This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Analysis of an alternative Navier-Stokes system: Weak entropy solutions and a convergent numerical scheme

Magnus Svärd Dept. of Mathematics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway,
[email protected]
Abstract

We consider an alternative Navier-Stokes model for compressible viscous ideal gases, originally proposed in [Svä18]. We derive a priori estimates that are sufficiently strong to support a weak entropy solution of the system. Guided by these estimates, we propose a finite volume scheme, derive the analogous estimates and demonstrate grid convergence towards a weak entropy solution. Furthermore, this existence proof is valid for “large” initial data and no a priori assumptions on the solution are needed.

1 Introduction

The importance of modelling viscous and heat conducting compressible fluids in physics and engineering can not be understated. Such fluids are typically modelled by the well-known Navier-Stokes-Fourier (NSF) equations. The complexity of these equations often necessitates numerical methods to generate approximate solutions. However, the design of numerical schemes is severely hampered by the lack of well-posedness results for the NSF system. This invariably leads to uncertainties pertaining to the validity of numerical results obtained with state-of-the-art codes. (See e.g. [GSH21].)

The NSF equations model the dynamics of (Lagrangian) mass elements by Newton’s 2nd Law, which by definition precludes mass diffusion. (See [Svä18, Sto45].) The effect of the random motions at the molecular level enters the NSF system via the stress tensor and a model of viscosity that exerts a force on each mass element. Furthermore, heat diffusion is modelled by Fourier’s law in the energy equation. A consequence of the Lagrangian perspective is that the continuity equation becomes hyperbolic, which poses a significant mathematical challenge when trying to develop a well-posedness theory.

In recent years, many authors have, for physical reasons, proposed alternative models. See e.g. [RDO+19] where a class of mass-diffusive continuum models is derived and demonstrated to be more accurate than the NSF system in many cases. Another well-known mass-diffusive modification of the NSF system was given in [Bre05a, Bre05b]. For a constant mass-diffusive coefficient, this system was proven to have weak solutions in [FV10].

Herein, we consider the alternative Navier-Stokes model proposed in [Svä18]. Let 𝐱=(x,y,z){\bf x}=(x,y,z) be the Cartesian coordinates and Ω\Omega a bounded spatial domain. Then the model is given by

tρ+(ρ𝐯)\displaystyle\partial_{t}\rho+\nabla\cdot(\rho{\bf v}) =(νρ),\displaystyle=\nabla\cdot(\nu\nabla\rho),
t(ρ𝐯)+(ρ𝐯𝐯)+p\displaystyle\partial_{t}(\rho{\bf v})+\nabla\cdot(\rho{\bf v}\otimes{\bf v})+\nabla p =(νρ𝐯)),t[0,𝒯],𝐱Ω3\displaystyle=\nabla\cdot(\nu\nabla\rho{\bf v})),\qquad t\in[0,\mathcal{T}],\,{\bf x}\in\Omega\subset\mathbb{R}^{3} (1)
t(E)+(E𝐯+p𝐯)\displaystyle\partial_{t}(E)+\nabla\cdot(E{\bf v}+p{\bf v}) =(νE),\displaystyle=\nabla\cdot(\nu\nabla E),
p\displaystyle p =ρRT,(ideal gas law).\displaystyle=\rho RT,\quad\textrm{(ideal gas law).}

ρ,ρ𝐯,E\rho,\rho{\bf v},E are the conserved variables density, momentum and total energy. 𝐯=(v1,v2,v3)T=(u,v,w){\bf v}=(v_{1},v_{2},v_{3})^{T}=(u,v,w) is the velocity vector. p,Tp,T are pressure and temperature. Furthermore, the total energy is given by E=pγ1+ρ|𝐯|22E=\frac{p}{\gamma-1}+\frac{\rho|{\bf v}|^{2}}{2} where γ=cp/cv\gamma=c_{p}/c_{v} and cp,vc_{p,v} are the heat capacities at constant pressure or volume. The model is (at least) valid for ideal gases with 1<γ5/31<\gamma\leq 5/3. The conservative variables are collected in the vector 𝐮=(ρ,𝐦T,E)T{\bf u}=(\rho,{\bf m}^{T},E)^{T} where 𝐦=(m1,m2,m3)T=ρ𝐯{\bf m}=(m_{1},m_{2},m_{3})^{T}=\rho{\bf v} is the momentum vector. RR is the gas constant and ν=ν(ρ,T)\nu=\nu(\rho,T) is the diffusion coefficient.

An ideal gas is one where the molecules bounce elastically against each other and have no rotational energy. Furthermore, the mean free path is large relatively to their sizes. In such a gas, the range of the diffusion is proportional to the mean free path which scales as the inverse of density. Hence, it was proposed in [Svä18] that,

ν=μ0ρ,\displaystyle\nu=\frac{\mu_{0}}{\rho}, (2)

where μ0\mu_{0} is the dynamic viscosity. This value results in viscous terms that resemble those of the Navier-Stokes equations, and Fourier’s law appears as a diffusive term in the energy equation of (1). In [DS21] and [SDP21], it was shown, in a suite of problems, that the new system (1)-(2) produces solutions that are next to indistinguishable from those of the NSF system. (The differences are much less than what can be measured in experiments.)

Remark 1.

With μ0\mu_{0} being the dynamic viscosity, the value of ν\nu is identical to the kinematic viscosity. However, we emphasise that physically ν\nu is a diffusion coefficient, and not a viscosity coefficient.

Unlike the NSF system, (1) is derived in an Eulerian111The system (1), was termed “Eulerian model” in [Svä18]. Here, we call it an “alternative Navier-Stokes model” since the original name has caused some confusion that it is a (numerical) regularisation of the Euler equations rather than an alternative to the standard Navier-Stokes model. frame by directly appealing to the principles of conservation of mass, momentum, and energy. In the Eulerian perspective, the random motions of molecules are naturally modelled as diffusion in all three conservative variables. (Indeed, (1) differs from the NSF system only in the right-hand side.)

Our goal is to demonstrate that the system (1) has weak entropy solutions by proving that solutions to a finite volume scheme converge as the grid is refined. In this effort, we have benefited greatly from [FV10] and have used many similar techniques and arguments.

1.1 Adding more physics to the model

Although (1) is accurate in the regime it is intended to model, considerations for reduced models (isothermal and isentropic) reveal that (1) appears to lack mechanisms that prevent concentration of mass. Hence, we propose some minor modifications to (1) below. These modifications do not extend validity range of the model and can thus alternatively be viewed as technical assumptions.

Nevertheless, we continue with a short physical discussion: The choice ν=μ0/ρ\nu=\mu_{0}/\rho models diffusion whereby molecules of the ideal gas travel relatively freely in space. Their random crossings of (Eulerian) control-volume boundaries, is modelled as diffusion on the global scale and the more rarefied the gas is, the more significant is the diffusion relatively to the convection. This is consistent with the diffusion coefficient being proportional to the mean free path, i.e., ρ1\rho^{-1}. However, this mechanism is not prevalent when the gas becomes denser since molecules will bounce into other molecules before they have travelled any significant distance. The latter process is conductive rather than diffusive and not accounted for with ν=μ0/ρ\nu=\mu_{0}/\rho. Hence, the physics suggests that the model should be augmented with collisional/frictional diffusion.

There are several options to account for collisional diffusion: The dynamic viscosity coefficient appearing in the Navier-Stokes equations is often assumed to depend on temperature as TrT^{r}, for some 0<r<10<r<1. Although ν\nu has a very different physical interpretation it might be tempting to try νTr/ρ\nu\sim T^{r}/\rho. However, some preliminary (unpublished) numerical investigations suggest that a temperature dependent diffusion is less accurate for (1) than ν=μ0/ρ\nu=\mu_{0}/\rho where μ0=constant\mu_{0}=constant. Hence, we will not consider models with νTr/ρ\nu\sim T^{r}/\rho.

In a dense gas, the molecules will constantly experience the repelling forces of neighbouring molecules, which will randomly deviate their paths, which in turn is a diffusive process at the global scale. Moreover, the more densely packed the gas is, the more prominent will the internal friction be in relation to the convective process. Hence, it seems plausible that there is some ρs\rho^{s}, s>0s>0 dependence of ν\nu. We take s=1s=1. Since ν=μ0/ρ\nu=\mu_{0}/\rho, gives accurate results under normal conditions, we assume that the diffusion coefficient is given by,

ν=μ0ρ+μ1ρ,μ0>>μ1>0.\displaystyle\nu=\frac{\mu_{0}}{\rho}+\mu_{1}\rho,\quad\mu_{0}>>\mu_{1}>0. (3)

Finally, to control pressure in the full system, a sufficiently strong estimate of temperature is also needed. Such estimate is unattainable for the base model and we add a Fourier-type heat flux that models radiation. That is, κT=4κrT3T\kappa\nabla T=4\kappa_{r}T^{3}\nabla T, where κr\kappa_{r} is a material dependent constant. Under normal conditions (modest temperatures), 4κrT34\kappa_{r}T^{3} should be orders of magnitude less than μ0\mu_{0} such that the radiation has a negligible effect.

Remark 2.

The extra radation term does not increase the physical validity range. For that, more aspects of radiation physics would have to be included in the model. In fact, if the radiation diffusion is significant, the solution is already outside the validity range. In this sense, one can view the extra temperature diffusion as a technical modification.

In the remainder of this text, we consider the following alternative Navier-Stokes system:

tρ+(ρ𝐯)\displaystyle\partial_{t}\rho+\nabla\cdot(\rho{\bf v}) =(νρ),\displaystyle=\nabla\cdot(\nu\nabla\rho), (4a)
t(ρ𝐯)+(ρ𝐯𝐯)+p\displaystyle\partial_{t}(\rho{\bf v})+\nabla\cdot(\rho{\bf v}\otimes{\bf v})+\nabla p =(νρ𝐯)),t[0,𝒯]\displaystyle=\nabla\cdot(\nu\nabla\rho{\bf v})),\qquad t\in[0,\mathcal{T}] (4b)
t(E)+(E𝐯+p𝐯)\displaystyle\partial_{t}(E)+\nabla\cdot(E{\bf v}+p{\bf v}) =(νE)+(κrT4),\displaystyle=\nabla\cdot(\nu\nabla E)+\nabla\cdot(\kappa_{r}\nabla T^{4}), (4c)
p\displaystyle p =ρRT,ideal gas law,\displaystyle=\rho RT,\quad\textrm{ideal gas law,} (4d)

with ν\nu given by (3). Finally, we take Ω3\Omega\subset\mathbb{R}^{3} to be bounded, and its boundary, Ω\partial\Omega, models an adiabatic wall, which is given by the no-slip boundary condition

𝐯=0,\displaystyle{\bf v}=0, (5)

along with

nT=nρ=0,\displaystyle\partial_{n}T=\partial_{n}\rho=0, (6)

where n=𝐧\partial_{n}={\bf n}\cdot\nabla and 𝐧{\bf n} is the wall normal. (See [Svä18] for a discussion on boundary conditions.)

1.2 Outline

  • In Section 2, auxiliary balance laws are derived.

  • Using the equations and the auxiliary balance laws, we derive a priori estimates in Section 3. As a consequence of the estimates, we are able to demonstrate positivity of ρ\rho and TT in Section 3.3.

  • In Section 3.8, we formally demonstrate that the a priori estimates supports a weak entropy solution.

  • In Section 3.9, we define weak entropy solutions.

  • Next, we propose a numerical scheme in Section 4.1 and give the main result of this paper: Existence of a weak entropy solution to (4). The remainder of the paper proves this result.

  • Some auxiliary (numerical) balance laws are derived in Section 5.

  • We derive a priori estimates for the numerical scheme in Section 6.

  • In Section 7, we use the global estimates to infer existence of weak solutions to the full system by proving weak convergence of the numerical scheme.

  • Section 8, contains some concluding remarks.

1.3 Notation

The following notation will be used throughout the article.

  • The space Lp(0,𝒯;Lq(Ω))L^{p}(0,\mathcal{T};L^{q}(\Omega)) is denoted LqpL^{p}_{q} for short, when there is no risk of confusion.

  • Similarly, we write S1(S2)=S1(0,𝒯;S2(Ω))S_{1}(S_{2})=S_{1}(0,\mathcal{T};S_{2}(\Omega)) where S1,2S_{1,2} are two generic function spaces.

  • Wr,p(Ω)W^{r,p}(\Omega) is the Sobolev space where all derivatives of order 0,1,,r0,1,...,r are bounded in Lp(Ω)L^{p}(\Omega). The space W1,2W^{1,2} is denoted H1H^{1}. Furthermore, the norm of Wr,p(Ω)W^{r,p}(\Omega) is denoted r,p\|\cdot\|_{r,p}.

  • Throughout, we let 𝒞\mathcal{C} denote a generic a priori bounded constant obtained from the initial data. Likewise, ϵ\epsilon and δ\delta are used as small positive constants. Note that all three constants may change their actual values throughout a calculation.

