This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Analysis of the L3 BEC at Z0-pole
– Comparison of the conventional formula against the τ\tau-model –

Takuya Mizoguchi1, Seiji Matsumoto2, and Minoru Biyajima2
1National Institute of Technology, Toba College, Toba 517-8501, Japan
2Center for General Education, Shinshu University, Matsumoto 390-8621, Japan
Abstract

The L3 Collaboration reported data on 2-jet and 3-jet Bose–Einstein correlations (BECs) with the results obtained through the τ\tau-model in 2011. In this study, we analyze these correlations using the conventional formula with the Gaussian long-range correlation (CFI×LRC(Gauss){\rm CF_{I}\times LRC_{(Gauss)}}). The estimated ranges of interactions for 2-jet and 3-jet, R2jetR_{\rm 2\mathchar 45\relax jet} and R3jetR_{\rm 3\mathchar 45\relax jet}, are almost the same magnitude as those by τ\tau-model: R2jet=0.83±0.05R_{\rm 2\mathchar 45\relax jet}=0.83\pm 0.05 (stat) fm and R3jet=1.09±0.04R_{\rm 3\mathchar 45\relax jet}=1.09\pm 0.04 (stat) fm. The anticorrelation in BEC (less than 1.0) observed by the L3 Collaboration is related to the partially negative density profile (ρτ,BE(ξ)\mbox{\Large$\rho$}_{\rm\tau,BE}(\xi) in ξ\xi space) in the τ\tau-model and the LRC(Gauss)=1/(1+αeβQ2){\rm LRC_{(Gauss)}}=1/(1+\alpha e^{-\beta Q^{2}}) in CFI×LRC(Gauss){\rm CF_{I}\times LRC_{(Gauss)}}, respectively. Remarkably, the probability Pτ(ξ)P_{\tau}(\xi) calculated from the Levy canonical form exhibits partially negative behavior.

1 Introduction

The L3 Collaboration reported their data on 2-jet and 3-jet Bose–Einstein correlation (BEC) in e+ee^{+}e^{-} collisions at Z0-pole in 2011 [1]. The BEC is described in terms of the four momentum transfer Q=(p1p2)2Q=\sqrt{-(p_{1}-p_{2})^{2}},

R2=ρ2(p1,p2)ρ0(p1,p2)=ρ2(Q)ρ0(Q)\displaystyle R_{2}=\frac{\rho_{2}(p_{1},\,p_{2})}{\rho_{0}(p_{1},\,p_{2})}=\frac{\rho_{2}(Q)}{\rho_{0}(Q)} (1)

where the numerator is the two-particle (mainly pions) distribution including the BE effect and the denominator is the two-particle distribution without the BE effect which is the mixture procedure. That means the ρ0(Q)\rho_{0}(Q) distribution made from different events.

Furthermore, introducing various corrections, L3 Collaboration adopted the following ratio expressed by Eq. (1),

R2(L3)=R2dataR2genR2detR2gennoBE.\displaystyle R_{2}^{\rm(L3)}=\frac{R_{\rm 2\,data}\cdot R_{\rm 2\,gen}}{R_{\rm 2\,det}\cdot R_{\rm 2\,gen\mathchar 45\relax noBE}}. (2)

In Eq. (2), the suffixes data, gen, det, and gen-noBE mean the following ensembles, respectively:

1) data:

the data sample.

2) gen:

a generator-level Monte Carlo (MC) sample.

3) det:

the same MC sample passed through detector simulation and subject to the same selection procedure as the data.

and 4) gen-noBE:

a generator-level sample of a MC generated without BEC simulation.

Finally, R2(L3)R_{2}^{\rm(L3)} data are analyzed by the following τ\tau-model based on the Levy canonical form to explain the anticorrelation (BEC: less than 1.0) observed in the interval 0.5GeVQ<1.50.5\ {\rm GeV}\ Q<1.5 GeV:

Fτ=[1+λcos((RaQ)2ατ)exp((RQ)2ατ)]×LRC(linear),\displaystyle F_{\rm\tau}=\left[1+\lambda\cos\left((R_{a}Q)^{2\alpha_{\tau}}\right)\exp\left(-(RQ)^{2\alpha_{\tau}}\right)\right]\times{\rm LRC_{(linear)}}, (3)

where RR denotes the magnitude of the interaction region and RaR_{a} does a constrain expressed by Ra2ατ=tan(ατπ/2)R2ατR_{a}^{2\alpha_{\tau}}=\tan(\alpha_{\tau}\pi/2)R^{2\alpha_{\tau}}. The long-range correlation (LRC(linear){\rm LRC_{(linear)}}) is expressed as LRC(linear)=C(1+δQ){\rm LRC_{(linear)}}=C(1+\delta Q). The parameter λ\lambda denotes the degree of coherence, and ατ\alpha_{\tau} represents the characteristic index introduced in the Levy canonical form in the stochastic theory [2, 3].

In contrast, OPAL [4], DELPHI [5] and ALEPH Collaborations [6] reported their data on BEC at Z0-pole in 1991 and 1992, using the double ratio (DR) described with the single ratios C2data(Q)C_{2}^{\rm data}(Q) and C2MC(Q)C_{2}^{\rm MC}(Q),

DR=C2data(Q)C2MC(Q)=N(2+:2)(Q)/N(+)(Q)NMC(2+:2)(Q)/NMC(+)(Q),\displaystyle{\rm DR}=\frac{C_{2}^{\rm data}(Q)}{C_{2}^{\rm MC}(Q)}=\frac{N^{(2+:2-)}(Q)/N^{(+-)}(Q)}{N_{\rm MC}^{(2+:2-)}(Q)/N_{\rm MC}^{(+-)}(Q)}, (4)

where NN denotes the number of events. The suffixes (2+:2)(2+:2-) and (+)(+-) indicate charge combinations.

It should be remarked that the reported data on BEC at Z0-pole [4, 5, 6] were analyzed by the conventional formula with LRC(OPAL)=C(1+δQ+εQ2){\rm LRC_{(OPAL)}}=C(1+\delta Q+\varepsilon Q^{2}) and LRC(linear){\rm LRC_{(linear)}},

CFI=(1+λEBE)×LRC,\displaystyle{\rm CF_{I}}=(1+\lambda\ E_{\rm BE})\times{\rm LRC}, (5)

where EBEE_{\rm BE} is the exchange function due to Bose–Einstein statistics for the identical pions.

Thus, to compare fit parameters by L3 Collaboration and those by OPAL, DELPHI and ALEPH Collaborations, we have to analyze data on R2(L3)R_{2}^{\rm(L3)} by Eq. (5). This is one of the aims of the present study.

First, to know the role of LRC(linear){\rm LRC_{(linear)}}, we examine data measured as R2(L3)R_{2}^{\rm(L3)} by L3 Collaboration [1] using Eq. (3). Table 1 and Fig. 1 present the results estimated using Eq. (3). As seen in Table 1, the role of LRC(linear){\rm LRC_{(linear)}} is considerably important because χ2\chi^{2}/dof’s are improved. In other words, the term of cos((RaQ)2ατ)\cos\left((R_{a}Q)^{2\alpha_{\tau}}\right) cannot sufficiently explain the anticorrelation. To show the role of Ra2ατ=tan(ατπ/2)R2ατR_{a}^{2\alpha_{\tau}}=\tan(\alpha_{\tau}\pi/2)R^{2\alpha_{\tau}}, we present our calculation with the constraint Ra2ατ×LRC(linear)R_{a}^{2\alpha_{\tau}}\times{\rm LRC_{(linear)}} in § 4.

Table 1: Fit parameters of data on 2-jet and 3-jet events by Eq. (3). Raατ=tan(ατπ/4)RατR_{a}^{\alpha_{\tau}}=\tan(\alpha_{\tau}\pi/4)R^{\alpha_{\tau}} is calculated in the exact form. In the upper column, δ=0\delta=0 is used.
event RR (fm) λ\lambda CC ατ\alpha_{\tau} δ\delta (GeV-1) χ2\chi^{2}/dof
2-jet 0.75±0.030.75\pm 0.03 0.58±0.020.58\pm 0.02 0.986±0.0010.986\pm 0.001 0.45±0.010.45\pm 0.01 119.7/96
3-jet 0.93±0.030.93\pm 0.03 0.78±0.030.78\pm 0.03 0.989±0.0010.989\pm 0.001 0.44±0.010.44\pm 0.01 226.8/96
2-jet 0.78±0.040.78\pm 0.04 0.61±0.030.61\pm 0.03 0.979±0.0020.979\pm 0.002 0.44±0.010.44\pm 0.01 (4.6±0.9)×103(4.6\pm 0.9)\times 10^{-3} 94.6/95
3-jet 0.99±0.040.99\pm 0.04 0.85±0.040.85\pm 0.04 0.977±0.0010.977\pm 0.001 0.41±0.010.41\pm 0.01 (7.7±0.7)×103(7.7\pm 0.7)\times 10^{-3} 113/95
2-jet 0.80±0.040.80\pm 0.04 0.64±0.040.64\pm 0.04 0.972±0.0050.972\pm 0.005 0.43±0.010.43\pm 0.01 (1.40±0.57)×102(1.40\pm 0.57)\times 10^{-2} 91.5/94
ε=(2.22±1.37)×101\varepsilon=(-2.22\pm 1.37)\times 10^{-1} GeV-2
3-jet 1.06±0.051.06\pm 0.05 0.93±0.050.93\pm 0.05 0.963±0.0040.963\pm 0.004 0.40±0.010.40\pm 0.01 (2.59±0.44)×102(2.59\pm 0.44)\times 10^{-2} 92.6/94
ε=(4.40±1.07)×101\varepsilon=(-4.40\pm 1.07)\times 10^{-1} GeV-2
Refer to caption
Refer to caption
Figure 1: Analysis of data on BEC measured as R2(L3)R_{2}^{\rm(L3)} by Eq. (3).

