This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Analysis of reconstruction from noisy discrete generalized Radon data

Alexander Katsevich1
Abstract.

We consider a wide class of generalized Radon transforms \mathcal{R}, which act in n\mathbb{R}^{n} for any n2n\geq 2 and integrate over submanifolds of any codimension NN, 1Nn11\leq N\leq n-1. Also, we allow for a fairly general reconstruction operator 𝒜\mathcal{A}. The main requirement is that 𝒜\mathcal{A} be a Fourier integral operator with a phase function, which is linear in the phase variable. We consider the task of image reconstruction from discrete data gj,k=(f)j,k+ηj,kg_{j,k}=(\mathcal{R}f)_{j,k}+\eta_{j,k}. We show that the reconstruction error Nϵrec=𝒜ηj,kN_{\epsilon}^{\text{rec}}=\mathcal{A}\eta_{j,k} satisfies Nrec(xˇ;x0)=limϵ0Nϵrec(x0+ϵxˇ)N^{\text{rec}}(\check{x};x_{0})=\lim_{\epsilon\to 0}N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}), xˇD\check{x}\in D. Here x0x_{0} is a fixed point, DnD\subset\mathbb{R}^{n} is a bounded domain, and ηj,k\eta_{j,k} are independent, but not necessarily identically distributed, random variables. NrecN^{\text{rec}} and NϵrecN_{\epsilon}^{\text{rec}} are viewed as continuous random functions of the argument xˇ\check{x} (random fields), and the limit is understood in the sense of probability distributions. Under some conditions on the first three moments of ηj,k\eta_{j,k} (and some other not very restrictive conditions on x0x_{0} and 𝒜\mathcal{A}), we prove that NrecN^{\text{rec}} is a zero mean Gaussian random field and explicitly compute its covariance. We also present a numerical experiment with a cone beam transform in 3\mathbb{R}^{3}, which shows an excellent match between theoretical predictions and simulated reconstructions.

1This work was supported in part by NSF grant DMS-1906361. Department of Mathematics, University of Central Florida, Orlando, FL 32816 ([email protected]).

1. Introduction

1.1. Prior work. Main results

Tomographic imaging, which includes X-ray, ultrasound, seismic, and many other tomographies, is commonly used in a wide range of applications such as medical, industrial, security, and others. The task of tomographic image reconstruction can be formulated as follows. Let :𝒳𝒱\mathcal{R}:\mathcal{X}\to\mathcal{V} denote a linear integral transform, where 𝒳n\mathcal{X}\subset\mathbb{R}^{n} is the image domain and 𝒱n\mathcal{V}\subset\mathbb{R}^{n} is the data domain. Let ff be a function supported in 𝒳\mathcal{X}, which represents the object being scanned. Tomographic data represent integrals of ff along a family of manifolds (e.g., lines, spheres, etc.). The manifolds are parametrized by points ω𝒱\omega\in\mathcal{V}, so the data are (f)(ω)(\mathcal{R}f)(\omega), ω𝒱\omega\in\mathcal{V}. In a continuous setting, the goal is to reconstruct f(x)f(x), x𝒳x\in\mathcal{X} (or some information about ff, e.g., its singularities) from (f)(ω)(\mathcal{R}f)(\omega), ω𝒱\omega\in\mathcal{V}.

In practice, data are always discrete and contain noise. So the task becomes to reconstruct an approximation to ff from discrete data gj:=(f)(ϵj)+ηjg_{j}:=(\mathcal{R}f)(\epsilon j)+\eta_{j}, ϵj𝒱\epsilon j\in\mathcal{V}, jnj\in\mathbb{Z}^{n}. Here ϵ>0\epsilon>0 represents the data step size and ηj\eta_{j}’s represent additive noise. For simplicity, we assume that the step size is the same along each direction. Usually, two most important factors that affect quality of reconstructed images are data discretization and strength of noise in the data.

Effects of data discretization on various aspects of image quality, e. g. spatial resolution, aliasing artifacts, are now well-understood [33, 34, 14, 40]. In particular, in a series of articles, the author developed an approach, called local reconstruction analysis (LRA), to analyze the resolution with which the singularities (i.e., jump discontinuities) of ff are reconstructed from discrete tomographic data in the absence of noise, see [22, 23, 20] and references therein. In those articles the singularities of ff are assumed to lie on a smooth curve in 2\mathbb{R}^{2} (and surface in n\mathbb{R}^{n}) or a rough curve in 2\mathbb{R}^{2}, denoted 𝒮\mathcal{S}. In [24], LRA theory was advanced to include analysis of aliasing (ripple artifacts) in 2\mathbb{R}^{2} at points away from 𝒮\mathcal{S}.

The main idea of LRA is to obtain a simple formula to accurately approximate an image reconstructed from discrete data, fϵrecf_{\epsilon}^{\text{rec}}, in an ϵ\epsilon-neighborhood of a point, x0x_{0}. For example, let ff be a real-valued function in 2\mathbb{R}^{2}, 𝒮2\mathcal{S}\subset\mathbb{R}^{2} be a smooth curve, and ff have a jump across 𝒮\mathcal{S}. Let fϵrecf_{\epsilon}^{\text{rec}} be a filtered backprojection (FBP) reconstruction of ff from discretely sampled Radon transform (RT) data with sampling step size, ϵ\epsilon. Under some mild conditions on 𝒮\mathcal{S}, it is shown in [21, 23] that one has

(1.1) limϵ0fϵrec(x0+ϵxˇ)=Δf(x0)DTB(xˇ;x0),x0𝒮,\lim_{\epsilon\to 0}f_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})=\Delta f(x_{0})\text{DTB}(\check{x};x_{0}),\ x_{0}\in\mathcal{S},

where the limit is uniform with respect to xˇD\check{x}\in D for any bounded set DD. Here Δf(x0)\Delta f(x_{0}) is the value of the jump of ff across 𝒮\mathcal{S} at x0x_{0} and DTB, which stands for the Discrete Transition Behavior, is an easily computable function independent of ff. The DTB function depends only on the curvature of 𝒮\mathcal{S} at x0x_{0}. When ϵ\epsilon is sufficiently small, the right-hand side of (1.1) is an accurate approximation of fϵrecf_{\epsilon}^{\text{rec}} and the DTB function describes accurately the smoothing of the singularities of ff in fϵrecf_{\epsilon}^{\text{rec}}.

As is seen from (1.1), LRA provides a uniform approximation to fϵrec(x)f_{\epsilon}^{\text{rec}}(x) in domains of size ϵ\sim\epsilon, which is of the same order of magnitude as the sampling step size ϵ\epsilon. Given the DTB function, one can study local properties of reconstruction from discrete data, such as spatial resolution and strength of artifacts.

The first extension of LRA to reconstruction from noisy data has been done in [2]. The authors consider the model g=f+ηg=\mathcal{R}f+\eta, where \mathcal{R} is the classical 2D RT, f\mathcal{R}f is the measured sinogram with entries (f)j,k(\mathcal{R}f)_{j,k}, and η\eta is the noise. The entries, ηj,k\eta_{j,k}, of η\eta are assumed to be independent, but not necessarily identically distributed. Due to linearity of 1\mathcal{R}^{-1}, the reconstruction error is 1η\mathcal{R}^{-1}\eta. Let Nϵrec(x)N_{\epsilon}^{\text{rec}}(x) denote the reconstruction error, i.e. the FBP reconstruction only from ηj,k\eta_{j,k}. Similarly to previous works on LRA (cf. also (1.1)), the authors consider O(ϵ)O(\epsilon)-sized neighborhoods around any x02x_{0}\in\mathbb{R}^{2}. Let C(D)C(D) be the space of continuous functions on DD, where D2D\subset\mathbb{R}^{2} is a bounded domain. The main result of [2] is that, under suitable assumptions on the first three moments of the ηj,k\eta_{j,k}, the boundary of DD, and x0x_{0}, the following limit exists:

(1.2) Nrec(xˇ;x0)=limϵ0Nϵrec(x0+ϵxˇ),xˇD.N^{\text{rec}}(\check{x};x_{0})=\lim_{\epsilon\to 0}N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}),\ \check{x}\in D.

Here, NrecN^{\text{rec}} and NϵrecN_{\epsilon}^{\text{rec}} are viewed as C(D)C(D)-valued random variables (random fields), and the limit is understood in the sense of probability distributions. It is proven also that Nrec(xˇ;x0)N^{\text{rec}}(\check{x};x_{0}) is a zero mean Gaussian random field (GRF) and its covariance is computed explicitly. The paper also contains numerical experiments, which show an excellent match between theoretical predictions and simulated reconstructions.

In this paper we extend the results of [2] to a wide class of generalized RTs \mathcal{R}, which act in n\mathbb{R}^{n} for any n2n\geq 2 and integrate over submanifolds of any codimension NN, 1Nn11\leq N\leq n-1. Also, we allow for a fairly general reconstruction operator 𝒜\mathcal{A}. The main requirement is that 𝒜\mathcal{A} be a Fourier integral operator (FIO) with a phase function, which is linear in the phase variable. Similarly to [2] we consider the model g=f+ηg=\mathcal{R}f+\eta and show that the reconstruction error Nϵrec=𝒜ηj,kN_{\epsilon}^{\text{rec}}=\mathcal{A}\eta_{j,k} satisfies (1.2), where DnD\subset\mathbb{R}^{n} is a bounded domain and ηj,k\eta_{j,k} are independent, but not necessarily identically distributed, random variables. As in [2], NrecN^{\text{rec}} and NϵrecN_{\epsilon}^{\text{rec}} are viewed as C(D)C(D)-valued random variables, and the limit is understood in the sense of probability distributions. We prove that NrecN^{\text{rec}} is a zero mean GRF and explicitly compute its covariance. We also present a numerical experiment with a cone beam transform in 3\mathbb{R}^{3}, which shows an excellent match between theoretical predictions and simulated reconstructions.

1.2. Significance

Equations (1.1) and (1.2) together provide an explicit and accurate local approximation to the image reconstructed from noisy discrete data, fϵrec=𝒜(f+η)f_{\epsilon}^{\text{rec}}=\mathcal{A}(\mathcal{R}f+\eta). Eq. (1.1) describes the effect of edge smoothing due to data discretization, and (1.2) describes the reconstruction error due to random noise. The combined approximation is uniform over domains of size ϵ\sim\epsilon, i.e. precisely at the scale of native resolution enabled by available data. Results of this kind are more useful for localized analysis of tomographic reconstruction than more common global analyses, which estimate some global error norm (e.g., L2L^{2}). Formulas provided by LRA, such as (1.1) and (1.2), can be used to study resolution of reconstruction, perform statistical inference about detectability of small details in a reconstructed image, and for many other tasks.

As a first example we consider the task of detection and assessment of lung tumors in CT images (see also [2]). Typically, malignant lung tumors have rougher boundaries than benign nodules [10, 11]. Therefore the roughness of the nodule boundary is a critical factor for accurate diagnosis. Reconstructions from discrete X-ray CT data produce images in which the singularities are smoothed to various degrees. A rough boundary of the tumor may appear smoother in the reconstructed image than it really is. This can lead to a cancerous tumor being misdiagnosed as a benign nodule. Likewise, due to the random noise in the data, the smooth boundary of a benign nodule may appear rougher than it actually is, which may again result in misdiagnosis. This example illustrates the need to accurately quantify the effects of both data discretization and random noise on local (i.e., near the tumor boundary) tomographic reconstruction.

Another example is the use of CT by the energy industry for imaging of rock samples extracted from wells. The reconstructed image is segmented to identify as accurately as possible the pore space (i.e., voids) inside the sample. This is very challenging, because pore boundaries are fractal, they possess features that are below the scanner native resolution. Then one uses numerical fluid flow simulations inside the identified pore space to compute permeability of the sample [5]. The obtained results are used for formation evaluation and improving of oil recovery [36]. Thus, the key step that affects the accuracy of the entire workflow from scanning to fluid flow simulation is CT image segmentation. Errors in locating pore boundaries and, consequently, inaccurate pore space identification lead to incorrect flow simulation and errors in computed permeability [9, 37, 38]. Therefore, as in the previous example, precise quantification of the local (near the boundaries) effects of data discretization and noise on the reconstructed image is of paramount importance.

1.3. Related literature. Organization of the paper

We now discuss related existing literature concerning reconstruction in a stochastic setting and compare it with our findings. A kernel-type estimator of ff has been derived in [26, 27] in the setting of a tomography problem with additive random errors in observations. Its minimax optimal rate of convergence to ff, i.e. the ground truth function, has been established both at a fixed point and in a global L2L^{2} norm. The rate of convergence for the maximal deviation of an estimator from its mean has been obtained for similar kernel-type estimators in [6]. The accuracy of pointwise asymptotically efficient kernel estimator in terms of minimax risk of a probability density ff from noise-free RT data sampled on a random grid has been derived in [7, 8].

An essential common feature of all the works cited above is that convergence is established by incorporating into the reconstruction/estimation algorithm of additional smoothing at a scale δ\delta significantly larger than the data step size. This smoothing leads to a notable loss of resolution in practical applications. This is also the reason why the cited works assume that the function ff being estimated is sufficiently smooth. To compare with our results, we mention two points. First, none of these papers obtain the probability distribution of the reconstructed noise (i.e., the error in the reconstruction), either pointwise or in a domain. Second, our reconstruction is performed and investigated at native resolution.

Reconstruction in the framework of Bayesian inversion has been explored as well [32, 39, 43]. Global inversion in the case when continuous data are corrupted by a Gaussian white noise is investigated in [32]. Using a Gaussian prior (i.e., with Tikhonov regularization), the authors establish the asymptotic normality of the posterior distribution and of the MAP estimator for observables of the kind f(x)ψ(x)dx\int f(x)\psi(x)\text{d}x, where ψC\psi\in C^{\infty} is a test function. This means that reconstruction is investigated at the scales 1\sim 1. In contrast, our results quantify the pointwise reconstruction error uniformly over regions of size O(ϵ)O(\epsilon). Various other aspects of Bayesian inversion are discussed in [39, 43].

Analysis of reconstruction errors using semiclassical analysis is developed in [41]. The goal of the paper is to analyze empirical spatial mean and variance of the noise in the inversion for a single experiment in the limit as the sampling rate ϵ\epsilon goes to zero. In contrast, the emphasis of our paper is on the study of the reconstruction error across multiple reconstructions. We obtain the entire probability density function (PDF) of the error in the limit as ϵ0\epsilon\to 0 (as opposed to only the mean and variance).

Analysis of noise in reconstructed images is an active area in more applied research as well (see [44, 12] and references therein). In this research, the proposed methodologies mostly combine numerical and semi-empirical approaches. Theoretical derivation of the reconstructed noise PDF in small neighborhoods is not provided.

The paper is organized as follows. In section 2, we describe the setting of the problem and main assumptions. In section 3, we state the main results, which are broken down into three theorems. In section 4 we illustrate how to check the key assumptions for a few common CT geometries. The beginning of the proof of the first result, theorem 3.1, is in section 5. In this section we study the contribution of the leading order term of 𝒜\mathcal{A} to the reconstructed image, Nϵrec(x0+ϵxˇ)N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}). In section 6 we study the contribution of the lower order terms of 𝒜\mathcal{A} to the reconstruction. In section 7 we finish the proof of theorem 3.1 and prove theorem 3.2, our second main result. In section 8 we prove our last result, theorem 3.4. A numerical experiment is described in section 9. Finally, the proofs of some auxiliary lemmas are in Appendices AE.

2. Setting of the problem and main assumptions

A general Radon-type integral transform :𝒳𝒱\mathcal{R}:\mathcal{X}\to\mathcal{V}, where 𝒳,𝒱n\mathcal{X},\mathcal{V}\subset\mathbb{R}^{n} are some domains, can be written as a Fourier Integral Operator (FIO) with a phase function, which is linear in the frequency variable. Except for a small number of special cases, exact inversion formulas are usually not available. Hence one may be interested in applying an approximate inversion formula in the form of a parametrix. In other cases, one may be interested in enhanced-edge reconstruction [35, 15, 18, 30]. Therefore we consider a general reconstruction operator 𝒜:𝒱𝒳\mathcal{A}:\mathcal{V}\to\mathcal{X}, which is also an FIO with a linear phase function

(2.1) (𝒜g)(x)=(2π)NN𝒴𝒵a(x,(y,z),ξ)eiξΦ(x,(y,z))g(y,z)dzdydξ.(\mathcal{A}g)(x)=(2\pi)^{-N}\int_{\mathbb{R}^{N}}\int_{\mathcal{Y}}\int_{\mathcal{Z}}a(x,(y,z),\xi)e^{i\xi\cdot\Phi(x,(y,z))}g(y,z)\text{d}z\text{d}y\text{d}\xi.

where Φ:𝒳×𝒱N\Phi:\mathcal{X}\times\mathcal{V}\to\mathbb{R}^{N} is a smooth function.

Assumption 2.1 (Properties of the domains 𝒳\mathcal{X}, 𝒱\mathcal{V}).

         

  1. (1)

    𝒳n\mathcal{X}\subset\mathbb{R}^{n} and 𝒱n\mathcal{V}\subset\mathbb{R}^{n} are bounded domains.

  2. (2)

    𝒱=𝒴×𝒵\mathcal{V}=\mathcal{Y}\times\mathcal{Z} for some domains 𝒴nN\mathcal{Y}\subset\mathbb{R}^{n-N}, 𝒵N\mathcal{Z}\subset\mathbb{R}^{N}.

In our setting, x𝒳x\in\mathcal{X} are points in the image domain, and (y,z)𝒱(y,z)\in\mathcal{V} are points in the data (projection) domain. The pair (y,z)𝒱(y,z)\in\mathcal{V} was denoted ω\omega in the Introduction. The representation of ω\omega, ω=(y,z)\omega=(y,z), as a pair is analogous to the classical RT convention (α,p)Sn1×(\alpha,p)\in S^{n-1}\times\mathbb{R}. In our case, yy is the analog of the variable α\alpha and zz is a (multidimensional) analog of the variable pp.

Denote 0:={0}\mathbb{N}_{0}:=\mathbb{N}\cup\{0\}. For convenience, throughout the paper we use the following convention. If a constant cc is used in an equation or inequality, the qualifier ‘for some c>0c>0’ is assumed. If several cc are used in a string of (in)equalities, then ‘for some’ applies to each of them, and the values of different cc’s may all be different.

Definition 2.2.

Pick any γ\gamma\in\mathbb{R}. The set Sγ(𝒳×𝒱×(N0))S^{\gamma}(\mathcal{X}\times\mathcal{V}\times(\mathbb{R}^{N}\setminus 0)) is the vector space of all functions a(x,ω,ξ):𝒳×𝒱×Na(x,\omega,\xi):\mathcal{X}\times\mathcal{V}\times\mathbb{R}^{N}\to\mathbb{R} such that

(2.2) |ξm(x,ω)ka(x,ω,ξ)|cm,k(1+|ξ|)γ|m|,(x,ω)𝒳×𝒱,|ξ|1,m0N,k02n;(x,ω)kaLloc1(𝒳×𝒱×N),k02n.\begin{split}&|\partial_{\xi}^{m}\partial_{(x,\omega)}^{k}a(x,\omega,\xi)|\leq c_{m,k}(1+|\xi|)^{\gamma-|m|},\\ &(x,\omega)\in\mathcal{X}\times\mathcal{V},|\xi|\geq 1,m\in\mathbb{N}_{0}^{N},k\in\mathbb{N}_{0}^{2n};\\ &\partial_{(x,\omega)}^{k}a\in L^{1}_{loc}(\mathcal{X}\times\mathcal{V}\times\mathbb{R}^{N}),\ k\in\mathbb{N}_{0}^{2n}.\end{split}
Assumption 2.3 (Properties of aa, the amplitude of 𝒜\mathcal{A}).

