZoneO as significant risk factors. Tooth10 continues to show protective effects on its surfaces at ages 9 and 13.

The severity models from the combined approaches (C.1.1.1–C.4.4.4, Tables 13–16) differ from the separate models (B.1.1–B.4.4) by utilizing the entire fluorosis dataset, resulting in a larger sample size. This improved power enables the detection of significant effects, particularly in models C.4.4.1–C.4.4.4, which employ the data-driven jackknifed cluster correlation structure. BrushingFrequencyPerDay and Avg_homeppm are significant risk factors at early ages (9 and 13), while the former transitions to a protective effect at later ages (17 and 23). Tooth8, ZoneC, ZoneI, and ZoneO remain significant risk factors, with risk increasing from the gum to the tip of the tooth.

4 Discussion

The combined modeling approach using GEEs presents notable advantages over separate modeling techniques by leveraging the entire dataset, rather than specific subsets corresponding to presence and severity. This strategy improves statistical power and captures the full spectrum of outcomes while remaining robust to misspecification of the working correlation structure. Furthermore, the incorporation of James-Stein shrinkage estimators allows for “borrowing strength” across age groups, effectively reducing MSE in parameter estimation and enabling more reliable use of information across all age groups. This methodology thus establishes a strong analytical framework for understanding fluorosis risk and its contributing factors.

The findings from the presence and severity models, spanning both separate and combined approaches, reveal several notable trends in the risk and protective factors associated with dental fluorosis. The observed protective effects for Tooth 10 (upper left lateral incisor) and Tooth 7 (upper right lateral incisor, set as the reference level) at ages 9 and 13 may reflect differences in enamel development and fluoride exposure timing. Lateral incisors (Teeth 7 and 10) begin enamel formation later than central incisors (Teeth 8 and 9), initiating hard tissue formation around 10–12 months of age and completing enamel formation by 4–5 years (Sheoran et al. [2023]). This delayed timeline likely reduces their exposure to fluoride during critical periods of enamel mineralization, decreasing the risk of fluorosis. Additionally, the greater proximal enamel thickness of lateral incisors compared to central incisors (Hall et al. [2007]) may offer additional protection by reducing fluoride uptake and retention.

The significant protective effect of dental_age observed at age 23 may be attributed to behavioral and developmental factors associated with maturity. By this stage in life, individuals are more likely to adopt healthier oral hygiene practices, such as consistent brushing, flossing, and professional dental care, which contribute to better outcomes (Mattila et al. [1998]). Additionally, deviations from scheduled dental visits at this age may reflect an intentional focus on preventive care and specific oral health concerns, further mitigating fluorosis risk. The emergence of SugarAddedBeverageOzPerDay as a significant risk factor in later age groups (ages 17 and 23) highlights the impact of cumulative fluoride exposure and changing dietary behaviors. Adolescents and young adults often increase their intake of sugary beverages, such as sodas and juices, many of which are processed with fluoridated water. While fluorosis primarily develops during early enamel formation (ages 0–5), prolonged fluoride exposure through acidic drinks can exacerbate its appearance later in life by increasing enamel porosity and staining. Early-life studies (Marshall et al. [2004]) have shown that beverages consumed during infancy, including water and juices, significantly contribute to fluorosis risk, suggesting that cumulative fluoride exposure over time compounds the effects observed during adolescence. Similarly, the shift of BrushingFrequencyPerDay from a risk factor at younger ages (9 and 13) to a protective factor at older ages (17 and 23) aligns with prior findings indicating that excessive brushing in childhood, particularly in high-fluoride environments, can elevate fluorosis risk (Mascarenhas and Burt [1998]), while proper brushing habits later in life help mitigate these risks.

The progressive increase in fluorosis risk from Zone C to Zone O (from the gum to the tip of the tooth) underscores the varying susceptibility of enamel surfaces. This trend, consistent across models, is supported by previous research (Kang et al. [2023]), which highlights the structural differences between tooth zones and their corresponding fluoride uptake during enamel formation. Although not statistically significant, Prop_DentAppt and Total_mgF emerged as potential risk factors for fluorosis. Prop_DentAppt likely reflects increased fluoride exposure from professional varnish applications during dental visits in early childhood (Marinho et al. [2002]), while Total_mgF, representing cumulative fluoride intake from water, beverages, and food during ages 0–5, aligns with established evidence linking early-life fluoride exposure to fluorosis risk (Marshall et al. [2004]). These findings emphasize the need for continued monitoring of fluoride sources in preventive dental care for young children.

These findings underscore the contributions of both dietary and non-dietary factors to fluorosis risk. By leveraging GEEs and James-Stein shrinkage estimators, this comprehensive framework provides robust approach to analyzing zero-inflated clustered longitudinal ordinal data. Its adaptability to datasets with similar characteristics broadens its applicability to studies in public health and other disciplines. Insights gained from this framework can inform preventive dental care strategies and shape future research aimed at mitigating fluorosis and improving oral health outcomes.

5 Acknowledgments

This research has been supported by NIH grant R03DE030502.

