This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Analysis of computing Gröbner bases and Gröbner degenerations via theory of signatures

Yuta Kambe Mitsubishi Electric Corporation, Information Technology R&D Center, 5-1-1, Ofuna, Kamakura City, 247-8501, Japan [email protected]
Abstract.

The signatures of polynomials were originally introduced by Faugère for the efficient computation of Gröbner bases [Fau02], and redefined by Arri-Perry [AP11] as the standard monomials modulo the module of syzygies. Since it is difficult to determine signatures, Vaccon-Yokoyama [VY17] introduced an alternative object called guessed signatures. In this paper, we consider a module Gobs(F)\mathrm{Gobs(\mathit{F})}{} for a tuple of polynomials FF to analyse computation of Gröbner bases via theory of signatures. This is the residue module in(Syz(LM(F)))/in(Syz(F))\operatorname{in}_{\prec}(\mathrm{Syz}(\operatorname{LM}(F)))/\operatorname{in}_{\prec}(\mathrm{Syz}(F)) defined by the initial modules of the syzygy modules with respect to the Schreyer order. We first show that FF is a Gröbner basis if and only if Gobs(F)\mathrm{Gobs(\mathit{F})}{} is the zero module. Then we show that any homogeneous Gröbner basis with respect to a graded term order satisfying a common condition must contain the remainder of a reduction of an S-polynomial. We give computational examples of transitions of minimal free resolutions of Gobs(F)\mathrm{Gobs(\mathit{F})}{} in a signature based algorithm. Finally, we show a connection between the module Gobs(F)\mathrm{Gobs(\mathit{F})}{} and Gröbner degenerations.

Key words and phrases:
Gröbner basis, Gröbner degeneration, signature based algorithm
2020 Mathematics Subject Classification:
13P10

1. Introduction

The history of computing Gröbner bases began with the Buchberger’s algorithm, which selects polynomials by running a multivariate division algorithm and adding them to the set of generators until it satisfies the Buchberger’s criterion [Buc65]. The ideas of the Buchberger’s algorithm are still the basis of Gröbner basis computation algorithms, and most algorithms gradually approximate the input polynomial system to a Gröbner basis by iteratively computing the S-polynomials generated by the cancellations of the leading terms. A practical problem with this method is that the artifacts produced by the procedure are unpredictable for the choice of generators, term order, and so on. This implies a computational difficulty in applications of the Gröbner basis theory.

Our motivations in this paper are:

  • to obtain a quantitative cost function of a tuple of polynomials FF that predicts the complexity of the computation of a Gröbner basis from FF,

  • to answer the question of whether the S-polynomial computation is always necessary to determine a Gröbner basis, and

  • to represent the computation of Gröbner bases in the geometrical context,

for the construction of new efficient algorithms intrinsically different from Buchberger’s algorithm, such as Newton’s method, midpoint method and so on, in the future. To realize it, we give an algebraic or geometric analysis of the syzygies of FF in the computational aspects via the theory of the signatures. Then we obtain an object Gobs(F)\mathrm{Gobs(\mathit{F})}{} that corresponds to the computation of a Gröbner basis from FF and a Gröbner degeneration of FF. And we prove that remainders of divisions of S-polynomials must be determined to obtain homogeneous Gröbner bases with respect to graded orders.

Let R=K[x1,,xn]R=K[x_{1},\ldots,x_{n}] be the polynomial ring with a term order << over a field KK, F=(f1,f2,,fm)F=(f_{1},f_{2},\ldots,f_{m}) a tuple of elements in RR, and II the ideal generated by FF. By Rm=i=1mReiR^{m}=\oplus_{i=1}^{m}Re_{i} we denote the free RR-module with the basis (e1,e2,,em)(e_{1},e_{2},\ldots,e_{m}) corresponding to FF. Assume that RmR^{m} equips a term order \prec. The signature S(f)S(f) of a non-zero element ff in II is defined as

S(f)=min{LM(u)uRm,u¯=f},S(f)=\min_{\prec}\{\operatorname{LM}(u)\mid u\in R^{m},\ \bar{u}=f\},

where u¯\bar{u} is the image of uu under the canonical surjection RmI0R^{m}\rightarrow I\rightarrow 0 (see also Definition 3.1, Proposition 3.2). Faugère first introduced the concept of signatures in his F5F_{5} algorithm for efficient computation of Gröbner bases by avoiding reductions to zero [Fau02]. Several researchers proposed many variants of the F5F_{5} algorithm, nowadays called signature based algorithms. Arri-Perry introduced another definition of the signatures to give a proof of the termination and correctness of the F5F_{5} algorithm or signature based algorithms for any input [AP11]. It is difficult to determine the signature for a general polynomial without a Gröbner basis of II or the syzygy module Syz(F)\mathrm{Syz}(F). Vaccon-Yokoyama defined the “guessed” signatures of the S-polynomials as an alternative object of signatures [VY17]. The guessed signatures are only determined from the computational history of the running instance. Then they made a simple implementation of a signature based algorithm. In this paper we introduce a definition of guessed signatures that is different from [VY17]. We define the guessed signatures for pairs (xαei,xβej)(x^{\alpha}e_{i},x^{\beta}e_{j}) of monomials in RmR^{m} such that xαLM(fi)=xβLM(fj)(i<j)x^{\alpha}\operatorname{LM}(f_{i})=x^{\beta}\operatorname{LM}(f_{j})\ (i<j) as the monomials xβejx^{\beta}e_{j} in the second components (Definition 3.3).

If we attach the Schreyer order on RmR^{m} (Definition 2.2), the guessed signature of a pair (xαei,xβej)(x^{\alpha}e_{i},x^{\beta}e_{j}) is the leading monomial of xαeixβejx^{\alpha}e_{i}-x^{\beta}e_{j}. In fact, the guessed signature of a pair (xαei,xβej)(x^{\alpha}e_{i},x^{\beta}e_{j}) is not always the signature of the S-polynomial 1LC(fi)xαfi1LC(fj)xβfj\frac{1}{\operatorname{LC}(f_{i})}x^{\alpha}f_{i}-\frac{1}{\operatorname{LC}(f_{j})}x^{\beta}f_{j}. It partly depends on whether the reduction of the S-polynomial is zero or not. From this point of view, in this paper we suppose that the difference between the set of guessed signatures and the set of signatures might predict the behavior to computations of Gröbner bases from FF, and then we focus on this difference. From the Schreyer’s theorem, the set of guessed signatures is the set of the leading monomials LM(Syz(LM(F)))\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))) of the syzygy module of the tuple LM(F)=(LM(f1),,LM(fm))\operatorname{LM}(F)=(\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})) [Eis95, Theorem 15.10]. Then our main target is the residue module

Gobs(F)=in(Syz(LM(F)))/in(Syz(F)).\mathrm{Gobs(\mathit{F})}{}=\operatorname{in}_{\prec}(\mathrm{Syz}(\operatorname{LM}(F)))/\operatorname{in}_{\prec}(\mathrm{Syz}(F)).

From now on we always attach the Schreyer order on RmR^{m}. Our contributions in this paper are the following.

  • (A)

    We give a criterion for Gröbner bases: FF is a Gröbner basis if and only if Gobs(F)=0\mathrm{Gobs(\mathit{F})}{}=0 (Theorem 3.5).

  • (B)

    We show that for any homogeneous Gröbner basis GG of II including FF with respect to a graded term order <<, GG contains an element gg such that LM(g)=LM(r)\operatorname{LM}(g)=\operatorname{LM}(r), where rr is the remainder of a reduction of an S-polynomial. If GG satisfies some common condition, then g=cr(cK)g=cr\ (\exists\,c\in K) (Corollary 4.4).

  • (C)

    We give examples of transitions of Gobs(F)\mathrm{Gobs(\mathit{F})}{} in a signature based algorithm (Section 5).

  • (D)

    We find a closed subscheme XX in SpecR×K𝔸K1\operatorname{Spec}R\times_{K}\mathbb{A}_{K}^{1} and direct summand N(F)N(F) of Gobs(F)\mathrm{Gobs(\mathit{F})}{} such that XX is a flat deformation of SpecR/I\operatorname{Spec}R/I to SpecR/LM(F)\operatorname{Spec}R/\langle\operatorname{LM}(F)\rangle over 𝔸K1\mathbb{A}_{K}^{1} if and only if N(F)=0N(F)=0 (Theorem 6.6, Lemma 6.8).

For (A), a key lemma is the following (see also Lemma 3.7).

Lemma 1.1.

For any element ff in II, the condition

LM(f)LM(f1),LM(fm)\operatorname{LM}(f)\not\in\langle\operatorname{LM}(f_{1}),\ldots\operatorname{LM}(f_{m})\rangle

implies that

S(f)LM(Syz(LM(F)))LM(Syz(F)).S(f)\in\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F)))\setminus\operatorname{LM}(\mathrm{Syz}(F)).

(B) is based on Lemma 1.1. Let us consider about finding an element of the leading monomial not in LM(f1),,LM(fm)\langle\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})\rangle. Let fm+1f_{m+1} be an element of II such that LM(fm+1)LM(f1),,LM(fm)\operatorname{LM}(f_{m+1})\not\in\langle\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})\rangle and put F=(f1,f2,,fm,fm+1)F^{\prime}=(f_{1},f_{2},\ldots,f_{m},f_{m+1}). Assume that fm+1=u¯f_{m+1}=\bar{u} for an element uu in RmR^{m} and LM(u)=S(f)\operatorname{LM}(u)=S(f). By Lemma 1.1, the equivalent class of S(fm+1)S(f_{m+1}) in Gobs(F)\mathrm{Gobs(\mathit{F})}{} is not zero. On the other hand, since uem+1Syz(F)u-e_{m+1}\in\mathrm{Syz}(F^{\prime}) and LM(uem+1)=LM(u)\operatorname{LM}(u-e_{m+1})=\operatorname{LM}(u) (see Lemma 3.7), we can show that the equivalent class of S(fm+1)S(f_{m+1}) in Gobs(F)\mathrm{Gobs(\mathit{F}^{\prime})} is zero. Then one may interpret that finding an element fm+1f_{m+1} that the leading monomial not in LM(f1),,LM(fm)\langle\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})\rangle is vanishing a non-zero element of Gobs(F)\mathrm{Gobs(\mathit{F})}{}. If FF consists of homogeneous elements and the term order << on RR is graded lexicographic order or graded reverse lexicographic order, one may consider that the signature S(f)S(f) is an index of the computational cost of representing ff by FF, since degrees are a factor of the complexity of computing polynomials [MM84, Dub90, Giu05, BFSY05]. Therefore a naive idea to compute Gröbner bases efficiently is to choose polynomials of small signatures. In fact, several signature based algorithms follow this idea [AP11, VY17, Sak20] (see also Algorithm 1). Then we identify the polynomials of the signature that is smallest in Gobs(F)\mathrm{Gobs(\mathit{F})}{}.

Theorem 1.2 (Theorem 4.1).

Assume that FF is not a Gröbner basis. For any element ff in II, if it holds that LM(f)LM(f1),,LM(fm)\operatorname{LM}(f)\not\in\langle\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})\rangle and the signature S(f)S(f) is minimum in LM(Syz(LM(F)))LM(Syz(F))\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F)))\setminus\operatorname{LM}(\mathrm{Syz}(F)), then it satisfies that LM(f)=LM(r)\operatorname{LM}(f)=\operatorname{LM}(r), where rr is the remainder of any division of an S-polynomial of the signature S(f)S(f). If the all terms of ff and rr are not in LM(f1),,LM(fm)\langle\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})\rangle, then f=crf=cr for some cKc\in K.

Let us assume again that FF consists of homogeneous elements and the term order << on RR is graded lexicographic order or graded reverse lexicographic order. What would happen if we choose a homogeneous polynomial fm+1f_{m+1} that satisfies

S(fm+1)min[LM(Syz(LM(F)))LM(Syz(F))]?S(f_{m+1})\neq\min\left[\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F)))\setminus\operatorname{LM}(\mathrm{Syz}(F))\right]?

In fact, it will happen that

s\displaystyle s =min[LM(Syz(LM(F)))LM(Syz(F))]\displaystyle=\min\left[\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F)))\setminus\operatorname{LM}(\mathrm{Syz}(F))\right]
=min[LM(Syz(LM(F{fm+1})))LM(Syz(F{fm+1}))]\displaystyle=\min\left[\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(\mathit{F}\cup\{f_{m+1}\})))\setminus\operatorname{LM}(\mathrm{Syz}(\mathit{F}\cup\{f_{m+1}\}))\right]

(Theorem 4.3). Namely, ss do not vanish in Gobs(F{fm+1})\mathrm{Gobs(\mathit{F}\cup\{\mathit{f}_{m+1}\})} and then F{fm+1}F\cup\{f_{m+1}\} can not be a Gröbner basis. Therefore we obtain the following theorem that gives the necessity of the S-polynomial computation.

Theorem 1.3 (Corollary 4.4).

For any homogeneous Gröbner basis GG of II including FF with respect to a graded term order, there exist a subset FF^{\prime} and an element gGg\in G such that LM(g)=LM(r)\operatorname{LM}(g)=\operatorname{LM}(r), where rr is the remainder of any division of an S-polynomial of the signature ss with respect to FF^{\prime}. If the non-leading terms of elements of GG are not in LM(G)\langle\operatorname{LM}(G)\rangle, then g=crg=cr for some cKc\in K.

About (C), as mentioned above, some signature based algorithms can be intuitively thought of as methods that attempt to reduce the size of Gobs(F)\mathrm{Gobs(\mathit{F})}{} by annihilating the smallest elements. However, in Section 5, we observe examples of transitions of Gobs(F)\mathrm{Gobs(\mathit{F})}{} in an implementation of a signature based algorithm, and we find examples that the sequence of Gobs(F)\mathrm{Gobs(\mathit{F})}{} does not monotonically go to the zero-module in the procedure. On the other hand, observing such examples leads to the conjecture that, in some cases, the first Betti number of Gobs(F)\mathrm{Gobs(\mathit{F})}{} represents the phase of the monomial ideal generated by LM(F)\operatorname{LM}(F). More precisely, some examples satisfy the statement that if the first Betti number increases in a step, then the new leading monomial found in that step divides another leading monomial of the generators (Example 5.1, Example 5.2, Example 5.4). However, the above statement is not true in Example 5.3. Furthermore, in Example 5.3, Gobs(F)\mathrm{Gobs(\mathit{F})}{} is generated by a single equivalent class for the input FF, nevertheless the instance does not terminate by a single step. We still do not know what is going on in the background of all this.

