This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Analytically solvable model to the spin Hall effect with Rashba and Dresselhaus spin-orbit couplings

Rui Zhang Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China    Yuan-Chuan Biao Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China    Wen-Long You College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, People’s Republic of China    Xiao-Guang Wang Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China    Yu-Yu Zhang [email protected] Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China    Zi-Xiang Hu [email protected] Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
Abstract

When the Rashba and Dresslhaus spin-orbit coupling are both presented for a two-dimensional electron in a perpendicular magnetic field, a striking resemblance to anisotropic quantum Rabi model in quantum optics is found. We perform a generalized Rashba coupling approximation to obtain a solvable Hamiltonian by keeping the nearest-mixing terms of Laudau states, which is reformulated in the similar form to that with only Rashba coupling. Each Landau state becomes a new displaced-Fock state with a displacement shift instead of the original Harmonic oscillator Fock state, yielding eigenstates in closed form. Analytical energies are consistent with numerical ones in a wide range of coupling strength even for a strong Zeeman splitting. In the presence of an electric field, the spin conductance and the charge conductance obtained analytically are in good agreements with the numerical results. As the component of the Dresselhaus coupling increases, we find that the spin Hall conductance exhibits a pronounced resonant peak at a larger value of the inverse of the magnetic field. Meanwhile, the charge conductance exhibits a series of plateaus as well as a jump at the resonant magnetic field. Our method provides an easy-to-implement analytical treatment to two-dimensional electron gas systems with both types of spin-orbit couplings.

I Introduction

Spin-orbit coupling (SOC) enables a wide variety of fascinating phenomena, which brings out a new growing research field of spin-orbitronics, a branch of spintronics that focuses on the manipulation of the electron spin degree of freedom Fabian ; Chappert . A prominent example is the spin Hall effect, which is the conversion of a spin unpolarized charge current into a net spin current without charge flow Dyakonov ; Hirsch . It has been discussed intensively zhang2003 ; niu2004 ; NiuRMP ; Kato ; Wunder ; Wunderlich ; Valenzuela ; JairoRMP , in which an electric field induces a transverse spin current. In the presence of a perpendicular magnetic field, the interplay of Zeeman coupling and various spin-orbit interactions has stimulated a lot of discussions on resonance spin Hall conductance shen2004 ; tagliacozzo2008 ; engel07 , which may has potential applications in spintronics.

There are basically two types of SOCs in nature, i.e., the Rashba term with structural inversion asymmetry rashba1960 and the Dresselhaus term due to the bulk inversion asymmetry dresselhaus1955 or interface inversion asymmetry IIA . Usually, both types of SOC coexist in a material, such as GaAs-AlGaAs quantum wells and heterostructures jusserand ; kim2016 ; ishizaka2011 ; Manchon2015 ; lommer1988 ; tretyak2001 , but which one plays a major part depends on the properties of the material. It has been recognized that Rashba and Dresselhaus SOC can interfere with each other, and leads to a number of interesting phenomenon by tuning the ratio between them, such as anisotropic transport loss2003 , spin splitting ganichev04 ; averkiev1999 , control of spin precession park2020 and light scattering gelfert2020 . It has been applied experimentally by various ways, such as external electric field, changing temperature, or inserting extra layer etc Ohno ; Karimov ; Dhrmann ; Belkov ; Muller ; Balocchi ; Hern .

In previous work, many efforts have been devoted to the spin Hall effect with the Rashba SOC in two-dimensional electron gas systems (22DEGs), which is caused by the Laudau level crossing near the Fermi energy. A zero-field spin splitting induced by the Rashba SOC competes with the Zeeman splitting in presence of a magnetic field, and then compromise a resonant spin Hall effect at certain magnetic field nitta1997 ; heida1998 . In contrast, Dresselhaus SOC enhances the Zeeman splitting and results in a suppression to the resonance shen05 . There is an analytical solution for the system with only either Rashba or Dresselhaus coupling shen05 ; chang06 . While considering both of them together, an analytical solution is currently not available due to the absence of a full closed-form solution. The perturbation method has been adopted to give rise to an approximated results, which is valid a small ratio of the Zeeman energy to the cyclotron frequency shen05 ; sun2013 . To pursue the intrinsic spin Hall effect induced by the coexistence of the Dresselhaus and Rashba SOCs, it is desirable to develop theories which can solve systems including both types of the SOCs.

In this work we develop a generalized Rashba SOC approximation (GRSOCA) to give an analytical solution to the 22DEGs with both the Rashba and Dresselhaus SOCs in a magnetic field. Using a displacement transformation and an expansion of even and odd functions of Laudau states up to the nearest-mixing terms, a reformulated Hamiltonian of the same form as that with only Rashba term is obtained, resulting in eigenstates in closed form in the transformed displaced-Fock subspace. The novel displaced-Fock state for each Landau level involves the mixing of infinite Laudau level states induced by two types of SOCs, exhibiting an improvement over original Fock states. Energy levels are obtained explicitly for arbitrary strengths of both types of SOCs, which agree well with numerical results in a wide range of coupling strength even for a strong Zeeman energy. By comparing to the system with only Rashba SOC, we find that the spin Hall conductance exhibits a pronounced resonant peak at a larger value of the inverse of the magnetic field, which arises from the contributions of the Dresselhaus SOC. Resonance originates from the energy degeneracy near Fermi energy, where the eigenstates consist of the nnth displaced-Fock state of spin up and n+1n+1th displaced-Fock state of spin down. A series of plateaus of the charge conductance are observed, and a jump occurs at the resonant point, which fit well with the numerical ones.

The paper is outlined as follows. In Sec. II, we derive expressions for the quantized Hamiltonian of the 22DEGs with the Rashba and Dresselhaus SOC in a magnetic field. In Sec. III, we obtain the analytical solution of the effective Hamiltonian for arbitrary ratio between the Rashba and Dresselhaus SOCs. In Sec. IV, we study the charge and spin Hall conductances analytically with the first-order corrections when an electric field is applied. Finally, a brief summary is given in Sec. V.

II Hamiltonian

We consider a single electron in a two-dimensional system subjected to a perpendicular magnetic field B=Be^z=×A\vec{B}=-B\hat{e}_{z}=\nabla\times\vec{A}, which is confined in the xyx-y plane of an area Lx×LyL_{x}\times L_{y}. The Hamiltonian in the presence of spin-orbit coupling is given by (=1\hbar=1)

H0=12m(p+ecA)212gμBBσz+Hso,H_{0}=\frac{1}{2m}(\vec{p}+\frac{e}{c}\vec{A})^{2}-\frac{1}{2}g\mu_{B}B\sigma_{z}+H_{so}, (1)

where gg is the Lande factor of the electron with the effective mass mm, μB\mu_{B} is the Bohr magneton, and σk\sigma_{k} are the Pauli matrices. The Laudau gauge is chosen as A=Br×e^z=(yB,0,0)\vec{A}=B\vec{r}\times\hat{e}_{z}=(yB,0,0). The spin-orbit Hamiltonian includes the Rashba SOC and the linear Dresselhaus SOC, Hso=HD+HRH_{so}=H_{D}+H_{R} with HR=α(ΠxσyΠyσx)H_{R}=\alpha(\Pi_{x}\sigma_{y}-\Pi_{y}\sigma_{x}) and HD=β(ΠxσxΠyσy)H_{D}=\beta(\Pi_{x}\sigma_{x}-\Pi_{y}\sigma_{y}), where the canonical momentum is Π=p+eA/c\vec{\Pi}=\vec{p}+e\vec{A}/c. The Rashba SOC HRH_{R} originates from the structure inversion asymmetry of the semiconductor material and the coupling strength α\alpha can be tuned by an electric field. While the coefficient β\beta of the Dresselhaus term HDH_{D} is determined by the geometry of the hetereo-structure that stems from the bulk-inversion asymmetry of the semiconductor material.