Second, to know the role of CFI{\rm CF_{I}}, we analyze the 2-jet and 3-jet BECs using Eq. (5) and the conventional formula CFI{\rm CF_{I}} with LRC(Gauss){\rm LRC_{(Gauss)}} which is expressed as follows:

CFI,Gauss=(1+λEBE)×LRC(Gauss),\displaystyle{\rm CF_{I,\,Gauss}}=(1+\lambda\ E_{\rm BE})\times LRC_{\rm(Gauss)}, (6)
where LRC(Gauss)=C1+αexp(βQ2).\displaystyle\mbox{where\quad}{\rm LRC_{(Gauss)}}=\frac{C}{1+\alpha\exp(-\beta Q^{2})}.

where LRC(Gauss){\rm LRC_{(Gauss)}} was derived by us in Ref. [7] via analysis of CMS MC events at 13 TeV in LHC reported in Ref. [2]. On the contrary, it should be noted that L3 Collaboration did not report their MC data. Thus we assume LRC(Gauss){\rm LRC_{(Gauss)}} in the present study. See Ref. [8], for the sake of reference. Nevertheless, it should be stressed that the Gauss distribution is stable distribution in the sense of the Levy canonical form. See Appendix B.

We consider the following four functions based on our previous study [9]:

{EBE=exp((RQ)2) (Gaussian distribution),EBE=exp(RQ) (Exponential function),and EBE=1(1+(RQ)2)s (Inverse power low: s=2 and s=5/2).\displaystyle\left\{\begin{array}[]{l}\qquad E_{\rm BE}=\exp(-(RQ)^{2})\mbox{ (Gaussian distribution)},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \qquad E_{\rm BE}=\exp(-RQ)\mbox{ (Exponential function)},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \mbox{and\ }E_{\rm BE}=\frac{1}{(1+(RQ)^{2})^{s}}\mbox{ (Inverse power low: $s=2$ and $s=5/2$)}.\end{array}\right.

The remainder of this paper is organized as follows. In Section 2, we analyze the data for 2-jet and 3-jet using Eqs. (5) and (6). In Section 3, we analyze the same data by τ\tau-model×LRC(Gauss)\times{\rm LRC_{(Gauss)}}. The second aim of this paper is to examine connections in ξ\xi-space between the quantum optics (QO) and the τ\tau-model in the stochastic approach. In Section 4, introducing the Fourier transformation in the 4-dimensional Euclidean space-time (see Eq. (18)), we can study the profiles of the exchange function EBEE_{\rm BE} of 2-jet and 3-jet in ξ\xi-space, where ξ=(x1x2)2+(y1y2)2+(z1z2)2+(ct1ct2)2\xi=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}+(z_{1}-z_{2})^{2}+(ct_{1}-ct_{2})^{2}}. Finally, Section 5 presents the concluding remarks.

In Appendix A, data on NMC(2+:2)/NMC(+)N_{\rm MC}^{(2+:2-)}/N_{\rm MC}^{(+-)} at Z0Z^{0}-pole by DELPHI Collaboration [5] are presented, because of no-information by L3 Collaboration. Therein we analyze DELPHI data by LRC(linear){\rm LRC_{(linear)}} and LRC(Gauss){\rm LRC_{(Gauss)}}. In Appendix B, the Levy canonical form and several formulations calculated using the inverse Fourier transformation are presented. In Appendix C, first, the systematic error and uncertainties are investigated using of BEC at Z0-pole by OPAL Collaboration [4], where CFI(Gauss)×LRC(OPAL){\rm CF_{I}(Gauss)\times LRC_{(OPAL)}} and CFI(Gauss)×LRC(Gauss){\rm CF_{I}(Gauss)\times LRC_{(Gauss)}} are used. Second, the same quantities on BEC by L3 Collaboration are concisely mentioned.

2 Analysis of data on 2-jet and 3-jet using CFI{\rm CF_{I}} with LRC(linear){\rm LRC_{(linear)}} and LRC(Gauss){\rm LRC_{(Gauss)}}

I: Application of Eqs. (5) and (6)

Using Eqs. (5) and (6), we analyze data on the 2-jet and 3-jet with LRC(linear){\rm LRC_{(linear)}} and LRC(Gauss){\rm LRC_{(Gauss)}}. Our results are presented in Table 2.

Refer to caption
Refer to caption
Figure 2: Analysis of data using Eqs. (5) and (6)
Table 2: Fit parameters of data on 2-jet and 3-jet events using CFI{\rm CF_{I}} with LRC(linear){\rm LRC_{(linear)}} and LRC(Gauss){\rm LRC_{(Gauss)}}. Note that pp-values for CFI(Exp)×LRC(Gauss){\rm CF_{I}(Exp)\times LRC_{(Gauss)}} are 62.6 % (2-jet) and 78.5 % (3-jet), respectively.
LRC(linear){\rm LRC_{(linear)}}
EBEE_{\rm BE} RR (fm) λ\lambda CC δ\delta (GeV-1) χ2\chi^{2}/dof
2-jet
Gauss 0.68±0.010.68\pm 0.01 0.41±0.010.41\pm 0.01 0.956±0.0020.956\pm 0.002 (1.34±0.09)×102(1.34\pm 0.09)\times 10^{-2} 247/96
Exp. 1.18±0.021.18\pm 0.02 0.80±0.020.80\pm 0.02 0.947±0.0020.947\pm 0.002 (1.75±0.10)×102(1.75\pm 0.10)\times 10^{-2} 255/96
IP2.0 0.64±0.010.64\pm 0.01 0.52±0.010.52\pm 0.01 0.946±0.0020.946\pm 0.002 (1.79±0.10)×102(1.79\pm 0.10)\times 10^{-2} 247/96
IP2.5 0.54±0.010.54\pm 0.01 0.49±0.010.49\pm 0.01 0.949±0.0020.949\pm 0.002 (1.67±0.10)×102(1.67\pm 0.10)\times 10^{-2} 231/96
3-jet
Gauss 0.79±0.010.79\pm 0.01 0.51±0.010.51\pm 0.01 0.953±0.0010.953\pm 0.001 (1.74±0.07)×102(1.74\pm 0.07)\times 10^{-2} 455/96
Exp. 1.44±0.021.44\pm 0.02 1.06±0.021.06\pm 0.02 0.945±0.0010.945\pm 0.001 (2.10±0.08)×102(2.10\pm 0.08)\times 10^{-2} 438/96
IP2.0 0.77±0.010.77\pm 0.01 0.68±0.010.68\pm 0.01 0.943±0.0010.943\pm 0.001 (2.19±0.08)×102(2.19\pm 0.08)\times 10^{-2} 472/96
IP2.5 0.65±0.010.65\pm 0.01 0.64±0.010.64\pm 0.01 0.946±0.0010.946\pm 0.001 (2.07±0.08)×102(2.07\pm 0.08)\times 10^{-2} 436/96
LRC(Gauss){\rm LRC_{(Gauss)}}
EBEE_{\rm BE} RR (fm) λ\lambda CC α\alpha β\beta (GeV-2) χ2\chi^{2}/dof
2-jet
Gauss 0.65±0.010.65\pm 0.01 0.40±0.010.40\pm 0.01 0.995±0.0020.995\pm 0.002 0.046±0.0030.046\pm 0.003 0.49±0.070.49\pm 0.07 199/95
Exp. 0.83±0.050.83\pm 0.05 0.82±0.030.82\pm 0.03 0.992±0.0010.992\pm 0.001 0.137±0.0240.137\pm 0.024 1.15±0.121.15\pm 0.12 90.0/95
IP2 0.55±0.010.55\pm 0.01 0.52±0.010.52\pm 0.01 0.993±0.0010.993\pm 0.001 0.802±0.0060.802\pm 0.006 0.77±0.080.77\pm 0.08 118/95
IP2.5 0.48±0.010.48\pm 0.01 0.49±0.010.49\pm 0.01 0.994±0.0020.994\pm 0.002 0.701±0.0050.701\pm 0.005 0.725±0.080.725\pm 0.08 126/95
3-jet
Gauss 0.75±0.010.75\pm 0.01 0.50±0.010.50\pm 0.01 1.001±0.0011.001\pm 0.001 0.058±0.0020.058\pm 0.002 0.57±0.050.57\pm 0.05 310/95
Exp. 1.09±0.041.09\pm 0.04 0.99±0.020.99\pm 0.02 0.999±0.0010.999\pm 0.001 0.115±0.0090.115\pm 0.009 1.06±0.081.06\pm 0.08 83.9/95
IP2.0 0.65±0.010.65\pm 0.01 0.65±0.010.65\pm 0.01 1.000±0.0011.000\pm 0.001 0.093±0.0040.093\pm 0.004 0.84±0.060.84\pm 0.06 140/95
IP2.5 0.56±0.010.56\pm 0.01 0.62±0.010.62\pm 0.01 1.000±0.0011.000\pm 0.001 0.083±0.0040.083\pm 0.004 0.79±0.060.79\pm 0.06 157/95

As shown in Tables 1 and  2, our results from Eq. (6) and LRC(Gauss){\rm LRC_{(Gauss)}} are compatible with those presented in Table 1. However, the degree of coherence λ\lambda’s presented in Table 1 are somewhat smaller than those presented in Table 2.