         

  1. (1)

    One has

    (2.3) aSγ(𝒳×𝒱×(N0)) for some γ>N/2.\begin{split}&a\in S^{\gamma}(\mathcal{X}\times\mathcal{V}\times(\mathbb{R}^{N}\setminus 0))\text{ for some }\gamma>-N/2.\end{split}
  2. (2)

    The principal symbol of 𝒜\mathcal{A}, denoted a0a_{0}, is homogeneous and satisfies:

    (2.4) a0(x,ω,rξ)=rγa0(x,ω,ξ),r>0,(x,ω)𝒳×𝒱,ξN0,a0Sγ(𝒳×𝒱×(N0)).\begin{split}&a_{0}(x,\omega,r\xi)=r^{\gamma}a_{0}(x,\omega,\xi),\ r>0,\,(x,\omega)\in\mathcal{X}\times\mathcal{V},\,\xi\in\mathbb{R}^{N}\setminus 0,\\ &a_{0}\in S^{\gamma}(\mathcal{X}\times\mathcal{V}\times(\mathbb{R}^{N}\setminus 0)).\end{split}
  3. (3)

    aa0Sγ(𝒳×𝒱×(N0))a-a_{0}\in S^{\gamma^{\prime}}(\mathcal{X}\times\mathcal{V}\times(\mathbb{R}^{N}\setminus 0)) for some γ<γ\gamma^{\prime}<\gamma.

Assumption 2.4 (Properties of Φ\Phi).

         

  1. (1)

    Φ:UN\Phi:U\to\mathbb{R}^{N} is a smooth function, where U2nU\subset\mathbb{R}^{2n} is a neighborhood of 𝒳×𝒱\mathcal{X}\times\mathcal{V}.

  2. (2)

    For each x𝒳x\in\mathcal{X} and y𝒴y\in\mathcal{Y} there exists a unique point z=Ψ(x,y)𝒵z=\Psi(x,y)\in\mathcal{Z} such that Φ(x,(y,Ψ(x,y)))0\Phi(x,(y,\Psi(x,y)))\equiv 0.

  3. (3)

    |det(zΦ(x,(y,z)))|c>0|\text{det}(\partial_{z}\Phi(x,(y,z)))|\geq c>0 for any z=Ψ(x,y)z=\Psi(x,y) and (x,y)𝒳×𝒴(x,y)\in\mathcal{X}\times\mathcal{Y}.

Denote u:=(x,y)u:=(x,y), a0(u,z,ξ):=a0(x,(y,z),ξ)a_{0}(u,z,\xi):=a_{0}(x,(y,z),\xi), and similarly for all other functions which depend on xx and yy. Assumption 2.4 and the implicit function theorem [28, Theorem 3.3.1] imply

  1. (1)

    The function z=Ψ(x,y)=Ψ(u)z=\Psi(x,y)=\Psi(u), u𝒳×𝒴u\in\mathcal{X}\times\mathcal{Y}, is smooth.

  2. (2)

    The equation w=Φ(u,z)w=\Phi(u,z) can be solved for zz and the solution z(w,u)z(w,u) is smooth on the domain [δ,δ]×(𝒳×𝒴)[-\delta,\delta]\times(\mathcal{X}\times\mathcal{Y}), where δ>0\delta>0 is sufficiently small.

In the proof of the second statement we patch together local solutions similarly to [17, §8, exercise 14].

Define the set

(2.5) Λ:={(u,z)𝒳×𝒱:z=z(w,u),|w|<δ}.\Lambda:=\{(u,z)\in\mathcal{X}\times\mathcal{V}:\ z=z(w,u),|w|<\delta\}.

Thus Λ\Lambda is a small neighborhood of the set {(u,z)𝒳×𝒱:z=Ψ(u)}\{(u,z)\in\mathcal{X}\times\mathcal{V}:\ z=\Psi(u)\}. Further, define the N×NN\times N matrix function

(2.6) Q(u):=zΦ(u,z)|z=Ψ(u),u𝒳×𝒴.Q(u):=\partial_{z}\Phi(u,z)|_{z=\Psi(u)},\ u\in\mathcal{X}\times\mathcal{Y}.

By assumption 2.4(3), |detQ(u)|c>0|\text{det}Q(u)|\geq c>0 if u𝒳×𝒴u\in\mathcal{X}\times\mathcal{Y}. Differentiating the identity Φ(u,z(w,u))w\Phi(u,z(w,u))\equiv w with respect to ww we see that

(2.7) z(w,u)=Ψ(u)+Q1(u)w+O(|w|2),|w|δ,u𝒳×𝒴.\begin{split}z(w,u)=&\Psi(u)+Q^{-1}(u)w+O(|w|^{2}),\ |w|\leq\delta,\ u\in\mathcal{X}\times\mathcal{Y}.\end{split}

We suppose that δ>0\delta>0 (and the set Λ\Lambda) is sufficiently small so that

(2.8) wmz(w,u)cm,|det(wz(w,u))|c,m0N,|w|δ,u𝒳×𝒴,\|\partial_{w}^{m}z(w,u)\|\leq c_{m},\ |\text{det}(\partial_{w}z(w,u))|\geq c,\ m\in\mathbb{N}_{0}^{N},|w|\leq\delta,\ u\in\mathcal{X}\times\mathcal{Y},

where \|\cdot\| denotes any matrix norm.

One is given discrete data

(2.9) g(yj,zk),yj=ϵyj𝒴,jnN,zk=ϵk𝒵,kN,ϵ/ϵyconst.\begin{split}g(y_{j},z_{k}),\ y_{j}=&\epsilon_{y}j\in\mathcal{Y},j\in\mathbb{Z}^{n-N},\ z_{k}=\epsilon k\in\mathcal{Z},k\in\mathbb{Z}^{N},\\ \epsilon/\epsilon_{y}\equiv&\text{const}.\end{split}

Realistic data are usually represented as the sum of a useful signal (the RT of some function) and noise. The reconstruction operator 𝒜\mathcal{A} is linear, so we assume that the useful signal is zero and the data consist only of noise: g(yj,zk)=ηj,kg(y_{j},z_{k})=\eta_{j,k}.

Assumption 2.5 (Properties of noise ηj,k\eta_{j,k}).

         

  1. (1)

    ηj,k\eta_{j,k} are independent (but not necessarily identically distributed) random variables,

  2. (2)

    One has

    (2.10) 𝔼ηj,k2=ϵ2γϵy(nN)σ2(yj,zk),𝔼|ηj,k|3=o(ϵ3γϵy2(nN)),\mathbb{E}\eta_{j,k}^{2}=\epsilon^{2\gamma}\epsilon_{y}^{-(n-N)}\sigma^{2}(y_{j},z_{k}),\ \mathbb{E}|\eta_{j,k}|^{3}=o(\epsilon^{3\gamma}\epsilon_{y}^{-2(n-N)}),

    where σ(y,z)\sigma(y,z) is a Lipschitz continuous, bounded function on 𝒱\mathcal{V}, and the small-oo term is uniform in j,kj,k as ϵ0\epsilon\to 0.

Reconstruction is computed using the well-known filtered backprojection scheme.

  1. (1)

    Interpolate and, possibly, smooth the data along the zz variable:

    (2.11) gcont(y,z):=zk𝒵φ(zzkϵ)g(y,zk),y=yj𝒴.g_{\text{cont}}(y,z):=\sum_{z_{k}\in\mathcal{Z}}\varphi\bigg{(}\frac{z-z_{k}}{\epsilon}\bigg{)}g(y,z_{k}),\ y=y_{j}\in\mathcal{Y}.

    Here, φ\varphi is a compactly supported and sufficiently smooth function, which describes the effects of numerical interpolation and smoothing of the data.

  2. (2)

    Filtering step. Compute

    (2.12) Nϵ(1)(x,y)=(2π)NN𝒵a(x,(y,z),ξ)eiξΦ(x,(y,z))gcont(y,z)dzdξ,y=yj𝒴.\begin{split}N_{\epsilon}^{(1)}(x,y)=&(2\pi)^{-N}\int_{\mathbb{R}^{N}}\int_{\mathcal{Z}}a(x,(y,z),\xi)e^{i\xi\cdot\Phi(x,(y,z))}g_{\text{cont}}(y,z)\text{d}z\text{d}\xi,\\ y=&y_{j}\in\mathcal{Y}.\end{split}
  3. (3)

    Backprojection step. Compute the Riemann sum

    (2.13) Nϵrec(x)=ϵynNyj𝒴Nϵ(1)(x,yj).N_{\epsilon}^{\text{rec}}(x)=\epsilon_{y}^{n-N}\sum_{y_{j}\in\mathcal{Y}}N_{\epsilon}^{(1)}(x,y_{j}).

For a domain UnU\subset\mathbb{R}^{n}, n=1,2,n=1,2,\dots, the notation fCk(U¯)f\in C^{k}(\bar{U}) means that f(x)f(x) is kk times differentiable up to the boundary and xmfL(U)\partial_{x}^{m}f\in L^{\infty}(U) for any multi-index mm, |m|k|m|\leq k. The notation fC0k(U)f\in C_{0}^{k}(U) means that fCk(U¯)f\in C^{k}(\bar{U}) and supp(f)U\text{supp}(f)\subset U.

Assumption 2.6 (Properties of the kernel φ\varphi).

         

  1. (1)

    φC0M(𝒵)\varphi\in C_{0}^{M}(\mathcal{Z}) for some integer M>max(N+γ+1,n/2)M>\max(N+\gamma+1,n/2).

Assumptions 2.3(1), 2.4(3), and 2.6(1) imply that the oscillatory integral (2.12) is well-defined.

We need the following technical definition.

Definition 2.7.

[13, Chapter 2] Let FF be any non-empty bounded subset of n\mathbb{R}^{n} and let Nδ(F)N_{\delta}(F) be the smallest number of sets of diameter at most δ\delta which can cover FF. The upper box-counting dimension of FF is defined as

(2.14) dim¯B(F):=lim supδ0log(Nδ(F))log(δ).\overline{\text{dim}}_{B}(F):=\limsup_{\delta\to 0}\frac{\log(N_{\delta}(F))}{-\log(\delta)}.

An easier, but equivalent, definition is obtained by replacing Nδ(F)N_{\delta}(F) in (2.14) with Nδ(F)N_{\delta}^{\prime}(F), which is the number of cubes of the form δ[m,m+1]\delta[m,m+\vec{1}], mnm\in\mathbb{Z}^{n}, intersecting FF [13, Chapter 2]. Here 1=(1,,1)n\vec{1}=(1,\dots,1)\in\mathbb{Z}^{n}.

Later on, we consider reconstruction in an ϵ\epsilon-neighborhood of a point x0x_{0}, which satisfies the following properties:

Assumption 2.8 (Properties of x0x_{0}).
  1. (1)

    For each ξN0\xi\in\mathbb{R}^{N}\setminus 0, the set

    (2.15) Y1(x0,ξ):={y𝒴:det(y2(ξΨ(x0,y)))=0}Y_{1}(x_{0},\xi):=\{y\in\mathcal{Y}:\text{det}(\partial_{y}^{2}(\xi\cdot\Psi(x_{0},y)))=0\}

    has the upper box-counting dimension dim¯B(Y1(x0,ξ))<nN\overline{\text{dim}}_{B}(Y_{1}(x_{0},\xi))<n-N.

  2. (2)

    There exist an open set V𝒴V\in\mathcal{Y} and an open cone ΞN0\Xi\subset\mathbb{R}^{N}\setminus 0 such that

    (2.16) a0(x0,(y,Ψ(x0,y)),ξ)0,yV,ξΞ,σ(y,Ψ(x0,y))0,yV.\begin{split}&a_{0}(x_{0},(y,\Psi(x_{0},y)),\xi)\not=0,\ \forall y\in V,\xi\in\Xi,\\ &\sigma(y,\Psi(x_{0},y))\not=0,\ \forall y\in V.\end{split}
  3. (3)

    For any xˇn0\check{x}\in\mathbb{R}^{n}\setminus 0, the set

    (2.17) Y2(x0,xˇ):={y𝒴:xΨ(x0,y)xˇ=0}Y_{2}(x_{0},\check{x}):=\{y\in\mathcal{Y}:\partial_{x}\Psi(x_{0},y)\check{x}=0\}

    has Lebesgue measure zero.

For all practical purposes, we can think of Assumption 2.8(1) as saying that for each ξN0\xi\in\mathbb{R}^{N}\setminus 0, the set of points y𝒴y\in\mathcal{Y} such that the Hessian of the function yξΨ(x0,y)y\to\xi\cdot\Psi(x_{0},y) is degenerate is locally a submanifold of codimension 1\geq 1. This assumption makes sense because the solution set of a generic scalar equation f(y)=0f(y)=0, y𝒴y\in\mathcal{Y}, is a surface of codimension 1.

Assumption 2.8(3) can be viewed as a consequence of a local Bolker condition. In terms of Ψ\Psi, the incidence relation defined by the generalized RT \mathcal{R} can be written in the form zΨ(x,y)=0z-\Psi(x,y)=0. In this case, the conventional global Bolker condition becomes yΨ(x1,y)yΨ(x2,y)\partial_{y}\Psi(x_{1},y)\not=\partial_{y}\Psi(x_{2},y) for any x1,x2𝒳x_{1},x_{2}\in\mathcal{X}, x1x2x_{1}\not=x_{2}, and y𝒴y\in\mathcal{Y}. Localizing to a neighborhood of some x0𝒳x_{0}\in\mathcal{X}, we get

(2.18) y[Ψ(x0+txˇ,y)Ψ(x0,y)]0, 0<|t|1.\partial_{y}[\Psi(x_{0}+t\check{x},y)-\Psi(x_{0},y)]\not=0,\ 0<|t|\ll 1.

Dividing by tt and taking the limit as t0t\to 0 suggests the local condition

(2.19) yxΨ(x0,y)xˇ0xˇn0,y𝒴.\partial_{y}\partial_{x}\Psi(x_{0},y)\check{x}\not=0\ \forall\check{x}\in\mathbb{R}^{n}\setminus 0,y\in\mathcal{Y}.

Note that the first zero in (2.19) stands for a N×(nN)N\times(n-N) zero matrix. If (2.19) holds, then (2.17) holds as well. Equations (2.18) and (2.19) explain the intuition on which the condition (2.17) is based.

3. Main results

Theorem 3.1.

Let x0𝒳x_{0}\in\mathcal{X}, xˇn\check{x}\in\mathbb{R}^{n} be two fixed points. Suppose the domains 𝒳,𝒱\mathcal{X},\mathcal{V} satisfy Assumption 2.1, the operator 𝒜\mathcal{A} satisfies Assumption 2.3 and Assumption 2.4, the random variables ηk,j\eta_{k,j} satisfy Assumption 2.5, the kernel φ\varphi satisfies Assumption 2.6, and the point x0x_{0} satisfies Assumption 2.8. One has

(3.1) Nrec:=limϵ0Nϵrec(x0+ϵxˇ)N^{\text{rec}}:=\lim_{\epsilon\to 0}N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})

is a Gaussian random variable, and the limit is in the sense of distributions.

Let us choose L1L\geq 1 points xˇ1,,xˇLn\check{x}_{1},\dots,\check{x}_{L}\in\mathbb{R}^{n}. The corresponding reconstructed vector is Nϵrec:=(Nϵrec(x0+ϵxˇ1),,Nϵrec(x0+ϵxˇL))L\vec{N}_{\epsilon}^{\text{rec}}:=(N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}_{1}),\dots,N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}_{L}))\in\mathbb{R}^{L}. For simplicity, the dependence of NrecN^{\text{rec}} and Nϵrec\vec{N}_{\epsilon}^{\text{rec}} on x0x_{0} and xˇ\check{x} is suppressed from notation.

Theorem 3.2.

Let x0𝒳x_{0}\in\mathcal{X} and xˇln\check{x}_{l}\in\mathbb{R}^{n}, l=1,2,,Ll=1,2,\dots,L, be fixed. Suppose the assumptions of Theorem 3.1 are satisfied. One has

(3.2) Nrec:=limϵ0Nϵrec(x0+ϵxˇ)\vec{N}^{\text{rec}}:=\lim_{\epsilon\to 0}\vec{N}_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})

is a Gaussian random vector, and the limit is in the sense of distributions.

Clearly, Theorem 3.2 contains Theorem 3.1. We decided to separately state Theorem 3.1 because its proof is easier. The proof of Theorem 3.2 follows similar logic to Theorem 3.1, so we discuss only the main new points of the former.

Next we remind the reader the definition of a random field (also known as a random function or topological space-valued random variable).

Definition 3.3.

[25, p. 182] Let TT be a topological space, endowed with its Borel field (T)\mathcal{B}(T). A TT-valued random variable XX on the probability space (Ω,𝒢,)(\Omega,\mathcal{G},\mathbb{P}) is a measurable map X:ΩTX:\Omega\to T. In other words, for all E(T)E\in\mathcal{B}(T), {ωΩ:X(ω)E}𝒢\{\omega\in\Omega:X(\omega)\in E\}\in\mathcal{G}.

Let DRnD\subset R^{n} be a bounded domain. Define C:=C(D¯,)C:=C(\bar{D},\mathbb{R}) to be the collection of all functions continuous up to the boundary f:D¯f:\bar{D}\to\mathbb{R} metrized by

(3.3) d(f,g)=maxxˇD|f(xˇ)g(xˇ)|,f,gC.d(f,g)=\max_{\check{x}\in D}|f(\check{x})-g(\check{x})|,\ f,g\in C.

Recall that G(x)G(x), xD¯x\in\bar{D}, is a GRF if (G(x1),,G(xL))(G(x_{1}),\cdots,G(x_{L})) is a Gaussian random vector for any L1L\geq 1 and any collection of points x1,,xLD¯x_{1},\cdots,x_{L}\in\bar{D} [3, Section 1.7]. As is known, a GRF is completely characterized by its mean function m(x)=𝔼G(x)m(x)=\mathbb{E}G(x), xDx\in D and its covariance function Cov(x,y)=𝔼(G(x)m(x))(G(y)m(y))\text{Cov}(x,y)=\mathbb{E}(G(x)-m(x))(G(y)-m(y)), x,yDx,y\in D [3, Section 1.7]. Thus, Theorem 3.2 implies that Nrec(xˇ)N^{\text{rec}}(\check{x}), xˇD¯\check{x}\in\bar{D}, is a GRF. For simplicity, we drop the dependence of NrecN^{\text{rec}} on x0x_{0} from notation.

In the next theorem, we show that Nϵrec(x0+ϵxˇ)Nrec(xˇ)N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})\to N^{\text{rec}}(\check{x}), xˇD¯\check{x}\in\bar{D}, as ϵ0\epsilon\to 0 weakly, i.e. in distribution as CC-valued random variables ([25, p. 185]). Recall that MM controls the smoothness of φ\varphi (see Assumption 2.6).