About (D), we show that Gobs(F)\mathrm{Gobs(\mathit{F})}{} contains flatness obstructions of a family introduced from FF in the context of Gröbner degenerations. Then we call Gobs(F)\mathrm{Gobs(\mathit{F})}{} the module of Gröbnerness obstructions of FF in this paper. Let us recall Gröbner degenerations. We call a closed subscheme XX in SpecR×KSpecK[t]\operatorname{Spec}R\times_{K}\operatorname{Spec}K[t] a Gröbner degeneration of SpecR/I\operatorname{Spec}R/I if the projection XSpecK[t]X\rightarrow\operatorname{Spec}K[t] is flat, generic fibers XtX_{t} of the projection over t0t\neq 0 are isomorphic to SpecR/I\operatorname{Spec}R/I and the special fiber X0X_{0} at t=0t=0 is isomorphic to SpecR/in<(I)\operatorname{Spec}R/\operatorname{in}_{<}(I). There exists a Gröbner degeneration constructed from a weighting on variables [Bay82, Eis95]. Gröbner degenerations are used in studies of degenerations of varieties, homological invariants, Hilbert schemes and so on [Har66, KM05, LR11, CV20, Kam22]. Our main theorem about the relationship between Gobs(F)\mathrm{Gobs(\mathit{F})}{} and Gröbner degenerations is the following.

Theorem 1.4 (Theorem 6.6, Lemma 6.8).

There exists a closed subscheme XX in SpecR×KSpecK[t]\operatorname{Spec}R\times_{K}\operatorname{Spec}K[t] and a direct summand N(F)N(F) of Gobs(F)\mathrm{Gobs(\mathit{F})}{} such that

  • generic fibers of the projection XSpecK[t]X\rightarrow\operatorname{Spec}K[t] over t0t\neq 0 are isomorphic to SpecR/I\operatorname{Spec}R/I, the special fiber at t=0t=0 is isomorphic to SpecR/LM(F)\operatorname{Spec}R/\langle\operatorname{LM}(F)\rangle,

  • the projection XSpecK[t]X\rightarrow\operatorname{Spec}K[t] is flat if and only if N(F)=0N(F)=0.

2. Preliminary

Let KK be a field. Let R=K[x1,,xn]R=K[x_{1},\ldots,x_{n}] be the polynomial ring over KK in nn variables attached a term order <<. Here a term order means a total order << of monomials in RR such that 1<m1<m for any monomial m1m\neq 1 and m<nm<n implies ml<nlml<nl for any monomials m,n,lm,n,l. We say a term order << is graded if m<nm<n for any monomials m,nm,n such that degm<degn\deg m<\deg n for the ordinal total degree of RR. We use the following notation:

  • A\langle A\rangle: the ideal generated by AA in RR,

  • LM(f)\operatorname{LM}(f): the leading monomial of ff,

  • LC(f)\operatorname{LC}(f): the leading coefficient of ff,

  • LT(f)=LC(f)LM(f)\operatorname{LT}(f)=\operatorname{LC}(f)\operatorname{LM}(f): the leading term of ff,

  • xα=x1α1x2α2xnαnx^{\alpha}=x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}} for a vector α=(α1,α2,,αn)\alpha=(\alpha_{1},\alpha_{2},\ldots,\alpha_{n}).

We always consider a fixed tuple of polynomials F=(f1,,fm)F=(f_{1},\ldots,f_{m}) such that fi0(i=1,,m)f_{i}\neq 0\ (i=1,\ldots,m) unless otherwise noted.

In this paper, a division means a reduction by FF such that the remainder is 0 or has no terms in LM(f1),,LM(fm)\langle\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})\rangle.

Definition 2.1.

For any polynomial ff in RR, there exist polynomials h1h_{1},\ldots, hmh_{m} and rr in RR such that

f=i=1mhifi+r,LM(hifi)LM(f),f=\sum_{i=1}^{m}h_{i}f_{i}+r,\ \operatorname{LM}(h_{i}f_{i})\leq\operatorname{LM}(f),

and r=0r=0 or the all terms of rr are not in LM(f1),,LM(fm)\langle\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})\rangle. We call this form a division of ff with FF. We also call h1,,hmh_{1},\ldots,h_{m} the quotient and rr the remainder of this division of ff with FF.

Let I=FI=\langle F\rangle be the ideal generated by FF in RR. We call the ideal LM(f)fI{0}\langle\operatorname{LM}(f)\mid f\in I\setminus\{0\}\rangle the initial ideal of II and denote it by in<(I)\operatorname{in}_{<}(I). We say FF is a Gröbner basis if the initial ideal in<(I)\operatorname{in}_{<}(I) is generated by the tuple LM(F)=(LM(f1),,LM(fm))\operatorname{LM}(F)=(\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})). For the elementary of Gröbner bases, see [Eis95, Section 15].

Let Rm=i=1mReiR^{m}=\oplus_{i=1}^{m}Re_{i} be the free RR-module of rank mm with the basis (e1,,em)(e_{1},\ldots,e_{m}). A monomial in RmR^{m} is an element of the form xαeix^{\alpha}e_{i}. In this paper, we always attach the following order on RmR^{m}.

Definition 2.2.

The Schreyer order on RmR^{m} is the order of monomials in RmR^{m} such that

xαeixβejxαLM(fi)<xβLM(fj)or(xαLM(fi)=xβLM(fj)andi<j).x^{\alpha}e_{i}\prec x^{\beta}e_{j}\Leftrightarrow\begin{aligned} &x^{\alpha}\operatorname{LM}(f_{i})<x^{\beta}\operatorname{LM}(f_{j})\\ &\text{or}\ (x^{\alpha}\operatorname{LM}(f_{i})=x^{\beta}\operatorname{LM}(f_{j})\ \text{and}\ i<j).\end{aligned}

Let uu be a non-zero element in RmR^{m}. The leading monomial of uu is the largest monomial with non-zero coefficient occurring in uu. We define the leading coefficient and leading term as the same. We use the following notation:

  • LM(u)\operatorname{LM}(u): the leading monomial of uu,

  • LC(u)\operatorname{LC}(u): the leading coefficient of uu,

  • LT(u)=LC(u)LM(u)\operatorname{LT}(u)=\operatorname{LC}(u)\operatorname{LM}(u): the leading term of uu,

  • LM(M)={LM(u)uM}\operatorname{LM}(M)=\{\operatorname{LM}(u)\mid u\in M\} for a subset MM in RmR^{m},

  • N\langle N\rangle: the RR-submodule generated by a subset NN in RmR^{m}.

Let MM be an RR-submodule in RmR^{m}. The initial module in(M)\operatorname{in}_{\prec}(M) of MM is the RR-submodule in RmR^{m} generated by LM(M)\operatorname{LM}(M). A set of generators VV of MM is a Gröbner basis of MM if the initial module in(M)\operatorname{in}_{\prec}(M) is generated by LM(V)\operatorname{LM}(V).

Let us define the syzygies.

Definition 2.3.

The notation u¯\bar{u} for uu denotes the value of the RR-module morphism

RmIeifi\begin{array}[]{ccc}R^{m}&\rightarrow&I\\ e_{i}&\mapsto&f_{i}\end{array}

at uu. If u¯=0\bar{u}=0, then we say uu is a syzygy of FF. The syzygy module of FF is the kernel of the above morphism. We denote the syzygy module of FF by Syz(F)\mathrm{Syz}(F).

In general, generators of the syzygy module Syz(F)\mathrm{Syz}(F) depend on FF and need precise computation to determine. On the other hand, generators of the syzygy module Syz(LM(F))\mathrm{Syz}(\operatorname{LM}(F)) is theoretically determined with an explicit form by the Schreyer’s theorem.

Theorem 2.4 ([Eis95, Theorem 15.10]).

Let

mi(i,j)=lcm(LM(fi),LM(fj))LM(fi),mj(i,j)=lcm(LM(fi),LM(fj))LM(fj)m^{(i,j)}_{i}=\frac{\mathrm{lcm}(\operatorname{LM}(f_{i}),\operatorname{LM}(f_{j}))}{\operatorname{LM}(f_{i})},m^{(i,j)}_{j}=\frac{\mathrm{lcm}(\operatorname{LM}(f_{i}),\operatorname{LM}(f_{j}))}{\operatorname{LM}(f_{j})}

for distinct indexes i,ji,j. Then the set

{mi(i,j)eimj(i,j)ej|i<j}\left\{\left.m^{(i,j)}_{i}e_{i}-m^{(i,j)}_{j}e_{j}\right|i<j\right\}

is a Gröbner basis of Syz(LM(F))\mathrm{Syz}(\operatorname{LM}(F)). In particular, the initial module of Syz(LM(F))\mathrm{Syz}(\operatorname{LM}(F)) is generated by the set {mj(i,j)eji<j}\{m^{(i,j)}_{j}e_{j}\mid i<j\}.

Proposition 2.5.

It holds that LM(Syz(F))LM(Syz(LM(F)))\operatorname{LM}(\mathrm{Syz}(F))\subset\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))).

Proof.

For any uSyz(F)u\in\mathrm{Syz}(F), denote

u=α,icα,ixαei,u=\sum_{\alpha,i}c_{\alpha,i}x^{\alpha}e_{i},

where cα,iKc_{\alpha,i}\in K. Consider xξ=max{xαLM(fi)cα,i0}x^{\xi}=\max\{x^{\alpha}\operatorname{LM}(f_{i})\mid c_{\alpha,i}\neq 0\}. Let us divide uu into the following two parts:

u0=xαLM(fi)=xξcα,ixαei,u1=xαLM(fi)<xξcα,ixαei.u_{0}=\sum_{x^{\alpha}\operatorname{LM}(f_{i})=x^{\xi}}c_{\alpha,i}x^{\alpha}e_{i},\ u_{1}=\sum_{x^{\alpha}\operatorname{LM}(f_{i})<x^{\xi}}c_{\alpha,i}x^{\alpha}e_{i}.

By definition of the Schreyer order, we have LM(u)=LM(u0)\operatorname{LM}(u)=\operatorname{LM}(u_{0}), thus it is enough to show that LM(u0)LM(Syz(LM(F)))\operatorname{LM}(u_{0})\in\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))). Let us compute u0¯\overline{u_{0}} as the following:

u0¯\displaystyle\overline{u_{0}} =xαLM(fi)=xξcα,ixαfi\displaystyle=\sum_{x^{\alpha}\operatorname{LM}(f_{i})=x^{\xi}}c_{\alpha,i}x^{\alpha}f_{i}
=xαLM(fi)=xξ(cα,iLC(fi))xαLM(fi)+xαLM(fi)=xξcα,ixα(fiLT(fi)).\displaystyle=\sum_{x^{\alpha}\operatorname{LM}(f_{i})=x^{\xi}}\left(c_{\alpha,i}\operatorname{LC}(f_{i})\right)x^{\alpha}\operatorname{LM}(f_{i})+\sum_{x^{\alpha}\operatorname{LM}(f_{i})=x^{\xi}}c_{\alpha,i}x^{\alpha}(f_{i}-\operatorname{LT}(f_{i})).

Since the second sum in the above consists of terms smaller than xξx^{\xi}, the term of u¯=u0¯+u1¯\bar{u}=\overline{u_{0}}+\overline{u_{1}} at xξx^{\xi} is xαLM(fi)=xξ(cα,iLC(fi))xαLM(fi)\sum_{x^{\alpha}\operatorname{LM}(f_{i})=x^{\xi}}\left(c_{\alpha,i}\operatorname{LC}(f_{i})\right)x^{\alpha}\operatorname{LM}(f_{i}) which must be 0. Then the element

v=xαLM(fi)=xξ(cα,iLC(fi))xαeiv=\sum_{x^{\alpha}\operatorname{LM}(f_{i})=x^{\xi}}\left(c_{\alpha,i}\operatorname{LC}(f_{i})\right)x^{\alpha}e_{i}

is a syzygy of LM(F)\operatorname{LM}(F). Therefore we have

LM(u0)\displaystyle\operatorname{LM}(u_{0}) =max{xαei|cα,i0,LM(xαfi)=xξ}\displaystyle=\max_{\prec}\left\{x^{\alpha}e_{i}\left|\begin{aligned} c_{\alpha,i}\neq 0,\\ \operatorname{LM}(x^{\alpha}f_{i})=x^{\xi}\end{aligned}\right.\right\}
=max{xαei|cα,iLC(fi)0,LM(xαfi)=xξ}=LM(v)LM(Syz(LM(F))).\displaystyle=\max_{\prec}\left\{x^{\alpha}e_{i}\left|\begin{aligned} c_{\alpha,i}\operatorname{LC}(f_{i})\neq 0,\\ \operatorname{LM}(x^{\alpha}f_{i})=x^{\xi}\end{aligned}\right.\right\}=\operatorname{LM}(v)\in\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))).

3. Signatures and guessed signatures

We recall the definition of the signatures given in [Fau02, AP11].

Definition 3.1.

Let ff be a non-zero element in II. The signature of ff is the minimum element of {LM(u)uRm,u¯=f}\{\operatorname{LM}(u)\mid u\in R^{m},\bar{u}=f\}. We denote the signature of ff by S(f)S(f).

Proposition 3.2 ([AP11]).

The set of signatures {S(f)fI{0}}\{S(f)\mid f\in I\setminus\{0\}\} equals to the following set of monomials: {ss is a monomial in Rm,sLM(Syz(F))}\{s\mid\text{$s$ is a monomial in $R^{m}$},\ s\not\in\operatorname{LM}(\mathrm{Syz}(F))\}. In particular, the set of the equivalent classes of the signatures is a basis of the residue module Rm/Syz(F)R^{m}/\mathrm{Syz}(F) as a KK-linear space.

As easiest example of signatures, one may hope that S(fi)=eiS(f_{i})=e_{i}. However, it is wrong in general. For example, assume F=(f1,f2,f3)F=(f_{1},f_{2},f_{3}), f3=f1+f2f_{3}=f_{1}+f_{2} and LM(f1)<LM(f2)\operatorname{LM}(f_{1})<\operatorname{LM}(f_{2}), then the signature of f3f_{3} is not e3e_{3}. Indeed, put u=e1+e2u=e_{1}+e_{2}. We have u¯=f3\bar{u}=f_{3} and LM(u)=e2\operatorname{LM}(u)=e_{2}. Thus the signature of f3f_{3} is less than or equal to e2e_{2}. Since we attach the Schreyer order on RmR^{m}, we have e2<e3e_{2}<e_{3}. Therefore we obtain S(f3)<e3S(f_{3})<e_{3}. Note that, in general, we need a Gröbner basis of Syz(F)\mathrm{Syz}(F) to determine the signature S(f)S(f) of given polynomial ff.

As a more reasonable object than the signatures, we introduce the guessed signatures.

Definition 3.3.

An S-pair is a pair of monomials (xγek,xδe)(x^{\gamma}e_{k},x^{\delta}e_{\ell}) such that k<k<\ell and xγLM(fk)=xδLM(f)x^{\gamma}\operatorname{LM}(f_{k})=x^{\delta}\operatorname{LM}(f_{\ell}). We denote S-pairs as p=(xγek,xδe)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell}). The S-polynomial of p=(xγek,xδe)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell}) denoted by Spoly(p)\mathrm{Spoly}(p) is the polynomial

Spoly(p)=1LC(fk)xγfk1LC(f)xδf.\mathrm{Spoly}(p)=\frac{1}{\operatorname{LC}(f_{k})}x^{\gamma}f_{k}-\frac{1}{\operatorname{LC}(f_{\ell})}x^{\delta}f_{\ell}.

