This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Analyticity of the energy in an Ising spin glass with correlated disorder

Hidetoshi Nishimori Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), Wako, Saitama 351-0198, Japan
Abstract

The average energy of the Ising spin glass is known to have no singularity along a special line in the phase diagram although there exists a critical point on the line. This result on the model with uncorrelated disorder is generalized to the case with correlated disorder. For a class of correlations in disorder that suppress frustration, we show that the average energy in a subspace of the phase diagram is expressed as the expectation value of a local gauge variable of the Z2Z_{2} gauge Higgs model, from which we prove that the average energy has no singularity although the subspace is likely to have a phase transition on it. Though it is difficult to obtain an explicit expression of the energy in contrast to the case of uncorrelated disorder, an exact closed-form expression of a physical quantity related to the energy is derived in three dimensions using a duality relation. Identities and inequalities are proved for the specific heat and correlation functions.

I Introduction

The problem of spin glass is one of the most challenging topics in statistical physics [1, 2]. Only a very limited number of exact solutions are known so far, among which the Parisi solution of the mean-field-type Sherrington-Kirkpartick model [3] stands out as a distinguished achievement [4, 5]. Another rare example is the exact solution for the average energy of the Ising spin glass in finite dimensions on a special line in the phase diagram [6, 7, 1]. The resulting expression of the energy is written as a simple hyperbolic tangent of the inverse temperature without any singularity. Since a multicritical point (transition point) lies on this special line in the phase diagram, it is highly non-trivial and counter-intuitive that the exact average energy is an analytic function. Other physical quantities such as the specific heat and magnetic susceptibility are expected to have a singularity at the phase transition, but nothing is known so far exactly or rigorously on those quantities in finite-dimensional models except for the existence of a phase transition on the line as concluded from the existence of ferromagnetic order in the low-temperature side of the line [8] (see also [9] for the continuous-variable case).

Those results concern the Edwards-Anderson model [10], in which disorder of a given interaction bond distributes independently of disorder of other bonds. In real spin glass materials, disorder exists mostly in sites, not in bonds [11]. Edwards and Anderson assumed that properties of spin glasses will be independent of the type of disorder and proposed their model with uncorrelated disorder. One of the important differences between site and bond disorder is the existence or absence of correlation of disorder among nearby bond variables. For example, if the position of a magnetic atom in a metal is affected by disorder, all interactions between this and other atoms are changed in a correlated manner. It therefore makes sense to study how correlations in disorder would affect the system properties.

There have been several attempts to study the effects of correlation in disorder [12, 13, 14, 15]. It has generally been observed that correlations, if weak, do not significantly modify the system properties qualitatively. These studies exploit numerical methods or mean-field-type models, and it is desirable to establish analytical results in finite-dimensional systems.

We introduce a model with correlations of a specific type in disorder, which makes it possible to reduce the expression of the average energy to the expectation value of a local variable in the Z2Z_{2} gauge Higgs model [16]. Based on this reduction, we prove that the average energy is an analytic function in a subspace of the phase diagram, a generalization of the special line in the case of uncorrelated disorder. It is difficult to derive a closed-form exact solution for the average energy when correlations are introduced. Nevertheless, using self duality, we show in the case of three spatial dimensions that a simple formula holds for a physical quantity related to the energy. We also derive several non-trivial identities and inequalities for the specific heat and correlation functions, generalizing the results for uncorrelated disorder. Also discussed are more complex types of correlations in disorder.

In Sec. II, we define the model and analyze its properties. Conclusion is given in Sec. III, and some technical details are described in Appendixes.

II Ising spin glass with correlated disorder

We first define the model of correlated disorder and then study the properties of the corresponding Ising spin glass, in particular the behavior of the average energy in a subspace of the phase diagram.

II.1 Model of correlated disorder

As mentioned in the Introduction, it is reasonable to study a spin-glass system with short-range correlations in disorder variables. It is likely that site disorder has a different degree of frustration than in the case of uncorrelated bond disorder, a prominent example of which is the Mattis model [17] without frustration but with site-dependent quenched disorder ξi=±1\xi_{i}=\pm 1,

HMattis=JijξiξjSiSj,\displaystyle H_{\rm Mattis}=-J\sum_{\langle ij\rangle}\xi_{i}\xi_{j}S_{i}S_{j}, (1)

where Si(±1)S_{i}(\pm 1) is the Ising variable at site ii, and ij\langle ij\rangle runs over interacting spin pairs on a lattice with interaction strength JJ. An example with site disorder but with frustration is the Hopfield model [18, 19, 20, 21],

HHopfield=1Ni,jJijSiSj,\displaystyle H_{\rm Hopfield}=-\frac{1}{N}\sum_{i,j}J_{ij}S_{i}S_{j}, (2)

where NN is the number of sites, and the interaction is composed of site-dependent quenched variables {ξiμ=±1}\{\xi_{i}^{\mu}=\pm 1\},

Jij=μ=1rξiμξjμ.\displaystyle J_{ij}=\sum_{\mu=1}^{r}\xi_{i}^{\mu}\xi_{j}^{\mu}. (3)

This is a model with site-dependent disorder, in which correlation exists between disorder of different bonds JijJ_{ij} and JjkJ_{jk} sharing a site index jj. When r=1r=1, the model reduces to the Mattis model of Eq. (1) without frustration, and in the limit of rr\to\infty, the model becomes equivalent to the Sherrington-Kirkpatrick model with uncorrelated bond disorder with strong frustration according to the central limit theorem. The Hopfield model thus interpolates the unfrustrated and fully frustrated cases by the parameter rr.

These examples motivate us to introduce a system with correlated disorder in bond variables with a parameter to control the degree of frustration. We therefore propose and analyze the following probability distribution of bond-assigned disorder variables {τij=±1}\{\tau_{ij}=\pm 1\} with control parameters K1K_{1} and K2K_{2},

P(τ,K1,K2)=1Zτ(K1,K2)exp(K1ijτij+K2τ),\displaystyle P(\tau,K_{1},K_{2})=\frac{1}{Z_{\tau}(K_{1},K_{2})}\exp\Big{(}K_{1}\sum_{\langle ij\rangle}\tau_{ij}+K_{2}\sum_{\Box}\tau_{\Box}\Big{)}, (4)

where Zτ(K1,K2)Z_{\tau}(K_{1},K_{2}) is the normalization factor (or the partition function of disorder variables)

Zτ(K1,K2)={τij=±1}exp(K1ijτij+K2τ),\displaystyle Z_{\tau}(K_{1},K_{2})=\sum_{\{\tau_{ij}=\pm 1\}}\exp\Big{(}K_{1}\sum_{\langle ij\rangle}\tau_{ij}+K_{2}\sum_{\Box}\tau_{\Box}\Big{)}, (5)

and τ\tau_{\Box} is the product of four disorder variables around a unit plaquette denoted by \Box on the dd-dimensional hypercubic lattice, τ=τijτjkτklτli\tau_{\Box}=\tau_{ij}\tau_{jk}\tau_{kl}\tau_{li} 111 We can consider other possibilities. For example, on the two-dimensional triangular lattice, the product will run over three bond variables around a unit triangle, τijτjiτki\tau_{ij}\tau_{ji}\tau_{ki}. We work on the hypercubic lattice in the present paper for simplicity.. This is a generalization of the conventional ±J\pm J model (K2=0)(K_{2}=0) to the case with correlation in disorder (K2>0)(K_{2}>0). The above specific type of correlation was motivated by the following reasons. (i) Reference [14] studied the case of just the second term (K1=0K_{1}=0, K2>0K_{2}>0) and measured critical exponents in three dimension by numerical simulations. We are interested in the interplay between the first (K1K_{1}) and second (K2)(K_{2}) terms in the above more general model. (ii) The above form allows us to directly control the degree of frustration by the coefficient K2K_{2}. (iii) The K2K_{2} term is gauge invariant as will be discussed below, which is essential for our theory in the following sections to be applicable. Notice that the exponent in the probability distribution Eq. (4) is of the same form as the action of the Z2Z_{2} gauge Higgs model [16], and this analogy facilitates our analysis below.

The Hamiltonian of the Ising spin glass is

H=KijτijSiSj,\displaystyle H=-K\sum_{\langle ij\rangle}\tau_{ij}S_{i}S_{j}, (6)

where KK is the dimensionless coupling constant (the inverse temperature K=1/TK=1/T). We study the properties of this Hamiltonian with the quenched disorder variables {τij}\{\tau_{ij}\} chosen from the probability distribution of Eq. (4). Possible generalization of the probability distribution will be discussed at the end of this section.