Theorem 3.4.

Let DD be a bounded domain with a Lipschitz boundary. Suppose the assumptions of Theorem 3.1 hold and M>n/2M>n/2. Then Nϵrec(x0+ϵxˇ)Nrec(xˇ)N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})\to N^{\text{rec}}(\check{x}), xˇD¯\check{x}\in\bar{D}, ϵ0\epsilon\to 0, as GRFs in the sense of weak convergence. Furthermore, Nrec(xˇ)N^{\text{rec}}(\check{x}), xˇD¯\check{x}\in\bar{D}, is a GRF with zero mean and covariance

(3.4) Cov(xˇ,yˇ)=C(xˇyˇ),C(ϑ):=𝒴(GG)(y,xΨ(y)ϑ)σ2(y,Ψ(y))dy,(GG)(y,ϑ):=NG(y,ϑ+r)G(y,r)dr,\begin{split}\text{Cov}(\check{x},\check{y})=&C(\check{x}-\check{y}),\\ C(\vartheta):=&\int_{\mathcal{Y}}(G\star G)\big{(}y,\partial_{x}\Psi(y)\cdot\vartheta\big{)}\sigma^{2}(y,\Psi(y))\text{d}y,\\ (G\star G)(y,\vartheta):=&\int_{\mathbb{R}^{N}}G(y,\vartheta+r)G(y,r)\text{d}r,\end{split}

and sample paths of Nrec(xˇ)N^{\text{rec}}(\check{x}) are continuous with probability 11.

4. Examples

4.1. Classical Radon transform in 2\mathbb{R}^{2} and 3\mathbb{R}^{3}

We begin with the classical RT in 2\mathbb{R}^{2}. The following conventional data parametrization is used:

(4.1) y=α,z=p,Φ(x,α,p)=pαx,Ψ(x,α)=αx,y=\alpha,\ z=p,\ \Phi(x,\alpha,p)=p-\vec{\alpha}\cdot x,\ \Psi(x,\alpha)=\vec{\alpha}\cdot x,

where α=(cosα,sinα)\vec{\alpha}=(\cos\alpha,\sin\alpha). Then pΦ(x,α,p)=1\partial_{p}\Phi(x,\alpha,p)=1, so Assumption 2.4(3) is satisfied. From (2.15), Y1(x0,ξ)={α[0,2π):αx0=0}Y_{1}(x_{0},\xi)=\{\alpha\in[0,2\pi):\vec{\alpha}\cdot x_{0}=0\}, which is a set consisting of two points, i.e. it has the upper box-counting dimension of zero, as long as x00x_{0}\not=0. Also, Y2(x0,xˇ)={α[0,2π):αxˇ=0}Y_{2}(x_{0},\check{x})=\{\alpha\in[0,2\pi):\vec{\alpha}\cdot\check{x}=0\} (cf. (2.17)), which is a set of measure zero. Thus, Assumptions 2.8(1,3) are satisfied.

Next consider the classical RT in 3\mathbb{R}^{3}. In this case we use the conventional parametrization

(4.2) y=(α,θ),p=z,Φ(x,α,θ,p)=pΘx,Ψ(x,α,θ)=Θx,Θ:=(cosαcosθ,cosαsinθ,sinα),θ[0,2π),|α|<π/2.\begin{split}&y=(\alpha,\theta),\ p=z,\ \Phi(x,\alpha,\theta,p)=p-\vec{\Theta}\cdot x,\ \Psi(x,\alpha,\theta)=\vec{\Theta}\cdot x,\\ &\vec{\Theta}:=(\cos\alpha\cos\theta,\cos\alpha\sin\theta,\sin\alpha),\ \theta\in[0,2\pi),|\alpha|<\pi/2.\end{split}

Then pΦ(x,α,θ,p)=1\partial_{p}\Phi(x,\alpha,\theta,p)=1, so Assumption 2.4(3) is satisfied. By (2.15), we compute the Hessian:

(4.3) (α,θ)2Ψ=((θx^)cosα+x3sinα(θx^)sinα(θx^)sinα(θx^)cosα),θ=(cosθ,sinθ),θ=(sinθ,cosθ),x^=(x1,x2),x=(x^,x3).\begin{split}&\partial_{(\alpha,\theta)}^{2}\Psi=-\begin{pmatrix}(\vec{\theta}\cdot\hat{x})\cos\alpha+x_{3}\sin\alpha&(\vec{\theta}^{\perp}\cdot\hat{x})\sin\alpha\\ (\vec{\theta}^{\perp}\cdot\hat{x})\sin\alpha&(\vec{\theta}\cdot\hat{x})\cos\alpha\end{pmatrix},\\ &\vec{\theta}=(\cos\theta,\sin\theta),\ \vec{\theta}^{\perp}=(-\sin\theta,\cos\theta),\ \hat{x}=(x_{1},x_{2}),\ x=(\hat{x},x_{3}).\end{split}

Here we have assumed without loss of generality that ξ=1\xi=1. Clearly, det((α,θ)2Ψ)0\text{det}(\partial_{(\alpha,\theta)}^{2}\Psi)\equiv 0 if x^=0\hat{x}=0. Thus, all points x=(0,0,x3)x=(0,0,x_{3}), x3x_{3}\in\mathbb{R}, are exceptional, because they violate Assumption 2.8(1). Suppose now x^0\hat{x}\not=0. After simple transformations we obtain

(4.4) 2det((α,θ)2Ψ)=|x^|2cos(2α)+x3(θx^)sin(2α)+[2(θx^)2|x^|2].2\text{det}(\partial_{(\alpha,\theta)}^{2}\Psi)=|\hat{x}|^{2}\cos(2\alpha)+x_{3}(\vec{\theta}\cdot\hat{x})\sin(2\alpha)+[2(\vec{\theta}\cdot\hat{x})^{2}-|\hat{x}|^{2}].

For each θ[0,2π)\theta\in[0,2\pi), we can find at most finitely many solutions |α|<π/2|\alpha|<\pi/2 to det((α,θ)2Ψ)=0\text{det}(\partial_{(\alpha,\theta)}^{2}\Psi)=0 and, generically, they depend smoothly on θ\theta. Hence, the sets Y1(x,ξ)Y_{1}(x,\xi), ξ0\xi\not=0, have the upper box-counting dimension of one, as long as x^0\hat{x}\not=0. For the cone beam transform, n=3n=3 and N=1N=1, so Assumption 2.8(1) is satisfied.

Finally, Y2(x,xˇ)={Θ𝒮2:Θxˇ=0}Y_{2}(x,\check{x})=\{\vec{\Theta}\in\mathcal{S}^{2}:\vec{\Theta}\cdot\check{x}=0\} (cf. (2.17)), which is a set of measure zero in the unit sphere. Thus, Assumption 2.8(3) is satisfied as well.

4.2. Cone beam transform in 3\mathbb{R}^{3}

Our next example is the cone beam transform in 3\mathbb{R}^{3} with a circular source trajectory. The detector coordinates are (u,v)2(u,v)\in\mathbb{R}^{2} (the analog of zz), the source coordinate is s[0,2π)s\in[0,2\pi) (the analog of yy), see Figure 1, and n=3n=3, N=2N=2. The source trajectory is given by

(4.5) P(s)=(Rcoss,Rsins,0), 0s<2π.P(s)=(R\cos s,R\sin s,0),\ 0\leq s<2\pi.

The (virtual) detector is flat, passes through the origin, and rotates together with the source. Points on the detector are parametrized as follows:

(4.6) Z(s,u,v)=u(sins,coss,0)+v(0,0,1).Z(s,u,v)=u(-\sin s,\cos s,0)+v(0,0,1).

For a point x=(x1,x2,x3)3x=(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}, its stereographic projection from the source P(s)P(s) to a point (u,v)=(U(x,s),V(x,s))(u,v)=(U(x,s),V(x,s)) in the detector plane is given by

(4.7) U(x,s)=T(x,s)(x1sins+x2coss),V(x,s)=T(x,s)x3,T(x,s)=[1(x1coss+x2sins)/R]1.\begin{split}&U(x,s)=T(x,s)(-x_{1}\sin s+x_{2}\cos s),\ V(x,s)=T(x,s)x_{3},\\ &T(x,s)=[1-(x_{1}\cos s+x_{2}\sin s)/R]^{-1}.\end{split}

The support of ff and reconstruction domain 𝒳\mathcal{X} are contained inside the cylinder x12+x22c<Rx_{1}^{2}+x_{2}^{2}\leq c<R. The two key functions are given by

(4.8) Φ(x,s,u,v)=(uU(x,s),vV(x,s)),Ψ(x,s)=(U(x,s),V(x,s)).\Phi(x,s,u,v)=(u-U(x,s),v-V(x,s)),\ \Psi(x,s)=(U(x,s),V(x,s)).

Clearly, (u,v)Φ\partial_{(u,v)}\Phi is a 2×22\times 2 identity matrix, so Assumption 2.4(3) is satisfied.

Refer to caption

Figure 1. Illustration of cone beam geometry.

From (2.15), Y1(x,ξ)={s[0,2π):s2(ξΨ(x,s)=0}Y_{1}(x,\xi)=\{s\in[0,2\pi):\partial_{s}^{2}(\xi\cdot\Psi(x,s)=0\}, ξ20\xi\in\mathbb{R}^{2}\setminus 0. Hence, generally, Assumption 2.8(1) is violated if the projection of xx onto the detector contains a straight line segment, see Figure 2, left panel. For the circular source trajectory (4.5), this is the case when x3=0x_{3}=0, i.e. when xx is in the plane of the source trajectory, see Figure 2, right panel. As is easy to see, the projection of xx to the detector is an ellipse as long as x30x_{3}\not=0. Indeed, from (4.7) we find

(4.9) (x2/x3)coss(x1/x3)sins=U/V,(x1/R)coss+(x2/R)sins=1(x3/V).\begin{split}&(x_{2}/x_{3})\cos s-(x_{1}/x_{3})\sin s=U/V,\\ &(x_{1}/R)\cos s+(x_{2}/R)\sin s=1-(x_{3}/V).\end{split}

Eliminating sins\sin s and coss\cos s gives

(4.10) (x12+x22)V2=x32U2+R2(Vx3)2.(x_{1}^{2}+x_{2}^{2})V^{2}=x_{3}^{2}U^{2}+R^{2}(V-x_{3})^{2}.

This is an ellipse, because the reconstruction domain is inside the source trajectory, i.e. x12+x22<R2x_{1}^{2}+x_{2}^{2}<R^{2}. Therefore Assumption 2.8(1) is satisfied if x30x_{3}\not=0.

Refer to caption

Figure 2. Illustration of the case when the set Y1(x,xˇ)Y_{1}(x,\check{x}) is an interval for a general source trajectory (left panel). The right panel illustrates the case of a circular source trajectory.

The meaning of Assumption 2.8(3) is best understood using Figures 1 and 3. We have Y2(x,xˇ)={s[0,2π):tΨ(x+txˇ,s)|t=0=0}Y_{2}(x,\check{x})=\{s\in[0,2\pi):\partial_{t}\Psi(x+t\check{x},s)|_{t=0}=0\}, where Ψ(x,s)\Psi(x,s) is the projection of xx to the detector. It is clear from the figures that the directional derivative is zero only when xˇ\check{x} is along the line L(x,s)L(x,s) through xx and the source P(s)P(s). This implies that Assumption 2.8(3) is violated only if there exists a line LL through xx such that the intersection of LL with the source trajectory contains a line segment as illustrated in Figure 3. Clearly, for a circular trajectory this does not happen.

Refer to caption

Figure 3. Illustration of the case when the set Y2(x,xˇ)Y_{2}(x,\check{x}) has positive measure. The values sY2(x,xˇ)s\in Y_{2}(x,\check{x}) parametrize a line segment (shown in red), which is a subset of the source trajectory. The vector xˇ\check{x} (shown in blue) is parallel to the line segment. The lines L(x,s)L(x,s), sY2(x,xˇ)s\in Y_{2}(x,\check{x}), are all the same and contain the segment.

5. Proof of Theorem 3.1: Contribution of the principal symbol

Throughout the proof we make the additional assumption

(5.1) a(x,(y,z),ξ)=a0(x,(y,z),ξ)0,(x,(y,z))Λ.a(x,(y,z),\xi)=a_{0}(x,(y,z),\xi)\equiv 0,\ (x,(y,z))\not\in\Lambda.

This assumption does not affect the validity of Theorem 3.1. One can always modify 𝒜\mathcal{A} by a smoothing operator so that this condition holds [42, Theorem 2.2, Ch. VI]. See also the last paragraph in section 6.

In view of (2.11), (2.12), consider the integral

(5.2) Fϵ(u,z):=(2π)NN𝒵a0(u,z,ξ)φ(zzϵ)eiξΦ(u,z)dzdξ.F_{\epsilon}(u,z^{\prime}):=(2\pi)^{-N}\int_{\mathbb{R}^{N}}\int_{\mathcal{Z}}a_{0}(u,z,\xi)\varphi\bigg{(}\frac{z-z^{\prime}}{\epsilon}\bigg{)}e^{i\xi\cdot\Phi(u,z)}\text{d}z\text{d}\xi.

5.1. An upper bound for |Fϵ(u,z)||F_{\epsilon}(u,z^{\prime})|

Change variable zw=Φ(u,z)z\to w=\Phi(u,z) and then wwˇ=w/ϵw\to\check{w}=w/\epsilon, ξξ^=ϵξ\xi\to\hat{\xi}=\epsilon\xi:

(5.3) Fϵ(u,z)=(2π)NN|wˇ|δ/ϵa0(u,z,ξ)|det(zΦ(u,z))|φ(zzϵ)ϵNeiϵξwˇdwˇdξ=ϵγ(2π)NNWϵ(u,z)a1(u,z,ξ^)φ(zzϵ)eiξ^wˇdwˇdξ^,a1(u,z,ξ):=a0(u,z,ξ)|det(zΦ(u,z))|1,z=z(ϵwˇ,ϵ).\begin{split}F_{\epsilon}(u,z^{\prime})=&(2\pi)^{-N}\int_{\mathbb{R}^{N}}\int_{|\check{w}|\leq\delta/\epsilon}\frac{a_{0}(u,z,\xi)}{|\text{det}(\partial_{z}\Phi(u,z))|}\varphi\bigg{(}\frac{z-z^{\prime}}{\epsilon}\bigg{)}\epsilon^{N}e^{i\epsilon\xi\cdot\check{w}}\text{d}\check{w}\text{d}\xi\\ =&\epsilon^{-\gamma}(2\pi)^{-N}\int_{\mathbb{R}^{N}}\int_{W_{\epsilon}(u,z^{\prime})}a_{1}(u,z,\hat{\xi})\varphi\bigg{(}\frac{z-z^{\prime}}{\epsilon}\bigg{)}e^{i\hat{\xi}\cdot\check{w}}\text{d}\check{w}\text{d}\hat{\xi},\\ a_{1}(u,z,\xi):=&a_{0}(u,z,\xi)|\text{det}(\partial_{z}\Phi(u,z))|^{-1},\ z=z(\epsilon\check{w},\epsilon).\end{split}

By (2.8), a1a_{1} is well-defined. Clearly, the matrices zΦ(u,z)\partial_{z}\Phi(u,z), where z=z(w,u)z=z(w,u), and wz(w,u)\partial_{w}z(w,u) are the inverses of each other. Here and throughout this section we set

(5.4) vˇ:=(zΨ(u))/ϵ,Wϵ(u,z):={wˇN:(z(ϵwˇ,u)z)/ϵsupp(φ)}.\check{v}:=(z^{\prime}-\Psi(u))/\epsilon,\ W_{\epsilon}(u,z^{\prime}):=\{\check{w}\in\mathbb{R}^{N}:(z(\epsilon\check{w},u)-z^{\prime})/\epsilon\in\text{supp}(\varphi)\}.

Since φ\varphi is compactly supported, (2.8) and Assumption 2.4(2) imply:

(5.5) diam(Wϵ(u,z))c,(u,z)Λ,0<ϵ1;wˇWϵ(u,z),(u,z)Λ implies [Q1(u)+O(ϵ|wˇ|)]wˇB(vˇ,c).\begin{split}&\text{diam}(W_{\epsilon}(u,z^{\prime}))\leq c,(u,z^{\prime})\in\Lambda,0<\epsilon\ll 1;\\ &\check{w}\in W_{\epsilon}(u,z^{\prime}),(u,z^{\prime})\in\Lambda\text{ implies }\big{[}Q^{-1}(u)+O(\epsilon|\check{w}|)\big{]}\check{w}\in B(\check{v},c).\end{split}

Here B(vˇ,c)B(\check{v},c) is a ball with center vˇ\check{v} and radius cc.

Case 1: |vˇ|c|\check{v}|\leq c. Since φ\varphi is compactly supported, (2.8) implies that the domain of integration with respect to wˇ\check{w} in (5.3), i.e. the set Wϵ(u,z)W_{\epsilon}(u,z^{\prime}), is a subset of a disk |wˇ|c|\check{w}|\leq c. Therefore,

(5.6) ϵγFϵ(u,z)=(2π)NNHϵ(u,z,ξ^)dξ^,(u,z)Λ,Hϵ(u,z,ξ^):=|wˇ|ca1(u,z(ϵwˇ,u),ξ^)φ(z(ϵwˇ,u)zϵ)eiξ^wˇdwˇ.\begin{split}\epsilon^{\gamma}F_{\epsilon}(u,z^{\prime})=&(2\pi)^{-N}\int_{\mathbb{R}^{N}}H_{\epsilon}(u,z^{\prime},\hat{\xi})\text{d}\hat{\xi},\ (u,z^{\prime})\in\Lambda,\\ H_{\epsilon}(u,z^{\prime},\hat{\xi}):=&\int_{|\check{w}|\leq c}a_{1}(u,z(\epsilon\check{w},u),\hat{\xi})\varphi\bigg{(}\frac{z(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}e^{i\hat{\xi}\cdot\check{w}}\text{d}\check{w}.\end{split}

Let M1M_{1} be the smallest integer that satisfies M1>N+γM_{1}>N+\gamma. Repeated integration by parts with respect to wˇ\check{w} gives

(5.7) Hϵ(u,z,ξ^)=|wˇ|c(LT)M1[a1(u,z,ξ^)φ(zzϵ)]eiξ^wˇdwˇ,L:=(1+|ξ^|2)1(1iξ^wˇ),z=z(ϵwˇ,u),(u,z)Λ.\begin{split}&H_{\epsilon}(u,z^{\prime},\hat{\xi})=\int_{|\check{w}|\leq c}(L^{T})^{M_{1}}\bigg{[}a_{1}(u,z,\hat{\xi})\varphi\bigg{(}\frac{z-z^{\prime}}{\epsilon}\bigg{)}\bigg{]}e^{i\hat{\xi}\cdot\check{w}}\text{d}\check{w},\\ &L:=(1+|\hat{\xi}|^{2})^{-1}(1-i\hat{\xi}\cdot\partial_{\check{w}}),\ z=z(\epsilon\check{w},u),\ (u,z^{\prime})\in\Lambda.\end{split}

In this integration by parts we use Assumption 2.3(2) and Assumption 2.6. This implies

(5.8) |Hϵ(u,z,ξ^)|c(1+|ξ^|)γM1,ξ^N,(u,z)Λ.\begin{split}|H_{\epsilon}(u,z^{\prime},\hat{\xi})|\leq&c(1+|\hat{\xi}|)^{\gamma-M_{1}},\ \hat{\xi}\in\mathbb{R}^{N},\ (u,z^{\prime})\in\Lambda.\end{split}

The integral on the first line in (5.6) is absolutely convergent because M1>N+γM_{1}>N+\gamma, hence

(5.9) ϵγ|Fϵ(u,z)|c,if |vˇ|c,(u,z)Λ.\epsilon^{\gamma}|F_{\epsilon}(u,z^{\prime})|\leq c,\ \text{if }|\check{v}|\leq c,(u,z^{\prime})\in\Lambda.