Table 1: Estimates from models A.1.1-A.1.4, the separate presence models with the independence cluster correlation structure
(a) Model A.1.1 (age 9)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.291 0.281 -1.03 ( -2.479, 0.801) -0.471 ( -2.032, 0.961)
Total_mgF -0.109 0.198 -0.55 ( -2.474, 1.337) -0.638 ( -2.310, 0.838)
SugarAddedBeverageOzPerDay -0.006 0.011 -0.53 ( -2.591, 1.35) -0.333 ( -2.179, 1.262)
BrushingFrequencyPerDay -0.098 0.152 -0.64 ( -2.095, 1.280) -0.327 ( -1.702, 0.939)
Avg_homeppm -0.631 0.211 -2.98 ( -4.969, -1.267)∗- -2.966 ( -4.795, -1.341)∗-
Prop_DentAppt -0.027 0.495 -0.05 ( -1.600, 1.915) -0.060 ( -1.227, 1.574)
Prop_FluorideTreatment 0.126 0.852 0.15 ( -1.574, 1.979) -0.048 ( -1.321, 1.336)
Tooth8 -0.409 0.079 -5.16 ( -6.844, -3.514)∗- -5.107 ( -6.755, -3.477)∗-
Tooth9 -0.407 0.080 -5.08 ( -6.972, -3.390)∗- -4.983 ( -6.658, -3.452)∗-
Tooth10 0.239 0.072 3.34 ( 1.369, 4.828)∗+ 3.160 ( 1.303, 4.715)∗+
ZoneM -0.648 0.112 -5.78 ( -7.550, -4.190)∗- -5.686 ( -7.439, -4.165)∗-
ZoneI -1.553 0.132 -11.77 (-13.043, -10.618)∗- -11.745 (-13.184, -10.634)∗-
ZoneO -2.003 0.145 -13.85 (-15.260, -12.646)∗- -13.840 (-15.306, -12.780)∗-
(b) Model A.1.2 (age 13)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.577 0.485 1.19 ( -0.894, 2.240) 1.040 ( -0.560, 2.029)
Total_mgF 0.043 0.172 0.25 ( -1.544, 2.133) -0.046 ( -1.418, 1.654)
SugarAddedBeverageOzPerDay 0.004 0.008 0.50 ( -1.579, 2.225) 0.336 ( -1.030, 1.776)
BrushingFrequencyPerDay -0.011 0.160 -0.07 ( -1.752, 1.654) -0.327 ( -1.358, 1.193)
Avg_homeppm -0.627 0.207 -3.02 ( -4.971, -0.937)∗- -3.000 ( -4.881, -0.947)∗-
Prop_DentAppt 0.068 0.764 0.09 ( -1.717, 2.117) -0.060 ( -1.319, 1.834)
Prop_FluorideTreatment 0.112 1.096 0.10 ( -1.604, 1.880) -0.048 ( -1.256, 1.483)
Tooth8 -0.200 0.085 -2.34 ( -4.032, 0.014) -2.387 ( -4.046, -0.097)∗-
Tooth9 -0.135 0.089 -1.51 ( -3.224, 0.604) -1.584 ( -3.249, 0.573)
Tooth10 0.163 0.076 2.14 ( 0.659, 4.171)∗+ 2.097 ( 0.787, 3.985)∗+
ZoneM -0.420 0.129 -3.27 ( -5.331, -1.148)∗- -3.264 ( -5.243, -1.299)∗-
ZoneI -1.419 0.162 -8.76 (-10.301, -7.501)∗- -8.757 (-10.170, -7.581)∗-
ZoneO -2.175 0.167 -13.01 (-14.518, -11.858)∗- -12.997 (-14.529, -11.899)∗-
(c) Model A.1.3 (age 17)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.587 0.487 1.21 ( -0.677, 2.703) 1.049 ( -0.394, 2.486)
Total_mgF -0.116 0.186 -0.62 ( -2.522, 1.122) -0.694 ( -2.494, 0.846)
SugarAddedBeverageOzPerDay 0.015 0.009 1.70 ( 0.009, 3.039)∗+ 1.118 ( -0.148, 2.686)
BrushingFrequencyPerDay 0.000 0.196 -0.00 ( -1.776, 2.182) -0.327 ( -1.240, 1.606)
Avg_homeppm -0.745 0.325 -2.29 ( -3.992, -0.798)∗- -2.320 ( -3.820, -0.947)∗-
Prop_DentAppt -0.040 0.918 -0.04 ( -2.113, 1.974) -0.060 ( -1.803, 1.677)
Prop_FluorideTreatment -1.182 1.406 -0.84 ( -2.836, 2.000) -0.048 ( -2.211, 1.497)
Tooth8 -0.351 0.091 -3.85 ( -5.659, -2.287)∗- -3.847 ( -5.590, -2.274)∗-
Tooth9 -0.244 0.094 -2.59 ( -4.542, -0.763)∗- -2.609 ( -4.686, -0.875)∗-
Tooth10 0.096 0.097 1.00 ( -0.558, 2.646) 1.089 ( -0.191, 2.639)
ZoneM -0.466 0.212 -2.20 ( -3.865, -0.628)∗- -2.240 ( -4.119, -0.959)∗-
ZoneI -1.820 0.258 -7.06 ( -8.484, -5.914)∗- -7.064 ( -8.581, -5.880)∗-
ZoneO -2.550 0.265 -9.62 (-11.246, -8.072)∗- -9.622 (-11.286, -8.058)∗-
(d) Model A.1.4 (age 23)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.716 0.472 1.52 ( -0.011, 3.149) 1.261 ( 0.124, 2.907)∗+
Total_mgF -0.331 0.125 -2.64 ( -3.933, -0.708)∗- -2.188 ( -3.561, -0.257)∗-
SugarAddedBeverageOzPerDay -0.013 0.009 -1.54 ( -3.487, 0.290) -0.993 ( -3.083, 0.389)
BrushingFrequencyPerDay -0.144 0.241 -0.60 ( -2.528, 1.255) -0.327 ( -2.247, 0.756)
Avg_homeppm -0.878 0.348 -2.52 ( -3.901, -1.089)∗- -2.533 ( -3.865, -1.176)∗-
Prop_DentAppt -0.281 1.220 -0.23 ( -1.986, 2.163) -0.060 ( -1.564, 1.483)
Prop_FluorideTreatment 0.555 1.399 0.40 ( -1.027, 1.851) -0.048 ( -0.835, 1.382)
Tooth8 -0.477 0.146 -3.27 ( -5.201, -1.760)∗- -3.280 ( -5.179, -1.795)∗-
Tooth9 -0.432 0.145 -2.99 ( -4.586, -1.411)∗- -2.988 ( -4.562, -1.471)∗-
Tooth10 0.076 0.102 0.74 ( -1.166, 2.651) 0.867 ( -0.950, 2.546)
ZoneM -0.904 0.520 -1.74 ( -3.116, -0.041)∗- -1.795 ( -3.140, -0.162)∗-
ZoneI -2.538 0.603 -4.21 ( -7.400, -0.103)∗- -4.237 ( -7.412, -0.183)∗-
ZoneO -3.361 0.597 -5.63 (-10.582, -0.124)∗- -5.651 (-10.609, -0.196)∗-
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 2: Estimates from models A.2.1-A.2.4, the separate presence models with the exchangeable cluster correlation structure
(a) Model A.2.1 (age 9), ρ^=0.0002\hat{\rho}=-0.0002
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.291 0.281 -1.03 ( -2.479, 0.800) -0.472 ( -2.033, 0.960)
Total_mgF -0.109 0.198 -0.55 ( -2.473, 1.337) -0.638 ( -2.310, 0.839)
SugarAddedBeverageOzPerDay -0.006 0.011 -0.53 ( -2.591, 1.35) -0.333 ( -2.178, 1.262)
BrushingFrequencyPerDay -0.098 0.152 -0.64 ( -2.094, 1.280) -0.327 ( -1.701, 0.939)
Avg_homeppm -0.631 0.211 -2.98 ( -4.969, -1.265)∗- -2.966 ( -4.795, -1.339)∗-
Prop_DentAppt -0.027 0.495 -0.05 ( -1.600, 1.915) -0.060 ( -1.227, 1.574)
Prop_FluorideTreatment 0.127 0.852 0.15 ( -1.573, 1.979) -0.048 ( -1.320, 1.337)
Tooth8 -0.409 0.079 -5.16 ( -6.844, -3.515)∗- -5.106 ( -6.754, -3.477)∗-
Tooth9 -0.407 0.080 -5.08 ( -6.970, -3.389)∗- -4.982 ( -6.656, -3.451)∗-
Tooth10 0.239 0.072 3.34 ( 1.370, 4.831)∗+ 3.161 ( 1.305, 4.718)∗+
ZoneM -0.648 0.112 -5.78 ( -7.551, -4.190)∗- -5.686 ( -7.440, -4.165)∗-
ZoneI -1.553 0.132 -11.77 (-13.042, -10.617)∗- -11.744 (-13.183, -10.632)∗-
ZoneO -2.003 0.145 -13.85 (-15.260, -12.645)∗- -13.839 (-15.306, -12.779)∗-
(b) Model A.2.2 (age 13), ρ^=0.0002\hat{\rho}=-0.0002
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.578 0.485 1.19 ( -0.893, 2.241) 1.040 ( -0.559, 2.030)
Total_mgF 0.043 0.172 0.25 ( -1.540, 2.135) -0.04 ( -1.415, 1.656)
SugarAddedBeverageOzPerDay 0.004 0.008 0.50 ( -1.581, 2.224) 0.335 ( -1.033, 1.774)
BrushingFrequencyPerDay -0.011 0.160 -0.07 ( -1.752, 1.654) -0.327 ( -1.359, 1.193)
Avg_homeppm -0.627 0.208 -3.02 ( -4.971, -0.938)∗- -3.000 ( -4.881, -0.949)∗-
Prop_DentAppt 0.068 0.764 0.09 ( -1.719, 2.117) -0.060 ( -1.320, 1.835)
Prop_FluorideTreatment 0.113 1.096 0.10 ( -1.603, 1.883) -0.048 ( -1.254, 1.484)
Tooth8 -0.200 0.085 -2.34 ( -4.031, 0.016) -2.385 ( -4.043, -0.095)∗-
Tooth9 -0.135 0.089 -1.51 ( -3.224, 0.605) -1.584 ( -3.249, 0.574)
Tooth10 0.163 0.076 2.14 ( 0.660, 4.172)∗+ 2.099 ( 0.788, 3.988)∗+
ZoneM -0.420 0.129 -3.26 ( -5.327, -1.146)∗- -3.262 ( -5.240, -1.295)∗-
ZoneI -1.419 0.162 -8.76 (-10.302, -7.499)∗- -8.756 (-10.171, -7.577)∗-
ZoneO -2.175 0.167 -13.01 (-14.516, -11.857)∗- -12.997 (-14.528, -11.898)∗-
(c) Model A.2.3 (age 17), ρ^=0.0003\hat{\rho}=-0.0003
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.587 0.487 1.21 ( -0.677, 2.703) 1.049 ( -0.394, 2.487)
Total_mgF -0.116 0.186 -0.62 ( -2.520, 1.121) -0.693 ( -2.493, 0.845)
SugarAddedBeverageOzPerDay 0.015 0.009 1.70 ( 0.009, 3.039)∗+ 1.118 ( -0.148, 2.687)
BrushingFrequencyPerDay 0.000 0.196 -0.00 ( -1.773, 2.184) -0.327 ( -1.238, 1.607)
Avg_homeppm -0.745 0.325 -2.29 ( -3.994, -0.802)∗- -2.322 ( -3.822, -0.950)∗-
Prop_DentAppt -0.041 0.918 -0.04 ( -2.115, 1.973) -0.060 ( -1.804, 1.676)
Prop_FluorideTreatment -1.183 1.407 -0.84 ( -2.836, 2.001) -0.048 ( -2.211, 1.498)
Tooth8 -0.351 0.091 -3.85 ( -5.658, -2.287)∗- -3.846 ( -5.590, -2.272)∗-
Tooth9 -0.243 0.094 -2.59 ( -4.540, -0.761)∗- -2.608 ( -4.685, -0.874)∗-
Tooth10 0.097 0.097 1.00 ( -0.556, 2.647) 1.090 ( -0.189, 2.640)
ZoneM -0.466 0.212 -2.20 ( -3.865, -0.626)∗- -2.238 ( -4.120, -0.958)∗-
ZoneI -1.820 0.258 -7.06 ( -8.485, -5.914)∗- -7.063 ( -8.580, -5.880)∗-
ZoneO -2.550 0.265 -9.62 (-11.246, -8.073)∗- -9.622 (-11.285, -8.059)∗-
(d) Model A.2.4 (age 23), ρ^=0.0001\hat{\rho}=-0.0001
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.716 0.472 1.52 ( -0.011, 3.150) 1.261 ( 0.124, 2.909)∗+
Total_mgF -0.331 0.125 -2.64 ( -3.933, -0.708)∗- -2.187 ( -3.560, -0.257)∗-
SugarAddedBeverageOzPerDay -0.013 0.009 -1.54 ( -3.489, 0.290) -0.993 ( -3.084, 0.388)
BrushingFrequencyPerDay -0.144 0.241 -0.60 ( -2.528, 1.255) -0.327 ( -2.247, 0.756)
Avg_homeppm -0.878 0.348 -2.52 ( -3.901, -1.090)∗- -2.533 ( -3.865, -1.176)∗-
Prop_DentAppt -0.282 1.220 -0.23 ( -1.986, 2.164) -0.060 ( -1.565, 1.484)
Prop_FluorideTreatment 0.555 1.399 0.40 ( -1.027, 1.851) -0.048 ( -0.835, 1.382)
Tooth8 -0.476 0.146 -3.27 ( -5.201, -1.759)∗- -3.279 ( -5.179, -1.794)∗-
Tooth9 -0.432 0.145 -2.99 ( -4.585, -1.411)∗- -2.988 ( -4.562, -1.471)∗-
Tooth10 0.076 0.102 0.74 ( -1.166, 2.651) 0.868 ( -0.950, 2.547)
ZoneM -0.904 0.520 -1.74 ( -3.116, -0.059)∗- -1.795 ( -3.140, -0.165)∗-
ZoneI -2.538 0.603 -4.21 ( -7.400, -0.135)∗- -4.238 ( -7.412, -0.193)∗-
ZoneO -3.361 0.597 -5.63 (-10.584, -0.161)∗- -5.652 (-10.611, -0.209)∗-
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 3: Estimates from models A.3.1-A.3.4, the separate presence models with the AR(1) cluster correlation structure
(a) Model A.3.1 (age 9), ρ^=0.0665\hat{\rho}=-0.0665
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.161 0.267 -0.60 (-2.127, 1.186) 0.151 (-0.965, 1.150)
Total_mgF -0.121 0.185 -0.65 (-2.024, 1.303) -0.776 (-1.909, 0.647)
SugarAddedBeverageOzPerDay -0.005 0.010 -0.49 (-2.429, 1.345) -0.234 (-2.204, 1.078)
BrushingFrequencyPerDay -0.049 0.146 -0.34 (-1.794, 1.828) -0.202 (-1.292, 1.378)
Avg_homeppm -0.613 0.190 -3.23 (-4.152, -0.854)∗- -3.125 (-4.043, -1.011)∗-
Prop_DentAppt 0.055 0.472 0.12 (-1.450, 1.998) 0.164 (-0.828, 1.654)
Prop_FluorideTreatment -0.063 0.820 -0.08 (-1.579, 1.641) -0.286 (-1.172, 0.890)
Tooth8 -0.319 0.080 -4.00 (-4.827, -0.190)∗- -3.738 (-4.711, -0.481)∗-
Tooth9 -0.331 0.080 -4.15 (-5.093, -0.453)∗- -3.851 (-4.809, -0.273)∗-
Tooth10 0.241 0.069 3.51 ( 0.476, 4.601)∗+ 3.285 ( 0.660, 4.524)∗+
ZoneM -1.608 0.496 -3.24 (-7.422, 0.574) -2.769 (-7.048, 0.309)
ZoneI -1.635 0.531 -3.08 (-6.198, 0.354) -2.990 (-6.729, 0.247)
ZoneO -1.701 0.518 -3.28 (-6.213, 0.069) -3.260 (-5.938, -0.057)∗-
(b) Model A.3.2 (age 13), ρ^=0.0394\hat{\rho}=-0.0394
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.346 0.444 0.78 ( -0.909, 1.923) 0.608 ( -0.460, 1.533)
Total_mgF -0.122 0.172 -0.71 ( -2.276, 1.237) -0.796 ( -2.010, 0.656)
SugarAddedBeverageOzPerDay 0.011 0.008 1.31 ( -0.756, 2.681) 1.007 ( -0.278, 2.461)
BrushingFrequencyPerDay 0.038 0.149 0.25 ( -1.527, 1.909) -0.202 ( -0.873, 1.298)
Avg_homeppm -0.579 0.244 -2.37 ( -4.373, -0.349)∗- -2.352 ( -4.195, -0.449)∗-
Prop_DentAppt 0.051 0.713 0.07 ( -1.623, 2.120) 0.164 ( -1.129, 1.527)
Prop_FluorideTreatment -0.116 1.055 -0.11 ( -1.698, 1.342) -0.286 ( -1.436, 1.128)
Tooth8 -0.097 0.122 -0.80 ( -2.611, 0.794) -0.881 ( -2.506, 0.360)
Tooth9 0.014 0.131 0.11 ( -1.399, 1.696) -0.045 ( -1.428, 1.265)
Tooth10 0.178 0.083 2.15 ( 0.364, 4.184)∗+ 2.079 ( 0.603, 3.938)∗+
ZoneM 7.772 44.418 0.17 ( -2.470, 0.606) 0.055 ( -1.894, 0.476)
ZoneI -1.764 0.419 -4.20 (-10.645, 0.104) -4.033 (-10.895, -0.083)∗-
ZoneO -2.136 0.404 -5.29 (-10.092, -1.111)∗- -5.173 ( -9.427, -1.030)∗-
(c) Model A.3.3 (age 17), ρ^=0.0505\hat{\rho}=-0.0505
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.673 0.532 1.26 ( -0.573, 2.302) 0.768 ( -0.284, 2.007)
Total_mgF -0.182 0.241 -0.75 ( -2.149, 0.745) -0.809 ( -1.916, 0.335)
SugarAddedBeverageOzPerDay 0.019 0.011 1.75 ( -0.027, 2.810) 1.315 ( -0.147, 2.448)
BrushingFrequencyPerDay -0.054 0.206 -0.26 ( -1.656, 1.548) -0.202 ( -1.086, 1.016)
Avg_homeppm -0.616 0.419 -1.47 ( -2.851, -0.169)∗- -1.535 ( -2.782, -0.379)∗-
Prop_DentAppt 0.485 1.033 0.47 ( -1.348, 1.749) 0.164 ( -1.016, 1.415)
Prop_FluorideTreatment -1.411 1.469 -0.96 ( -2.109, 1.137) -0.286 ( -1.516, 0.812)
Tooth8 -0.109 0.509 -0.21 ( -3.966, 0.515) -0.363 ( -3.862, 0.067)
Tooth9 -0.019 0.457 -0.04 ( -2.875, 1.292) -0.179 ( -2.821, 0.935)
Tooth10 0.010 0.279 0.04 ( -0.946, 1.488) 0.212 ( -0.957, 1.434)
ZoneM 4.504 4.610 0.98 ( -1.365, 1.216) 0.718 ( -1.274, 1.061)
ZoneI 1.081 61.779 0.02 ( -5.070, 0.248) -0.122 ( -4.809, 0.143)
ZoneO -2.921 1.186 -2.46 (-10.165, 0.127) -2.475 (-10.084, 0.049)
(d) Model A.3.4 (age 23), ρ^=0.0629\hat{\rho}=-0.0629
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 1.444 2.228 0.65 (-0.022, 2.337) 0.564 (-0.084, 1.943)
Total_mgF -0.424 0.345 -1.23 (-3.329, -0.162)∗- -0.970 (-2.895, -0.145)∗-
SugarAddedBeverageOzPerDay -0.020 0.016 -1.21 (-2.889, 0.125) -0.732 (-2.532, 0.444)
BrushingFrequencyPerDay -0.306 0.661 -0.46 (-2.486, 1.266) -0.202 (-1.936, 0.652)
Avg_homeppm -0.888 0.583 -1.52 (-3.094, -0.274)∗- -1.583 (-2.972, -0.446)∗-
Prop_DentAppt -0.004 1.694 -0.00 (-1.884, 1.589) 0.164 (-1.592, 1.247)
Prop_FluorideTreatment 0.011 2.301 0.00 (-0.862, 1.311) -0.286 (-0.668, 0.533)
Tooth8 -0.730 0.540 -1.35 (-3.308, -0.209)∗- -1.379 (-3.160, -0.369)∗-
Tooth9 -0.703 0.588 -1.20 (-2.993, -0.197)∗- -1.209 (-2.900, -0.257)∗-
Tooth10 0.107 0.197 0.54 (-0.977, 1.491) 0.659 (-0.673, 1.521)
ZoneM 1.968 64.375 0.03 (-1.666, 0.316) -0.064 (-1.661, 0.356)
ZoneI -2.022 8.627 -0.23 (-3.747, 0.309) -0.355 (-3.792, 0.112)
ZoneO 4.761 52.504 0.09 (-4.233, 0.208) -0.035 (-4.239, 0.109)
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 5: Estimates from models A.4.1-A.4.4, the separate presence models with the jackknifed cluster correlation structure
(a) Model A.4.1 (age 9)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.291 0.281 -1.03 ( -2.530, 0.820) -0.471 ( -1.997, 0.969)
Total_mgF -0.109 0.198 -0.55 ( -2.401, 1.487) -0.638 ( -2.337, 0.883)
SugarAddedBeverageOzPerDay -0.006 0.011 -0.53 ( -2.683, 1.384) -0.335 ( -2.278, 1.279)
BrushingFrequencyPerDay -0.098 0.152 -0.64 ( -2.108, 1.383) -0.329 ( -1.715, 1.083)
Avg_homeppm -0.631 0.211 -2.99 ( -5.019, -1.262)∗- -2.968 ( -4.874, -1.333)∗-
Prop_DentAppt -0.027 0.495 -0.05 ( -1.645, 1.922) -0.059 ( -1.394, 1.581)
Prop_FluorideTreatment 0.125 0.852 0.15 ( -1.541, 1.977) -0.049 ( -1.044, 1.372)
Tooth8 -0.408 0.079 -5.15 ( -6.837, -3.441)∗- -5.098 ( -6.744, -3.479)∗-
Tooth9 -0.406 0.080 -5.07 ( -6.965, -3.359)∗- -4.976 ( -6.645, -3.382)∗-
Tooth10 0.239 0.072 3.34 ( 1.330, 4.851)∗+ 3.159 ( 1.231, 4.734)∗+
ZoneM -0.648 0.112 -5.78 ( -7.537, -4.330)∗- -5.681 ( -7.430, -4.105)∗-
ZoneI -1.553 0.132 -11.77 (-13.099, -10.631)∗- -11.740 (-13.258, -10.618)∗-
ZoneO -2.002 0.145 -13.85 (-15.280, -12.697)∗- -13.837 (-15.353, -12.767)∗-
(b) Model A.4.2 (age 13)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.576 0.485 1.19 ( -0.923, 2.252) 1.038 ( -0.455, 2.071)
Total_mgF 0.043 0.172 0.25 ( -1.435, 2.140) -0.047 ( -1.228, 1.788)
SugarAddedBeverageOzPerDay 0.004 0.008 0.50 ( -1.342, 2.235) 0.336 ( -1.117, 1.711)
BrushingFrequencyPerDay -0.011 0.160 -0.07 ( -1.760, 1.655) -0.329 ( -1.413, 1.212)
Avg_homeppm -0.627 0.207 -3.02 ( -4.985, -1.011)∗- -3.001 ( -4.899, -1.336)∗-
Prop_DentAppt 0.069 0.763 0.09 ( -1.808, 2.192) -0.059 ( -1.343, 1.881)
Prop_FluorideTreatment 0.110 1.096 0.10 ( -1.595, 1.914) -0.049 ( -1.168, 1.536)
Tooth8 -0.200 0.085 -2.34 ( -4.033, 0.006) -2.381 ( -4.049, -0.145)∗-
Tooth9 -0.135 0.089 -1.51 ( -3.236, 0.561) -1.581 ( -3.265, 0.292)
Tooth10 0.163 0.076 2.13 ( 0.609, 4.042)∗+ 2.096 ( 0.762, 3.881)∗+
ZoneM -0.420 0.129 -3.27 ( -5.358, -1.166)∗- -3.264 ( -5.262, -1.479)∗-
ZoneI -1.418 0.162 -8.76 (-10.345, -7.523)∗- -8.758 (-10.102, -7.751)∗-
ZoneO -2.174 0.167 -13.00 (-14.512, -11.767)∗- -12.994 (-14.386, -11.863)∗-
(c) Model A.4.3 (age 17)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.587 0.487 1.21 ( -0.613, 2.742) 1.049 ( -0.416, 2.490)
Total_mgF -0.117 0.186 -0.63 ( -2.590, 1.157) -0.695 ( -2.551, 0.738)
SugarAddedBeverageOzPerDay 0.015 0.009 1.70 ( -0.034, 3.054) 1.119 ( -0.163, 2.691)
BrushingFrequencyPerDay -0.001 0.195 -0.01 ( -1.699, 2.204) -0.329 ( -1.272, 1.619)
Avg_homeppm -0.745 0.325 -2.29 ( -4.046, -0.771)∗- -2.320 ( -3.890, -0.922)∗-
Prop_DentAppt -0.040 0.917 -0.04 ( -2.135, 1.882) -0.059 ( -1.852, 1.750)
Prop_FluorideTreatment -1.181 1.405 -0.84 ( -2.667, 2.037) -0.049 ( -2.281, 1.597)
Tooth8 -0.350 0.091 -3.85 ( -5.719, -2.421)∗- -3.846 ( -5.580, -2.493)∗-
Tooth9 -0.243 0.094 -2.58 ( -4.654, -0.701)∗- -2.605 ( -4.801, -0.881)∗-
Tooth10 0.095 0.097 0.98 ( -0.600, 2.624) 1.076 ( -0.216, 2.619)
ZoneM -0.469 0.212 -2.21 ( -4.053, -0.771)∗- -2.249 ( -4.298, -0.964)∗-
ZoneI -1.818 0.258 -7.05 ( -8.295, -6.010)∗- -7.058 ( -8.431, -6.011)∗-