Due to the gauge choice, the system is translationally invariant along the xx direction, and px=kp_{x}=k is a good quantum number. The orbit part of wave function is obtained as ψ(x,y)=exp(ikx)φ(yy0)\psi(x,y)=\exp(ikx)\varphi(y-y_{0}), where φ(yy0)\varphi(y-y_{0}) is the harmonic oscillator wave function with the orbit center coordinate y0=lb2ky_{0}=l_{b}^{2}k and the magnetic length lb=c/eBl_{b}=\sqrt{\hbar c/eB}. By introducing the ladder operator a=(Πx+iΠy)lb/2a=(\Pi_{x}+i\Pi_{y})l_{b}/\sqrt{2} for the harmonic oscillator

a=12lb[y+c(px+ipy)eB],a=\frac{1}{\sqrt{2}l_{b}}[y+\frac{c(p_{x}+ip_{y})}{eB}], (2)

one obtains the Hamiltonian

H0=H𝚁𝚂𝙾𝙲+2βlb(aσ+aσ+),H_{0}=H_{\mathtt{RSOC}}+\frac{\sqrt{2}\beta}{l_{b}}(a^{\dagger}\sigma_{-}+a\sigma_{+}), (3)
H𝚁𝚂𝙾𝙲=ω(aa+12)Δ2σz+i2αlb(aσaσ+),H_{\mathtt{RSOC}}=\omega(a^{\dagger}a+\frac{1}{2})-\frac{\Delta}{2}\sigma_{z}+i\frac{\sqrt{2}\alpha}{l_{b}}(a\sigma_{-}-a^{\dagger}\sigma_{+}), (4)

where ω=eB/mc\omega=eB/mc is the cyclotron frequency and Δ=gμBB\Delta=g\mu_{B}B is the Zeeman splitting. When only the Rashba SOC term is present, i.e. β=0\beta=0, the Hamiltonian is reduced to H𝚁𝚂𝙾𝙲H_{\mathtt{RSOC}} which can be written in a matrix form in the basis {|,n|\downarrow,n\rangle, |,n+1}|\uparrow,n+1\rangle\}

H𝚁𝚂𝙾𝙲=(ω(n+1/2)+Δ/2i2(n+1)α/lbi2(n+1)α/lbω(n+1+1/2)Δ/2).H_{\mathtt{RSOC}}=\left(\begin{array}[]{cc}\omega(n+1/2)+\Delta/2&i\sqrt{2(n+1)}\alpha/l_{b}\\ -i\sqrt{2(n+1)}\alpha/l_{b}&\omega(n+1+1/2)-\Delta/2\end{array}\right). (5)

This Hamiltonian, like a Rabi model with only the counter-rotating wave term in the quantum optics, can be solved analytically in closed subspace, which is so-called Rashba SOC (RSOC) approximation. However, once including the additional Dresselhaus SOC term (rotating wave term in Rabi model), the subspace related to nn is not closed, rendering the complication of the solution. In that case, each Landau level is coupled to infinite number of other Landau levels, and thus the exact analytic solution is not available.

III Analytical solution

Following previous section, the Hamiltonian ( 3) of a two-dimensional electron with both the Rashba and Dresselhaus couplings can map onto the anisotropic Rabi model in quantum optics, which have been studied extensively by various approximate analytical solutions chen12 ; irish07 ; zhang16 . The crucial is to establish a new set of basis states.

To facilitate the study, we write the Hamiltonian as

H0\displaystyle H_{0} =\displaystyle= ω(aa+12)Δ2σz+g1σx(aeiθ+aeiθ)\displaystyle\omega(a^{\dagger}a+\frac{1}{2})-\frac{\Delta}{2}\sigma_{z}+g_{1}\sigma_{x}(a^{\dagger}e^{-i\theta}+ae^{i\theta}) (6)
g1iσy(aeiθaeiθ),\displaystyle-g_{1}i\sigma_{y}(a^{\dagger}e^{i\theta}-ae^{-i\theta}),

with g1=2β2+α2/lbg_{1}=\sqrt{2}\sqrt{\beta^{2}+\alpha^{2}}/l_{b}, and eiθ=(β+iα)/β2+α2e^{i\theta}=(\beta+i\alpha)/\sqrt{\beta^{2}+\alpha^{2}}. By performing a unitary transformation U=exp[σx(aγaγ)]U=\exp[\sigma_{x}(a^{\dagger}\gamma-a\gamma^{\ast})] with a dimensionless variational displacement γ\gamma (γ\gamma^{\ast}), we obtain a transformed Hamiltonian H1=UHU=H0+H1H_{1}=UHU^{\dagger}=H_{0}^{\prime}+H_{1}^{\prime} ,

H0\displaystyle H_{0}^{\prime} =\displaystyle= ωaa+η0+σz{η1cosh[2(aγaγ)]\displaystyle\omega a^{\dagger}a+\eta_{0}+\sigma_{z}\{\eta_{1}\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})] (7)
+g1sinh[2(aγaγ)](aeiθaeiθ)},\displaystyle+g_{1}\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})](a^{\dagger}e^{i\theta}-ae^{-i\theta})\},
H1\displaystyle H_{1}^{\prime} =\displaystyle= σx[a(g1eiθωγ)+a(g1eiθωγ)]\displaystyle\sigma_{x}[a^{\dagger}(g_{1}e^{-i\theta}-\omega\gamma)+a(g_{1}e^{i\theta}-\omega\gamma^{\ast})] (8)
+iσy{η1sinh[2(aγaγ)]g1cosh[2(aγ\displaystyle+i\sigma_{y}\{-\eta_{1}\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})]-g_{1}\cosh[2(a^{\dagger}\gamma
aγ)](aeiθaeiθ)},\displaystyle-a\gamma^{\ast})](a^{\dagger}e^{i\theta}-ae^{-i\theta})\},

where η0=ω/2g1(γeiθ+γeiθ)+ωγγ\eta_{0}=\omega/2-g_{1}(\gamma^{\ast}e^{-i\theta}+\gamma e^{i\theta})+\omega\gamma\gamma^{\ast} and η1=Δ/2g1(γeiθγeiθ)\eta_{1}=-\Delta/2-g_{1}(\gamma e^{-i\theta}-\gamma^{\ast}e^{i\theta}) in Appendix A. The displacement shift γ\gamma (γ\gamma^{\ast}) is associated with the Rashba SOC and Dresselhaus SOC strengths, which captures the displacement of the harmonic oscillator states for essential physics.

Since the even hyperbolic cosine function can be expanded as cosh[2(aγaγ)]=1+12![2(aγaγ)]2+14![2(aγaγ)]4+\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})]=1+\frac{1}{2!}[2(a^{\dagger}\gamma-a\gamma^{\ast})]^{2}+\frac{1}{4!}[2(a^{\dagger}\gamma-a\gamma^{\ast})]^{4}+\cdots, it is approximated by keeping the terms which only contain the number operator n^=aa\hat{n}=a^{\dagger}a as zhang16

cosh[2(aγaγ)]=G(aa)+O(γ2γ2).\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})]=G(a^{\dagger}a)+O(\gamma^{2}\gamma^{\ast 2}). (9)

The coefficient G(aa)G(a^{\dagger}a) can be expressed in the harmonic oscillator basis |n|n\rangle as

Gn,n=n|cosh[2(aγaγ)]|n=e2γγLn(4γγ),G_{n,n}=\left\langle n\right|\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})]\left|n\right\rangle=e^{-2\gamma\gamma^{\ast}}L_{n}(4\gamma\gamma^{\ast}), (10)

with the Laguerre polynomials Lnmn(x)=i=0min{m,n}(1)nim!xni(mi)!(ni)!i!L_{n}^{m-n}(x)=\sum_{i=0}^{\min\{m,n\}}(-1)^{n-i}\frac{m!x^{n-i}}{(m-i)!(n-i)!i!}. Here, the higher order excitations such as a2a^{\dagger 2}, a2a^{2}, \cdots are neglected in the approximation. Similarly, we expand the odd function sinh[2(aγaγ)]\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})] by keeping the one-excitation terms as

sinh[2(aγaγ)]=R(aa)aaR(aa)+O(γ3γ3).\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})]=R(a^{\dagger}a)a^{\dagger}-aR(a^{\dagger}a)+O(\gamma^{3}\gamma^{\ast 3}). (11)

Since the terms R(aa)aR(a^{\dagger}a)a^{\dagger} and aR(aa)aR(a^{\dagger}a) are conjugated to each other, which corresponds to create and eliminate a single excitation of the oscillator, we define

Rn,n+1\displaystyle R_{n,n+1} =\displaystyle= 1n+1n|sinh[2(aγaγ)]|n+1\displaystyle-\frac{1}{\sqrt{n+1}}\left\langle n\right|\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})]\left|n+1\right\rangle (12)
=\displaystyle= 2γn+1e2γγLn1(4γγ)=Rn+1,n.\displaystyle\frac{2\gamma^{\ast}}{n+1}e^{-2\gamma\gamma^{\ast}}L_{n}^{1}(4\gamma\gamma^{\ast})=R_{n+1,n}^{\ast}.