For an S-pair p=(xγek,xδe)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell}), we call the second component xδex^{\delta}e_{\ell} the guessed signature of pp. We denote the guessed signature of pp by S^(p)\hat{S}(p). We say an S-pair p=(xγek,xδe)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell}) is standard if it satisfies that xγLM(fk)=xδLM(f)=lcm(LM(fk),LM(f))x^{\gamma}\operatorname{LM}(f_{k})=x^{\delta}\operatorname{LM}(f_{\ell})=\mathrm{lcm}(\operatorname{LM}(f_{k}),\operatorname{LM}(f_{\ell})).

Remark 3.4.

The original definition of guessed signature is not as in Definition 3.3. We note the original definition that previous studies (for example, [AP11, VY17, Sak20]) used in the following: fix a tuple FF as a set of generators of the ideal II and consider a set G={g1,g2,,gb}G=\{g_{1},g_{2},\ldots,g_{b}\} of elements in II including FF, we call a pair of generators (gi,gj)(g_{i},g_{j}) a S-pair of GG if iji\neq j. An S-pair (gi,gj)(g_{i},g_{j}) is pseudo regular if

mi(i,j)S(gi)mj(i,j)S(gj).m_{i}^{(i,j)}S(g_{i})\neq m_{j}^{(i,j)}S(g_{j}).

The guessed signature of a pseudo regular S-pair (gi,gj)(g_{i},g_{j}) is the maximum element of the set {mi(i,j)S(gi),mj(i,j)S(gj)}\{m_{i}^{(i,j)}S(g_{i}),m_{j}^{(i,j)}S(g_{j})\}.

In our definition (Definition 3.3), we only consider the situation of G=FG=F, omit hypothesis on pseudo regularity, and use xδex^{\delta}e_{\ell} as the guessed signature instead of xδS(f)x^{\delta}S(f_{\ell}) for convenience in the latter.

Since it holds that

Spoly(xγek,xδe)=(1LC(fk)xγek1LC(f)xδe)¯,\mathrm{Spoly}(x^{\gamma}e_{k},x^{\delta}e_{\ell})=\overline{\left(\frac{1}{\operatorname{LC}(f_{k})}x^{\gamma}e_{k}-\frac{1}{\operatorname{LC}(f_{\ell})}x^{\delta}e_{\ell}\right)},

one may guess that the signature of the S-polynomial is xδex^{\delta}e_{\ell}. This is the reason why we call xδex^{\delta}e_{\ell} the “guessed” signature. In fact, the equality S(Spoly(p))=S^(p)S(\mathrm{Spoly}(p))=\hat{S}(p) is a non-trivial condition to determine if FF is a Gröbner basis or not.

Theorem 3.5.

The following are equivalent.

  • (a)

    Tuple F=(f1,,fm)F=(f_{1},\ldots,f_{m}) is a Gröbner basis.

  • (b)

    For any SS-pair pp, the guessed signature S^(p)\hat{S}(p) is not the signature S(Spoly(p))S(\mathrm{Spoly}(p)).

  • (c)

    For any standard SS-pair pp, the guessed signature S^(p)\hat{S}(p) is not the signature S(Spoly(p))S(\mathrm{Spoly}(p)).

  • (d)

    The equality LM(Syz(F))=LM(Syz(LM(F)))\operatorname{LM}(\mathrm{Syz}(F))=\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))) holds.

  • (e)

    For any non-zero element fIf\in I, the leading monomial LM(S(f)¯)\operatorname{LM}\left(\overline{S(f)}\right) equals to the leading monomial LM(f)\operatorname{LM}(f).

Here we note the mean of the condition (e). Let u=α,icα,ixαeiu=\sum_{\alpha,i}c_{\alpha,i}x^{\alpha}e_{i} be an element of RmR^{m} such that u¯=f\overline{u}=f and LM(u)=S(f)\operatorname{LM}(u)=S(f). Assume that S(f)=xβejS(f)=x^{\beta}e_{j} and put xξ=LM(S(f)¯)=xβLM(fj)x^{\xi}=\operatorname{LM}\left(\overline{S(f)}\right)=x^{\beta}\operatorname{LM}(f_{j}). Then by definition of the Schreyer order we have xξ=max{xαLM(fi)cα,i0}x^{\xi}=\max\{x^{\alpha}\operatorname{LM}(f_{i})\mid c_{\alpha,i}\neq 0\}. We divide ff into the following two parts:

f=u0¯+uu0¯=xξ=xαLM(fi)cα,ixαfi+xξ>xβLM(fi)cβ,jxβfi.f=\overline{u_{0}}+\overline{u-u_{0}}=\sum_{x^{\xi}=x^{\alpha}\operatorname{LM}(f_{i})}c_{\alpha,i}x^{\alpha}f_{i}+\sum_{x^{\xi}>x^{\beta}\operatorname{LM}(f_{i})}c_{\beta,j}x^{\beta}f_{i}.

Therefore the inequality LM(S(f)¯)LM(f)\operatorname{LM}\left(\overline{S(f)}\right)\succeq\operatorname{LM}(f) always holds, and we have LM(f)LM(f1),,LM(fm)\operatorname{LM}(f)\in\langle\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})\rangle if the equality LM(S(f)¯)=LM(f)\operatorname{LM}\left(\overline{S(f)}\right)=\operatorname{LM}(f) holds.

We proof Theorem 3.5 after introducing some lemmas we need.

Lemma 3.6.

The set of the guessed signatures {S^(p)p is a S-pair}\{\hat{S}(p)\mid\text{$p$ is a S-pair}\} equals to LM(Syz(LM(F)))\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))). Moreover, the initial module of Syz(LM(F))\mathrm{Syz}(\operatorname{LM}(F)) is generated by a subset {S^(p)p is a standard S-pair}\{\hat{S}(p)\mid\text{$p$ is a standard S-pair}\}.

Proof.

The latter part is clear from Theorem 2.4. Let LL be the set of the guessed signature of standard S-pairs. For any S-pair p=(xγek,xδe)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell}), there exists a monomial xλx^{\lambda} such that

xγLM(fk)=xδLM(f)=xλlcm(LM(fk),LM(f)).x^{\gamma}\operatorname{LM}(f_{k})=x^{\delta}\operatorname{LM}(f_{\ell})=x^{\lambda}\mathrm{lcm}(\operatorname{LM}(f_{k}),\operatorname{LM}(f_{\ell})).

Assume that lcm(LM(fk),LM(f))=xαLM(fk)=xβLM(f)\mathrm{lcm}(\operatorname{LM}(f_{k}),\operatorname{LM}(f_{\ell}))=x^{\alpha}\operatorname{LM}(f_{k})=x^{\beta}\operatorname{LM}(f_{\ell}). We have xδ=xλxβx^{\delta}=x^{\lambda}x^{\beta} and then S^(p)=xδe=xλS^(xαek,xβe)\hat{S}(p)=x^{\delta}e_{\ell}=x^{\lambda}\hat{S}(x^{\alpha}e_{k},x^{\beta}e_{\ell}). Therefore the guessed signature S^(p)\hat{S}(p) is a multiple of an element of LL and then an element of LM(Syz(LM(F))\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F)). Conversely, for any element of uSyz(LM(F))u\in\mathrm{Syz}(\operatorname{LM}(F)), there exist a monomial xλx^{\lambda} and an element S^(xγek,xδe)\hat{S}(x^{\gamma}e_{k},x^{\delta}e_{\ell}) in LL such that LM(u)=xλS^(xγek,xδe)=S^(xλxγek,xλxδe)\operatorname{LM}(u)=x^{\lambda}\hat{S}(x^{\gamma}e_{k},x^{\delta}e_{\ell})=\hat{S}(x^{\lambda}x^{\gamma}e_{k},x^{\lambda}x^{\delta}e_{\ell}). Therefore LM(u)\operatorname{LM}(u) is the guessed signature of a S-pair (xλxγek,xλxδe)(x^{\lambda}x^{\gamma}e_{k},x^{\lambda}x^{\delta}e_{\ell}). ∎

Lemma 3.7.

Let ff be an element of I{0}I\setminus\{0\}. If it holds that LM(S(f)¯)>LM(f)\operatorname{LM}\left(\overline{S(f)}\right)>\operatorname{LM}(f), then the signature S(f)S(f) of ff is an element of LM(Syz(LM(F)))\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))).

Proof.

Let u=α,icα,ixαeiu=\sum_{\alpha,i}c_{\alpha,i}x^{\alpha}e_{i} be an element of RmR^{m} such that u¯=f\bar{u}=f and LM(u)=S(f)\operatorname{LM}(u)=S(f). Assume that S(f)=xβejS(f)=x^{\beta}e_{j} and put xξ=LM(S(f)¯)=xβLM(fj)x^{\xi}=\operatorname{LM}\left(\overline{S(f)}\right)=x^{\beta}\operatorname{LM}(f_{j}). Then, by definition of the Schreyer order, we have

xξ=max{xαLM(fi)cα,i0}.x^{\xi}=\max\{x^{\alpha}\operatorname{LM}(f_{i})\mid c_{\alpha,i}\neq 0\}.

Therefore as the proof of Proposition 2.5, putting

u0=xξ=xαLM(fi)cα,ixαei,u_{0}=\sum_{x^{\xi}=x^{\alpha}\operatorname{LM}(f_{i})}c_{\alpha,i}x^{\alpha}e_{i},

we obtain LM(u0)=S(f)\operatorname{LM}(u_{0})=S(f) and

f=xξ=xαLM(fi)cα,ixαfi+xξ>xβLM(fj)cβ,jxβfj.f=\sum_{x^{\xi}=x^{\alpha}\operatorname{LM}(f_{i})}c_{\alpha,i}x^{\alpha}f_{i}+\sum_{x^{\xi}>x^{\beta}\operatorname{LM}(f_{j})}c_{\beta,j}x^{\beta}f_{j}.

Hence it is enough to show that LM(u0)LM(Syz(LM(F)))\operatorname{LM}(u_{0})\in\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))). Since xξ>LM(f)x^{\xi}>\operatorname{LM}(f), it holds that xξ=xαLM(fi)(cα,iLC(fi))xαLM(fi)=0\sum_{x^{\xi}=x^{\alpha}\operatorname{LM}(f_{i})}\left(c_{\alpha,i}\operatorname{LC}(f_{i})\right)x^{\alpha}\operatorname{LM}(f_{i})=0. Then we have

xξ=xαLM(fi)(cα,iLC(fi))xαeiSyz(LM(F)).\sum_{x^{\xi}=x^{\alpha}\operatorname{LM}(f_{i})}\left(c_{\alpha,i}\operatorname{LC}(f_{i})\right)x^{\alpha}e_{i}\in\mathrm{Syz}(\operatorname{LM}(F)).

Using the same logic in the proof of Proposition 2.5, we obtain LM(u0)LM(Syz(LM(F)))\operatorname{LM}(u_{0})\in\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))). ∎

Lemma 3.8.

Let ff be an element of I{0}I\setminus\{0\} and uu an element of RmR^{m} such that u¯=f\bar{u}=f. The equality LM(u)=S(f)\operatorname{LM}(u)=S(f) holds if and only if LM(u)\operatorname{LM}(u) is not an element of LM(Syz(F))\operatorname{LM}(\mathrm{Syz}(F)).

Proof.

By definition of signatures, inequality LM(u)S(f)\operatorname{LM}(u)\succeq S(f) always holds. If the equality LM(u)=S(f)\operatorname{LM}(u)=S(f) holds, then we have LM(u)LM(Syz(F))\operatorname{LM}(u)\not\in\operatorname{LM}(\mathrm{Syz}(F)) from Proposition 3.2. Conversely, if it holds that LM(u)>S(f)\operatorname{LM}(u)>S(f), let vv be an element of RmR^{m} such that v¯=f\bar{v}=f and LM(v)=S(f)\operatorname{LM}(v)=S(f). Then uvu-v is a syzygy of FF. Therefore we obtain that LM(u)=LM(uv)LM(Syz(F))\operatorname{LM}(u)=\operatorname{LM}(u-v)\in\operatorname{LM}(\mathrm{Syz}(F)). ∎

Proof of Theorem 3.5.

[(a) \implies (b)] If FF is a Gröbner basis, then for any S-pair p=(xγek,xδe)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell}), there exist polynomials h1,h2,,hth_{1},h_{2},\ldots,h_{t} in RR such that

Spoly(p)=1LC(fk)xγfk1LC(f)xδf=i=1thifi,LM(hifi)<LM(xδf)\mathrm{Spoly}(p)=\frac{1}{\operatorname{LC}(f_{k})}x^{\gamma}f_{k}-\frac{1}{\operatorname{LC}(f_{\ell})}x^{\delta}f_{\ell}=\sum_{i=1}^{t}h_{i}f_{i},\ \operatorname{LM}(h_{i}f_{i})<\operatorname{LM}(x^{\delta}f_{\ell})

by taking the normal form of Spoly(p)\mathrm{Spoly}(p) with FF. Let

u=1LC(fk)xγek1LC(f)xδei=1thiei.u=\frac{1}{\operatorname{LC}(f_{k})}x^{\gamma}e_{k}-\frac{1}{\operatorname{LC}(f_{\ell})}x^{\delta}e_{\ell}-\sum_{i=1}^{t}h_{i}e_{i}.

Since LM(hifi)<LM(xδf)\operatorname{LM}(h_{i}f_{i})<\operatorname{LM}(x^{\delta}f_{\ell}), we have LM(u)=xδeLM(Syz(F))\operatorname{LM}(u)=x^{\delta}e_{\ell}\in\operatorname{LM}(\mathrm{Syz}(F)). Therefore the guessed signature of pp is not the signature of Spoly(p)\mathrm{Spoly}(p) since any signature is not an element of LM(Syz(F))\operatorname{LM}(\mathrm{Syz}(F)) (Proposition 3.2).

[(b) \implies (c)] It is trivial.

[(c) \implies (d)] From Lemma 3.6, the initial module in(Syz(LM(F)))\operatorname{in}_{\prec}\left(\mathrm{Syz}(\operatorname{LM}(F))\right) is generated by a set {S^(p)p is a standard S-pair}\{\hat{S}(p)\mid\text{$p$ is a standard S-pair}\}. This set is a subset of LM(Syz(F))\operatorname{LM}(\mathrm{Syz}(F)) from the assumption and Lemma 3.8. Therefore the equality LM(Syz(F))=LM(Syz(LM(F)))\operatorname{LM}(\mathrm{Syz}(F))=\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))) holds.

[(d) \implies (e)] For any non-zero element fIf\in I, the signature S(f)S(f) is not an element of LM(Syz(F))\operatorname{LM}(\mathrm{Syz}(F)) (Proposition 3.2). From (d), the signature S(f)S(f) is also not an element of LM(Syz(LM(F)))\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))), therefore it holds that LM(S(f)¯)=LM(f)\operatorname{LM}\left(\overline{S(f)}\right)=\operatorname{LM}(f) by Lemma 3.7.