Case 2: |vˇ|c|\check{v}|\geq c. Let A1𝒮(N)A_{1}\in\mathcal{S}^{\prime}(\mathbb{R}^{N}) be the distribution

(5.10) A1(u,z,ϑ):=(2π)Na1(u,z,ξ^)eiξ^ϑdξ^,(u,z)Λ,ϑN.A_{1}(u,z,\vartheta):=(2\pi)^{-N}\int a_{1}(u,z,\hat{\xi})e^{i\hat{\xi}\cdot\vartheta}\text{d}\hat{\xi},\ (u,z)\in\Lambda,\ \vartheta\in\mathbb{R}^{N}.

We view ϑ\vartheta as the argument of A1A_{1}, and uu and zz – as parameters. As is known, Assumption 2.3(2) implies A1C(N0)A_{1}\in C^{\infty}(\mathbb{R}^{N}\setminus 0) and A1A_{1} is homogeneous of degree (N+γ)-(N+\gamma) [19, Theorems 7.1.16 and 7.1.18]:

(5.11) A1(u,z,tϑ)t(N+γ)A1(u,z,ϑ),t>0.A_{1}(u,z,t\vartheta)\equiv t^{-(N+\gamma)}A_{1}(u,z,\vartheta),\ t>0.

More generally we have A1C(𝒳×𝒱×(N0))A_{1}\in C^{\infty}(\mathcal{X}\times\mathcal{V}\times(\mathbb{R}^{N}\setminus 0)), if u,z,ϑu,z,\vartheta are all viewed as arguments.

If |vˇ||\check{v}| is sufficiently large and δ>0\delta>0 is sufficiently small (cf. (2.5), (2.7) and (2.8)), the set Wϵ(u,z)W_{\epsilon}(u,z^{\prime}) is bounded away from wˇ=0\check{w}=0. More precisely, Wϵ(u,z){wˇN:|wˇ|c|vˇ|}W_{\epsilon}(u,z^{\prime})\subset\{\check{w}\in\mathbb{R}^{N}:\ |\check{w}|\geq c|\check{v}|\} for some c>0c>0 independent of 0<ϵ10<\epsilon\ll 1 and (u,z)Λ(u,z^{\prime})\in\Lambda. Combining with (5.5) this gives

(5.12) ϵγFϵ(u,z)=Wϵ(u,z)A1(u,z,wˇ)φ(z(ϵwˇ,u)zϵ)dwˇ,(u,z)Λ,\begin{split}\epsilon^{\gamma}F_{\epsilon}(u,z^{\prime})=&\int_{W_{\epsilon}(u,z^{\prime})}A_{1}(u,z^{\prime},\check{w})\varphi\bigg{(}\frac{z(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}\text{d}\check{w},\ (u,z^{\prime})\in\Lambda,\end{split}

and (5.11) implies

(5.13) ϵγ|Fϵ(u,z)|c(1+|vˇ|)(N+γ) if |vˇ|c,(u,z)Λ.\begin{split}\epsilon^{\gamma}|F_{\epsilon}(u,z^{\prime})|\leq c(1+|\check{v}|)^{-(N+\gamma)}\text{ if }|\check{v}|\geq c,\ (u,z^{\prime})\in\Lambda.\end{split}

Combining (5.9) and (5.13) gives

(5.14) ϵγ|Fϵ(u,z)|c(1+|vˇ|)(N+γ),(u,z)Λ.\begin{split}\epsilon^{\gamma}|F_{\epsilon}(u,z^{\prime})|\leq c(1+|\check{v}|)^{-(N+\gamma)},\ (u,z^{\prime})\in\Lambda.\end{split}

5.2. Approximation of FϵF_{\epsilon} by simpler functions

Replace z=z(ϵwˇ,u)z=z(\epsilon\check{w},u) with z=Ψ(u)z=\Psi(u) in the argument of a1a_{1} in (5.3) and define

(5.15) Fϵ(1)(u,z):=ϵγ(2π)Na1(u,Ψ(u),ξ^)φ(z(ϵwˇ,u)zϵ)eiξ^wˇdwˇdξ^.\begin{split}F_{\epsilon}^{(1)}(u,z^{\prime}):=&\epsilon^{-\gamma}(2\pi)^{-N}\iint a_{1}(u,\Psi(u),\hat{\xi})\varphi\bigg{(}\frac{z(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}e^{i\hat{\xi}\cdot\check{w}}\text{d}\check{w}\text{d}\hat{\xi}.\end{split}

Since φ\varphi is compactly supported,

(5.16) |z(ϵwˇ,u)Ψ(u)||z(ϵwˇ,u)z|+|zΨ(u)|cϵ+ϵ|vˇ|,|z(\epsilon\check{w},u)-\Psi(u)|\leq|z(\epsilon\check{w},u)-z^{\prime}|+|z^{\prime}-\Psi(u)|\leq c\epsilon+\epsilon|\check{v}|,

cf. (5.4) and (5.5). The following inequality is proven in section A.1.

(5.17) ϵγ|Fϵ(u,z)Fϵ(1)(u,z)|cϵ(1+|vˇ|)(N+γ1),(u,z)Λ.\begin{split}&\epsilon^{\gamma}|F_{\epsilon}(u,z^{\prime})-F_{\epsilon}^{(1)}(u,z^{\prime})|\leq c\epsilon(1+|\check{v}|)^{-(N+\gamma-1)},\ (u,z^{\prime})\in\Lambda.\end{split}

Next we replace z(ϵwˇ,u)z(\epsilon\check{w},u) in the arguments of φ\varphi in (5.15) and define

(5.18) F¯ϵ(u,z):=ϵγ(2π)Na1(u,Ψ(u),ξ^)φ(z¯(ϵwˇ,u)zϵ)eiξ^wˇdwˇdξ^,z¯(w,u):=Ψ(u)+Q1(u)w.\begin{split}\bar{F}_{\epsilon}(u,z^{\prime}):=&\epsilon^{-\gamma}(2\pi)^{-N}\iint a_{1}(u,\Psi(u),\hat{\xi})\varphi\bigg{(}\frac{\bar{z}(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}e^{i\hat{\xi}\cdot\check{w}}\text{d}\check{w}\text{d}\hat{\xi},\\ \bar{z}(w,u):=&\Psi(u)+Q^{-1}(u)w.\end{split}

Since φ\varphi and its derivatives are bounded, (2.8) implies

(5.19) |wˇm[φ(z(ϵwˇ,u)zϵ)φ(z¯(ϵwˇ,u)zϵ)]|c[min(1,ϵ|wˇ|2)+ϵ|wˇ|],|m|M1.\begin{split}&\bigg{|}\partial_{\check{w}}^{m}\bigg{[}\varphi\bigg{(}\frac{z(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}-\varphi\bigg{(}\frac{\bar{z}(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}\bigg{]}\bigg{|}\\ &\leq c\big{[}\min(1,\epsilon|\check{w}|^{2})+\epsilon|\check{w}|\big{]},\ |m|\leq M_{1}.\end{split}

This is where we use that φ\varphi has extra smoothness φC0M1+1\varphi\in C_{0}^{M_{1}+1} (compared with the requirement φC0M1\varphi\in C_{0}^{M_{1}}, which suffices for (5.7) to hold). The following claim is proven in section A.2.

(5.20) ϵγ|Fϵ(1)(u,z)F¯ϵ(u,z)|c[min(1,ϵ|vˇ|2)+ϵ|vˇ|](1+|vˇ|)(N+γ),(u,z)Λ.\begin{split}\epsilon^{\gamma}|F_{\epsilon}^{(1)}(u,z^{\prime})-\bar{F}_{\epsilon}(u,z^{\prime})|\leq&c\big{[}\min(1,\epsilon|\check{v}|^{2})+\epsilon|\check{v}|\big{]}(1+|\check{v}|)^{-(N+\gamma)},\\ (u,z^{\prime})\in&\Lambda.\end{split}

Combining (5.17) and (5.20) yields

(5.21) ϵγ|Fϵ(u,z)F¯ϵ(u,z)|cϵ(1+|vˇ|)+min(1,ϵ|vˇ|2)(1+|vˇ|)N+γ,(u,z)Λ.\begin{split}&\epsilon^{\gamma}|F_{\epsilon}(u,z^{\prime})-\bar{F}_{\epsilon}(u,z^{\prime})|\leq c\frac{\epsilon(1+|\check{v}|)+\min(1,\epsilon|\check{v}|^{2})}{(1+|\check{v}|)^{N+\gamma}},\ (u,z^{\prime})\in\Lambda.\end{split}

After simple transformations

(5.22) ϵγF¯ϵ(u,z)=G(u,vˇ),G(u,ϑ):=(2π)NNa2(u,μ^)φ~(μ^)eiμ^ϑdμ^,a2(u,μ^):=a1(u,Ψ(u),QT(u)μ^),\begin{split}\epsilon^{\gamma}\bar{F}_{\epsilon}(u,z^{\prime})=&G(u,\check{v}),\ G(u,\vartheta):=(2\pi)^{-N}\int_{\mathbb{R}^{N}}a_{2}(u,\hat{\mu})\tilde{\varphi}(\hat{\mu})e^{i\hat{\mu}\cdot\vartheta}\text{d}\hat{\mu},\\ a_{2}(u,\hat{\mu}):=&a_{1}(u,\Psi(u),Q^{-T}(u)\hat{\mu}),\end{split}

where φ~\tilde{\varphi} is the Fourier transform of φ\varphi. As is easily seen, a2a_{2} satisfies (LABEL:a0_props) with the variable zz and set 𝒵\mathcal{Z} omitted. Recall that 𝒱=𝒴×𝒵\mathcal{V}=\mathcal{Y}\times\mathcal{Z}. The main property of the symbol a2a_{2} is that it is independent of zz^{\prime}. Similarly to (5.14),

(5.23) |G(u,ϑ)|c(1+|ϑ|)(N+γ),u𝒳×𝒴,ϑN.|G(u,\vartheta)|\leq c(1+|\vartheta|)^{-(N+\gamma)},\ u\in\mathcal{X}\times\mathcal{Y},\vartheta\in\mathbb{R}^{N}.

Arguing similarly to (5.6) – (5.14), the assumption φC0M1+1(n)\varphi\in C_{0}^{M_{1}+1}(\mathbb{R}^{n}) implies that GC1(𝒳×𝒴×N)G\in C^{1}(\mathcal{X}\times\mathcal{Y}\times\mathbb{R}^{N}) and

(5.24) |uG(u,ϑ)|c(1+|ϑ|)(N+γ),|ϑG(u,ϑ)|c(1+|ϑ|)(N+γ+1),u𝒳×𝒴,ϑN.\begin{split}|\partial_{u}G(u,\vartheta)|&\leq c(1+|\vartheta|)^{-(N+\gamma)},\ |\partial_{\vartheta}G(u,\vartheta)|\leq c(1+|\vartheta|)^{-(N+\gamma+1)},\\ u&\in\mathcal{X}\times\mathcal{Y},\vartheta\in\mathbb{R}^{N}.\end{split}

The second inequality follows because the amplitudes

μ^la2(u,μ^), 1lN,\hat{\mu}_{l}a_{2}(u,\hat{\mu}),\ 1\leq l\leq N,

are homogeneous in μ^\hat{\mu} of degree γ+1\gamma+1.

6. Proof of Theorem 3.1: contribution of the lower order terms of the FIO 𝒜\mathcal{A}

Using (5.3) denote

(6.1) Δa1(u,z,ξ):=(a(u,z,ξ)a0(u,z,ξ))|zΦ(u,z)|1,\begin{split}\Delta a_{1}(u,z,\xi):=&(a(u,z,\xi)-a_{0}(u,z,\xi))|\partial_{z}\Phi(u,z)|^{-1},\end{split}

and

(6.2) ϵγΔFϵ(u,z):=(2π)NNΔHϵ(u,z,ξ^)dξ^,ΔHϵ(u,z,ξ^):=Wϵ(u,z)ϵγΔa1(u,z(ϵwˇ,u),ξ^/ϵ)×φ(z(ϵwˇ,u)zϵ)eiξ^wˇdwˇ.\begin{split}\epsilon^{\gamma}\Delta F_{\epsilon}(u,z^{\prime}):=&(2\pi)^{-N}\int_{\mathbb{R}^{N}}\Delta H_{\epsilon}(u,z^{\prime},\hat{\xi})\text{d}\hat{\xi},\\ \Delta H_{\epsilon}(u,z^{\prime},\hat{\xi}):=&\int_{W_{\epsilon}(u,z^{\prime})}\epsilon^{\gamma}\Delta a_{1}(u,z(\epsilon\check{w},u),\hat{\xi}/\epsilon)\\ &\hskip 28.45274pt\times\varphi\bigg{(}\frac{z(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}e^{i\hat{\xi}\cdot\check{w}}\text{d}\check{w}.\end{split}

Case 1: |vˇ|c|\check{v}|\leq c. Using the same operator LL as in (5.7), repeated integration by parts with respect to wˇ\check{w} gives

(6.3) ΔHϵ(u,z,ξ^)=|wˇ|c(LT)M1[ϵγΔa1(u,z,ξ^/ϵ)φ(zzϵ)]eiξ^wˇdwˇ,z=z(ϵwˇ,u),\begin{split}\Delta H_{\epsilon}(u,z^{\prime},\hat{\xi})=&\int_{|\check{w}|\leq c}(L^{T})^{M_{1}}\bigg{[}\epsilon^{\gamma}\Delta a_{1}(u,z,\hat{\xi}/\epsilon)\varphi\bigg{(}\frac{z-z^{\prime}}{\epsilon}\bigg{)}\bigg{]}e^{i\hat{\xi}\cdot\check{w}}\text{d}\check{w},\\ z=&z(\epsilon\check{w},u),\end{split}

This, Assumption 2.3(3), and Assumption 2.6 imply

(6.4) |ΔHϵ(u,z,ξ^)|cϵγ(1+|ξ^/ϵ|)γ(1+|ξ^|)M1cϵγγ(1+|ξ^|)γM1,ξ^N,(u,z)Λ.\begin{split}|\Delta H_{\epsilon}(u,z^{\prime},\hat{\xi})|\leq&c{\epsilon^{\gamma}}{(1+|\hat{\xi}/\epsilon|)^{\gamma^{\prime}}}(1+|\hat{\xi}|)^{-M_{1}}\\ \leq&c{\epsilon^{\gamma-\gamma^{\prime}}}(1+|\hat{\xi}|)^{\gamma^{\prime}-M_{1}},\ \hat{\xi}\in\mathbb{R}^{N},\,(u,z^{\prime})\in\Lambda.\end{split}

The integral on the first line in (6.2) is absolutely convergent because M1>N+γM_{1}>N+\gamma^{\prime}, hence

(6.5) ϵγ|ΔFϵ(u,z)|=O(ϵγγ),|vˇ|c,(u,z)Λ.\epsilon^{\gamma}|\Delta F_{\epsilon}(u,z^{\prime})|=O(\epsilon^{\gamma-\gamma^{\prime}}),\ |\check{v}|\leq c,(u,z^{\prime})\in\Lambda.

Case 2: |vˇ|c|\check{v}|\geq c. When w=0w=0 is not in the domain of integration, we have

(6.6) ΔFϵ(u,z)=|w|δΔA1(u,z(w,u),w)φ(z(w,u)zϵ)dw,ΔA1(u,z,ϑ):=(2π)NNΔa1(u,z,ξ)eiξϑdξ.\begin{split}\Delta F_{\epsilon}(u,z^{\prime})=&\int_{|w|\leq\delta}\Delta A_{1}(u,z(w,u),w)\varphi\bigg{(}\frac{z(w,u)-z^{\prime}}{\epsilon}\bigg{)}\text{d}w,\\ \Delta A_{1}(u,z,\vartheta):=&(2\pi)^{-N}\int_{\mathbb{R}^{N}}\Delta a_{1}(u,z,\xi)e^{i\xi\cdot\vartheta}\text{d}\xi.\end{split}

Since γ>N/2\gamma>-N/2, we can always assume that N+γ>0N+\gamma^{\prime}>0. By assumption 2.3(3) and [1, Theorem 5.12],

(6.7) |ΔA1(u,z,ϑ)|c|ϑ|(N+γ),(u,z)Λ,0<|ϑ|c.|\Delta A_{1}(u,z,\vartheta)|\leq c|\vartheta|^{-(N+\gamma^{\prime})},\ (u,z)\in\Lambda,0<|\vartheta|\leq c.

The fact that the amplitude Δa1(u,z,ξ)\Delta a_{1}(u,z,\xi) is not smooth at the origin ξ=0\xi=0 is irrelevant, since this part contributes a bounded term. We have used here that ϑ\vartheta is confined to a bounded set, and the goal of (6.7) is to provide a bound near ϑ=0\vartheta=0. Substituting (6.7) into the first equation in (6.6) and changing variable w=ϵwˇw=\epsilon\check{w} gives using (5.5) and that Wϵ(u,z){wˇN:|wˇ|c|vˇ|}W_{\epsilon}(u,z^{\prime})\subset\{\check{w}\in\mathbb{R}^{N}:\ |\check{w}|\geq c|\check{v}|\}:

(6.8) ϵγ|ΔFϵ(u,z)|cϵγγ(1+|vˇ|)(N+γ),|vˇ|c,(u,z)Λ.\epsilon^{\gamma}|\Delta F_{\epsilon}(u,z^{\prime})|\leq c\epsilon^{\gamma-\gamma^{\prime}}(1+|\check{v}|)^{-(N+\gamma^{\prime})},\ |\check{v}|\geq c,(u,z^{\prime})\in\Lambda.

Combining with (6.5) yields

(6.9) ϵγ|ΔFϵ(u,z)|cϵγγ(1+|vˇ|)(N+γ),(u,z)Λ.\epsilon^{\gamma}|\Delta F_{\epsilon}(u,z^{\prime})|\leq c\epsilon^{\gamma-\gamma^{\prime}}(1+|\check{v}|)^{-(N+\gamma^{\prime})},\ (u,z^{\prime})\in\Lambda.

Recall that, by construction, ΔFϵ(u,z)=0\Delta F_{\epsilon}(u,z^{\prime})=0 if (u,z)(𝒳×𝒱)Λ(u,z^{\prime})\in(\mathcal{X}\times\mathcal{V})\setminus\Lambda.