Similarly, the other operators can be expanded by keeping leading terms as follows:

sinh[2(aγaγ)](aeiθaeiθ)=F(aa)+O(γ2γ2),\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})](a^{\dagger}e^{i\theta}-ae^{-i\theta})=F(a^{\dagger}a)+O(\gamma^{2}\gamma^{\ast 2}), (13)
cosh[2(aγaγ)](aeiθaeiθ)T(aa)aaT(aa),\displaystyle\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})](a^{\dagger}e^{i\theta}-ae^{-i\theta})\approx T(a^{\dagger}a)a^{\dagger}-aT(a^{\dagger}a),

where the coefficients can be expressed in terms of the oscillator basis |n|n\rangle

Fn,n\displaystyle F_{n,n} =\displaystyle= n|sinh[2(aγaγ)](aeiθaeiθ)|n\displaystyle\left\langle n\right|\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})](a^{\dagger}e^{i\theta}-ae^{-i\theta})\left|n\right\rangle (15)
=\displaystyle= eiθ(n+1)Rn,n+1neiθRn,n1,\displaystyle-e^{i\theta}(n+1)R_{n,n+1}-ne^{-i\theta}R_{n,n-1},
Tn,n+1\displaystyle T_{n,n+1} =\displaystyle= n|cosh[2(aγaγ)](aeiθaeiθ)|n+1n+1\displaystyle\frac{-\left\langle n\right|\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})](a^{\dagger}e^{i\theta}-ae^{-i\theta})\left|n+1\right\rangle}{\sqrt{n+1}} (16)
=\displaystyle= eiθGn,nn+2n+1eiθGn,n+2,\displaystyle e^{-i\theta}G_{n,n}-\frac{\sqrt{n+2}}{\sqrt{n+1}}e^{i\theta}G_{n,n+2},

with Gn,n+2=n|cosh[2(aγaγ)]|n+2=(2γ)2exp[2γγ]Ln2(4γγ)/(n+1)(n+2)G_{n,n+2}=\left\langle n\right|\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})]\left|n+2\right\rangle=(2\gamma^{\ast})^{2}\exp[-2\gamma\gamma^{\ast}]L_{n}^{2}(4\gamma\gamma^{\ast})/\sqrt{(n+1)(n+2)}.

Finally, we obtain the reformulated Hamiltonian H~1=H~0+H~D\tilde{H}_{1}=\tilde{H}_{0}+\tilde{H}_{D}, consisting of

H~0=ωaa+η0+σzΔ~+α~aσ++α~aσ,\displaystyle\tilde{H}_{0}=\omega a^{\dagger}a+\eta_{0}+\sigma_{z}\widetilde{\Delta}+\widetilde{\alpha}a^{{\dagger}}\sigma_{+}+\widetilde{\alpha}^{*}a\sigma_{-}, (17)
H~D=β~aσ+β~aσ+,\tilde{H}_{D}=\widetilde{\beta}a^{{\dagger}}\sigma_{-}+\widetilde{\beta}^{*}a\sigma_{+}, (18)

where the Zeeman energy is renormalized as Δ~=η1G(aa)+g1F(aa)\widetilde{\Delta}=\eta_{1}G(a^{\dagger}a)+g_{1}F(a^{\dagger}a), the effective Rashba and Dresselhaus SOCs strength are derived as α~={g1eiθωγη1R(aa)g1T(aa)}\widetilde{\alpha}=\{g_{1}e^{-i\theta}-\omega\gamma-\eta_{1}R(a^{\dagger}a)-g_{1}T(a^{\dagger}a)\} and β~={g1eiθωγ+η1R(aa)+g1T(aa)}\widetilde{\beta}=\{g_{1}e^{-i\theta}-\omega\gamma+\eta_{1}R(a^{\dagger}a)+g_{1}T(a^{\dagger}a)\}.

The form of the transformed Hamiltonian H~0\tilde{H}_{0} by considering contributions of the Rashba and Dresselhaus SOCs is identical with the original Hamiltonian (6) only with Rashba SOC terms. To obtain the solvable Hamiltonian H~1\tilde{H}_{1}, the transformed Dresselhaus terms H~D\tilde{H}_{D} are required to be vanished by choosing a proper displacement γ\gamma and γ\gamma^{\ast}. Within the oscillator basis |n|n\rangle and the eigenstates |±z|\pm z\rangle of σz\sigma_{z}, the matrix element n,+z|H~D|n+1,z\langle n,+z|\tilde{H}_{D}|n+1,-z\rangle equals to be zero. It yields

0=g1eiθωγ+η1Rn,n+1+g1Tn,n+1.0=g_{1}e^{i\theta}-\omega\gamma^{\ast}+\eta_{1}R_{n,n+1}+g_{1}T_{n,n+1}. (19)

Since the displacement γ\gamma (γ\gamma^{\ast}) is smaller compared with the unit, it approximately leads to Ln(4γγ)1L_{n}(4\gamma\gamma^{\ast})\simeq 1, Ln1(4γγ)n+1L_{n}^{1}(4\gamma\gamma^{\ast})\simeq n+1, and Ln2(4γγ)(n+1)(n+2)/2L_{n}^{2}(4\gamma\gamma^{\ast})\simeq(n+1)(n+2)/2. One obtains the simplified equation g1eiθωγ+γΔ+g1eiθ=0g_{1}e^{i\theta}-\omega\gamma^{\ast}+\gamma^{\ast}\Delta+g_{1}e^{-i\theta}=0, resulting in

γ2g1β(ω+Δ)α2+β2.\gamma\approx\frac{2g_{1}\beta}{(\omega+\Delta)\sqrt{\alpha^{2}+\beta^{2}}}. (20)

We obtain the solvable Hamiltonian H~0\tilde{H}_{0} by considering both of the Rashba and Dresselhaus SOCs, which retains the Rashba SOC term aσa\sigma_{-} and aσ+a^{{\dagger}}\sigma_{+}. It is so-called GRSOCA. Different from the RSOC approximation, the effective Rashba SOC strength and Zeeman energy are renormalized, which leads to richer physics induced by both types of the SOCs. The effective Hamiltonian obtained by the variational method is expected to be prior to the original Hamiltonian H𝚁𝚂𝙾𝙲H_{\mathtt{RSOC}} (6) only with the Rashba SOC terms. The simplicity of the method is based on its analytical eigenstates and eigenvalues.

One can easily diagonalize the effective Hamiltonian H~0\tilde{H}_{0} in the basis of |n,z\left|n,-z\right\rangle  and |n+1,+z\left|n+1,+z\right\rangle

H~0=(ωn+Δ~,nn+1α~n,n+1n+1α~n,n+1ω(n+1)+Δ~+,n+1),\tilde{H}_{0}=\left(\begin{array}[]{cc}\omega n+\widetilde{\Delta}_{-,n}&\sqrt{n+1}\widetilde{\alpha}_{n,n+1}\\ \sqrt{n+1}\widetilde{\alpha}_{n,n+1}^{\ast}&\omega(n+1)+\widetilde{\Delta}_{+,n+1}\end{array}\right), (21)

where the Zeeman energy is transformed into Δ~±,n=η0±f(n)\widetilde{\Delta}_{\pm,n}=\eta_{0}\pm f(n) with f(n)=η1Gn,n+g1Fn,nf(n)=\eta_{1}G_{n,n}+g_{1}F_{n,n}, and the effective SOC strength is renormalized as α~n,n+1=(g1eiθωγ)η1Rn,n+1g1Tn,n+1\widetilde{\alpha}_{n,n+1}=(g_{1}e^{i\theta}-\omega\gamma^{\ast})-\eta_{1}R_{n,n+1}-g_{1}T_{n,n+1}. One obtains approximately f(n)η12g1[eiθγ+n(γeiθ+γeiθ)]f(n)\approx\eta_{1}-2g_{1}[e^{i\theta}\gamma^{\ast}+n(\gamma e^{-i\theta}+\gamma^{\ast}e^{i\theta})], and α~n,n+1g1(eiθeiθ)ωγ2η1γ\widetilde{\alpha}_{n,n+1}\approx g_{1}(e^{i\theta}-e^{-i\theta})-\omega\gamma^{\ast}-2\eta_{1}\gamma^{\ast}.