[(e) \implies (a)] For any non-zero element fIf\in I, we have LM(f)=LM(S(f)¯)LM(f1),,LM(fm)\operatorname{LM}(f)=\operatorname{LM}\left(\overline{S(f)}\right)\in\langle\operatorname{LM}(f_{1}),\ldots,\operatorname{LM}(f_{m})\rangle. Therefore the tuple FF is a Gröbner basis. ∎

As a consequence of Theorem 3.5, we find an algebraic obstacle where the tuple of generators FF is a Gröbner basis. Namely, for a tuple of generators FF,

F is a Gröbner basisLM(Syz(LM(F))/LM(Syz(F))=0.\text{$F$ is a Gr\"{o}bner\ basis}\Leftrightarrow\langle\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F))\rangle/\langle\operatorname{LM}(\mathrm{Syz}(F))\rangle=0.

In latter, we put

LSy(F)=LM(Syz(F)),LSyL(F)=LM(Syz(LM(F)))\mathrm{LSy(\mathit{F})}{}=\operatorname{LM}(\mathrm{Syz}(F)),\ \mathrm{LSyL(\mathit{F})}{}=\operatorname{LM}(\mathrm{Syz}(\operatorname{LM}(F)))

for short. Moreover, we put

Gobs(F)=LSyL(F)/LSy(F)=in(Syz(LM(F)))/in(Syz(F))\mathrm{Gobs(\mathit{F})}{}=\langle\mathrm{LSyL(\mathit{F})}{}\rangle/\langle\mathrm{LSy(\mathit{F})}{}\rangle=\operatorname{in}_{\prec}(\mathrm{Syz}(\operatorname{LM}(F)))/\operatorname{in}_{\prec}(\mathrm{Syz}(F))

and call it the module of Gröbnerness obstructions of FF.

We can compute the smallest non-zero element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{} using a step-by-step method.

Proposition 3.9.

Let sis_{i} be the ii-th smallest element of the set

{S^(p)p is a standard S-pair}.\{\hat{S}(p)\mid\text{$p$ is a standard S-pair}\}.

Let pp be a standard S-pair such that S^(p)=si\hat{S}(p)=s_{i}. Assume that i=1i=1 or s1,s2,,si1LSy(F)(i2)s_{1},s_{2},\ldots,s_{i-1}\in\mathrm{LSy(\mathit{F})}{}\ (i\geq 2). Then siLSy(F)s_{i}\in\mathrm{LSy(\mathit{F})}{} if and only if the reminder of any division of the S-polynomial Spoly(p)\mathrm{Spoly}(p) with FF is 0.

Proof.

Assume that p=(xγek,xδe)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell}). Let h1,,hmh_{1},\ldots,h_{m} be the quotients and rir_{i} the remainder of any division of Spoly(p)\mathrm{Spoly}(p) with FF. Then it holds that

Spoly(p)=t=1ahtft+r,LM(htft)<xδLM(f)\mathrm{Spoly}(p)=\sum_{t=1}^{a}h_{t}f_{t}+r,\ \operatorname{LM}(h_{t}f_{t})<x^{\delta}\operatorname{LM}(f_{\ell})

and r=0r=0 or LM(r)\operatorname{LM}(r) does not belong to LM(F)\langle\operatorname{LM}(F)\rangle. Put u=xγLC(fk)ekxδLC(f)et=1ahtetu=\frac{x^{\gamma}}{\operatorname{LC}(f_{k})}e_{k}-\frac{x^{\delta}}{\operatorname{LC}(f_{\ell})}e_{\ell}-\sum_{t=1}^{a}h_{t}e_{t}. We have LM(u)=si\operatorname{LM}(u)=s_{i} and u¯=r\overline{u}=r. It implies that S(r)siS(r)\leq s_{i} if r0r\neq 0.

If r=0r=0, then the element uu is a syzygy of FF. Therefore we have siLSy(F)s_{i}\in\mathrm{LSy(\mathit{F})}{}.

Let us show the converse. If i=1i=1 and r0r\neq 0, then the signature S(r)S(r) is an element of LSyL(F)\mathrm{LSyL(\mathit{F})}{} from Lemma 3.7 since LM(r)LM(F)\operatorname{LM}(r)\not\in\langle\operatorname{LM}(F)\rangle. Therefore we obtain s1=S(r)s_{1}=S(r) and s1LSy(F)s_{1}\not\in\mathrm{LSy(\mathit{F})}{} since s1s_{1} is the minimum element of LSyL(F)\mathrm{LSyL(\mathit{F})}{}. If i2i\geq 2 and r0r\neq 0, then the signature S(r)S(r) is also an element of LSyL(F)\mathrm{LSyL(\mathit{F})}{}. Since S(r)siS(r)\leq s_{i}, there exists an index jj smaller than or equal to ii such that sj|S(r)s_{j}|S(r) (note that LSyL(F)\langle\mathrm{LSyL(\mathit{F})}{}\rangle is generated by {si}\{s_{i}\}). Since sjLSy(F)s_{j}\in\mathrm{LSy(\mathit{F})}{} if j<ij<i and S(r)LSy(F)S(r)\not\in\mathrm{LSy(\mathit{F})}{}, we have j=ij=i. Therefore we obtain si=S(r)s_{i}=S(r) and siLSy(F)s_{i}\not\in\mathrm{LSy(\mathit{F})}{}. ∎

4. Why do we need to compute divisions of S-polynomials?

As an application of Theorem 3.5, let us give a mathematical answer to the question “Why do we need to compute remainders of divisions of S-polynomials to get Gröbner bases?”. As far as the author knows, all previous algorithms for computing Gröbner bases require computing remainders of divisions of S-polynomials by using division algorithms, Macaulay matrices and so on. Thus, several researchers have evaluated the computational complexity and presented improvements of these computations. It is well known that this method certainly produce a non-trivial leading monomial and is a part of the Buchberger’s criterion. However, in the context of simply obtaining Gröbner bases, we still do not know if this method is really necessary.

From the previous section, we know that in order to get Gröbner bases we have to vanish the non-zero elements in Gobs(F)=LSyL(F)/LSy(F)\mathrm{Gobs(\mathit{F})}{}=\langle\mathrm{LSyL(\mathit{F})}{}\rangle/\langle\mathrm{LSy(\mathit{F})}{}\rangle. Let us focus on the minimum element in LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{}. Then the remainder of a division of an S-polynomial appears naturally.

Theorem 4.1.

Assume that FF is not a Gröbner basis. Let ff be a non-zero element in II such that LM(f)LM(F)\operatorname{LM}(f)\not\in\langle\operatorname{LM}(F)\rangle.

  • (a)

    The signature S(f)S(f) is an element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{}.

  • (b)

    If the signature S(f)S(f) is the minimum element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{} and S(f)=S^(p)S(f)=\hat{S}(p) for an S-pair pp, then it holds that LM(f)=LM(r)\operatorname{LM}(f)=\operatorname{LM}(r) and S(f)=S(r)S(f)=S(r), where rr is the remainder of any division of Spoly(p)\mathrm{Spoly}(p) with FF.

  • (c)

    In (b), the difference

    1LC(f)f1LC(r)r\frac{1}{\operatorname{LC}(f)}f-\frac{1}{\operatorname{LC}(r)}r

    is 0 or an element of signature smaller than S(f)S(f). In particular, if the all terms of ff are not in LM(F)\langle\operatorname{LM}(F)\rangle, then f=crf=cr for some cKc\in K.

Proof.

For (a), if the signature S(f)S(f) is not an element of LSyL(F)\mathrm{LSyL(\mathit{F})}{}, then it holds that LM(S(f)¯)=LM(f)\operatorname{LM}\left(\overline{S(f)}\right)=\operatorname{LM}(f) from Lemma 3.7. However, it contradicts to LM(f)LM(F)\operatorname{LM}(f)\not\in\langle\operatorname{LM}(F)\rangle. Since the signature of an element in I{0}I\setminus\{0\} is not in LSy(F)\mathrm{LSy(\mathit{F})}{}, the signature S(f)S(f) is an element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{}.

For (b) and (c), assume that the signature S(f)S(f) is the minimum element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{} and S(f)=S^(p)S(f)=\hat{S}(p) for an S-pair p=(xγek,xδe)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell}). Take a division of the S-polynomial Spoly(p)=1LC(fk)xγfk1LC(f)xδf\mathrm{Spoly}(p)=\frac{1}{\operatorname{LC}(f_{k})}x^{\gamma}f_{k}-\frac{1}{\operatorname{LC}(f_{\ell})}x^{\delta}f_{\ell} with FF:

Spoly(p)=i=1mhifi+r,LM(hifi)<LM(xδf).\mathrm{Spoly}(p)=\sum_{i=1}^{m}h_{i}f_{i}+r,\ \operatorname{LM}(h_{i}f_{i})<\operatorname{LM}(x^{\delta}f_{\ell}).

Put u=1LC(fk)xγek1LC(f)xδei=1mhieiu=\frac{1}{\operatorname{LC}(f_{k})}x^{\gamma}e_{k}-\frac{1}{\operatorname{LC}(f_{\ell})}x^{\delta}e_{\ell}-\sum_{i=1}^{m}h_{i}e_{i}. Then we have u¯=r\bar{u}=r and LM(u)=xδe=S(f)LSy(F)\operatorname{LM}(u)=x^{\delta}e_{\ell}=S(f)\not\in\mathrm{LSy(\mathit{F})}{} (Proposition 3.2). Therefore it holds that r=u¯0r=\bar{u}\neq 0 and S(r)=S(f)S(r)=S(f) from Lemma 3.8. Let vv be an element in RmR^{m} such that v¯=f\bar{v}=f and LM(v)=S(f)\operatorname{LM}(v)=S(f). Put

w=1LC(v)v1LC(u)uandg=w¯=1LC(v)f1LC(u)r.w=\frac{1}{\operatorname{LC}(v)}v-\frac{1}{\operatorname{LC}(u)}u\ \text{and}\ g=\bar{w}=\frac{1}{\operatorname{LC}(v)}f-\frac{1}{\operatorname{LC}(u)}r.

If g=0g=0, then we obtain f=LC(v)LC(u)rf=\frac{\operatorname{LC}(v)}{\operatorname{LC}(u)}r and LM(f)=LM(r)\operatorname{LM}(f)=\operatorname{LM}(r). In particular, the difference in (c) is also 0. If g0g\neq 0, then it holds that

S(g)LM(w)<LM(u)=S(f).S(g)\leq\operatorname{LM}(w)<\operatorname{LM}(u)=S(f).

Since the signature S(f)S(f) is the minimum element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{}, the signature S(g)S(g) is not an element of LSyL(F)\mathrm{LSyL(\mathit{F})}{}. Therefore we have LM(g)=LM(S(g)¯)LM(F)\operatorname{LM}(g)=\operatorname{LM}\left(\overline{S(g)}\right)\in\langle\operatorname{LM}(F)\rangle (Lemma 3.7). It implies that

LC(f)LC(v)LM(f)=LC(r)LC(u)LM(r)\frac{\operatorname{LC}(f)}{\operatorname{LC}(v)}\operatorname{LM}(f)=\frac{\operatorname{LC}(r)}{\operatorname{LC}(u)}\operatorname{LM}(r)

since those are not elements of LM(F)\langle\operatorname{LM}(F)\rangle. In particular, we have

1LC(f)f1LC(r)r=LC(u)LC(v)LC(r)f1LC(r)r=LC(u)LC(r)g,\frac{1}{\operatorname{LC}(f)}f-\frac{1}{\operatorname{LC}(r)}r=\frac{\operatorname{LC}(u)}{\operatorname{LC}(v)\operatorname{LC}(r)}f-\frac{1}{\operatorname{LC}(r)}r=\frac{\operatorname{LC}(u)}{\operatorname{LC}(r)}g,

therefore the signature of the difference in (c) is smaller than S(f)S(f).

Note that in general, an element hI{0}h\in I\setminus\{0\} of signature smaller than min(LSyL(F)LSy(F))\min\left(\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{}\right) satisfies that LM(h)LM(F)\operatorname{LM}(h)\in\langle\operatorname{LM}(F)\rangle from Lemma 3.7 again. Then the difference in (c) is 0 if the all terms of ff (and rr) are not in LM(f)\langle\operatorname{LM}(f)\rangle. ∎

We say a tuple of polynomials FF is simplified if for any fFf\in F, the all non-leading terms of ff are not in LM(F)\langle\operatorname{LM}(F)\rangle. It is easy to make a simplified tuple F~\tilde{F} such that LM(F)=LM(F~)\operatorname{LM}(F)=\operatorname{LM}(\tilde{F}) by taking reductions with FF over non-leading terms. We call such a tuple F~\tilde{F} a simplification of FF. Note that common implementations of computing reduced Gröbner bases includes steps taking simplifications since any reduced Gröbner basis is simplified. Then assuming that given tuple of polynomials is simplified does not make the situation special.

We give an answer to the question “Why do we need to compute remainders of divisions of S-polynomials to get Gröbner bases?” for a homogeneous simplified polynomials FF and a graded term order <<.

Lemma 4.2.

Assume that FF consists of homogeneous elements and << is graded. Then for any homogeneous element fI{0}f\in I\setminus\{0\}, it holds that degS(f)=degf\deg S(f)=\deg f. Here we define the degree of xαeix^{\alpha}e_{i} as degxαei=degxαfi\deg x^{\alpha}e_{i}=\deg x^{\alpha}f_{i}.

Proof.

Let uu be an element of RmR^{m} such that u¯=f\bar{u}=f and LM(u)=S(f)\operatorname{LM}(u)=S(f). Denote by udu_{d} the terms of uu of degree dd. We have udSyz(F)u_{d}\in\mathrm{Syz}(F) for ddegfd\neq\deg f. Since S(f)LSy(F)S(f)\not\in\mathrm{LSy(\mathit{F})}{}, we have S(f)=LM(udegf)S(f)=\operatorname{LM}(u_{\deg f}). ∎

Theorem 4.3.

Assume that FF is not a Gröbner basis, FF consists of homogeneous elements and << is graded. Let ss be the minimum element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{}. Let ff be a non-zero homogeneous element in II such that LM(f)LM(F)\operatorname{LM}(f)\not\in\langle\operatorname{LM}(F)\rangle. Put F=F{f}F^{\prime}=F\cup\{f\} and fm+1=ff_{m+1}=f. If S(fm+1)>sS(f_{m+1})>s, then ss is the minimum element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F}^{\prime})}\setminus\mathrm{LSy(\mathit{F}^{\prime})}.

Proof.