Moreover, we would like to add the following: For 2-jet, as we assume the Levy distribution (exp((RQ)αL)\exp(-(RQ)^{\alpha_{\rm L}})) times LRC(Gauss){\rm LRC_{(Gauss)}}, we obtain the similar figures as CFI(Exp)×LRC(Gauss){\rm CF_{I}(Exp)\times LRC_{(Gauss)}}, because of the Levy index αL=1.027±0.107\alpha_{\rm L}=1.027\pm 0.107 (χ2/dof=89.9/94\chi^{2}/{\rm dof}=89.9/94). For 3-jet, there is no coincidence with the result by CFI(Exp)×LRC(Gauss){\rm CF_{I}(Exp)\times LRC_{(Gauss)}}, because of αL=0.865±0.087\alpha_{\rm L}=0.865\pm 0.087 and λ=1.194±0.161\lambda=1.194\pm 0.161.

II: Analysis of 2-jet and 3-jet events using the quantum optics approach

As shown in Table 2, the degree of coherence λ=0.82±0.03\lambda=0.82\pm 0.03 in CFI(exp)×LRC(Gauss){\rm CF_{I}(exp)\times LRC_{(Gauss)}} is observed. To consider its meaning, we use the following formula with QO [11, 12, 13].

FQO=(1+p2eRQ+2p(1p)eRQ/2)×LRC(Gauss),\displaystyle F_{\rm QO}=(1+p^{2}e^{-RQ}+2p(1-p)e^{-RQ/2})\times{\rm LRC_{(Gauss)}}, (8)

where p=A/ntotp=A/\langle n\rangle_{\rm tot} represents the ratio of the chaotic component to the total multiplicity. 1p=ncoherent/ntot1-p=\langle n\rangle_{\rm coherent}/\langle n\rangle_{\rm tot} denotes the ratio of the coherent component to the total one. For the 2-jet event, as shown in Table 3, 1p0.31-p\cong 0.3, the coherent component is approximately 30%. Moreover, R1.06±0.10R\cong 1.06\pm 0.10 fm is larger than those in Table 2. This is attributed to the third term 2p(1p)eRQ/22p(1-p)e^{-RQ/2}.

Table 3: Fit parameters of data on 2-jet and 3-jet events using Eq. (8)
event RR (fm) pp CC δ\delta (GeV-1) ε\varepsilon (GeV-2) χ2\chi^{2}/dof
2-jet 1.892±0.031.892\pm 0.03 0.612±0.030.612\pm 0.03 0.943±0.0020.943\pm 0.002 (1.91±0.10)×102(1.91\pm 0.10)\times 10^{-2} 314/96
3-jet 1.392±0.121.392\pm 0.12 1.01.0 0.945±0.0010.945\pm 0.001 (2.13±0.08)×102(2.13\pm 0.08)\times 10^{-2} 447/96
2-jet 1.42±0.051.42\pm 0.05 0.72±0.040.72\pm 0.04 0.878±0.0070.878\pm 0.007 (10.1±0.8)×102(10.1\pm 0.8)\times 10^{-2} (1.8±0.2)×102(-1.8\pm 0.2)\times 10^{-2} 156/95
3-jet 1.18±0.021.18\pm 0.02 1.01.0 0.896±0.0040.896\pm 0.004 (8.8±0.5)×102(8.8\pm 0.5)\times 10^{-2} (1.6±0.1)×102(-1.6\pm 0.1)\times 10^{-2} 167/95
event RR (fm) pp CC α\alpha β\beta (GeV-2) χ2\chi^{2}/dof
2-jet 1.06±0.101.06\pm 0.10 0.71±0.040.71\pm 0.04 0.992±0.0010.992\pm 0.001 0.19±0.020.19\pm 0.02 1.12±0.051.12\pm 0.05 90.4/95
3-jet 1.11±0.041.11\pm 0.04 0.98±0.020.98\pm 0.02 0.999±0.0010.999\pm 0.001 0.12±0.010.12\pm 0.01 1.07±0.071.07\pm 0.07 83.6/95

For the 3-jet event, in Eq. (8), we obtain p=0.98±0.02p=0.98\pm 0.02, meaning that p=A/ntot1.0p=A/\langle n\rangle_{\rm tot}\cong 1.0. There is no contribution from the coherent component, because 1p0.01-p\cong 0.0. We conclude that the data on the 3-jet events are almost chaotic [14]. See also Ref. [15] for comparison.

3 Analysis of 2-jet and 3-jet events using the τ\tau-model including LRC(Gauss){\rm LRC_{(Gauss)}}

To examine the role of LRC(Gauss){\rm LRC_{(Gauss)}} in Eq. (3), we propose the following formula,

Fτ,Gauss=[1+λcos((RaQ)2ατ)exp((RQ)2ατ)]×LRC(Gauss),\displaystyle F_{\rm\tau,\,Gauss}=\left[1+\lambda\cos\left((R_{a}Q)^{2\alpha_{\tau}}\right)\exp\left(-(RQ)^{2\alpha_{\tau}}\right)\right]\times{\rm LRC_{(Gauss)}}, (9)

Using of sets of six random variables and the CERN MINUIT program, we can estimate the fit parameters shown in Table 4.

Table 4: Fit parameters of L3 Collaboration events, i.e., R2(L3)R_{2}^{\rm(L3)} by using Eq. (9).
event RR (fm) λ\lambda CC ατ\alpha_{\tau} α\alpha β\beta (GeV-2) χ2\chi^{2}/dof
2-jet 0.82±0.050.82\pm 0.05 0.67±0.120.67\pm 0.12 0.992±0.0010.992\pm 0.001 0.42±0.030.42\pm 0.03 0.03±0.050.03\pm 0.05 1.11±1.901.11\pm 1.90 91.2/94
3-jet 1.13±0.061.13\pm 0.06 1.02±0.081.02\pm 0.08 0.999±0.0010.999\pm 0.001 0.37±0.010.37\pm 0.01 0.05±0.020.05\pm 0.02 1.19±0.371.19\pm 0.37 83.5/94

The differences concerning χ2\chi^{2}/dof’s in Tables 1 and 4 are obvious. It is worthwhile to stress that the degree of coherence λ\lambdas is larger than those by LRC(linear){\rm LRC_{(linear)}} in Table 1. Moreover, the magnitudes of RRs are almost the same as those by the exponential function in Table 2. For 3-jet, R=1.11±0.04R=1.11\pm 0.04 (stat) fm estimated using Eq. (8) in Table 3 is compatible with R=1.13±0.06R=1.13\pm 0.06 (stat) fm obtained using Eq. (9) in Table 4.

4 Mechanism of anticorrelation and profiles of the source functions of 2-jet and 3-jet BECs in the ξ\xi-space

I: Explanation of the anticorrelation

The anticorrelation in the 2-jet and 3-jet events, i.e., R2(L3)R_{2}^{\rm(L3)} is observed in the region 0.5Q1.50.5\leq Q\leq 1.5 GeV. These values in BEC are smaller than 1.0. These behaviors can be explained in two ways.

In the conventional formula with the function, CFI(Exp)×LRC(Gauss){\rm CF_{I}(Exp)\times LRC_{(Gauss)}}, the anticorrelation is explained by the Gaussian function with LRC(Gauss)1=k=1(α)kexp(kβQ2){\rm LRC_{(Gauss)}-1}=\sum_{k=1}^{\infty}(-\alpha)^{k}\exp(-k\beta Q^{2}). Second, the cross term which is a product of the exponential function and (LRC(Gauss)1({\rm LRC_{(Gauss)}-1}): Fcross(Q)=eRQk=1(α)kekβQ2F_{\rm cross}(Q)=e^{-RQ}\sum_{k=1}^{\infty}(-\alpha)^{k}e^{-k\beta Q^{2}}. For reference, we present data on NMC(2+:2)/NMC(+)N_{\rm MC}^{(2+:2-)}/N_{\rm MC}^{(+-)} at Z0Z^{0}-ploe by DELPHI Collaboration [5] in Appendix A because we have no-information on them (R2dataR_{\rm 2\,data}, R2gennoBER_{\rm 2\,gen\mathchar 45\relax noBE} and (R2gen/R2det)(R_{\rm 2\,gen}/R_{\rm 2\,det})) by L3 Collaboration at present.

Alternatively, in the τ\tau-model, the anticorrelation is described by the cosine [(RaQ)ατ]\left[(R_{a}Q)^{\alpha_{\tau}}\right] in the exchange function. Indeed, this mechanism is shown in Fig. 3. The behavior of cos((RaQ)ατ)\cos((R_{a}Q)^{\alpha_{\tau}}) is oscillating. By multiplying exp((RQ)ατ)\exp(-(RQ)^{\alpha_{\tau}}), the anticorrelation is created. Moreover, when LRC(linear){\rm LRC_{(linear)}} was replaced by LRC(Gauss){\rm LRC_{(Gauss)}} in τ\tau-model, we observe more significant anticorrelation. See Fig. 4.

Refer to caption
Refer to caption
Refer to caption
Figure 3: Mechanism of “anticorrelation” in CFI×LRC(Gauss){\rm CF_{I}\times LRC_{(Gauss)}}, i.e., Eq. (5) and the τ\tau-model, i.e., Eq. (3).