Similar to the Hamiltonian H𝚁𝚂𝙾𝙲H_{\mathtt{RSOC}} in Eq. (5) with only the Rashba SOC, the eigenvalues are obtained as

En,±\displaystyle E_{n,\pm} =\displaystyle= ω(n+12)+12[Δ~+,n+1+Δ~,n]\displaystyle\omega(n+\frac{1}{2})+\frac{1}{2}[\widetilde{\Delta}_{+,n+1}+\widetilde{\Delta}_{-,n}]
±12[Δ~+,n+1Δ~,n+ω]2+4(n+1)|α~n,n+1|2.\displaystyle\pm\frac{1}{2}\sqrt{[\widetilde{\Delta}_{+,n+1}-\widetilde{\Delta}_{-,n}+\omega]^{2}+4(n+1)|\widetilde{\alpha}_{n,n+1}|^{2}}.

And the corresponding eigenstates are expressed in the closed form as

|φ+,n=cosθn2|n+1|+z+sinθn2|n|z,\displaystyle\left|\varphi_{+,n}\right\rangle=\cos\frac{\theta_{n}}{2}\left|n+1\right\rangle\left|+z\right\rangle+\sin\frac{\theta_{n}}{2}\left|n\right\rangle\left|-z\right\rangle, (23)
|φ,n=sinθn2|n+1|+zcosθn2|n|z,\displaystyle\left|\varphi_{-,n}\right\rangle=\sin\frac{\theta_{n}}{2}\left|n+1\right\rangle\left|+z\right\rangle-\cos\frac{\theta_{n}}{2}\left|n\right\rangle\left|-z\right\rangle, (24)

where θn=arccos(δn/δn2+4(n+1)|α~n,n+1|2)\theta_{n}=\arccos(\delta_{n}/\sqrt{\delta_{n}^{2}+4(n+1)|\widetilde{\alpha}_{n,n+1}|^{2}}) with δn=ω+Δ~+,n+1Δ~,n\delta_{n}=\omega+\widetilde{\Delta}_{+,n+1}-\widetilde{\Delta}_{-,n}.

The ground state is |0,+z|0,+z\rangle with the eigenvalue

E0=η0+(η12γg1eiθ)e2γγ.\displaystyle E_{0}=\eta_{0}+(\eta_{1}-2\gamma^{*}g_{1}e^{i\theta})e^{-2\gamma\gamma^{*}}. (25)

As a consequence, the corresponding wave functions of the original Hamiltonian H0H_{0} in Eq.(6) can be obtained using the unitary transformation as |Ψ±,n=U|φ±,n\left|\Psi_{\pm,n}\right\rangle=U^{\dagger}\left|\varphi_{\pm,n}\right\rangle,

|Ψ+,n\displaystyle\left|\Psi_{+,n}\right\rangle =\displaystyle= 12[(cosθn2|γ,n+1d+sinθn2|γ,nd)|+x\displaystyle\frac{1}{\sqrt{2}}[(\cos\frac{\theta_{n}}{2}\left|-\gamma,n+1\right\rangle_{d}+\sin\frac{\theta_{n}}{2}\left|-\gamma,n\right\rangle_{d})\left|+\right\rangle_{x}
+(cosθn2|γ,n+1dsinθn2|γ,nd)|x],\displaystyle+(\cos\frac{\theta_{n}}{2}\left|\gamma,n+1\right\rangle_{d}-\sin\frac{\theta_{n}}{2}\left|\gamma,n\right\rangle_{d})\left|-\right\rangle_{x}],

and

|Ψ,n\displaystyle\left|\Psi_{-,n}\right\rangle =\displaystyle= 12[(sinθn2|γ,n+1dcosθn2|γ,nd)|+x\displaystyle\frac{1}{\sqrt{2}}[(\sin\frac{\theta_{n}}{2}\left|-\gamma,n+1\right\rangle_{d}-\cos\frac{\theta_{n}}{2}\left|-\gamma,n\right\rangle_{d})\left|+\right\rangle_{x}
+(sinθn2|γ,n+1d+cosθn2|γ,nd)|x],\displaystyle+(\sin\frac{\theta_{n}}{2}\left|\gamma,n+1\right\rangle_{d}+\cos\frac{\theta_{n}}{2}\left|\gamma,n\right\rangle_{d})\left|-\right\rangle_{x}],

where |±x=(|+z±|z)/2\left|\pm\right\rangle_{x}=(\left|+\right\rangle_{z}\pm\left|-\right\rangle_{z})/\sqrt{2} is the eigenstate of σx\sigma_{x}. Each Laudau state becomes the displaced-Fock state |n\left|n\right\rangle

|γ,nd=e(γaaγ)|n,\left|\mp\gamma,n\right\rangle_{d}=e^{\mp(\gamma a^{\dagger}-a\gamma^{\ast})}\left|n\right\rangle, (28)

which is the displacement transformation of the Fock state |n|n\rangle. Especially it reduces to the coherent state |γ,0d=e(γaaγ)|0\left|\mp\gamma,0\right\rangle_{d}=e^{\mp(\gamma a^{\dagger}-a\gamma^{\ast})}\left|0\right\rangle, which can be expanded as a superposition state of Fock states. Since the Dresselhaus and Rashba SOCs induce infinite nn-th Landau-level states coupling, it is challenge to give eigenstates a closed form. Fortunately, the novel displaced-Fock states as a new set of basis states exhibit an improvement over original Fock states.

Refer to caption
Figure 1: Energy levels En/ωE_{n}/\omega obtained analytically (red solid line) as a function of effective coupling strength ηR/ω=2α/(lbω)\eta_{R}/\omega=\sqrt{2}\alpha/(l_{b}\omega) for different ration between the Dresselhaus and Rashba SOCs strength (a) β/α=0.6\beta/\alpha=0.6 and (b) β/α=1\beta/\alpha=1. The results obtained by the numerical exact diagonalization method (black circles) and under the RSOC approximation (blue dashed line) are listed for comparison. The parameters are Δ/ω=0.5\Delta/\omega=0.5, lb=1l_{b}=1 and ω=1\omega=1.

Fig. 1 displays the first eight energy levels as a function of the effective coupling strength ηR/ω=2α/(lbω)\eta_{R}/\omega=\sqrt{2}\alpha/(l_{b}\omega) for various values of the Dresselhaus coupling strength β\beta. In the absence of the spin-orbit coupling ηR=0\eta_{R}=0, one observes two separated nnth Landau levels induced by the Zeeman energy Δ=0.5ω\Delta=0.5\omega, in which the lower level is the spin-up state and the higher level corresponds to the spin-down electron state. As ηR\eta_{R} increases, the higher level of the nnth Landau level state becomes lower due to the hybridization of the nnth and n+1n+1th displaced-Fock states induced by both types of SOCs. Comparing with the Rashba SOC approximation, the energy crossing occurs at a larger value of the coupling strength as a consequence of the Dresselhaus SOC. It demonstrates that the Dresselhaus SOC enhances Zeeman splitting, while the Rashba SOC interplay with the Zeeman splitting in opposite ways.

For the ratio between the Dresselhaus and Rashba SOC strengths β/α=0.6\beta/\alpha=0.6, our analytical approach is in good agreement with the numerical results in a wide range of coupling strength ηR/ω<0.4\eta_{R}/\omega<0.4 in Fig. 1(a). There is noticeable deviation of the Rashba SOC results with the increasing of the coupling strength up to ηR/ω=0.3\eta_{R}/\omega=0.3. When the Dresselhaus and Rashba terms have equal strength with each other, β=α\beta=\alpha, in Fig. 1(b), the deviation becomes more obvious. Because the Dresselhaus SOC play a more important effect as ηR/ω\eta_{R}/\omega increases, and the Rashba SOC approximation fails. Therefore, our approach, which takes into account the effects of the Dresselhaus SOC terms, provides a more accurate analytical expression to the energy spectrum of the 22DEG system.