II.2 Average energy in a subspace of the phase diagram

II.2.1 Expression of the average energy

We first show that the average energy can be expressed in a simple formula in terms of the Z2Z_{2} gauge Higgs model in a subspace of the phase diagram.

The average energy EE of the model defined in the preceding section is written as

E(K,K1,K2)=1Zτ(K1,K2){τij=±1}eK1τij+K2τHK,\displaystyle E(K,K_{1},K_{2})=\frac{1}{Z_{\tau}(K_{1},K_{2})}\sum_{\{\tau_{ij}=\pm 1\}}e^{K_{1}\sum\tau_{ij}+K_{2}\sum\tau_{\Box}}\langle H\rangle_{K}, (7)

where HH is the Hamiltonian of Eq. (6) and the angular brackets denote the thermal average,

HK=1Zs(K)KZs(K)\displaystyle\langle H\rangle_{K}=-\frac{1}{Z_{s}(K)}\frac{\partial}{\partial K}Z_{s}(K) (8)

with the partition function of the Ising model,

Zs(K)={Si=±1}eKτijSiSj.\displaystyle Z_{s}(K)=\sum_{\{S_{i}=\pm 1\}}e^{K\sum\tau_{ij}S_{i}S_{j}}. (9)

Notice that the constant multiplicative factor KK is dropped for simplicity in Eq. (8) of the energy.

Following the standard prescription [6, 1], we apply the gauge transformation

SiSiσi,τijτijσiσj(σi=±1)(i,j)\displaystyle S_{i}\to S_{i}\sigma_{i},\,\tau_{ij}\to\tau_{ij}\sigma_{i}\sigma_{j}~{}(\sigma_{i}=\pm 1)~{}(\forall i,j) (10)

to Eqs. (7) and (9). The thermal average HK\langle H\rangle_{K} is gauge invariant, and only the term in the exponent of Eq. (7) with coefficient K1K_{1} is affected. We sum the resulting expression over all possible values of {σi}\{\sigma_{i}\}, and divide the expression by 2N2^{N}, and find

E(K,K1,K2)\displaystyle-E(K,K_{1},K_{2})
=12NZτ(K1,K2){τij=±1}{σi=±1}eK1τijσiσj+K2τK{Si}eKτijSiSj{Si}eKτijSiSj.\displaystyle=\frac{1}{2^{N}Z_{\tau}(K_{1},K_{2})}\sum_{\{\tau_{ij}=\pm 1\}}\sum_{\{\sigma_{i}=\pm 1\}}e^{K_{1}\sum\tau_{ij}\sigma_{i}\sigma_{j}+K_{2}\sum\tau_{\Box}}\,\frac{\partial_{K}\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}}{\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}}. (11)

Since τ\tau_{\Box} is gauge invariant and {σi}\{\sigma_{i}\} appears only in the term with coefficient K1K_{1}, the factor in the numerator {σi}eK1τijσiσj\sum_{\{\sigma_{i}\}}e^{K_{1}\sum\tau_{ij}\sigma_{i}\sigma_{j}} cancels with the denominator Zs={Si}eKτijSiSjZ_{s}=\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}} when K=K1K=K_{1} and we are left with a simplified expression

E(K,K,K2)\displaystyle-E(K,K,K_{2}) =12NZτ(K,K2){τij}eK2τK{Si}eKτijSiSj\displaystyle=\frac{1}{2^{N}Z_{\tau}(K,K_{2})}\sum_{\{\tau_{ij}\}}e^{K_{2}\sum\tau_{\Box}}\frac{\partial}{\partial K}\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}
=12NZτ(K,K2){Si}{τij}(ijτijSiSj)eKτijSiSj+K2τ\displaystyle=\frac{1}{2^{N}Z_{\tau}(K,K_{2})}\sum_{\{S_{i}\}}\sum_{\{\tau_{ij}\}}\Big{(}\sum_{\langle ij\rangle}\tau_{ij}S_{i}S_{j}\Big{)}e^{K\sum\tau_{ij}S_{i}S_{j}+K_{2}\sum\tau_{\Box}}
=1Zτ(K,K2)ij({τij}τij)eKτij+K2τ,\displaystyle=\frac{1}{Z_{\tau}(K,K_{2})}\sum_{\langle ij\rangle}\Big{(}\sum_{\{\tau_{ij}\}}\tau_{ij}\Big{)}\,e^{K\sum\tau_{ij}+K_{2}\sum\tau_{\Box}}, (12)

where we have applied the gauge transformation τijτijSiSj\tau_{ij}\to\tau_{ij}S_{i}S_{j} to the second line to derive the third line.

In the case of uncorrelated distribution of disorder (K2=0K_{2}=0), the condition K=K1K=K_{1} defines a line in the KK-K1K_{1} phase diagram, sometimes called the Nishimori line [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 9]. It is known that the low-temperature side of this line (K=K11)(K=K_{1}\gg 1) lies in the ferromagnetic phase in two and higher dimensions [8, 39] and that the spin glass phase exists away from the line [6, 1]. The line generally goes across a multicritical point where the paramagnetic, ferromagnetic and spin glass phases meet in three and higher dimensions [1, 40]. Our present model with correlation in disorder has an additional parameter K2K_{2} to control the degree of correlation, and the condition K=K1K=K_{1} defines a subspace in the three-dimensional phase diagram drawn in terms of K1,K2K_{1},K_{2}, and KK.

The expression of the average energy in Eq. (12) in the subspace K=K1K=K_{1} can be interpreted as the expectation value of the local bond variable τij\tau_{ij} summed over ij\langle ij\rangle for the Z2Z_{2} gauge Higgs model [16] 222 Notice that the general expression of the energy of Eq. (7) is also regarded as the expectation value of a function of {τij}\{\tau_{ij}\}, HK({τij})\langle H\rangle_{K}(\{\tau_{ij}\}), with respect to the gauge Higgs probability weight PτP_{\tau}. However, this HK({τij})\langle H\rangle_{K}(\{\tau_{ij}\}) is a very complicated function of the bond variables {τij}\{\tau_{ij}\} involving all types of products and summations of {τij}\{\tau_{ij}\}, which makes it hard to analyze its properties.. The condition K=K1K=K_{1} has greatly simplified the expression of the average energy, leaving only the expectation value of a single τij\tau_{ij} summed up over ij\langle ij\rangle.

II.2.2 Analyticity of the average energy

The average energy of Eq. (12) is an analytic function of K(=K1)K(=K_{1}) for sufficiently small K2(>0)K_{2}(>0):

Theorem 1.

The average energy E(K,K,K2)E(K,K,K_{2}) of Eq. (12) is analytic in KK for sufficiently small K2K_{2} in the thermodynamic limit.

This result is a known property of the Z2Z_{2} lattice gauge theory, see e.g. Ref. [42] for a theoretical analysis and Refs. [43, 44, 45, 46, 47] for numerical studies. Since the argument presented in Ref. [42] is fairly sketchy, we provide a more formal proof in Appendix A.

When K2=0K_{2}=0 (uncorrelated disorder), the analyticity is trivial. Equation (12) immediately gives a simple formula

E(K,K,0)=NBtanhK,\displaystyle E(K,K,0)=-N_{B}\tanh K, (13)

where NBN_{B} is the number of bonds. Nevertheless, the line defined by K=K1K=K_{1} in the KK-K1K_{1} phase diagram has a transition point on it since the low-temperature side (K1)K\gg 1) is in the ferromagnetic phase in two and higher dimensions [8] and the high-temperature side is trivially in the paramagnetic phase. Therefore the absence of singularity in E(K,K,0)E(K,K,0) is highly non-trivial, a consequence of delicate balance of the probability weight P(τ,K1,0)P(\tau,K_{1},0) and the partition function Zs(K)Z_{s}(K) in Eq. (11). Theorem 1 claims that this non-trivial analyticity remains valid even after the introduction of correlation in disorder. This may look rather trivial mathematically, but we believe it to be highly non-trivial physically.