ZoneO -2.549 0.265 -9.61 (-11.205, -8.188)∗- -9.617 (-11.216, -8.088)∗-
(d) Model A.4.4 (age 23)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.715 0.472 1.52 ( -0.045, 3.141) 1.261 ( 0.112, 2.925)∗+
Total_mgF -0.331 0.125 -2.64 ( -3.956, -0.816)∗- -2.189 ( -3.575, -0.291)∗-
SugarAddedBeverageOzPerDay -0.013 0.009 -1.54 ( -3.160, 0.312) -0.993 ( -2.856, 0.422)
BrushingFrequencyPerDay -0.144 0.241 -0.60 ( -2.604, 1.266) -0.329 ( -2.351, 0.807)
Avg_homeppm -0.878 0.348 -2.52 ( -3.830, -1.082)∗- -2.533 ( -3.805, -1.161)∗-
Prop_DentAppt -0.281 1.219 -0.23 ( -1.951, 1.927) -0.059 ( -1.570, 1.449)
Prop_FluorideTreatment 0.555 1.399 0.40 ( -1.011, 1.875) -0.049 ( -0.874, 1.446)
Tooth8 -0.476 0.146 -3.27 ( -5.190, -1.720)∗- -3.282 ( -5.166, -1.749)∗-
Tooth9 -0.432 0.145 -2.98 ( -4.480, -1.405)∗- -2.987 ( -4.438, -1.470)∗-
Tooth10 0.076 0.102 0.75 ( -1.205, 2.785) 0.869 ( -1.030, 2.363)
ZoneM -0.903 0.520 -1.74 ( -3.158, -0.056)∗- -1.795 ( -3.203, -0.163)∗-
ZoneI -2.538 0.604 -4.21 ( -7.418, -0.130)∗- -4.231 ( -7.429, -0.181)∗-
ZoneO -3.360 0.598 -5.62 (-10.672, -0.154)∗- -5.643 (-10.726, -0.193)∗-
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 5: Estimates from models B.1.1-B.1.4, the separate severity models with the independence cluster correlation structure
(a) Model B.1.1 (age 9)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.493 1.317 -0.37 (-2.346, 1.369) -0.095 (-2.321, 0.915)
Total_mgF -0.599 0.933 -0.64 (-2.465, 2.012) -0.342 (-2.091, 1.421)
SugarAddedBeverageOzPerDay -0.004 0.033 -0.11 (-2.065, 1.086) -0.322 (-1.887, 0.800)
BrushingFrequencyPerDay 0.258 0.758 0.34 (-1.038, 2.632) 0.309 (-0.613, 2.216)
Avg_homeppm -0.105 0.660 -0.16 (-2.171, 0.780) -0.031 (-1.721, 0.415)
Prop_DentAppt -1.152 1.577 -0.73 (-2.688, 1.047) -0.134 (-2.566, 0.753)
Prop_FluorideTreatment 0.556 4.126 0.14 (-1.368, 1.847) -0.193 (-0.740, 1.193)
Tooth8 1.101 0.918 1.20 (-0.910, 2.970) 0.164 (-0.769, 2.331)
Tooth9 0.022 0.565 0.04 (-3.581, 1.444) 0.060 (-3.178, 0.735)
Tooth10 -0.446 1.350 -0.33 (-3.294, 1.542) -0.180 (-3.024, 0.622)
ZoneM -0.710 0.915 -0.78 (-3.138, 2.798) -0.268 (-3.198, 1.994)
ZoneI -1.162 1.015 -1.14 (-3.785, 0.029) -0.532 (-3.534, -0.081)∗-
ZoneO -1.277 0.889 -1.44 (-5.796, -0.646)∗- -0.838 (-5.628, -0.157)∗-
(b) Model B.1.2 (age 13)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 1.393 30.929 0.04 (-0.686, 1.591) -0.095 (-0.323, 1.153)
Total_mgF -0.039 2.858 -0.01 (-1.186, 1.273) -0.342 (-0.898, 0.849)
SugarAddedBeverageOzPerDay -0.013 0.241 -0.06 (-2.260, 1.116) -0.322 (-1.910, 0.632)
BrushingFrequencyPerDay -0.147 15.215 -0.01 (-2.308, 0.542) 0.309 (-1.724, 0.410)
Avg_homeppm -0.410 3.134 -0.13 (-3.957, 0.266) -0.031 (-3.393, 0.298)
Prop_DentAppt -2.567 11.969 -0.21 (-2.670, 0.648) -0.134 (-2.224, 0.685)
Prop_FluorideTreatment 2.227 35.577 0.06 (-0.525, 2.080) -0.193 (-0.463, 1.763)
Tooth8 -0.053 8.129 -0.01 (-2.109, 0.792) 0.164 (-1.520, 0.754)
Tooth9 0.197 0.695 0.28 (-2.846, 0.749) 0.060 (-2.136, 0.369)
Tooth10 -1.283 14.114 -0.09 (-2.692, 0.227) -0.180 (-2.663, 0.120)
ZoneM -0.543 3.682 -0.15 (-1.843, 1.077) -0.268 (-1.587, 0.567)
ZoneI -1.709 1.857 -0.92 (-3.207, 0.103) -0.507 (-3.417, 0.167)
ZoneO 0.197 8.690 0.02 (-1.371, 1.509) -0.420 (-1.250, 1.578)
(c) Model B.1.3 (age 17)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.137 3.667 0.04 ( -0.929, 1.195) -0.095 (-0.318, 0.857)
Total_mgF -1.153 2.087 -0.55 ( -2.348, 1.123) -0.342 (-2.088, 0.369)
SugarAddedBeverageOzPerDay -0.053 0.074 -0.72 ( -3.772, 0.393) -0.322 (-3.415, -0.061)∗-
BrushingFrequencyPerDay 0.489 0.588 0.83 ( -1.039, 1.548) 0.309 (-0.604, 1.213)
Avg_homeppm 0.070 2.518 0.03 ( -1.784, 1.130) -0.031 (-1.422, 0.667)
Prop_DentAppt -1.711 4.908 -0.35 ( -1.556, 1.642) -0.134 (-1.188, 1.363)
Prop_FluorideTreatment -4.012 4.572 -0.88 ( -2.887, 0.508) -0.193 (-2.525, 0.366)
Tooth8 -0.215 0.663 -0.32 ( -2.082, 0.573) 0.164 (-1.845, 0.422)
Tooth9 0.173 1.400 0.12 ( -2.358, 1.591) 0.060 (-1.986, 0.972)
Tooth10 -0.936 2.360 -0.40 ( -1.848, 1.743) -0.180 (-1.832, 1.133)
ZoneM -0.111 1.704 -0.06 ( -9.456, 1.037) -0.268 (-2.602, 0.503)
ZoneI -0.207 3.627 -0.06 (-11.335, 0.900) -0.412 (-5.174, 0.578)
ZoneO -1.671 1.966 -0.85 ( -8.387, 0.029) -0.670 (-4.667, -0.045)∗-
(d) Model B.1.4 (age 23)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.340 3.773 -0.09 (-0.915, 1.017) -0.095 (-0.453, 0.665)
Total_mgF -0.244 1.527 -0.16 (-1.606, 0.392) -0.342 (-1.144, 0.327)
SugarAddedBeverageOzPerDay -0.090 0.225 -0.40 (-4.887, 0.039) -0.322 (-4.285, -0.108)∗-
BrushingFrequencyPerDay 0.149 2.024 0.07 (-1.420, 1.119) 0.309 (-0.871, 0.928)
Avg_homeppm 0.222 1.606 0.14 (-1.035, 1.454) -0.031 (-0.675, 0.801)
Prop_DentAppt 3.210 4.230 0.76 (-0.219, 2.480) -0.134 (-0.464, 2.109)
Prop_FluorideTreatment -0.625 6.839 -0.09 (-1.520, 0.557) -0.193 (-1.236, 0.471)
Tooth8 -1.177 5.517 -0.21 (-1.331, 0.376) 0.164 (-0.974, 0.345)
Tooth9 -1.321 6.484 -0.20 (-2.243, 0.598) 0.060 (-1.788, 0.356)
Tooth10 0.220 2.246 0.10 (-0.988, 1.509) -0.180 (-0.835, 1.005)
ZoneM -0.767 9.005 -0.08 (-3.060, 1.048) -0.268 (-2.851, 0.418)
ZoneI 1.627 5.458 0.30 (-3.235, 1.616) -0.372 (-3.065, 1.169)
ZoneO -1.216 9.511 -0.13 (-3.899, 0.696) -0.463 (-3.777, 0.333)
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 6: Estimates from models B.2.1-B.2.4, the separate severity models with the exchangeable cluster correlation structure
(a) Model B.2.1 (age 9), ρ^=0.0016\hat{\rho}=-0.0016
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.492 1.316 -0.37 (-2.342, 1.369) -0.058 (-2.338, 0.923)
Total_mgF -0.598 0.933 -0.64 (-2.507, 2.012) -0.329 (-2.112, 1.411)
SugarAddedBeverageOzPerDay -0.004 0.033 -0.11 (-2.064, 1.086) -0.387 (-1.901, 0.785)
BrushingFrequencyPerDay 0.258 0.758 0.34 (-1.039, 2.632) 0.222 (-0.538, 2.222)
Avg_homeppm -0.105 0.661 -0.16 (-2.171, 0.780) -0.025 (-1.726, 0.425)
Prop_DentAppt -1.153 1.577 -0.73 (-2.685, 1.047) -0.109 (-2.581, 0.808)
Prop_FluorideTreatment 0.563 4.120 0.14 (-1.368, 1.847) -0.227 (-0.735, 1.223)
Tooth8 1.101 0.918 1.20 (-0.909, 2.962) 0.150 (-0.769, 2.317)
Tooth9 0.022 0.565 0.04 (-3.582, 1.446) -0.078 (-3.205, 0.741)
Tooth10 -0.447 1.35 -0.33 (-3.294, 1.540) -0.344 (-2.902, 0.617)
ZoneM -0.709 0.916 -0.78 (-3.137, 2.797) -0.212 (-3.216, 2.063)
ZoneI -1.162 1.015 -1.14 (-3.830, 0.030) -0.320 (-3.749, -0.149)∗-
ZoneO -1.277 0.889 -1.44 (-5.796, -0.645)∗- -0.799 (-5.631, -0.138)∗-
(b) Model B.2.2 (age 13), ρ^=0.0041\hat{\rho}=-0.0041
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 1.401 6.506 0.21 (-0.705, 1.547) -0.058 (-0.338, 1.135)
Total_mgF -0.030 1.203 -0.02 (-1.298, 1.227) -0.329 (-0.899, 0.852)
SugarAddedBeverageOzPerDay -0.013 0.268 -0.05 (-2.866, 0.971) -0.355 (-2.494, 0.557)
BrushingFrequencyPerDay -0.177 1.703 -0.10 (-2.185, 0.542) 0.222 (-1.763, 0.414)
Avg_homeppm -0.400 1.540 -0.26 (-4.377, 0.269) -0.025 (-3.442, 0.329)
Prop_DentAppt -2.544 10.321 -0.25 (-2.681, 0.648) -0.109 (-2.167, 0.821)
Prop_FluorideTreatment 2.240 25.673 0.09 (-0.512, 2.166) -0.227 (-0.472, 1.768)
Tooth8 -0.065 1.514 -0.04 (-2.453, 0.792) 0.150 (-1.749, 0.765)
Tooth9 0.198 2.108 0.09 (-2.933, 0.747) -0.078 (-2.182, 0.365)
Tooth10 -1.253 1.609 -0.78 (-2.739, 0.218) -0.344 (-2.592, 0.140)
ZoneM -0.546 1.875 -0.29 (-1.957, 1.081) -0.212 (-1.636, 0.573)
ZoneI -1.721 2.966 -0.58 (-3.237, 0.102) -0.292 (-3.439, 0.159)
ZoneO 0.226 2.845 0.08 (-1.354, 1.512) -0.365 (-1.257, 1.545)
(c) Model B.2.3 (age 17), ρ^=0.0013\hat{\rho}=-0.0013
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.136 3.743 0.04 ( -0.939, 1.240) -0.058 (-0.347, 0.905)
Total_mgF -1.154 2.081 -0.55 ( -2.395, 1.127) -0.329 (-2.087, 0.340)
SugarAddedBeverageOzPerDay -0.053 0.078 -0.68 ( -3.729, 0.393) -0.687 (-3.424, -0.04)∗-
BrushingFrequencyPerDay 0.489 0.642 0.76 ( -1.236, 1.551) 0.222 (-0.703, 1.211)
Avg_homeppm 0.072 2.519 0.03 ( -1.839, 1.188) -0.025 (-1.461, 0.797)
Prop_DentAppt -1.710 4.974 -0.34 ( -1.557, 1.836) -0.109 (-1.095, 1.626)
Prop_FluorideTreatment -4.011 4.659 -0.86 ( -2.884, 0.512) -0.227 (-2.530, 0.390)
Tooth8 -0.215 0.752 -0.28 ( -2.152, 0.575) 0.150 (-1.861, 0.433)
Tooth9 0.173 1.461 0.12 ( -2.358, 1.622) -0.078 (-1.996, 0.987)
Tooth10 -0.937 2.406 -0.39 ( -1.870, 1.743) -0.344 (-1.841, 1.147)
ZoneM -0.112 1.770 -0.06 ( -9.229, 1.034) -0.212 (-2.621, 0.502)
ZoneI -0.208 3.654 -0.06 (-12.080, 0.900) -0.266 (-5.287, 0.597)
ZoneO -1.670 1.951 -0.86 (-12.126, 0.029) -0.633 (-4.748, 0.019)
(d) Model B.2.4 (age 23), ρ^=0.0016\hat{\rho}=-0.0016
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.416 3.768 -0.11 (-1.184, 0.828) -0.058 (-0.566, 0.630)
Total_mgF -0.046 0.472 -0.10 (-1.623, 0.390) -0.329 (-1.140, 0.294)
SugarAddedBeverageOzPerDay -0.061 0.032 -1.93 (-5.018, 0.071) -1.340 (-4.435, -0.093)∗-
BrushingFrequencyPerDay -0.107 0.981 -0.11 (-1.424, 1.197) 0.222 (-0.878, 0.911)
Avg_homeppm 0.346 1.192 0.29 (-1.050, 1.445) -0.025 (-0.704, 0.825)
Prop_DentAppt 2.862 3.238 0.88 (-0.234, 2.429) -0.109 (-0.480, 1.929)
Prop_FluorideTreatment -1.428 5.260 -0.27 (-1.491, 0.621) -0.227 (-1.301, 0.516)
Tooth8 -0.410 1.500 -0.27 (-1.223, 0.414) 0.150 (-0.971, 0.365)
Tooth9 -0.462 0.818 -0.56 (-2.260, 0.506) -0.078 (-1.926, 0.353)
Tooth10 0.278 2.224 0.12 (-0.923, 1.467) -0.344 (-0.870, 0.943)
ZoneM 0.461 1.627 0.28 (-3.127, 1.052) -0.212 (-2.922, 0.501)
ZoneI 0.956 1.416 0.68 (-3.495, 1.696) -0.229 (-3.195, 1.167)
ZoneO 0.067 1.764 0.04 (-3.913, 0.842) -0.377 (-3.787, 0.327)
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 7: Estimates from models B.3.1-B.3.4, the separate severity models with the AR(1) cluster correlation structure
(a) Model B.3.1 (age 9), ρ^=0.0067\hat{\rho}=0.0067
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.182 1.322 -0.14 (-1.495, 1.259) 0.092 (-0.390, 0.748)
Total_mgF -0.668 0.961 -0.69 (-2.571, 1.672) -0.215 (-1.887, 1.191)
SugarAddedBeverageOzPerDay -0.010 0.031 -0.31 (-2.217, 0.945) -0.314 (-1.992, 0.270)
BrushingFrequencyPerDay 0.373 0.613 0.61 (-0.671, 2.340) 0.228 (-0.211, 1.814)
Avg_homeppm -0.077 0.596 -0.13 (-2.533, 0.650) -0.125 (-2.058, 0.424)
Prop_DentAppt -1.114 1.623 -0.69 (-2.828, 0.931) -0.222 (-2.489, 0.461)
Prop_FluorideTreatment -1.704 4.292 -0.40 (-1.503, 1.595) -0.077 (-0.786, 0.996)
Tooth8 0.982 0.794 1.24 (-0.920, 2.195) 0.216 (-0.489, 1.454)
Tooth9 0.077 0.535 0.14 (-3.499, 0.929) -0.106 (-3.228, 0.654)
Tooth10 -0.747 0.891 -0.84 (-3.089, 0.745) -0.257 (-2.791, 0.528)
ZoneM -0.644 0.916 -0.70 (-3.137, 2.883) -0.161 (-2.740, 1.932)
ZoneI -1.300 1.113 -1.17 (-3.666, 0.216) -0.385 (-3.038, -0.008)∗-
ZoneO -1.128 1.100 -1.02 (-5.821, -0.471)∗- -0.493 (-5.758, -0.124)∗-
(b) Model B.3.2 (age 13), ρ^=0.0267\hat{\rho}=0.0267
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 1.470 2.764 0.53 (-0.014, 0.824) 0.092 (-0.218, 0.617)
Total_mgF 0.125 1.063 0.12 (-0.309, 1.123) -0.215 (-0.488, 0.420)
SugarAddedBeverageOzPerDay -0.006 0.051 -0.11 (-0.943, 0.608) -0.314 (-0.849, 0.004)
BrushingFrequencyPerDay -0.108 1.075 -0.10 (-0.673, 0.266) 0.228 (-0.292, 0.441)
Avg_homeppm -0.450 2.053 -0.22 (-1.611, 0.207) -0.125 (-0.911, 0.392)
Prop_DentAppt -1.597 5.722 -0.28 (-1.459, 0.587) -0.222 (-1.182, 0.439)
Prop_FluorideTreatment 2.045 15.018 0.14 (-0.546, 1.202) -0.077 (-0.405, 0.345)
Tooth8 -0.268 1.963 -0.14 (-0.754, 0.419) 0.216 (-0.468, 0.386)
Tooth9 -0.527 1.482 -0.36 (-1.975, 0.073) -0.106 (-1.193, 0.121)
Tooth10 -0.039 1.702 -0.02 (-0.747, 0.444) -0.257 (-0.503, 0.440)
ZoneM -0.139 3.508 -0.04 (-0.380, 0.598) -0.161 (-0.505, 0.282)
ZoneI -0.504 1.066 -0.47 (-1.368, 0.192) -0.385 (-1.185, 0.038)
ZoneO -0.451 2.303 -0.20 (-1.394, 0.287) -0.493 (-1.033, 0.062)
(c) Model B.3.3 (age 17), ρ^=0.0337\hat{\rho}=0.0337
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.586 13.500 0.04 ( -0.725, 1.376) 0.092 ( -0.274, 0.775)
Total_mgF -0.566 3.522 -0.16 ( -1.784, 1.373) -0.215 ( -1.383, 0.636)
SugarAddedBeverageOzPerDay -0.046 0.099 -0.47 ( -2.742, 0.207) -0.314 ( -2.661, -0.043)∗-
BrushingFrequencyPerDay 0.363 0.723 0.50 ( -1.112, 1.404) 0.228 ( -0.410, 0.893)
Avg_homeppm -0.592 3.792 -0.16 ( -1.592, 0.874) -0.125 ( -0.986, 0.476)
Prop_DentAppt -1.980 5.863 -0.34 ( -1.549, 1.890) -0.222 ( -0.742, 1.301)
Prop_FluorideTreatment -1.805 12.787 -0.14 ( -2.228, 0.808) -0.077 ( -2.049, 0.336)
Tooth8 -0.171 1.627 -0.10 ( -2.292, 0.405) 0.216 ( -1.788, 0.241)
Tooth9 -0.057 0.973 -0.06 ( -2.141, 1.350) -0.106 ( -1.675, 0.864)
Tooth10 -0.433 2.552 -0.17 ( -1.320, 1.867) -0.257 ( -1.219, 1.215)
ZoneM 0.065 1.608 0.04 ( -7.445, 1.112) -0.161 ( -4.252, 0.554)
ZoneI 0.218 3.599 0.06 (-11.892, 0.679) -0.385 ( -9.824, 0.123)
ZoneO -1.975 2.545 -0.78 (-16.558, 0.033) -0.493 (-15.758, -0.067)∗-
(d) Model B.3.4 (age 23), ρ^=0.0343\hat{\rho}=0.0343
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.980 13.829 -0.07 (-1.268, 0.807) 0.092 (-0.404, 0.585)
Total_mgF -0.204 1.659 -0.12 (-0.971, 0.535) -0.215 (-0.724, 0.343)
SugarAddedBeverageOzPerDay -0.083 0.227 -0.36 (-2.788, 0.056) -0.314 (-2.638, -0.050)∗-
BrushingFrequencyPerDay -0.308 3.132 -0.10 (-1.072, 0.875) 0.228 (-0.411, 0.693)
Avg_homeppm 0.031 4.448 0.01 (-0.880, 1.367) -0.125 (-0.588, 0.658)
Prop_DentAppt 2.626 6.340 0.41 (-0.024, 1.795) -0.222 (-0.350, 1.456)
Prop_FluorideTreatment 4.919 52.720 0.09 (-1.123, 0.512) -0.077 (-0.781, 0.335)
Tooth8 -0.621 4.785 -0.13 (-1.492, 0.168) 0.216 (-0.847, 0.241)
Tooth9 -0.495 3.193 -0.15 (-1.259, 0.314) -0.106 (-0.959, 0.147)
Tooth10 0.037 7.355 0.00 (-0.756, 1.196) -0.257 (-0.716, 0.531)
ZoneM 0.169 2.883 0.06 (-4.100, 0.808) -0.161 (-3.913, 0.307)
ZoneI 0.182 4.332 0.04 (-3.017, 1.243) -0.385 (-2.626, 0.815)
ZoneO 0.073 2.798 0.03 (-3.855, 0.614) -0.493 (-3.735, 0.357)
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 8: Estimates from models B.4.1-B.4.4, the separate severity models with the jackknifed cluster correlation structure
(a) Model B.4.1 (age 9)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.494 1.318 -0.38 (-2.434, 1.356) -0.074 (-1.511, 0.877)
Total_mgF -0.598 0.936 -0.64 (-2.717, 2.055) -0.333 (-1.770, 1.286)
SugarAddedBeverageOzPerDay -0.004 0.033 -0.11 (-2.181, 1.126) -0.387 (-2.302, 0.681)
BrushingFrequencyPerDay 0.259 0.756 0.34 (-0.983, 2.488) 0.241 (-0.706, 1.496)
Avg_homeppm -0.106 0.666 -0.16 (-2.506, 0.783) -0.025 (-2.525, 0.581)
Prop_DentAppt -1.152 1.576 -0.73 (-2.856, 0.804) -0.211 (-2.256, 0.837)
Prop_FluorideTreatment 0.560 4.118 0.14 (-1.285, 1.888) -0.167 (-0.722, 1.122)
Tooth8 1.101 0.918 1.20 (-0.934, 3.121) 0.142 (-0.494, 2.043)
Tooth9 0.022 0.564 0.04 (-3.587, 1.482) -0.009 (-2.961, 0.991)
Tooth10 -0.448 1.347 -0.33 (-3.130, 1.531) -0.370 (-2.605, 0.566)
ZoneM -0.708 0.916 -0.77 (-3.294, 2.787) -0.318 (-2.602, 1.885)
ZoneI -1.161 1.015 -1.14 (-3.575, 0.186) -0.755 (-3.813, -0.151)∗-
ZoneO -1.278 0.889 -1.44 (-5.799, -0.664)∗- -0.787 (-5.629, -0.226)∗-
(b) Model B.4.2 (age 13)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 1.212 6.131 0.20 (-0.399, 1.569) -0.074 (-0.282, 1.286)
Total_mgF -0.051 0.531 -0.10 (-0.986, 1.413) -0.333 (-0.913, 0.803)
SugarAddedBeverageOzPerDay -0.015 0.168 -0.09 (-2.335, 0.974) -0.376 (-1.807, 0.565)
BrushingFrequencyPerDay -0.096 1.610 -0.06 (-2.274, 0.537) 0.241 (-1.518, 0.276)
Avg_homeppm -0.441 1.489 -0.30 (-3.470, 0.263) -0.025 (-1.817, 0.175)
Prop_DentAppt -2.556 3.847 -0.66 (-2.670, 0.647) -0.211 (-2.287, 0.950)
Prop_FluorideTreatment 2.171 10.412 0.21 (-0.527, 2.063) -0.167 (-0.463, 1.463)
Tooth8 -0.011 1.072 -0.01 (-1.931, 0.789) 0.142 (-1.691, 0.773)
Tooth9 0.206 0.702 0.29 (-2.372, 0.767) -0.009 (-0.759, 0.235)
Tooth10 -1.322 1.459 -0.91 (-2.704, 0.151) -0.370 (-2.458, 0.139)
ZoneM -0.509 0.987 -0.52 (-1.998, 1.146) -0.318 (-1.231, 0.212)
ZoneI -1.709 1.294 -1.32 (-3.142, 0.105) -0.830 (-2.943, 0.134)
ZoneO 0.157 2.697 0.06 (-1.355, 1.518) -0.379 (-0.788, 1.629)
(c) Model B.4.3 (age 17)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.141 3.677 0.04 (-0.859, 1.257) -0.074 (-0.311, 0.894)
Total_mgF -1.159 2.108 -0.55 (-2.078, 0.958) -0.333 (-1.913, 0.305)
SugarAddedBeverageOzPerDay -0.053 0.079 -0.67 (-3.779, 0.246) -0.687 (-3.309, -0.253)∗-
BrushingFrequencyPerDay 0.489 0.608 0.80 (-0.963, 1.600) 0.241 (-0.516, 1.154)
Avg_homeppm 0.076 2.518 0.03 (-1.522, 1.548) -0.025 (-1.443, 0.923)
Prop_DentAppt -1.704 4.919 -0.35 (-1.577, 1.756) -0.211 (-1.225, 1.240)