IV Spin current with a electric field

Since the competition of the SOC and the Zeeman energy induces an energy crossing, the spin Hall resonance is closely related to the level crossing. When an external electric field is applied, the SOC of the 22DEG induces the spin Hall effect, which is the transverse spin current response to the electric field. As the electric field EE is applied along the yy axis, the Hamiltonian becomes H=H0+eEyH=H_{0}+eEy with the original Hamiltonian H0H_{0} defined in Eq. (1). Using the replacement of yy by y+eE/mω2y+eE/m\omega^{2} in the oscillator operator aa, one obtains the quantized Hamiltonian

H=H0+HE,HE=E[kemω+eω(ασy+βσx)],H=H_{0}+H_{E},H_{E}=-E[\frac{ke}{m\omega}+\frac{e}{\omega}(\alpha\sigma_{y}+\beta\sigma_{x})], (29)

where H0H_{0} is given in Eq.(1), and the constant e2E2/2mω2-e^{2}E^{2}/2m\omega^{2} is dropped. Similar to the transformed Hamiltonian H~0\tilde{H}_{0} in Eq. (21), we perform the unitary transformation U=exp[σx(aγaγ)]U=\exp[\sigma_{x}(a^{\dagger}\gamma-a\gamma^{\ast})] to HEH_{E}, resulting in

H~E\displaystyle\tilde{H}_{E} =\displaystyle= UHEU\displaystyle UH_{E}U^{{\dagger}} (30)
=\displaystyle= EkemωEβeωσxEαeω{σyG(aa)\displaystyle-E\frac{ke}{m\omega}-E\frac{\beta e}{\omega}\sigma_{x}-E\frac{\alpha e}{\omega}\{\sigma_{y}G(a^{\dagger}a)
+iσz[R(aa)aaR(aa)]}.\displaystyle+i\sigma_{z}[R(a^{\dagger}a)a^{\dagger}-aR(a^{\dagger}a)]\}.

The wave function for the Hamiltonian with the electric field can be given to the first-order correction in the perturbation in H~E\tilde{H}_{E} as

|φ±,n(1)=|φ±,n+nk,lφl,k|H~E|φ±,nEn,±El,k|φl,k,(l=±),\left|\varphi_{\pm,n}^{(1)}\right\rangle=\left|\varphi_{\pm,n}\right\rangle+\sum_{n\neq k,l}\frac{\langle\varphi_{l,k}|\tilde{H}_{E}\left|\varphi_{\pm,n}\right\rangle}{E_{n,\pm}-E_{l,k}}\left|\varphi_{l,k}\right\rangle,(l=\pm), (31)

where the eigenvalues En,±E_{n,\pm} and eigenstates |φ±,n\left|\varphi_{\pm,n}\right\rangle are given in Eqs. (III)-(24).

The charge current operator of a single electron is given by

jc\displaystyle j_{c} =\displaystyle= eυx,\displaystyle-e\upsilon_{x}, (32)
υx\displaystyle\upsilon_{x} =\displaystyle= 1i[x,H]=pxm+ωy+ασy+βσx,\displaystyle\frac{1}{i}[x,H]=\frac{p_{x}}{m}+\omega y+\alpha\sigma_{y}+\beta\sigma_{x}, (33)

and the spin-zz component current operator is

jsz\displaystyle j_{s}^{z} =\displaystyle= 2(Szυx+υxSz)\displaystyle\frac{\hbar}{2}(S^{z}\upsilon_{x}+\upsilon_{x}S^{z}) (34)
=\displaystyle= 12[ω2m(a+a)eEmω]σz.\displaystyle\frac{1}{2}[\sqrt{\frac{\omega}{2m}}(a^{{\dagger}}+a)-\frac{eE}{m\omega}]\sigma_{z}.

The average current density of the NeN_{e} electron system is given by

Ic(s)=1LxLynljc(s)nlf(Enl),(l=±1),I_{c(s)}=\frac{1}{L_{x}L_{y}}\sum_{nl}\langle j_{c(s)}\rangle_{nl}f(E_{nl}),(l=\pm 1), (35)

where f(Enl)f(E_{nl}) is the Fermi distribution function, and Ne=nlf(Enl)N_{e}=\sum_{nl}f(E_{nl}). The charge Hall conductance is

Gc(s)=Ic(s)/E.G_{c(s)}=I_{c(s)}/E. (36)
Refer to caption
Figure 2: Energy levels EnE_{n} and average spin Sz\langle S_{z}\rangle obtained analytically for an electron as a function of 1/B1/B for β=0\beta=0(a)(b) and β/α=0.5\beta/\alpha=0.5 (c) (d) with Δ/ω=0.5\Delta/\omega=0.5 and α=0.25ω\alpha=0.25\omega. The results of σz\langle\sigma_{z}\rangle obtained by the numerical exact diagonalization (black circles) are listed for comparison.

Under the first-order perturbation, the corresponding spin/charge current can be expressed as jc(s)±,n=jc(s)(0)±n+jc(s)(1)±n\langle j_{c(s)}\rangle_{\pm,n}=\langle j_{c(s)}^{(0)}\rangle_{\pm n}+\langle j_{c(s)}^{(1)}\rangle_{\pm n}, where

jc(s)(0)±n=φ±,n|Ujc(s)U|φ±,n,\displaystyle\langle j_{c(s)}^{(0)}\rangle_{\pm n}=\left\langle\varphi_{\pm,n}\right|Uj_{c(s)}U^{{\dagger}}\left|\varphi_{\pm,n}\right\rangle, (37)
jc(s)(1)±n\displaystyle\langle j_{c(s)}^{(1)}\rangle_{\pm n} =\displaystyle= nk,lφ±,n|H~E|φl,kφl,k|Ujc(s)U|φ±,nEk,lEn,±\displaystyle\sum\limits_{n\neq k,l}\frac{\left\langle\varphi_{\pm,n}\right|\tilde{H}_{E}\left|\varphi_{l,k}\right\rangle\left\langle\varphi_{l,k}\right|Uj_{c(s)}U^{{\dagger}}\left|\varphi_{\pm,n}\right\rangle}{E_{k,l}-E_{n,\pm}} (38)
+h.c.\displaystyle+h.c.

Under the zeroth approximation, one obtains analytical solutions

jc(0)±n=e2EhNϕLxLy,jsz(0)±,n=eE2mωσz±n,\displaystyle\left\langle j_{c}^{(0)}\right\rangle_{\pm n}=\frac{e^{2}E}{hN_{\phi}}L_{x}L_{y},\langle j_{s}^{z(0)}\rangle_{\pm,n}=-\frac{eE}{2m\omega}\left\langle\sigma_{z}\right\rangle_{\pm n}, (39)

where σz±n\left\langle\sigma_{z}\right\rangle_{\pm n} is given in the Appendix B. With the average current density IszI_{s}^{z}, the spin Hall conductance can be derived under the zeroth order correction by

Gsz(0)=SzEeEmω=SzGce,G_{s}^{z(0)}=-\frac{\langle S_{z}\rangle}{E}\frac{eE}{m\omega}=-\frac{\langle S_{z}\rangle G_{c}}{e}, (40)
Sz=nl12σznlf(En,l),(l=±).\langle S_{z}\rangle=\sum_{nl}\frac{1}{2}\left\langle\sigma_{z}\right\rangle_{nl}f(E_{n,l}),(l=\pm). (41)

And the Hall conductance is given as in the Appendix B

Gc=e2Ne/(2πNϕ),G_{c}=e^{2}N_{e}/(2\pi N_{\phi}), (42)

which is only dependent on the filling factor Ne/NϕN_{e}/N_{\phi} with Nϕ=LxLyeB/(hc)N_{\phi}=L_{x}L_{y}eB/(hc) .

Fig. 2 shows energy levels and the spin polarization Sz\langle S_{z}\rangle under the zeroth approximation. It is observed that the energy En,+E_{n,+} with spin-up state firstly enters into the Fermi energy region, then it gives rise to the energy En+1,E_{n+1,-} with spin-down state in Fig. 2(a)(c). As the energy gap between En,+E_{n,+} and En+1,E_{n+1,-} becomes smaller, it yields energy crossing at certain magnetic field B0B_{0}, which is given by En+1,=En,+E_{n+1,-}=E_{n,+} in Eq.(III). When the magnetic field exceeds the critical value B0B_{0}, the spin-down state with En,E_{n,-} emerge firstly, and then the spin-up state with En+1,+E_{n+1,+} enters into the Fermi energy region. The corresponding expected value of Sz\langle S_{z}\rangle is calculated in Fig. 2(b)(d). It reaches maxima at odd integers nn, and minima at even integers nn. A discontinuous jump occurs at B0B_{0}. Below the critical value B0B_{0}, the maximal value of σz\langle\sigma_{z}\rangle occurs at even integers nn. The jump of the spin polarization ascribes to the energy crossing of two eigenstates with almost opposite spins. Especially, when only Rashba SOC is considered (β=0\beta=0), one obtains the constraint condition for the energy crossing

2ω=(ωΔ)2+4(n+1)ηR2+(ωΔ)2+4(n+2)ηR2,2\omega=\sqrt{(\omega-\Delta)^{2}+4(n+1)\eta_{R}^{2}}+\sqrt{(\omega-\Delta)^{2}+4(n+2)\eta_{R}^{2}}, (43)

with the displacement γ=0\gamma=0 (see the Appendix C). It recovers results with only the Rashba coupling shen2004 . By comparing to the results with only Rashba SOC, the critical value of 1/B01/B_{0} shifts to a larger value in Fig. 2(d). It demonstrates that the Dresselhaus SOC plays a vital role in suppressing the energy crossing, which is different from the effects of the Rashba SOC.