First we show that sLSyL(F)LSy(F)s\in\mathrm{LSyL(\mathit{F}^{\prime})}\setminus\mathrm{LSy(\mathit{F}^{\prime})}. Since LSyL(F)LSyL(F)\mathrm{LSyL(\mathit{F})}{}\subset\mathrm{LSyL(\mathit{F}^{\prime})}, it is clear that sLSyL(F)s\in\mathrm{LSyL(\mathit{F}^{\prime})}. If sLSy(F)s\in\mathrm{LSy(\mathit{F}^{\prime})}, then there exist a homogeneous element uRm=Re1Remu\in R^{m}=Re_{1}\oplus\cdots\oplus Re_{m} and a homogeneous element hRh\in R such that s=LM(u+hem+1)s=\operatorname{LM}(u+he_{m+1}) and u+hem+1u+he_{m+1} is a homogeneous element in Syz(F)\mathrm{Syz}(F^{\prime}). Since sLSy(F)s\not\in\mathrm{LSy(\mathit{F})}{} and fm+10f_{m+1}\neq 0, we have h0h\neq 0 and u0u\neq 0. Moreoreve, since sRms\in R^{m}, we have s=LM(u)LM(hem+1)s=\operatorname{LM}(u)\succ\operatorname{LM}(he_{m+1}). Indeed, if LM(u)LM(hem+1)\operatorname{LM}(u)\prec\operatorname{LM}(he_{m+1}), then s=LM(hem+1)Rem+1s=\operatorname{LM}(he_{m+1})\in Re_{m+1}. However, it is a contradiction to RmRem+1={0}R^{m}\cap Re_{m+1}=\{0\}. From Lemma 3.8, it and the equality hfm+1=u¯hf_{m+1}=-\bar{u} implies that s=S(hfm+1)s=S(hf_{m+1}). Therefore it holds that

degs=deghfm+1degfm+1=degS(fm+1).\deg s=\deg hf_{m+1}\geq\deg f_{m+1}=\deg S(f_{m+1}).

Since S(fm+1)>sS(f_{m+1})>s and << is graded, the equality degs=degS(fm+1)\deg s=\deg S(f_{m+1}) holds. Then we have hKh\in K. However, it implies that s=S(fm+1)s=S(f_{m+1}) and it is a contradiction to S(fm+1)>sS(f_{m+1})>s.

Next we show that ss is minimum in LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F}^{\prime})}\setminus\mathrm{LSy(\mathit{F}^{\prime})}. If there exists an S-pair p=(xγek,xδe)(1k<m+1)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell})\ (1\leq k<\ell\leq m+1) of FF^{\prime} such that xδeLSyL(F)LSy(F)x^{\delta}e_{\ell}\in\mathrm{LSyL(\mathit{F}^{\prime})}\setminus\mathrm{LSy(\mathit{F}^{\prime})} and xδe<sx^{\delta}e_{\ell}<s, then =m+1\ell=m+1 since ss is minimum in LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{} and LSy(F)LSy(F)\mathrm{LSy(\mathit{F})}{}\subset\mathrm{LSy(\mathit{F}^{\prime})}. Therefore we have

degsdegxδfm+1degfm+1=degS(fm+1).\deg s\geq\deg x^{\delta}f_{m+1}\geq\deg f_{m+1}=\deg S(f_{m+1}).

Since S(fm+1)>sS(f_{m+1})>s, the equalities

degs=degxδfm+1=degfm+1\deg s=\deg x^{\delta}f_{m+1}=\deg f_{m+1}

hold. Then we have xδ=1x^{\delta}=1. However, by definition of S-pairs, it implies that LM(fm+1)=xγLM(fk)LM(F)\operatorname{LM}(f_{m+1})=x^{\gamma}\operatorname{LM}(f_{k})\in\langle\operatorname{LM}(F)\rangle, and it is a contradiction. ∎

Corollary 4.4.

Assume that FF is not a Gröbner basis, FF consists of homogeneous elements and << is graded. Let GG be a homogeneous Gröbner basis of II including FF. Then there exist a subset FF^{\prime} of GG including FF, an element gGFg\in G\setminus F^{\prime} and an S-pair pp of FF such that

  • the guessed signature S^(p)\hat{S}(p) is the minimum element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{},

  • LM(g)=LM(r)\operatorname{LM}(g)=\operatorname{LM}(r) and SF(g)=SF(r)=S^(p)S_{F^{\prime}}(g)=S_{F^{\prime}}(r)=\hat{S}(p), where SF(g)S_{F^{\prime}}(g) is the signature of gg with respect to FF^{\prime}, and rr is the remainder of any division of an S-polynomial Spoly(p)\mathrm{Spoly}(p) with FF^{\prime},

  • if GG is simplified, then there exists cKc\in K such that g=crg=cr.

Proof.

Let ss be the minimum element of LSyL(F)LSy(F)\mathrm{LSyL(\mathit{F})}{}\setminus\mathrm{LSy(\mathit{F})}{}. Let p=(xγek,xδe)(1k<m)p=(x^{\gamma}e_{k},x^{\delta}e_{\ell})\ (1\leq k<\ell\leq m) be an S-pair such that S^(p)=s\hat{S}(p)=s. Put Fm=FF_{m}=F. Pick an element fm+1GFmf_{m+1}\in G\setminus F_{m} such that LM(fm+1)LM(Fm)\operatorname{LM}(f_{m+1})\not\in\langle\operatorname{LM}(F_{m})\rangle. Put Fm+1=F{fm+1}F_{m+1}=F\cup\{f_{m+1}\}. Let SFm(fm+1)S_{F_{m}}(f_{m+1}) be the signature of fm+1f_{m+1} with respect to FmF_{m}. If SFm(fm+1)>sS_{F_{m}}(f_{m+1})>s, then ss is the minimum element of LSyL(Fm+1)LSy(Fm+1)\mathrm{LSyL(\mathit{F}_{m+1})}\setminus\mathrm{LSy(\mathit{F}_{m+1})}. Therefore Fm+1F_{m+1} is not a Gröbner basis. Repeat this process until it picks an element fm+kGFm+k1f_{m+k}\in G\setminus F_{m+k-1} such that LM(fm+k)LM(Fm+k1)\operatorname{LM}(f_{m+k})\not\in\langle\operatorname{LM}(F_{m+k-1})\rangle and

s=SFm+k1(fm+k)=min(LSyL(Fm+k1)LSy(Fm+k1))=xδf.s=S_{F_{m+k-1}}(f_{m+k})=\min\left(\mathrm{LSyL(\mathit{F}_{m+k-1})}\setminus\mathrm{LSy(\mathit{F}_{m+k-1})}\right)=x^{\delta}f_{\ell}.

Let rr be the remainder of any division of the S-polynomial

Spoly(p)=1LC(fk)xγfk1LC(f)xδf\mathrm{Spoly}(p)=\frac{1}{\operatorname{LC}(f_{k})}x^{\gamma}f_{k}-\frac{1}{\operatorname{LC}(f_{\ell})}x^{\delta}f_{\ell}

with Fm+k1F_{m+k-1}. Then, from Theorem 4.1, we have LM(fm+k)=LM(r)\operatorname{LM}(f_{m+k})=\operatorname{LM}(r) and SFm+k1(fm+k)=SFm+k1(r)=sS_{F_{m+k-1}}(f_{m+k})=S_{F_{m+k-1}}(r)=s. Moreover, if GG is simplified, then the all terms of fm+kf_{m+k} are not in LM(Fm+k1)LM(G)\langle\operatorname{LM}(F_{m+k-1})\rangle\subset\langle\operatorname{LM}(G)\rangle, therefore we have fm+k=crf_{m+k}=cr, where c=LC(fm+k)/LC(r)c=\operatorname{LC}(f_{m+k})/\operatorname{LC}(r). ∎

5. Examples of transitions of Gobs(F)\mathrm{Gobs(\mathit{F})}{} in a signature based algorithm

Let us look at computational examples of Gobs(F)\mathrm{Gobs(\mathit{F})}{}. We use a naive implementation of a signature based algorithm (Algorithm 1), which is similar to the algorithms presented in [AP11, VY17, Sak20]. The difference of Algorithm 1 is that it iterates to update the tuple of generators FF, and then the signatures change for each step. The performance is not discussed here. The termination is clear since RR is a Noether ring. We use SageMath[The22] to implement and run Algorithm 1.

Algorithm 1 Signature based algorithm
0:  a tuple F=(f1,f2,,fm)F=(f_{1},f_{2},\ldots,f_{m}) of elements in RR
0:  a Gröbner basis of I=f1,f2,,fmI=\langle f_{1},f_{2},\ldots,f_{m}\rangle
1:  SS\leftarrow\emptyset
2:  while S=S=\emptyset do
3:     D{S^(p)p is a standard S-pair of F}D\leftarrow\{\hat{S}(p)\mid\text{$p$ is a standard S-pair of $F$}\}
4:     sort DD and pick standard S-pairs, let D={S^(p1),,S^(pd)}D=\{\hat{S}(p_{1}),\ldots,\hat{S}(p_{d})\} and S^(p1)S^(p2)S^(pd)\hat{S}(p_{1})\prec\hat{S}(p_{2})\prec\cdots\hat{S}(p_{d})
5:     for i = 1,2,…,d do
6:        rthe remainder of any division of Spoly(pi) with Fr\leftarrow\text{the remainder of any division of $\mathrm{Spoly}(p_{i})$ with $F$}
7:        if r=0r=0 then
8:           SS{S^(pi)}S\leftarrow S\cup\{\hat{S}(p_{i})\}
9:        end if
10:        if r0r\neq 0 then
11:           FF{r}F\leftarrow F\cup\{r\}, SS\leftarrow\emptyset
12:           break this loop
13:        end if
14:     end for
15:     if S = D then
16:        return  FF
17:     end if
18:  end while
Example 5.1.

Let R=[x,y,z]R=\mathbb{Q}[x,y,z] be the polynomial ring equipped with the graded lexicographic order of x>y>zx>y>z. Let

f1\displaystyle f_{1} =x3yz,\displaystyle=x^{3}y-z,
f2\displaystyle f_{2} =xyz2y,\displaystyle=xyz-2y,
f3\displaystyle f_{3} =xy2z2.\displaystyle=xy^{2}-z^{2}.

Using Algorithm 1, we get a sequence of tuples F3,F4,,F11F_{3},F_{4},\ldots,F_{11} such that

  • Fj=(f1,f2,,fj)F_{j}=(f_{1},f_{2},\ldots,f_{j}), LM(fj)LM(f1),LM(f2),,LM(fj1)\operatorname{LM}(f_{j})\not\in\langle\operatorname{LM}(f_{1}),\operatorname{LM}(f_{2}),\ldots,\operatorname{LM}(f_{j-1})\rangle,

  • the signature of fj+1f_{j+1} with respect to FjF_{j} is the minimum element of LSyL(Fj)LSy(Fj)\mathrm{LSyL(\mathit{F}_{\mathit{j}})}\setminus\mathrm{LSy(\mathit{F}_{\mathit{j}})} and

  • F11F_{11} is a Gröbner basis of I=f1,f2,f3I=\langle f_{1},f_{2},f_{3}\rangle.

Let us observe transition of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})}. The following are minimal free resolutions of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})} computed by sage math packages, and we also compare the monomial ideals generated by LM(Fi)\operatorname{LM}(F_{i}). The generator of each monomial ideal wrote in the last is the new leading monomial LM(fi)\operatorname{LM}(f_{i}) added in that step.

Gobs(F3)R3R6R30,\displaystyle\mathrm{Gobs(\mathit{F}_{3})}\leftarrow R^{3}\leftarrow R^{6}\leftarrow R^{3}\leftarrow 0, LM(F3)\displaystyle\langle\operatorname{LM}(F_{3})\rangle =x3y,xyz,xy2,\displaystyle=\left\langle\begin{aligned} &x^{3}y,xyz,\\ &xy^{2}\end{aligned}\right\rangle,
Gobs(F4)R2R5R30,\displaystyle\mathrm{Gobs(\mathit{F}_{4})}\leftarrow R^{2}\leftarrow R^{5}\leftarrow R^{3}\leftarrow 0, LM(F4)\displaystyle\langle\operatorname{LM}(F_{4})\rangle =x3y,xyz,xy2,z3,\displaystyle=\left\langle\begin{aligned} &x^{3}y,xyz,\\ &xy^{2},z^{3}\end{aligned}\right\rangle,
Gobs(F5)R4R8R40,\displaystyle\mathrm{Gobs(\mathit{F}_{5})}\leftarrow R^{4}\leftarrow R^{8}\leftarrow R^{4}\leftarrow 0, LM(F5)\displaystyle\langle\operatorname{LM}(F_{5})\rangle =xyz,xy2z3,x2y,\displaystyle=\left\langle\begin{aligned} &xyz,xy^{2}\\ &z^{3},x^{2}y\end{aligned}\right\rangle,
Gobs(F6)R5R11R7R10,\displaystyle\mathrm{Gobs(\mathit{F}_{6})}\leftarrow R^{5}\leftarrow R^{11}\leftarrow R^{7}\leftarrow R^{1}\leftarrow 0, LM(F6)\displaystyle\langle\operatorname{LM}(F_{6})\rangle =xy,z3,\displaystyle=\langle xy,z^{3}\rangle,
Gobs(F7)R4R9R6R10,\displaystyle\mathrm{Gobs(\mathit{F}_{7})}\leftarrow R^{4}\leftarrow R^{9}\leftarrow R^{6}\leftarrow R^{1}\leftarrow 0, LM(F7)\displaystyle\langle\operatorname{LM}(F_{7})\rangle =xy,z3,y2z,\displaystyle=\langle xy,z^{3},y^{2}z\rangle,
Gobs(F8)R2R4R20,\displaystyle\mathrm{Gobs(\mathit{F}_{8})}\leftarrow R^{2}\leftarrow R^{4}\leftarrow R^{2}\leftarrow 0, LM(F8)\displaystyle\langle\operatorname{LM}(F_{8})\rangle =xy,z3,y2z,y3,\displaystyle=\left\langle\begin{aligned} &xy,z^{3},\\ &y^{2}z,y^{3}\end{aligned}\right\rangle,
Gobs(F9)R1R2R10,\displaystyle\mathrm{Gobs(\mathit{F}_{9})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0, LM(F9)\displaystyle\langle\operatorname{LM}(F_{9})\rangle =xy,z3,y2z,y3,xz2,\displaystyle=\left\langle\begin{aligned} &xy,z^{3},y^{2}z,\\ &y^{3},xz^{2}\end{aligned}\right\rangle,
Gobs(F10)R1R2R10,\displaystyle\mathrm{Gobs(\mathit{F}_{10})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0, LM(F10)\displaystyle\langle\operatorname{LM}(F_{10})\rangle =xy,z3,y2z,y3,xz2,yz2,\displaystyle=\left\langle\begin{aligned} &xy,z^{3},y^{2}z,\\ &y^{3},xz^{2},yz^{2}\end{aligned}\right\rangle,
Gobs(F11)0,\displaystyle\mathrm{Gobs(\mathit{F}_{11})}\leftarrow 0, LM(F11)\displaystyle\langle\operatorname{LM}(F_{11})\rangle =xy,z3,y2z,y3,yz2,xz.\displaystyle=\left\langle\begin{aligned} &xy,z^{3},y^{2}z,\\ &y^{3},yz^{2},xz\end{aligned}\right\rangle.