  • We denote the iith component of a vector 𝐚{\bf a} as 𝐚i{\bf a}_{i}.

  • In the remainder of the paper, we will use a number of standard results which have been collected in Appendix I for the reader’s convenience.

2 Additional balance laws

2.1 Entropy balance

The first relation we derive is an entropy equation, which is an expression of the Second Law of Thermodynamics. The specific entropy is S=log(p/ργ)S=\log(p/\rho^{\gamma}) and here we take the standard approach and derive an equation for the entropy function U=ρSU=-\rho S. Associated with the entropy function UU are the entropy fluxes 𝐅i=miS{\bf F}_{i}=-m_{i}S, i=1,2,3i=1,2,3, and the entropy variables,

U𝐮=𝐰T=((Sγ)|𝐯|22cvT,𝐯cvT,1cvT).U_{\bf u}={\bf w}^{T}=(-(S-\gamma)-\frac{|{\bf v}|^{2}}{2c_{v}T},\frac{{\bf v}}{c_{v}T},-\frac{1}{c_{v}T}).

Contracting (4) with the entropy variables gives,

Ut+𝐅=i=15𝐰i(ν𝐮i)+𝐰5(κrT4),\displaystyle U_{t}+\nabla\cdot{\bf F}=\sum_{i=1}^{5}{\bf w}_{i}\nabla\cdot(\nu\nabla{\bf u}_{i})+{\bf w}_{5}\nabla\cdot(\kappa_{r}\nabla T^{4}),

which can be recast as,

Ut+𝐅=i=15((𝐰iν𝐮i)(𝐰iT)ν(𝐮i))+(𝐰5κrT4)𝐰5(κrT4),\displaystyle U_{t}+\nabla\cdot{\bf F}=\sum_{i=1}^{5}\left(\nabla\cdot({\bf w}_{i}\nu\nabla{\bf u}_{i})-(\nabla{\bf w}_{i}^{T})\nu(\nabla{\bf u}_{i})\right)+\nabla\cdot({\bf w}_{5}\kappa_{r}\nabla T^{4})-\nabla{\bf w}_{5}\cdot(\kappa_{r}\nabla T^{4}),

and finally,

(ρS)t+(𝐦S)\displaystyle(-\rho S)_{t}+\nabla\cdot(-{{\bf m}}S) =\displaystyle=
((Sγ)νρ+νcvT(ρ|𝐯|22)1cvTνe1cvTκrT4)\displaystyle\nabla\cdot\left(-(S-\gamma)\nu\nabla\rho+\frac{\nu}{c_{v}T}\nabla\left(\frac{\rho|{\bf v}|^{2}}{2}\right)-\frac{1}{c_{v}T}\nu\nabla e-\frac{1}{c_{v}T}\kappa_{r}\nabla T^{4}\right) (7)
ν(γ1)ρ|lnρ|2νρ|lnT|2νρcvTi=13|vi|24κrT3|T|2T2,\displaystyle-\nu(\gamma-1)\rho|\nabla\ln\rho|^{2}-\nu\rho|\nabla\ln T|^{2}-\frac{\nu\rho}{c_{v}T}\sum_{i=1}^{3}|\nabla v_{i}|^{2}-4\kappa_{r}T^{3}\frac{|\nabla T|^{2}}{T^{2}},

which is the entropy balance.

2.2 Kinetic Energy balance

To obtain the kinetic energy equation for the model (4), we multiply the momentum equation by 𝐯{\bf v}. For the velocity terms on the left-hand side, we obtain

T1=𝐯(t(ρ𝐯)+(ρ𝐯𝐯))\displaystyle T1={\bf v}\cdot(\partial_{t}(\rho{\bf v})+\nabla\cdot(\rho{\bf v}\otimes{\bf v})) =\displaystyle=
(tρ+(ρ𝐯))|𝐯|2+ρ(t𝐯+𝐯𝐯)𝐯\displaystyle(\partial_{t}\rho+\nabla\cdot(\rho{\bf v}))|{\bf v}|^{2}+\rho(\partial_{t}{\bf v}+{\bf v}\cdot\nabla{\bf v})\cdot{\bf v} =\displaystyle=
(tρ+(ρ𝐯))|𝐯|2+ρt|𝐯|22+ρ𝐯|𝐯|22\displaystyle(\partial_{t}\rho+\nabla\cdot(\rho{\bf v}))|{\bf v}|^{2}+\rho\partial_{t}\frac{|{\bf v}|^{2}}{2}+\rho{\bf v}\cdot\nabla\frac{|{\bf v}|^{2}}{2} =\displaystyle=
t(ρ|𝐯|22)+(ρ|𝐯|22𝐯)+(tρ+(ρ𝐯))|𝐯|22.\displaystyle\partial_{t}\left(\frac{\rho|{\bf v}|^{2}}{2}\right)+\nabla\cdot\left(\frac{\rho|{\bf v}|^{2}}{2}{\bf v}\right)+(\partial_{t}\rho+\nabla\cdot(\rho{\bf v}))\frac{|{\bf v}|^{2}}{2}.

Using the continuity equation (4a) in the last line, we obtain

T1=t(ρ|𝐯|22)+(ρ|𝐯|22𝐯+ν|𝐯|22ρ)νρ|𝐯|22.\displaystyle T1=\partial_{t}\left(\frac{\rho|{\bf v}|^{2}}{2}\right)+\nabla\cdot\left(\frac{\rho|{\bf v}|^{2}}{2}{\bf v}+\nu\frac{|{\bf v}|^{2}}{2}\nabla\rho\right)-\nu\nabla\rho\cdot\nabla\frac{|{\bf v}|^{2}}{2}. (8)

Next, we turn to the remaining terms of the momentum equation:

T2=𝐯(p+(νρ𝐯)))\displaystyle T2={\bf v}\cdot(-\nabla p+\nabla\cdot(\nu\nabla\rho{\bf v}))) =\displaystyle=
(p𝐯)+p𝐯+𝐯((νρ𝐯))\displaystyle-\nabla\cdot(p{\bf v})+p\nabla\cdot{\bf v}+{\bf v}\cdot(\nabla\cdot(\nu\nabla\rho{\bf v})) =\displaystyle=
(p𝐯)+p(𝐯)+(νρ|𝐯|2+νρ|𝐯|22)νρ|𝐯|2νρ|𝐯|22\displaystyle-\nabla\cdot(p{\bf v})+p\nabla\cdot({\bf v})+\nabla\cdot\left(\nu\nabla\rho|{\bf v}|^{2}+\nu\rho\nabla\frac{|{\bf v}|^{2}}{2}\right)-\nu\rho|\nabla{\bf v}|^{2}-\nu\nabla\rho\nabla\frac{|{\bf v}|^{2}}{2} .

Combining T1T1 and T2T2, yields the kinetic energy balance,

t(ρ|𝐯|22)+(ρ|𝐯|22𝐯+ν|𝐯|22ρ)\displaystyle\partial_{t}\left(\frac{\rho|{\bf v}|^{2}}{2}\right)+\nabla\cdot\left(\frac{\rho|{\bf v}|^{2}}{2}{\bf v}+\nu\frac{|{\bf v}|^{2}}{2}\nabla\rho\right) =\displaystyle=
(p𝐯)+p(𝐯)+(ν(ρ)|𝐯|2+νρ|𝐯|22)νρ|𝐯|2,\displaystyle-\nabla\cdot(p{\bf v})+p\nabla\cdot({\bf v})+\nabla\cdot\left(\nu(\nabla\rho)|{\bf v}|^{2}+\nu\rho\nabla\frac{|{\bf v}|^{2}}{2}\right)-\nu\rho|\nabla{\bf v}|^{2},

that simplifies to

t(ρ|𝐯|22)+(ρ|𝐯|22𝐯)\displaystyle\partial_{t}\left(\frac{\rho|{\bf v}|^{2}}{2}\right)+\nabla\cdot\left(\frac{\rho|{\bf v}|^{2}}{2}{\bf v}\right) =\displaystyle=
(p𝐯)+p(𝐯)+(ν(ρ|𝐯|22))νρ|𝐯|2.\displaystyle-\nabla\cdot(p{\bf v})+p\nabla\cdot({\bf v})+\nabla\cdot\left(\nu\nabla\left(\rho\frac{|{\bf v}|^{2}}{2}\right)\right)-\nu\rho|\nabla{\bf v}|^{2}. (9)

2.3 Specific volume balance

Multiply the continuity equation (4a) by ρ2-\rho^{-2}, to obtain

12tρ1+(ρ1𝐯)+(ρ2)ρ𝐯=(ρ2(νρ))2ρ3ρ(νρ),\displaystyle\frac{1}{2}\partial_{t}\rho^{-1}+\nabla\cdot(\rho^{-1}{\bf v})+\nabla(\rho^{-2})\cdot\rho{\bf v}=-\nabla(\rho^{-2}\nabla(\nu\rho))-\frac{2}{\rho^{3}}\nabla\rho\cdot(\nu\nabla\rho),

or,

12tρ1+(ρ1𝐯)+2(ρ1)𝐯=(ρ2(νρ))2νρ|ρ1|2.\displaystyle\frac{1}{2}\partial_{t}\rho^{-1}+\nabla\cdot(\rho^{-1}{\bf v})+2\nabla(\rho^{-1})\cdot{\bf v}=-\nabla(\rho^{-2}\nabla(\nu\rho))-2\nu\rho|\nabla\rho^{-1}|^{2}. (10)

2.4 Renormalised internal energy balance

Subtracting the kinetic energy balance (9), from the total energy equation (4c), gives the internal energy balance

t(cvρT)+(cvρT𝐯)\displaystyle\partial_{t}(c_{v}\rho T)+\nabla\cdot(c_{v}\rho T{\bf v}) =p(𝐯)+(ν(cvρT))+νρ|𝐯|2+(κrT4).\displaystyle=-p\nabla\cdot({\bf v})+\nabla\cdot(\nu\nabla(c_{v}\rho T))+\nu\rho|\nabla{\bf v}|^{2}+\nabla\cdot(\kappa_{r}\nabla T^{4}). (11)

We follow [FV10] and introduce H(T)=(1+T)1ωH(T)=(1+T)^{1-\omega}, ω>0.\omega>0. Then we renormalise the equation by multiplying (11) by H(T)H^{\prime}(T). We carry out the procedure step by step and begin with the left-hand side. First,

H(T)(cvρtT+cvρTt)\displaystyle H^{\prime}(T)(c_{v}\rho_{t}T+c_{v}\rho T_{t}) =\displaystyle=
cv(H(T)ρtT+ρHt)+ρtcvHρtcvH\displaystyle c_{v}(H^{\prime}(T)\rho_{t}T+\rho H_{t})+\rho_{t}c_{v}H-\rho_{t}c_{v}H =\displaystyle=
cv(ρH)t+cv(H(T)TH)ρt.\displaystyle c_{v}(\rho H)_{t}+c_{v}(H^{\prime}(T)T-H)\rho_{t}.

In the same way,

H(T)(cv(ρ𝐯T))\displaystyle H^{\prime}(T)(c_{v}\nabla\cdot(\rho{\bf v}T)) =cv(ρ𝐯H)+cv(H(T)TH)(ρ𝐯).\displaystyle=c_{v}\nabla\cdot(\rho{\bf v}H)+c_{v}(H^{\prime}(T)T-H)\nabla\cdot(\rho{\bf v}).

Using the continuity equation, the left-hand side of the renormalised equation becomes,

cv(ρH)t+cv(ρ𝐯T))+cv(H(T)TT)(νρ).\displaystyle c_{v}(\rho H)_{t}+c_{v}\nabla\cdot(\rho{\bf v}T))+c_{v}(H^{\prime}(T)T-T)\nabla\cdot(\nu\nabla\rho).