II: Source functions of BEC in the ξ\xi-space

Using the Fourier transform of EBEE_{\rm BE}’s and LRC(Gauss){\rm LRC_{(Gauss)}}, we calculate the profiles of CFI×LRC(Gauss){\rm CF_{I}\times LRC_{(Gauss)}} and the τ\tau-model in the ξ\xi-space, which are expressed as the density ρ(ξ)\rho(\xi)s.

We use the following expansion to study the profile of CFI×LRC(Gauss){\rm CF_{I}\times LRC_{(Gauss)}} in the ξ\xi-space. Before concrete computation, we add the physical meaning. ρExp(ξ)\mbox{\Large$\rho$}_{\rm Exp}(\xi) is interpreted as N=4N=4 dimensional Lorentz distribution because (N+1)/2=(4+1)/2=5/2(N+1)/2=(4+1)/2=5/2 (see Ref. [16] 111The chapter 7, “multivariate stable laws” is useful for the calculation of the general systematical distributions (N>1N>1). The results in Ref. [9] are consistent with those in Ref. [16] for N=4N=4. See also Ref. [17]). ρGauss(ξ)\mbox{\Large$\rho$}_{\rm Gauss}(\xi) is connected to exp(βQ2)\exp(-\beta Q^{2}) in the LRC(Gauss){\rm LRC_{(Gauss)}} [9].

{ρExp(ξ)=34π2R41(1+(ξ/R)2)5/2,SBE(ξ)=2π2ξ3ρExp(ξ).\displaystyle\left\{\begin{array}[]{l}\mbox{\Large$\rho$}_{\rm Exp}(\xi)=\dfrac{3}{4\pi^{2}R^{4}}\dfrac{1}{(1+(\xi/R)^{2})^{5/2}},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ S_{\rm BE}(\xi)=2\pi^{2}\xi^{3}\mbox{\Large$\rho$}_{\rm Exp}(\xi).\end{array}\right. (12)

The source function of the LRC(Gauss){\rm LRC_{(Gauss)}} is calculated as follows:

{ρGauss(ξ)=116π2R4exp(ξ24R2),SBG(ξ)=2π2ξ3k=1(α)kρGauss(ξ,R=kβ).\displaystyle\left\{\begin{array}[]{l}\mbox{\Large$\rho$}_{\rm Gauss}(\xi)=\dfrac{1}{16\pi^{2}R^{4}}\exp\left(-\dfrac{\xi^{2}}{4R^{2}}\right),\vskip 6.0pt plus 2.0pt minus 2.0pt\\ S_{\rm BG}(\xi)=2\pi^{2}\xi^{3}\displaystyle{\sum_{k=1}^{\infty}}(-\alpha)^{k}\mbox{\Large$\rho$}_{\rm Gauss}(\xi,R=\sqrt{k\beta}).\end{array}\right. (15)

The contribution from the cross term, eRQ×LRC(Gauss)e^{-RQ}\times{\rm LRC_{(Gauss)}}, is computed by the inverse Fourier transformation (N=4N=4) and the numerical integration.

For the stochastic density of the exchange function EBEE_{\rm BE} in the τ\tau-model, we first employ the following numerical calculation:

{EBE(τ)=exp(aQξ2ατ)cos(bQξ2ατ),ρτ,BE(ξ)=1(2π)2ξ0Qξ2EBE(τ)J1(Qξξ)𝑑Qξ\displaystyle\left\{\begin{array}[]{l}E_{\rm BE}^{(\tau)}=\exp(-aQ_{\xi}^{2\alpha_{\tau}})\cos(bQ_{\xi}^{2\alpha_{\tau}}),\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \mbox{\Large$\rho$}_{\rm\tau,BE}(\xi)=\dfrac{1}{(2\pi)^{2}\xi}\displaystyle{\int_{0}^{\infty}}Q_{\xi}^{2}\,E_{\rm BE}^{(\tau)}\,J_{1}(Q_{\xi}\xi)dQ_{\xi}\end{array}\right. (18)

where J1(Qξξ)J_{1}(Q_{\xi}\xi) is the Bessel function [9]. Note that Qξ=(p1xp2x)2+(p1yp2y)2+(p1zp2z)2+(E1E2)2Q_{\xi}\!=\!\sqrt{(p_{1x}\!-\!p_{2x})^{2}\!+\!(p_{1y}\!-\!p_{2y})^{2}\!+\!(p_{1z}\!-\!p_{2z})^{2}\!+\!(E_{1}\!-\!E_{2})^{2}} in Eq. (18). The Wick rotation is necessary [10]. Fig. 4 shows the numerical calculation of Eq. (18).

Second, concerning with the analytic expansion of Eq. (18), we obtain the following formula,

Series expansion of ρτ,BE(ξ)\displaystyle\mbox{Series expansion of }\mbox{\Large$\rho$}_{\rm\tau,BE}(\xi)
=1(2π)2ξ1ατk=0(ξ2)2k+1(1)kΓ(4+2kατ)Γ(k+1)Γ(k+2)1(a2+b2)(4+2k)/(2ατ)cos(4+2kατarctan(ba))\displaystyle=\frac{1}{(2\pi)^{2}\xi}\frac{1}{\alpha_{\tau}}\sum_{k=0}^{\infty}\left(\frac{\xi}{2}\right)^{2k+1}\dfrac{(-1)^{k}\Gamma\left(\frac{4+2k}{\alpha_{\tau}}\right)}{\Gamma(k+1)\Gamma(k+2)}\frac{1}{(a^{2}+b^{2})^{(4+2k)/(2\alpha_{\tau})}}\cos\left(\frac{4+2k}{\alpha_{\tau}}\arctan\left(\frac{b}{a}\right)\right) (19)

where a=0.8293a=0.8293, b=0.7366b=0.7366 and 2ατ=0.81042\alpha_{\tau}=0.8104 (see Table 1). However, it is regretful that we cannot obtain the full numerical values, because of the mathematical limit of serious expansion of the Bessel function. Note that ξ=0.3\xi=0.3 fm is the applicable limit of Eq. (19).

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Source functions of CFI(Exp)×LRC(Gauss)1{\rm CF_{I}(Exp)\times LRC_{(Gauss)}}-1 and the τ\tau-model×LRC(Gauss)1\times{\rm LRC_{(Gauss)}}-1 in ξ\xi-space. The source functions of (LRC(Gauss)1)({\rm LRC_{(Gauss)}-1}) expressed by SBG(ξ)S_{\rm BG}(\xi) are added in the upper figures. The same calculations on Sτ,BGS_{\tau,{\rm BG}} are made in lower ones. Estimated values in Tables 2 and 4 are used in computations.

Third, we calculate profiles of Eqs (6) and (9) in ξ\xi-space. Fig. 4 shows the two types of behaviors for the 2-jet and 3-jet events. The dip structures at ξ0.5\xi\sim 0.5 fm are observed. The dip structures in the 3-jet (right) are somewhat deeper than those in the 2-jet (left).

It can be said that, the negative profile of the density ρ(ξ)\mbox{\Large$\rho$}(\xi) in CFI×LRC(Gauss){\rm CF_{I}\times LRC_{(Gauss)}} originates from the denominator. In other words, the Monte Carlo calculation in the denominator in L3 BEC at Z0-pole implies the extent of the clustering effect expressed by the Gaussian distribution as well as in the NMC(2+;2)N_{\rm MC}^{(2+;2-)} for LHC CMS BEC at 13 TeV [2, 7].