For more detail, see Appendix.

Example 5.2.

Let us change the term order from Example 5.1. If we set the lexicographic order of x>y>zx>y>z on RR, then we get a sequence of tuples F3,F4,,F13F_{3},F_{4},\ldots,F_{13} with the same conditions as in Example 5.1. Let us observe the transition of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})}:

Gobs(F3)R3R6R30,\displaystyle\mathrm{Gobs(\mathit{F}_{3})}\leftarrow R^{3}\leftarrow R^{6}\leftarrow R^{3}\leftarrow 0, LM(F3)\displaystyle\langle\operatorname{LM}(F_{3})\rangle =x3y,xy2,xyz,\displaystyle=\left\langle\begin{aligned} &x^{3}y,xy^{2},\\ &xyz\end{aligned}\right\rangle,
Gobs(F4)R3R6R30,\displaystyle\mathrm{Gobs(\mathit{F}_{4})}\leftarrow R^{3}\leftarrow R^{6}\leftarrow R^{3}\leftarrow 0, LM(F4)\displaystyle\langle\operatorname{LM}(F_{4})\rangle =x3y,xyz,y2,\displaystyle=\left\langle\begin{aligned} &x^{3}y,xyz,\\ &y^{2}\end{aligned}\right\rangle,
Gobs(F5)R2R5R30,\displaystyle\mathrm{Gobs(\mathit{F}_{5})}\leftarrow R^{2}\leftarrow R^{5}\leftarrow R^{3}\leftarrow 0, LM(F5)\displaystyle\langle\operatorname{LM}(F_{5})\rangle =x3y,xyzy2,xz3,\displaystyle=\left\langle\begin{aligned} &x^{3}y,xyz\\ &y^{2},xz^{3}\end{aligned}\right\rangle,
Gobs(F6)R4R8R40,\displaystyle\mathrm{Gobs(\mathit{F}_{6})}\leftarrow R^{4}\leftarrow R^{8}\leftarrow R^{4}\leftarrow 0, LM(F6)\displaystyle\langle\operatorname{LM}(F_{6})\rangle =xyz,y2,xz3,x2y,\displaystyle=\left\langle\begin{aligned} &xyz,y^{2},\\ &xz^{3},x^{2}y\end{aligned}\right\rangle,
Gobs(F7)R5R11R7R10,\displaystyle\mathrm{Gobs(\mathit{F}_{7})}\leftarrow R^{5}\leftarrow R^{11}\leftarrow R^{7}\leftarrow R^{1}\leftarrow 0, LM(F7)\displaystyle\langle\operatorname{LM}(F_{7})\rangle =y2,xz3,xy,\displaystyle=\left\langle\begin{aligned} &y^{2},xz^{3},\\ &xy\end{aligned}\right\rangle,
Gobs(F8)R5R12R9R20,\displaystyle\mathrm{Gobs(\mathit{F}_{8})}\leftarrow R^{5}\leftarrow R^{12}\leftarrow R^{9}\leftarrow R^{2}\leftarrow 0, LM(F8)\displaystyle\langle\operatorname{LM}(F_{8})\rangle =xz3,y,\displaystyle=\left\langle xz^{3},y\right\rangle,
Gobs(F9)R2R4R20,\displaystyle\mathrm{Gobs(\mathit{F}_{9})}\leftarrow R^{2}\leftarrow R^{4}\leftarrow R^{2}\leftarrow 0, LM(F9)\displaystyle\langle\operatorname{LM}(F_{9})\rangle =xz3,y,z8,\displaystyle=\left\langle\begin{aligned} &xz^{3},y,\\ &z^{8}\end{aligned}\right\rangle,
Gobs(F10)R2R4R20,\displaystyle\mathrm{Gobs(\mathit{F}_{10})}\leftarrow R^{2}\leftarrow R^{4}\leftarrow R^{2}\leftarrow 0, LM(F10)\displaystyle\langle\operatorname{LM}(F_{10})\rangle =xz3,y,z7,\displaystyle=\left\langle\begin{aligned} &xz^{3},y,\\ &z^{7}\end{aligned}\right\rangle,
Gobs(F11)R1R2R10,\displaystyle\mathrm{Gobs(\mathit{F}_{11})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0, LM(F11)\displaystyle\langle\operatorname{LM}(F_{11})\rangle =y,z7,xz2,\displaystyle=\left\langle\begin{aligned} &y,z^{7},\\ &xz^{2}\end{aligned}\right\rangle,
Gobs(F12)R1R2R10,\displaystyle\mathrm{Gobs(\mathit{F}_{12})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0, LM(F12)\displaystyle\langle\operatorname{LM}(F_{12})\rangle =y,xz2z6,\displaystyle=\left\langle\begin{aligned} &y,xz^{2}\\ &z^{6}\end{aligned}\right\rangle,
Gobs(F13)0,\displaystyle\mathrm{Gobs(\mathit{F}_{13})}\leftarrow 0, LM(F13)\displaystyle\langle\operatorname{LM}(F_{13})\rangle =y,z6xz.\displaystyle=\left\langle\begin{aligned} &y,z^{6}\\ &xz\end{aligned}\right\rangle.
Example 5.3.

Let us see an interesting example. Let R=[x,y,z,w]R=\mathbb{Q}[x,y,z,w] be the polynomial ring equipped with the lexicographic order of x>y>z>wx>y>z>w. Let

f1\displaystyle f_{1} =xy+3y22zw,\displaystyle=xy+3y^{2}-2zw,
f2\displaystyle f_{2} =2x2+y25w2,\displaystyle=2x^{2}+y^{2}-5w^{2},
f3\displaystyle f_{3} =zw+32w2\displaystyle=zw+\frac{3}{2}w^{2}

and put F=(f1,f2,f3)F=(f_{1},f_{2},f_{3}). Then we have

Gobs(F)=ye2/xye2,yzwe2,x2e3,xye3.\mathrm{Gobs(\mathit{F})}{}=\langle ye_{2}\rangle/\langle xye_{2},yzwe_{2},x^{2}e_{3},xye_{3}\rangle.

Therefore one may consider that we obtain a Gröbner basis of I=f1,f2,f3I=\langle f_{1},f_{2},f_{3}\rangle by only one step that reduces the S-polynomial Spoly(xe1,ye2)=xf112yf2\mathrm{Spoly}(xe_{1},ye_{2})=xf_{1}-\frac{1}{2}yf_{2}. From Theorem 4.1, the leading monomial of the remainder of any division of Spoly(xe1,ye2)\mathrm{Spoly}(xe_{1},ye_{2}) with FF is constant and it is xw2xw^{2} by computing a division of Spoly(xe1,ye2)\mathrm{Spoly}(xe_{1},ye_{2}). However, in fact, we have xy,x2,zw,xw2in<(I)=x2,xy,xw2,y4,y3z,zw\langle xy,x^{2},zw,xw^{2}\rangle\subsetneq\operatorname{in}_{<}(I)=\langle x^{2},xy,xw^{2},y^{4},y^{3}z,zw\rangle, therefore we do not obtain a Gröbner basis of II by eliminating the minimum guessed signature ye2ye_{2}. Moreover, the first Betti number of the module of Gröbnerness obstructions increase.

On the other hand, if we set the degree reversed lexicographic order of x>y>z>wx>y>z>w on RR, then we obtain a Gröbner basis of II by only one step that reduces Spoly(xe1,ye2)\mathrm{Spoly}(xe_{1},ye_{2}). Let us observe the transitions of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})} in these two cases. For the lexicographic order:

Gobs(F3)R1R2R10,\displaystyle\mathrm{Gobs(\mathit{F}_{3})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0, LM(F3)\displaystyle\langle\operatorname{LM}(F_{3})\rangle =x2,xy,zw,\displaystyle=\left\langle x^{2},xy,zw\right\rangle,
Gobs(F4)R2R4R20,\displaystyle\mathrm{Gobs(\mathit{F}_{4})}\leftarrow R^{2}\leftarrow R^{4}\leftarrow R^{2}\leftarrow 0, LM(F4)\displaystyle\langle\operatorname{LM}(F_{4})\rangle =x2,xy,zw,xw2,\displaystyle=\left\langle\begin{aligned} &x^{2},xy,zw,\\ &xw^{2}\end{aligned}\right\rangle,
Gobs(F5)R1R2R10,\displaystyle\mathrm{Gobs(\mathit{F}_{5})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0, LM(F5)\displaystyle\langle\operatorname{LM}(F_{5})\rangle =x2,xy,zw,xw2,y3z,\displaystyle=\left\langle\begin{aligned} &x^{2},xy,zw,\\ &xw^{2},y^{3}z\end{aligned}\right\rangle,
Gobs(F6)0,\displaystyle\mathrm{Gobs(\mathit{F}_{6})}\leftarrow 0, LM(F6)\displaystyle\langle\operatorname{LM}(F_{6})\rangle =x2,xy,zw,xw2,y3z,y4.\displaystyle=\left\langle\begin{aligned} &x^{2},xy,zw,\\ &xw^{2},y^{3}z,y^{4}\end{aligned}\right\rangle.

For the graded reverse lexicographic order:

Gobs(F3)R1R2R10,\displaystyle\mathrm{Gobs(\mathit{F}_{3})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0, LM(F3)\displaystyle\langle\operatorname{LM}(F_{3})\rangle =x2,xy,zw,\displaystyle=\left\langle x^{2},xy,zw\right\rangle,
Gobs(F4)0,\displaystyle\mathrm{Gobs(\mathit{F}_{4})}\leftarrow 0, LM(F4)\displaystyle\langle\operatorname{LM}(F_{4})\rangle =x2,xy,zw,y3.\displaystyle=\left\langle\begin{aligned} &x^{2},xy,zw,\\ &y^{3}\end{aligned}\right\rangle.
Example 5.4.

Let us consider the case of coefficients in a finite field. Let R=/5[x,y,z]R=\mathbb{Z}/5\mathbb{Z}[x,y,z] be the polynomial ring equipped with the degree lexicographic order of x>y>zx>y>z. Let

f1\displaystyle f_{1} =xy+4z+2,\displaystyle=xy+4z+2,
f2\displaystyle f_{2} =xyz+y2+1,\displaystyle=xyz+y^{2}+1,
f3\displaystyle f_{3} =x2y+4z2\displaystyle=x^{2}y+4z^{2}

Then we get a sequence of tuples F3,F4,,F9F_{3},F_{4},\ldots,F_{9} with the same conditions as in Example 5.1. Let us see the transition of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})}:

Gobs(F3)R2R4R20,\displaystyle\mathrm{Gobs(\mathit{F}_{3})}\leftarrow R^{2}\leftarrow R^{4}\leftarrow R^{2}\leftarrow 0, LM(F3)\displaystyle\langle\operatorname{LM}(F_{3})\rangle =xy,\displaystyle=\left\langle xy\right\rangle,
Gobs(F4)R2R4R20,\displaystyle\mathrm{Gobs(\mathit{F}_{4})}\leftarrow R^{2}\leftarrow R^{4}\leftarrow R^{2}\leftarrow 0, LM(F4)\displaystyle\langle\operatorname{LM}(F_{4})\rangle =xy,y2,\displaystyle=\left\langle xy,y^{2}\right\rangle,
Gobs(F5)R1R3R20,\displaystyle\mathrm{Gobs(\mathit{F}_{5})}\leftarrow R^{1}\leftarrow R^{3}\leftarrow R^{2}\leftarrow 0, LM(F5)\displaystyle\langle\operatorname{LM}(F_{5})\rangle =xy,y2,xz2,\displaystyle=\left\langle xy,y^{2},xz^{2}\right\rangle,
Gobs(F6)R2R4R20,\displaystyle\mathrm{Gobs(\mathit{F}_{6})}\leftarrow R^{2}\leftarrow R^{4}\leftarrow R^{2}\leftarrow 0, LM(F6)\displaystyle\langle\operatorname{LM}(F_{6})\rangle =xy,y2,xz,\displaystyle=\left\langle xy,y^{2},xz\right\rangle,
Gobs(F7)R2R5R4R10,\displaystyle\mathrm{Gobs(\mathit{F}_{7})}\leftarrow R^{2}\leftarrow R^{5}\leftarrow R^{4}\leftarrow R^{1}\leftarrow 0, LM(F7)\displaystyle\langle\operatorname{LM}(F_{7})\rangle =xy,y2,xz,z3,\displaystyle=\left\langle\begin{aligned} &xy,y^{2},xz,\\ &z^{3}\end{aligned}\right\rangle,
Gobs(F8)R1R2R10,\displaystyle\mathrm{Gobs(\mathit{F}_{8})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0, LM(F8)\displaystyle\langle\operatorname{LM}(F_{8})\rangle =xy,y2,xz,z3,yz2,\displaystyle=\left\langle\begin{aligned} &xy,y^{2},xz,\\ &z^{3},yz^{2}\end{aligned}\right\rangle,
Gobs(F9)0,\displaystyle\mathrm{Gobs(\mathit{F}_{9})}\leftarrow 0, LM(F9)\displaystyle\langle\operatorname{LM}(F_{9})\rangle =xy,y2,xz,z3,yz2,x2.\displaystyle=\left\langle\begin{aligned} &xy,y^{2},xz,\\ &z^{3},yz^{2},x^{2}\end{aligned}\right\rangle.

From the above examples, the sequence of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})} does not monotonically go to the zero-module in general. Moreover, the sequence of Betti numbers or projective dimensions of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})} also does not monotonically go to 0. Here one may suggest the following question.

Question.

Does there exists an algorithm such that the values of some invariant of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})} monotonically go to 0? Is it fast?

It seems that the increase and decrease of the first Betti numbers link to phases of the leading monomials (Example 5.1, Example 5.2, Example 5.4). However, there is an exceptional example (Example 5.3). We have not yet obtained consideration of it in this paper.

6. Gröbner degenerations and signatures

In fact, there exists an affine scheme XX in 𝔸Kn×K𝔸K1\mathbb{A}^{n}_{K}\times_{K}\mathbb{A}^{1}_{K} such that the projection π:X𝔸K1\pi:X\rightarrow\mathbb{A}^{1}_{K} is flat, generic fibers Xt=π1(t)X_{t}=\pi^{-1}(t) over t0t\neq 0 are isomorphic to the affine scheme SpecR/I\operatorname{Spec}R/I, and the special fiber X0=π1(0)X_{0}=\pi^{-1}(0) is isomorphic to the affine scheme SpecR/(in<I)\operatorname{Spec}R/(\operatorname{in}_{<}I) [Bay82, Eis95]. Such affine schemes are called Gröbner degenerations of SpecR/I\operatorname{Spec}R/I. We recall how to construct a Gröbner degeneration from a Gröbner basis and a weighting vector of positive integers.

Definition 6.1.