Suppose now that KK is a smoothing operator. Such an operator may be needed to ensure that a(u,z,ξ)0a(u,z,\xi)\equiv 0 if (u,z)Λ(u,z)\not\in\Lambda (see (5.1)). The analog of (5.2) is

(6.10) Fϵ(u,z):=𝒵K(u,z)φ((zz)/ϵ)dz=O(ϵN),ϵ0,F_{\epsilon}(u,z^{\prime}):=\int_{\mathcal{Z}}K(u,z)\varphi((z-z^{\prime})/\epsilon)\text{d}z=O(\epsilon^{N}),\ \epsilon\to 0,

uniformly in (u,z)𝒳×𝒱(u,z^{\prime})\in\mathcal{X}\times\mathcal{V}.

7. End of proof of Theorem 3.1 and proof of Theorem 3.2

In what follows we take x=x0+ϵxˇx=x_{0}+\epsilon\check{x}. By (5.24),

(7.1) G(x,y,zΨ(x,y)ϵ)=G(x0,y,zΨ(x0,y)ϵxΨ(x0,y)xˇ)+O(ϵ)(1+|vˇ|)N+γ.\begin{split}G\bigg{(}x,y,\frac{z^{\prime}-\Psi(x,y)}{\epsilon}\bigg{)}=&G\bigg{(}x_{0},y,\frac{z^{\prime}-\Psi(x_{0},y)}{\epsilon}-\partial_{x}\Psi(x_{0},y)\cdot\check{x}\bigg{)}\\ &+\frac{O(\epsilon)}{(1+|\check{v}|)^{N+\gamma}}.\end{split}

In this section x0x_{0} is fixed and dropped from most notation. Since z=zk=ϵkz^{\prime}=z_{k}=\epsilon k (cf. (2.9), (2.11), (2.12), and (5.2)), reconstruction from noise can be written as follows

(7.2) Nϵrec(x0+ϵxˇ)=κϵ(yj,zk)𝒱[G(yj,kbj)+Rj,k]ηj,k,bj:=xΨ(x0,yj)xˇ+(Ψ(x0,yj)/ϵ),κϵ:=ϵγϵynN,\begin{split}N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})=&\kappa_{\epsilon}\sum_{(y_{j},z_{k})\in\mathcal{V}}\big{[}G\big{(}y_{j},k-b_{j}\big{)}+R_{j,k}\big{]}\eta_{j,k},\\ b_{j}:=&\partial_{x}\Psi(x_{0},y_{j})\cdot\check{x}+(\Psi(x_{0},y_{j})/\epsilon),\ \kappa_{\epsilon}:=\epsilon^{-\gamma}\epsilon_{y}^{n-N},\end{split}

where Rj,kR_{j,k} is the remainder. By (5.21), (6.9), (6.10), and (7.1) the remainder satisfies

(7.3) |Rj,k|cϵ(1+t)+min(1,ϵt2)(1+t)N+γ+cϵγγ(1+t)N+γ+O(ϵN+γ),t=|kbj|,(yj,zk)𝒱.\begin{split}|R_{j,k}|\leq&c\frac{\epsilon(1+t)+\min(1,\epsilon t^{2})}{(1+t)^{N+\gamma}}+c\frac{\epsilon^{\gamma-\gamma^{\prime}}}{(1+t)^{N+\gamma^{\prime}}}+O(\epsilon^{N+\gamma}),\\ t=&|k-b_{j}|,\ (y_{j},z_{k})\in\mathcal{V}.\end{split}

The following result is proven in appendix B. Its proof requires Assumption 2.8(1).

Lemma 7.1.

Suppose the assumptions of Theorem 3.1 are satisfied. For any ξN0\xi\in\mathbb{R}^{N}\setminus 0, unNu\in\mathbb{Z}^{n-N}, and any δ>0\delta>0 sufficiently small, there exist p>0p>0 and a finite collection of hypercubes knN\mathcal{B}_{k}\subset\mathbb{R}^{n-N} such that

(7.4) {y𝒴:|y(ξΨ(x0,y))u|p}kk,kVol(k)δ.\begin{split}&\{y\in\mathcal{Y}:\,|\partial_{y}(\xi\cdot\Psi(x_{0},y))-u|\leq p\}\subset\cup_{k}\mathcal{B}_{k},\ \sum_{k}\text{Vol}(\mathcal{B}_{k})\leq\delta.\end{split}

We have the following lemma, which is proven in appendix C. The proof uses Lemma 7.1.

Lemma 7.2.

Suppose the assumptions of Theorem 3.1 are satisfied. With bjb_{j} and κϵ\kappa_{\epsilon} defined in (7.2), one has

(7.5) limϵ0κϵ3(yj,zk)𝒱|G(yj,kbj)+Rj,k|3𝔼|ηj,k|3[κϵ2(yj,zk)𝒱(G(yj,kbj)+Rj,k)2𝔼ηj,k2]3/2=0.\lim_{\epsilon\to 0}\frac{\kappa_{\epsilon}^{3}\sum_{(y_{j},z_{k})\in\mathcal{V}}\lvert G(y_{j},k-b_{j})+R_{j,k}\rvert^{3}\mathbb{E}\lvert\eta_{j,k}\rvert^{3}}{\big{[}\kappa_{\epsilon}^{2}\sum_{(y_{j},z_{k})\in\mathcal{V}}(G(y_{j},k-b_{j})+R_{j,k})^{2}\mathbb{E}\eta_{j,k}^{2}\big{]}^{3/2}}=0.

Lemma 7.2 implies that the family of random variables Nϵrec(x0+ϵxˇ)N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}), ϵ>0\epsilon>0, satisfies the Lyapunov condition for triangular arrays [4, Definition 11.1.3]. By [4, Corollary 11.1.4], Nrec:=limϵ0Nϵrec(x0+ϵxˇ)N^{\text{rec}}:=\lim_{\epsilon\to 0}N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}) is a Gaussian random variable, where the limit is in the sense of convergence in distribution. This completes the proof of Theorem 3.1.

7.1. Finite-dimensional distributions. Proof of Theorem 3.2

Recall that the random vector Nϵrec\vec{N}_{\epsilon}^{\text{rec}} is defined in the paragraph preceding Theorem 3.2. Pick any vector θL\vec{\theta}\in\mathbb{R}^{L}. By (7.2)

(7.6) ζϵ:=θNϵrec=κϵ(yj,zk)𝒱[l=1Lθl(G(yj,kbj(l))+Rj,k(l))]ηj,k,bj(l):=xΨ(x0,yj)xˇl+(Ψ(x0,yj)/ϵ).\begin{split}\zeta_{\epsilon}:=\vec{\theta}\cdot\vec{N}_{\epsilon}^{\text{rec}}=&\kappa_{\epsilon}\sum_{(y_{j},z_{k})\in\mathcal{V}}\biggl{[}\sum_{l=1}^{L}\theta_{l}\big{(}G\big{(}y_{j},k-b_{j}^{(l)}\big{)}+R_{j,k}^{(l)}\big{)}\biggr{]}\eta_{j,k},\\ b_{j}^{(l)}:=&\partial_{x}\Psi(x_{0},y_{j})\cdot\check{x}_{l}+(\Psi(x_{0},y_{j})/\epsilon).\end{split}

To show that Nϵrec\vec{N}_{\epsilon}^{\text{rec}} converges in distribution to a Gaussian random vector, it suffices to show that for any θL0\vec{\theta}\in\mathbb{R}^{L}\setminus 0, limϵ0ζϵ\lim_{\epsilon\to 0}\zeta_{\epsilon} is a Gaussian random variable [4, Theorem 10.4.5]. The following result is proven in appendix E.

Lemma 7.3.

Suppose the assumptions of Theorem 3.2 are satisfied. With bj(l)b_{j}^{(l)} defined in (7.6) and κϵ\kappa_{\epsilon} defined in (7.2), one has

(7.7) limϵ0κϵ3(yj,zk)𝒱|l=1Lθl(G(yj,kbj(l))+Rj,k(l))|3𝔼|ηj,k|3[κϵ2(yj,zk)𝒱[l=1Lθl(G(yj,kbj(l))+Rj,k(l))]2𝔼ηj,k2]3/2=0.\lim_{\epsilon\to 0}\frac{\kappa_{\epsilon}^{3}\sum_{(y_{j},z_{k})\in\mathcal{V}}\lvert\sum_{l=1}^{L}\theta_{l}\big{(}G\big{(}y_{j},k-b_{j}^{(l)}\big{)}+R_{j,k}^{(l)}\big{)}\rvert^{3}\mathbb{E}\lvert\eta_{j,k}\rvert^{3}}{\big{[}\kappa_{\epsilon}^{2}\sum_{(y_{j},z_{k})\in\mathcal{V}}\big{[}\sum_{l=1}^{L}\theta_{l}\big{(}G\big{(}y_{j},k-b_{j}^{(l)}\big{)}+R_{j,k}^{(l)}\big{)}\big{]}^{2}\mathbb{E}\eta_{j,k}^{2}\big{]}^{3/2}}=0.

It follows from [4, Corollary 11.1.4] that ζ=limϵ0ζϵ\zeta=\lim_{\epsilon\to 0}\zeta_{\epsilon} is a Gaussian random variable. Hence, by [4, Theorem 10.4.5], limϵ0Nϵrec\lim_{\epsilon\to 0}\vec{N}_{\epsilon}^{\text{rec}} is a Gaussian random vector, where as before, the limit is in the sense of convergence in distribution. This completes the proof of Theorem 3.2.

8. Proof of Theorem 3.4

We use the following definition and theorem.

Definition 8.1 ([25, p. 189]).

Let n\mathbb{P}_{n} be the distribution of a CC-valued random variable XnX_{n}, 1n1\leq n\leq\infty. The collection (n)(\mathbb{P}_{n}) is tight if for all δ(0,1)\delta\in(0,1), there exists a compact set ΓδC\Gamma_{\delta}\in C such that supn(XnΓδ)δ\sup_{n}\mathbb{P}(X_{n}\not\in\Gamma_{\delta})\leq\delta.

Theorem 8.2 ([25, Proposition 3.3.1]).

Suppose Xn, 1nX_{n},\ 1\leq n\leq\infty, are CC-valued random variables. Then XnXX_{n}\to X_{\infty} weakly (i.e., the distribution of XnX_{n} converges to that of XX_{\infty}, see [25, p. 185]) provided that:

  1. (1)

    Finite dimensional distributions of XnX_{n} converge to that of XX_{\infty}.

  2. (2)

    (Xn)(X_{n}) is a tight sequence.

Theorem 3.2 asserts that all finite-dimension distributions of Nϵrec(x0+ϵxˇ)N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}) converge to that of the GRF Nrec(xˇ)N^{\text{rec}}(\check{x}). Thus it remains to verify property (2) of Theorem 8.2. To this end, we introduce the sets

(8.1) Γδ:={fC:fWM,2(D)21/δ}.\Gamma_{\delta}:=\{f\in C:\,\|f\|_{W^{M,2}(D)}^{2}\leq 1/\delta\}.

Recall that MM controls the smoothness of φ\varphi (see Assumption 2.6). Recall also that Wl,p(D)W^{l,p}(D) is the closure of C(D¯)C^{\infty}(\bar{D}) in the norm:

(8.2) fl,p:=(D|m|l|xmf(x)|pdx)1/p,fC(D¯).\|f\|_{l,p}:=\bigg{(}\int_{D}\sum_{|m|\leq l}|\partial_{x}^{m}f(x)|^{p}\text{d}x\bigg{)}^{1/p},\ f\in C^{\infty}(\bar{D}).

Since DD has a Lipschitz continuous boundary and M>n/2M>n/2, from [16, Theorem 7.26, p. 171] it follows that the imbedding WM,2(D)C(D¯)W^{M,2}(D)\hookrightarrow C(\bar{D}) is compact. Hence the set ΓδC\Gamma_{\delta}\subset C is compact for every δ>0\delta>0.

Adopting the argument (5.4)–(5.14) to the full symbol of 𝒜\mathcal{A} (which only requires replacing (5.11) with [1, Theorem 5.12]), it is easy to see that

(8.3) ϵγ|xˇmFϵ(x,y,z)|c(1+|zΨ(x,y)|/ϵ)(N+γ),x=x0+ϵxˇ,xˇD,(y,z)𝒱,m0n,|m|M.\begin{split}&\epsilon^{\gamma}|\partial_{\check{x}}^{m}F_{\epsilon}(x,y,z)|\leq c(1+|z-\Psi(x,y)|/\epsilon)^{-(N+\gamma)},\\ &x=x_{0}+\epsilon\check{x},\ \check{x}\in D,\ (y,z)\in\mathcal{V},\ m\in\mathbb{N}_{0}^{n},|m|\leq M.\end{split}

This calculation uses Assumption 2.3 and that the derivatives φ(m)(w)\varphi^{(m)}(w), |m|M|m|\leq M, where M>n/2M>n/2, are bounded. Therefore

(8.4) 𝔼(xˇmNϵrec(x0+ϵxˇ))2=ϵynN(yj,zk)𝒱[ϵγxˇmFϵ(x,yj,zk)]2σ2(yj,zk)cϵnN(yj,zk)𝒱[1+|k(Ψ(x0,yj)/ϵ)|]2(N+γ)c,xˇD.\begin{split}&\mathbb{E}(\partial_{\check{x}}^{m}N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}))^{2}\\ &=\epsilon_{y}^{n-N}\sum_{(y_{j},z_{k})\in\mathcal{V}}\big{[}\epsilon^{\gamma}\partial_{\check{x}}^{m}F_{\epsilon}(x,y_{j},z_{k})\big{]}^{2}\sigma^{2}(y_{j},z_{k})\\ &\leq c\epsilon^{n-N}\sum_{(y_{j},z_{k})\in\mathcal{V}}\big{[}1+|k-(\Psi(x_{0},y_{j})/\epsilon)|\big{]}^{-2(N+\gamma)}\leq c,\ \check{x}\in D.\end{split}

This implies that 𝔼Nϵrec(x0+ϵxˇ))WM,2(D)2c\mathbb{E}\|N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x}))\|_{W^{M,2}(D)}^{2}\leq c for all ϵ>0\epsilon>0. By the Chebyshev inequality,

(8.5) (Nϵrec(x0+ϵxˇ)Γδ)=(Nϵrec(x0+ϵxˇ)WM,2(D)21/δ)cδ.\mathbb{P}(N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})\not\in\Gamma_{\delta})=\mathbb{P}(\|N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})\|_{W^{M,2}(D)}^{2}\geq 1/\delta)\leq c\delta.

Therefore (Nϵrec(x0+ϵxˇ))(N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})), 0<ϵ10<\epsilon\ll 1, is a tight sequence.

By Theorem 8.2, Nϵrec(x0+ϵxˇ)Nrec(xˇ)N_{\epsilon}^{\text{rec}}(x_{0}+\epsilon\check{x})\to N^{\text{rec}}(\check{x}), xˇD¯\check{x}\in\bar{D}, in distribution as CC-valued random variables. Since CC is a complete metric space, it follows that NrecCN^{\text{rec}}\in C has continuous sample paths with probability 1.

By the linearity of the expectation, Nrec(xˇ)N^{\text{rec}}(\check{x}) is a zero mean GRF. To completely characterize this GRF, we calculate its covariance Cov(xˇ,yˇ)=limϵ0𝔼(Nϵrec(xˇ)Nϵrec(yˇ))\text{Cov}(\check{x},\check{y})=\lim_{\epsilon\to 0}\mathbb{E}(N_{\epsilon}^{\text{rec}}(\check{x})N_{\epsilon}^{\text{rec}}(\check{y})), xˇ,yˇD\check{x},\check{y}\in D. In fact, essentially this has already been done in the proof of Lemma 7.3: equation (E.3) implies (3.4).

9. Numerical experiments

For a numerical experiment we consider cone beam local tomography reconstruction, see subsection 4.2 and Figure 1. Recall that the detector coordinates are (u,v)2(u,v)\in\mathbb{R}^{2} and the source coordinate is s[0,2π)s\in[0,2\pi), see (4.5), (4.6). The data are given at the points:

(9.1) s=Δsj,u=ϵk1,v=ϵk2,j,k1,k2.s=\Delta sj,\ u=\epsilon k_{1},\ v=\epsilon k_{2},\ j,k_{1},k_{2}\in\mathbb{Z}.

To reconstruct an image we backproject the second derivative of the cone beam transform along detector rows (i.e., along uu). In the continuous case the reconstruction formula is as follows.

(9.2) fϵrec(x)=02πu2g(s,U(x,s),V(x,s))ds=02π2δ′′(U(x,s)u)δ(V(x,s)v)g(s,u,v)dudvds.\begin{split}f_{\epsilon}^{\text{rec}}(x)=&\int_{0}^{2\pi}\partial_{u}^{2}g(s,U(x,s),V(x,s))\text{d}s\\ =&\int_{0}^{2\pi}\iint_{\mathbb{R}^{2}}\delta^{\prime\prime}(U(x,s)-u)\delta(V(x,s)-v)g(s,u,v)\text{d}u\text{d}v\text{d}s.\end{split}

This is local tomography reconstruction [31, 35]. Representing the two delta-functions in terms of their Fourier transforms, we see that the complete symbol of the operator 𝒜\mathcal{A} coincides with its principal symbol and γ=2\gamma=2. Reconstruction from discrete data (consisting only of noise) is given by

(9.3) Nϵrec(x)=Δsϵ2j,kφ′′(U(x,s)ϵk1ϵ)φ(V(x,s)ϵk2ϵ)ηj,k.N_{\epsilon}^{\text{rec}}(x)=\frac{\Delta s}{\epsilon^{2}}\sum_{j,k}\varphi^{\prime\prime}\bigg{(}\frac{U(x,s)-\epsilon k_{1}}{\epsilon}\bigg{)}\varphi\bigg{(}\frac{V(x,s)-\epsilon k_{2}}{\epsilon}\bigg{)}\eta_{j,k}.

By (5.2),

(9.4) Fϵ(x,s,u,v)=2δ′′(U(x,s)u)δ(V(x,s)v)×φ((uu)/ϵ)φ((vv)/ϵ)dudv=1ϵ2φ′′(U(x,s)uϵ)φ(V(x,s)vϵ).\begin{split}F_{\epsilon}(x,s,u^{\prime},v^{\prime})=&\int_{\mathbb{R}^{2}}\delta^{\prime\prime}(U(x,s)-u)\delta(V(x,s)-v)\\ &\hskip 28.45274pt\times\varphi((u-u^{\prime})/\epsilon)\varphi((v-v^{\prime})/\epsilon)\text{d}u\text{d}v\\ =&\frac{1}{\epsilon^{2}}\varphi^{\prime\prime}\bigg{(}\frac{U(x,s)-u^{\prime}}{\epsilon}\bigg{)}\varphi\bigg{(}\frac{V(x,s)-v^{\prime}}{\epsilon}\bigg{)}.\end{split}

The function Φ\Phi is linear in (u,v)(u,v) (cf. (4.8)) and the symbol of 𝒜\mathcal{A} is independent of (u,v)(u,v), hence F¯ϵFϵ\bar{F}_{\epsilon}\equiv F_{\epsilon}. Then, by (5.22), G(ϑ)=φ′′(ϑ1)φ(ϑ2)G(\vartheta)=\varphi^{\prime\prime}(\vartheta_{1})\varphi(\vartheta_{2}). Note that GG does not depend on xx and ss. From (3.4),

(9.5) (GG)(ϑ)=φ′′(ϑ1+r1)φ′′(r1)dr1φ(ϑ2+r2)φ(r2)dr2.(G\star G)(\vartheta)=\int_{\mathbb{R}}\varphi^{\prime\prime}(\vartheta_{1}+r_{1})\varphi^{\prime\prime}(r_{1})\text{d}r_{1}\int_{\mathbb{R}}\varphi(\vartheta_{2}+r_{2})\varphi(r_{2})\text{d}r_{2}.