Although it is difficult to prove that the subspace K=K1K=K_{1} has a transition point (critical point) on it when K2>0K_{2}>0, in contrast to the case K2=0K_{2}=0 where it is proven [8, 9], we expect that the physical properties of the system are unlikely to change dramatically by the introduction of small but finite K2K_{2} as suggested by the continuation of analyticity of the average energy as in Theorem 1. An indirect indication of the stability of the low-temperature (K=K11K=K_{1}\gg 1) ferromagnetic phase after the introduction of K2K_{2} is provided by small-K2K_{2} perturbation of the distribution function of a single-bond variable defined by

P(l,K1,K2)={τij=±1}δl,τijP(τ,K1,K2)(l=±1),\displaystyle P(l,K_{1},K_{2})=\sum_{\{\tau_{ij}=\pm 1\}}\delta_{l,\tau_{ij}}\,P(\tau,K_{1},K_{2})\quad(l=\pm 1), (14)

where δ\delta is Kronecker’s delta. We define the probability for a bond to be positive (ferromagnetic) p+p_{+} by

P(l,K1,K2)=p+δl,1+(1p+)δl,1.\displaystyle P(l,K_{1},K_{2})=p_{+}\,\delta_{l,1}+(1-p_{+})\,\delta_{l,-1}. (15)

Then, as shown in Appendix B, p+p_{+} is found by first-order perturbation in tanhK2\tanh K_{2} as

p+=p(1+2c(1p)(2p1)3tanhK2+𝒪(tanhK2)2),\displaystyle p_{+}=p\,\Big{(}1+2c(1-p)(2p-1)^{3}\tanh K_{2}+\mathcal{O}(\tanh K_{2})^{2}\Big{)}, (16)

where cc is a positive constant and pp is the probability of τij=1\tau_{ij}=1 when K2=0K_{2}=0 (i.e., p+p_{+} for K2=0K_{2}=0), defined through the ratio of probabilities for negative (1p)(1-p) and positive (p)(p) values of τij\tau_{ij}: eK1/eK1=(1p)/pe^{-K_{1}}/e^{K_{1}}=(1-p)/p. Equation (16) suggests that the probability of a single bond to be positive (ferromagnetic) increases as we introduce small K2K_{2}. This implies (but does not prove) that the low-temperature ferromagnetic phase becomes more stable by the introduction of K2>0K_{2}>0. This is intuitively reasonable because K2K_{2} suppresses frustration, increasing stability of the ferromagnetic phase. Since the existence of a paramagnetic phase for K=K11K=K_{1}\ll 1 is trivial, we may reasonably expect that there is a phase transition as a function of K=K1K=K_{1} for K2>0K_{2}>0 in spite of the absence of singularity in the average energy.

The range of K2K_{2} where the analyticity of average energy holds depends on the spatial dimension and the lattice structure. In the case of the two-dimensional square lattice, the Z2Z_{2} gauge Higgs model of Eq. (12) is equivalent to the conventional ferromagnetic Ising model in a finite field on the square lattice according to the duality relation [48]. Since the ferromagnetic Ising model in a field has no singularity, the energy of Eq. (12) is analytic for any positive value of K2K_{2} 333 This duality equivalence to the two-dimensional ferromagnetic Ising model in a field also implies the impossibility of the exact closed-form formula of the average energy. . In three dimensions, Monte Carlo simulation shows the range of analyticity to be 0K2<0.68930\leq K_{2}<0.6893 on the cubic lattice [47].

II.2.3 Identities for the average energy in three dimensions

It is generally difficult to derive an explicit compact expression of the average energy for K=K1K=K_{1} except for the case of K2=0K_{2}=0 as written in Eq. (13). Nevertheless, identities involving the average energy can be obtained in the case of the three-dimensional cubic lattice using the self duality of the model [48].

Let us define the average energy per spin as

e(K1,K2)=1NE(K1,K1,K2)=1NZτ(K1,K2){τij=±1}(ijτij)eK1τij+K2τ.\displaystyle e(K_{1},K_{2})=\frac{1}{N}\,E(K_{1},K_{1},K_{2})=-\frac{1}{NZ_{\tau}(K_{1},K_{2})}\sum_{\{\tau_{ij}=\pm 1\}}\Big{(}\sum_{\langle ij\rangle}\tau_{ij}\Big{)}\,e^{K_{1}\sum\tau_{ij}+K_{2}\sum\tau_{\Box}}. (17)

and the average plaquette energy per spin by

ep(K1,K2)=1NZτ(K1,K2){τij=±1}(τ)eK1τij+K2τ.\displaystyle e_{p}(K_{1},K_{2})=-\frac{1}{NZ_{\tau}(K_{1},K_{2})}\sum_{\{\tau_{ij}=\pm 1\}}\Big{(}\sum_{\Box}\tau_{\Box}\Big{)}\,e^{K_{1}\sum\tau_{ij}+K_{2}\sum\tau_{\Box}}. (18)

For these quantities, we can derive the following relation for a sufficiently large system on the cubic lattice where the boundary effects are sufficiently small,

e(K1,K2)+3tanhK1=1sinh2K1(ep(K1,K2)+3),\displaystyle e(K_{1},K_{2})+3\tanh K_{1}=-\frac{1}{\sinh 2K_{1}}\,\big{(}e_{p}(K_{1}^{*},K_{2}^{*})+3\big{)}, (19)

where the dual couplings K1K_{1}^{*} and K2K_{2}^{*} are defined as

tanhK1=e2K2,tanhK2=e2K1.\displaystyle\tanh K_{1}^{*}=e^{-2K_{2}},~{}\tanh K_{2}^{*}=e^{-2K_{1}}. (20)

The proof is based on the duality relation of Wegner [48] for the Z2Z_{2} gauge Higgs model in three dimensions,

Zτ(K1,K2)23N(coshK1coshK2)3N=Zτ(K1,K2)e3N(K1+K2).\displaystyle\frac{Z_{\tau}(K_{1},K_{2})}{2^{3N}(\cosh K_{1}\cosh K_{2})^{3N}}=\frac{Z_{\tau}(K_{1}^{*},K_{2}^{*})}{e^{3N(K_{1}^{*}+K_{2}^{*})}}. (21)

Self duality manifests itself as the same function ZτZ_{\tau} appearing on both sides. Taking the logarithmic derivative of both sides with respect to K1K_{1} and dividing both sides by NN, we obtain Eq. (19).

On the self-dual line K1=K1K_{1}=K_{1}^{*} (equivalently K2=K2)K_{2}=K_{2}^{*}) in the K1K_{1}-K2K_{2} plane, the above relation (19) becomes

sinh2K1e(K1,K2)+ep(K1,K2)=3tanhK1sinhK13.\displaystyle\sinh 2K_{1}\,\cdot e(K_{1},K_{2})+e_{p}(K_{1},K_{2})=-3\tanh K_{1}\,\sinh K_{1}-3. (22)

This is a weighted sum of the averages of τij\tau_{ij} and τ\tau_{\Box}. A further simplification is realized when we impose another condition K1=K2K_{1}=K_{2} in addition to the self duality, which, together with K1=K1K_{1}=K_{1}^{*} and K2=K2K_{2}=K_{2}^{*}, yields sinh2K1=sinh2K2=1\sinh 2K_{1}=\sinh 2K_{2}=1, resulting in

e(Kc,Kc)+ep(Kc,Kc)=32,\displaystyle e(K_{c},K_{c})+e_{p}(K_{c},K_{c})=-3\sqrt{2}, (23)

where Kc=12ln(2+1)K_{c}=\frac{1}{2}\ln(\sqrt{2}+1) is the solution to sinh2Kc=1\sinh 2K_{c}=1. This is the thermal average of the effective Hamiltonian Kcτij+KcτK_{c}\sum\tau_{ij}+K_{c}\sum\tau_{\Box} of the Z2Z_{2} gauge Higgs model under the probability weight PτP_{\tau} at a special point (Kc,Kc)(K_{c},K_{c}) on the K1K_{1}-K2K_{2} phase diagram.

II.2.4 Specific heat and correlation functions

Identities and inequalities can be proven for the specific heat and correlation functions in the subspace K=K1K=K_{1}, generalizing the results known in the case of uncorrelated disorder [6, 1].

The specific heat in the subspace K=K1K=K_{1}, C(K,K,K2)C(K,K,K_{2}), is bounded from above as follows.