Turning to the right-hand side, we begin with

H(ν(cvρT))=cvH(νTρ+νρT))\displaystyle H^{\prime}\nabla\cdot(\nu\nabla(c_{v}\rho T))=c_{v}H^{\prime}\nabla\cdot(\nu T\nabla\rho+\nu\rho\nabla T)) =\displaystyle=
cvHT(νρ)+cvHνρT+cv(HνρT))cvρνH′′|T|2\displaystyle c_{v}H^{\prime}T\nabla\cdot(\nu\nabla\rho)+c_{v}H^{\prime}\nu\nabla\rho\cdot\nabla T+c_{v}\nabla\cdot(H^{\prime}\nu\rho\nabla T))-c_{v}\rho\nu H^{\prime\prime}|\nabla T|^{2} =\displaystyle=
cvHT(νρ)+cvνρH+cv(νρH))cvρνH′′|T|2\displaystyle c_{v}H^{\prime}T\nabla\cdot(\nu\nabla\rho)+c_{v}\nu\nabla\rho\cdot\nabla H+c_{v}\nabla\cdot(\nu\rho\nabla H))-c_{v}\rho\nu H^{\prime\prime}|\nabla T|^{2} =\displaystyle=
cvHT(νρ)+cv(νHρ)cvH(νρ)+cv(νρH))cvρνH′′|T|2\displaystyle c_{v}H^{\prime}T\nabla\cdot(\nu\nabla\rho)+c_{v}\nabla\cdot(\nu H\nabla\rho)-c_{v}H\nabla\cdot(\nu\nabla\rho)+c_{v}\nabla\cdot(\nu\rho\nabla H))-c_{v}\rho\nu H^{\prime\prime}|\nabla T|^{2} =\displaystyle=
cv(HTH)(νρ)+cv(νHρ)+cv(νρH))cvρνH′′|T|2\displaystyle c_{v}(H^{\prime}T-H)\nabla\cdot(\nu\nabla\rho)+c_{v}\nabla\cdot(\nu H\nabla\rho)+c_{v}\nabla\cdot(\nu\rho\nabla H))-c_{v}\rho\nu H^{\prime\prime}|\nabla T|^{2} .

Collecting the terms, we obtain the renormalised internal energy balance,

cv(ρH)t+cv(ρ𝐯H))\displaystyle c_{v}(\rho H)_{t}+c_{v}\nabla\cdot(\rho{\bf v}H)) =\displaystyle=
cv(νHρ)+cv(νρH))cvρνH′′|T|2\displaystyle c_{v}\nabla\cdot(\nu H\nabla\rho)+c_{v}\nabla\cdot(\nu\rho\nabla H))-c_{v}\rho\nu H^{\prime\prime}|\nabla T|^{2} (12)
+Hp𝐯+Hνρ|𝐯|2+H(κrT3).\displaystyle+H^{\prime}p\nabla\cdot{\bf v}+H^{\prime}\nu\rho|\nabla{\bf v}|^{2}+H^{\prime}\nabla(\kappa_{r}\nabla T^{3}).

3 A priori estimates for the full system

We begin with the standard conservation properties. That is, we assume that p,ρ>0p,\rho>0 and (separately) integrate (4a) and (4c). Using the boundary conditions (5) and (6) we obtain the bounds,

ρL(0,𝒯;L1(Ω)),\displaystyle\rho\in L^{\infty}(0,\mathcal{T};L^{1}(\Omega)), EL(0,𝒯;L1(Ω)),\displaystyle\quad\quad E\in L^{\infty}(0,\mathcal{T};L^{1}(\Omega)), (13)
ρ|𝐯|L(0,𝒯;L2(Ω)),\displaystyle\sqrt{\rho}|{\bf v}|\in L^{\infty}(0,\mathcal{T};L^{2}(\Omega)), pL(0,𝒯;L1(Ω)).\displaystyle\quad\quad p\in L^{\infty}(0,\mathcal{T};L^{1}(\Omega)).

3.1 Entropy estimate

Integrating (7) in space and time, using the boundary conditions (5) and (6), leads to

Ω(ρS)|t=𝒯(ρS)|t=0d𝐱\displaystyle\int_{\Omega}(-\rho S)|_{t=\mathcal{T}}-(-\rho S)|_{t=0}\,d{\bf x} =\displaystyle= (14)
0𝒯Ων(γ1)ρ|lnρ|2+νρ|lnT|2+νρcvTi=13|vi|2+4κ3T3|T|2T2d𝐱dt.\displaystyle-\int_{0}^{\mathcal{T}}\int_{\Omega}\nu(\gamma-1)\rho|\nabla\ln\rho|^{2}+\nu\rho|\nabla\ln T|^{2}+\frac{\nu\rho}{c_{v}T}\sum_{i=1}^{3}|\nabla v_{i}|^{2}+4\kappa_{3}T^{3}\frac{|\nabla T|^{2}}{T^{2}}\,d{\bf x}\,dt.

The second term is bounded by initial data. Provided that we can control the first, we obtain the bounds

0𝒯Ων(γ1)ρ|lnρ|2+νρ|lnT|2+νρcvTi=13|vi|2+4κrT|T|2d𝐱dt𝒞.\displaystyle\int_{0}^{\mathcal{T}}\int_{\Omega}\nu(\gamma-1)\rho|\nabla\ln\rho|^{2}+\nu\rho|\nabla\ln T|^{2}+\frac{\nu\rho}{c_{v}T}\sum_{i=1}^{3}|\nabla v_{i}|^{2}+4\kappa_{r}T|\nabla T|^{2}\,d{\bf x}\,dt\leq\mathcal{C}. (15)

Hence, we proceed to analyse the first integral of (14). (This was shown in [FV10] and we repeat their arguments here.) We introduce [z]+=max(z,0)[z]^{+}=\max(z,0) and [z]=min(z,0)[z]^{-}=\min(z,0) and carry out the following manipulations:

Ω(ρS)𝑑𝐱=Ωρlog(RT)+(γ1)ρlog(ρ)d𝐱=\displaystyle\int_{\Omega}(-\rho S)\,d{\bf x}=\int_{\Omega}-\rho\log(RT)+(\gamma-1)\rho\log(\rho)\,d{\bf x}=
Ωρ([log(RT)]++[log(RT)])+(γ1)ρ([log(ρ)]++[log(ρ)]d𝐱.\displaystyle\int_{\Omega}-\rho([\log(RT)]^{+}+[\log(RT)]^{-})+(\gamma-1)\rho([\log(\rho)]^{+}+[\log(\rho)^{-}]\,d{\bf x}. (16)

We need a bound on the negative terms. Ωρ[log(RT)]+d𝐱\int_{\Omega}-\rho[\log(RT)]^{+}\,d{\bf x} is bounded by pL1p\in L^{\infty}_{1} given by (13). Since |ρ[log(ρ)]|1|\rho[\log(\rho)]^{-}|\leq 1 and the domain is bounded, the last term is also bounded. Hence, we have deduced that

ρlog(ρ)\displaystyle\rho\log(\rho) L(0,𝒯,L1(Ω)),\displaystyle\in L^{\infty}(0,\mathcal{T},L^{1}(\Omega)), (17)
ρlog(T)\displaystyle\rho\log(T) L(0,𝒯,L1(Ω)),\displaystyle\in L^{\infty}(0,\mathcal{T},L^{1}(\Omega)),

and, with νρ1+ρ\nu\sim\rho^{-1}+\rho, we obtain from the diffusive terms (15),

(log(T))\displaystyle\nabla(\log(T)) L2(0,𝒯;L2)),\displaystyle\in L^{2}(0,\mathcal{T};L^{2})),
ρ(log(T))\displaystyle\rho\nabla(\log(T)) L2(0,𝒯;L2)),\displaystyle\in L^{2}(0,\mathcal{T};L^{2})),
(log(ρ))\displaystyle\nabla(\log(\rho)) L2(0,𝒯;L2)),\displaystyle\in L^{2}(0,\mathcal{T};L^{2})), (18)
ρ\displaystyle\nabla\rho L2(0,𝒯;L2)),\displaystyle\in L^{2}(0,\mathcal{T};L^{2})),
ρT|𝐯|\displaystyle\frac{\rho}{\sqrt{T}}|\nabla{\bf v}| L2(0,𝒯;L2)),\displaystyle\in L^{2}(0,\mathcal{T};L^{2})),
1T|𝐯|\displaystyle\frac{1}{\sqrt{T}}|\nabla{\bf v}| L2(0,𝒯;L2)).\displaystyle\in L^{2}(0,\mathcal{T};L^{2})).

From the radiation dissipation (the last term of (15)), we obtain

T3/2\displaystyle\nabla T^{3/2} L2(0,𝒯;L2)).\displaystyle\in L^{2}(0,\mathcal{T};L^{2})). (19)

From the ρ\nabla\rho estimate in (18), the ρL1\rho\in L^{\infty}_{1} bound given in (13) and Poincare’s inequality, we also have,

ρL22.\displaystyle\rho\in L^{2}_{2}.

From the current estimates, it is possible to obtain a better estimate on temperature. We begin by showing that ρ>δ>0\rho>\delta>0 on a subset of finite measure. (Again, we repeat the arguments laid out in [FV10].)

That is, we wish to show that

||=|{xΩ:|ρ(𝐱,t)>δ}|>m>0.\displaystyle|\mathcal{B}|=|\{x\in\Omega:\,|\rho({\bf x},t)>\delta\}|>m>0. (20)

First, let M0M_{0} be the total mass, which is constant thanks to the boundary conditions. Then consider the bound (17). Since |ρlog(ρ)|>ρ|\rho\log(\rho)|>\rho for 0<ρ<<10<\rho<<1 and ρ>>1\rho>>1, there must exist an α>0\alpha>0 such that,

{ρ(,t)>α}ρ(,t)𝑑𝐱M03.\displaystyle\int_{\{\rho(\cdot,t)>\alpha\}}\rho(\cdot,t)\,d{\bf x}\leq\frac{M_{0}}{3}.

We write,

M0=Ωρ(,t)𝑑𝐱\displaystyle M_{0}=\int_{\Omega}\rho(\cdot,t)\,d{\bf x} =\displaystyle=
{ρ(,t)δ}ρ(,t)𝑑𝐱+{δ<ρ(,t)α}ρ(,t)𝑑𝐱+{ρ(,t)>α}ρ(,t)𝑑𝐱\displaystyle\int_{\{\rho(\cdot,t)\leq\delta\}}\rho(\cdot,t)\,d{\bf x}+\int_{\{\delta<\rho(\cdot,t)\leq\alpha\}}\rho(\cdot,t)\,d{\bf x}+\int_{\{\rho(\cdot,t)>\alpha\}}\rho(\cdot,t)\,d{\bf x} \displaystyle\leq
δ|Ω|+αm+M03.\displaystyle\delta|\Omega|+\alpha m+\frac{M_{0}}{3}.

We choose δ=M0/(3|Ω|)\delta=M_{0}/(3|\Omega|) and deduce that mM0/(3α)>0m\geq M_{0}/(3\alpha)>0.

Next, we use pL1p\in L^{\infty}_{1} from (13). Thanks to \mathcal{B} having non-zero measure, we conclude that TL(0,𝒯;L1())T\in L^{\infty}(0,\mathcal{T};L^{1}(\mathcal{B})). Hence, by a generalised Poincare inequality (Theorem 2, Eqn. (165) in Appendix I) and (19), we have

T3/2\displaystyle T^{3/2} L2(H1)and by Sobolev embedding,\displaystyle\in L^{2}(H^{1})\quad\textrm{and by Sobolev embedding},
T\displaystyle T L3(L9).\displaystyle\in L^{3}(L^{9}). (21)

3.2 Kinetic energy estimate

Integrating the balance (9), using the boundary conditions (5) and (6), yields,

Ωt(ρ|𝐯|22)d𝐱\displaystyle\int_{\Omega}\partial_{t}\left(\frac{\rho|{\bf v}|^{2}}{2}\right)\,d{\bf x} =Ω(p(𝐯)νρ|𝐯|2)𝑑𝐱.\displaystyle=\int_{\Omega}\left(p\nabla\cdot({\bf v})-\nu\rho|\nabla{\bf v}|^{2}\right)\,d{\bf x}. (22)

We need to control p(𝐯)p\nabla\cdot({\bf v}), which is accomplished by

0TΩp(𝐯)𝑑𝐱𝑑t0TΩη1T2+ηρ2|(𝐯)|2d𝐱dt.\displaystyle\int_{0}^{T}\int_{\Omega}p\nabla\cdot({\bf v})\,d{\bf x}dt\leq\int_{0}^{T}\int_{\Omega}\eta^{-1}T^{2}+\eta\rho^{2}|\nabla\cdot({\bf v})|^{2}\,d{\bf x}dt. (23)

The first term on the right-hand side is controlled by (21). Since νμ1ρ\nu\sim\mu_{1}\rho, we can control the last term by choosing η<μ1/2\eta<\mu_{1}/2 and from (22) we thus obtain the estimates,

0Tρ𝐯22𝑑t𝒞,\displaystyle\int_{0}^{T}\|\rho\nabla{\bf v}\|^{2}_{2}\,dt\leq\mathcal{C}, (24)
0T𝐯22𝑑t𝒞.\displaystyle\int_{0}^{T}\|\nabla{\bf v}\|^{2}_{2}\,dt\leq\mathcal{C}.

Since ρ𝐯L22\sqrt{\rho}{\bf v}\in L^{2}_{2} by (13), and ρ>δ\rho>\delta on \mathcal{B}, we have that 𝐯L2(0,𝒯;L2()){\bf v}\in L^{2}(0,\mathcal{T};L^{2}(\mathcal{B})). Using the generalised Poincare inequality (165), we obtain

𝐯\displaystyle{\bf v} L2(H1),and by Sobolev embedding\displaystyle\in L^{2}(H^{1}),\quad\textrm{and by Sobolev embedding} (25)
𝐯\displaystyle{\bf v} L62.\displaystyle\in L^{2}_{6}.