Finally, the covariance function is given by (cf. (3.4))

(9.6) C(ϑ)=02π(GG)(x(U(x0,s),V(x0,s))ϑ)σ2(s,U(x0,s),V(x0,s))ds,C(\vartheta)=\int_{0}^{2\pi}(G\star G)\big{(}\partial_{x}(U(x_{0},s),V(x_{0},s))\vartheta\big{)}\sigma^{2}(s,U(x_{0},s),V(x_{0},s))\text{d}s,

where ϑ=xˇ1xˇ2\vartheta=\check{x}_{1}-\check{x}_{2}. The derivatives xU(x0,s)\partial_{x}U(x_{0},s) and xV(x0,s)\partial_{x}V(x_{0},s) are computed explicitly using (4.7).

Next we describe a numerical experiment to verify the obtained results, namely Theorem 3.4. The center of a local patch and two nearby points xk=x0+ϵxˇkx_{k}=x_{0}+\epsilon\check{x}_{k}, k=1,2k=1,2 are selected as follows:

(9.7) x0=(2.7,3.1,0.8),xˇ1=(2.159,3.075,0.418),xˇ2=(2.546,2.974,0.983).\begin{split}&x_{0}=(2.7,-3.1,0.8),\\ &\check{x}_{1}=(2.159,3.075,-0.418),\ \check{x}_{2}=(2.546,-2.974,0.983).\end{split}

The radius of the source trajectory is R=10R=10 (see (4.5)). The values of ηj,k\eta_{j,k} are computed by the formula:

(9.8) ηj,k=(ϵ2/Δs)h(sj,uk1,vk2)νj,k,h(s,u,v)=(1+0.5sin(2s))(10.4cosu)(1+0.6sinv),\begin{split}\eta_{j,k}=&(\epsilon^{2}/\Delta s)h(s_{j},u_{k_{1}},v_{k_{2}})\nu_{j,k},\\ h(s,u,v)=&(1+0.5\sin(2s))(1-0.4\cos u)(1+0.6\sin v),\end{split}

and νj,k\nu_{j,k} are i.i.d. random variables drawn from the uniform distribution on [1,1][-1,1]. Comparing with (2.10), we see that (ϵ2/Δs)2=ϵ2γ/ΔsnN(\epsilon^{2}/\Delta s)^{2}=\epsilon^{2\gamma}/\Delta s^{n-N} (because ϵy=Δs\epsilon_{y}=\Delta s, γ=2\gamma=2 and nN=2n-N=2) and σ2(s,u,v)=(1/3)h2(s,u,v)\sigma^{2}(s,u,v)=(1/3)h^{2}(s,u,v). In the experiment, 21042\cdot 10^{4} realizations of noisy sinograms, i.e. the sets {ηj,k}\{\eta_{j,k}\}, have been used. We set

(9.9) Δs=2π/500,ϵ=Δu=Δv=0.05.\Delta s=2\pi/500,\ \epsilon=\Delta u=\Delta v=0.05.

The kernel function φ\varphi is obtained by convolving the interpolation kernel (1|s|)+(1-|s|)_{+} and the smoothing kernel cl(1(s/a)2)+lc_{l}(1-(s/a)^{2})_{+}^{l}:

(9.10) φ(t)=(2l+1)!!2a(2l)!!11(1|s|)[1((ts)/a)2]+lds,a=2.5,l=3.\varphi(t)=\frac{(2l+1)!!}{2a(2l)!!}\int_{-1}^{1}(1-|s|)\big{[}1-((t-s)/a)^{2}\big{]}_{+}^{l}\text{d}s,\ a=2.5,\ l=3.

Let us summarize the results of the experiment. At x0x_{0}, the sample variance is 0.488 and predicted variance is 0.485. The latter is obtained using (9.6) with ϑ=0\vartheta=0. The observed probability density function (PDF), i.e., the normalized histogram, and predicted PDF are shown in Figure 4. The histogram is computed using 21 bins. The predicted PDF, which is a Gaussian with zero mean and variance 0.485, is computed by evaluating the Gaussian density at the center of each bin. The relative mismatch between the observed and predicted discretized PDFs (denoted PoP_{o} and PpP_{p}, respectively) is found to be PoPp1/Pp1=0.021\|P_{o}-P_{p}\|_{1}/\|P_{p}\|_{1}=0.021. Here and below, 1\|\cdot\|_{1} denotes the appropriate discrete l1l^{1} norm (the sum of absolute values of the entries of a vector or matrix).

Refer to caption

Figure 4. Observed PDF and predicted PDF for the random variable Nϵrec(xˇ=0)N_{\epsilon}^{\text{rec}}(\check{x}=0) (i.e., at x0x_{0} in the original coordinates). The xx-axis represents the values of the random variable.

Next we test the accuracy of our two-point estimates. For the two points xˇ1\check{x}_{1} and xˇ2\check{x}_{2} in (9.7), the observed and predicted covariances and the relative error between them are found to be

(9.11) Covo=(0.4790.0130.0130.458),Covp=(0.4850.0110.0110.485),CovoCovp1/Covp1=0.035.\begin{split}&\text{Cov}_{o}=\begin{pmatrix}0.479&0.013\\ 0.013&0.458\end{pmatrix},\ \text{Cov}_{p}=\begin{pmatrix}0.485&0.011\\ 0.011&0.485\end{pmatrix},\\ &\|\text{Cov}_{o}-\text{Cov}_{p}\|_{1}/\|\text{Cov}_{p}\|_{1}=0.035.\end{split}

The diagonal entries of the covariance matrix Covp\text{Cov}_{p} are equal C(0)C(0), and off-diagonal elements are equal C(xˇ1xˇ2)C(\check{x}_{1}-\check{x}_{2}). The observed 2D PDF and predicted 2D PDF are shown in Figure 5. The histogram is computed using 21×2121\times 21 bins. The predicted PDF is computed by evaluating the predicted Gaussian density at the center of each bin. The relative mismatch between the observed and predicted discretized PDFs is found to be PoPp1/Pp1=0.079\|P_{o}-P_{p}\|_{1}/\|P_{p}\|_{1}=0.079, which is quite small as well.

Refer to caption Refer to caption Refer to caption

Figure 5. Observed PDF (left), predicted PDF (center), and their difference (right) for the random vector (Nϵrec(xˇ1),Nϵrec(xˇ2))(N_{\epsilon}^{\text{rec}}(\check{x}_{1}),N_{\epsilon}^{\text{rec}}(\check{x}_{2})). The display range is [-2E-5,1.7E-4] for all three figures. The horizontal and vertical axes represent the values of Nϵrec(xˇ1)N_{\epsilon}^{\text{rec}}(\check{x}_{1}) and Nϵrec(xˇ2)N_{\epsilon}^{\text{rec}}(\check{x}_{2}), respectively.

Appendix A Proofs of two auxiliary results

A.1. Proof of (5.17)

By (5.6) and (5.15), we have to estimate the quantity

(A.1) J:=(2π)NNWϵ(u,z)Δa1(u,ϵwˇ,ξ^)φ(z(ϵwˇ,u)zϵ)eiξ^wˇdwˇdξ^,Δa1(u,w,ξ^):=a1(u,z(w,u),ξ^)a1(u,Ψ(u),ξ^),(u,z)Λ.\begin{split}&J:=(2\pi)^{-N}\int_{\mathbb{R}^{N}}\int_{W_{\epsilon}(u,z^{\prime})}\Delta a_{1}(u,\epsilon\check{w},\hat{\xi})\varphi\bigg{(}\frac{z(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}e^{i\hat{\xi}\cdot\check{w}}\text{d}\check{w}\text{d}\hat{\xi},\\ &\Delta a_{1}(u,w,\hat{\xi}):=a_{1}(u,z(w,u),\hat{\xi})-a_{1}(u,\Psi(u),\hat{\xi}),\ (u,z^{\prime})\in\Lambda.\end{split}

Suppose |vˇ|c|\check{v}|\leq c. By (5.16) and using Assumption 2.3(2) and Assumption 2.6, the analog of (5.8) becomes

(A.2) |Hϵ(u,z,ξ^)|cϵ(1+|ξ^|)γM1,ξ^N.\begin{split}|H_{\epsilon}(u,z^{\prime},\hat{\xi})|\leq&c\epsilon(1+|\hat{\xi}|)^{\gamma-M_{1}},\ \hat{\xi}\in\mathbb{R}^{N}.\end{split}

Similarly to (5.7), integration by parts to prove (A.2) involves wˇ\partial_{\check{w}} rather than w\partial_{w}. Integrating with respect to ξ^\hat{\xi} gives |J|cϵ|J|\leq c\epsilon.

If |vˇ|c|\check{v}|\geq c, (5.12) implies

(A.3) J=Wϵ(u,z)[A1(u,z,wˇ)A1(u,Ψ(u),wˇ)]φ(z(ϵwˇ,u)zϵ)dwˇ.J=\int_{W_{\epsilon}(u,z^{\prime})}\big{[}A_{1}(u,z^{\prime},\check{w})-A_{1}(u,\Psi(u),\check{w})\big{]}\varphi\bigg{(}\frac{z(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}\text{d}\check{w}.

By Assumption 2.3(2), the kernel A1A_{1} depends smoothly on zz^{\prime}. Therefore (5.11) yields:

(A.4) |J|cϵ|vˇ|(1+|vˇ|)(N+γ) if |vˇ|c.\begin{split}|J|\leq c\epsilon|\check{v}|(1+|\check{v}|)^{-(N+\gamma)}\text{ if }|\check{v}|\geq c.\end{split}

The desired assertion (5.17) now follows.

A.2. Proof of (5.20)

We need to estimate the quantity

(A.5) J:=(2π)NNΔHϵ(u,z,ξ^)dξ^,(u,z)Λ,ΔHϵ(u,z,ξ^):=Na1(u,Ψ(u),ξ^)×[φ(z(ϵwˇ,u)zϵ)φ(z¯(ϵwˇ,u)zϵ)]eiξ^wˇdwˇ.\begin{split}J:=&(2\pi)^{-N}\int_{\mathbb{R}^{N}}\Delta H_{\epsilon}(u,z^{\prime},\hat{\xi})\text{d}\hat{\xi},\ (u,z^{\prime})\in\Lambda,\\ \Delta H_{\epsilon}(u,z^{\prime},\hat{\xi}):=&\int_{\mathbb{R}^{N}}a_{1}(u,\Psi(u),\hat{\xi})\\ &\times\bigg{[}\varphi\bigg{(}\frac{z(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}-\varphi\bigg{(}\frac{\bar{z}(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}\bigg{]}e^{i\hat{\xi}\cdot\check{w}}\text{d}\check{w}.\end{split}

Using (5.19) and Assumptions 2.3(2) and 2.6, the analogs of (5.7) and (5.8) become

(A.6) |ΔHϵ(u,z,ξ^)|c(1+|ξ^|)γM1|wˇ|c[min(1,ϵ|wˇ|2)+ϵ|wˇ|]dwˇcϵ(1+|ξ^|)γM1,ξ^N,|vˇ|c.\begin{split}|\Delta H_{\epsilon}(u,z^{\prime},\hat{\xi})|\leq&c(1+|\hat{\xi}|)^{\gamma-M_{1}}\int_{|\check{w}|\leq c}\big{[}\min(1,\epsilon|\check{w}|^{2})+\epsilon|\check{w}|\big{]}\text{d}\check{w}\\ \leq&c\epsilon(1+|\hat{\xi}|)^{\gamma-M_{1}},\ \hat{\xi}\in\mathbb{R}^{N},|\check{v}|\leq c.\end{split}

Integrating with respect to ξ^\hat{\xi} gives |J|cϵ|J|\leq c\epsilon, |vˇ|c|\check{v}|\leq c. As before, we need φC0M1+1(N)\varphi\in C_{0}^{M_{1}+1}(\mathbb{R}^{N}) for this to work. Suppose now |vˇ|c|\check{v}|\geq c. Similarly to (A.3),

(A.7) J=nA1(u,Ψ(u),wˇ)[φ(z(ϵwˇ,u)zϵ)φ(z¯(ϵwˇ,u)zϵ)]dwˇ.J=\int_{\mathbb{R}^{n}}A_{1}(u,\Psi(u),\check{w})\bigg{[}\varphi\bigg{(}\frac{z(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}-\varphi\bigg{(}\frac{\bar{z}(\epsilon\check{w},u)-z^{\prime}}{\epsilon}\bigg{)}\bigg{]}\text{d}\check{w}.

By (5.19), the analog of (5.13) becomes

(A.8) |J|c[min(1,ϵ|vˇ|2)+ϵ|vˇ|](1+|vˇ|)(N+γ) if |vˇ|c.\begin{split}|J|\leq c\big{[}\min(1,\epsilon|\check{v}|^{2})+\epsilon|\check{v}|\big{]}(1+|\check{v}|)^{-(N+\gamma)}\text{ if }|\check{v}|\geq c.\end{split}

Even though the integrals (A.5) and (A.7) involve φ\varphi of two different arguments, the domain of integration of each of them has the same key properties as Wϵ(u,z)W_{\epsilon}(u,z^{\prime}): it is a uniformly bounded set, it is confined to a ball |wˇ|c|\check{w}|\leq c if |vˇ|c|\check{v}|\leq c, and it is a subset of {wˇN:|wˇ|c|vˇ|}\{\check{w}\in\mathbb{R}^{N}:|\check{w}|\geq c|\check{v}|\} if |vˇ|c|\check{v}|\geq c.

The desired assertion (5.20) now follows.

Appendix B Proof of Lemma 7.1

Since x0x_{0} is fixed, in this and the remaining appendices we omit x0x_{0} from most notations.

Let d0(ξ)d_{0}(\xi) be the upper box-counting dimension of Y1(ξ)Y_{1}(\xi), see Definition 2.7 and (2.15). Then Y1(ξ)Y_{1}(\xi) can be covered by no more than (1/δ1)d(1/\delta_{1})^{d} (hyper)cubes knN\mathcal{B}_{k}\subset\mathbb{R}^{n-N} with side length δ1\delta_{1} for any d>d0(ξ)d>d_{0}(\xi) and δ1>0\delta_{1}>0 sufficiently small. Replace each k\mathcal{B}_{k} with a (slightly) larger open cube k(1)\mathcal{B}_{k}^{(1)} (say, twice the volume), which has the same center and orientation as k\mathcal{B}_{k}. The sum of their (nN)(n-N)-dimensional volumes satisfies

kVol(k(1))cδ1(nN)d0,δ10,\sum_{k}\text{Vol}(\mathcal{B}_{k}^{(1)})\leq c\delta_{1}^{(n-N)-d}\to 0,\ \delta_{1}\to 0,

because we can take d0(ξ)<d<nNd_{0}(\xi)<d<n-N. Find δ1>0\delta_{1}>0 so that kVol(k)δ/2\sum_{k}\text{Vol}(\mathcal{B}_{k}^{\prime})\leq\delta/2. By construction, the interior of kk(1)\cup_{k}\mathcal{B}_{k}^{(1)} is a neighborhood of Y1(ξ)Y_{1}(\xi).

Pick any unNu\in\mathbb{Z}^{n-N} and ξN0\xi\in\mathbb{R}^{N}\setminus 0. By construction, det(y2(ξΨ))\text{det}(\partial_{y}^{2}(\xi\cdot\Psi)) is bounded away from zero on the set 𝒴(kk(1))\mathcal{Y}\setminus(\cup_{k}\mathcal{B}_{k}^{(1)}). Therefore, there are finitely many solutions to the equation y(ξΨ(y))=u\partial_{y}(\xi\cdot\Psi(y))=u in 𝒴(kk(1))\mathcal{Y}\setminus(\cup_{k}\mathcal{B}_{k}^{(1)}). Cover these solutions by finitely many sufficiently small open cubes k(2)\mathcal{B}_{k}^{(2)}, which satisfy kVol(k(2))δ/2\sum_{k}\text{Vol}(\mathcal{B}_{k}^{(2)})\leq\delta/2. Let \mathcal{B} denote the union of all the cubes k(1)\mathcal{B}_{k}^{(1)}, k(2)\mathcal{B}_{k}^{(2)}. By construction, the interior of \mathcal{B} is a neighborhood of the set of solutions to y(ξΨ(y))=u\partial_{y}(\xi\cdot\Psi(y))=u, y𝒴y\in\mathcal{Y}. Therefore,

(B.1) kVol(k(1))+kVol(k(2))δ,infy𝒴|y(ξΨ(y))u|=:p>0,\sum_{k}\text{Vol}(\mathcal{B}_{k}^{(1)})+\sum_{k}\text{Vol}(\mathcal{B}_{k}^{(2)})\leq\delta,\ \inf_{y\in\mathcal{Y}\setminus\mathcal{B}}|\partial_{y}(\xi\cdot\Psi(y))-u|=:p>0,

and the lemma is proven.

Appendix C Proof of Lemma 7.2

Let DϵD_{\epsilon} be the expression in brackets in the denominator in (7.5). By (2.10),

(C.1) κϵ2zk𝒵|(G(yj,kbj)+Rj,k)2G2(yj,kbj)|𝔼ηj,k2cϵnNzk𝒵[Rj,k2+|G(yj,kbj)||Rj,k|].\begin{split}&\kappa_{\epsilon}^{2}\sum_{z_{k}\in\mathcal{Z}}\big{|}(G(y_{j},k-b_{j})+R_{j,k})^{2}-G^{2}(y_{j},k-b_{j})\big{|}\mathbb{E}\eta_{j,k}^{2}\\ &\leq c\epsilon^{n-N}\sum_{z_{k}\in\mathcal{Z}}\big{[}R_{j,k}^{2}+|G(y_{j},k-b_{j})||R_{j,k}|\big{]}.\end{split}

See (7.2) for the definitions of κϵ\kappa_{\epsilon} and bjb_{j}. Using (5.23) and (7.3), straightforward calculations shows that

(C.2) zk𝒵Rj,k2cϵδ,zk𝒵|G(yj,kbj)||Rj,k|cϵδ\begin{split}\sum_{z_{k}\in\mathcal{Z}}R_{j,k}^{2}\leq c\epsilon^{\delta},\ \sum_{z_{k}\in\mathcal{Z}}|G(y_{j},k-b_{j})||R_{j,k}|\leq c\epsilon^{\delta}\end{split}

for some δ>0\delta>0 as long as γ>N/2\gamma>-N/2. Therefore, by (2.10)

(C.3) Dϵ=ϵynN(yj,zk)𝒱G2(yj,kbj)σ2(yj,zk)+O(ϵδ).D_{\epsilon}=\epsilon_{y}^{n-N}\sum_{(y_{j},z_{k})\in\mathcal{V}}G^{2}(y_{j},k-b_{j})\sigma^{2}(y_{j},z_{k})+O(\epsilon^{\delta}).