T2C(K,K,K2)=E(K,K1,K2)K|K1=K\displaystyle T^{2}\,C(K,K,K_{2})=-\left.\frac{\partial E(K,K_{1},K_{2})}{\partial K}\right|_{K_{1}=K}
=12NZτ(K1,K2){τij=±1}{σi=±1}eK1τijσiσj+K2τ\displaystyle=\frac{1}{2^{N}Z_{\tau}(K_{1},K_{2})}\sum_{\{\tau_{ij}=\pm 1\}}\sum_{\{\sigma_{i}=\pm 1\}}e^{K_{1}\sum\tau_{ij}\sigma_{i}\sigma_{j}+K_{2}\sum\tau_{\Box}}
×{K2{Si}eKτijSiSj{Si}eKτijSiSj(K{Si}eKτijSiSj{Si}eKτijSiSj)2}|K1=K\displaystyle\left.\hskip 56.9055pt\times\left\{\frac{\partial^{2}_{K}\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}}{\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}}-\left(\frac{\partial_{K}\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}}{\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}}\right)^{2}\right\}\right|_{K_{1}=K}
12NZτ(K1,K2){τij=±1}eK2τ2K2{Si=±1}eKτijSiSj\displaystyle\leq\frac{1}{2^{N}Z_{\tau}(K_{1},K_{2})}\sum_{\{\tau_{ij}=\pm 1\}}e^{K_{2}\sum\tau_{\Box}}\frac{\partial^{2}}{\partial K^{2}}\sum_{\{S_{i}=\pm 1\}}e^{K\sum\tau_{ij}S_{i}S_{j}}
(1Zτ(K1,K2)K{τij=±1}eKτij+K2τ)2\displaystyle\hskip 56.9055pt-\left(\frac{1}{Z_{\tau}(K_{1},K_{2})}\frac{\partial}{\partial K}\sum_{\{\tau_{ij}=\pm 1\}}e^{K\sum\tau_{ij}+K_{2}\sum\tau_{\Box}}\right)^{2}
=KE(K,K,K2)<.\displaystyle=-\frac{\partial}{\partial K}E(K,K,K_{2})<\infty. (24)

In deriving the third line from the second, we have replaced the average of the squared quantity ()2(\cdots)^{2} by the square of the average and have applied the condition K1=KK_{1}=K. The last inequality is based on the analyticity of the average energy for K(=K1)K(=K_{1}). This inequality means that the specific heat does not diverge in the subspace K=K1K=K_{1} for small K2>0K_{2}>0, generalizing the result known for uncorrelated disorder [6, 1].

Similarly, we can verify the following relations on correlation functions using the method of gauge transformation as above, generalizing known relations [6, 1],

[SiK]K1,K2=[SiK1SiK]K1,K2\displaystyle\left[\langle S_{i}\rangle_{K}\right]_{K_{1},K_{2}}=\left[\langle S_{i}\rangle_{K_{1}}\langle S_{i}\rangle_{K}\right]_{K_{1},K_{2}} (25)
[SiK]K1,K2[|σiK1||SiK|]K1,K2[|σiK1|]K1,K2\displaystyle\left[\langle S_{i}\rangle_{K}\right]_{K_{1},K_{2}}\leq\left[|\langle\sigma_{i}\rangle_{K_{1}}||\langle S_{i}\rangle_{K}|\right]_{K_{1},K_{2}}\leq\left[|\langle\sigma_{i}\rangle_{K_{1}}|\right]_{K_{1},K_{2}} (26)
[1SiK1]K1,K2=1.\displaystyle\left[\frac{1}{\langle S_{i}\rangle_{K_{1}}}\right]_{K_{1},K_{2}}=1. (27)

Here the square brackets []K1,K2[\cdots]_{K_{1},K_{2}} denote the average over {τij}\{\tau_{ij}\} by the probability P(τ,K1,K2)P(\tau,K_{1},K_{2}). Notice that Eqs. (25) and (26) hold for any values of K1,K2K_{1},K_{2}, and KK, not just in the subspace K=K1K=K_{1}. The first identity means that there is no spin glass phase, which has [SiK]K1,K2=0[\langle S_{i}\rangle_{K}]_{K_{1},K_{2}}=0 and [SiK2]K1,K2>0[\langle S_{i}\rangle_{K}^{2}]_{K_{1},K_{2}}>0, when K=K1K=K_{1}. It is assumed that boundary spins are fixed to +1+1 such that the thermal average SiK\langle S_{i}\rangle_{K} is finite in the ferromagnetic phase.

II.2.5 More general correlations

Analyticity of the average energy holds for a more general class of correlation distributions as long as the invariance property under gauge transformation is satisfied. A simple example is an additional term of the product of two neighboring plaquette variables,

P(τ,K1,K2,K3)=1Zτ(K1,K2,K3)exp(K1ijτij+K2τ+K312τ1τ2),\displaystyle P(\tau,K_{1},K_{2},K_{3})=\frac{1}{Z_{\tau}(K_{1},K_{2},K_{3})}\exp\Big{(}K_{1}\sum_{\langle ij\rangle}\tau_{ij}+K_{2}\sum_{\Box}\tau_{\Box}+K_{3}\sum_{\Box_{1}\Box_{2}}\tau_{\Box_{1}}\tau_{\Box_{2}}\Big{)}, (28)

where 1\Box_{1} and 2\Box_{2} are two neighboring plaquettes sharing a bond. It is straightforward to confirm that the proof of Theorem 1 in Appendix A remains valid with minor changes after this modification with sufficiently small K2K_{2} and K3K_{3}.

It is unclear whether or not Theorem 1 holds in the case of infinitely many (in the thermodynamic limit) terms in the exponent of the probability distribution of bond variables, not just a finite number of terms as in Eq. (28). Nevertheless, the following example suggests that similar analyticity may be valid for a large class of probability distributions. Let us consider the probability distribution of correlated disorder,

P(τ,K1,K0)=1Zτ(K1,K0)eK1τijZI(K0,{τij})=1Zτ(K1,K0)eK1τijF(K0,{τij}),\displaystyle P(\tau,K_{1},K_{0})=\frac{1}{Z_{\tau}(K_{1},K_{0})}\,e^{K_{1}\sum\tau_{ij}}\,Z_{\rm I}(K_{0},\{\tau_{ij}\})=\frac{1}{Z_{\tau}(K_{1},K_{0})}\,e^{K_{1}\sum\tau_{ij}-F(K_{0},\{\tau_{ij}\})}, (29)

where ZI(K0,{τij})Z_{\rm I}(K_{0},\{\tau_{ij}\}) is the partition function of the Ising model on the same lattice with coupling K0K_{0} and F(K0,{τij})F(K_{0},\{\tau_{ij}\}) is the corresponding free energy,

ZI(K0,{τij})={ξi=±1}eK0ijτijξiξj=eF(K0,{τij}).\displaystyle Z_{\rm I}(K_{0},\{\tau_{ij}\})=\sum_{\{\xi_{i}=\pm 1\}}e^{K_{0}\sum_{\langle ij\rangle}\tau_{ij}\xi_{i}\xi_{j}}=e^{-F(K_{0},\{\tau_{ij}\})}\,. (30)

The denominator Zτ(K1,K0)Z_{\tau}(K_{1},K_{0}) is for normalization. The free energy can be expressed in terms of a cluster expansion (high-temperature expansion) for small K0K_{0}, generalizing Eq. (28) to infinitely many (in the thermodynamic limit) gauge invariant terms,

F(K0,{τij})=K1(K0)τ+K2(K0)connectedττ+K3(K0)connectedτττ+,\displaystyle-F(K_{0},\{\tau_{ij}\})=K_{1}(K_{0})\sum\tau_{\Box}+K_{2}(K_{0})\sum_{\rm connected}\tau_{\Box}\tau_{\Box}+K_{3}(K_{0})\sum_{\rm connected}\tau_{\Box}\tau_{\Box}\tau_{\Box}+\cdots, (31)

where the summations run over connected clusters with positive coefficients K1,K2,K3,K_{1},K_{2},K_{3},\cdots [50].

The following result holds for this distribution of correlated disorder.

Theorem 2.

For sufficiently small K0K_{0}, the average energy is analytic in KK under the distribution function of Eq. (29) of correlated disorder.

Proof.