3.3 Estimates of the specific volume

Integrating (10) in space and time, using the boundary conditions (5) and (6), gives,

0,Ω𝒯12tρ1d𝐱dt+20,Ω𝒯(ρ1)𝐯𝑑𝐱𝑑t=0,Ω𝒯2νρ|ρ1|2𝑑𝐱𝑑t,\displaystyle\int_{0,\Omega}^{\mathcal{T}}\frac{1}{2}\partial_{t}\rho^{-1}\,d{\bf x}\,dt+2\int_{0,\Omega}^{\mathcal{T}}\nabla(\rho^{-1})\cdot{\bf v}\,d{\bf x}\,dt=-\int_{0,\Omega}^{\mathcal{T}}2\nu\rho|\nabla\rho^{-1}|^{2}\,d{\bf x}\,dt, (26)

and using Young’s inequality, gives,

0,Ω𝒯12tρ1d𝐱dt20,Ω𝒯η|(ρ1)|2+η1|𝐯|2d𝐱dt20,Ω𝒯νρ|ρ1|2𝑑𝐱𝑑t.\displaystyle\int_{0,\Omega}^{\mathcal{T}}\frac{1}{2}\partial_{t}\rho^{-1}d{\bf x}\,dt\leq 2\int_{0,\Omega}^{\mathcal{T}}\eta|\nabla(\rho^{-1})|^{2}+\eta^{-1}|{\bf v}|^{2}d{\bf x}\,dt-2\int_{0,\Omega}^{\mathcal{T}}\nu\rho|\nabla\rho^{-1}|^{2}d{\bf x}\,dt. (27)

Using (25), choosing ημ0/2\eta\leq\mu_{0}/2 and noting that ρ>0\rho>0, we obtain the bounds,

supt[0,𝒯]ρ11𝒞,\displaystyle\sup_{t\in[0,\mathcal{T}]}\|\rho^{-1}\|_{1}\leq\mathcal{C}, (28)
0T(ρ1)22𝑑t𝒞.\displaystyle\int_{0}^{T}\|\nabla(\rho^{-1})\|^{2}_{2}\,dt\leq\mathcal{C}.

By Poincare’s inequality (165) and Sobolev embedding, we also have

ρ1L2(H1),\displaystyle\rho^{-1}\in L^{2}(H^{1}), (29)
ρ1L2(L6).\displaystyle\rho^{-1}\in L^{2}(L^{6}).

Consequently, we conclude that ρ>0\rho>0 a.e. Furthermore, from (17) we have a bound on ρlog(T)\rho\log(T). Hence, since ρ>0\rho>0 a.e., we have that T>0T>0 a.e.

Remark 3.

Being able to establish the absence of large vacuum regions is a remarkable feature of (4) and it is a key property for the existence proof below. Note that it is a consequence of the mass diffusion.

We can also obtain a useful estimate on temperature. By using the gas law, p=ρRTp=\rho RT, we have T1/2p1/2ρ1/2T^{1/2}\sim p^{1/2}\rho^{-1/2}. Since both p1/2p^{1/2} and ρ1/2\rho^{-1/2} are bounded in L2L^{\infty}_{2} by (13) and (28), we have

TL1.\displaystyle\sqrt{T}\in L^{\infty}_{1}. (30)

3.4 Estimates from the continuity equation

Multiplying (4a) by ρ\rho and integrating in space, using conditions (5) and (6), yield

12dtρ22Ωρρρ𝐯d𝐱=Ων(ρ)T(ρ)𝑑𝐱.\displaystyle\frac{1}{2}d_{t}\|\rho\|_{2}^{2}-\int_{\Omega}\sqrt{\rho}\nabla\rho\cdot\sqrt{\rho}{\bf v}\,d{\bf x}=-\int_{\Omega}\nu(\nabla\rho)^{T}(\nabla\rho)\,d{\bf x}.

Using Young’s inequality, we obtain,

12dtρ22Ω(ν|ρ|)2𝑑𝐱+Ωη(ρ|ρ|)2+η1/2(ρ|𝐯|)2d𝐱.\displaystyle\frac{1}{2}d_{t}\|\rho\|_{2}^{2}\leq-\int_{\Omega}\left(\sqrt{\nu}|\nabla\rho|\right)^{2}\,d{\bf x}+\int_{\Omega}\sqrt{\eta}(\sqrt{\rho}|\nabla\rho|)^{2}+\eta^{-1/2}(\sqrt{\rho}|{\bf v}|)^{2}\,d{\bf x}.

Choose, ημ1/2\eta\leq\mu_{1}/2 and use ρ𝐯L2\sqrt{\rho}{\bf v}\in L^{\infty}_{2} from (13) to obtain the bounds,

supt[0,𝒯]ρ22𝒞.\displaystyle\sup_{t\in[0,\mathcal{T}]}\|\rho\|_{2}^{2}\leq\mathcal{C}. (31)
0TΩ(ν|ρ|)2𝑑𝐱<𝒞.\displaystyle\int_{0}^{T}\int_{\Omega}\left(\sqrt{\nu}|\nabla\rho|\right)^{2}\,d{\bf x}<\mathcal{C}.

By (31), Poincare, Sobolev embedding, and a standard interpolation inequality (see Appendix I, eqn (161)), we have,

ρL2,ρL2(H1),ρL62,ρL10/310/3.\displaystyle\rho\in L^{\infty}_{2},\quad\quad\rho\in L^{2}(H^{1}),\quad\quad\rho\in L^{2}_{6},\quad\quad\rho\in L^{10/3}_{10/3}. (32)

With (32) at hand, even stronger estimates on density are obtained by testing the continuity equation against ρ2\rho^{2} ,

13dtρ33+Ωρ2((ρ𝐯))𝑑𝐱=Ωρ2(νρ)𝑑𝐱.\displaystyle\frac{1}{3}d_{t}\|\rho\|_{3}^{3}+\int_{\Omega}\rho^{2}(\nabla\cdot(\rho{\bf v}))\,d{\bf x}=\int_{\Omega}\rho^{2}\,\nabla\cdot(\nu\,\nabla\rho)\,d{\bf x}.

Integrating by parts with the use of the boundary conditions (5) and (6), results in

13dtρ33Ωρ2(ρ𝐯)𝑑𝐱=Ωρ2(νρ)𝑑𝐱,\displaystyle\frac{1}{3}d_{t}\|\rho\|_{3}^{3}-\int_{\Omega}\nabla\rho^{2}\cdot(\rho{\bf v})\,d{\bf x}=-\int_{\Omega}\nabla\rho^{2}\cdot(\nu\,\nabla\rho)\,d{\bf x},

and

13dtρ33Ω(23(ρ3)𝐯)𝑑𝐱=Ω(2ρρ)(νρ)𝑑𝐱.\displaystyle\frac{1}{3}d_{t}\|\rho\|_{3}^{3}-\int_{\Omega}(\frac{2}{3}(\nabla\rho^{3})\cdot{\bf v})\,d{\bf x}=-\int_{\Omega}(2\rho\nabla\rho)\cdot(\nu\,\nabla\rho)\,d{\bf x}.

Partial integration and no-slip, lead to

13dtρ33+Ω(23ρ3𝐯)𝑑𝐱=Ω(2ρρ)(νρ)𝑑𝐱.\displaystyle\frac{1}{3}d_{t}\|\rho\|_{3}^{3}+\int_{\Omega}(\frac{2}{3}\rho^{3}\nabla\cdot{\bf v})\,d{\bf x}=-\int_{\Omega}(2\rho\nabla\rho)\cdot(\nu\,\nabla\rho)\,d{\bf x}.

Using Young’s inequality, we split the term, ρ3𝐯<ηρ4+η1(ρ𝐯)2\rho^{3}\nabla\cdot{\bf v}<\eta\rho^{4}+\eta^{-1}(\rho\nabla\cdot{\bf v})^{2}, η>0\eta>0 and use that the last term is bounded by (24). We have

13dtρ33Ωη23ρ4𝑑𝐱Ω(2ρρ)(νρ)𝑑𝐱+𝒞,\displaystyle\frac{1}{3}d_{t}\|\rho\|_{3}^{3}\leq\int_{\Omega}\eta\frac{2}{3}\rho^{4}d{\bf x}-\int_{\Omega}(2\rho\nabla\rho)\cdot(\nu\,\nabla\rho)\,d{\bf x}+\mathcal{C},

and using (3),

13dtρ33Ωη23ρ4d𝐱Ω(2ρρ)((μ0ρ1+μ1ρ))ρ)d𝐱+𝒞.\displaystyle\frac{1}{3}d_{t}\|\rho\|_{3}^{3}\leq\int_{\Omega}\eta\frac{2}{3}\rho^{4}d{\bf x}-\int_{\Omega}(2\rho\nabla\rho)\cdot((\mu_{0}\rho^{-1}+\mu_{1}\rho))\,\nabla\rho)\,d{\bf x}+\mathcal{C}.

Now we intend to use (31) and the generalised Poincare inequality (165). Hence, we add and subtract the bounded term ρ22\|\rho\|_{2}^{2} to the right-hand side.

13dtρ33Ωη23ρ4𝑑𝐱+Ω(μ1|ρ2|2)+2μ0|ρ|2d𝐱+ρ22ρ22𝒞.\displaystyle\frac{1}{3}d_{t}\|\rho\|_{3}^{3}-\int_{\Omega}\eta\frac{2}{3}\rho^{4}d{\bf x}+\int_{\Omega}(\mu_{1}|\nabla\rho^{2}|^{2})+2\mu_{0}\,|\nabla\rho|^{2}\,d{\bf x}+\|\rho\|_{2}^{2}-\|\rho\|_{2}^{2}\leq\mathcal{C}.

Next, we use the generalised Poincare inequality to conclude that, ϵ1ρ222ρ22+Ω12(μ1|ρ2|2)𝑑𝐱\epsilon_{1}\|\rho^{2}\|_{2}^{2}\leq\|\rho\|_{2}^{2}+\int_{\Omega}\frac{1}{2}(\mu_{1}|\nabla\rho^{2}|^{2})d{\bf x} for some ϵ1>0\epsilon_{1}>0, such that

13dtρ33Ωη23ρ4𝑑𝐱+ϵ1ρ222+Ω12(μ1|ρ2|2)+2μ0|ρ|2d𝐱ρ22+𝒞.\displaystyle\frac{1}{3}d_{t}\|\rho\|_{3}^{3}-\int_{\Omega}\eta\frac{2}{3}\rho^{4}d{\bf x}+\epsilon_{1}\|\rho^{2}\|_{2}^{2}+\int_{\Omega}\frac{1}{2}(\mu_{1}|\nabla\rho^{2}|^{2})+2\mu_{0}\,|\nabla\rho|^{2}\,d{\bf x}\leq\|\rho\|_{2}^{2}+\mathcal{C}.

By choosing 0<η<ϵ10<\eta<\epsilon_{1}, we obtain the bounds,

ρL3,ρ2L2(H1),ρL124,ρL66.\displaystyle\rho\in L^{\infty}_{3},\quad\quad\rho^{2}\in L^{2}(H^{1}),\quad\quad\rho\in L^{4}_{12},\quad\quad\rho\in L^{6}_{6}. (33)

(The last bound by (164).)

Given these bounds, we can get even better bounds. Multiply the continuity equation by ρ3\rho^{3} to obtain,

0,Ω𝒯ρ3ρt𝑑𝐱𝑑t+0,Ω𝒯ρ3(ρ𝐯)𝑑𝐱𝑑t=0,Ω𝒯ρ3(νρ)𝑑𝐱𝑑t.\displaystyle\int_{0,\Omega}^{\mathcal{T}}\rho^{3}\rho_{t}\,d{\bf x}\,dt+\int_{0,\Omega}^{\mathcal{T}}\rho^{3}(\nabla\cdot\rho{\bf v})\,d{\bf x}\,dt=\int_{0,\Omega}^{\mathcal{T}}\rho^{3}\nabla\cdot(\nu\nabla\rho)\,d{\bf x}\,dt. (34)

We focus on the second integral. By repeatedly integrating by parts and using the boundary conditions (5) and (6), we have

0,Ω𝒯ρ3(ρ𝐯)𝑑𝐱𝑑t=0,Ω𝒯(ρ3)ρ𝐯𝑑𝐱𝑑t\displaystyle\int_{0,\Omega}^{\mathcal{T}}\rho^{3}(\nabla\cdot\rho{\bf v})\,d{\bf x}\,dt=-\int_{0,\Omega}^{\mathcal{T}}(\nabla\rho^{3})\rho\cdot{\bf v}\,d{\bf x}\,dt =\displaystyle=
0,Ω𝒯34(ρ4𝐯)𝑑𝐱𝑑t=0,Ω𝒯34(ρ3ρ𝐯)𝑑𝐱𝑑t\displaystyle-\int_{0,\Omega}^{\mathcal{T}}\frac{3}{4}(\nabla\rho^{4}\cdot{\bf v})\,d{\bf x}\,dt=\int_{0,\Omega}^{\mathcal{T}}\frac{3}{4}(\rho^{3}\cdot\rho\nabla{\bf v})\,d{\bf x}\,dt \displaystyle\leq
0,Ω𝒯(34ρ3)2+(ρ𝐯)2d𝐱dt.\displaystyle\int_{0,\Omega}^{\mathcal{T}}(\frac{3}{4}\rho^{3})^{2}+(\rho\nabla\cdot{\bf v})^{2}\,d{\bf x}\,dt.