Table 5: Comparison of physical pictures of our approach (CFI(Exp)×LRC(Gauss){\rm CF_{I}(Exp)\times LRC_{(Gauss)}}) and the τ\tau-model. In the τ\tau-model, R2dataR_{\rm 2\,data}, R2detR_{\rm 2\,det} and (R2gen/R2gennoBE)(R_{\rm 2\,gen}/R_{\rm 2\,gen\mathchar 45\relax noBE}) are not separated.
ξ\xi-space Momentum (QQ)-space
Our approach The numerator:
(CFI(Exp){\rm CF_{I}(Exp)}\quad ρLorentz(ξ,N=4)=34π2R41(1+(ξ/R)2)5/2\mbox{\Large$\rho$}_{\rm Lorentz}(\xi,N=4)=\dfrac{3}{4\pi^{2}R^{4}}\dfrac{1}{(1+(\xi/R)^{2})^{5/2}}    EBE=eRQE_{\rm BE}=e^{-RQ}.
×LRC(Gauss)\times{\rm LRC_{(Gauss)}}) where 5/2=(N+1)/25/2=(N+1)/2. N=4N=4 means
4-dimension.
The denominator of LRC:    LRC(Gauss)=C1+αexp(βQ2){\rm LRC_{(Gauss)}}=\dfrac{C}{1+\alpha\exp(-\beta Q^{2})}
ρGauss(ξ,N=4)=116π2R4exp(ξ24R2)\mbox{\Large$\rho$}_{\rm Gauss}(\xi,N=4)=\dfrac{1}{16\pi^{2}R^{4}}\exp\left(-\dfrac{\xi^{2}}{4R^{2}}\right).       =Ck=0(α)kekβQ2=C\displaystyle{\sum_{k=0}^{\infty}}(-\alpha)^{k}e^{-k\beta Q^{2}}.
See Ref. [9]. which is reflecting the clustering effect
observed in NMC(2+:2)N_{\rm MC}^{(2+:2-)} [7, 2]. See Ref. [5].
τ\tau-model The probability density and source function Levy canonical form (ζ=tan(ατπ/2)\zeta=\tan(\alpha_{\tau}\pi/2))
are calculated from H~4(ω)\tilde{H}_{4}(\omega) in the right column.    H~4(RQ)=exp[12(RQ)2ατ(1iζ)]\tilde{H}_{4}(RQ)=\exp\left[-\dfrac{1}{2}(RQ)^{2\alpha_{\tau}}(1-i\,\zeta)\right],
ρτ,BE(ξ,ατ)=1(2π)2ξ0Qξ2exp(aQξ2ατ)\mbox{\Large$\rho$}_{\rm\tau,BE}(\xi,\alpha_{\tau})=\dfrac{1}{(2\pi)^{2}\xi}\displaystyle{\int_{0}^{\infty}}Q_{\xi}^{2}\,\exp(-aQ_{\xi}^{2\alpha_{\tau}})    EBE=Re[H~42(RQ)]E_{\rm BE}={\rm Re}\left[\tilde{H}_{4}^{2}(RQ)\right]
       cos(bQξ2ατ)J1(Qξξ)dQξ\cdot\cos(bQ_{\xi}^{2\alpha_{\tau}})\,J_{1}(Q_{\xi}\xi)dQ_{\xi}      =exp((RQ)2ατ)cos((RQ)2ατζ)=\exp\left(-(RQ)^{2\alpha_{\tau}}\right)\cos\left((RQ)^{2\alpha_{\tau}}\zeta\right).
Sτ,BE(ξ)=2π2ξ3ρτ,BE(ξ,ατ)S_{\rm\tau,BE}(\xi)=2\pi^{2}\xi^{3}\mbox{\Large$\rho$}_{\rm\tau,BE}(\xi,\alpha_{\tau}) See Appendix B. LRC=C(1+δQ){\rm LRC}=C(1+\delta Q).
cf. The probability of the Levy canonical form (N=1N=1 dimension) is expressed as
P(x;ατ,θ)=1πRe[0𝑑zexp(ixzzατeiπ2θ)]P(x;\alpha_{\tau},\theta)=\dfrac{1}{\pi}\mbox{Re}\left[\displaystyle{\int_{0}^{\infty}}dz\exp\left(-ixz-z^{\alpha_{\tau}}e^{i\frac{\pi}{2}\theta}\right)\right],
where Re[ ] means the real part. The Lorentz (or Cauchy) distribution is obtained by
P(x;1,0)=1/[π(1+x2)]P(x;1,0)=1/[\pi(1+x^{2})]. The Gaussian one is obtained by P(x;2,0)=(1/π)ex2P(x;2,0)=(1/\pi)e^{-x^{2}}. The formulas
with N=4N=4 are calculated by the following replacement in P(x;ατ,θ)P(x;\alpha_{\tau},\theta) above: ixzixzcosϕixz\to ixz\cos\phi and
dzd4z=sin2ϕdϕ4πz3dzdz\to d^{4}z=\sin^{2}\phi d\phi\cdot 4\pi z^{3}dz. P4(x;1,0)=1/[π(1+x2)5/2]P_{4}(x;1,0)=1/[\pi(1+x^{2})^{5/2}] and P4(x;2,0)=πex2/4P_{4}(x;2,0)=\pi e^{-x^{2}/4} are obtained.

Concerning the Levy canonical form and the inverse Fourier transformation (N=1N=1 and N=4N=4), several formulations are shown in Appendix B.

5 Concluding remarks

C1)

From our analysis of L3 BEC by CFI(Exp)×LRC(Gauss){\rm CF_{I}(Exp)\times LRC_{(Gauss)}}, we have known that the anticorrelation (observed in 0.5GeVQ<1.50.5\ {\rm GeV}\ Q<1.5 GeV) in related to the denominator of the DR. In the CFI(Exp)×LRC(Gauss){\rm CF_{I}(Exp)\times LRC_{(Gauss)}}, EBE=exp(RQ)E_{\rm BE}=\exp(-RQ) cooperates with LRC(Gauss){\rm LRC_{(Gauss)}} (see Fig. 4). Provided that the MC events at Z0-pole by L3 Collaboration were reported, we are able to know whether or not the statement mentioned above is correct.

C2)

On the other hand, in the τ\tau-model, the anticorrelation is explained by the imaginary part in the Levy canonical form. Indeed, through the analytic form of the exchange function exp(aQ2α)cos(bQ2α)\exp(-aQ^{2\alpha})\cos(bQ^{2\alpha}) in the ξ\xi-space, we understand that the anticorrelation in BEC is related to the negative behavior therein.

C3)

In the τ\tau-model, we obtain the analytic formula, i.e., the series expansion of ρτ,BE(ξ)\mbox{\Large$\rho$}_{\rm\tau,BE}(\xi) (see Eq. (19)). We can understand the partially negative behavior (ξ<0.7\xi<0.7 fm) in the Levy canonical form in Fig. 4.

The profile of source function Sτ,BE(ξ)S_{\rm\tau,BE}(\xi) in the τ\tau-model is described as a product of the phase factor 2π2ξ32\pi^{2}\xi^{3} and ρτ,BE(ξ)\mbox{\Large$\rho$}_{\rm\tau,BE}(\xi). The source function Sτ,BE(ξ)S_{\rm\tau,BE}(\xi) (with R=0.78R=0.78 fm and ατ=0.44\alpha_{\tau}=0.44) is shown in Fig. 5. We observe the partially negative behavior in the range 0<ξ<0.60<\xi<0.6 fm, because of cos((RQ)2ατζ)\cos((RQ)^{2\alpha_{\tau}}\zeta).

Refer to caption
Figure 5: Profile of source function Sτ,BE(ξ)S_{\rm\tau,BE}(\xi) in the τ\tau-model. σ(±)=Sτ,BE(ξ,R)/RδR(±)\sigma^{(\pm)}=\partial S_{\rm\tau,BE}(\xi,\,R)/\partial R\cdot\delta R^{(\pm)} with δR(+)=(0.04(stat))2+(0.09(sys))2\delta R^{(+)}=\sqrt{(0.04(\rm stat))^{2}+(0.09(\rm sys))^{2}} and δR()=(0.04(stat))2+(0.16(sys))2\delta R^{(-)}=\sqrt{(0.04(\rm stat))^{2}+(0.16(\rm sys))^{2}}. The values (0.010.160+0.090.01_{-0.160}^{+0.09}) are taken from Table 3 in Ref. [1], therein LRC(linear){\rm LRC_{(linear)}} is used.

C4)

Two estimated values R=0.83±0.05R=0.83\pm 0.05 (stat) fm (2-jet) and R=1.09±0.04R=1.09\pm 0.04 (stat) fm (3-jet) by CFI(Exp)×LRC(Gauss){\rm CF_{I}(Exp)\times LRC_{(Gauss)}} (see Table 6) are compared with R=0.72±0.04R=0.72\pm 0.04 (stat) fm (2-jet) and R=1.13±0.06R=1.13\pm 0.06 (stat) fm (3-jet) estimated by τ\tau-model×LRC(Gauss)\times{\rm LRC_{(Gauss)}}, respectively. It is remarked that the fitting parameters for the CFI(Exp){\rm CF_{I}(Exp)} and τ\tau-model with LRC(Gauss){\rm LRC_{(Gauss)}} are almost coincident with each other.

Table 6: Comparison of fitting parameters for CFI(Exp){\rm CF_{I}(Exp)} and τ\tau-model. The pp-values (%) are shown in parentheses.
2-jet LRC(linear){\rm LRC_{(linear)}} LRC(Gauss){\rm LRC_{(Gauss)}} (pp-value %)
CFI(Exp){\rm CF_{I}(Exp)} χ2\chi^{2}/dof 255/96 90.0/95 (62.6)
λ\lambda 0.80±0.020.80\pm 0.02 0.82±0.030.82\pm 0.03
RR (fm) 1.18±0.021.18\pm 0.02 0.83±0.050.83\pm 0.05
τ\tau-model χ2\chi^{2}/dof 94.6/95 91.2/94 (56.3)
λ\lambda 0.61±0.030.61\pm 0.03 0.67±0.120.67\pm 0.12
RR (fm) 0.78±0.040.78\pm 0.04 0.82±0.050.82\pm 0.05
3-jet LRC(linear){\rm LRC_{(linear)}} LRC(Gauss){\rm LRC_{(Gauss)}} (pp-value %)
CFI(Exp){\rm CF_{I}(Exp)} χ2\chi^{2}/dof 438/96 83.9/95 (78.5)
λ\lambda 1.06±0.021.06\pm 0.02 0.99±0.020.99\pm 0.02
RR (fm) 1.44±0.021.44\pm 0.02 1.09±0.041.09\pm 0.04
τ\tau-model χ2\chi^{2}/dof 113/95 83.5/94 (77.3)
λ\lambda 0.85±0.040.85\pm 0.04 1.02±0.081.02\pm 0.08
RR (fm) 0.99±0.040.99\pm 0.04 1.13±0.061.13\pm 0.06

From values in Table 4, we can estimate the values of full width of half maximum (FWHM) for 2-jet and 3-jet. The estimated FWHMs and HWHM (fm)s are presented in Table 7. It can be stressed that HWHM’s in the τ\tau-model are coincident with RR’s in Table 6. In CFI(Exp){\rm CF_{I}(Exp)}, the HWHM’s increase about 10% than RR’s in Table 6.