Similarly to Eq. (11), the average energy after gauge transformation is

E(K,K1,K0)\displaystyle-E(K,K_{1},K_{0})
=12NZτ(K1,K0){τij}{σi}eK1τijσiσj{ξi}eK0τijξiξjK{Si}eKτijSiSj{Si}eKτijSiSj.\displaystyle=\frac{1}{2^{N}Z_{\tau}(K_{1},K_{0})}\sum_{\{\tau_{ij}\}}\sum_{\{\sigma_{i}\}}e^{K_{1}\sum\tau_{ij}\sigma_{i}\sigma_{j}}\sum_{\{\xi_{i}\}}e^{K_{0}\sum\tau_{ij}\xi_{i}\xi_{j}}\,\frac{\partial_{K}\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}}{\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}}. (32)

When K=K1K=K_{1}, the summation over {σi}\{\sigma_{i}\} cancels out with the partition function (summation over {Si}\{S_{i}\}) in the denominator,

E(K,K,K0)=12NZτ(K,K0){τij}{ξi}eK0τijξiξjK{Si}eKτijSiSj.\displaystyle-E(K,K,K_{0})=\frac{1}{2^{N}Z_{\tau}(K,K_{0})}\sum_{\{\tau_{ij}\}}\sum_{\{\xi_{i}\}}e^{K_{0}\sum\tau_{ij}\xi_{i}\xi_{j}}\,\frac{\partial}{\partial K}\sum_{\{S_{i}\}}e^{K\sum\tau_{ij}S_{i}S_{j}}\,. (33)

We can carry out the summation over {τij}\{\tau_{ij}\} at each ij\langle ij\rangle independently,

{τij}ijeτij(K0ξiξj+KSiSi)eK~ijξiξjSiSj,\displaystyle\sum_{\{\tau_{ij}\}}\prod_{\langle ij\rangle}e^{\tau_{ij}(K_{0}\xi_{i}\xi_{j}+KS_{i}S_{i})}\propto e^{\tilde{K}\sum_{\langle ij\rangle}\xi_{i}\xi_{j}S_{i}S_{j}}, (34)

where tanhK~=tanhK0tanhK\tanh\tilde{K}=\tanh K_{0}\tanh K. This relation can be verified by inserting all possible values of ξiξj=±1\xi_{i}\xi_{j}=\pm 1 and SiSj=±1S_{i}S_{j}=\pm 1. By the gauge transformation ξiSiSi\xi_{i}S_{i}\to S_{i} for fixed ξi\xi_{i}, we find that E(K,K,K0)E(K,K,K_{0}) is the energy of the ferromagnetic Ising model with uniform coupling K~\tilde{K} without disorder. Since the effective coupling K~\tilde{K} runs from 0 to K0K_{0} as KK changes from 0 to \infty, the effective coupling K~\tilde{K} stays below the critical point of the ferromagnetic Ising model for sufficiently small K0K_{0}. Therefore the energy is analytic in KK. ∎

III Conclusion

We have introduced correlations in disorder for the Ising spin glass problem in such a way that the degree of frustration is controlled. We have analyzed the properties of the system in a subspace of the phase diagram in which the average energy is known to be analytic even across a transition point in the case of uncorrelated disorder. We have proved that the analyticity of the average energy is preserved under the introduction of correlations in disorder. This result remains valid for a few more complex types of correlations as long as correlations are gauge invariant. Bounds on the specific heat and identities and inequalities have been derived, generalizing the results for uncorrelated disorder.

Our derivation of these results relies on gauge invariance of correlations. It is difficult to analyze the case without gauge invariance such as a simple product of two neighboring bond variables τijτjk\tau_{ij}\tau_{jk}. It would be safe not to expect similar analyticity to hold in such a case because our result has been derived through a delicate balance of the term in the probability distribution and the partition function, which breaks down for gauge non-invariant probabilities.

For uncorrelated disorder, outstanding properties of the system in the special subspace have been found useful in applications in many fields including statistical inference [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 37], quantum error correction [39, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98], quantum Hall effect [99], and localization [100, 101]. The present result may stimulate further developments in these fields in addition to the spin glass theory itself.

Appendix A Proof of Theorem 1

We prove by a cluster expansion that the following expression in Eq. (12)

C01(K1,K2)={τij}τ01eK1τij+K2(τ+1){τij}eK1τij+K2(τ+1)\displaystyle C_{01}(K_{1},K_{2})=\frac{\sum_{\{\tau_{ij}\}}\tau_{01}\,e^{K_{1}\sum\tau_{ij}+K_{2}\sum(\tau_{\Box}+1)}}{\sum_{\{\tau_{ij}\}}e^{K_{1}\sum\tau_{ij}+K_{2}\sum(\tau_{\Box}+1)}} (35)

is analytic in K1K_{1} for sufficiently small K2(>0)K_{2}(>0).

Notice that the exponent above has an additional term K21K_{2}\sum 1 both in the numerator and the denominator compared to Eq. (12) but they cancel out to give the same quantity as in Eq. (12). This term is useful in the proof. The proof below is basically an adaptation of the theory in Ref. [102] to the present context of the Z2Z_{2} lattice gauge model. See also Ref. [42], where an abridged description of the theory is provided.

If we define P(τ,K1)P(\tau,K_{1}) as P(τ,K1,0)P(\tau,K_{1},0), the above Eq. (35) is expressed as

C01(K1,K2)={τij}τ01P(τ,K1)eK2(τ+1){τij}P(τ,K1)eK2(τ+1).\displaystyle C_{01}(K_{1},K_{2})=\frac{\sum_{\{\tau_{ij}\}}\tau_{01}P(\tau,K_{1})\,e^{K_{2}\sum(\tau_{\Box}+1)}}{\sum_{\{\tau_{ij}\}}P(\tau,K_{1})\,e^{K_{2}\sum(\tau_{\Box}+1)}}. (36)

To show that the small-K2K_{2} expansion of C01(K1,K2)C_{01}(K_{1},K_{2}) converges absolutely and uniformly and thus C01(K1,K2)C_{01}(K_{1},K_{2}) is analytic in K1K_{1}, we introduce ρ\rho_{\Box} as

eK2(τ+1)=1+ρ.\displaystyle e^{K_{2}(\tau_{\Box}+1)}=1+\rho_{\Box}. (37)

This ρ\rho_{\Box} is positive semi-definite and small for small K2K_{2}. The exponential factor in Eq. (36) is expanded as

eK2(τ+1)=(1+ρ)=QQρ,\displaystyle e^{K_{2}\sum_{\Box}(\tau_{\Box}+1)}=\prod_{\Box}(1+\rho_{\Box})=\sum_{Q}\prod_{\Box\in Q}\rho_{\Box}, (38)

where QQ is the set of products of plaquettes. Let us divide QQ into Q1Q_{1} and Q2Q_{2}, where Q1Q_{1} is the set of connected products of plaquettes involving the bond (01)(01) and Q2Q_{2} is QQ1Q\setminus Q_{1}. Then

C01(K1,K2)=1Zτ+(K1,K2)Q1Q2{τij}τ01P(τ,K1)Q1ρQ2ρ,\displaystyle C_{01}(K_{1},K_{2})=\frac{1}{Z_{\tau}^{+}(K_{1},K_{2})}\sum_{Q_{1}}\sum_{Q_{2}}\sum_{\{\tau_{ij}\}}\tau_{01}P(\tau,K_{1})\prod_{\Box\in Q_{1}}\rho_{\Box}\prod_{\Box\in Q_{2}}\rho_{\Box}, (39)

where

Zτ+(K1,K2)={τij}P(τ,K1)eK2(τ+1)=Zτ(K1,K2)eK21.\displaystyle Z_{\tau}^{+}(K_{1},K_{2})=\sum_{\{\tau_{ij}\}}P(\tau,K_{1})e^{K_{2}\sum(\tau_{\Box}+1)}=Z_{\tau}(K_{1},K_{2})e^{K_{2}\sum 1}. (40)

Since Q1Q_{1} and Q2Q_{2} are disjoint,

C01(K1,K2)=1Zτ+(K1,K2)Q1τQ1τ01P(τQ1,K1)(Q1ρ)ZQ2(K1,K2),\displaystyle C_{01}(K_{1},K_{2})=\frac{1}{Z_{\tau}^{+}(K_{1},K_{2})}\sum_{Q_{1}}\sum_{\tau\in Q_{1}}\tau_{01}P(\tau\in Q_{1},K_{1})\Big{(}\prod_{\Box\in Q_{1}}\rho_{\Box}\Big{)}\cdot Z_{Q_{2}}(K_{1},K_{2}), (41)

where ZQ2(K1,K2)Z_{Q_{2}}(K_{1},K_{2}) is the partial partition function,

ZQ2(K1,K2)=Q2τQ2P(τQ2,K1)Q2ρ.\displaystyle Z_{Q_{2}}(K_{1},K_{2})=\sum_{Q_{2}}\sum_{\tau\in Q_{2}}P(\tau\in Q_{2},K_{1})\prod_{\Box\in Q_{2}}\rho_{\Box}. (42)