These integrals are controlled by (24) and (33). From (34), we thus obtain the following estimates:

ρL4,ρ3/2ρL22,ρL155,ρL23/323/3.\displaystyle\rho\in L^{\infty}_{4},\quad\quad\rho^{3/2}\nabla\rho\in L^{2}_{2},\quad\quad\rho\in L^{5}_{15},\quad\quad\rho\in L^{23/3}_{23/3}. (35)
Remark 4.

It is possible to bootstrap further and obtain a little better integrability of density but the estimates above will serve the current purposes.

3.5 Renormalised internal energy

By integrating (12) in space and employing the boundary conditions, we obtain,

Ωcv(ρH)t𝑑𝐱=ΩcvρνH′′|T|2𝑑𝐱+Ω(Hp𝐯+Hνρ|𝐯|2)𝑑𝐱\displaystyle\int_{\Omega}c_{v}(\rho H)_{t}\,d{\bf x}=-\int_{\Omega}c_{v}\rho\nu H^{\prime\prime}|\nabla T|^{2}\,d{\bf x}+\int_{\Omega}\left(H^{\prime}p\nabla\cdot{\bf v}\ +H^{\prime}\nu\rho|\nabla{\bf v}|^{2}\right)\,d{\bf x}
ΩH′′4κrT3|T|2𝑑𝐱,\displaystyle-\int_{\Omega}H^{\prime\prime}4\kappa_{r}T^{3}|\nabla T|^{2}\,d{\bf x},

which we integrate in time to obtain

Ω,0𝒯H′′4κrT3|T|2𝑑𝐱𝑑tΩ,0𝒯cvρνH′′|T|2𝑑𝐱𝑑t\displaystyle-\int_{\Omega,0}^{\mathcal{T}}H^{\prime\prime}4\kappa_{r}T^{3}|\nabla T|^{2}\,d{\bf x}\,dt-\int_{\Omega,0}^{\mathcal{T}}c_{v}\rho\nu H^{\prime\prime}|\nabla T|^{2}\,d{\bf x}\,dt =\displaystyle=
Ωcv(ρH)|t=𝒯d𝐱+Ωcv(ρH)|t=0d𝐱+Ω,0𝒯(Hp𝐯+Hνρ|𝐯|2)𝑑𝐱𝑑t.\displaystyle-\int_{\Omega}c_{v}(\rho H)|_{t=\mathcal{T}}\,d{\bf x}+\int_{\Omega}c_{v}(\rho H)|_{t=0}\,d{\bf x}+\int_{\Omega,0}^{\mathcal{T}}\left(H^{\prime}p\nabla\cdot{\bf v}\ +H^{\prime}\nu\rho|\nabla{\bf v}|^{2}\right)\,d{\bf x}\,dt. (36)

The particular choice, H(T)=(1+T)1ωH(T)=(1+T)^{1-\omega}, 0<ω<10<\omega<1, implies:

  • H(T)<T+1H(T)<T+1.

  • 0<H(T)=(1ω)(1+T)ω<(1ω)0<H^{\prime}(T)=(1-\omega)(1+T)^{-\omega}<(1-\omega) for all T0T\geq 0.

  • H′′(T)=ω(1ω)(1+T)ω1<0H^{\prime\prime}(T)=-\omega(1-\omega)(1+T)^{-\omega-1}<0 for all T>0T>0.

Hence, the left-hand side is positive. The second integral on the right-hand side of (36) is bounded by initial data and the first by (13). (That is, use the L1L^{\infty}_{1} estimates of pp and ρ\rho and note that ρHρ+p\rho H\lesssim\rho+p.) Finally, the third integral on the right-hand side can be bounded as in (23) and by (24).

We conclude that the left-hand side is bounded and the strongest bound is obtained from the first integral,

Ω,0𝒯(1+T)ω1T3|T|2𝑑𝐱𝑑t𝒞.\displaystyle\int_{\Omega,0}^{\mathcal{T}}(1+T)^{-\omega-1}T^{3}|\nabla T|^{2}\,d{\bf x}\,dt\leq\mathcal{C}.

From this bound, we have, T1ϵTL22T^{1-\epsilon}\nabla T\in L^{2}_{2}, or (T2ϵ)L22\nabla(T^{2-\epsilon})\in L^{2}_{2}. By (21), the generalised Poincare inequality and Sobolev embedding, we have T2ϵL62T^{2-\epsilon}\in L^{2}_{6} for any ϵ>0\epsilon>0. Here, we recast the bound as,

TL24ϵ8ϵ for anyϵ>0.\displaystyle\sqrt{T}\in L^{8-\epsilon}_{24-\epsilon}\quad\textrm{ for any}\quad\epsilon>0. (37)

Next, we need the following interpolation inequality (see Appendix I),

urruprrθuqrθ,\displaystyle\|u\|^{r}_{r}\leq\|u\|^{r-r\theta}_{p}\|u\|^{r\theta}_{q},

where 1=(rrθ)/p+rθ/q1=(r-r\theta)/p+r\theta/q. We intend to use (37) and (30). Therefore, we choose rθ=8r\theta=8, q=24q=24 and p=1p=1 and obtain r=8+2/3r=8+2/3. We conclude that TL8+2/3ϵ8+2/3ϵ\sqrt{T}\in L^{8+2/3-\epsilon}_{8+2/3-\epsilon}. By choosing ω\omega sufficiently small, we get δ=2/3ϵ>0\delta=2/3-\epsilon>0 such that,

T4L1+δ1+δfor1/12>δ>0.\displaystyle T^{4}\in L^{1+\delta}_{1+\delta}\quad\textrm{for}\quad 1/12>\delta>0. (38)

3.6 Improved estimates

By (21), we have TL33T\in L^{3}_{3}, which we use in

0𝒯p22𝑑t=R20,Ω𝒯(ρT)2𝑑𝐱𝑑t𝒞0𝒯ρ23T23/2𝑑t𝒞0𝒯ρ233+T23/23/2dt.\displaystyle\int_{0}^{\mathcal{T}}\|p\|_{2}^{2}\,dt=R^{2}\int_{0,\Omega}^{\mathcal{T}}(\rho T)^{2}\,d{\bf x}\,dt\leq\mathcal{C}\int_{0}^{\mathcal{T}}\|\rho^{2}\|_{3}\|T^{2}\|_{3/2}\,dt\leq\mathcal{C}\int_{0}^{\mathcal{T}}\|\rho^{2}\|_{3}^{3}+\|T^{2}\|_{3/2}^{3/2}\,dt.

Since L66L^{6}_{6} is embedded in L23/323/3L^{23/3}_{23/3}, the density term is bounded by (35). Hence,

pL22.\displaystyle p\in L^{2}_{2}. (39)

However, using the full integrability of ρ\rho and T(L44)T(\in L^{4}_{4}) we have that

pL2+δ2+δ.\displaystyle p\in L^{2+\delta}_{2+\delta}. (40)

for some δ>0\delta>0.

Next, we turn to velocity,

𝐯1ρ1/222+ρ|𝐯|22.\displaystyle\|{\bf v}\|_{1}\leq\|\rho^{-1/2}\|_{2}^{2}+\|\sqrt{\rho}|{\bf v}|\|_{2}^{2}.

The right-hand side is bounded by (28) and (13), and we have,

𝐯L1.\displaystyle{\bf v}\in L^{\infty}_{1}. (41)

Next, we use Nash’ inequality,

u21+2/n𝒞u12/nDu2,\displaystyle\|u\|_{2}^{1+2/n}\leq\mathcal{C}\|u\|_{1}^{2/n}\|Du\|_{2}, (42)

where uu is a function, nn is the number of spatial dimensions, and DD the differential operator. Applying (42) with n=3n=3 to velocity gives,

0𝒯(𝐯25/3)2𝑑t𝒞0𝒯𝐯14/3𝐯22𝑑t𝒞supt[0,𝒯]𝐯14/30𝒯𝐯22𝑑t,\displaystyle\int_{0}^{\mathcal{T}}(\|{\bf v}\|_{2}^{5/3})^{2}\,dt\leq\mathcal{C}\int_{0}^{\mathcal{T}}\|{\bf v}\|_{1}^{4/3}\|\nabla{\bf v}\|^{2}_{2}\,dt\leq\mathcal{C}\sup_{t\in[0,\mathcal{T}]}\|{\bf v}\|_{1}^{4/3}\int_{0}^{\mathcal{T}}\|\nabla{\bf v}\|^{2}_{2}\,dt, (43)

which is bounded by (41) and (25).

Next, we apply the interpolation inequality u3u11/5u64/5\|u\|_{3}\leq\|u\|_{1}^{1/5}\|u\|_{6}^{4/5} to obtain,

0𝒯𝐯310/4𝑑t0𝒯𝐯110/41/5𝐯62𝑑t,\displaystyle\int_{0}^{\mathcal{T}}\|{\bf v}\|_{3}^{10/4}\,dt\leq\int_{0}^{\mathcal{T}}\|{\bf v}\|_{1}^{10/4\cdot 1/5}\|{\bf v}\|_{6}^{2}\,dt, (44)

which is bounded by (41) and (25). We summarise (44) and (43),

𝐯L210/3,𝐯L310/4.\displaystyle{\bf v}\in L^{10/3}_{2},\quad\quad{\bf v}\in L^{10/4}_{3}. (45)

Turning to momentum, we consider ρ2|𝐯|21ρ23/2𝐯62\|\rho^{2}|{\bf v}|^{2}\|_{1}\leq\|\rho^{2}\|_{3/2}\|{\bf v}\|_{6}^{2}, and by (25) and (33), we conclude that

ρ𝐯L22.\displaystyle\rho{\bf v}\in L^{2}_{2}. (46)

Next, we will improve (46) slightly:

(ρ2u2)1+δ=ρ2(1+δ)u2ϵ(1+δ)u2(1ϵ)(1+δ).\displaystyle(\rho^{2}u^{2})^{1+\delta}=\rho^{2(1+\delta)}u^{2\epsilon(1+\delta)}u^{2(1-\epsilon)(1+\delta)}.

This yields

(ρ2u2)1+δ1ρ2(1+δ)u2ϵ(1+δ)3/2u2(1ϵ)(1+δ)3.\displaystyle\|(\rho^{2}u^{2})^{1+\delta}\|_{1}\leq\|\rho^{2(1+\delta)}u^{2\epsilon(1+\delta)}\|_{3/2}\|u^{2(1-\epsilon)(1+\delta)}\|_{3}.

To bound the last factor, we require that 2(1ϵ)(1+δ)22(1-\epsilon)(1+\delta)\leq 2. This is satisfied for δϵ\delta\leq\epsilon. Set r=2(1+δ)r=2(1+\delta) and consider the remaining factor

ρrurϵ3/2=ρrϵr/2ρϵr/2urϵ3/2=ρrϵr/2(ρu)ϵr3/2\displaystyle\|\rho^{r}u^{r\epsilon}\|_{3/2}=\|\rho^{r-\epsilon r/2}\rho^{\epsilon r/2}u^{r\epsilon}\|_{3/2}=\|\rho^{r-\epsilon r/2}(\sqrt{\rho}u)^{\epsilon r}\|_{3/2} \displaystyle\leq
ρ32(rϵr/2)q(ρu)32ϵrp\displaystyle\|\rho^{\frac{3}{2}(r-\epsilon r/2)}\|_{q}\|(\sqrt{\rho}u)^{\frac{3}{2}\epsilon r}\|_{p} .