Table 7: Estimated FWHMs and HWHMs of the source functions in Fig. 4.
ξHξL\xi^{\rm H}-\xi^{\rm L} (fm) FWHM (fm) HWHM (fm)
2-jet CFI(Exp){\rm CF_{I}(Exp)} 2.350.482.35-0.48 1.871.87 0.940.94
τ\tau-model 2.380.742.38-0.74 1.641.64 0.820.82
3-jet CFI(Exp){\rm CF_{I}(Exp)} 3.090.633.09-0.63 2.462.46 1.231.23
τ\tau-model 3.020.773.02-0.77 2.252.25 1.131.13

C5)

As is seen in Table 5, the Lorentz and Gaussian distributions are calculated from the Levy canonical form P4(ξ;1,0)P_{4}(\xi;1,0) and P4(ξ;2,0)P_{4}(\xi;2,0), respectively. Moreover, the asymptotic behavior in the ξ\xi-space in our approach is calculated as follows:

2π2ξ31(1+(ξ/R)2)5/2ξ1ξ2\displaystyle 2\pi^{2}\xi^{3}\frac{1}{(1+(\xi/R)^{2})^{5/2}}\ \smash{\mathop{\hbox to28.45274pt{\rightarrowfill}}\limits^{\xi\gg 1}}\ \xi^{-2} (20)

However, in the τ\tau-model, by use of the linear regression method, we have confirmed in the following:

Sτ,BE(ξ)ξ1ξ2ατ1\displaystyle S_{\rm\tau,BE}(\xi)\ \smash{\mathop{\hbox to28.45274pt{\rightarrowfill}}\limits^{\xi\gg 1}}\ \xi^{-2\alpha_{\tau}-1} (21)

This behavior (2ατ=0.8752\alpha_{\tau}=0.875: 2-jet) is exactly expected in the Levy canonical form.

C6)

We observe that the 3-jet BEC exhibits almost chaotic properties, provided that the theory of QO is applied. This indicates that it is an ideal event for the study of BEC. The phases of proceeded pions are completely randomized [11, 12, 14].

D1)

L3 Collaboration did not report the single ratios, C2data(Q)=N(2+:2;Q)/N(+;Q)C_{2}^{\rm data}(Q)=N^{(2+:2-;Q)}/N^{(+-;Q)} and C2MC(Q)=NMC(2+:2;Q)/NMC(+;Q)C_{2}^{\rm MC}(Q)=N_{\rm MC}^{(2+:2-;Q)}/N_{\rm MC}^{(+-;Q)}. Thus, in the present study we cannot analyze them. In the future, as DELPHI Collaboration did, L3 Collaboration would publish data on R2dataR_{\rm 2\,data}, R2detR_{\rm 2\,det} and (R2gen/R2gennoBE)(R_{\rm 2\,gen}/R_{\rm 2\,gen\mathchar 45\relax noBE}), we could examine the role of LRC(Gauss){\rm LRC_{(Gauss)}} in BEC. See Appendix A.

Moreover, concerning the systematic errors and uncertainties, we present calculation based on OPAL BEC at Z0-pole [4], because of no data on SRMC{\rm SR^{MC}} [5, 23], in Appendix C. According to the calculations using OPAL BEC data [4], we are able to understand the magnitude of the systematic error of estimated values with LRC(Gauss){\rm LRC_{(Gauss)}}.

Acknowledgments. One of the authors (M.B.) would like to thank the colleagues of the Center for General Education at Shinshu University.

Appendix A Data on NMC(2+:2)/NMC(+)N_{\rm MC}^{(2+:2-)}/N_{\rm MC}^{(+-)} at Z0Z^{0}-pole by DELPHI Collaboration

DELPHI Collaboration reported the data on NMC(2+:2)/NMC(+)N_{\rm MC}^{(2+:2-)}/N_{\rm MC}^{(+-)} at Z0Z^{0}-pole by making use of JETSET 7.2 with DELSIM [5, 22, 23]. The data are analyzed by LRC(Gauss){\rm LRC_{(Gauss)}} and LRC(linear){\rm LRC_{(linear)}} in Fig. 6. LRC(Gauss){\rm LRC_{(Gauss)}} seems to be better than LRC(linear){\rm LRC_{(linear)}}. About data in the interval 0.4<Q<0.80.4<Q<0.8 GeV, because of resonance effect from decays of K0K^{0} and ρ0\rho^{0} mesons, we do not use them in the present analysis. See also Ref. [5].

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Single ratios Ndata(2+:2)/Ndata(+)N_{\rm data}^{(2+:2-)}/N_{\rm data}^{(+-)}, NMC(2+:2)/NMC(+)N_{\rm MC}^{(2+:2-)}/N_{\rm MC}^{(+-)}, and the double ratios C2data/C2MCC_{2}^{\rm data}/C_{2}^{\rm MC} and C2,mixdata/C2,mixMCC_{\rm 2,mix}^{\rm data}/C_{\rm 2,mix}^{\rm MC} shown by DELPHI Collaboration [5] are analyzed by CFI(Gauss)×LRC(Gauss){\rm CF_{I}(Gauss)\times LRC_{(Gauss)}} and LRC(linear){\rm LRC_{(linear)}}.

The present results as shown in Figs. 6 imply that the LRC(Gauss){\rm LRC_{(Gauss)}} is preferable to the LRC(linear){\rm LRC_{(linear)}}, except for C2,mixdata/C2,mixMCC_{\rm 2,mix}^{\rm data}/C_{\rm 2,mix}^{\rm MC}. To confirm this statement, χ2/\chi^{2}/dof values (156/92 and 157/93) should be smaller.

In conclusion, we obtain the following results from analyses of DRdata=C2data/C2MC{\rm DR_{data}}=C_{2}^{\rm data}/C_{2}^{\rm MC} and DRmix=C2,mixdata/C2,mixMC{\rm DR_{mix}}=C_{\rm 2,mix}^{\rm data}/C_{\rm 2,mix}^{\rm MC}:

R(Gauss)\displaystyle R_{\rm(Gauss)} =\displaystyle\!\!\!= 0.62±0.04(stat)±0.20(sys)fm,\displaystyle\!\!\!0.62\pm 0.04\,({\rm stat})\pm 0.20\,({\rm sys})\ {\rm fm},
λ(Gauss)\displaystyle\lambda_{\rm(Gauss)} =\displaystyle\!\!\!= 0.40±0.03(stat)±0.05(sys).\displaystyle\!\!\!0.40\pm 0.03\,({\rm stat})\pm 0.05\,({\rm sys}).

They are consistent with results shown in Ref. [5]. When we assume the CFI(Exp)×LRC(linear){\rm CF_{I}(Exp)\times LRC_{(linear)}} for two DR’s, the following results are obtained:

R(Exp)\displaystyle R_{\rm(Exp)} =\displaystyle\!\!\!= 0.91±0.05(stat)±0.48(sys)fm,\displaystyle\!\!\!0.91\pm 0.05\,({\rm stat})\pm 0.48\,({\rm sys})\ {\rm fm},
λ(Exp)\displaystyle\lambda_{\rm(Exp)} =\displaystyle\!\!\!= 0.93±0.09(stat)±0.07(sys).\displaystyle\!\!\!0.93\pm 0.09\,({\rm stat})\pm 0.07\,({\rm sys}).
Table 8: Fit parameters of data by DELPHI Collaboration by CFI(Gauss)×LRC{\rm CF_{I}(Gauss)\times LRC} and CFI(Exp)×LRC(linear){\rm CF_{I}(Exp)\times LRC_{(linear)}}
CFI(Gauss){\rm CF_{I}(Gauss)} LRC RR (fm) λ\lambda δ\delta (GeV-1)/(α\alpha, β\beta (GeV-2)) χ2\chi^{2}/dof
C2data(Q)C_{2}^{\rm data}(Q) linear 1.08±0.041.08\pm 0.04 0.29±0.020.29\pm 0.02 (14.1±0.4)×102(14.1\pm 0.4)\times 10^{-2} 316/73
no-Coulomb correction Gauss 0.69±0.040.69\pm 0.04 0.36±0.030.36\pm 0.03 (0.35±0.030.35\pm 0.03, 1.59±0.141.59\pm 0.14) 149/72
C2MC(Q)C_{2}^{\rm MC}(Q) linear (14.2±20.3)×102(14.2\pm 20.3)\times 10^{-2} 394/75
Gauss (0.223±0.0040.223\pm 0.004, 1.42±0.061.42\pm 0.06) 131/74
C2data(Q)/C2MC(Q)C_{2}^{\rm data}(Q)/C_{2}^{\rm MC}(Q) linear 0.83±0.030.83\pm 0.03 0.45±0.020.45\pm 0.02 (3.3±0.7)×102(3.3\pm 0.7)\times 10^{-2} 89.1/73
Coulomb correction Gauss 0.78±0.050.78\pm 0.05 0.47±0.030.47\pm 0.03 (0.075±0.0240.075\pm 0.024, 1.13±0.511.13\pm 0.51) 85.8/72
C2,mixdata(Q)/C2,mixMC(Q)C_{\rm 2,mix}^{\rm data}(Q)/C_{\rm 2,mix}^{\rm MC}(Q) linear 0.42±0.020.42\pm 0.02 0.38±0.040.38\pm 0.04 0.10±0.030.10\pm 0.03 157/93
Coulomb correction Gauss 0.42±0.030.42\pm 0.03 0.33±0.020.33\pm 0.02 (0.32±0.030.32\pm 0.03, 0.20±0.050.20\pm 0.05) 156/92
CFI(Exp){\rm CF_{I}(Exp)} LRC RR (fm) λ\lambda δ\delta (GeV-1) χ2\chi^{2}/dof
C2data(Q)/C2MC(Q)C_{2}^{\rm data}(Q)/C_{2}^{\rm MC}(Q) linear 1.38±0.081.38\pm 0.08 0.86±0.050.86\pm 0.05 0.04±0.010.04\pm 0.01 107/73
C2,mixdata(Q)/C2,mixMC(Q)C_{\rm 2,mix}^{\rm data}(Q)/C_{\rm 2,mix}^{\rm MC}(Q) linear 0.43±0.020.43\pm 0.02 1.00±0.121.00\pm 0.12 0.28±0.010.28\pm 0.01 161/93