Let AA be a finite set of monomials. In fact, there exists a vector of positive integers ω>0n\omega\in\mathbb{Z}^{n}_{>0} such that for any monomials xα,xβAx^{\alpha},x^{\beta}\in A, xα<xβx^{\alpha}<x^{\beta} if and only if ωα<ωβ\omega\cdot\alpha<\omega\cdot\beta [Rob85]. Here we denote by ωα\omega\cdot\alpha the ordinal inner product of ω\omega and α\alpha. We say that such vector ω\omega is compatible with AA.

Definition 6.2.

Assume that a vector of positive integers ω>0n\omega\in\mathbb{Z}^{n}_{>0} is compatible with the set of monomials appeared in elements of FF. We define the ω\omega-degree of a monomial xαx^{\alpha} as degωxα=ωα\deg_{\omega}x^{\alpha}=\omega\cdot\alpha. Also for any element fIf\in I, we define the ω\omega-degree of a polynomial ff as degωf=max{degωxαxα appears in f}\deg_{\omega}f=\max\{\deg_{\omega}x^{\alpha}\mid\text{$x^{\alpha}$ appears in $f$}\}. We denote by Topωf\operatorname{Top}_{\omega}f the sum of all terms of ff of ω\omega-degree degωf\deg_{\omega}f, and call Topωf\operatorname{Top}_{\omega}f the top terms of ff with respect to ω\omega.

Let f=αcαxαf=\sum_{\alpha}c_{\alpha}x^{\alpha} be an element of RR. We define notations

ft=αcαtωαxαf^{t}=\sum_{\alpha}c_{\alpha}t^{-\omega\cdot\alpha}x^{\alpha}

and

f(t)=tdegωfftf^{(t)}=t^{\deg_{\omega}f}f^{t}

for new variable tt independent to x1,,xnx_{1},\ldots,x_{n}. The former is an element of the Laurent polynomials ring R[t,t1]=RKK[t,t1]R[t,t^{-1}]=R\otimes_{K}K[t,t^{-1}], the latter is an element of the polynomial ring R[t]=RKK[t]R[t]=R\otimes_{K}K[t]. Moreover, the latter is a homogeneous element of R[t]R[t] with respect to the grading degωtdxα=d+ωα\deg_{\omega}t^{d}x^{\alpha}=d+\omega\cdot\alpha, we have (f(t))|t=0=Topω(f)(f^{(t)})_{|t=0}=\operatorname{Top}_{\omega}(f).

In below, we fix the setting of Definition 6.2 and assume that all elements of FF are monic (namely, LC(fi)=1\operatorname{LC}(f_{i})=1). Therefore we have Topωfi=(fi(t))|t=0=LM(fi)\operatorname{Top}_{\omega}f_{i}=(f_{i}^{(t)})_{|t=0}=\operatorname{LM}(f_{i}). We denote Fω(t)={fi(t)i=1,,a}F^{(t)}_{\omega}=\{f_{i}^{(t)}\mid i=1,\ldots,a\}.

Theorem 6.3 ([Eis95, 15.8]).

Consider a family X=SpecR[t]/Fω(t)X=\operatorname{Spec}R[t]/\langle F^{(t)}_{\omega}\rangle on 𝔸K,t1=SpecK[t]\mathbb{A}^{1}_{K,t}=\operatorname{Spec}K[t]. The fibers XtX_{t} over t0t\neq 0 are isomorphic to SpecR/I\operatorname{Spec}R/I. Moreover, if FF is a Gröbner basis, this family is flat over 𝔸K,t1=SpecK[t]\mathbb{A}^{1}_{K,t}=\operatorname{Spec}K[t] and the special fiber at t=0t=0 is isomorphic to SpecR/(in<I)\operatorname{Spec}R/(\operatorname{in}_{<}I).

Our goal in this section is to give necessary and sufficient conditions of that the family X=SpecR[t]/Fω(t)X=\operatorname{Spec}R[t]/\langle F^{(t)}_{\omega}\rangle is flat over 𝔸K,t1\mathbb{A}^{1}_{K,t} from the point of view of signatures.

Let us start from analysis the flatness of X=SpecR[t]/Fω(t)X=\operatorname{Spec}R[t]/\langle F^{(t)}_{\omega}\rangle. In the following discussion, we identify the K[t]K[t]-module K[t]/tK[t]/\langle t\rangle as KK. Artin gives a criterion for the flatness of the family XX via the syzygy modules.

Theorem 6.4 ([Art76, 1.3], see also [BM93]).

The family SpecR[t]/Fω(t)\operatorname{Spec}R[t]/\langle F^{(t)}_{\omega}\rangle is flat over 𝔸K,t1\mathbb{A}^{1}_{K,t} if and only if the morphism

φ:Syz(Fω(t))K[t]KSyz(LM(F))\varphi:\mathrm{Syz}(F^{(t)}_{\omega})\otimes_{K[t]}K\rightarrow\mathrm{Syz}(\operatorname{LM}(F))
ei(t)\displaystyle e_{i}^{(t)} ei\displaystyle\mapsto e_{i}
t\displaystyle t 0\displaystyle\mapsto 0

is surjective.

Considering initial modules in RmR^{m}, we obtain the following corollary of Theorem 6.4 that states a relationship between the flatness and guessed signatures.

Corollary 6.5.

The family SpecR[t]/Fω(t)\operatorname{Spec}R[t]/\langle F^{(t)}_{\omega}\rangle is flat over 𝔸K,t1\mathbb{A}^{1}_{K,t} if and only if LM(φ(Syz(Fω(t))K[t]K))=LSyL(F)\operatorname{LM}\left(\varphi\left(\mathrm{Syz}(F^{(t)}_{\omega})\otimes_{K[t]}K\right)\right)=\mathrm{LSyL(\mathit{F})}{}.

We denote by LImSy(Fω(t))\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{} the set of leading monomials of the image of the morphism φ:Syz(Fω(t))K[t]KSyz(LM(F))\varphi:\mathrm{Syz}(F^{(t)}_{\omega})\otimes_{K[t]}K\rightarrow\mathrm{Syz}(\operatorname{LM}(F)), namely, LImSy(Fω(t))=LM(φ(Syz(Fω(t))K[t]K))\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{}=\operatorname{LM}\left(\varphi\left(\mathrm{Syz}(F^{(t)}_{\omega})\otimes_{K[t]}K\right)\right). Combining this with the results we proved, we obtain the following theorem.

Theorem 6.6.

A tuple FF is a Gröbner basis if and only if SpecR[t]/Fω(t)\operatorname{Spec}R[t]/\langle F^{(t)}_{\omega}\rangle is flat over 𝔸K,t1\mathbb{A}^{1}_{K,t} and LSy(F)=LImSy(Fω(t))\mathrm{LSy(\mathit{F})}{}=\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{}.

Proof.

If FF is a Gröbner basis, then by Theorem 3.5, Theorem 6.3 and Corollary 6.5 we have that SpecR[t]/Fω(t)\operatorname{Spec}R[t]/\langle F^{(t)}_{\omega}\rangle is flat over 𝔸K,t1\mathbb{A}^{1}_{K,t} and LSy(F)=LSyL(F)=LImSy(Fω(t))\mathrm{LSy(\mathit{F})}{}=\mathrm{LSyL(\mathit{F})}{}=\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{}.

Conversely, assume that SpecR[t]/Fω(t)\operatorname{Spec}R[t]/\langle F^{(t)}_{\omega}\rangle is flat over 𝔸K,t1\mathbb{A}^{1}_{K,t} and LSy(F)=LImSy(Fω(t))\mathrm{LSy(\mathit{F})}{}=\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{}. Then we have LImSy(Fω(t))=LSyL(F)\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{}=\mathrm{LSyL(\mathit{F})}{} (Corollary 6.5). Therefore FF is a Gröbner basis since LSy(F)=LSyL(F)\mathrm{LSy(\mathit{F})}{}=\mathrm{LSyL(\mathit{F})}{} (Theorem 3.5). ∎

Assuming a special assumption on the weight vector ω\omega, we show that the set LSy(F)\mathrm{LSy(\mathit{F})}{} is included in LImSy(Fω(t))\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{}.

Lemma 6.7.

Let VF={v1,,vb}V_{F}=\{v_{1},\ldots,v_{b}\} be a Gröbner basis of the syzygy module Syz(F)\mathrm{Syz}(F). Let AA be the sum of the following sets of monomials in RR:

  • {xαxα appears in an element of F}\{x^{\alpha}\mid\text{$x^{\alpha}$ appears in an element of $F$}\},

  • {xαLM(fi)xαei appears in an element of VF}\{x^{\alpha}\operatorname{LM}(f_{i})\mid\text{$x^{\alpha}e_{i}$ appears in an element of $V_{F}$}\}.

Assume that ω\omega is compatible with AA. Then for any element vv of VFV_{F}, it holds that LM(Topω(v))=LM(v)\operatorname{LM}(\operatorname{Top}_{\omega}(v))=\operatorname{LM}(v).

Proof.

Assume that v=α,icα,ixαeiVFv=\sum_{\alpha,i}c_{\alpha,i}x^{\alpha}e_{i}\in V_{F}. By assumption, for any pair (α,i),(β,j)(\alpha,i),(\beta,j) with cα,i,cβ,j0c_{\alpha,i},c_{\beta,j}\neq 0, xαLM(fi)xβLM(fj)x^{\alpha}\operatorname{LM}(f_{i})\prec x^{\beta}\operatorname{LM}(f_{j}) if and only if degωxαei<degωxβej\deg_{\omega}x^{\alpha}e_{i}<\deg_{\omega}x^{\beta}e_{j}. Put xξ=LM(LM(v)¯)x^{\xi}=\operatorname{LM}\left(\overline{\operatorname{LM}(v)}\right). Then we have degωv=degωLM(v)=degωxξ\deg_{\omega}v=\deg_{\omega}\operatorname{LM}(v)=\deg_{\omega}x^{\xi}, and for any term xαeix^{\alpha}e_{i} of vv, xαLM(fi)=xξx^{\alpha}\operatorname{LM}(f_{i})=x^{\xi} if and only if degωxαei=degωv\deg_{\omega}x^{\alpha}e_{i}=\deg_{\omega}v. Therefore we have LM(Topω(v))=LM(v)\operatorname{LM}\left(\operatorname{Top}_{\omega}(v)\right)=\operatorname{LM}(v). ∎

Lemma 6.8.

Set the same assumption of Lemma 6.7. We have

Topω(u)uSyz(F)=Imφ\langle\operatorname{Top}_{\omega}(u)\mid u\in\mathrm{Syz}(F)\rangle=\operatorname{Im}\varphi

In particular, it holds that LSy(F)LImSy(Fω(t))\mathrm{LSy(\mathit{F})}{}\subset\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{}.

Proof.

If the set equation holds, then it implies that LSy(F)LImSy(Fω(t))\mathrm{LSy(\mathit{F})}{}\subset\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{} since LM(v)=LM(Topω(v))\operatorname{LM}(v)=\operatorname{LM}(\operatorname{Top}_{\omega}(v)) for any element vVFv\in V_{F} (Lemma 6.7).

For any vSyz(Fω(t))v\in\mathrm{Syz}(F^{(t)}_{\omega}), let us compute φ(v1)\varphi(v\otimes 1). Denote

v=DvD=DD=degω(xαfi)+dcα,i,dtdxαei(t).v=\sum_{D}v_{D}=\sum_{D}\sum_{D=\deg_{\omega}(x^{\alpha}f_{i})+d}c_{\alpha,i,d}t^{d}x^{\alpha}e_{i}^{(t)}.

Since fi(t)f_{i}^{(t)} is a homogeneous element in R[t]R[t], we have vDSyz(Fω(t))v_{D}\in\mathrm{Syz}(F^{(t)}_{\omega}). Then it holds that

φ(v1)=Dφ(vD1)=DD=degω(xαfi)cα,i,0xαei.\varphi(v\otimes 1)=\sum_{D}\varphi(v_{D}\otimes 1)=\sum_{D}\sum_{D=\deg_{\omega}(x^{\alpha}f_{i})}c_{\alpha,i,0}x^{\alpha}e_{i}.

Put

uD=D=degω(xαfi)+dcα,i,dxαei.u_{D}=\sum_{D=\deg_{\omega}(x^{\alpha}f_{i})+d}c_{\alpha,i,d}x^{\alpha}e_{i}.

Then we have φ(vD1)=Topω(uD)\varphi(v_{D}\otimes 1)=\operatorname{Top}_{\omega}(u_{D}) if φ(vD1)0\varphi(v_{D}\otimes 1)\neq 0. Since vDSyz(Fω(t))v_{D}\in\mathrm{Syz}(F_{\omega}^{(t)}) and (fi(t))|t=1=fi\left(f_{i}^{(t)}\right)_{|t=1}=f_{i}, this element uDu_{D} is a syzygy of FF. Therefore we have ImφTopω(u)uSyz(F)\operatorname{Im}\varphi\subset\langle\operatorname{Top}_{\omega}(u)\mid u\in\mathrm{Syz}(F)\rangle.

Conversely, Let u=α,icα,ixαeiu=\sum_{\alpha,i}c_{\alpha,i}x^{\alpha}e_{i} be a non-zero syzygy of FF and D0=degωuD_{0}=\deg_{\omega}u. Taking homogenization of the equation

α,icα,ixαfi=0,\sum_{\alpha,i}c_{\alpha,i}x^{\alpha}f_{i}=0,

we get the following syzygy of Fω(t)F_{\omega}^{(t)}:

v=α,icα,itD0degω(xαfi)xαei(t).v=\sum_{\alpha,i}c_{\alpha,i}t^{D_{0}-\deg_{\omega}(x^{\alpha}f_{i})}x^{\alpha}e_{i}^{(t)}.

Therefore we have φ(v1)=D0=degω(xαfi)cα,ixαei=Topω(u)\varphi(v\otimes 1)=\sum_{D_{0}=\deg_{\omega}(x^{\alpha}f_{i})}c_{\alpha,i}x^{\alpha}e_{i}=\operatorname{Top}_{\omega}(u). ∎

From Lemma 6.8, the module of Gröbnerness obstructions Gobs(F)\mathrm{Gobs(\mathit{F})}{} is divided into the direct sum Gobs(F)=M(F)N(F)\mathrm{Gobs(\mathit{F})}{}=M(F)\oplus N(F), where

M(F)=LImSy(Fω(t))/LSy(F),N(F)=LSyL(F)/LImSy(Fω(t)).M(F)=\langle\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{}\rangle/\langle\mathrm{LSy(\mathit{F})}{}\rangle,\ N(F)=\langle\mathrm{LSyL(\mathit{F})}{}\rangle/\langle\mathrm{LImSy(\mathit{F}^{(t)}_{\omega})}{}\rangle.

Our results in this paper are represented by these summands as follows.

  • (Flatness) The family SpecR[t]/Fω(t)\operatorname{Spec}R[t]/\langle F^{(t)}_{\omega}\rangle is flat over 𝔸K,t1\mathbb{A}^{1}_{K,t} if and only if N(F)=0N(F)=0.