In presence of the electric field, the spin Hall conductance of the spin-zz component current is the most interesting. Fig. 3 shows the charge conductance GcG_{c} in Eq. (42) and the spin Hall conductance Gsz(1)G_{s}^{z(1)} obtained by the first-order corrections in Eq. (38). A series of plateaus in the charge GcG_{c} are visible, and a jump between two plateaus is observed at the critical magnetic field, where the spin conductance Gsz(1)G_{s}^{z(1)} becomes divergent with a resonant peak. The resonance ascribes to the interference of two degenerate levels near the Fermi energy. The resonance point coincides with the jump point of Sz\langle S_{z}\rangle with the energy crossing. By comparing to the behaviors with only the Rashba SOC, the charge GcG_{c} and spin Hall conductance Gsz(1)G_{s}^{z(1)} exhibit a shift value of the resonant point, which is induced by the Dresselhaus SOC effects. For a large Zeeman splitting energy Δ/ω=0.5\Delta/\omega=0.5, the resonant point shifts to a larger value of 1/B01/B_{0} in Fig. 3(b). It demonstrate that the SOC interactions and the Zeeman splitting play an opposite role in the energy-levels crossing. Fortunately, the charge and spin conductance obtained by first-order approximation agree well with the numerical results, exhibiting the validity of our approach.

Refer to caption
Figure 3: Charge conductance GcG_{c} and spin Hall conductance Gsz(1)G_{s}^{z(1)} obtained with first-order corrections as a function of 1/B1/B for different Zeeman splitting energy (a) Δ/ω=0.1\Delta/\omega=0.1 and (b) Δ/ω=0.5\Delta/\omega=0.5. The ratio between the Dresselhaus and Rashba SOCs is β/α=0.5\beta/\alpha=0.5 with the Rashba SOC strength α=0.25ω\alpha=0.25\omega. The results obtained by the numerical exact diagonalization (black circles) and under the RSOC approximation (blue dotted line) are listed for comparison. The external electronic field is E/ω=0.1N/CE/\omega=0.1N/C.

V Conclusion

When both the Rashba and Dresselhaus spin-orbit couplings are considered, we find the single electron Hamiltonian in two-dimensional system subjected to a perpendicular magnetic field can map onto an anisotropic Rabi model. We perform the generalized Rashba SOC approximation using the displacement unitary transformation, and keep the single Landau level (nearest neighbor Landau level mixing) matrix element for even (odd) coupling function, and a solvable Hamiltonian is obtained in a similar form as that with only the Rashba term. The strengths of the both types of SOCs and Zeeman splitting are absorbed in the displacement-shift variable. With comparing the numerical diagonalization, our method provides accurate energy levels up to a large Zeeman splitting. As a consequence of the Dresselhaus and Rashba SOCs, each Landau state becomes a displaced-Fock state, which has a displacement shift by comparing to the original Harmonic oscillator Fock state. With the analytical solved eigenstates, the spin current displays a jump at a larger value of the inverse of the magnetic field, which demonstrates that the Dresselhaus SOC plays an opposite way in the energy splitting by comparing to the Rashba SOC. Moreover, in the presence of an electric field, the spin Hall conductance obtained by the first-order corrections diverges at the resonant point, and a series of plateaus of the charge conductance are observed, which fit well with numerical results. In conclusion, our method provides an easy-to-implement analytical solution to the 2DEGs with considering all SOCs in which all the coupling strengths, including Rashba, Dresselhaus, and Zeeman splitting, are described by the displacement shift. This solution could be potentially useful in the future studies of the quantum version of the spin Hall effects and the interacting fractional quantum Hall systems.

Acknowledgements.
This work was supported by National Natural Science Foundation of China (Grants No.12075040, No.11875231, and No.11974064), and by the Chongqing Research Program of Basic Research and Frontier Technology (Grants No.cstc2020jcyj-msxmX0890).

Appendix A Deviation of the Hamiltonian by the displacement transformation

We perform the unitrary transformation U=exp[σx(aγaγ)]U=\exp[\sigma_{x}(a^{\dagger}\gamma-a\gamma^{\ast})] to the Hamiltonian H0H_{0} in Eq. (6). One easily obtains UaU=aγσxUaU^{\dagger}=a-\gamma\sigma_{x} and UaU=aγσxUa^{\dagger}U^{\dagger}=a^{\dagger}-\gamma^{\ast}\sigma_{x}. The first and second terms of H0H_{0} in Eq. (6) can be transformed into

UaaU=aaσx(aγ+aγ)+γγ,Ua^{\dagger}aU^{\dagger}=a^{\dagger}a-\sigma_{x}(a^{\dagger}\gamma+a\gamma^{\ast})+\gamma\gamma^{\ast}, (44)

and

UσzU=σz{1+12σz[2(aγaγ)]2+}\displaystyle U\sigma_{z}U^{\dagger}=\sigma_{z}\{1+\frac{1}{2}\sigma_{z}[2(a^{\dagger}\gamma-a\gamma^{\ast})]^{2}+...\}
iσy{2(aγaγ)+13![2(aγaγ)]3+}\displaystyle-i\sigma_{y}\{2(a^{\dagger}\gamma-a\gamma^{\ast})+\frac{1}{3!}[2(a^{\dagger}\gamma-a\gamma^{\ast})]^{3}+...\}
=\displaystyle= σzcosh[2(aγaγ)]iσysinh[2(aγaγ)].\displaystyle\sigma_{z}\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})]-i\sigma_{y}\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})].

Meanwhile, two SOCs terms of H0H_{0} are derived explicitly as

Uσx(aeiθ+aeiθ)U=σx(aeiθ+aeiθ)(γeiθ+γeiθ),U\sigma_{x}(a^{\dagger}e^{-i\theta}+ae^{i\theta})U^{\dagger}=\sigma_{x}(a^{\dagger}e^{-i\theta}+ae^{i\theta})-(\gamma^{\ast}e^{-i\theta}+\gamma e^{i\theta}), (46)

and

Uiσy(aeiθaeiθ)U\displaystyle Ui\sigma_{y}(a^{\dagger}e^{i\theta}-ae^{-i\theta})U^{\dagger}
=iσyBσz[2AB(γeiθγeiθ)]\displaystyle=i\sigma_{y}B-\sigma_{z}[2AB-(\gamma e^{-i\theta}-\gamma^{\ast}e^{i\theta})]
+12!iσy[4A2B4A(γeiθγeiθ)]\displaystyle+\frac{1}{2!}i\sigma_{y}[4A^{2}B-4A(\gamma e^{-i\theta}-\gamma^{\ast}e^{i\theta})]
13!σz[8A3B12A2(γeiθγeiθ)2]\displaystyle-\frac{1}{3!}\sigma_{z}[8A^{3}B-12A^{2}(\gamma e^{-i\theta}-\gamma^{\ast}e^{i\theta})^{2}]
+14!iσy[16A4B32A3(γeiθγeiθ)]+\displaystyle+\frac{1}{4!}i\sigma_{y}[16A^{4}B-32A^{3}(\gamma e^{-i\theta}-\gamma^{\ast}e^{i\theta})]+...
=\displaystyle= iσy[cosh(2A)B(γeiθγeiθ)sinh(2A)]\displaystyle i\sigma_{y}[\cosh(2A)B-(\gamma e^{-i\theta}-\gamma^{\ast}e^{i\theta})\sinh(2A)]
σz[sinh(2A)B(γeiθγeiθ)cosh(2A)]\displaystyle-\sigma_{z}[\sinh(2A)B-(\gamma e^{-i\theta}-\gamma^{\ast}e^{i\theta})\cosh(2A)]

where the operators are given by A=aγaγA=a^{\dagger}\gamma-a\gamma^{\ast} and B=aeiθaeiθB=a^{\dagger}e^{i\theta}-ae^{-i\theta}. Thus, the transformed Hamiltonian is given in terms of H0H_{0}^{\prime} and H1H_{1}^{\prime} in Eqs. (17) and (8).