Prop_FluorideTreatment -4.013 4.475 -0.90 (-2.817, 0.811) -0.167 (-2.319, 0.531)
Tooth8 -0.217 0.842 -0.26 (-2.146, 0.550) 0.142 (-1.855, 0.435)
Tooth9 0.171 1.448 0.12 (-2.524, 1.598) -0.009 (-2.084, 0.787)
Tooth10 -0.936 2.430 -0.38 (-1.931, 1.837) -0.370 (-1.840, 1.644)
ZoneM -0.107 1.702 -0.06 (-1.702, 1.112) -0.318 (-1.279, 0.467)
ZoneI -0.214 3.633 -0.06 (-4.944, 0.951) -0.297 (-3.470, 0.625)
ZoneO -1.669 2.024 -0.82 (-4.690, -0.067)∗- -0.620 (-3.967, -0.224)∗-
(d) Model B.4.4 (age 23)
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.672 4.334 -0.15 (-0.921, 0.842) -0.074 (-0.311, 0.615)
Total_mgF -0.031 0.647 -0.05 (-1.583, 0.395) -0.333 (-1.253, 0.297)
SugarAddedBeverageOzPerDay -0.060 0.031 -1.96 (-4.455, 0.025) -1.379 (-3.769, -0.163)∗-
BrushingFrequencyPerDay -0.127 1.013 -0.12 (-1.430, 1.109) 0.241 (-1.260, 0.637)
Avg_homeppm 0.381 1.170 0.33 (-1.061, 1.456) -0.025 (-0.694, 0.780)
Prop_DentAppt 2.873 3.203 0.90 (-0.291, 2.548) -0.211 (-0.478, 1.477)
Prop_FluorideTreatment -0.704 6.088 -0.12 (-1.467, 0.580) -0.167 (-0.797, 0.476)
Tooth8 -0.587 1.613 -0.36 (-1.225, 0.493) 0.142 (-0.901, 0.350)
Tooth9 -0.487 1.005 -0.48 (-2.234, 0.608) -0.009 (-1.556, 0.313)
Tooth10 0.340 2.333 0.15 (-0.965, 1.547) -0.370 (-0.820, 1.338)
ZoneM 0.194 2.421 0.08 (-3.022, 1.029) -0.318 (-1.717, 0.361)
ZoneI 0.903 1.418 0.64 (-3.235, 1.856) -0.003 (-2.833, 1.995)
ZoneO 0.054 1.802 0.03 (-3.899, 0.739) -0.387 (-3.113, 0.276)
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 9: Presence estimates from models C.1.1.1-C.1.1.4, the combined models with the independence and independence presence and severity cluster correlation structures respectively.
(a) Model C.1.1.1 (age 9), γ^1=0.69\hat{\gamma}_{1}=0.69
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.303 0.294 -1.03 ( -2.390, 0.750) -0.409 ( -1.959, 0.864)
Total_mgF -0.095 0.263 -0.36 ( -1.808, 0.910) -0.544 ( -1.400, 0.542)
SugarAddedBeverageOzPerDay -0.006 0.016 -0.42 ( -2.436, 1.479) -0.190 ( -1.931, 1.083)
BrushingFrequencyPerDay -0.072 0.193 -0.37 ( -1.684, 1.177) -0.078 ( -1.133, 0.679)
Avg_homeppm -0.657 0.211 -3.12 ( -4.031, -0.817)∗- -2.878 ( -3.856, -1.005)∗-
Prop_DentAppt -0.192 1.016 -0.19 ( -1.514, 1.618) -0.179 ( -1.133, 1.066)
Prop_FluorideTreatment 0.388 1.434 0.27 ( -1.401, 1.969) 0.215 ( -0.806, 1.318)
Tooth8 -0.229 0.476 -0.48 ( -4.669, -0.038)∗- -0.494 ( -4.358, -0.280)∗-
Tooth9 -0.139 0.839 -0.17 ( -4.953, 0.313) -0.405 ( -4.877, 0.058)
Tooth10 0.370 0.293 1.26 ( 0.181, 3.656)∗+ 0.378 ( 0.116, 3.220)∗+
ZoneM -0.845 0.425 -1.99 ( -5.858, -0.276)∗- -1.488 ( -5.793, -0.455)∗-
ZoneI -1.738 0.542 -3.21 (-11.143, -0.890)∗- -3.107 (-11.111, -1.441)∗-
ZoneO -2.165 0.457 -4.73 (-13.431, -1.264)∗- -4.640 (-13.505, -2.119)∗-
(b) Model C.1.1.2 (age 13), γ^2=0.68\hat{\gamma}_{2}=0.68
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.564 0.548 1.03 ( -0.903, 2.190) 0.872 ( -0.492, 1.889)
Total_mgF 0.012 1.384 0.01 ( -1.254, 1.074) -0.434 ( -1.115, 0.565)
SugarAddedBeverageOzPerDay 0.006 0.020 0.28 ( -0.753, 2.004) -0.116 ( -0.512, 1.293)
BrushingFrequencyPerDay -0.009 0.732 -0.01 ( -1.484, 1.639) -0.078 ( -0.867, 1.040)
Avg_homeppm -0.650 0.528 -1.23 ( -4.492, -0.017)∗- -1.279 ( -4.041, -0.208)∗-
Prop_DentAppt -0.096 3.608 -0.03 ( -1.659, 1.813) -0.179 ( -1.356, 1.376)
Prop_FluorideTreatment 0.324 5.394 0.06 ( -1.577, 1.436) 0.215 ( -1.106, 1.179)
Tooth8 -0.180 0.892 -0.20 ( -2.817, 0.017) -0.494 ( -2.760, -0.129)∗-
Tooth9 -0.101 0.397 -0.25 ( -1.678, 0.476) -0.405 ( -1.509, 0.154)
Tooth10 0.136 0.797 0.17 ( -0.115, 2.301) 0.378 ( 0.077, 2.081)∗+
ZoneM -0.403 0.587 -0.69 ( -3.981, -0.131)∗- -0.748 ( -3.883, -0.282)∗-
ZoneI -1.386 0.515 -2.69 ( -8.976, -0.703)∗- -2.640 ( -8.912, -0.753)∗-
ZoneO -2.130 0.973 -2.19 (-13.857, -1.182)∗- -2.226 (-13.623, -1.162)∗-
(c) Model C.1.1.3 (age 17), γ^3=1.35\hat{\gamma}_{3}=1.35
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.767 0.807 0.95 ( -0.428, 2.545) 0.823 ( -0.292, 2.210)
Total_mgF -0.151 0.251 -0.60 ( -2.154, 0.477) -0.615 ( -1.860, 0.169)
SugarAddedBeverageOzPerDay 0.015 0.022 0.70 ( -0.035, 2.940) -0.072 ( -0.316, 2.507)
BrushingFrequencyPerDay 0.191 0.504 0.38 ( -1.554, 1.784) -0.078 ( -0.835, 1.056)
Avg_homeppm -0.764 0.708 -1.08 ( -3.549, -0.130)∗- -1.150 ( -3.481, -0.332)∗-
Prop_DentAppt -3.431 12.866 -0.27 ( -2.187, 1.575) -0.179 ( -1.890, 0.713)
Prop_FluorideTreatment 1.999 12.174 0.16 ( -2.986, 1.611) 0.215 ( -2.295, 1.036)
Tooth8 -0.099 1.585 -0.06 ( -4.291, -0.062)∗- -0.494 ( -4.121, -0.234)∗-
Tooth9 0.046 1.133 0.04 ( -3.180, 0.321) -0.405 ( -2.982, -0.058)∗+
Tooth10 -0.212 0.937 -0.23 ( -0.961, 2.113) 0.378 ( -0.198, 1.874)
ZoneM -0.350 0.952 -0.37 ( -3.183, 0.311) -0.566 ( -3.218, 0.136)
ZoneI -1.745 1.111 -1.57 ( -7.730, -0.618)∗- -1.625 ( -7.693, -0.536)∗-
ZoneO -2.378 0.765 -3.11 (-10.243, -1.246)∗- -3.096 (-10.237, -1.293)∗-
(d) Model C.1.1.4 (age 23), γ^4=0.04\hat{\gamma}_{4}=0.04
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.713 0.475 1.50 ( -0.052, 3.311) 1.166 ( 0.059, 2.824)∗+
Total_mgF -0.327 0.213 -1.54 ( -3.551, 0.153) -0.895 ( -3.107, 0.112)
SugarAddedBeverageOzPerDay -0.013 0.011 -1.22 ( -2.668, 0.306) -0.275 ( -2.185, 0.336)
BrushingFrequencyPerDay -0.140 0.454 -0.31 ( -2.259, 0.864) -0.078 ( -1.724, 0.545)
Avg_homeppm -0.860 1.151 -0.75 ( -3.587, -0.216)∗- -0.870 ( -3.035, -0.402)∗-
Prop_DentAppt -0.290 1.243 -0.23 ( -2.155, 2.341) -0.179 ( -1.680, 1.338)
Prop_FluorideTreatment 0.576 1.579 0.36 ( -0.998, 1.957) 0.215 ( -0.634, 1.443)
Tooth8 -0.475 0.386 -1.23 ( -5.036, -0.162)∗- -0.494 ( -4.588, -0.377)∗-
Tooth9 -0.433 0.348 -1.24 ( -4.435, -0.054)∗- -0.405 ( -4.276, -0.216)∗-
Tooth10 0.074 0.247 0.30 ( -0.596, 1.597) 0.378 ( -0.355, 1.450)
ZoneM -0.938 3.540 -0.26 ( -6.430, 0.276) -0.508 ( -4.324, 0.052)
ZoneI -2.567 2.334 -1.10 (-21.650, -0.427)∗- -1.198 (-14.149, -0.482)∗-
ZoneO -3.387 2.180 -1.55 (-29.348, -0.726)∗- -1.622 (-18.131, -0.761)∗-
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 10: Presence estimates from models C.2.2.1-C.2.2.4, the combined models with the exchangeable and exchangeable presence and severity cluster correlation structures respectively.
(a) Model C.2.2.1 (age 9), γ^1=0.69\hat{\gamma}_{1}=0.69, ρ^=0.0002\hat{\rho}=-0.0002
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.303 0.294 -1.03 ( -5.345, 0.982) -0.406 ( -4.951, 0.993)
Total_mgF -0.095 0.262 -0.36 ( -4.864, 1.793) -0.534 ( -5.293, 1.497)
SugarAddedBeverageOzPerDay -0.006 0.015 -0.42 ( -5.583, 1.685) -0.261 ( -5.212, 1.692)
BrushingFrequencyPerDay -0.072 0.193 -0.37 ( -3.667, 2.448) -0.136 ( -3.660, 2.415)
Avg_homeppm -0.657 0.211 -3.12 (-15.120, -1.307)∗- -2.926 (-14.687, -1.060)∗-
Prop_DentAppt -0.191 1.009 -0.19 ( -4.404, 1.626) -0.172 ( -4.565, 1.248)
Prop_FluorideTreatment 0.388 1.425 0.27 ( -1.917, 6.940) 0.202 ( -1.776, 6.651)
Tooth8 -0.229 0.475 -0.48 (-15.625, -0.030)∗- -0.574 (-18.242, -0.132)∗-
Tooth9 -0.140 0.837 -0.17 (-16.393, 0.464) -0.385 (-16.834, 0.368)
Tooth10 0.370 0.293 1.26 ( 0.175, 14.307)∗+ 0.367 ( 0.125, 20.795)∗+
ZoneM -0.845 0.422 -2.00 (-25.515, -0.329)∗- -1.474 (-31.529, -0.562)∗-
ZoneI -1.738 0.538 -3.23 (-57.601, -1.393)∗- -3.133 (-63.282, -1.504)∗-
ZoneO -2.165 0.455 -4.76 (-70.050, -1.962)∗- -4.677 (-74.639, -2.165)∗-
(b) Model C.2.2.2 (age 13), γ^2=0.67\hat{\gamma}_{2}=0.67, ρ^=0.0002\hat{\rho}=-0.0002
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.568 0.600 0.95 ( -2.857, 10.804) 0.814 ( -0.609, 12.169)
Total_mgF 0.012 1.917 0.01 ( -2.893, 6.947) -0.353 ( -2.333, 6.151)
SugarAddedBeverageOzPerDay 0.006 0.027 0.21 ( -4.559, 5.269) -0.136 ( -4.338, 3.703)
BrushingFrequencyPerDay -0.008 0.981 -0.01 ( -5.711, 5.697) -0.136 ( -5.266, 5.923)
Avg_homeppm -0.655 0.805 -0.81 (-24.492, -0.023)∗- -0.935 (-23.322, -0.099)∗-
Prop_DentAppt -0.077 4.805 -0.02 ( -6.872, 7.421) -0.172 ( -6.647, 6.541)
Prop_FluorideTreatment 0.301 7.139 0.04 ( -6.940, 5.184) 0.202 ( -6.472, 5.238)
Tooth8 -0.178 1.262 -0.14 (-14.131, 0.267) -0.383 (-13.460, -0.042)∗-
Tooth9 -0.100 0.580 -0.17 ( -9.481, 3.755) -0.387 ( -9.336, 3.709)
Tooth10 0.140 1.118 0.12 ( -0.941, 19.403) 0.367 ( -0.681, 10.512)
ZoneM -0.404 0.731 -0.55 (-21.905, -0.146)∗- -0.664 (-24.171, -0.203)∗-
ZoneI -1.387 0.604 -2.30 (-55.936, -0.824)∗- -2.288 (-59.103, -0.874)∗-
ZoneO -2.132 1.236 -1.73 (-78.306, -1.413)∗- -1.789 (-77.893, -1.440)∗-
(c) Model C.2.2.3 (age 17), γ^3=1.35\hat{\gamma}_{3}=1.35, ρ^=0.0003\hat{\rho}=-0.0003
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.766 0.800 0.96 ( -0.439, 2.528) 0.821 ( -0.387, 2.336)
Total_mgF -0.151 0.257 -0.59 ( -2.159, 0.464) -0.644 ( -1.951, 0.282)
SugarAddedBeverageOzPerDay 0.015 0.023 0.68 ( -0.043, 2.905) -0.042 ( -0.376, 2.537)
BrushingFrequencyPerDay 0.192 0.540 0.36 ( -1.554, 1.852) -0.136 ( -0.953, 1.219)
Avg_homeppm -0.768 0.700 -1.10 ( -3.558, -0.319)∗- -1.179 ( -3.539, -0.477)∗-
Prop_DentAppt -3.417 12.954 -0.26 ( -2.202, 1.919) -0.172 ( -2.291, 1.243)
Prop_FluorideTreatment 2.015 12.258 0.16 ( -2.977, 1.658) 0.202 ( -2.445, 1.494)
Tooth8 -0.096 1.598 -0.06 ( -4.155, -0.068)∗- -0.337 ( -4.128, -0.181)∗-
Tooth9 0.045 1.145 0.04 ( -3.197, 0.366) -0.304 ( -3.093, 0.052)
Tooth10 -0.212 0.952 -0.22 ( -0.962, 2.180) 0.367 ( -0.598, 2.138)
ZoneM -0.348 0.972 -0.36 ( -3.391, 0.325) -0.555 ( -3.297, 0.371)
ZoneI -1.747 1.155 -1.51 ( -7.750, -0.596)∗- -1.579 ( -7.752, -0.444)∗-
ZoneO -2.377 0.784 -3.03 (-10.329, -1.235)∗- -3.031 (-10.231, -1.244)∗-
(d) Model C.2.2.4 (age 23), γ^4=0.25\hat{\gamma}_{4}=-0.25, ρ^=0.0001\hat{\rho}=-0.0001
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.721 0.471 1.53 ( -0.039, 3.559) 1.175 ( 0.096, 2.786)∗+
Total_mgF -0.343 0.184 -1.86 ( -4.877, 0.167) -1.270 ( -3.098, 0.225)
SugarAddedBeverageOzPerDay -0.014 0.010 -1.35 ( -2.960, 0.275) -0.447 ( -2.434, 0.337)
BrushingFrequencyPerDay -0.176 0.339 -0.52 ( -2.252, 0.876) -0.136 ( -1.729, 0.674)
Avg_homeppm -0.984 0.549 -1.79 ( -3.884, -0.175)∗- -1.782 ( -3.144, -0.346)∗-
Prop_DentAppt -0.274 1.241 -0.22 ( -2.162, 2.044) -0.172 ( -1.676, 1.342)
Prop_FluorideTreatment 0.480 1.458 0.33 ( -0.969, 2.790) 0.202 ( -0.772, 1.465)
Tooth8 -0.511 0.247 -2.07 ( -5.758, -0.079)∗- -1.459 ( -4.663, -0.259)∗-
Tooth9 -0.462 0.257 -1.79 ( -4.648, -0.011)∗- -1.021 ( -4.277, -0.274)∗-
Tooth10 0.058 0.191 0.30 ( -0.665, 1.805) 0.367 ( -0.482, 1.528)
ZoneM -0.580 1.876 -0.31 ( -8.567, 0.281) -0.528 ( -5.620, 0.117)
ZoneI -2.323 1.282 -1.81 (-23.472, -0.418)∗- -1.849 (-15.157, -0.484)∗-
ZoneO -3.161 1.207 -2.62 (-36.161, -0.742)∗- -2.639 (-18.716, -0.775)∗-
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 11: Presence estimates from models C.3.3.1-C.3.3.4, the combined models with the AR(1) and AR(1) presence and severity cluster correlation structures respectively.
(a) Model C.3.3.1 (age 9), γ^1=0.97\hat{\gamma}_{1}=0.97, ρ^=0.0562\hat{\rho}=-0.0562
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.254 1.279 -0.20 ( -1.491, 0.799) 0.101 ( -0.276, 0.702)
Total_mgF -0.145 0.997 -0.15 ( -1.142, 1.060) -0.238 ( -0.548, 0.183)
SugarAddedBeverageOzPerDay -0.008 0.045 -0.18 ( -2.219, 0.939) -0.090 ( -1.536, 0.242)
BrushingFrequencyPerDay -0.080 1.483 -0.05 ( -1.314, 0.935) -0.04 ( -0.340, 0.296)
Avg_homeppm -0.556 1.053 -0.53 ( -3.694, -0.106)∗- -0.268 ( -3.438, -0.214)∗-
Prop_DentAppt -0.189 3.047 -0.06 ( -0.991, 1.352) -0.040 ( -0.419, 0.910)
Prop_FluorideTreatment 0.152 4.682 0.03 ( -0.838, 1.167) -0.010 ( -0.339, 0.356)
Tooth8 -0.378 2.222 -0.17 ( -3.416, 0.170) -0.187 ( -3.133, -0.049)∗-
Tooth9 -0.263 2.654 -0.10 ( -3.056, 0.624) -0.132 ( -3.989, 0.101)
Tooth10 0.124 1.546 0.08 ( -0.201, 2.220) 0.048 ( -0.055, 1.697)
ZoneM -0.690 3.438 -0.20 ( -5.157, 0.382) -0.054 ( -5.044, 0.122)
ZoneI -1.580 3.027 -0.52 ( -9.898, 0.011) -0.280 ( -9.874, -0.087)∗-
ZoneO -1.997 2.182 -0.92 (-12.393, 0.048) -0.416 (-12.541, -0.194)∗-
(b) Model C.3.3.2 (age 13), γ^2=0.12\hat{\gamma}_{2}=-0.12, ρ^=0.0442\hat{\rho}=-0.0442
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.269 3.547 0.08 (-0.360, 1.124) 0.101 (-0.154, 0.923)
Total_mgF 0.017 3.491 0.00 (-0.609, 0.544) -0.238 (-0.439, 0.183)
SugarAddedBeverageOzPerDay 0.007 0.083 0.09 (-0.216, 0.638) -0.090 (-0.343, 0.242)
BrushingFrequencyPerDay -0.052 2.071 -0.02 (-0.332, 0.396) -0.04 (-0.246, 0.296)
Avg_homeppm -0.450 5.697 -0.08 (-1.068, 0.007) -0.268 (-1.043, -0.156)∗-
Prop_DentAppt -0.048 4.756 -0.01 (-0.527, 0.521) -0.040 (-0.465, 0.319)
Prop_FluorideTreatment -0.034 8.271 -0.00 (-0.385, 0.488) -0.010 (-0.339, 0.356)
Tooth8 -0.202 2.085 -0.10 (-0.767, 0.097) -0.187 (-0.724, -0.023)∗-
Tooth9 -0.116 1.789 -0.06 (-0.581, 0.154) -0.132 (-0.454, 0.101)
Tooth10 0.065 2.186 0.03 (-0.102, 1.005) 0.048 (-0.055, 0.523)
ZoneM 41.777 996.090 0.04 (-0.363, 0.101) -0.054 (-0.429, 0.122)
ZoneI -1.796 10.542 -0.17 (-1.852, 0.052) -0.280 (-0.810, -0.062)∗-
ZoneO -2.000 6.767 -0.30 (-2.244, -0.179)∗- -0.416 (-1.421, -0.301)∗-
(c) Model C.3.3.3 (age 17), γ^3=4.38\hat{\gamma}_{3}=-4.38, ρ^=0.0293\hat{\rho}=-0.0293
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.559 2.338 0.24 (-0.182, 1.181) 0.101 (-0.173, 0.638)
Total_mgF -0.117 1.030 -0.11 (-0.892, 0.151) -0.238 (-0.711, 0.150)
SugarAddedBeverageOzPerDay 0.013 0.147 0.09 (-0.030, 1.159) -0.090 (-0.343, 0.620)
BrushingFrequencyPerDay -0.001 1.652 -0.00 (-0.625, 0.625) -0.04 (-0.293, 0.296)
Avg_homeppm -0.706 12.051 -0.06 (-1.758, 0.175) -0.268 (-1.775, -0.115)∗-
Prop_DentAppt -0.041 9.593 -0.00 (-0.769, 0.512) -0.040 (-0.389, 0.401)
Prop_FluorideTreatment -1.184 8.149 -0.14 (-0.882, 0.628) -0.010 (-0.339, 0.356)
Tooth8 -0.362 4.277 -0.08 (-1.767, 0.098) -0.187 (-1.185, -0.049)∗-
Tooth9 -0.231 2.957 -0.08 (-1.106, 0.220) -0.132 (-0.693, 0.101)
Tooth10 0.112 3.558 0.03 (-0.136, 0.481) 0.048 (-0.055, 0.439)
ZoneM -0.466 8.438 -0.06 (-0.838, 0.247) -0.054 (-0.818, 0.122)
ZoneI -1.822 17.741 -0.10 (-1.534, 0.156) -0.280 (-0.552, 0.001)
ZoneO -2.553 5.789 -0.44 (-3.316, 0.04) -0.416 (-1.966, -0.130)∗-
(d) Model C.3.3.4 (age 23), γ^4=1.67\hat{\gamma}_{4}=1.67, ρ^=0.1050\hat{\rho}=-0.1050
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.712 2.458 0.29 (-0.008, 2.265) 0.101 (-0.154, 1.562)
Total_mgF -0.331 0.475 -0.70 (-2.842, -0.017)∗- -0.238 (-2.358, 0.150)
SugarAddedBeverageOzPerDay -0.013 0.037 -0.36 (-2.311, 0.049) -0.090 (-1.915, 0.242)
BrushingFrequencyPerDay -0.148 1.517 -0.10 (-1.308, 0.340) -0.04 (-0.402, 0.296)
Avg_homeppm -0.878 2.156 -0.41 (-2.918, 0.012) -0.268 (-2.431, -0.138)∗-
Prop_DentAppt -0.341 4.140 -0.08 (-1.294, 1.518) -0.040 (-0.688, 0.483)
Prop_FluorideTreatment 0.617 8.165 0.08 (-0.487, 1.074) -0.010 (-0.339, 0.356)
Tooth8 -0.481 1.208 -0.40 (-3.362, 0.045) -0.187 (-2.845, -0.049)∗-
Tooth9 -0.449 1.566 -0.29 (-2.716, 0.050) -0.132 (-2.165, 0.075)
Tooth10 0.059 1.196 0.05 (-0.157, 1.099) 0.048 (-0.055, 0.441)
ZoneM -0.908 640.586 -0.00 (-1.401, 0.226) -0.054 (-0.491, 0.149)
ZoneI -2.534 7.805 -0.32 (-4.866, 0.103) -0.280 (-4.070, -0.081)∗-
ZoneO -3.337 278.616 -0.01 (-5.917, 0.054) -0.416 (-5.349, -0.068)∗-
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 12: Presence estimates from models C.4.4.1-C.4.4.4, the combined models with the jackknifed and jackknifed presence and severity cluster correlation structures respectively.
(a) Model C.4.4.1 (age 9), γ^1=0.69\hat{\gamma}_{1}=0.69
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.303 0.294 -1.03 ( -1.743, 0.749) -0.614 (-0.390, 0.817)
Total_mgF -0.095 0.262 -0.36 ( -2.776, 0.821) -0.528 (-0.453, -0.036)∗-
SugarAddedBeverageOzPerDay -0.006 0.015 -0.42 ( -1.865, 1.072) -0.244 (-2.077, 0.213)
BrushingFrequencyPerDay -0.072 0.192 -0.38 ( -2.012, 0.741) 0.058 (-0.431, 0.060)
Avg_homeppm -0.657 0.210 -3.13 ( -5.517, -0.924)∗- -3.045 (-2.742, -2.110)∗-
Prop_DentAppt -0.191 1.009 -0.19 ( -2.133, 0.700) -0.300 (-0.162, 0.512)
Prop_FluorideTreatment 0.386 1.425 0.27 ( -0.898, 2.273) 0.287 (-0.802, 1.075)
Tooth8 -0.228 0.474 -0.48 ( -5.518, -0.010)∗- -0.590 (-1.281, -0.546)∗-
Tooth9 -0.139 0.834 -0.17 ( -5.982, 0.470) -0.362 (-0.608, -0.141)∗-
Tooth10 0.370 0.292 1.26 ( 0.163, 3.865)∗+ 0.321 ( 1.095, 2.048)∗+
ZoneM -0.845 0.422 -2.00 ( -5.782, -0.385)∗- -1.619 (-4.070, -1.115)∗-
ZoneI -1.738 0.538 -3.23 (-13.303, -1.245)∗- -3.210 (-7.935, -1.722)∗-
ZoneO -2.164 0.454 -4.76 (-17.379, -2.288)∗- -4.753 (-9.309, -2.997)∗-