Appendix B Levy canonical form and formulation obtained by the inverse Fourier transformation (N=1N=1 and N=4N=4)

1)

First, we show the proper time function H(τ=t2rz2)H(\tau=\sqrt{t^{2}-r_{z}^{2}}) calculated by L3 Collaboration [1]. According to the notation in Ref. [1], the Levy canonical form with ζ=tan(ατπ/2)\zeta=\tan(\alpha_{\tau}\pi/2) is expressed as

H~(ω)=exp[12(Δrω)ατ(1isign(ω)ζ)].\displaystyle\tilde{H}(\omega)=\exp\left[-\frac{1}{2}(\Delta r\omega)^{\alpha_{\tau}}(1-i\,{\rm sign}(\omega)\zeta)\right]. (22)

The function H(τ)H(\tau) is calculated by the inverse Fourier transformation as

H(τ)\displaystyle H(\tau) =\displaystyle= 1π0eiωτH~(ω)𝑑ω\displaystyle\frac{1}{\pi}\int_{0}^{\infty}e^{-i\omega\tau}\tilde{H}(\omega)d\omega (23)
=\displaystyle= 1πRe[0exp(12(Δrω)ατiωτ+i2(Δrω)ατζ)𝑑ω]\displaystyle\frac{1}{\pi}{\rm Re}\left[\int_{0}^{\infty}\exp\left(-\frac{1}{2}(\Delta r\omega)^{\alpha_{\tau}}-i\,\omega\tau+\frac{i}{2}(\Delta r\omega)^{\alpha_{\tau}}\zeta\right)d\omega\right]
=\displaystyle= 1π0exp(12(Δrω)ατ)cos(ωτ12(Δrω)ατζ)𝑑ω\displaystyle\frac{1}{\pi}\int_{0}^{\infty}\exp\left(-\frac{1}{2}(\Delta r\omega)^{\alpha_{\tau}}\right)\cos\left(\omega\tau-\frac{1}{2}(\Delta r\omega)^{\alpha_{\tau}}\zeta\right)d\omega
=\displaystyle= Hcc(τ)+Hss(τ)\displaystyle H_{\rm cc}(\tau)+H_{\rm ss}(\tau)

where cc and ss represent the products of coscos\cos\cdot\cos and sinsin\sin\cdot\sin respectively. Using Δr=1.56\Delta r=1.56 fm and ατ=0.44\alpha_{\tau}=0.44, H(τ)H(\tau), Hcc(τ)H_{\rm cc}(\tau) and Hss(τ)H_{\rm ss}(\tau) are calculated (Fig. 7). The magnitudes of area presented in Fig. 7 are S0.9S\approx 0.9 and Scc=Sss0.45S_{\rm cc}=S_{\rm ss}\approx 0.45 in the range of 0500\sim 50 fm.

Combining the transverse and the rapidity distributions ρ(pT)\rho(p_{T}) and ρ(y)\rho(y), L3 Collaboration calculated their emitting source functions.

Refer to caption
Figure 7: The proper time function H(τ)H(\tau) of the Levy canonical form H~(ω)\tilde{H}(\omega) introduced by L3 Collaboration.

2)

Second, to analyze the 2-jet events, they introduced the transverse mass a=1/mta=1/m_{t}. With the following identification, Δra/2=R2\Delta ra/2=R^{2}, they started with the following Levy canonical form (N=1N=1):

H~1(ω)=exp[12(Rω)2ατ(1isign(ω)ζ)].\displaystyle\tilde{H}_{1}(\omega)=\exp\left[-\frac{1}{2}(R\omega)^{2\alpha_{\tau}}(1-i\,{\rm sign}(\omega)\zeta)\right]. (24)

By making use the inverse Fourier transformation, the probability (N=1N=1) H1(ξ12=|x1x2|)H_{1}(\xi_{12}=|x_{1}-x_{2}|) is calculated as

H1(ξ12=|x1x2|)=1π0exp[12(Rω)2ατ]cos[ξω12(Rω)2ατζ]𝑑ω,\displaystyle H_{1}(\xi_{12}=|x_{1}-x_{2}|)=\frac{1}{\pi}\int_{0}^{\infty}\exp\left[-\frac{1}{2}(R\omega)^{2\alpha_{\tau}}\right]\cos\left[\xi\omega-\frac{1}{2}(R\omega)^{2\alpha_{\tau}}\zeta\right]d\omega, (25)

The results (R=0.78R=0.78 fm, ατ=0.44\alpha_{\tau}=0.44) are shown in Fig. 8. Two figures in Fig. 7 and Fig. 8 are different each other, because of difference between (Δrω)ατ(\Delta r\omega)^{\alpha_{\tau}} and (Rω)2ατ(R\omega)^{2\alpha_{\tau}}.

Refer to caption
Figure 8: The probability H1(ξ)H_{1}(\xi) of H~1(ω)\tilde{H}_{1}(\omega).

The magnitude of H(ξ12)H(\xi_{12}), S1=0H(ξ12)𝑑ξ120.75S_{1}=\displaystyle{\int_{0}^{\infty}}H(\xi_{12})d\xi_{12}\cong 0.75 is computed in the range 0400\sim 40 fm. Because its magnitude, the name of probability for H(ξ12)H(\xi_{12}) seems to be unsuitable. Note that present calculation is based on N=1N=1.

3)

Third, L3 Collaboration adopted the following effective Levy form (N=4N=4),

H~4(RωRQ)=exp[12(RQ)2ατ(1isign(Q)ζ)].\displaystyle\tilde{H}_{4}(R\omega\to RQ)=\exp\left[-\frac{1}{2}(RQ)^{2\alpha_{\tau}}(1-i\,{\rm sign}(Q)\zeta)\right]. (26)

From Eq. (26), we calculate the probability Pτ(ξ)P_{\tau}(\xi) as

{H4(ξ)=1(2π)2ξ0Qξ2exp(12(RQξ)2ατ)cos(12(RQξ)2ατζ)J1(Qξξ)𝑑Qξ,Pτ(ξ)=2π2ξ3H4(ξ),\displaystyle\left\{\begin{array}[]{l}H_{4}(\xi)=\dfrac{1}{(2\pi)^{2}\xi}\displaystyle{\int_{0}^{\infty}}Q_{\xi}^{2}\,\exp\left(-\frac{1}{2}(RQ_{\xi})^{2\alpha_{\tau}}\right)\cos\left(\frac{1}{2}(RQ_{\xi})^{2\alpha_{\tau}}\zeta\right)\,J_{1}(Q_{\xi}\xi)dQ_{\xi},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ P_{\tau}(\xi)=2\pi^{2}\xi^{3}H_{4}(\xi),\end{array}\right. (29)

where 0πsin(ξQcosϕ)sin2ϕdϕ=0\displaystyle{\int_{0}^{\pi}}\sin(\xi Q\cos\phi)\sin^{2}\phi\,d\phi=0 is used.

The probability Pτ(ξ)P_{\tau}(\xi) (R=0.78R=0.78 fm, ατ=0.44\alpha_{\tau}=0.44) is shown in Fig. 9. That the magnitude of S=Pτ(ξ)𝑑ξ1.0S=\int P_{\tau}(\xi)d\xi\cong 1.0 is computed. However, it is very strange that Pτ(ξ)P_{\tau}(\xi) shows the partially negative behavior in the range of 00.40\sim 0.4 fm: Sp1.04S_{p}\cong 1.04 and Sn0.04S_{n}\cong-0.04, which mean the positive and the negative magnitudes, respectively [19, 18].

Refer to caption
Figure 9: The probability Pτ(ξ)P_{\tau}(\xi) calculated by Eq. (29). σ(±)=Pτ(ξ,R)/RδR(±)\sigma^{(\pm)}=\partial P_{\tau}(\xi,\,R)/\partial R\cdot\delta R^{(\pm)} with δR(+)=(0.04(stat))2+(0.09(sys))2\delta R^{(+)}=\sqrt{(0.04(\rm stat))^{2}+(0.09(\rm sys))^{2}} and δR()=(0.04(stat))2+(0.16(sys))2\delta R^{(-)}=\sqrt{(0.04(\rm stat))^{2}+(0.16(\rm sys))^{2}}. The values (0.010.160+0.090.01_{-0.160}^{+0.09}) are taken from Table 3 in Ref. [1].