This partial partition function is bounded from above by Zτ+(K1,K2)Z_{\tau}^{+}(K_{1},K_{2}) because the coupling K2K_{2} for Q1Q_{1} is set to 0 in ZQ2Z_{Q_{2}} in comparison with the full ZτZ_{\tau} and thus the summand is smaller. See Remark 1 of Lemma 3.2 of Ref. [102]. We therefore replace ZQ2(K1,K2)/Zτ+(K1,K2)Z_{Q_{2}}(K_{1},K_{2})/Z_{\tau}^{+}(K_{1},K_{2}) by 1 to have a bound

C01(K1,K2)\displaystyle C_{01}(K_{1},K_{2}) Q1τQ1P(τQ1,K1)Q1ρ\displaystyle\leq\sum_{Q_{1}}\sum_{\tau\in Q_{1}}P(\tau\in Q_{1},K_{1})\prod_{\Box\in Q_{1}}\rho_{\Box}
k|Q1|=kτQ1:|Q1|=kP(τQ1,K1)Q1ρ.\displaystyle\leq\sum_{k}\sum_{|Q_{1}|=k}\,\sum_{\tau\in Q_{1}:|Q_{1}|=k}P(\tau\in Q_{1},K_{1})\prod_{\Box\in Q_{1}}\rho_{\Box}. (43)

We have classified Q1Q_{1} by the number of elements in it. Using the trivial inequality

ρe2K21,\displaystyle\rho_{\Box}\leq e^{2K_{2}}-1, (44)

we can replace the average of Q1ρ\prod_{\Box\in Q_{1}}\rho_{\Box} with respect to the weight P(τQ1,K1)P(\tau\in Q_{1},K_{1}) by the upper bound,

τQ1:|Q1|=kP(τQ1,K1)Q1ρ(e2K21)k.\displaystyle\sum_{\tau\in Q_{1}:|Q_{1}|=k}P(\tau\in Q_{1},K_{1})\prod_{\Box\in Q_{1}}\rho_{\Box}\leq(e^{2K_{2}}-1)^{k}. (45)

Equation (43) is then simplified as

C01(K1,K2)k|Q1|=k(e2K21)k.\displaystyle C_{01}(K_{1},K_{2})\leq\sum_{k}\sum_{|Q_{1}|=k}(e^{2K_{2}}-1)^{k}. (46)

As stated in Lemma 1 below, the number of possible connected graphs involving the bond (01)(01) is bounded as

N(k)c1c2,k\displaystyle N(k)\leq c_{1}\cdot c_{2}{}^{k}, (47)

where c1c_{1} and c2c_{2} are positive constants. We therefore obtain

C01(K1,K2)c1kc2(e2K21)kk.\displaystyle C_{01}(K_{1},K_{2})\leq c_{1}\sum_{k}c_{2}{}^{k}\,(e^{2K_{2}}-1)^{k}. (48)

The upper bound of kk runs to infinity in the thermodynamic limit, but the summation clearly converges for sufficiently small K2K_{2}. Uniform convergence follows this absolute convergence of an upper bound, proving analyticity of the left-hand side C01(K1,K2)C_{01}(K_{1},K_{2}) as a function of K1K_{1} if we regard K1K_{1} as a complex number in the neighborhood of the origin. \square
Remark. The proof remains valid when τ01\tau_{01} is replaced by the product of a finite number of bond variables.

Lemma 1.

The number of graphs in Q1Q_{1} is bounded as in Eq. (47).

This is Lemma 3.3 of Ref. [102] and is a plaquette version of the well-established bound for the number of connected graphs with variables on the bonds (edges), not on plaquettes, as described, for example, in Exercise 5.3 of Ref. [50]. It is straightforward to replace bonds with plaquettes to derive the above Lemma.

Appendix B Evaluating p+p_{+} to first order in tanhK2\tanh K_{2}

According to the definition of Eq. (15), p+p_{+} is written as

p+={τij}δτij,1eK1τij(1+τtanhK2){τij}eK1τij(1+τtanhK2).\displaystyle p_{+}=\frac{\sum_{\{\tau_{ij}\}}\delta_{\tau_{ij},1}e^{K_{1}\sum\tau_{ij}}\prod_{\Box}(1+\tau_{\Box}\tanh K_{2})}{\sum_{\{\tau_{ij}\}}e^{K_{1}\sum\tau_{ij}}\prod_{\Box}(1+\tau_{\Box}\tanh K_{2})}. (49)

The denominator is expanded to first order in tanhK2\tanh K_{2} as

(coshK1)NB+NptanhK2(coshK1)NB4(sinhK1)4,\displaystyle(\cosh K_{1})^{N_{B}}+N_{p}\tanh K_{2}\,(\cosh K_{1})^{N_{B}-4}(\sinh K_{1})^{4}, (50)

where NBN_{B} is the number of bonds and NpN_{p} is for the number of plaquettes. Similarly, the numerator is

(coshK1)NB1τijδτij,1eK1τij\displaystyle(\cosh K_{1})^{N_{B}-1}\sum_{\tau_{ij}}\delta_{\tau_{ij},1}e^{K_{1}\tau_{ij}}
+(coshK1)NB5tanhK2(sinhK1)4τijδτij,1eK1τij(NBa)\displaystyle+(\cosh K_{1})^{N_{B}-5}\tanh K_{2}\,(\sinh K_{1})^{4}\sum_{\tau_{ij}}\delta_{\tau_{ij},1}e^{K_{1}\tau_{ij}}(N_{B}-a)
+(coshK1)NB4tanhK2(sinhK1)3τijδτij,1τijeK1τija,\displaystyle+(\cosh K_{1})^{N_{B}-4}\tanh K_{2}\,(\sinh K_{1})^{3}\sum_{\tau_{ij}}\delta_{\tau_{ij},1}\tau_{ij}\,e^{K_{1}\tau_{ij}}\cdot a, (51)

where aa the number of plaquettes to which a given single bond belongs. Inserting these expansions to Eq. (49) and leaving the leading order, we have

p+=p(1a(2p1)4tanhK2+a(2p1)3tanhK2),\displaystyle p_{+}=p\Big{(}1-a(2p-1)^{4}\tanh K_{2}+a(2p-1)^{3}\tanh K_{2}\Big{)}, (52)

where we used (1p)/p=e2K1(1-p)/p=e^{-2K_{1}}. This is Eq. (16).