(b) Model C.4.4.2 (age 13), γ^2=0.74\hat{\gamma}_{2}=0.74
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.548 0.547 1.00 ( -0.156, 2.119) 0.987 ( 0.191, 1.359)∗+
Total_mgF 0.013 1.480 0.01 ( -1.071, 1.288) -0.250 (-0.453, -0.170)∗+
SugarAddedBeverageOzPerDay 0.005 0.022 0.23 ( -0.781, 1.900) 0.113 (-0.238, 0.202)
BrushingFrequencyPerDay -0.016 0.732 -0.02 ( -1.358, 1.642) 0.065 (-0.330, 0.060)
Avg_homeppm -0.621 0.638 -0.97 ( -4.457, -0.043)∗- -1.085 (-1.978, -0.498)∗-
Prop_DentAppt -0.167 3.381 -0.05 ( -1.055, 1.542) -0.300 (-0.172, 0.069)
Prop_FluorideTreatment 0.410 5.130 0.08 ( -1.382, 1.221) 0.287 ( 0.070, 0.331)∗+
Tooth8 -0.183 0.948 -0.19 ( -3.152, 0.087) -0.403 (-0.816, -0.624)∗-
Tooth9 -0.099 0.458 -0.22 ( -1.828, 0.408) -0.388 (-0.610, -0.325)∗-
Tooth10 0.124 0.863 0.14 ( -0.098, 2.177) 0.285 ( 0.197, 0.380)∗+
ZoneM -0.406 0.554 -0.73 ( -3.402, -0.078)∗- -0.823 (-2.024, -1.080)∗-
ZoneI -1.387 0.512 -2.71 ( -8.423, -0.883)∗- -2.720 (-5.849, -1.582)∗-
ZoneO -2.123 0.953 -2.23 (-13.466, -1.319)∗- -2.274 (-4.970, -2.841)∗-
(c) Model C.4.4.3 (age 17), γ^3=1.35\hat{\gamma}_{3}=1.35
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.770 0.341 2.26 ( -0.318, 2.269) 1.977 ( 0.761, 2.140)∗+
Total_mgF -0.151 0.118 -1.28 ( -2.524, 1.023) -1.217 (-0.456, -0.286)∗-
SugarAddedBeverageOzPerDay 0.015 0.011 1.47 ( 0.032, 2.732)∗+ 0.791 ( 0.019, 1.287)∗+
BrushingFrequencyPerDay 0.191 0.153 1.25 ( -0.911, 1.550) 0.088 (-0.262, 0.060)
Avg_homeppm -0.764 0.281 -2.72 ( -3.330, -0.794)∗- -2.678 (-2.890, -1.530)∗-
Prop_DentAppt -3.465 4.684 -0.74 ( -1.897, 1.301) -0.300 (-0.171, 0.070)
Prop_FluorideTreatment 2.026 4.384 0.46 ( -2.477, 1.909) 0.287 (-0.598, 0.305)
Tooth8 -0.099 0.600 -0.17 ( -3.640, -0.706)∗- -0.385 (-1.103, -0.836)∗-
Tooth9 0.046 0.447 0.10 ( -2.070, 0.333) -0.220 (-0.478, -0.054)∗+
Tooth10 -0.209 0.360 -0.58 ( -1.107, 2.228) 0.262 ( 0.315, 1.547)∗-
ZoneM -0.352 0.427 -0.82 ( -3.218, 0.580) -0.881 (-2.237, -1.030)∗-
ZoneI -1.741 0.476 -3.65 ( -7.862, -1.194)∗- -3.610 (-6.247, -2.633)∗-
ZoneO -2.374 0.329 -7.22 (-10.346, -3.200)∗- -7.147 (-9.072, -4.268)∗-
(d) Model C.4.4.4 (age 23), γ^4=0.26\hat{\gamma}_{4}=-0.26
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.720 0.477 1.51 ( -0.141, 3.053) 1.388 ( 1.261, 1.976)∗+
Total_mgF -0.343 0.136 -2.52 ( -3.538, 0.158) -2.150 (-0.951, -0.292)∗-
SugarAddedBeverageOzPerDay -0.014 0.010 -1.42 ( -2.444, 0.330) -0.790 (-1.956, 0.054)
BrushingFrequencyPerDay -0.177 0.303 -0.58 ( -1.867, 0.687) 0.055 (-0.400, 0.060)
Avg_homeppm -0.986 0.486 -2.03 ( -3.552, -0.314)∗- -2.045 (-2.210, -0.735)∗-
Prop_DentAppt -0.274 1.232 -0.22 ( -1.802, 2.301) -0.300 (-0.162, 1.099)
Prop_FluorideTreatment 0.479 1.434 0.33 ( -0.954, 1.659) 0.287 (-0.641, 0.034)
Tooth8 -0.512 0.220 -2.33 ( -4.670, -0.085)∗- -1.791 (-1.185, -0.958)∗-
Tooth9 -0.463 0.228 -2.03 ( -4.065, 0.009) -1.342 (-1.340, -0.671)∗-
Tooth10 0.057 0.172 0.33 ( -0.536, 1.558) 0.291 (-0.026, 0.462)
ZoneM -0.570 1.657 -0.34 ( -4.685, 0.279) -0.580 (-1.072, -0.143)∗-
ZoneI -2.318 1.233 -1.88 (-22.611, -0.353)∗- -1.938 (-3.687, -0.807)∗-
ZoneO -3.156 1.161 -2.72 (-32.408, -0.69)∗- -2.754 (-5.382, -1.318)∗-
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 13: Severity estimates from models C.1.1.1-C.1.1.4, the combined models with the independence and independence presence and severity cluster correlation structures respectively.
(a) Model C.1.1.1 (age 9), γ^1=0.69\hat{\gamma}_{1}=0.69
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.209 0.351 -0.59 (-1.212, 0.657) 0.105 (-0.408, 0.451)
Total_mgF -0.065 0.166 -0.39 (-1.179, 0.827) -0.249 (-0.879, 0.382)
SugarAddedBeverageOzPerDay -0.004 0.015 -0.29 (-1.338, 0.945) 0.107 (-0.522, 0.671)
BrushingFrequencyPerDay -0.049 0.133 -0.37 (-0.974, 0.698) -0.007 (-0.579, 0.377)
Avg_homeppm -0.453 0.627 -0.72 (-2.038, 0.665) -0.528 (-1.871, 0.369)
Prop_DentAppt -0.132 0.881 -0.15 (-0.911, 0.790) -0.111 (-0.494, 0.315)
Prop_FluorideTreatment 0.267 1.304 0.20 (-1.043, 1.076) 0.108 (-0.461, 0.434)
Tooth8 -0.158 0.154 -1.02 (-2.617, 0.437) -0.303 (-2.234, 0.348)
Tooth9 -0.096 0.454 -0.21 (-2.597, 0.645) -0.078 (-2.496, 0.406)
Tooth10 0.255 0.501 0.51 (-0.569, 1.449) 0.115 (-0.149, 1.073)
ZoneM -0.583 1.019 -0.57 (-2.338, 0.692) -0.329 (-2.175, 0.389)
ZoneI -1.198 1.881 -0.64 (-2.671, 0.661) -0.481 (-2.483, 0.509)
ZoneO -1.492 2.200 -0.68 (-2.999, 0.618) -0.549 (-3.264, 0.476)
(b) Model C.1.1.2 (age 13), γ^2=0.68\hat{\gamma}_{2}=0.68
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.386 1.212 0.32 (-0.978, 0.972) 0.105 (-0.364, 0.437)
Total_mgF 0.008 1.356 0.01 (-0.901, 0.782) -0.249 (-0.642, 0.291)
SugarAddedBeverageOzPerDay 0.004 0.024 0.16 (-1.024, 0.881) 0.107 (-0.369, 0.607)
BrushingFrequencyPerDay -0.006 0.704 -0.01 (-0.928, 0.566) -0.007 (-0.409, 0.374)
Avg_homeppm -0.444 1.201 -0.37 (-1.606, 0.968) -0.528 (-1.262, 0.752)
Prop_DentAppt -0.065 3.593 -0.02 (-0.713, 1.053) -0.111 (-0.494, 0.440)
Prop_FluorideTreatment 0.221 5.667 0.04 (-1.046, 0.709) 0.108 (-0.494, 0.407)
Tooth8 -0.123 1.152 -0.11 (-1.216, 1.629) -0.303 (-1.034, 1.539)
Tooth9 -0.069 0.534 -0.13 (-0.693, 1.355) -0.078 (-0.651, 1.249)
Tooth10 0.093 0.662 0.14 (-0.664, 1.119) 0.115 (-0.149, 0.688)
ZoneM -0.276 0.730 -0.38 (-1.575, 1.494) -0.329 (-1.177, 1.146)
ZoneI -0.948 2.692 -0.35 (-1.856, 1.812) -0.481 (-1.410, 1.568)
ZoneO -1.457 4.003 -0.36 (-1.825, 1.701) -0.549 (-1.393, 1.432)
(c) Model C.1.1.3 (age 17), γ^3=1.35\hat{\gamma}_{3}=1.35
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 1.034 1.526 0.68 (-0.417, 1.166) 0.105 (-0.342, 0.526)
Total_mgF -0.203 0.343 -0.59 (-1.736, 0.378) -0.249 (-1.139, 0.279)
SugarAddedBeverageOzPerDay 0.021 0.036 0.58 (-0.298, 2.158) 0.107 (-0.337, 1.629)
BrushingFrequencyPerDay 0.257 0.704 0.36 (-0.899, 1.331) -0.007 (-0.380, 0.427)
Avg_homeppm -1.031 1.028 -1.00 (-2.089, 0.251) -0.528 (-1.711, 0.212)
Prop_DentAppt -4.630 17.793 -0.26 (-1.583, 0.745) -0.111 (-0.779, 0.336)
Prop_FluorideTreatment 2.698 15.921 0.17 (-1.436, 0.956) 0.108 (-0.814, 0.386)
Tooth8 -0.134 1.955 -0.07 (-2.742, 0.365) -0.303 (-2.288, 0.314)
Tooth9 0.063 1.451 0.04 (-2.058, 0.435) -0.078 (-1.300, 0.357)
Tooth10 -0.286 1.341 -0.21 (-0.768, 1.055) 0.115 (-0.149, 0.530)
ZoneM -0.473 1.398 -0.34 (-2.262, 0.612) -0.329 (-1.778, 0.442)
ZoneI -2.355 2.576 -0.91 (-2.948, 0.374) -0.481 (-2.459, 0.318)
ZoneO -3.209 2.833 -1.13 (-3.003, 0.375) -0.549 (-2.297, 0.319)
(d) Model C.1.1.4 (age 23), γ^4=0.04\hat{\gamma}_{4}=0.04
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.031 1.774 0.02 (-0.835, 2.284) 0.105 (-0.354, 0.974)
Total_mgF -0.014 0.827 -0.02 (-2.985, 0.750) -0.249 (-1.959, 0.279)
SugarAddedBeverageOzPerDay -0.001 0.035 -0.02 (-1.390, 0.986) 0.107 (-0.759, 0.720)
BrushingFrequencyPerDay -0.006 0.491 -0.01 (-1.623, 1.311) -0.007 (-1.077, 0.561)
Avg_homeppm -0.038 2.472 -0.01 (-2.801, 1.510) -0.528 (-2.211, 0.872)
Prop_DentAppt -0.013 0.808 -0.02 (-1.496, 0.711) -0.111 (-0.758, 0.353)
Prop_FluorideTreatment 0.025 1.332 0.02 (-0.506, 1.152) 0.108 (-0.494, 0.467)
Tooth8 -0.021 1.289 -0.02 (-3.480, 1.455) -0.303 (-2.808, 0.999)
Tooth9 -0.019 1.166 -0.02 (-3.298, 1.389) -0.078 (-2.687, 0.861)
Tooth10 0.003 0.141 0.02 (-0.816, 0.902) 0.115 (-0.159, 0.590)
ZoneM -0.041 1.440 -0.03 (-5.576, 0.544) -0.329 (-4.472, 0.207)
ZoneI -0.112 5.690 -0.02 (-7.463, 1.237) -0.481 (-6.773, 0.830)
ZoneO -0.148 7.761 -0.02 (-7.250, 1.139) -0.549 (-6.590, 0.775)
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 14: Severity estimates from models C.2.2.1-C.2.2.4, the combined models with the exchangeable and exchangeable presence and severity cluster correlation structures respectively.
(a) Model C.2.2.1 (age 9), γ^1=0.69\hat{\gamma}_{1}=0.69, ρ^=0.0008\hat{\rho}=-0.0008
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.208 0.350 -0.59 (-2.810, 0.845) -0.030 (-2.240, 0.741)
Total_mgF -0.065 0.165 -0.40 (-3.277, 1.902) -0.165 (-3.177, 1.568)
SugarAddedBeverageOzPerDay -0.004 0.015 -0.29 (-3.197, 1.618) 0.157 (-2.640, 1.857)
BrushingFrequencyPerDay -0.049 0.132 -0.37 (-2.171, 1.839) 0.036 (-2.399, 1.257)
Avg_homeppm -0.452 0.627 -0.72 (-6.092, 0.711) -0.388 (-5.680, 0.743)
Prop_DentAppt -0.132 0.873 -0.15 (-3.159, 1.248) -0.070 (-3.373, 0.653)
Prop_FluorideTreatment 0.267 1.294 0.21 (-1.467, 3.590) 0.055 (-1.110, 3.439)
Tooth8 -0.158 0.153 -1.03 (-8.755, 0.477) -0.222 (-8.376, 0.702)
Tooth9 -0.096 0.452 -0.21 (-6.511, 0.783) 0.009 (-6.240, 0.823)
Tooth10 0.255 0.501 0.51 (-0.727, 5.266) 0.042 (-0.417, 4.994)
ZoneM -0.582 1.015 -0.57 (-8.361, 0.862) -0.202 (-8.812, 0.787)
ZoneI -1.196 1.875 -0.64 (-8.083, 0.811) -0.331 (-7.728, 0.884)
ZoneO -1.490 2.194 -0.68 (-8.341, 0.789) -0.394 (-8.018, 0.819)
(b) Model C.2.2.2 (age 13), γ^2=0.67\hat{\gamma}_{2}=0.67, ρ^=0.0027\hat{\rho}=-0.0027
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.379 3.929 0.10 (-3.072, 4.766) -0.030 (-2.355, 6.032)
Total_mgF 0.008 1.981 0.00 (-2.561, 2.892) -0.165 (-2.817, 2.221)
SugarAddedBeverageOzPerDay 0.004 0.042 0.09 (-3.248, 3.059) 0.157 (-2.664, 2.544)
BrushingFrequencyPerDay -0.005 0.989 -0.00 (-2.295, 2.487) 0.036 (-1.516, 2.331)
Avg_homeppm -0.438 4.240 -0.10 (-7.153, 2.898) -0.388 (-7.789, 2.052)
Prop_DentAppt -0.051 5.061 -0.01 (-5.034, 1.985) -0.070 (-4.876, 1.775)
Prop_FluorideTreatment 0.201 7.905 0.02 (-3.626, 3.333) 0.055 (-3.481, 3.697)
Tooth8 -0.119 2.116 -0.06 (-5.059, 4.646) -0.222 (-5.063, 4.225)
Tooth9 -0.067 1.170 -0.06 (-3.232, 3.498) 0.009 (-3.624, 3.682)
Tooth10 0.093 1.428 0.06 (-1.502, 5.217) 0.042 (-0.706, 4.476)
ZoneM -0.270 2.808 -0.10 (-6.365, 2.255) -0.202 (-5.629, 1.664)
ZoneI -0.926 9.712 -0.10 (-8.724, 6.751) -0.331 (-7.695, 7.022)
ZoneO -1.424 14.718 -0.10 (-9.328, 6.086) -0.394 (-8.631, 5.741)
(c) Model C.2.2.3 (age 17), γ^3=1.35\hat{\gamma}_{3}=1.35, ρ^=0.0008\hat{\rho}=-0.0008
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 1.034 1.548 0.67 (-0.389, 1.230) -0.030 (-0.339, 1.051)
Total_mgF -0.203 0.346 -0.59 (-1.740, 0.339) -0.165 (-1.355, 0.356)
SugarAddedBeverageOzPerDay 0.021 0.037 0.56 (-0.211, 2.317) 0.157 (-0.361, 2.001)
BrushingFrequencyPerDay 0.259 0.745 0.35 (-0.895, 1.265) 0.036 (-0.479, 0.971)
Avg_homeppm -1.036 1.047 -0.99 (-2.134, 0.242) -0.388 (-2.146, 0.237)
Prop_DentAppt -4.611 17.931 -0.26 (-1.768, 0.747) -0.070 (-1.297, 0.545)
Prop_FluorideTreatment 2.718 15.983 0.17 (-1.593, 0.710) 0.055 (-1.055, 0.466)
Tooth8 -0.130 1.960 -0.07 (-2.510, 0.192) -0.222 (-2.279, 0.239)
Tooth9 0.061 1.451 0.04 (-2.081, 0.358) 0.009 (-1.574, 0.325)
Tooth10 -0.287 1.356 -0.21 (-0.758, 1.128) 0.042 (-0.413, 0.842)
ZoneM -0.469 1.421 -0.33 (-2.295, 0.449) -0.202 (-2.275, 0.390)
ZoneI -2.357 2.696 -0.87 (-3.772, 0.205) -0.331 (-3.508, 0.219)
ZoneO -3.207 2.947 -1.09 (-3.958, 0.204) -0.394 (-3.488, 0.201)
(d) Model C.2.2.4 (age 23), γ^4=0.25\hat{\gamma}_{4}=-0.25, ρ^=0.0004\hat{\rho}=-0.0004
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.184 0.632 -0.29 (-0.894, 2.348) -0.030 (-0.742, 1.440)
Total_mgF 0.087 0.275 0.32 (-3.744, 1.119) -0.165 (-2.835, 0.398)
SugarAddedBeverageOzPerDay 0.004 0.013 0.28 (-1.449, 1.140) 0.157 (-0.963, 0.830)
BrushingFrequencyPerDay 0.045 0.257 0.17 (-1.576, 1.370) 0.036 (-1.147, 0.609)
Avg_homeppm 0.251 0.960 0.26 (-2.827, 1.658) -0.388 (-2.165, 0.858)
Prop_DentAppt 0.070 0.504 0.14 (-1.747, 0.985) -0.070 (-0.775, 0.573)
Prop_FluorideTreatment -0.122 0.673 -0.18 (-0.68, 1.157) 0.055 (-0.493, 0.582)
Tooth8 0.130 0.494 0.26 (-3.609, 1.485) -0.222 (-2.905, 1.024)
Tooth9 0.118 0.446 0.26 (-3.640, 1.570) 0.009 (-2.971, 1.044)
Tooth10 -0.015 0.076 -0.19 (-0.996, 0.649) 0.042 (-0.524, 0.628)
ZoneM 0.148 0.775 0.19 (-5.804, 0.882) -0.202 (-5.443, 0.258)
ZoneI 0.592 2.077 0.28 (-7.365, 1.423) -0.331 (-7.095, 1.041)
ZoneO 0.806 2.815 0.29 (-7.304, 1.451) -0.394 (-7.190, 0.999)
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 15: Severity estimates from models C.3.3.1-C.3.3.4, the combined models with the AR(1) and AR(1) presence and severity cluster correlation structures respectively.
(a) Model C.3.3.1 (age 9), γ^1=0.97\hat{\gamma}_{1}=0.97, ρ^=0.0201\hat{\rho}=-0.0201
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.248 1.219 -0.20 (-1.287, 0.565) -0.061 (-0.244, 0.157)
Total_mgF -0.141 0.976 -0.14 (-0.703, 1.012) -0.028 (-0.256, 0.232)
SugarAddedBeverageOzPerDay -0.008 0.047 -0.16 (-1.287, 0.432) -0.054 (-0.254, 0.158)
BrushingFrequencyPerDay -0.078 1.391 -0.06 (-0.749, 0.887) -0.015 (-0.216, 0.232)
Avg_homeppm -0.541 1.143 -0.47 (-1.707, 0.419) -0.109 (-0.711, 0.190)
Prop_DentAppt -0.184 2.981 -0.06 (-1.044, 0.493) -0.013 (-0.335, 0.175)
Prop_FluorideTreatment 0.148 4.512 0.03 (-0.482, 1.170) 0.024 (-0.156, 0.280)
Tooth8 -0.368 2.135 -0.17 (-1.912, 0.270) -0.033 (-0.344, 0.152)
Tooth9 -0.256 2.532 -0.10 (-1.476, 0.601) -0.017 (-0.364, 0.246)
Tooth10 0.120 1.369 0.09 (-0.403, 1.688) 0.010 (-0.146, 0.481)
ZoneM -0.671 2.041 -0.33 (-2.517, 0.407) -0.086 (-0.602, 0.446)
ZoneI -1.537 2.632 -0.58 (-2.744, 0.246) -0.132 (-1.523, 0.202)
ZoneO -1.944 2.214 -0.88 (-2.627, 0.199) -0.213 (-1.137, 0.107)
(b) Model C.3.3.2 (age 13), γ^2=0.12\hat{\gamma}_{2}=-0.12, ρ^=0.0094\hat{\rho}=0.0094
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.033 87.166 -0.00 (-0.161, 0.164) -0.061 (-0.244, 0.157)
Total_mgF -0.002 8.574 -0.00 (-0.200, 0.113) -0.028 (-0.241, 0.232)
SugarAddedBeverageOzPerDay -0.001 0.659 -0.00 (-0.132, 0.166) -0.054 (-0.236, 0.158)
BrushingFrequencyPerDay 0.006 7.353 0.00 (-0.216, 0.166) -0.015 (-0.216, 0.232)
Avg_homeppm 0.056 84.278 0.00 (-0.174, 0.138) -0.109 (-0.358, 0.190)
Prop_DentAppt 0.006 19.753 0.00 (-0.135, 0.138) -0.013 (-0.335, 0.175)
Prop_FluorideTreatment 0.004 21.510 0.00 (-0.160, 0.143) 0.024 (-0.156, 0.280)
Tooth8 0.025 32.343 0.00 (-0.112, 0.187) -0.033 (-0.329, 0.152)
Tooth9 0.014 28.104 0.00 (-0.113, 0.171) -0.017 (-0.277, 0.246)
Tooth10 -0.008 17.846 -0.00 (-0.133, 0.147) 0.010 (-0.146, 0.330)
ZoneM -5.183 94.722 -0.06 (-0.239, 0.166) -0.086 (-0.340, 0.214)
ZoneI 0.223 179.678 0.00 (-0.170, 0.179) -0.132 (-0.309, 0.202)
ZoneO 0.248 281.828 0.00 (-0.144, 0.188) -0.213 (-0.372, 0.107)
(c) Model C.3.3.3 (age 17), γ^3=4.38\hat{\gamma}_{3}=-4.38, ρ^=0.0022\hat{\rho}=0.0022
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -2.449 50.657 -0.05 (-0.318, 0.304) -0.061 (-0.244, 0.157)
Total_mgF 0.513 12.054 0.04 (-0.511, 0.151) -0.028 (-0.230, 0.232)
SugarAddedBeverageOzPerDay -0.056 1.296 -0.04 (-0.200, 0.413) -0.054 (-0.223, 0.158)
BrushingFrequencyPerDay 0.005 3.387 0.00 (-0.298, 0.371) -0.015 (-0.216, 0.232)
Avg_homeppm 3.093 65.623 0.05 (-0.321, 0.205) -0.109 (-0.351, 0.190)
Prop_DentAppt 0.181 7.811 0.02 (-0.223, 0.233) -0.013 (-0.335, 0.175)
Prop_FluorideTreatment 5.189 104.072 0.05 (-0.289, 0.178) 0.024 (-0.156, 0.280)
Tooth8 1.585 31.719 0.05 (-0.291, 0.186) -0.033 (-0.333, 0.152)
Tooth9 1.013 23.461 0.04 (-0.325, 0.253) -0.017 (-0.302, 0.246)
Tooth10 -0.492 8.658 -0.06 (-0.210, 0.250) 0.010 (-0.146, 0.317)
ZoneM 2.044 47.644 0.04 (-0.282, 0.247) -0.086 (-0.353, 0.214)
ZoneI 7.986 126.181 0.06 (-0.303, 0.304) -0.132 (-0.311, 0.202)
ZoneO 11.193 227.662 0.05 (-0.443, 0.243) -0.213 (-0.372, 0.107)
(d) Model C.3.3.4 (age 23), γ^4=1.67\hat{\gamma}_{4}=1.67, ρ^=0.0186\hat{\rho}=0.0186
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 1.192 139.820 0.01 (-0.433, 0.682) -0.061 (-0.244, 0.157)
Total_mgF -0.554 63.770 -0.01 (-0.916, 0.515) -0.028 (-0.645, 0.232)
SugarAddedBeverageOzPerDay -0.022 2.327 -0.01 (-0.701, 0.469) -0.054 (-0.236, 0.158)
BrushingFrequencyPerDay -0.247 33.522 -0.01 (-0.491, 0.340) -0.015 (-0.216, 0.232)
Avg_homeppm -1.469 153.014 -0.01 (-0.880, 0.467) -0.109 (-0.351, 0.190)
Prop_DentAppt -0.571 40.711 -0.01 (-0.658, 0.314) -0.013 (-0.335, 0.175)
Prop_FluorideTreatment 1.033 82.104 0.01 (-0.212, 0.546) 0.024 (-0.156, 0.280)
Tooth8 -0.804 90.346 -0.01 (-0.945, 0.442) -0.033 (-0.431, 0.152)
Tooth9 -0.751 83.586 -0.01 (-0.916, 0.440) -0.017 (-0.393, 0.246)
Tooth10 0.098 12.805 0.01 (-0.416, 0.220) 0.010 (-0.146, 0.322)
ZoneM -1.520 327.114 -0.00 (-1.070, 0.096) -0.086 (-0.731, 0.192)
ZoneI -4.240 487.516 -0.01 (-1.052, 0.432) -0.132 (-0.856, 0.202)
ZoneO -5.585 242.225 -0.02 (-1.029, 0.415) -0.213 (-0.900, 0.118)
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