Define

(C.4) ψ(y,r):=kNG2(y,kr),y𝒴,rN.\begin{split}\psi(y,r):=&\sum_{k\in\mathbb{Z}^{N}}G^{2}(y,k-r),\ y\in\mathcal{Y},r\in\mathbb{R}^{N}.\end{split}

By (5.23) the series is absolutely convergent. It is easy to see that

(C.5) ψ(y,r+m)=ψ(y,r),y𝒴,rN,mN.\displaystyle\psi(y,r+m)=\psi(y,r),\ y\in\mathcal{Y},r\in\mathbb{R}^{N},m\in\mathbb{Z}^{N}.

Replace zkz_{k} with Ψ(yj)\Psi(y_{j}) in the arguments of σ2\sigma^{2} in (C.3) to obtain

(C.6) Dϵ=ϵynNyj𝒴ψ(yj,bj)σ2(yj,Ψ(yj))+O(ϵδ).D_{\epsilon}=\epsilon_{y}^{n-N}\sum_{y_{j}\in\mathcal{Y}}\psi(y_{j},b_{j})\sigma^{2}(y_{j},\Psi(y_{j}))+O(\epsilon^{\delta}).

Indeed, consider the sum with respect to kk. By the definition of bjb_{j} in (7.2) we have zkΨ(yj)=ϵ(kbj+O(1))z_{k}-\Psi(y_{j})=\epsilon(k-b_{j}+O(1)). By (5.23) and Lipschitz continuity of σ\sigma:

(C.7) |k|O(1/ϵ)G2(y,kbj)|σ2(y,ϵk)σ2(y,Ψ(yj))|c|k|O(1/ϵ)ϵ(1+|kbj|)(1+|kbj|)2(N+γ)=O(ϵa)0,\begin{split}&\sum_{|k|\leq O(1/\epsilon)}G^{2}(y,k-b_{j})|\sigma^{2}(y,\epsilon k)-\sigma^{2}(y,\Psi(y_{j}))|\\ &\leq c\sum_{|k|\leq O(1/\epsilon)}\epsilon(1+|k-b_{j}|)(1+|k-b_{j}|)^{-2(N+\gamma)}=O(\epsilon^{a})\to 0,\end{split}

where a=min(1,2γ+N)a=\min(1,2\gamma+N). The assumption γ>N/2\gamma>-N/2 implies a>0a>0. Summing over yj𝒴y_{j}\in\mathcal{Y} and accounting for the factor ϵynN\epsilon_{y}^{n-N} proves the claim.

Using arguments similar to [20], we prove in Section D the following result

(C.8) limϵ0Dϵ\displaystyle\lim_{\epsilon\to 0}D_{\epsilon} =𝒴([0,1]Nψ(y,r)dr)σ2(y,Ψ(y))dy.\displaystyle=\int_{\mathcal{Y}}\bigg{(}\int_{[0,1]^{N}}\psi(y,r)\text{d}r\bigg{)}\sigma^{2}(y,\Psi(y))\text{d}y.

Furthermore,

(C.9) [0,1]Nψ(y,r)dr=kN[0,1]NG2(y,kr)dr=NG2(y,r)dr=:H(y).\begin{split}\int_{[0,1]^{N}}\psi(y,r)\text{d}r&=\sum_{k\in\mathbb{Z}^{N}}\int_{[0,1]^{N}}G^{2}(y,k-r)\text{d}r\\ &=\int_{\mathbb{R}^{N}}G^{2}(y,r)\text{d}r=:H(y).\end{split}

By Parseval’s theorem and (5.22),

(C.10) NG2(y,r)dr=(2π)NN|G~(y,μ^)|2dμ^=(2π)NN|a2(y,μ^)φ~(μ^)|2dμ^,\begin{split}\int_{\mathbb{R}^{N}}G^{2}(y,r)\text{d}r=&(2\pi)^{-N}\int_{\mathbb{R}^{N}}\big{|}\tilde{G}(y,\hat{\mu})\big{|}^{2}\text{d}\hat{\mu}\\ =&(2\pi)^{-N}\int_{\mathbb{R}^{N}}|a_{2}(y,\hat{\mu})\tilde{\varphi}(\hat{\mu})|^{2}\text{d}\hat{\mu},\end{split}

where G~(y,μ^)\tilde{G}(y,\hat{\mu}) denotes the NN-dimensional Fourier transform of G(y,r)G(y,r) with respect to rr. Returning the dependence on x0x_{0}, we get using Assumption 2.8(2)

(C.11) limϵ0Dϵ=𝒴H(x0,y)σ2(y,Ψ(x0,y))dy>0.\displaystyle\lim_{\epsilon\to 0}D_{\epsilon}=\int_{\mathcal{Y}}H(x_{0},y)\sigma^{2}(y,\Psi(x_{0},y))\text{d}y>0.

Consider now the numerator in (7.5). Using (2.10), (5.23), and (7.3), we obtain after simple calculations:

(C.12) κϵ3zk𝒵|G(yj,kbj)+Rj,k|3𝔼|ηj,k|3=o(ϵnN),\kappa_{\epsilon}^{3}\sum_{z_{k}\in\mathcal{Z}}\lvert G(y_{j},k-b_{j})+R_{j,k}\rvert^{3}\mathbb{E}\lvert\eta_{j,k}\rvert^{3}=o(\epsilon^{n-N}),

where the small-oo is uniform with respect to jj. Then the numerator in (7.5) is bounded by

(C.13) yj𝒴o(ϵnN)=o(1).\displaystyle\sum_{y_{j}\in\mathcal{Y}}o(\epsilon^{n-N})=o(1).

Together with (C.11) this proves Lemma 7.2.

Appendix D Proof of (C.8)

Let DϵD_{\epsilon}^{\prime} denote the first term on the right in (C.6). We can write DϵD_{\epsilon}^{\prime} in the following form

(D.1) Dϵ=ϵynNyj𝒴g(yj,xΨ(yj)xˇ+(Ψ(yj)/ϵ)),g(y,r):=ψ(y,r)σ2(y,Ψ(y)),\begin{split}&D_{\epsilon}^{\prime}=\epsilon_{y}^{n-N}\sum_{y_{j}\in\mathcal{Y}}g\big{(}y_{j},\partial_{x}\Psi(y_{j})\cdot\check{x}+(\Psi(y_{j})/\epsilon)\big{)},\\ &g(y,r):=\psi(y,r)\sigma^{2}(y,\Psi(y)),\end{split}

cf. the definition of bjb_{j} in (7.2). By (C.5), g(y,r)=g(y,r+m)g(y,r)=g(y,r+m) for any y𝒴,rNy\in\mathcal{Y},r\in\mathbb{R}^{N}, and mNm\in\mathbb{Z}^{N}.

The proof of (C.8) is done in two steps. In section D.1 we prove several auxiliary results related to the uniform distribution property of a collection of points. The final calculation of the limit then follows easily and this is done in section D.2.

D.1. Step I: using the uniform distribution property

Given two vectors a,bNa,b\in\mathbb{R}^{N} such that al<bla_{l}<b_{l}, 1lN1\leq l\leq N, we define the hyperrectangle [a,b]:=[a1,b1]××[aN,bN][a,b]:=[a_{1},b_{1}]\times\dots\times[a_{N},b_{N}]. Recall that e(t)=exp(2πit)e(t)=\exp(2\pi it), tt\in\mathbb{R}.

Theorem D.1.

Let UnNU\subset\mathbb{R}^{n-N} be a bounded domain and gC2(N)g\in C^{2}(\mathbb{R}^{N}) be a function, which satisfies g(r)=g(r+m)g(r)=g(r+m) for any rNr\in\mathbb{R}^{N} and mNm\in\mathbb{Z}^{N}. Suppose the points vj(ϵ)Nv_{j}(\epsilon)\in\mathbb{R}^{N}, jnNj\in\mathbb{Z}^{n-N}, ϵjU\epsilon j\in U, 0<ϵ10<\epsilon\ll 1, have the property

(D.2) limϵ0ϵNϵjUe(mvj(ϵ))=0\lim_{\epsilon\to 0}\epsilon^{N}\sum_{\epsilon j\in U}e(m\cdot v_{j}(\epsilon))=0

for any mN0m\in\mathbb{Z}^{N}\setminus 0. Then

(D.3) limϵ0ϵNϵjUg(vj(ϵ))=|U|[0,1]Ng(r)dr.\lim_{\epsilon\to 0}\epsilon^{N}\sum_{\epsilon j\in U}g(v_{j}(\epsilon))=|U|\int_{[0,1]^{N}}g(r)\text{d}r.

Theorem D.1 is well-known in the literature (see [29, Theorems 6.1, 6.2]). Usually such a result is proven for a sequence of points vjv_{j}, j1j\geq 1. We modify the statement to allow for the points in the sequence, vj(ϵ)v_{j}(\epsilon), to depend on ϵ>0\epsilon>0. Nevertheless, the proof in this slightly more general case is the same and based on expanding gg in the Fourier series.

Let r\langle r\rangle denote the distance from rr\in\mathbb{R} to the nearest integer. We also denote fl:=ylf(y)f_{l}^{\prime}:=\partial_{y_{l}}f(y), the partial derivative of ff with respect to the ll-th coordinate of yy.

Lemma D.2.

Given a hyperrectangle [a,b]N[a,b]\subset\mathbb{R}^{N}, consider a real-valued fC2([a,b])f\in C^{2}([a,b]) such that

(D.4) fl(y)δ,y[a,b],\langle f_{l}^{\prime}(y)\rangle\geq\delta,\ y\in[a,b],

for some δ>0\delta>0 and for some l=l0l=l_{0}, 1l0N1\leq l_{0}\leq N. Then

(D.5) Iϵ:=ϵNϵj[a,b]e(f(ϵj)/ϵ)=O(ϵ1/3),ϵ0.I_{\epsilon}:=\epsilon^{N}\sum_{\epsilon j\in[a,b]}e(f(\epsilon j)/\epsilon)=O(\epsilon^{1/3}),\ \epsilon\to 0.
Proof.

Partition [a,b][a,b] into hypercubes with side length ϵ2/3\epsilon^{2/3}:

(D.6) Δk:=[yk,yk+1],yk:=a+kϵ2/3,k=(k1,,kN), 0kl<(blal)ϵ2/3,\begin{split}&\Delta_{k}:=[y_{k},y_{k+\vec{1}}],\ y_{k}:=a+k\epsilon^{2/3},\\ &k=(k_{1},\dots,k_{N}),\ 0\leq k_{l}<(b_{l}-a_{l})\epsilon^{-2/3},\end{split}

where 1:=(1,,1)N\vec{1}:=(1,\dots,1)\in\mathbb{R}^{N}. To clarify, ykNy_{k}\in\mathbb{R}^{N} are points, and the ll-th coordinate of yky_{k} is denoted yk,ly_{k,l}. First, we show that

(D.7) Iϵ(k):=ϵN/3|ϵjΔke(f(ϵj)ϵ)ϵjΔke(f(yk)+f(yk)(ϵjyk)ϵ)|0,ϵ0,Δk[a,b].\begin{split}I_{\epsilon}(k):&=\epsilon^{N/3}\bigg{|}\sum_{\epsilon j\in\Delta_{k}}e\left(\frac{f(\epsilon j)}{\epsilon}\right)-\sum_{\epsilon j\in\Delta_{k}}e\left(\frac{f(y_{k})+f^{\prime}(y_{k})(\epsilon j-y_{k})}{\epsilon}\right)\bigg{|}\to 0,\\ \epsilon&\to 0,\ \Delta_{k}\subset[a,b].\end{split}

Since

(D.8) f(ϵj)=f(yk)+f(yk)(ϵjyk)+O(ϵ4/3),ϵjΔk[a,b],f(\epsilon j)=f(y_{k})+f^{\prime}(y_{k})(\epsilon j-y_{k})+O(\epsilon^{4/3}),\ \epsilon j\in\Delta_{k}\subset[a,b],

it follows from (D.7)

(D.9) Iϵ(k)ϵN/3ϵjΔk|e(O(ϵ1/3))1|=O(ϵ1/3),Δk[a,b].I_{\epsilon}(k)\leq\epsilon^{N/3}\sum_{\epsilon j\in\Delta_{k}}\left|e\big{(}O\big{(}\epsilon^{1/3}\big{)}\big{)}-1\right|=O\big{(}\epsilon^{1/3}\big{)},\ \Delta_{k}\subset[a,b].

The big-OO terms in (D.8), (D.9) are uniform in kk since maxy[a,b]y2f(y)<\max_{y\in[a,b]}\|\partial_{y}^{2}f(y)\|<\infty. Here \|\cdot\| denotes any matrix norm.

To prove (D.5), partition the sum and use (D.7), (D.9) to obtain the estimate:

(D.10) |Iϵ|ϵNk|ϵjΔke(f(yk)+f(yk)(ϵjyk)ϵ)|+O(ϵ1/3)=ϵ2N/3kl=1N|ϵ1/3ϵjl[yk,l,yk+1,l]e(fl(yk)jl)|+O(ϵ1/3).\begin{split}|I_{\epsilon}|&\leq\epsilon^{N}\sum_{k}\bigg{|}\sum_{\epsilon j\in\Delta_{k}}e\left(\frac{f(y_{k})+f^{\prime}(y_{k})(\epsilon j-y_{k})}{\epsilon}\right)\bigg{|}+O\big{(}\epsilon^{1/3}\big{)}\\ &=\epsilon^{2N/3}\sum_{k}\prod_{l=1}^{N}\bigg{|}\epsilon^{1/3}\sum_{\epsilon j_{l}\in[y_{k,l},y_{k+1,l}]}e\big{(}f_{l}^{\prime}(y_{k})j_{l}\big{)}\bigg{|}+O\big{(}\epsilon^{1/3}\big{)}.\end{split}

Here and below

(D.11) k:=k1=0(b1a1)ϵ2/31kN=0(bNaN)ϵ2/31.\sum_{k}:=\sum_{k_{1}=0}^{(b_{1}-a_{1})\epsilon^{-2/3}-1}\dots\sum_{k_{N}=0}^{(b_{N}-a_{N})\epsilon^{-2/3}-1}.

Next, we use the inequality

(D.12) |n=1Je(rn)|min(J,(2r)1).\bigg{|}\sum_{n=1}^{J}e(rn)\bigg{|}\leq\min\big{(}J,(2\langle r\rangle)^{-1}\big{)}.

By (D.4), fl(yk)δ\langle f_{l}^{\prime}(y_{k})\rangle\geq\delta, l=l0l=l_{0}. Using (D.12) in (D.10) with

(D.13) r=fl(yk),J=O(ϵ1/3),l=l0,r=f_{l}^{\prime}(y_{k}),\ J=O(\epsilon^{-1/3}),\ l=l_{0},

gives

(D.14) ϵ1/3|ϵjl[yk,l,yk+1,l]e(fl(yk)jl)|cmin(1,ϵ1/3/(2δ)),l=l0.\epsilon^{1/3}\bigg{|}\sum_{\epsilon j_{l}\in[y_{k,l},y_{k+1,l}]}e\big{(}f_{l}^{\prime}(y_{k})j_{l}\big{)}\bigg{|}\leq c\min\big{(}1,\epsilon^{1/3}/(2\delta)\big{)},\ l=l_{0}.

Recall that yk,ly_{k,l} is the ll-th coordinate of yky_{k}. Multiply both sides of (D.14) with all the remaining factors (ll0l\not=l_{0}) in (D.10), use that all these factors are bounded, sum the resulting inequalities over kk as in (D.11), and multiply by ϵ2N/3\epsilon^{2N/3}. This gives the same upper bound as in (D.14). Hence Iϵ=O(ϵ1/3)I_{\epsilon}=O(\epsilon^{1/3}) and the lemma is proven. ∎

Corollary D.3.

Given a bounded domain UNU\subset\mathbb{R}^{N}, pick a real-valued fC2(U)f\in C^{2}(U). Suppose for every uNu\in\mathbb{Z}^{N} and every δ>0\delta>0 sufficiently small, there exist p>0p>0 and a finite collection of cubes ln\mathcal{B}_{l}\subset\mathbb{R}^{n} such that

(D.15) {yU:|f(y)u|p}ll,lVol(l)δ.\begin{split}&\{y\in U:\,|f^{\prime}(y)-u|\leq p\}\subset\cup_{l}\mathcal{B}_{l},\ \sum_{l}\text{Vol}(\mathcal{B}_{l})\leq\delta.\end{split}

Then

(D.16) ϵNϵjUe(f(ϵj)/ϵ)0,ϵ0.\epsilon^{N}\sum_{\epsilon j\in U}e(f(\epsilon j)/\epsilon)\to 0,\ \epsilon\to 0.
Proof.

Pick δ>0\delta>0 arbitrarily small. Since the set f(y)f^{\prime}(y), yUy\in U, is bounded, there are finitely many uNf(U)u\in\mathbb{Z}^{N}\cap f^{\prime}(U). Therefore, by the assumptions of the corollary, there exist p>0p>0 and a finite collection of cubes l\mathcal{B}_{l} such that

(D.17) {yU:|f(y)u|p for some uN}ll,lVol(l)δ.\begin{split}&\big{\{}y\in U:\,|f^{\prime}(y)-u\big{|}\leq p\text{ for some }u\in\mathbb{Z}^{N}\big{\}}\subset\cup_{l}\mathcal{B}_{l},\quad\sum_{l}\text{Vol}(\mathcal{B}_{l})\leq\delta.\end{split}

Denote U(δ):=UllU(\delta):=U\setminus\cup_{l}\mathcal{B}_{l}. By construction,

(D.18) U(δ){yU:|f(y)u|>p,uN}.U(\delta)\subset\{y\in U:\,|f^{\prime}(y)-u|>p,\ \forall u\in\mathbb{Z}^{N}\}.

Approximate U(δ)U(\delta) by a union of finitely many pairwise nonintersecting cubes Δl\Delta_{l}:

lΔlU(δ),Vol(U(δ)lΔl)<δ.\cup_{l}\Delta_{l}\subset U(\delta),\ \text{Vol}(U(\delta)\setminus\cup_{l}\Delta_{l})<\delta.

By construction, f(y)f(y) satisfies the assumptions of Lemma D.2 on each of the Δl\Delta_{l}. This follows from (D.18) and because |f(y)u|>p|f^{\prime}(y)-u|>p implies that |yιf(y)ul|>p/N1/2|\partial_{y_{\iota}}f(y)-u_{l}|>p/N^{1/2} for at least one ι=1,2,,N\iota=1,2,\dots,N. By Lemma D.2,

(D.19) ϵNϵjΔle(f(ϵj)/ϵ)0,ϵ0,\epsilon^{N}\sum_{\epsilon j\in\Delta_{l}}e(f(\epsilon j)/\epsilon)\to 0,\ \epsilon\to 0,

for each Δl\Delta_{l}, and there are finitely many of them. By choosing δ>0\delta>0 small, lΔl\cup_{l}\Delta_{l} can be as close to UU as we like, and the desired assertion follows. ∎

In what follows we apply Corollary D.3 with NN replaced by nNn-N (i.e., UnNU\subset\mathbb{R}^{n-N}) and ϵ\epsilon replaced by ϵy\epsilon_{y}.