Set 32ϵrp=2\frac{3}{2}\epsilon rp=2, i.e. p=23ϵ(1+δ)p=\frac{2}{3\epsilon(1+\delta)}. It is clear that we can choose ϵ>0\epsilon>0 so small, while keeping δ<ϵ\delta<\epsilon, such that 32(rϵr/2)q4\frac{3}{2}(r-\epsilon r/2)q\leq 4. (We use (13),(35) and (25) to control all factors.) Hence,

ρuL2+δ2+δ,for someδ>0.\displaystyle\rho u\leq L^{2+\delta}_{2+\delta},\quad\textrm{for some}\quad\delta>0. (47)

Furthermore, by (ρ|𝐯|)8/5ρ8/55(ρ|𝐯|)8/55/4=ρ88/5(ρ|𝐯|)28/5ρ816/5+(ρ|𝐯|)216/5\|(\rho|{\bf v}|)^{8/5}\|\leq\|\sqrt{\rho}^{8/5}\|_{5}\|(\sqrt{\rho}|{\bf v}|)^{8/5}\|_{5/4}=\|\sqrt{\rho}\|^{8/5}_{8}\|(\sqrt{\rho}|{\bf v}|)\|^{8/5}_{2}\leq\|\sqrt{\rho}\|^{16/5}_{8}+\|(\sqrt{\rho}|{\bf v}|)\|^{16/5}_{2}. Using (35) and (13), we have

ρ𝐯L8/5.\displaystyle\rho{\bf v}\in L^{\infty}_{8/5}. (48)

Moreover, using (48) together with ((45)) and the generalised Hölder inequality imply,

ρ(𝐯𝐯)24/23𝒞ρ𝐯8/5𝐯3,\displaystyle\|\rho({\bf v}\otimes{\bf v})\|_{24/23}\leq\mathcal{C}\|\rho{\bf v}\|_{8/5}\|{\bf v}\|_{3},

for some bounded constant 𝒞\mathcal{C}, such that

ρ(𝐯𝐯)L24/2310/4.\displaystyle\rho({\bf v}\otimes{\bf v})\in L^{10/4}_{24/23}. (49)

Next, we turn to the terms appearing in the energy flux. We will need integrability a little better than L11L^{1}_{1} and therefore we take δ,ϵ>0\delta,\epsilon>0 and consider

ρ|𝐯||𝐯|21+δ1+δ=(ρ|𝐯||𝐯|2)1+δ\displaystyle\|\rho|{\bf v}||{\bf v}|^{2}\|_{1+\delta}^{1+\delta}=\|(\rho|{\bf v}||{\bf v}|^{2})^{1+\delta}\| =\displaystyle=
((ρ)1ϵ(ρ)1+ϵ|𝐯|1+ϵ|𝐯|2ϵ)1+δ\displaystyle\|((\sqrt{\rho})^{1-\epsilon}(\sqrt{\rho})^{1+\epsilon}|{\bf v}|^{1+\epsilon}|{\bf v}|^{2-\epsilon})^{1+\delta}\| =\displaystyle=
(ρ)(1+δ)(1ϵ)(ρ|𝐯|)(1+δ)(1+ϵ)|𝐯|(2ϵ)(1+δ)\displaystyle\|(\sqrt{\rho})^{(1+\delta)(1-\epsilon)}(\sqrt{\rho}|{\bf v}|)^{(1+\delta)(1+\epsilon)}|{\bf v}|^{(2-\epsilon)(1+\delta)}\| \displaystyle\leq
(ρ)(1+δ)(1ϵ)(ρ|𝐯|)(1+δ)(1+ϵ)3/2|𝐯|(2ϵ)(1+δ)3\displaystyle\|(\sqrt{\rho})^{(1+\delta)(1-\epsilon)}(\sqrt{\rho}|{\bf v}|)^{(1+\delta)(1+\epsilon)}\|_{3/2}\||{\bf v}|^{(2-\epsilon)(1+\delta)}\|_{3} .

To bound the last factor in L62L^{2}_{6} using (25), we demand that (2ϵ)(1+δ)2(2-\epsilon)(1+\delta)\leq 2. We proceed with the choice ϵ=1/100\epsilon=1/100 and δ=1/200\delta=1/200.

ρ|𝐯||𝐯|21+δ1+δ\displaystyle\|\rho|{\bf v}||{\bf v}|^{2}\|_{1+\delta}^{1+\delta} (ρ)197/198(ρ|𝐯|)607/5983/2|𝐯|rs,\displaystyle\leq\|(\sqrt{\rho})^{197/198}(\sqrt{\rho}|{\bf v}|)^{607/598}\|_{3/2}\||{\bf v}|\|_{r}^{s},

where 0<r<60<r<6 and 0<s<20<s<2. Next, we estimate

(ρ)(197/198)32(ρ|𝐯|)(607/598)321\displaystyle\|(\sqrt{\rho})^{(197/198)\frac{3}{2}}(\sqrt{\rho}|{\bf v}|)^{(607/598)\frac{3}{2}}\|_{1} \displaystyle\leq
(ρ)(197/198)32p(ρ|𝐯|)(607/598)32q\displaystyle\|(\sqrt{\rho})^{(197/198)\frac{3}{2}}\|_{p}\|(\sqrt{\rho}|{\bf v}|)^{(607/598)\frac{3}{2}}\|_{q} , (50)

and choose 60759832q=2\frac{607}{598}\frac{3}{2}q=2, i.e., q=2392/1821q=2392/1821 and p=2392/571p=2392/571. The second factor in (50) is controlled by (13). The first is,

(ρ)(197/198)322392/571(ρ)52973/8473197/132ρ8=ρ4,\displaystyle\|(\sqrt{\rho})^{(197/198)\frac{3}{2}}\|_{2392/571}\leq\|(\sqrt{\rho})\|^{197/132}_{52973/8473}\leq\|\sqrt{\rho}\|_{8}^{\infty}=\|\rho\|^{\infty}_{4},

where the right-hand side is controlled by (35). Hence,

ρ|𝐯|2𝐯L1+1/2001+1/200.\displaystyle\rho|{\bf v}|^{2}{\bf v}\in L^{1+1/200}_{1+1/200}. (51)

We also need the following standard result: Ω,0𝒯|logρ|p𝑑𝐱𝑑tCp(ρ22+ρ122),\int_{\Omega,0}^{\mathcal{T}}|\log\rho|^{p}\,d{\bf x}\,dt\leq C_{p}\left(\|\rho\|_{2}^{2}+\|\rho^{-1}\|_{2}^{2}\right), where CpC_{p} is a bounded constant for any p<p<\infty. Hence,

logρLpp,\displaystyle\log\rho\in L^{p}_{p}, (52)

for any arbitrary pp, since ρ,ρ1L22\rho,\rho^{-1}\in L^{2}_{2} by ((29) and (32))

3.7 Compactness of ρ,𝐯,T\rho,{\bf v},T

Assuming that we have a sequence of approximate solutions satisfying the a priori estimates, we will demonstrate that the primary variables converge a.e. (Such a sequence will be generated by means of a numerical scheme below.)

Density: We intend to apply Aubin-Lions Lemma (see Lemma 2 in Appendix I) to the continuity equation. From (32), we know that ρL2(H1)\rho\in L^{2}(H^{1}), and H1H^{1} is compactly embedded i L2L^{2}.

We need a that ρt\rho_{t} is bounded in a space XX, such that L2L^{2} is continuously embedded in XX. We try the negative Sobolev space W3,2W^{-3,2} which is the set of all distributions, uu, such that Ωuϕ𝑑𝐱\int_{\Omega}u\phi\,d{\bf x} is bounded for all ϕW3,2\phi\in W^{3,2}.

Remark 5.

L2L^{2} is continuously embedded in W3,2W^{-3,2} if uW3,2𝒞uL2\|u\|_{W^{-3,2}}\leq\mathcal{C}\|u\|_{L^{2}}, uL2u\in L^{2}, Here, uW3,2=supϕW3,2(Ω),ϕ3,2=1|<ϕ,u>|ϕ3,2\|u\|_{W^{-3,2}}=\sup_{\phi\in W^{3,2}(\Omega),\|\phi\|_{3,2}=1}\frac{|<\phi,u>|}{\|\phi\|_{3,2}}. Since |<ϕ,u>||<\phi,u>| is bounded for all uL2u\in L^{2}, we conclude that L2L^{2} functions, are bounded in W3,2W^{-3,2}.

We proceed with the test functions ϕW3,2\phi\in W^{3,2}, for which ϕL\nabla\phi\in L^{\infty}, and use them to test if ρtL2(W3,2)\rho_{t}\in L^{2}(W^{-3,2}).

|<tϕ,ρ>|=|<ϕ,νρ><ρ𝐯,ϕ>|\displaystyle|<\partial_{t}\phi,\rho>|=|-<\nabla\phi,\nu\nabla\rho>-<\rho{\bf v},\nabla\phi>|\leq
νρ1ϕ+ρ𝐯1ϕ.\displaystyle\|\nu\nabla\rho\|_{1}\|\nabla\phi\|_{\infty}+\|\rho{\bf v}\|_{1}\|\nabla\phi\|_{\infty}.

Furthermore, we obtain

0𝒯supϕW3,2,ϕ=1|<tϕ,ρ>dt|2\displaystyle\int_{0}^{\mathcal{T}}\sup_{\phi\in W^{3,2},\|\phi\|=1}|<\partial_{t}\phi,\rho>\,dt|^{2} \displaystyle\leq
0𝒯supϕW3,2,ϕ=1(νρ1ϕ+ρ𝐯1ϕ)2dt\displaystyle\int_{0}^{\mathcal{T}}\sup_{\phi\in W^{3,2},\|\phi\|=1}\left(\|\nu\nabla\rho\|_{1}\|\nabla\phi\|_{\infty}+\|\rho{\bf v}\|_{1}\|\nabla\phi\|_{\infty}\right)^{2}dt .

First, we note that ϕ𝒞ϕ3,2(𝒞)\|\nabla\phi\|_{\infty}\leq\mathcal{C}\|\phi\|_{3,2}(\leq\mathcal{C}). Furthermore, (46), (35)/(33) and (18) bounds the fluxes on the right-hand side in L22L^{2}_{2} and we can use Aubin-Lions Lemma, to conclude (by Sobolev embedding) that ρ\rho is compact in L10/3ϵ10/3ϵL^{10/3-\epsilon}_{10/3-\epsilon}. Hence, a subsequence converges a.e. and since ρL23/323/3\rho\in L^{23/3}_{23/3} by (35), we have strong convergence of ρ\rho in LrrL^{r}_{r} for r<23/3r<23/3.

Temperature: We assume that we have two sequences of approximate solutions ρn,Tn\rho^{n},T^{n} satisfying the a priori estimates obtained from the equation: ρnL23/223/2;TnL4+ϵ4+ϵ\rho^{n}\in L^{23/2}_{23/2};\quad T^{n}\in L^{4+\epsilon}_{4+\epsilon} (see (35) and (38)).

We have strong convergence of ρn\rho_{n} in LppL^{p}_{p}, p<23/3p<23/3 and (subsequential) weak convergence of TnT_{n} in L44L^{4}_{4}.

From this, we have weak convergence of ρnTn\rho^{n}T^{n} in L22L^{2}_{2} since for any ϕL22\phi\in L^{2}_{2}

<ϕ,ρnTnρT>=<ϕTn,ρnρ>+<ϕρ,TnT>.\displaystyle<\phi,\rho^{n}T^{n}-\rho T>=<\phi T^{n},\rho^{n}-\rho>+<\phi\rho,T^{n}-T>. (53)

For the first term to vanish ϕTn\phi T^{n} must be bounded in L23/20+ϵ23/20+ϵL^{23/20+\epsilon}_{23/20+\epsilon}, which it is. For the other term, we need ρϕL4/34/3\rho\phi\in L^{4/3}_{4/3}, which also holds.

Next, consider convergence of the L2L^{2}-norm:

0TΩ(ρnTn)2(ρT)2dxdt=0TΩ((ρn)2ρ2)(Tn)2+ρ2((Tn)2T2)dxdt,\displaystyle\int_{0}^{T}\int_{\Omega}(\rho^{n}T^{n})^{2}-(\rho T)^{2}\,dx\,dt=\int_{0}^{T}\int_{\Omega}((\rho^{n})^{2}-\rho^{2})(T^{n})^{2}+\rho^{2}((T^{n})^{2}-T^{2})\,dx\,dt,

which approaches zero thanks to the strongly and weakly converging sequences.

Next, we consider convergence in norm:

0𝒯ρnTnρT22𝑑t\displaystyle\int_{0}^{\mathcal{T}}\|\rho^{n}T^{n}-\rho T\|_{2}^{2}\,dt =\displaystyle=
0𝒯<ρnTnρT,ρnTnρT>dt\displaystyle\int_{0}^{\mathcal{T}}<\rho^{n}T^{n}-\rho T,\rho^{n}T^{n}-\rho T>\,dt =\displaystyle=
0𝒯(ρn)2(Tn)2ρ2T22(ρnTnρT)ρTdt\displaystyle\int_{0}^{\mathcal{T}}(\rho^{n})^{2}(T^{n})^{2}-\rho^{2}T^{2}-2(\rho^{n}T^{n}-\rho T)\rho T\,dt .

Convergence of the norm and the weak convergence in L22L^{2}_{2} ensures that the last integral vanishes. Hence, we have strong convergence of ρT\rho T in L22L^{2}_{2} and a.e. convergence of a subsequence. Since ρ\rho is a.e. convergent, there is a subsequence of TnT_{n} that converges a.e.