Table 16: Severity estimates from models C.4.4.1-C.4.4.4, the combined models with the jackknifed and jackknifed presence and severity cluster correlation structures respectively.
(a) Model C.4.4.1 (age 9), γ^1=0.69\hat{\gamma}_{1}=0.69
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.208 0.350 -0.60 (-1.162, 0.692) -0.192 (-0.017, 0.210)
Total_mgF -0.065 0.165 -0.39 (-1.966, 0.773) -0.336 (-0.309, 0.166)
SugarAddedBeverageOzPerDay -0.004 0.015 -0.29 (-1.219, 1.090) 0.368 (-0.490, 0.348)
BrushingFrequencyPerDay -0.050 0.132 -0.38 (-1.106, 0.772) 0.254 ( 0.010, 0.304)∗-
Avg_homeppm -0.453 0.624 -0.72 (-2.021, 0.718) -0.777 (-0.822, -0.651)∗-
Prop_DentAppt -0.132 0.874 -0.15 (-1.068, 0.680) -0.192 (-0.311, 0.149)
Prop_FluorideTreatment 0.266 1.294 0.21 (-0.903, 1.339) 0.134 (-0.384, 0.035)
Tooth8 -0.157 0.154 -1.02 (-2.571, 0.510) -0.258 (-1.147, -0.031)∗-
Tooth9 -0.096 0.451 -0.21 (-2.517, 0.538) 0.011 (-0.748, 0.404)
Tooth10 0.255 0.500 0.51 (-0.594, 1.531) -0.026 ( 0.331, 0.440)∗+
ZoneM -0.582 1.014 -0.57 (-3.386, 1.449) -0.353 (-0.816, -0.309)∗-
ZoneI -1.198 1.872 -0.64 (-3.553, 0.815) -0.682 (-0.994, -0.253)∗-
ZoneO -1.491 2.191 -0.68 (-4.545, 0.790) -0.738 (-1.147, -0.303)∗-
(b) Model C.4.4.2 (age 13), γ^2=0.74\hat{\gamma}_{2}=0.74
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 0.404 1.356 0.30 (-0.708, 0.961) 0.326 (-0.017, 0.210)
Total_mgF 0.010 1.524 0.01 (-0.890, 0.702) -0.336 (-0.309, 0.166)
SugarAddedBeverageOzPerDay 0.004 0.026 0.15 (-0.808, 0.748) 0.368 (-0.063, 0.348)
BrushingFrequencyPerDay -0.012 0.731 -0.02 (-0.885, 0.553) 0.254 ( 0.010, 0.304)∗-
Avg_homeppm -0.458 1.339 -0.34 (-1.486, 0.692) -0.458 (-0.658, -0.205)∗-
Prop_DentAppt -0.123 3.489 -0.04 (-0.626, 0.847) -0.192 (-0.311, 0.149)
Prop_FluorideTreatment 0.302 5.602 0.05 (-0.804, 0.666) 0.134 (-0.199, 0.045)
Tooth8 -0.135 1.270 -0.11 (-1.163, 1.078) -0.258 (-0.759, -0.027)∗-
Tooth9 -0.073 0.560 -0.13 (-0.634, 1.565) 0.011 (-0.577, 0.404)
Tooth10 0.091 0.787 0.12 (-0.382, 1.075) -0.026 ( 0.331, 0.440)∗+
ZoneM -0.299 0.872 -0.34 (-1.203, 1.323) -0.353 (-0.897, -0.295)∗-
ZoneI -1.023 3.139 -0.33 (-2.443, 1.132) -0.466 (-0.768, -0.235)∗-
ZoneO -1.565 4.615 -0.34 (-2.295, 0.959) -0.454 (-0.712, -0.282)∗-
(c) Model C.4.4.3 (age 17), γ^3=1.35\hat{\gamma}_{3}=1.35
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age 1.039 0.505 2.06 (-0.089, 1.241) 1.345 (-0.017, 0.210)
Total_mgF -0.203 0.162 -1.26 (-2.072, 0.236) -0.336 (-0.309, 0.166)
SugarAddedBeverageOzPerDay 0.021 0.016 1.33 (-0.098, 2.392) 0.368 (-0.053, 0.348)
BrushingFrequencyPerDay 0.257 0.215 1.20 (-0.833, 1.204) 0.254 ( 0.010, 0.304)∗+
Avg_homeppm -1.031 0.308 -3.35 (-2.242, 0.077) -2.965 (-0.871, -0.759)∗-
Prop_DentAppt -4.674 6.438 -0.73 (-1.718, 0.610) -0.192 (-0.311, 0.149)
Prop_FluorideTreatment 2.733 5.844 0.47 (-1.263, 1.107) 0.134 (-0.196, 0.082)
Tooth8 -0.134 0.746 -0.18 (-2.277, 0.082) -0.258 (-0.899, -0.034)∗-
Tooth9 0.063 0.595 0.10 (-1.329, 0.280) 0.011 (-0.280, 0.404)
Tooth10 -0.282 0.550 -0.51 (-0.878, 1.171) -0.026 ( 0.331, 0.440)∗-
ZoneM -0.475 0.666 -0.71 (-2.023, 0.428) -0.353 (-1.355, -0.302)∗-
ZoneI -2.348 0.970 -2.42 (-3.057, 0.072) -1.910 (-1.161, -0.253)∗-
ZoneO -3.203 0.955 -3.35 (-2.599, 0.076) -2.963 (-1.066, -0.310)∗-
(d) Model C.4.4.4 (age 23), γ^4=0.26\hat{\gamma}_{4}=-0.26
Variable Estimate SE Standardized Estimate 95% CI James-Stein Estimate 95% CI (James-Stein)
dental_age -0.187 0.623 -0.30 (-0.819, 1.788) -0.021 (-0.017, 0.210)
Total_mgF 0.089 0.296 0.30 (-2.449, 0.739) -0.336 (-0.309, 0.166)
SugarAddedBeverageOzPerDay 0.004 0.012 0.29 (-1.156, 0.949) 0.368 ( 0.008, 0.348)∗+
BrushingFrequencyPerDay 0.046 0.220 0.21 (-1.389, 1.079) 0.254 ( 0.010, 0.304)∗+
Avg_homeppm 0.256 0.929 0.28 (-2.644, 1.426) 0.056 (-0.397, 0.006)
Prop_DentAppt 0.071 0.488 0.14 (-1.286, 0.945) -0.192 (-0.311, 0.149)
Prop_FluorideTreatment -0.124 0.644 -0.19 (-0.562, 1.043) 0.134 (-0.196, 0.058)
Tooth8 0.133 0.478 0.28 (-3.098, 1.296) -0.258 (-0.267, -0.021)∗+
Tooth9 0.120 0.428 0.28 (-3.132, 1.369) 0.011 (-0.239, 0.404)
Tooth10 -0.015 0.067 -0.22 (-0.879, 0.650) -0.026 ( 0.331, 0.440)∗-
ZoneM 0.148 0.675 0.22 (-4.910, 0.567) -0.353 (-0.381, -0.207)∗+
ZoneI 0.601 2.153 0.28 (-6.564, 0.977) -0.048 (-0.245, -0.081)∗+
ZoneO 0.818 2.903 0.28 (-6.307, 0.989) 0.063 (-0.276, -0.031)∗+
  • Superscripts +*+ and *- denote significant positive and negative effects at the 5% significance level, respectively.