References

  • Nishimori [2001] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing: An Introduction (Oxford Univ. Press, 2001).
  • Mézard et al. [1987] M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, 1987).
  • Sherrington and Kirkpatrick [1975] D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35, 1792 (1975).
  • Parisi [1979] G. Parisi, Infinite number of order parameters for spin-glasses, Phys. Rev. Lett. 43, 1754 (1979).
  • Talagrand [2003] M. Talagrand, Spin glasses: a challenge for mathematicians: cavity and mean field models, Vol. 46 (Springer Science & Business Media, 2003).
  • Nishimori [1981] H. Nishimori, Internal energy, specific heat and correlation function of the bond-random Ising model, Prog. Theor. Phys. 66, 1169 (1981).
  • Nishimori [1980] H. Nishimori, Exact results and critical properties of the Ising model with competing interactions, J, Phys. C 13, 4071 (1980).
  • Horiguchi and Morita [1982] T. Horiguchi and T. Morita, Existence of the ferromagnetic phase in a random-bond Ising model on the square lattice, J. Phys. A 15, L75 (1982).
  • Garban and Spencer [2021] C. Garban and T. Spencer, Continuous symmetry breaking along the Nishimori line, arXiv:2109.01617  (2021).
  • Edwards and Anderson [1975] S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5, 965 (1975).
  • Mydosh [1993] J. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, 1993).
  • Hoyos et al. [2011] J. A. Hoyos, N. Laflorencie, A. P. Vieira, and T. Vojta, Protecting clean critical points by local disorder correlations, Epl 93, 30004 (2011).
  • Bonzom et al. [2013] V. Bonzom, R. Gurau, and M. Smerlak, Universality in pp-spin glasses with correlated disorder, J. Stat. Mech. 2013, L02003 (2013).
  • Cavaliere and Pelissetto [2019] A. G. Cavaliere and A. Pelissetto, Disordered ising model with correlated frustration, J. Phys. A 52, 174002 (2019).
  • Münster et al. [2021] L. Münster, C. Norrenbrock, A. K. Hartmann, and A. P. Young, Ordering behavior of the two-dimensional Ising spin glass with long-range correlated disorder, Phys. Rev. E 103, 042117 (2021).
  • Kogut [1979] J. B. Kogut, An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys. 51, 659 (1979).
  • Mattis [1976] D. C. Mattis, Solvable spin systems with random interactions, Phys. Lett. A 56, 421 (1976).
  • Hopfield [1982] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc, Nat. Acad. Sci. USA 79, 2554 (1982).
  • Amit et al. [1985a] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Storing infinite numbers of patterns in a spin-glass model of neural networks, Phys. Rev. Lett. 55, 1530 (1985a).
  • Amit et al. [1985b] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Spin-glass models of neural networks, Phys. Rev. A 32, 1007 (1985b).
  • Amit et al. [1987] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Statistical mechanics of neural networks near saturation, Ann. Phys. 67, 30 (1987).
  • Note [1] We can consider other possibilities. For example, on the two-dimensional triangular lattice, the product will run over three bond variables around a unit triangle, τijτjiτki\tau_{ij}\tau_{ji}\tau_{ki}. We work on the hypercubic lattice in the present paper for simplicity.
  • Georges et al. [1985] A. Georges, D. Hansel, P. L. Doussal, and J. P. Bouchaud, Exact properties of spin glasses. II. Nishimori’s line: new results and physical implications, J. Phys. France 46, 1827 (1985).
  • Le Doussal and Harris [1988] P. Le Doussal and A. B. Harris, Location of the Ising spin-glass multicritical point on Nishimori’s line, Phys. Rev. Lett. 61, 625 (1988).
  • Le Doussal and Harris [1989] P. Le Doussal and A. B. Harris, ϵ\epsilon expansion for the Nishimori multicritical point of spin glasses, Phys. Rev. B 40, 9249 (1989).
  • Iba [1998] Y. Iba, The Nishimori line and Bayesian statistics, J. Phys. A 32, 3875 (1998).
  • Gruzberg et al. [2001] I. A. Gruzberg, N. Read, and A. W. W. Ludwig, Random-bond Ising model in two dimensions: The Nishimori line and supersymmetry, Phys. Rev. B 63, 104422 (2001).
  • Honecker et al. [2001] A. Honecker, M. Picco, and P. Pujol, Universality class of the Nishimori point in the 2d ±J\pm{}\mathit{J} random-bond Ising model, Phys. Rev. Lett. 87, 047201 (2001).
  • Nobre [2001] F. D. Nobre, Phase diagram of the two-dimensional ±J\pm J Ising spin glass, Phys. Rev. E 64, 046108 (2001).
  • Merz and Chalker [2002] F. Merz and J. T. Chalker, Two-dimensional random-bond Ising model, free fermions, and the network model, Phys. Rev. B 65, 054425 (2002).
  • Hasenbusch et al. [2008] M. Hasenbusch, F. P. Toldin, A. Pelissetto, and E. Vicari, Multicritical Nishimori point in the phase diagram of the ±J\pm J Ising model on a square lattice, Phys. Rev. E 77, 051115 (2008).
  • Kitatani [2009] H. Kitatani, Griffiths inequalities for ising spin glasses on the Nishimori line, J. Phys. Soc. Jpn. 78, 044714 (2009).
  • Yamaguchi [2010] C. Yamaguchi, Percolation thresholds of the Fortuin-Kasteleyn cluster for the Edwards-Anderson Ising model on complex networks: — Analytical results on the Nishimori line —, Prog. Theor. Phys. 124, 399 (2010).
  • Krzakala and Zdeborová [2011] F. Krzakala and L. Zdeborová, On melting dynamics and the glass transition. II. Glassy dynamics as a melting process., J. Chem. Phys. 134, 034513 (2011).
  • Ohzeki [2012] M. Ohzeki, Fluctuation theorems on the Nishimori line, Phys. Rev. E 86, 061110 (2012).
  • Sasagawa et al. [2020] Y. Sasagawa, H. Ueda, J. Genzor, A. Gendiar, and T. Nishino, Entanglement entropy on the boundary of the square-lattice ±J\pm J Ising model, J. Phys. Soc. Jpn. 89, 114005 (2020).
  • Alberici et al. [2021a] D. Alberici, F. Camilli, P. Contucci, and E. Mingione, The multi-species mean-field spin-glass on the Nishimori line, J. Stat. Phys. 182, 2 (2021a).
  • Alberici et al. [2021b] D. Alberici, F. Camilli, P. Contucci, and E. Mingione, The solution of the deep Boltzmann machine on the Nishimori line, Commun. Math. Phys. 387, 1191 (2021b).
  • Dennis et al. [2002] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological quantum memory, J. Math. Phys. 43, 4452 (2002).
  • Ozeki and Nishimori [1987] Y. Ozeki and H. Nishimori, Phase diagram and critical exponents of the ±J\pm J Ising model in finite dimensions by Monte Carlo renormalization group, J. Phys. Soc. Jpn. 56, 1568 (1987).
  • Note [2] Notice that the general expression of the energy of Eq. (7) is also regarded as the expectation value of a function of {τij}\{\tau_{ij}\}, HK({τij})\langle H\rangle_{K}(\{\tau_{ij}\}), with respect to the gauge Higgs probability weight PτP_{\tau}. However, this HK({τij})\langle H\rangle_{K}(\{\tau_{ij}\}) is a very complicated function of the bond variables {τij}\{\tau_{ij}\} involving all types of products and summations of {τij}\{\tau_{ij}\}, which makes it hard to analyze its properties.
  • Fradkin and Shenker [1979] E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields, Phys. Rev. D 19, 3682 (1979).
  • Creutz [1980] M. Creutz, Phase diagrams for coupled spin-gauge systems, Phys. Rev. D 21, 1006 (1980).
  • Jongeward et al. [1980] G. A. Jongeward, J. D. Stack, and C. Jayaprakash, Monte carlo calculations on Z2{Z}_{2} gauge-higgs theories, Phys. Rev. D 21, 3360 (1980).
  • Creutz et al. [1983] M. Creutz, L. Jacobs, and C. Rebbi, Monte carlo computations in lattice gauge theories, Phys. Rep. 95, 201 (1983).
  • Genovese et al. [2003] L. Genovese, F. Gliozzi, A. Rago, and C. Torrero, The phase diagram of the three-dimensional z2z_{2} gauge higgs system at zero and finite temperature, Nucl. Phys. B Proc. Suppl. 119, 894 (2003), Proceedings of the XXth International Symposium on Lattice Field Theory.
  • Tupitsyn et al. [2010] I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev, and P. C. E. Stamp, Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model, Phys. Rev. B 82, 085114 (2010).
  • Wegner [1971] F. J. Wegner, Duality in generalized Ising models and phase transitions without local order parameters, J. Math. Phys. 12, 2259 (1971).
  • Note [3] This duality equivalence to the two-dimensional ferromagnetic Ising model in a field also implies the impossibility of the exact closed-form formula of the average energy.
  • Friedli and Velenik [2017] S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems (Cambridge Univ. Press, 2017).
  • Ruján [1993] P. Ruján, Finite temperature error-correcting codes, Phys. Rev. Lett. 70, 2968 (1993).
  • Sourlas [1994] N. Sourlas, Spin glasses, error-correcting codes and finite-temperature decoding, EPL 25, 159 (1994).