Velocity: Here we use that the sequence ρnun\sqrt{\rho^{n}}u^{n} is bounded in L22L^{2}_{2} (13); we have unu^{n} bounded and weakly convergent in L2.52.5L^{2.5}_{2.5}, (45); and ρn\sqrt{\rho^{n}} is strongly convergent up to LppL^{p}_{p}, p<46/3p<46/3, thanks to (35).

Weak convergence of ρnunL22\sqrt{\rho^{n}}u^{n}\in L^{2}_{2} requires that for ϕL22\phi\in L^{2}_{2}, we have ρnϕL5/35/3\sqrt{\rho^{n}}\phi\in L^{5/3}_{5/3} and ϕuL46/43+ϵ46/43+ϵ\phi u\in L^{46/43+\epsilon}_{46/43+\epsilon}. Both conditions can be confirmed with the available estimates.

Next, we check convergence of the L22L^{2}_{2} norm:

0𝒯Ωρn(un)2ρu2dxdt=0TΩ(ρnρ)(un)2+ρ((un)2u2)dxdt.\displaystyle\int_{0}^{\mathcal{T}}\int_{\Omega}\rho^{n}(u^{n})^{2}-\rho u^{2}\,dx\,dt=\int_{0}^{T}\int_{\Omega}(\rho^{n}-\rho)(u^{n})^{2}+\rho((u^{n})^{2}-u^{2})\,dx\,dt. (54)

Since (un)2L5/45/4(u^{n})^{2}\in L^{5/4}_{5/4}, we need ρ\rho to be strongly convergent in at least L55L^{5}_{5}, which indeed we have.

Hence, one can in the same way as for temperature deduce strong convergence of ρnun\sqrt{\rho^{n}}u^{n} in L22L^{2}_{2} and draw an a.e. converging subsequence and get a.e. convergence of unu^{n}.

Remark 6.

It is also possible to prove that ρu\rho u is compact in L3/23/2L^{3/2}_{3/2} via Aubin-Lions Lemma. The fluxes are bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} which is enough to show that t(ρu)L1+ϵ(W3/2)\partial_{t}(\rho u)\in L^{1+\epsilon}(W^{-3/2}). Furthermore, ρ𝐯\rho{\bf v} and (ρ𝐯)\nabla\cdot(\rho{\bf v}) are both in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} and L3/2L^{3/2} is compactly embedded in W1,1W^{1,1}. Hence, we have a.e. convergence of ρ𝐯\rho{\bf v} and therefore also of 𝐯{\bf v}.

Magnitude of velocity gradients:

We apply the analogous arguments as above to the sequence ρn|uxn|\sqrt{\rho^{n}}\sqrt{|u^{n}_{x}|}. We have strong convergence of ρnLp<46/3p<46/3\sqrt{\rho^{n}}\in L^{p<46/3}_{p<46/3} and weak convergence of |uxn|L44\sqrt{|u^{n}_{x}|}\in L^{4}_{4}. This is enough to get
limn0𝒯(ρn|uxn|22ρ|ux|22)𝑑t0\lim_{n\rightarrow\infty}\int_{0}^{\mathcal{T}}\left(\|\sqrt{\rho^{n}}\sqrt{|u^{n}_{x}|}\|_{2}^{2}-\|\sqrt{\rho}\sqrt{|u_{x}|}\|_{2}^{2}\right)\,dt\rightarrow 0.

Weak convergence of ρn|uxn|L22\sqrt{\rho^{n}}\sqrt{|u^{n}_{x}|}\in L^{2}_{2} can be verified with the help of the estimates. Hence, we can infer strong convergence of ρn|uxn|L22\sqrt{\rho^{n}}\sqrt{|u^{n}_{x}|}\in L^{2}_{2} and draw an a.e. converging subsequence. We obtain that |uxn||u^{n}_{x}| converges a.e. and strongly up to L2ϵ2ϵL^{2-\epsilon}_{2-\epsilon} for ϵ>0\epsilon>0.

Magnitude of temperature and density gradients: The argument can be mimicked for the sequences ρn|Txn|\sqrt{\rho^{n}}\sqrt{|T^{n}_{x}|} and ρn|ρxn|\sqrt{\rho^{n}}\sqrt{|\rho^{n}_{x}|} that satisfy equally strong estimates.

Summary: ρ,𝐯,T\rho,{\bf v},T and |𝐯|,|T|,|ρ||\nabla{\bf v}|,|\nabla T|,|\nabla\rho| are all converging a.e.

3.8 Weak sequential convergence

Assuming that we have a sequence of approximate solutions that satisfies the a priori estimates, we will demonstrate that the estimates are sufficient to infer convergence to an L11L^{1}_{1} weak solution. To this end, we need that all inviscid fluxes are bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}, ϵ>0\epsilon>0 and a.e. convergence of the principal variables. The convergence of the diffusive fluxes are discussed separately.

Throughout, we assume that initial data is appropriately bounded. For instance, all variables bounded in LL_{\infty} and ρ,T>0\rho,T>0 and bounded away from zero, would do.

Continuity equation: We begin by testing the continuity equation against ϕC01(Ω¯×[0,𝒯))\phi\in C_{0}^{1}(\bar{\Omega}\times[0,\mathcal{T})),

0𝒯(<ϕn,ρt>+<ϕ,(ρn𝐯n)>)dt=0𝒯<ϕ,(νnρn)>dt.\displaystyle\int_{0}^{\mathcal{T}}\left(<\phi_{n},\rho_{t}>+<\phi,\nabla(\rho_{n}{\bf v}_{n})>\right)\,dt=\int_{0}^{\mathcal{T}}<\phi,\nabla\cdot(\nu_{n}\nabla\rho_{n})>\,dt.

Integration by parts results in

<ϕ,ρn>|t=00𝒯(<tϕ,ρn><ϕ,ρn𝐯n>)dt\displaystyle-<\phi,\rho_{n}>|_{t=0}-\int_{0}^{\mathcal{T}}\left(<\partial_{t}\phi,\rho_{n}>-<\nabla\cdot\phi,\rho_{n}{\bf v}_{n}>\right)\,dt =\displaystyle=
0𝒯<ϕ,(νnρn)>dt\displaystyle-\int_{0}^{\mathcal{T}}<\nabla\phi,(\nu_{n}\nabla\rho_{n})>\,dt ,

which we require to hold for any ϕC01(Ω¯×[0,𝒯))\phi\in C_{0}^{1}(\bar{\Omega}\times[0,\mathcal{T})).

The first integral is well-defined thanks to the strong estimates of ρn\rho_{n}. In the second, the momentum is bounded in L22L^{2}_{2} by (47) and both ρn\rho_{n} and 𝐯n{\bf v}_{n} converge a.e. Hence, we have strong convergence of the inviscid flux term in L22L^{2}_{2}. The last integral is controlled by (18) and (33). Since νn\nu_{n} is a function of ρn\rho_{n}, it converges a.e.. The weak convergence in L22L^{2}_{2} of the density gradient, allows us to conclude that the product converges weakly to the correct limit.

Momentum equations: The weak form is given by,

<ϕ,ρn𝐯n>|t=00𝒯(<tϕ,ρn𝐯n><ϕ,(ρn(𝐯n𝐯n)+pn))dt\displaystyle-<\phi,\rho_{n}{\bf v}_{n}>|_{t=0}-\int_{0}^{\mathcal{T}}\left(<\partial_{t}\phi,\rho_{n}{\bf v}_{n}>-<\nabla\cdot\phi,(\rho_{n}({\bf v}_{n}\otimes{\bf v}_{n})+p_{n})\right)\,dt =\displaystyle=
0𝒯<ϕ,(νn(ρn𝐯n))dt,\displaystyle-\int_{0}^{\mathcal{T}}<\nabla\phi,(\nu_{n}\nabla(\rho_{n}{\bf v}_{n}))\,dt,

where ϕC01(Ω×[0,𝒯);3)\phi\in C_{0}^{1}(\Omega\times[0,\mathcal{T});\mathbb{R}^{3}).

The first integral is controlled by (46). The second integral is controlled by (49) which, along with a.e. convergence of ρn,𝐯n\rho_{n},{\bf v}_{n}, implies weak convergence in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}. Convergence of the pressure term follows from (40).

The integrand in the last term contains,

ρ(ρ)𝐯,ρ2𝐯,ρ1(ρ)𝐯,𝐯.\displaystyle\rho(\nabla\rho)\cdot{\bf v},\quad\rho^{2}\nabla\cdot{\bf v},\quad\rho^{-1}(\nabla\rho)\cdot{\bf v},\quad\nabla\cdot{\bf v}.

In the first term, we have ρρL22\rho\nabla\rho\in L^{2}_{2} by (33). Hence, a subsequence converges weakly in L22L^{2}_{2}. By a.e. convergence of 𝐯{\bf v} and 𝐯L310/4{\bf v}\in L^{10/4}_{3} by (45), we have strong convergence of 𝐯Lpp{\bf v}\in L^{p}_{p}, 1p<2.51\leq p<2.5. Hence, the product converges weakly in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} for some ϵ>0\epsilon>0.

The term ρ2𝐯\rho^{2}\nabla\cdot{\bf v} is handled in the same way. A subsequence of 𝐯\nabla\cdot{\bf v} converges weakly by (25). By (35) and a.e. convergence, ρ\rho converges strongly in ρL23/3ϵ23/3ϵ\rho\in L^{23/3-\epsilon}_{23/3-\epsilon}. Hence, we have weak convergence of the second term in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} for some ϵ>0\epsilon>0.

The third term is handled like the first noting that logρL22\nabla\log\rho\in L^{2}_{2} by (18). Weak convergence of the fourth term is immediate (for a subsequence) by (25).

The total energy equation: Finally, we turn to the weak form of the energy equation:

<ϕ,En>|t=00𝒯(<tϕ,En><ϕ,(En𝐯n+pn𝐯n))dt\displaystyle-<\phi,E_{n}>|_{t=0}-\int_{0}^{\mathcal{T}}\left(<\partial_{t}\phi,E_{n}>-<\nabla\phi,(E_{n}{\bf v}_{n}+p_{n}{\bf v}_{n})\right)\,dt =\displaystyle=
0𝒯<ϕ,(νnEn)dt0𝒯<ϕ,(κrTn4)dt\displaystyle-\int_{0}^{\mathcal{T}}<\nabla\phi,(\nu_{n}\nabla E_{n})\,dt-\int_{0}^{\mathcal{T}}<\nabla\phi,(\kappa_{r}\nabla T^{4}_{n})\,dt ,

with test functions ϕC02(Ω×[0,𝒯))\phi\in C_{0}^{2}(\Omega\times[0,\mathcal{T})).

The first integral is handled in the same way as the inviscid flux in the momentum equation. Weak convergence of pn𝐯np_{n}{\bf v}_{n} appearing in the second integral follows from (40) and (45). The ρ|𝐯|2𝐯\rho|{\bf v}|^{2}{\bf v} term is bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} according to (51). Furthermore, it converges a.e. Hence, it converges weakly in L11L^{1}_{1} to the correct limit.

The radiation term is recast as <ϕ,T4>=<Δϕ,T4><\nabla\phi,\nabla T^{4}>=-<\Delta\phi,T^{4}>. Strong convergence (of a subsequence) is ensured by (38) and a.e. convergence.

The pressure term in the diffusive flux is handled as follows,

νp(ρ+ρ1)pρTρ+ρ2T+Tlogρ+T.\displaystyle\nu\nabla p\sim(\rho+\rho^{-1})\nabla p\sim\rho T\nabla\rho+\rho^{2}\nabla T+T\nabla\log\rho+\nabla T.

These are easily handled by using (18), (32), (40) and (33), along with a.e. convergence of ρ\rho and TT, and noting that by combining (19) and (18), we get TL22\nabla T\in L^{2}_{2}.

Finally, we consider

<ϕ,νn(12ρn|𝐯n|2)>=<((ϕ)νn),(12ρn|𝐯n|2)>\displaystyle<\nabla\phi,\nu_{n}\nabla(\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2})>=-<\nabla\cdot((\nabla\phi)\nu_{n}),(\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2})> =\displaystyle=
<Δϕ,νn12ρn|𝐯n|2><ϕνn,(12ρn|𝐯n|2)>\displaystyle-<\Delta\phi,\nu_{n}\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2}>-<\nabla\phi\cdot\nabla\nu_{n},(\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2})> .

Dropping the subscript we have terms of the form:

|𝐯|2,ρ2|𝐯|2,ρ|𝐯|2(ρ+ρ1).\displaystyle|{\bf v}|^{2},\quad\rho^{2}|{\bf v}|^{2},\quad\rho|{\bf v}|^{2}\nabla(\rho+\rho^{-1}). (55)

Strong convergence of the first follows directly from 𝐯L2.52.5{\bf v}\in L^{2.5}_{2.5} (see (45)) and a.e convergence. In the second, we have that ρ𝐯\rho{\bf v} is converging strongly in L2+δ2+δL^{2+\delta}_{2+\delta} (see (47)).