References

  • Choo-Wosoba and Datta [2018] H. Choo-Wosoba and S. Datta. Analyzing clustered count data with a cluster-specific random effect zero-inflated conway–maxwell–poisson distribution. Journal of applied statistics, 45(5):799–814, 2018.
  • Choo-Wosoba et al. [2018] H. Choo-Wosoba, J. Gaskins, S. Levy, and S. Datta. A bayesian approach for analyzing zero-inflated clustered count data with dispersion. Statistics in medicine, 37(5):801–812, 2018.
  • Hall et al. [2007] N. E. Hall, S. J. Lindauer, E. Tüfekçi, and B. Shroff. Predictors of variation in mandibular incisor enamel thickness. The Journal of the American Dental Association, 138(6):809–815, 2007.
  • Hong et al. [2006] L. Hong, S. M. Levy, J. J. Warren, B. Broffitt, and J. Cavanaugh. Fluoride intake levels in relation to fluorosis development in permanent maxillary central incisors and first molars. Caries research, 40(6):494–500, 2006.
  • James and Stein [1992] W. James and C. Stein. Estimation with quadratic loss. In Breakthroughs in statistics: Foundations and basic theory, pages 443–460. Springer, 1992.
  • Kang et al. [2021a] T. Kang, J. Gaskins, S. Levy, and S. Datta. A longitudinal bayesian mixed effects model with hurdle conway-maxwell-poisson distribution. Statistics in medicine, 40(6):1336–1356, 2021a.
  • Kang et al. [2021b] T. Kang, S. M. Levy, and S. Datta. Analyzing longitudinal clustered count data with zero inflation: Marginal modeling using the conway–maxwell–poisson distribution. Biometrical journal, 63(4):761–786, 2021b.
  • Kang et al. [2023] T. Kang, J. Gaskins, S. Levy, and S. Datta. Analyzing dental fluorosis data using a novel bayesian model for clustered longitudinal ordinal outcomes with an inflated category. Statistics in medicine, 42(6):745–760, 2023.
  • Kelley and Anderson [2008] M. E. Kelley and S. J. Anderson. Zero inflation in ordinal data: Incorporating susceptibility to response through the use of a mixture model. Statistics in medicine, 27(18):3674–3688, 2008.
  • Liang and Zeger [1986] K.-Y. Liang and S. L. Zeger. Longitudinal data analysis using generalized linear models. Biometrika, 73(1):13–22, 1986.
  • Marinho et al. [2002] V. Marinho, J. Higgins, S. Logan, and A. Sheiham. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database of Systematic Reviews, 2002(3):CD002279, 2002.
  • Marshall et al. [2004] T. A. Marshall, S. M. Levy, J. J. Warren, B. Broffitt, J. M. Eichenberger-Gilmore, and P. J. Stumbo. Associations between intakes of fluoride from beverages during infancy and dental fluorosis of primary teeth. Journal of the American College of Nutrition, 23(2):108–116, 2004.
  • Mascarenhas and Burt [1998] A. K. Mascarenhas and B. A. Burt. Fluorosis risk from early exposure to fluoride toothpaste. Community dentistry and oral epidemiology, 26(4):241–248, 1998.
  • Mattila et al. [1998] M.-L. Mattila, P. Paunio, P. Rautava, A. Ojanlatva, and M. Sillanpää. Changes in dental health and dental health habits from 3 to 5 years of age. Journal of Public Health Dentistry, 58(4):270–274, 1998.
  • McCullagh [1980] P. McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society: Series B (Methodological), 42(2):109–127, 1980.
  • Sheoran et al. [2023] N. Sheoran, S. Garg, A. Dhindsa, B. G. Saraf, V. Juneja, and S. Mavi. Study of developmental defects of enamel in young permanent maxillary incisors in 11–13-year-old indian children for occurrence distribution and associated factors. International Journal of Clinical Pediatric Dentistry, 16(Suppl 2):176, 2023.