By expanding the even and odd functions cosh[2(aγaγ)]\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})] and sinh[2(aγaγ)]\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})], the corresponding coefficients are derived as

Gn,n\displaystyle G_{n,n} =\displaystyle= n|cosh[2(aγaγ)]|n\displaystyle\left\langle n\right|\cosh[2(a^{\dagger}\gamma-a\gamma^{\ast})]\left|n\right\rangle (47)
=\displaystyle= 12n|{exp[2(aγaγ)]+exp[2(aγaγ)]}|n\displaystyle\frac{1}{2}\left\langle n\right|\{\exp[2(a^{\dagger}\gamma-a\gamma^{\ast})]+\exp[-2(a^{\dagger}\gamma-a\gamma^{\ast})]\}\left|n\right\rangle
=\displaystyle= e2γγi=0n(1)nin!(ni)!(ni!)i!(4γγ)ni\displaystyle e^{-2\gamma\gamma^{\ast}}\sum_{i=0}^{n}(-1)^{n-i}\frac{n!}{(n-i)!(n-i!)i!}(4\gamma\gamma^{\ast})^{n-i}
=\displaystyle= e2γγLn(4γγ),\displaystyle e^{-2\gamma\gamma^{\ast}}L_{n}(4\gamma\gamma^{\ast}),

and

n+1Rn+1,n=n+1|sinh[2(aγaγ)]|n\displaystyle\sqrt{n+1}R_{n+1,n}=\left\langle n+1\right|\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})]\left|n\right\rangle (48)
=\displaystyle= 12n|{exp[2(aγaγ)]exp[2(aγaγ)]}|n\displaystyle\frac{1}{2}\left\langle n\right|\{\exp[2(a^{\dagger}\gamma-a\gamma^{\ast})]-\exp[-2(a^{\dagger}\gamma-a\gamma^{\ast})]\}\left|n\right\rangle
=\displaystyle= 2γe2γγn!(n+1)!i=0n(1)nin!(n+1)!(ni)!(n+1i!)i!(4γγ)ni\displaystyle\frac{2\gamma e^{-2\gamma\gamma^{\ast}}}{\sqrt{n!(n+1)!}}\sum_{i=0}^{n}(-1)^{n-i}\frac{n!(n+1)!}{(n-i)!(n+1-i!)i!}(4\gamma\gamma^{\ast})^{n-i}
=\displaystyle= 2γn+1e2γγLn1(4γγ).\displaystyle\frac{2\gamma}{\sqrt{n+1}}e^{-2\gamma\gamma^{\ast}}L_{n}^{1}(4\gamma\gamma^{\ast}).

Appendix B Spin current under the zeroth corrections

In presence of the electric field, the spin current is derived as

jsz±n=12φ±,n|U[ω2m(a+a)eEmω]σzU|φ±,n.\displaystyle\left\langle j_{s}^{z}\right\rangle_{\pm n}=\frac{1}{2}\langle\varphi_{\pm,n}|U[\sqrt{\frac{\hbar\omega}{2m}}(a^{{\dagger}}+a)-\frac{eE}{m\omega}]\sigma_{z}U^{\dagger}\left|\varphi_{\pm,n}\right\rangle.

Using the eigenstates |φ±,n\left|\varphi_{\pm,n}\right\rangle in Eqs. (23) and (24), one obtains

(a+a)σz+n=φ+,n|U(a+a)σzU|φ+,n\displaystyle\langle(a^{{\dagger}}+a)\sigma_{z}\rangle_{+n}=\left\langle\varphi_{+,n}\right|U(a^{{\dagger}}+a)\sigma_{z}U^{{\dagger}}\left|\varphi_{+,n}\right\rangle (50)
=\displaystyle= φ+,n|[(a+a)(γ+γ)σx]UσzU|φ+,n\displaystyle\left\langle\varphi_{+,n}\right|[(a^{{\dagger}}+a)-(\gamma+\gamma^{\ast})\sigma_{x}]U\sigma_{z}U^{\dagger}\left|\varphi_{+,n}\right\rangle
=\displaystyle= n|(a+a)sinh[2(aγaγ)]sinθn2cosθn2|n+1\displaystyle\left\langle n\right|(a^{\dagger}+a)\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})]\sin^{\ast}\frac{\theta_{n}}{2}\cos\frac{\theta_{n}}{2}\left|n+1\right\rangle
n+1|(a+a)sinh[2(aγaγ)]cosθn2sinθn2|n\displaystyle-\left\langle n+1\right|(a^{\dagger}+a)\sinh[2(a^{\dagger}\gamma-a\gamma^{\ast})]\cos^{\ast}\frac{\theta_{n}}{2}\sin\frac{\theta_{n}}{2}\left|n\right\rangle
=\displaystyle= 0,\displaystyle 0,

and

(a+a)σzn=φ,n|U(a+a)σzU|φ,n=0.\langle(a^{{\dagger}}+a)\sigma_{z}\rangle_{-n}=\left\langle\varphi_{-,n}\right|U(a^{{\dagger}}+a)\sigma_{z}U^{{\dagger}}\left|\varphi_{-,n}\right\rangle=0. (51)

So the spin current is simplified as

jsz±n=eE2mωσz±n.\displaystyle\left\langle j_{s}^{z}\right\rangle_{\pm n}=-\frac{eE}{2m\omega}\left\langle\sigma_{z}\right\rangle_{\pm n}. (52)

where the average value of σz±n\left\langle\sigma_{z}\right\rangle_{\pm n} are derived in the following

σz+n=φ+,n|UσzU|φ+,n\displaystyle\left\langle\sigma_{z}\right\rangle_{+n}=\langle\varphi_{+,n}|U\sigma_{z}U^{\dagger}\left|\varphi_{+,n}\right\rangle
=cosθn2cosθn2Gn+1,n+1sinθn2sinθn2Gn,n\displaystyle=\cos\frac{\theta_{n}}{2}\cos^{\ast}\frac{\theta_{n}}{2}G_{n+1,n+1}-\sin\frac{\theta_{n}}{2}\sin^{\ast}\frac{\theta_{n}}{2}G_{n,n}
n+1(sinθn2cosθn2Rn+1,n+sinθn2cosθn2Rn,n+1),\displaystyle-\sqrt{n+1}(\sin\frac{\theta_{n}}{2}\cos^{\ast}\frac{\theta_{n}}{2}R_{n+1,n}+\sin^{{}^{\ast}}\frac{\theta_{n}}{2}\cos\frac{\theta_{n}}{2}R_{n,n+1}),

and

σzn=φ,n|UσzU|φ,n\displaystyle\left\langle\sigma_{z}\right\rangle_{-n}=\langle\varphi_{-,n}|U\sigma_{z}U^{\dagger}\left|\varphi_{-,n}\right\rangle
=sinθn2sinθn2Gn+1,n+1cosθn2cosθn2Gn,n\displaystyle=\sin\frac{\theta_{n}}{2}\sin^{\ast}\frac{\theta_{n}}{2}G_{n+1,n+1}-\cos\frac{\theta_{n}}{2}\cos^{\ast}\frac{\theta_{n}}{2}G_{n,n}
+n+1(cosθn2sinθn2Rn+1,n+cosθn2sinθn2Rn,n+1).\displaystyle+\sqrt{n+1}(\cos\frac{\theta_{n}}{2}\sin^{\ast}\frac{\theta_{n}}{2}R_{n+1,n}+\cos^{\ast}\frac{\theta_{n}}{2}\sin\frac{\theta_{n}}{2}R_{n,n+1}).