  • Murayama et al. [2000] T. Murayama, Y. Kabashima, D. Saad, and R. Vicente, Statistical physics of regular low-density parity-check error-correcting codes, Phys. Rev. E 62, 1577 (2000).
  • Kabashima et al. [2000a] Y. Kabashima, T. Murayama, and D. Saad, Typical performance of Gallager-type error-correcting codes, Phys. Rev. Lett. 84, 1355 (2000a).
  • Kabashima et al. [2000b] Y. Kabashima, T. Murayama, and D. Saad, Cryptographical properties of Ising spin systems, Phys. Rev. Lett. 84, 2030 (2000b).
  • Montanari [2001] A. Montanari, The glassy phase of Gallager codes, Eur. Phys. J. B 23, 121 (2001).
  • Kabashima et al. [2001] Y. Kabashima, N. Sazuka, K. Nakamura, and D. Saad, Tighter decoding reliability bound for Gallager’s error-correcting code, Phys. Rev. E 64, 046113 (2001).
  • Tanaka [2002] K. Tanaka, Statistical-mechanical approach to image processing, J. Phys. A 35, R81 (2002).
  • Franz et al. [2002] Franz, M. Leone, A. Montanari, and F. Ricci-Tersenghi, Dynamic phase transition for decoding algorithms, Phys. Rev. E 66, 046120 (2002).
  • Kabashima [2003] Y. Kabashima, A CDMA multiuser detection algorithm on the basis of belief propagation, J. Phys. A 36, 11111 (2003).
  • Macris [2006] N. Macris, On the relation between map and bp gexit functions of low density parity check codes, in 2006 IEEE Information Theory Workshop - ITW ’06 Punta del Este (2006) pp. 312–316.
  • Macris [2007] N. Macris, A useful tool in the theory of error correcting codes, IEEE Trans. Inf. Theor. 53, 664 (2007).
  • Decelle et al. [2011] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications, Phys. Rev. E 84, 066106 (2011).
  • Manoel and Vicente [2013] A. Manoel and R. Vicente, Statistical mechanics of reputation systems in autonomous networks, J. Stat. Mech. 2013, P08002 (2013).
  • Caltagirone et al. [2014] F. Caltagirone, L. Zdeborová, and F. Krzakala, On convergence of approximate message passing, in 2014 IEEE International Symposium on Information Theory (2014) pp. 1812–1816.
  • Xu et al. [2014] Y. Xu, Y. Kabashima, and L. Zdeborová, Bayesian signal reconstruction for 1-bit compressed sensing, J, Stat. Mech. 2014, P11015 (2014).
  • Lesieur et al. [2015] T. Lesieur, F. Krzakala, and L. Zdeborová, Phase transitions in sparse PCA, in 2015 IEEE International Symposium on Information Theory (ISIT) (2015) pp. 1635–1639.
  • Huang and Toyoizumi [2016] H. Huang and T. Toyoizumi, Unsupervised feature learning from finite data by message passing: Discontinuous versus continuous phase transition, Phys. Rev. E 94, 062310 (2016).
  • Zdeborová and Krzakala [2016] L. Zdeborová and F. Krzakala, Statistical physics of inference: thresholds and algorithms, Adv. Phys. 65, 453 (2016)1511.02476 .
  • Huang [2017] H. Huang, Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses, J. Stat. Mech. 2017, 053302 (2017).
  • Lesieur et al. [2017] T. Lesieur, F. Krzakala, and L. Zdeborová, Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications, J. Stat. Mech. 2017, 073403 (2017).
  • Kawamoto [2018] T. Kawamoto, Algorithmic detectability threshold of the stochastic block model, Phys. Rev. E 97, 032301 (2018).
  • Aubin et al. [2019] B. Aubin, A. Maillard, J. Barbier, F. Krzakala, N. Macris, and L. Zdeborová, The committee machine: computational to statistical gaps in learning a two-layers neural network, J. Stat. Mech. 2019, 124023 (2019).
  • Antenucci et al. [2019] F. Antenucci, F. Krzakala, P. Urbani, and L. Zdeborová, Approximate survey propagation for statistical inference, J. Stat. Mech. 2019, 023401 (2019).
  • Kadmon and Ganguli [2019] J. Kadmon and S. Ganguli, Statistical mechanics of low-rank tensor decomposition, J. Stat. Mech. 2019, 124016 (2019).
  • Murayama et al. [2020] T. Murayama, A. Saito, and P. Davis, Rate distortion theorem and the multicritical point of a spin glass, Phys. Rev. E 102, 042122 (2020).
  • Vasiliy and Sergey [2020] U. Vasiliy and E. Sergey, Hyper neural network as the diffeomorphic domain for short code soft decision beyound belief propagation decoding problem, in 2020 IEEE East-West Design Test Symposium (EWDTS) (2020) pp. 1–6.
  • Hou and Huang [2020] T. Hou and H. Huang, Statistical physics of unsupervised learning with prior knowledge in neural networks, Phys. Rev. Lett. 124, 248302 (2020).
  • Dall’Amico et al. [2021] L. Dall’Amico, R. Couillet, and N. Tremblay, Nishimori meets Bethe: a spectral method for node classification in sparse weighted graphs, J. Stat. Mech. 2021, 093405 (2021).
  • Kawaguchi [2021] S. Kawaguchi, Spread-spectrum watermarking model using a parity-check code for simultaneous restoration of message and image, J. Phys. Soc. Jpn. 90, 104003 (2021).
  • Arai et al. [2021] S. Arai, M. Ohzeki, and K. Tanaka, Mean field analysis of reverse annealing for code-division multiple-access multiuser detection, Phys. Rev. Research 3, 033006 (2021).
  • Wang et al. [2002] C. Wang, J. Harrington, and J. Preskill, Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory, Ann. Phys. 303, 31 (2002).
  • Katzgraber et al. [2009] H. G. Katzgraber, H. Bombin, and M. A. Martin-Delgado, Error threshold for color codes and random three-body Ising models, Phys. Rev. Lett. 103, 090501 (2009).
  • Katzgraber et al. [2010] H. G. Katzgraber, H. Bombin, R. S. Andrist, and M. A. Martin-Delgado, Topological color codes on union jack lattices: a stable implementation of the whole Clifford group, Phys. Rev. A 81, 012319 (2010).
  • Stace and Barrett [2010] T. M. Stace and S. D. Barrett, Error correction and degeneracy in surface codes suffering loss, Phys. Rev. A 81, 022317 (2010).
  • Andrist et al. [2011] R. S. Andrist, H. G. Katzgraber, H. Bombin, and M. a. Martin-Delgado, Tricolored lattice gauge theory with randomness: fault tolerance in topological color codes, New J. Phys. 13, 083006 (2011).
  • Bombin et al. [2012] H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber, and M. A. Martin-Delgado, Strong resilience of topological codes to depolarization, Phys. Rev. X 2, 021004 (2012).
  • Fujii et al. [2013] K. Fujii, Y. Nakata, M. Ohzeki, and M. Murao, Measurement-based quantum computation on symmetry breaking thermal states, Phys. Rev. Lett. 110, 120502 (2013).
  • Fujii et al. [2014] K. Fujii, M. Negoro, N. Imoto, and M. Kitagawa, Measurement-free topological protection using dissipative feedback, Phys. Rev. X 4, 041039 (2014).
  • Andrist et al. [2015] R. S. Andrist, J. R. Wootton, and H. G. Katzgraber, Error thresholds for Abelian quantum double models: Increasing the bit-flip stability of topological quantum memory, Phys. Rev. A 91, 042331 (2015).
  • Iyer and Poulin [2015] P. Iyer and D. Poulin, Hardness of decoding quantum stabilizer codes, IEEE Transactions on Information Theory 61, 5209 (2015).
  • Kubica et al. [2018] A. Kubica, M. E. Beverland, F. Brandão, J. Preskill, and K. M. Svore, Three-dimensional color code thresholds via statistical-mechanical mapping, Phys. Rev. Lett. 120, 180501 (2018).
  • Kovalev et al. [2018] A. A. Kovalev, S. Prabhakar, I. Dumer, and L. P. Pryadko, Numerical and analytical bounds on threshold error rates for hypergraph-product codes, Phys. Rev. A 97, 062320 (2018).
  • Li et al. [2019] M. Li, D. Miller, M. Newman, Y. Wu, and K. R. Brown, 2d compass codes, Phys. Rev. X 9, 021041 (2019).
  • Vuillot et al. [2019] C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M. Terhal, Quantum error correction with the toric Gottesman-Kitaev-Preskill code, Phys. Rev. A 99, 032344 (2019).
  • Zarei and Ramezanpour [2019] M. H. Zarei and A. Ramezanpour, Noisy toric code and random-bond Ising model: The error threshold in a dual picture, Phys. Rev. A 100, 062313 (2019).
  • Viyuela et al. [2019] O. Viyuela, S. Vijay, and L. Fu, Scalable fermionic error correction in Majorana surface codes, Phys. Rev. B 99, 205114 (2019).
  • Chubb and Flammia [2021] C. T. Chubb and S. Flammia, Statistical mechanical models for quantum codes with correlated noise, Ann. Inst. Henri Poincare 8, 629 (2021).
  • Read and Ludwig [2000] N. Read and A. W. W. Ludwig, Absence of a metallic phase in random-bond Ising models in two dimensions: Applications to disordered superconductors and paired quantum Hall states, Phys. Rev. B 63, 024404 (2000).
  • Senthil and Fisher [2000] T. Senthil and M. P. A. Fisher, Quasiparticle localization in superconductors with spin-orbit scattering, Phys. Rev. B 61, 9690 (2000).
  • Vodola et al. [2021] D. Vodola, M. Rispler, S. Kim, and M. Müller, Fundamental thresholds of realistic quantum error correction circuits from classical spin models, arXiv:2104.04847  (2021).
  • Osterwalder and Seiler [1978] K. Osterwalder and E. Seiler, Gauge field theories on a lattice, Ann. Phys. 110, 440 (1978).