  • (Gröbnerness) A tuple FF is a Gröbner basis if and only if M(F)=N(F)=0M(F)=N(F)=0

Acknowledgments.

The author gratefully acknowledges the support of past and present members of my institution Mitsubishi Electric Corporation, Information Technology R&D Center. The author wishes to thank Kazuhiro Yokoyama and Yuki Ishihara for comments on an earlier version of this paper.

References

  • [AP11] Alberto Arri and John Perry. The f5 criterion revised. Journal of Symbolic Computation, 46(9):1017–1029, 2011.
  • [Art76] Michael Artin. Lectures on deformations of singularities, volume 54. Tata Institute of Fundamental Research Bombay, 1976.
  • [Bay82] David Allen Bayer. The Division Algorithm and the Hilbert Scheme. ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)–Harvard University.
  • [BFSY05] Magali Bardet, Jean-Charles Faugere, Bruno Salvy, and Bo-Yin Yang. Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems. In Proc. of MEGA, volume 5, pages 2–2, 2005.
  • [BM93] Dave Bayer and David Mumford. What can be computed in algebraic geometry? arXiv preprint alg-geom/9304003, 1993.
  • [Buc65] Bruno Buchberger. An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. PhD thesis, Ph. D. thesis, University of Innsbruck, Austria, 1965.
  • [CV20] Aldo Conca and Matteo Varbaro. Square-free gröbner degenerations. Inventiones mathematicae, 221(3):713–730, 2020.
  • [Dub90] Thomas W Dubé. The structure of polynomial ideals and gröbner bases. SIAM Journal on Computing, 19(4):750–773, 1990.
  • [Eis95] David Eisenbud. Commutative algebra with a view toward algebraic geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
  • [Fau02] Jean Charles Faugere. A new efficient algorithm for computing gröbner bases without reduction to zero (f 5). In Proceedings of the 2002 international symposium on Symbolic and algebraic computation, pages 75–83, 2002.
  • [Giu05] Marc Giusti. Some effectivity problems in polynomial ideal theory. In EUROSAM 84: International Symposium on Symbolic and Algebraic Computation Cambridge, England, July 9–11, 1984, pages 159–171. Springer, 2005.
  • [Har66] Robin Hartshorne. Connectedness of the Hilbert scheme. Inst. Hautes Études Sci. Publ. Math., (29):5–48, 1966.
  • [Kam22] Yuta Kambe. Computable bialynicki-birula decomposition of the hilbert scheme. Saitama Math. J, 34:1–17, 2022.
  • [KM05] Mikhail Kogan and Ezra Miller. Toric degeneration of schubert varieties and gelfand–tsetlin polytopes. Advances in Mathematics, 193(1):1–17, 2005.
  • [LR11] Paolo Lella and Margherita Roggero. Rational components of hilbert schemes. Rendiconti del Seminario Matematico della Università di Padova, 126:11–45, 2011.
  • [MM84] H Michael Möller and Ferdinando Mora. Upper and lower bounds for the degree of gröbner bases. In EUROSAM 84: International Symposium on Symbolic and Algebraic Computation Cambridge, England, July 9–11, 1984, pages 172–183. Springer, 1984.
  • [Rob85] Lorenzo Robbiano. Term orderings on the polynomial ring. In EUROCAL ’85, Vol. 2 (Linz, 1985), volume 204 of Lecture Notes in Comput. Sci., pages 513–517. Springer, Berlin, 1985.
  • [Sak20] Kosuke Sakata. Simple signature-based algorithms with correctness and termination. Communications of JSACC, 4:33–49, 2020.
  • [The22] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.7), 2022. https://www.sagemath.org.
  • [VY17] Tristan Vaccon and Kazuhiro Yokoyama. A tropical f5 algorithm. In Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, pages 429–436, 2017.

Appendix

Let us see more detail of Example 5.1. The following are explicit choice of polynomials and structures of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})}. We compute a Gröbner basis of the syzygy modules Syz(Fi)\mathrm{Syz}(F_{i}) independent from Algorithm 1 to determine the structure of Gobs(Fi)\mathrm{Gobs(\mathit{F}_{\mathit{i}})}. The notation SF(f)S_{F}(f) denotes the signature of ff with respect to FF.

Input

f1\displaystyle f_{1} =x3yz,\displaystyle=x^{3}y-z,
f2\displaystyle f_{2} =xyz2y,\displaystyle=xyz-2y,
f3\displaystyle f_{3} =xy2z2.\displaystyle=xy^{2}-z^{2}.

Get f4f_{4}

  • (Tuple) F3=(f1,f2,f3)F_{3}=(f_{1},f_{2},f_{3}),

  • (Gröbner obstructions)

    Gobs(F3)=x2e2,x2e3,ze3/x2z2e2,x3ze2,x3ye2,x3ye3,xyze3,\mathrm{Gobs(\mathit{F}_{3})}=\langle x^{2}e_{2},x^{2}e_{3},ze_{3}\rangle/\langle x^{2}z^{2}e_{2},x^{3}ze_{2},x^{3}ye_{2},x^{3}ye_{3},xyze_{3}\rangle,
  • (Minimal free resolution)

    0Gobs(F3)R3R6R30,0\leftarrow\mathrm{Gobs(\mathit{F}_{3})}\leftarrow R^{3}\leftarrow R^{6}\leftarrow R^{3}\leftarrow 0,
  • (Choice of polynomial with minimum signature) f4=z32y2f_{4}=z^{3}-2y^{2} as the remainder of a division of Spoly(ye2,ze3)\mathrm{Spoly}(ye_{2},ze_{3}) and SF3(f4)=ze3S_{F_{3}}(f_{4})=ze_{3}.

Get f5f_{5}

  • (Tuple) F4=(f1,f2,f3,f4)F_{4}=(f_{1},f_{2},f_{3},f_{4}),

  • (Gröbner obstructions)

    Gobs(F4)=x2e2,x2e3/x2z2e2,x3ze2,x3ye2,ze3,x3ye3,xye4,\mathrm{Gobs(\mathit{F}_{4})}=\langle x^{2}e_{2},x^{2}e_{3}\rangle/\langle x^{2}z^{2}e_{2},x^{3}ze_{2},x^{3}ye_{2},ze_{3},x^{3}ye_{3},xye_{4}\rangle,
  • (Minimal free resolution)

    0Gobs(F4)R2R5R30,0\leftarrow\mathrm{Gobs(\mathit{F}_{4})}\leftarrow R^{2}\leftarrow R^{5}\leftarrow R^{3}\leftarrow 0,
  • (Choice of polynomial with minimum signature) f5=x2y12z2f_{5}=x^{2}y-\frac{1}{2}z^{2} as the remainder of a division of Spoly(ze1,x2e2)\mathrm{Spoly}(ze_{1},x^{2}e_{2}) and SF4(f5)=x2e2S_{F_{4}}(f_{5})=x^{2}e_{2}.

Get f6f_{6}

  • (Tuple) F5=(f1,f2,f3,f4,f5)F_{5}=(f_{1},f_{2},f_{3},f_{4},f_{5}),

  • (Gröbner obstructions)

    Gobs(F5)=x2e3,xe5,ye5,ze5/x2e2,ze3,x2ye3,xye4,xze5,xye5,z3e5,\mathrm{Gobs(\mathit{F}_{5})}=\langle x^{2}e_{3},xe_{5},ye_{5},ze_{5}\rangle/\langle x^{2}e_{2},ze_{3},x^{2}ye_{3},xye_{4},xze_{5},xye_{5},z^{3}e_{5}\rangle,
  • (Minimal free resolution)

    0Gobs(F5)R4R8R40,0\leftarrow\mathrm{Gobs(\mathit{F}_{5})}\leftarrow R^{4}\leftarrow R^{8}\leftarrow R^{4}\leftarrow 0,
  • (Choice of polynomial with minimum signature) f6=xy12y2f_{6}=xy-\frac{1}{2}y^{2} as the remainder of a division of Spoly(xe2,ze5)\mathrm{Spoly}(xe_{2},ze_{5}) and SF5(f6)=ze5S_{F_{5}}(f_{6})=ze_{5}.

Get f7f_{7}

  • (Tuple) F6=(f1,f2,f3,f4,f5,f6)F_{6}=(f_{1},f_{2},f_{3},f_{4},f_{5},f_{6}),

  • (Gröbner obstructions)

    Gobs(F6)=x2e3,xe5,ye5,ze6,ye6/x2e2,ze3,x2ye3,xye4,ze5,y2e5,xye5,xe6,z3e6,\mathrm{Gobs(\mathit{F}_{6})}=\langle x^{2}e_{3},xe_{5},ye_{5},ze_{6},ye_{6}\rangle/\left\langle\begin{aligned} &x^{2}e_{2},ze_{3},x^{2}ye_{3},xye_{4},\\ &ze_{5},y^{2}e_{5},xye_{5},xe_{6},z^{3}e_{6}\end{aligned}\right\rangle,
  • (Minimal free resolution)

    0Gobs(F6)R5R11R7R10,0\leftarrow\mathrm{Gobs(\mathit{F}_{6})}\leftarrow R^{5}\leftarrow R^{11}\leftarrow R^{7}\leftarrow R^{1}\leftarrow 0,
  • (Choice of polynomial with minimum signature) f7=y2z4yf_{7}=y^{2}z-4y as the remainder of a division of Spoly(e2,ze6)\mathrm{Spoly}(e_{2},ze_{6}) and SF6(f7)=ze6S_{F_{6}}(f_{7})=ze_{6}.

Get f8f_{8}

  • (Tuple) F7=(f1,f2,,f7)F_{7}=(f_{1},f_{2},\ldots,f_{7}),

  • (Gröbner obstructions)

    Gobs(F7)=x2e3,xe5,ye5,ye6/x2e2,ze3,x2ye3,xye4,y2e5,xye5,ze5,ze6,xe6,xe7,z2e7,\mathrm{Gobs(\mathit{F}_{7})}=\langle x^{2}e_{3},xe_{5},ye_{5},ye_{6}\rangle/\left\langle\begin{aligned} &x^{2}e_{2},ze_{3},x^{2}ye_{3},xye_{4},y^{2}e_{5},\\ &xye_{5},ze_{5},ze_{6},xe_{6},xe_{7},z^{2}e_{7}\end{aligned}\right\rangle,
  • (Minimal free resolution)

    0Gobs(F7)R4R9R6R10,0\leftarrow\mathrm{Gobs(\mathit{F}_{7})}\leftarrow R^{4}\leftarrow R^{9}\leftarrow R^{6}\leftarrow R^{1}\leftarrow 0,
  • (Choice of polynomial with minimum signature) f8=y32z2f_{8}=y^{3}-2z^{2} as the remainder of a division of Spoly(e3,ye6)\mathrm{Spoly}(e_{3},ye_{6}) and SF7(f8)=ye6S_{F_{7}}(f_{8})=ye_{6}.

Get f9f_{9}

  • (Tuple) F8=(f1,f2,,f8)F_{8}=(f_{1},f_{2},\ldots,f_{8}),

  • (Gröbner obstructions)

    Gobs(F8)=xe5,xe8/x2e2,ze3,x2e3,xye4,ze5,ye5,ze6,ye6,xe6,xe7,z2e7,ze8,xye8,\mathrm{Gobs(\mathit{F}_{8})}=\langle xe_{5},xe_{8}\rangle/\left\langle\begin{aligned} &x^{2}e_{2},ze_{3},x^{2}e_{3},xye_{4},ze_{5},ye_{5},\\ &ze_{6},ye_{6},xe_{6},xe_{7},z^{2}e_{7},ze_{8},xye_{8}\end{aligned}\right\rangle,
  • (Minimal free resolution)

    0Gobs(F8)R2R4R20,0\leftarrow\mathrm{Gobs(\mathit{F}_{8})}\leftarrow R^{2}\leftarrow R^{4}\leftarrow R^{2}\leftarrow 0,
  • (Choice of polynomial with minimum signature) f9=xz212yz2f_{9}=xz^{2}-\frac{1}{2}yz^{2} as the remainder of a division of Spoly(y2e6,xe8)\mathrm{Spoly}(y^{2}e_{6},xe_{8}) and SF8(f9)=xe8S_{F_{8}}(f_{9})=xe_{8}.

Get f10f_{10}

  • (Tuple) F9=(f1,f2,,f9)F_{9}=(f_{1},f_{2},\ldots,f_{9}),

  • (Gröbner obstructions)

    Gobs(F9)=xe5/x2e2,ze3,x2e3,xye4,ze5,ye5,ze6,ye6,xe6,xe7,z2e7,ze8,xe8,ye9,ze9,\mathrm{Gobs(\mathit{F}_{9})}=\langle xe_{5}\rangle/\left\langle\begin{aligned} &x^{2}e_{2},ze_{3},x^{2}e_{3},xye_{4},ze_{5},ye_{5},ze_{6},\\ &ye_{6},xe_{6},xe_{7},z^{2}e_{7},ze_{8},xe_{8},ye_{9},ze_{9}\end{aligned}\right\rangle,
  • (Minimal free resolution)

    0Gobs(F9)R1R2R10,0\leftarrow\mathrm{Gobs(\mathit{F}_{9})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0,
  • (Choice of polynomial with minimum signature) f10=yz24zf_{10}=yz^{2}-4z as the remainder of a division of Spoly(e1,xe5)\mathrm{Spoly}(e_{1},xe_{5}) and SF9(f10)=xe5S_{F_{9}}(f_{10})=xe_{5}.

Get f11f_{11}

  • (Tuple) F10=(f1,f2,,f10)F_{10}=(f_{1},f_{2},\ldots,f_{10}),

  • (Gröbner obstructions)

    Gobs(F10)=xe10/x2e2,ze3,x2e3,xye4,xe5,ze5,ye5,ze6,ye6,xe6,xe7,z2e7,ze8,xe8,ye9,ze9,ze10,ye10,\mathrm{Gobs(\mathit{F}_{10})}=\langle xe_{10}\rangle/\left\langle\begin{aligned} &x^{2}e_{2},ze_{3},x^{2}e_{3},xye_{4},xe_{5},ze_{5},ye_{5},ze_{6},\\ &ye_{6},xe_{6},xe_{7},z^{2}e_{7},ze_{8},xe_{8},ye_{9},ze_{9},ze_{10},ye_{10}\end{aligned}\right\rangle,
  • (Minimal free resolution)

    0Gobs(F10)R1R2R10,0\leftarrow\mathrm{Gobs(\mathit{F}_{10})}\leftarrow R^{1}\leftarrow R^{2}\leftarrow R^{1}\leftarrow 0,
  • (Choice of polynomial with minimum signature) f11=xz12yzf_{11}=xz-\frac{1}{2}yz as the remainder of a division of Spoly(ye9,xe10)\mathrm{Spoly}(ye_{9},xe_{10}) and SF10(f11)=xe10S_{F_{10}}(f_{11})=xe_{10}.