Corollary D.4.

Fix a bounded domain UnNU\subset\mathbb{R}^{n-N} and a C2C^{2} function Ψ:UN\Psi:U\to\mathbb{R}^{N}. Let gC2(N)g\in C^{2}(\mathbb{R}^{N}) be a function, which satisfies g(r)=g(r+m)g(r)=g(r+m) for any rNr\in\mathbb{R}^{N} and mNm\in\mathbb{Z}^{N}. Suppose the function mΨ(y):Um\cdot\Psi(y):U\to\mathbb{R} satisfies the assumptions of Corollary D.3 for any mN0m\in\mathbb{Z}^{N}\setminus 0. Then

(D.20) limϵy0ϵynNϵyjUg(Ψ(ϵyj)/ϵy)=Vol(U)[0,1]Ng(r)dr.\lim_{\epsilon_{y}\to 0}\epsilon_{y}^{n-N}\sum_{\epsilon_{y}j\in U}g(\Psi(\epsilon_{y}j)/\epsilon_{y})=\text{Vol}(U)\int_{[0,1]^{N}}g(r)\text{d}r.
Proof.

By setting f(y):=mΨ(y):Uf(y):=m\cdot\Psi(y):U\to\mathbb{R}, Corollary D.3 implies that

(D.21) limϵy0ϵynNϵyjUe(mΨ(ϵyj)/ϵy)=0,mN0.\lim_{\epsilon_{y}\to 0}\epsilon_{y}^{n-N}\sum_{\epsilon_{y}j\in U}e(m\cdot\Psi(\epsilon_{y}j)/\epsilon_{y})=0,\ \forall m\in\mathbb{Z}^{N}\setminus 0.

The desired result follows from Theorem D.1 by setting vj(ϵy)=Ψ(ϵyj)/ϵyv_{j}(\epsilon_{y})=\Psi(\epsilon_{y}j)/\epsilon_{y}. ∎

D.2. Step II: computing limϵ0Dϵ\lim_{\epsilon\to 0}D_{\epsilon}

Fix some 0<δ10<\delta\ll 1 and partition 𝒴\mathcal{Y} into L(δ)L(\delta) domains UlU_{l}, l=1,,L(δ)l=1,\dots,L(\delta), such that the diameter of each domain does not exceed δ\delta. Pick any y~lUl\tilde{y}_{l}\in U_{l} for each ll. Clearly,

(D.22) Dϵ=l=1L(δ)Vol(Ul)[ϵynNVol(Ul)yjUlg(y~l,Ψ(yj)/ϵy)]+O(δ).D_{\epsilon}=\sum_{l=1}^{L(\delta)}\text{Vol}(U_{l})\bigg{[}\frac{\epsilon_{y}^{n-N}}{\text{Vol}(U_{l})}\sum_{y_{j}\in U_{l}}g(\tilde{y}_{l},\Psi(y_{j})/\epsilon_{y})\bigg{]}+O(\delta).

Applying Corollary D.4 to each expression in brackets (i.e., with UU replaced by UlU_{l}) we obtain

(D.23) limϵ0Dϵ=l=1L(δ)Vol(Ul)[0,1]Ng(y~l,r)dr+O(δ).\lim_{\epsilon\to 0}D_{\epsilon}=\sum_{l=1}^{L(\delta)}\text{Vol}(U_{l})\int_{[0,1]^{N}}g(\tilde{y}_{l},r)\text{d}r+O(\delta).

By Lemma 7.1, Corollary D.4 does apply. Indeed, for Corollary D.4 to apply, the main property is that for any mNm\in\mathbb{Z}^{N} and 0<δ10<\delta\ll 1 the set

(D.24) {yUl:|y(mΨ(y))u|p}\begin{split}\{y\in U_{l}:\,|\partial_{y}(m\cdot\Psi(y))-u|\leq p\}\end{split}

is contained in a union of finitely many cubes with the total volume not exceeding δ\delta. Lemma 7.1 proves a slightly stronger property for all of 𝒴\mathcal{Y}, where instead of a vector mN0m\in\mathbb{Z}^{N}\setminus 0 we have ξN0\xi\in\mathbb{R}^{N}\setminus 0.

Since δ>0\delta>0 can be arbitrarily small, the proof is finished.

Appendix E Outline of proof of Lemma 7.3

The proof of Lemma 7.3 is similar to that of Lemma 7.2, so here we only highlight key new points.

The denominator in (7.7) is Dϵ3/2D_{\epsilon}^{3/2}, where (cf. (7.6) for the definitions of bj(l)b_{j}^{(l)} and Rj,k(l)R_{j,k}^{(l)})

(E.1) Dϵ=ϵynN(yj,zk)𝒱[l=1Lθl(G(yj,kbj(l))+Rj,k(l))]2σ2(yj,Ψ(yj))+O(ϵa),a=min(1,2γ+N).\begin{split}D_{\epsilon}=&\epsilon_{y}^{n-N}\sum_{(y_{j},z_{k})\in\mathcal{V}}\biggl{[}\sum_{l=1}^{L}\theta_{l}\big{(}G\big{(}y_{j},k-b_{j}^{(l)}\big{)}+R_{j,k}^{(l)}\big{)}\biggr{]}^{2}\sigma^{2}(y_{j},\Psi(y_{j}))\\ &\hskip 28.45274pt+O(\epsilon^{a}),\ a=\min(1,2\gamma+N).\end{split}

Here we have used the usual substitution zkΨ(yj)z_{k}\approxeq\Psi(y_{j}) (cf. (C.6), (LABEL:sigma_mod)) and (2.10). Estimating the contribution of the remainder Rj,k(l)R_{j,k}^{(l)} similarly to (C.2) and passing to the limit as in (C.8) gives

(E.2) limϵ0Dϵ=𝒴Nf2(r,y)drσ2(y,Ψ(y))dy,f(r,y):=l=1LθlG(y,rxΨ(y)xˇl).\begin{split}\lim_{\epsilon\to 0}D_{\epsilon}=&\int_{\mathcal{Y}}\int_{\mathbb{R}^{N}}f^{2}(r,y)\text{d}r\,\sigma^{2}(y,\Psi(y))\text{d}y,\\ f(r,y):=&\sum_{l=1}^{L}\theta_{l}G\big{(}y,r-\partial_{x}\Psi(y)\cdot\check{x}_{l}\big{)}.\end{split}

Multiplying out the sum in the definition of ff, we can write

(E.3) limϵ0Dϵ=l1=1Ll2=1Lθl1θl2C(xˇl1xˇl2),C(ϑ):=𝒴(GG)(y,xΨ(y)ϑ)σ2(y,Ψ(y))dy,(GG)(y,ϑ):=NG(y,ϑ+r)G(y,r)dr.\begin{split}\lim_{\epsilon\to 0}D_{\epsilon}=&\sum_{l_{1}=1}^{L}\sum_{l_{2}=1}^{L}\theta_{l_{1}}\theta_{l_{2}}C(\check{x}_{l_{1}}-\check{x}_{l_{2}}),\\ C(\vartheta):=&\int_{\mathcal{Y}}(G\star G)\big{(}y,\partial_{x}\Psi(y)\cdot\vartheta\big{)}\sigma^{2}(y,\Psi(y))\text{d}y,\\ (G\star G)(y,\vartheta):=&\int_{\mathbb{R}^{N}}G(y,\vartheta+r)G(y,r)\text{d}r.\end{split}

Observe that if L=1L=1, θ1=1\theta_{1}=1, and ϑ=0\vartheta=0, then (E.3) coincides with (C.8), (C.9). By (5.22),

(E.4) f(r,y)=(2π)NNa2(y,μ^)φ~(μ^)[l=1Lθleiμ^xΨ(y)xˇl]eiμ^rdμ^.\begin{split}f(r,y)=(2\pi)^{-N}\int_{\mathbb{R}^{N}}a_{2}(y,\hat{\mu})\tilde{\varphi}(\hat{\mu})\bigg{[}\sum_{l=1}^{L}\theta_{l}e^{-i\hat{\mu}\cdot\partial_{x}\Psi(y)\check{x}_{l}}\bigg{]}e^{i\hat{\mu}\cdot r}\text{d}\hat{\mu}.\end{split}

Suppose the limit in (E.2) equals zero. By Assumption 2.8(2), this implies that f(r,y)0f(r,y)\equiv 0 for all rNr\in\mathbb{R}^{N} and yVy\in V. The set VV is introduced in Assumption 2.8(2). Also, φ\varphi is compactly supported, so φ~\tilde{\varphi} is analytic and cannot be zero on an open set. Therefore

(E.5) l=1Lθleiμ^xΨ(y)xˇl0,μ^N,yV.\begin{split}\sum_{l=1}^{L}\theta_{l}e^{-i\hat{\mu}\cdot\partial_{x}\Psi(y)\check{x}_{l}}\equiv 0,\ \hat{\mu}\in\mathbb{R}^{N},\ y\in V.\end{split}

Consider the vectors ep:=xˇl1xˇl2ne_{p}:=\check{x}_{l_{1}}-\check{x}_{l_{2}}\in\mathbb{R}^{n}, 1l1,l2L1\leq l_{1},l_{2}\leq L, l1l2l_{1}\not=l_{2}, and the sets Vp:={yV:xΨ(y)ep=0}V_{p}:=\{y\in V:\partial_{x}\Psi(y)e_{p}=0\}. Recall that the first argument of Ψ\Psi is x=x0x=x_{0}, which we omitted for simplicity. The xˇl\check{x}_{l} are distinct, so ep0e_{p}\not=0 for each pp. By (2.17), each set VpV_{p} has measure zero. There are finitely many VpV_{p}, so their union is not all of VV. Therefore there exists y0V(Vp)y_{0}\in V\setminus(\cup V_{p}) such that xΨ(y0)ep0\partial_{x}\Psi(y_{0})e_{p}\not=0 for each pp. Since the union of any finite number of the proper subspaces (xΨ(y0)ep)N(\partial_{x}\Psi(y_{0})e_{p})^{\perp}\subset\mathbb{R}^{N} cannot be all of N\mathbb{R}^{N}, there exists μ^N\hat{\mu}\in\mathbb{R}^{N} such that μ^xΨ(y0)ep0\hat{\mu}\cdot\partial_{x}\Psi(y_{0})e_{p}\not=0 for any pp.

In summary, there exist y0Vy_{0}\in V and μ^\hat{\mu} such that sl:=μ^xΨ(y0)xˇls_{l}:=\hat{\mu}\cdot\partial_{x}\Psi(y_{0})\check{x}_{l}, 1lL1\leq l\leq L, are pairwise distinct. Replace μ^\hat{\mu} with λμ^\lambda\hat{\mu} in (E.5), differentiate with respect to λ\lambda multiple times, and set λ=0\lambda=0. This gives

(E.6) l=1Lθlslp=0,p=0,1,,L1.\sum_{l=1}^{L}\theta_{l}s_{l}^{p}=0,\ p=0,1,\dots,L-1.

Since all sls_{l} are pairwise distinct, using the properties of the Vandermond determinant we conclude from (E.5) and (E.6) that all θl=0\theta_{l}=0. This contradiction proves that the limit in (E.2) is not zero unless θ=0\vec{\theta}=0.

An argument to show that the limit of the numerator in (7.7) is bounded is very similar to (C.12), (C.13).

References

  • [1] H. Abels. Pseudodifferential and Singular Integral Operators: An Introduction with Applications. De Gruyter, Berlin/Boston, 2012.
  • [2] A. Abhishek, A. Katsevich, and J. W. Webber. Local reconstruction analysis of inverting the Radon transform in the plane from noisy discrete data. arXiv, 2403.12909:1–23 (submitted), 2024.
  • [3] R. J. Adler. The Geometry of Random Fields. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2010.
  • [4] K. B. Athreya and S. N. Lahiri. Measure theory and probability theory. Springer, New York, NY, 2006.
  • [5] S. Berg, N. Saxena, M. Shaik, and C. Pradhan. Generation of ground truth images to validate micro-CT image-processing pipelines. The Leading Edge, 37(6):412–420, 2018.
  • [6] N. Bissantz, H. Holzmann, and K. Proksch. Confidence regions for images observed under the Radon transform. Journal of Multivariate Analysis, 128:86–107, 2014.
  • [7] L. Cavalier. Asymptotically efficient estimation in a problem related to tomography. Math. Methods Statist., 7(4):445–456 (1999), 1998.
  • [8] L. Cavalier. Efficient estimation of a density in a problem of tomography. Ann. Statist., 28(2):630–647, 2000.
  • [9] S. S. Chhatre, H. Sahoo, S. Leonardi, K. Vidal, E. M. Braun, and P. Patel. A Blind Study of Four Digital Rock Physics Vendor Labs on Porosity, Absolute Permeability, and Primary Drainage on Tight Outcrops. International Symposium of the Society of Core Analysts held in Vienna, Austria, pages 1–12, 2017.
  • [10] A. Dhara, Ashis Kumar Mukhopadhyay, Sudipta Dutta, M. Garg, and N. Khandelwal. A combination of shape and texture features for classification of pulmonary nodules in lung CT images. Journal of digital imaging, 29:466—-475, 2016.
  • [11] P. Dhara, Ashis Kumar Mukhopadhyay, Sudipta Saha, M. Garg, and N. Khandelwal. Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images. International journal of computer assisted radiology and surgery, 11:337—-349, 2016.
  • [12] S. E. Divel and N. J. Pelc. Accurate Image Domain Noise Insertion in CT Images. IEEE Transactions on Medical Imaging, 39(6):1906–1916, 2020.
  • [13] K. J. Falconer. Fractal geometry: mathematical foundations and applications. Wiley, third edition, 2014.
  • [14] A. Faridani. Sampling theory and parallel-beam tomography. In Sampling, wavelets, and tomography, volume 63 of Applied and Numerical Harmonic Analysis, pages 225–254. Birkhauser Boston, Boston, MA, 2004.
  • [15] A. Faridani, K. Buglione, P. Huabsomboon, O. Iancu, and J. McGrath. Introduction to local tomography. In Radon transforms and tomography. Contemp. Math., 278, pages 29–47. Amer. Math. Soc, 2001.
  • [16] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer, Berlin, Heidelberg, 2001.
  • [17] V. Guillemin and A. Pollack. Differential Topology. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974.
  • [18] B. Hahn and A. K. Louis. Reconstruction in the three-dimensional parallel scanning geometry with application in synchrotron-based x-ray tomography. Inverse Problems, 28, 2012.
  • [19] L. Hormander. The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis. Springer-Verlag, Berlin, 2003.
  • [20] A. Katsevich. Analysis of tomographic reconstruction of objects in 2\mathbb{R}^{2} with rough edges. arXiv, (2312.08259 [math.NA]), 2023.
  • [21] A. Katsevich. Novel resolution analysis for the Radon transform in 2\mathbb{R}^{2} for functions with rough edges. SIAM Journal of Mathematical Analysis, 55:4255–4296, 2023.
  • [22] A. Katsevich. Resolution analysis of inverting the generalized NN-dimensional Radon transform in n\mathbb{R}^{n} from discrete data. Journal of Fourier Analysis and Applications, 29, art. 6, 2023.
  • [23] A. Katsevich. Resolution of 2D reconstruction of functions with nonsmooth edges from discrete Radon transform data. SIAM Journal on Applied Mathematics, 83(2):695–724, 2023.
  • [24] A. Katsevich. Analysis of view aliasing for the generalized Radon transform in 2\mathbb{R}^{2}. SIAM Journal on Imaging Sciences, 17(1):415—-440, 2024.
  • [25] D. Khoshnevisan. Multiparameter Processes. An Introduction to Random Fields. Springer-Verlag, New York, 2002.
  • [26] A. P. Korostelev and A. B. Tsybakov. Optimal rates of convergence of estimates in the stochastic problem of computerized tomography. Problems Inform. Transmission, 27(1):73–81, 1991.
  • [27] A. P. Korostelev and A. B. Tsybakov. Asymptotically minimax image reconstruction problems. In Topics in nonparametric estimation, pages 45—-86. Amer. Math. Soc., Providence, RI, 1992.
  • [28] S. G. Krantz and H. R. Parks. The Implicit Function Theorem: History, Theory, and Applications. 2013.
  • [29] L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. Dover Publications, Inc., Mineola, NY, 2006.
  • [30] A. K. Louis. Exact cone beam reconstruction formulae for functions and their gradients for spherical and flat detectors. Inverse Problems, 32, 2016.
  • [31] A. K. Louis and P. Maass. Contour reconstruction in 3-D X-ray CT. IEEE Transactions on Medical Imaging, 12:764–769, 1993.
  • [32] F. Monard, R. Nickl, and G. P. Paternain. Efficient nonparametric Bayesian inference for X-ray transforms. Ann. Statist., 47(2):1113–1147, 2019.
  • [33] F. Natterer. Sampling in Fan Beam Tomography. SIAM Journal on Applied Mathematics, 53:358–380, 1993.
  • [34] V. P. Palamodov. Localization of harmonic decomposition of the Radon transform. Inverse Problems, 11:1025–1030, 1995.
  • [35] A. Ramm and A. Katsevich. The Radon Transform and Local Tomography. CRC Press, Boca Raton, Florida, 1996.
  • [36] N. Saxena, R. Hofmann, F. O. Alpak, and Others. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks. Advances in Water Resources, 109:211–235, 2017.
  • [37] N. Saxena, A. Hows, R. Hofmann, F. O. Alpak, J. Dietderich, M. Appel, J. Freeman, and H. De Jong. Rock properties from micro-CT images: Digital rock transforms for resolution, pore volume, and field of view. Advances in Water Resources, 134(February), 2019.
  • [38] N. Saxena, A. Hows, R. Hofmann, O. Alpak, J. Freeman, M. Appel, and J. Dietderich. Digital rock technology for accelerated RCA and SCAL: Application envelope and required corrections. SPWLA 60th Annual Logging Symposium 2019, pages 1–6, 2019.
  • [39] S. Siltanen, V. Kolehmainen, S. J. Rvenp, J. P. Kaipio, P. Koistinen, M. Lassas, J. Pirttil, and E. Somersalo. Statistical inversion for medical X-ray tomography with few radiographs: I. general theory. Physics in Medicine and Biology, 48(10):1437–1463, may 2003.
  • [40] P. Stefanov. Semiclassical sampling and discretization of certain linear inverse problems. SIAM Journal of Mathematical Analysis, 52:5554–5597, 2020.
  • [41] P. Stefanov and S. Tindel. Sampling linear inverse problems with noise. Asymptot. Anal., 132(3-4):331–382, 2023.
  • [42] F. Treves. Introduction to Pseudodifferential and Fourier Integral Operators. Volume 2: Fourier Integral Operators. The University Series in Mathematics. Plenum, New York, 1980.
  • [43] S. Vänskä, M. Lassas, and S. Siltanen. Statistical X-ray tomography using empirical Besov priors. Int. J. Tomogr. Stat., 11(S09):3–32, 2009.
  • [44] A. Wunderlich and F. Noo. Image covariance and lesion detectability in direct fan-beam X-ray computed tomography. Physics in Medicine and Biology, 53(10):2471–2493, 2008.