Meanwhile, the charge current jc=evxj_{c}=-ev_{x} can be expressed in terms of the harmonic oscillator aa (aa^{\dagger}) as

jc=e[ω2m(a+a)+ασy+βσxeEmω].j_{c}=-e[\sqrt{\frac{\hbar\omega}{2m}}(a^{\dagger}+a)+\alpha\sigma_{y}+\beta\sigma_{x}-\frac{eE}{m\omega}]. (55)

The average value of the charge current is given by

jc±n\displaystyle\left\langle j_{c}\right\rangle_{\pm n} =\displaystyle= φ±,n|UjcU|φ±,n\displaystyle\langle\varphi_{\pm,n}|Uj_{c}U^{{\dagger}}\left|\varphi_{\pm,n}\right\rangle (56)
=\displaystyle= φ±,n|e2Emω|φ±,n=e2E2πNϕLxLy,\displaystyle\left\langle\varphi_{\pm,n}\right|\frac{e^{2}E}{m\omega}\left|\varphi_{\pm,n}\right\rangle=\frac{e^{2}E}{2\pi N_{\phi}}L_{x}L_{y},

where UjcU=e[ω2m(a+a)ω2m(γ+γ)σx+ασycosh(2A)+αiσzsinh(2A)+βσxeE/(mω)]Uj_{c}U^{{\dagger}}=-e[\sqrt{\frac{\omega}{2m}}(a^{\dagger}+a)-\sqrt{\frac{\omega}{2m}}(\gamma+\gamma^{\ast})\sigma_{x}+\alpha\sigma_{y}\cosh(2A)+\alpha i\sigma_{z}\sinh(2A)+\beta\sigma_{x}-eE/(m\omega)]. Then we obtain the charge Hall conductance Gc=Ic/EG_{c}=I_{c}/E as

Gc=e2E2πENϕnlf(Enl)=e2Ne2πNϕ.G_{c}=\frac{e^{2}E}{2\pi EN_{\phi}}\sum_{nl}f(E_{nl})=\frac{e^{2}N_{e}}{2\pi N_{\phi}}. (57)

Appendix C energy-crossing conditions

Since the n+1n+1-th Laudau level of spin down and the nn-th Laudau level of spin-up becomes crossing near the Fermi energy, resulting in the resonance peak of the spin Hall conductance at the energy crossing point. It leads to the energy crossing at certain magnetic field B0B_{0}, which satisfies En+1,=En,+E_{n+1,-}=E_{n,+}. It yields

2ω+f(n+2)2f(n+1)+f(n)\displaystyle 2\omega+f(n+2)-2f(n+1)+f(n)
=[f(n+1)+f(n)+ω]2+4(n+1)|α~n,n+1|2\displaystyle=\sqrt{[f(n+1)+f(n)+\omega]^{2}+4(n+1)|\widetilde{\alpha}_{n,n+1}|^{2}}
+[f(n+2)+f(n+1)+ω]2+4(n+2)|α~n+1,n+2|2.\displaystyle+\sqrt{[f(n+2)+f(n+1)+\omega]^{2}+4(n+2)|\widetilde{\alpha}_{n+1,n+2}|^{2}}.

Especially, when the Dresshaul SOC is neglected by setting β=0\beta=0, the displacement variable reduces into γ=0\gamma=0. One can simplify the parameters as Rn,n+1=Rn+1,n=0R_{n,n+1}=R_{n+1,n}=0, Tn,n+1=iα/α2+β2T_{n,n+1}=-i\alpha/\sqrt{\alpha^{2}+\beta^{2}}, η0=ω/2\eta_{0}=\omega/2, η1=Δ/2\eta_{1}=-\Delta/2, f(n)=Δ/2f(n)=-\Delta/2, and α~n,n+1=iηR \widetilde{\alpha}_{n,n+1}=i\eta_{R\text{ }}. It leads to the eigenvalues

En,+=ωn+ω+12(ωΔ)2+4(n+1)ηR2,E_{n,+}=\omega n+\omega+\frac{1}{2}\sqrt{(\omega-\Delta)^{2}+4(n+1)\eta_{R}^{2}}, (59)
En+1,=ω(n+1)+ω12(ωΔ)2+4(n+2)ηR2.E_{n+1,-}=\omega(n+1)+\omega-\frac{1}{2}\sqrt{(\omega-\Delta)^{2}+4(n+2)\eta_{R}^{2}}. (60)

Thus, the energy-levels crossing is given by En+1,En,+=0E_{n+1,-}-E_{n,+}=0, resulting in

2ω=(ωΔ)2+4(n+1)ηR2+(ωΔ)2+4(n+2)ηR2.2\omega=\sqrt{(\omega-\Delta)^{2}+4(n+1)\eta_{R}^{2}}+\sqrt{(\omega-\Delta)^{2}+4(n+2)\eta_{R}^{2}}. (61)

References

  • (1) J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano and I. Zutic, Acta Phys. Slovaca 57, 565 (2007).
  • (2) C. Chappert, A. Fert and F. N. Van Dau, Nature Mater. 6, 813 (2007).
  • (3) M. I. Dyakonov and V. I. Peral, ZhETF Pis. Red. 13, 657 (1971).
  • (4) J. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
  • (5) S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
  • (6) J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).
  • (7) D. Xiao, M-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
  • (8) Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910(2004).
  • (9) J. Wunderlich, B. Kaestner, J. Sinova and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).
  • (10) J. Wunderlich, et al, Science 330, 1801 (2010).
  • (11) S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006).
  • (12) J. Sinova, S. O. Valenzuela, J. Wunderlich, C.H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
  • (13) S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004).
  • (14) P. Lucignano, R. Raimondi, and A. Tagliacozzo, Phys. Rev. B 78, 035336 (2008).
  • (15) H. A. Engel, E. I. Rashba, and B. I. Halperin, Phys. Rev. Lett. 98, 036602 (2007).
  • (16) E. Rashba, Sov. Phys. Solid State 2, 1109 (1960).
  • (17) G. Dresselhaus, Phys. Rev. 100, 580 (1955).
  • (18) Y. A. Bychkov, E. Rashba, J. Phys. C: Solid State Phys. 17, 6039 (1984).
  • (19) B. Jusserand, D. Richards, H. Peric, and B. Etienne, Phys. Rev. Lett. 69, 848 (1992).
  • (20) M. Kim, J. Ihm, and S. B. Chung, Phys. Rev. B 94, 115431 (2016).
  • (21) K. Ishizaka, et al., Nat. Mater 10, 521 (2011)
  • (22) A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, Nat. Mater. 14, 871 (2015).
  • (23) G. Lommer, F. Malcher, and U. Rössler, Phys. Rev. Lett. 60, 728 (1988).
  • (24) O. Voskoboynikov, C. P. Lee, and O. Tretyak, Phys. Rev. B 63, 165306 (2001).
  • (25) J. Schliemann, and D. Loss, Phys. Rev. B 68, 165311 (2003).
  • (26) S. D. Ganichev, V. V. Bel?kov, L. E. Golub, E. L. Ivchenko, Petra Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 92, 256601 (2004).
  • (27) N. S. Averkiev, L. E. Golub, Phys. Rev. B 60, 15582 (1999).
  • (28) H. K. Park, H. J. Yang, and S. Lee, Phys. Rev. Res. 2, 033487 (2020).
  • (29) S. Gelfert, C. Frankerl, C. Reichl, D. Schuh, G. Salis, W. Wegscheider, D. Bougeard, T. Korn, and C. Schüller, Phys. Rev. B 101, 035427 (2020).
  • (30) Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999).
  • (31) O. Z. Karimov, G. H. John, R.T. Harley, W. H. Lau, M. E. Flatte, M. Henini, and R. Airey, Phys. Rev. Lett. 91, 246601 (2003).
  • (32) S. Döhrmann, D. Hägele, J. Rudolph, M. Bichler, D. Schuh, and M. Oestreich, and M. Oestreich, Phys. Rev. Lett. 93, 147405 (2004).
  • (33) V. V. Bel?kov, P. Olbrich, S. A. Tarasenko, D. Schuh, W. Wegscheider, T. Korn, C. Schüller, D. Weiss, W. Prettl, and S. D. Ganichev, Phys. Rev. Lett. 100, 176806 (2008).
  • (34) G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hübner, and M. Oestreich, Phys. Rev. Lett. 101, 206601 (2008).
  • (35) A. Balocchi, Q. H. Duong, P. Renucci, B. L. Liu, C. Fontaine, T. Amand, D. Lagarde, and X. Marie, Phys. Rev. Lett. 107, 136604 (2011).
  • (36) A. Hernández-Mínguez, K. Biermann, R. Hey, and P. V. Santos, Phys. Rev. Lett. 109, 266602 (2012).
  • (37) J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).
  • (38) J. P. Heida, B. J. van Wees, J. J. Kuipers, T. M. Klapwijk, and G. Borghs, Phys. Rev. B 57, 11911 (1998).
  • (39) S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. B 71, 155316 (2005).
  • (40) W. Yang, and K. Chang, Phys. Rev. B 73, 045303 (2006).
  • (41) R. Li, J. Q. You, C. P. Sun, and F. Nori, Phys. Rev. Lett. 111, 086805 (2013).
  • (42) Q. H. Chen, C. Wang, S. He, T. Liu, and K. L. Wang, Phys. Rev. A 86, 023822 (2012).
  • (43) E. K. Irish, Phys. Rev. Lett. 99, 173601(2007).
  • (44) Y. Y. Zhang Phys. Rev. A 94, 063824 (2016); Y. Y. Zhang and X.Y. Chen, Phys. Rev. A 96, 063821 (2017).