6 Appendix

6.1 Covariates in IFS data

6.1.1 Categorical predictors

  • Tooth: tooth locations 7,8,9,10, coded by the universal numbering system. Tooth 7 (upper right, lateral incisor) is treated as the reference level. Teeth 8 and 9 are the two maxillary central incisors (right and left, respectively), and tooth 10 is the upper left, lateral incisor.

  • Zone: tooth zone (C, M, I, O with reference: zone C)

6.1.2 Continuous covariates

  • Avg_homeppm: fluoride exposure from home tap water. It is the average home tap water fluoride level (ppm) reported for all returned questionnaires approximately every 6 months for ages of 0-5, combined through a trapezoidal AUC method.

  • Prop_FluorideTreatment: proportion of times a professional dental fluoride treatment was reported in approximately 6-month intervals for ages of 0-5.

  • Total_mgF: total daily fluoride intake (mg) determined by combining fluoride intake from water, other beverages and selected foods, ingested toothpaste, and dietary fluoride supplements before permanent teeth eruption. The value was computed through an AUC (area under the curve) trapezoidal method using all available data measured approximately every 6 months for ages of 0-5.

  • dental_age: patient age at dental examination. It is the child’s age in years at the time of the dental examination associated with measurement occasion t. In practice, the means of actual dental examination ages are slightly higher than the scheduled ages of 9, 13 and 17, and age is centered by the scheduled time. For instance, the age would be report as 0.17 if the child’s dental appointment is 2 months after the scheduled time.

  • SugarAddedBeverageOzPerDay: daily soda pop intake (oz.) was computed by an AUC trapezoidal method using all available data measured approximately every 6 months for ages of 0-5.

  • BrushingFrequencyPerDay: average of the tooth brushing frequencies per day was reported approximately every 6 months for ages of 0-5 and combined using an AUC trapezoidal approach.

  • Prop_DentAppt: proportion of times a dental visit was reported for approximately 6- month intervals for ages of 0-5.

6.2 Components of the presence GEE

μip,t,jk\displaystyle\mu_{i_{p,t},jk} =exp(α+𝒙𝒊𝒑,𝒕,𝒋𝒌𝜷)1+exp(α+𝒙𝒊𝒑,𝒕,𝒋𝒌𝜷)\displaystyle=\frac{\exp(\alpha+\bm{x_{i_{p,t},jk}^{\prime}\beta})}{1+\exp(\alpha+\bm{x_{i_{p,t},jk}^{\prime}\beta})} (18)
μip,itjk\displaystyle\mu_{i_{p,itjk}} =(μip,111,μip,112,,μip,TipJipKip)T\displaystyle=\big{(}\mu_{i_{p},111},\mu_{i_{p},112},\cdots,\mu_{i_{p},T_{i_{p}}J_{i_{p}}K_{i_{p}}}\big{)}^{T} (19)
μip,t,jkα\displaystyle\partialderivative{\mu_{i_{p,t},jk}}{\alpha} =exp(α+𝒙𝒊𝒑,𝒕,𝒋𝒌𝜷)1+exp(α+𝒙𝒊𝒑,𝒕,𝒋𝒌𝜷)(exp(α+𝒙𝒊𝒑,𝒕,𝒋𝒌𝜷)1+exp(α+𝒙𝒊𝒑,𝒕,𝒋𝒌𝜷))2=μip,t,jk(1μip,t,jk)\displaystyle=\frac{\exp(\alpha+\bm{x_{i_{p,t},jk}^{\prime}\beta})}{1+\exp(\alpha+\bm{x_{i_{p,t},jk}^{\prime}\beta})}-\Bigg{(}\frac{\exp(\alpha+\bm{x_{i_{p,t},jk}^{\prime}\beta})}{1+\exp(\alpha+\bm{x_{i_{p,t},jk}^{\prime}\beta})}\Bigg{)}^{2}=\mu_{i_{p,t},jk}(1-\mu_{i_{p,t},jk}) (20)
μip,t,jkβs\displaystyle\partialderivative{\mu_{i_{p,t},jk}}{\beta_{s}} =μip,t,jk(1μip,t,jk)xitjk,s, where s=1,q\displaystyle=\mu_{i_{p,t},jk}(1-\mu_{i_{p,t},jk})x_{itjk,s}\text{, where }s=1,\cdots q (21)
μipα\displaystyle\partialderivative{\mu_{i_{p}}}{\alpha} =(μip,111α,μip,112α,,μip,TipJipKipα)T\displaystyle=\bigg{(}\partialderivative{\mu_{i_{p},111}}{\alpha},\partialderivative{\mu_{i_{p},112}}{\alpha},\cdots,\partialderivative{\mu_{i_{p},T_{i_{p}}J_{i_{p}}K_{i_{p}}}}{\alpha}\bigg{)}^{T} (22)
μipβs\displaystyle\partialderivative{\mu_{i_{p}}}{\beta_{s}} =(μip,111βs,μip,112βs,,μip,TipJipKipβs)T,for s=1,,q\displaystyle=\bigg{(}\partialderivative{\mu_{i_{p},111}}{\beta_{s}},\partialderivative{\mu_{i_{p},112}}{\beta_{s}},\cdots,\partialderivative{\mu_{i_{p},T_{i_{p}}J_{i_{p}}K_{i_{p}}}}{\beta_{s}}\bigg{)}^{T},\text{for }s=1,\cdots,q (23)
𝒀𝒊𝒑\displaystyle\bm{Y_{i_{p}}} =(Yip,111,Yip,112,,Yip,TipJipKip)T,\displaystyle=(Y_{i_{p},111},Y_{i_{p},112},\cdots,Y_{i_{p},T_{i_{p}}J_{i_{p}}K_{i_{p}}})^{T}, (24)

where the indicators Yip,t,jk=1Y_{i_{p,t},jk}=1 if the corresponding FRI Score is non-zero (in 24).

6.3 Components of the severity GEE

We present the derivations corresponding to L=3L=3, as is the case for the real IFS data. For the case of separate modeling of the severity piece, set γ=1\gamma=1.

μS,is,tjk,1\displaystyle\mu_{S,{i_{s,t}}jk,1} =exp(α1+γ(𝒙𝒕,𝒊𝒔𝒋𝒌𝜷))1+exp(α1+γ(𝒙𝒕,𝒊𝒔𝒋𝒌𝜷))\displaystyle=\frac{\exp(\alpha_{1}+\gamma(\bm{x_{t,{i_{s}}jk}^{\prime}\beta}))}{1+\exp(\alpha_{1}+\gamma(\bm{x_{t,{i_{s}}jk}^{\prime}\beta}))} (25)
μS,is,tjk,2\displaystyle\mu_{S,{i_{s,t}}jk,2} =exp(α2+γ(𝒙𝒕,𝒊𝒔𝒋𝒌𝜷))1+exp(α2+γ(𝒙𝒕,𝒊𝒔𝒋𝒌𝜷))exp(α1+γ(𝒙𝒕,𝒊𝒔𝒋𝒌𝜷))1+exp(α1+γ(𝒙𝒕,𝒊𝒔𝒋𝒌𝜷))\displaystyle=\frac{\exp(\alpha_{2}+\gamma(\bm{x_{t,{i_{s}}jk}^{\prime}\beta}))}{1+\exp(\alpha_{2}+\gamma(\bm{x_{t,{i_{s}}jk}^{\prime}\beta}))}-\frac{\exp(\alpha_{1}+\gamma(\bm{x_{t,{i_{s}}jk}^{\prime}\beta}))}{1+\exp(\alpha_{1}+\gamma(\bm{x_{t,{i_{s}}jk}^{\prime}\beta}))} (26)
μS,is,tjk,3\displaystyle\mu_{S,{i_{s,t}}jk,3} =1exp(α2+γ(𝒙𝒕,𝒊𝒔𝒋𝒌𝜷))1+exp(α2+γ(𝒙𝒕,𝒊𝒔𝒋𝒌𝜷))\displaystyle=1-\frac{\exp(\alpha_{2}+\gamma(\bm{x_{t,{i_{s}}jk}^{\prime}\beta}))}{1+\exp(\alpha_{2}+\gamma(\bm{x_{t,{i_{s}}jk}^{\prime}\beta}))} (27)
μS,is,1\displaystyle\mu_{S,{i_{s}},1} =(μS,is111,1,μS,is112,1,μS,isTisJisKis,1)T\displaystyle=\big{(}\mu_{S,{i_{s}}111,1},\mu_{S,{i_{s}}112,1},\cdots\mu_{S,{i_{s}}T_{i_{s}}J_{i_{s}}K_{i_{s}},1}\big{)}^{T} (28)
μS,is,2\displaystyle\mu_{S,{i_{s}},2} =(μS,is111,2,μS,is112,2,μS,isTisJisKis,2)T\displaystyle=\big{(}\mu_{S,{i_{s}}111,2},\mu_{S,{i_{s}}112,2},\cdots\mu_{S,{i_{s}}T_{i_{s}}J_{i_{s}}K_{i_{s}},2}\big{)}^{T} (29)
μS,is,3\displaystyle\mu_{S,{i_{s}},3} =(μS,is111,3,μS,is112,3,μS,isTisJisKis,3)T\displaystyle=\big{(}\mu_{S,{i_{s}}111,3},\mu_{S,{i_{s}}112,3},\cdots\mu_{S,{i_{s}}T_{i_{s}}J_{i_{s}}K_{i_{s}},3}\big{)}^{T} (30)
μS,is\displaystyle\mu_{S,{i_{s}}} =(μS,is,1,μS,is,2,μS,is,3)\displaystyle=\big{(}\mu_{S,{i_{s}},1},\mu_{S,{i_{s}},2},\mu_{S,{i_{s}},3}\big{)} (31)
μS,istjk,1α1\displaystyle\partialderivative{\mu_{S,{i_{s}tjk},1}}{\alpha_{1}} =μS,istjk,1(1μS,istjk,1)\displaystyle=\mu_{S,{i_{s}tjk},1}(1-\mu_{S,{i_{s}tjk},1}) (32)
μS,istjk,2α1\displaystyle\partialderivative{\mu_{S,{i_{s}tjk},2}}{\alpha_{1}} =μS,istjk,1(1μS,istjk,1)\displaystyle=-\mu_{S,{i_{s}tjk},1}(1-\mu_{S,{i_{s}tjk},1}) (33)
μS,istjk,3α1\displaystyle\partialderivative{\mu_{S,{i_{s}tjk},3}}{\alpha_{1}} =0\displaystyle=0 (34)
μS,istjk,1α2\displaystyle\partialderivative{\mu_{S,{i_{s}tjk},1}}{\alpha_{2}} =0\displaystyle=0 (35)
μS,istjk,2α2\displaystyle\partialderivative{\mu_{S,{i_{s}tjk},2}}{\alpha_{2}} =μS,istjk,2(1μS,istjk,2)\displaystyle=\mu_{S,{i_{s}tjk},2}(1-\mu_{S,{i_{s}tjk},2}) (36)
μS,istjk,3α2\displaystyle\partialderivative{\mu_{S,{i_{s}tjk},3}}{\alpha_{2}} =μS,istjk,2(1μS,istjk,2)\displaystyle=-\mu_{S,{i_{s}tjk},2}(1-\mu_{S,{i_{s}tjk},2}) (37)
μS,istjk,1βr\displaystyle\partialderivative{\mu_{S,{i_{s}tjk},1}}{\beta_{r}} =μS,istjk,1(1μS,istjk,1)xistjk,r for r=1,,q\displaystyle=\mu_{S,{i_{s}tjk},1}(1-\mu_{S,{i_{s}tjk},1})x_{i_{s}tjk,r}\text{ for }r=1,\cdots,q (38)
μS,istjk,2βr\displaystyle\partialderivative{\mu_{S,{i_{s}tjk},2}}{\beta_{r}} =(μS,istjk,2(1μS,istjk,2)μS,istjk,1(1μS,istjk,1))xistjk,r for r=1,,q\displaystyle=\bigg{(}\mu_{S,{i_{s}tjk},2}(1-\mu_{S,{i_{s}tjk},2})-\mu_{S,{i_{s}tjk},1}(1-\mu_{S,{i_{s}tjk},1})\bigg{)}x_{i_{s}tjk,r}\text{ for }r=1,\cdots,q (39)
μS,istjk,3βr\displaystyle\partialderivative{\mu_{S,{i_{s}tjk},3}}{\beta_{r}} =μS,istjk,2(1μS,istjk,2)xistjk,r for r=1,,q\displaystyle=-\mu_{S,{i_{s}tjk},2}(1-\mu_{S,{i_{s}tjk},2})x_{i_{s}tjk,r}\text{ for }r=1,\cdots,q (40)
μS,isα1\displaystyle\partialderivative{\mu_{S,{i_{s}}}}{\alpha_{1}} =(μS,is111α1,μS,is112α1,μS,isTisJisKisα1)T\displaystyle=\bigg{(}\partialderivative{\mu_{S,{i_{s}}111}}{\alpha_{1}},\partialderivative{\mu_{S,{i_{s}}112}}{\alpha_{1}},\cdots\partialderivative{\mu_{S,{i_{s}}T_{i_{s}}J_{i_{s}}K_{i_{s}}}}{\alpha_{1}}\bigg{)}^{T} (41)
μS,isα2\displaystyle\partialderivative{\mu_{S,{i_{s}}}}{\alpha_{2}} =(μS,is111α2,μS,is112α2,μS,isTisJisKisα2)T\displaystyle=\bigg{(}\partialderivative{\mu_{S,{i_{s}}111}}{\alpha_{2}},\partialderivative{\mu_{S,{i_{s}}112}}{\alpha_{2}},\cdots\partialderivative{\mu_{S,{i_{s}}T_{i_{s}}J_{i_{s}}K_{i_{s}}}}{\alpha_{2}}\bigg{)}^{T} (42)
μS,isβr\displaystyle\partialderivative{\mu_{S,{i_{s}}}}{\beta_{r}} =(μS,is111βr,μS,is112βr,μS,isTisJisKisβr)T for r=1,,q\displaystyle=\bigg{(}\partialderivative{\mu_{S,{i_{s}}111}}{\beta_{r}},\partialderivative{\mu_{S,{i_{s}}112}}{\beta_{r}},\cdots\partialderivative{\mu_{S,{i_{s}}T_{i_{s}}J_{i_{s}}K_{i_{s}}}}{\beta_{r}}\bigg{)}^{T}\text{ for }r=1,\cdots,q (43)
𝒀𝒊𝒔𝒕𝒋𝒌\displaystyle\bm{Y_{i_{s}tjk}} =(I(Yistjk=1),I(Yistjk=2),I(Yistjk=3))T\displaystyle=(I(Y_{i_{s}tjk}=1),I(Y_{i_{s}tjk}=2),I(Y_{i_{s}tjk}=3))^{T} (44)
𝒀𝒊𝒔\displaystyle\bm{Y_{i_{s}}} =(𝒀𝒊𝒔𝟏𝟏𝟏𝑻𝒀𝒊𝒔𝟏𝟏𝟐𝑻𝒀𝒊𝒔𝑻𝒊𝒔𝑱𝒊𝒔𝑲𝒊𝒔𝑻)\displaystyle=\begin{pmatrix}\bm{Y_{i_{s}111}^{T}}\\[6.0pt] \bm{Y_{i_{s}112}^{T}}\\[6.0pt] \vdots\\[6.0pt] \bm{Y_{i_{s}T_{i_{s}}J_{i_{s}}K_{i_{s}}}^{T}}\end{pmatrix} (45)