The exchange function EBEE_{\rm BE} in the τ\tau-model is calculated as follows,

EBE\displaystyle E_{\rm BE} =\displaystyle= Re[H~42(RQ)]\displaystyle{\rm Re}\left[\tilde{H}_{4}^{2}(RQ)\right] (30)
=\displaystyle= exp((RQ)2ατ)cos((RQ)2ατζ).\displaystyle\exp\left(-(RQ)^{2\alpha_{\tau}}\right)\cos\left((RQ)^{2\alpha_{\tau}}\zeta\right).

Introducing the degree of coherence λ\lambda and LRC(linear){\rm LRC_{(linear)}}, we obtain Eq. (2).

The stochastic density of exchange function EBEE_{\rm BE} in the τ\tau-model is calculated by the inverse Fourier transformation (N=4N=4) as

{ρτ,BE(ξ)=1(2π)2ξ0Qξ2exp((RQξ)2ατ)cos((RQξ)2ατζ)J1(Qξξ)𝑑Qξ,Sτ,BE(ξ)=2π2ξ3ρτ,BE(ξ).\displaystyle\left\{\begin{array}[]{l}\mbox{\Large$\rho$}_{\rm\tau,BE}(\xi)=\dfrac{1}{(2\pi)^{2}\xi}\displaystyle{\int_{0}^{\infty}}Q_{\xi}^{2}\,\exp(-(RQ_{\xi})^{2\alpha_{\tau}})\cos((RQ_{\xi})^{2\alpha_{\tau}}\zeta)\,J_{1}(Q_{\xi}\xi)dQ_{\xi},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ S_{\rm\tau,BE}(\xi)=2\pi^{2}\xi^{3}\mbox{\Large$\rho$}_{\rm\tau,BE}(\xi).\end{array}\right. (33)

Appendix C Systematic errors and uncertainties

I) BEC at Z0-pole by OPAL Collaboration

To explain the systematic errors, we need the various SRs and DRs in BEC by L3 Collaboration. However, because of no-information on various distributions by L3 Collaboration, we treat the SR and DR by OPAL Collaboration. Using estimated values in Table 9, and the definition given in Ref. [4], we are able to calculate the systematic errors as

δλsys=±(λaλb)2+(λaλc)2+(λaλd)2=±0.120,\displaystyle\!\!\!\delta\lambda_{\rm sys}=\pm\sqrt{(\lambda_{a}-\lambda_{b})^{2}+(\lambda_{a}-\lambda_{c})^{2}+(\lambda_{a}-\lambda_{d})^{2}}=\pm 0.120,
and\displaystyle{\rm and} δRsys=±(RaRb)2+(RaRc)2+(RaRd)2=±0.260fm.\displaystyle\!\!\!\delta R_{\rm sys}=\pm\sqrt{(R_{a}-R_{b})^{2}+(R_{a}-R_{c})^{2}+(R_{a}-R_{d})^{2}}=\pm 0.260\ {\rm fm}.

Finally, we obtain the following values:

λ=0.736±0.035(stat)±0.120(sys),andR=0.984±0.029(stat)±0.260(sys)fm.\displaystyle\lambda=0.736\pm 0.035\,({\rm stat})\pm 0.120\,({\rm sys}),\ {\rm and}\ R=0.984\pm 0.029\,({\rm stat})\pm 0.260\,({\rm sys})\ {\rm fm}.

Those values are compared with λ=0.866±0.032(stat)±0.140(sys)\lambda=0.866\pm 0.032\,({\rm stat})\pm 0.140\,({\rm sys}), and R=0.928±0.019(stat)±0.150(sys)R=0.928\pm 0.019\,({\rm stat})\pm 0.150\,({\rm sys}) fm as LRC(OPAL){\rm LRC_{(OPAL)}} is used [4]. The absolute value δRsys=0.260\delta R_{\rm sys}=0.260 fm is larger than 0.150 fm [4].

Table 9: Fitting parameters in application of CFI(Gauss)×LRC(Gauss){\rm CF_{I}(Gauss)\times LRC_{(Gauss)}} to data at Z0Z^{0}-pole
by OPAL Collaboration. Notice that we have no-distribution with conditions “different data selection” and “use 0.05 GeV binning”.
data λ\lambda RR (fm) χ2\chi^{2}/ndf
(a) SR excluding K0K^{0} and ρ0\rho^{0} decay effect 0.736±0.0350.736\pm 0.035 0.984±0.0290.984\pm 0.029 97.6/59
(b) SR full data 0.655±0.0250.655\pm 0.025 0.794±0.0290.794\pm 0.029 287/73
(c) SR 0<Q<1.50<Q<1.5 GeV 0.655±0.0260.655\pm 0.026 0.817±0.0330.817\pm 0.033 273/53
(d) DR full data 0.701±0.0380.701\pm 0.038 0.917±0.0320.917\pm 0.032 98.1/73
Refer to caption
Refer to caption
Figure 10: Analysis of OPAL BEC data by Eq. (6).

When we use the different definition with the largest positive and negative differences among λ\lambda’s and λ(a)\lambda_{\rm(a)}, and among RR’s and R(a)R_{\rm(a)}, where the suffix (a) means the first line (a) in Table 9, we obtain the following values δλsys=0.0350.081+0.0\delta\lambda_{\rm sys}=0.035_{-0.081}^{+0.0} and δRsys=0.0290.190+0.0\delta R_{\rm sys}=0.029_{-0.190}^{+0.0} fm for the systematic uncertainties.

In Fig. 11, we show two behaviors related to LRC(OPAL){\rm LRC_{(OPAL)}} and LRC(Gauss){\rm LRC_{(Gauss)}} in SR and DR. The difference is observed in the range of 0<Q<0.50<Q<0.5 GeV. On the contrary, in the range of 0.5<Q<2.00.5<Q<2.0 GeV, the coincidences are seen.

Refer to caption
Refer to caption
Figure 11: LRC(OPAL){\rm LRC_{(OPAL)}} and LRC(Gauss){\rm LRC_{(Gauss)}} for SR and DR by OPAL Collaboration.

II) BEC at Z0-pole by L3 Collaboration

Since we have no-information on the numerator and the denominator in Eq. (2), we use the systematic uncertainties in BEC at Z0-pole by L3 Collaboration in Table 2 in Ref. [1]:

R=0.78±0.040.16+0.09fm for 2-jet.R=0.78\pm 0.04_{-0.16}^{+0.09}\ \mbox{fm for 2-jet}.

These values are used in calculation of σ±\sigma^{\pm} in Fig. 5 and Fig. 9.

References

  • [1] P. Achard et al. [L3], Eur. Phys. J. C 71 (2011), 1648.
  • [2] A. M. Sirunyan et al. [CMS], JHEP 03 (2020), 014.
  • [3] V. Khachatryan et al. [CMS], JHEP 05 (2011), 029.
  • [4] P. D. Acton et al. [OPAL], Phys. Lett. B 267 (1991) 143.
  • [5] P. Abreu et al. [DELPHI], Phys. Lett. B 286 (1992), 201-210.
  • [6] D. Decamp et al. [ALEPH], Z. Phys. C 54 (1992), 75-86.
  • [7] T. Mizoguchi, S. Matsumoto and M. Biyajima, Phys. Rev. D 108 (2023) 5, 056014.
  • [8] T. Mizoguchi, S. Matsumoto and M. Biyajima, Int. J. Mod. Phys. A 37 (2022) 25, 2250148.
  • [9] R. Shimoda, M. Biyajima and N. Suzuki, Prog. Theor. Phys. 89 (1993), 697-708.
  • [10] G. C. Wick, Phys. Rev. 96 (1954), 1124-1134.
  • [11] M. Biyajima, Phys. Lett. B 92 (1980), 193.
  • [12] M. Biyajima, A. Bartl, T. Mizoguchi, O. Terazawa and N. Suzuki, Prog. Theor. Phys. 84 (1990), 931-940.
  • [13] G. A. Kozlov, O. V. Utyuzh, G. Wilk and Z. Wlodarczyk, Phys. Atom. Nucl. 71 (2008), 1502-1504.
  • [14] R. Hanbury Brown and R. Q. Twiss, Nature 178 (1956), 1046-1048.
  • [15] G. Goldhaber, S. Goldhaber, W. Y. Lee and A. Pais, Phys. Rev. 120 (1960), 300-312
  • [16] V. V. Uchaikin, and V. M. Zolotarev, “Chance and stability: Stable distributions and their applications,” VSP, Utrecht, Netherlands, 1999:
  • [17] V. M. Zolotarev, “Integral Transformation of Distributions and Estimates of Parameters of Multidimensional Spherically Symmetric Stable Laws” in “Contributions to Probability” (Academic Press, New York 1981), pp. 283-305.
  • [18] V. M. Zolotarev, “One-dimensional stable distributions,” Translations of Mathematical Monographs Vol. 65, American Mathematical Society, Providence, 1986.
  • [19] J. P. Nolan, “Univariate Stable Distributions: Models for Heavy Tailed Data,” Springer Nature, Switzerland, 2020.
  • [20] F. Oberhettinger, “Tables of Fourier Transforms and Fourier Transforms of Distributions,” Springer, Berlin/Heidelberg, 1990.
  • [21] I. S. Gradshteyn and I. ,M. Ryzhik, “Table of Integrals, Series, and Products,” 8th edition, Academic Press, Waltham, 2014.
  • [22] T. Sjostrand and M. Bengtsson, Comput. Phys. Commun. 43 (1987), 367.
  • [23] DELPHI Collaboration, “Comparison of data with QCD models,” contributed paper to the LP-EPS conference, Geneva, August 1991.