The fourth is,

(ρ1)ρ|𝐯|2=(logρ)|𝐯|2=(logρ|𝐯|2)2logρ(𝐯𝐯).\displaystyle-\nabla(\rho^{-1})\rho|{\bf v}|^{2}=(\nabla\log\rho)|{\bf v}|^{2}=\nabla(\log\rho|{\bf v}|^{2})-2\log\rho({\bf v}\cdot\nabla{\bf v}).

In the first term of the last expression, we can move the derivatives onto the test function. The bound logρ|𝐯|2\log\rho|{\bf v}|^{2} follows since logρLpp\log\rho\in L^{p}_{p} for any arbitrary pp (see (52)) and |𝐯|2L5/45/4|{\bf v}|^{2}\in L^{5/4}_{5/4}.

We are left to bound logρ(𝐯𝐯)\log\rho({\bf v}\cdot\nabla{\bf v}). We have that 𝐯\nabla{\bf v} is converging weakly in L22L^{2}_{2}. Hence, we need that log(ρ)𝐯\log(\rho){\bf v} is converging strongly in L22L^{2}_{2}. Since both ρ\rho and 𝐯{\bf v} are a.e. convergent, we only need a bound on the product in a little better space than L22L^{2}_{2}. This follows since we have 𝐯L10/410/4{\bf v}\in L^{10/4}_{10/4} and log(ρ)L1111\log(\rho)\in L^{11}_{11}.

Finally, we must deduce convergence of the third term of (55):

(ρ)ρ|𝐯|2=12(ρ2)|𝐯|2=12(ρ2|𝐯|2)ρ2𝐯𝐯.\displaystyle(\nabla\rho)\rho|{\bf v}|^{2}=\frac{1}{2}(\nabla\rho^{2})|{\bf v}|^{2}=\frac{1}{2}\nabla(\rho^{2}|{\bf v}|^{2})-\rho^{2}{\bf v}\nabla{\bf v}. (56)

In the first term, we can move the derivative to the test function and are left with ρ2|𝐯|2\rho^{2}|{\bf v}|^{2} which is bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} and a.e. convergent. The last step is to prove convergence of

ρ2𝐯𝐯=(ρ𝐯)(ρ𝐯).\displaystyle\rho^{2}{\bf v}\nabla{\bf v}=(\rho{\bf v})(\rho\nabla{\bf v}). (57)

We have strong convergence of (ρ𝐯)L2+δ2+δ(\rho{\bf v})\in L^{2+\delta}_{2+\delta} for some fixed δ>0\delta>0. Hence, if we have weak convergence of (ρ𝐯)L2ϵ2ϵ(\rho\nabla{\bf v})\in L^{2-\epsilon}_{2-\epsilon} for ϵ>0\epsilon>0, (57) is converging weakly in L11L^{1}_{1}.

By (24), we know that (ρn𝐯n)L22(\rho^{n}\nabla{\bf v}^{n})\in L^{2}_{2} and hence weakly converging to some limit (ρ𝐯)(\rho\nabla{\bf v})^{*}. Using the strong and weak convergence of ρn\rho^{n} and 𝐯n\nabla{\bf v}^{n}, we get that ρn𝐯nρ𝐯L11\rho^{n}\nabla{\bf v}^{n}\rightharpoonup\rho\nabla{\bf v}\in L^{1}_{1}. That is when we test it against an LL^{\infty}_{\infty} function. Since the sequence converges to (ρ𝐯)(\rho{\bf v})^{*} for all test functions in L22L^{2}_{2} including those that are also bounded in LL^{\infty}_{\infty}, we conclude that (ρ𝐯)=ρ𝐯(\rho\nabla{\bf v})^{*}=\rho\nabla{\bf v} by uniqueness of the weak limit.

The entropy inequality: ρS\rho S is convergent if ρlog(T)\rho\log(T) and ρlog(ρ)\rho\log(\rho) are both convergent in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}. This follows from logρ\log\rho and logT\log T being bounded in L2(H1)L^{2}(H^{1}), which together with the strong estimates of ρ\rho along with a.e. convergence, ensures weak convergence of ρSL1+ϵ1+ϵ\rho S\in L^{1+\epsilon}_{1+\epsilon}

Convergence of the entropy flux follows from the logρ\log\rho and logT\log T bounds and (47), i.e., ρ𝐯L2+ϵ2+ϵ\rho{\bf v}\in L^{2+\epsilon}_{2+\epsilon} and a.e. convergence of ρ,T,𝐯\rho,T,{\bf v}. (ρ𝐯\rho{\bf v} converges a.e. and hence strongly in L2+δ2+δL^{2+\delta}_{2+\delta} for δ<ϵ\delta<\epsilon.)

Finally, the right-hand side of the entropy equation (7) is summable and non-positive ensuring that the entropy inequality, (ρS)t+(ρ𝐯S)0(-\rho S)_{t}+\nabla\cdot(-\rho{\bf v}S)\leq 0, is satisfied in a distributional sense in L11L^{1}_{1}.

However, it is challenging to verify these relations for the numerical scheme below, and in this treatise we will demonstrate that entropy is diffused globally. That is,

ΩρSd𝐱ΩρSd𝐱|t=0.\displaystyle\int_{\Omega}-\rho S\,d{\bf x}\leq\int_{\Omega}-\rho S\,d{\bf x}|_{t=0}.

3.9 Weak entropy solution

The weak sequential compactness above, demonstrates that it should be possible to construct weak entropy solutions to (4). Herein, we will utilise a numerical scheme to produce a sequence of approximate solutions. We will prove that the sequence converges to a weak solution in the following sense:

Definition 1.

We say that the triple {ρ,𝐯,T}\{\rho,{\bf v},T\} is a weak entropy solution to (4) with boundary conditions (5) and (6), if ρ,T>0\rho,T>0 a.e. in Ω×[0,𝒯]\Omega\times[0,\mathcal{T}] and the triple satisfies:

  • For all ϕC01([0,𝒯)×Ω¯)\phi\in C^{1}_{0}([0,\mathcal{T})\times\bar{\Omega}), the continuity equation is satisfied weakly,

    <ϕ,ρ>|t=00𝒯(<tϕ,ρ>+<ϕ,ρ𝐯>)dt\displaystyle-<\phi,\rho>|_{t=0}-\int_{0}^{\mathcal{T}}\left(<\partial_{t}\phi,\rho>+<\nabla\phi,\rho{\bf v}>\right)\,dt =0𝒯<ϕ,(νρ)>dt.\displaystyle=-\int_{0}^{\mathcal{T}}<\nabla\phi,(\nu\nabla\rho)>\,dt.
  • For all ϕC01([0,𝒯)×Ω)\phi\in C^{1}_{0}([0,\mathcal{T})\times\Omega), the momentum equation is satisfied weakly,

    <ϕ,ρ𝐯>|t=00𝒯(<tϕ,ρ𝐯>+<ϕ,(ρ(𝐯𝐯)+p))dt\displaystyle-<\phi,\rho{\bf v}>|_{t=0}-\int_{0}^{\mathcal{T}}\left(<\partial_{t}\phi,\rho{\bf v}>+<\nabla\phi,(\rho({\bf v}\otimes{\bf v})+p)\right)\,dt =\displaystyle=
    0𝒯<ϕ,νρ𝐯)dt.\displaystyle-\int_{0}^{\mathcal{T}}<\nabla\phi,\nu\nabla\rho{\bf v})\,dt.
  • For all ϕC02([0,𝒯)×Ω)\phi\in C^{2}_{0}([0,\mathcal{T})\times\Omega), the internal energy equation is satisfied weakly,

    <ϕ,E>|t=00𝒯(<tϕ,E>+<ϕ,(E+p)𝐯>)dt\displaystyle-<\phi,E>|_{t=0}-\int_{0}^{\mathcal{T}}\left(<\partial_{t}\phi,E>+<\nabla\phi,(E+p){\bf v}>\right)\,dt =\displaystyle=
    𝒟+0𝒯<Δϕ,(κrT4)dt,\displaystyle-\mathcal{D}+\int_{0}^{\mathcal{T}}<\Delta\phi,(\kappa_{r}T^{4})\,dt,

    where the diffusive term is interpreted as:

    𝒟=<ϕ,νE>=<ϕ,νn(12ρn|𝐯n|2+p)>,\displaystyle\mathcal{D}=<\nabla\phi,\nu\nabla E>=<\nabla\phi,\nu_{n}\nabla(\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2}+p)>,

    and

    <ϕ,νn(12ρn|𝐯n|2)>\displaystyle<\nabla\phi,\nu_{n}\nabla(\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2})> =\displaystyle=
    <Δϕ,νn12ρn|𝐯n|2><ϕ,(νn)12ρn|𝐯n|2>\displaystyle-<\Delta\phi,\nu_{n}\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2}>-<\nabla\phi,(\nabla\nu_{n})\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2}> ,

    and

    μ1<ϕ,(ρn)12ρn|𝐯n|2>=μ1<Δϕ,14ρn2|𝐯n|2>μ1<ϕ,12ρn2𝐯n𝐯>,\displaystyle\mu_{1}<\nabla\phi,(\nabla\rho_{n})\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2}>=-\mu_{1}<\Delta\phi,\frac{1}{4}\rho_{n}^{2}|{\bf v}_{n}|^{2}>-\mu_{1}<\nabla\phi,\frac{1}{2}\rho_{n}^{2}{\bf v}_{n}\cdot\nabla{\bf v}>,
    μ0<ϕ,(ρn1)12ρn|𝐯n|2>=μ02<Δϕ,logρn|𝐯n|2>+μ0<ϕ,(logρn)𝐯n𝐯>.\displaystyle\mu_{0}<\nabla\phi,(\nabla\rho_{n}^{-1})\frac{1}{2}\rho_{n}|{\bf v}_{n}|^{2}>=\frac{\mu_{0}}{2}<\Delta\phi,\log\rho_{n}|{\bf v}_{n}|^{2}>+\mu_{0}<\nabla\phi,(\log\rho_{n}){\bf v}_{n}\cdot\nabla{\bf v}>.
  • The entropy inequality

    ΩρSd𝐱ΩρSd𝐱|t=0,\displaystyle\int_{\Omega}-\rho S\,d{\bf x}\leq\int_{\Omega}-\rho S\,d{\bf x}|_{t=0},

    is satisfied weakly.

4 The numerical approximation scheme

To generate a sequence of approximate solutions to (4), we use a finite volume scheme and consider the domain Ω=(0,1)3\Omega=(0,1)^{3}. We discretise Ω\Omega with N+1N+1 grid points in each direction: xix_{i}, yjy_{j}, zkz_{k}, i,j,k=0Ni,j,k=0...N. The discrete domain is denoted Ωh\Omega_{h}. Furthermore, let xi+1/2=xi+1+xi2x_{i+1/2}=\frac{x_{i+1}+x_{i}}{2} and similarly for yj+1/2,zk+1/2y_{j+1/2},z_{k+1/2}.

Each grid point is associated with a control volume. In the interior of the domain, the control volumes are centred around the grid points: 𝒱ijk=(xi1/2,xi+1/2]×(yj1/2,yj+1/2]×(zk1/2,zk+1/2]\mathcal{V}_{ijk}=(x_{i-1/2},x_{i+1/2}]\times(y_{j-1/2},y_{j+1/2}]\times(z_{k-1/2},z_{k+1/2}] and, Vijk=|𝒱ijk|V_{ijk}=|\mathcal{V}_{ijk}| denotes the measure of the control volume. At the boundaries, the control volumes are defined in the same way (towards other grid points) and are closed with the domain boundary. (We use the standard node-centred finite volume scheme on a Cartesian grid.)

The variables are constant within each control volume such that they form piecewise-constant functions in space. We adopt the same notation for the approximations that we used for the continuous equation. For instance, pijkp_{ijk} is the value of the piecewise constant pressure and 𝐯ijk=(uijk,vijk,wijk){\bf v}_{ijk}=(u_{ijk},v_{ijk},w_{ijk}) is the velocity vector in 𝒱ijk\mathcal{V}_{ijk}.

Furthermore, we need the control-volume-boundary areas

𝒮jkx\displaystyle{\mathcal{S}}^{x}_{jk} =(yj+1/2yj1/2)(zk+1/2zk1/2),\displaystyle=(y_{j+1/2}-y_{j-1/2})(z_{k+1/2}-z_{k-1/2}),
𝒮iky\displaystyle{\mathcal{S}}^{y}_{ik} =(xi+1/2xi1/2)(zk+1/2zk1/2),\displaystyle=(x_{i+1/2}-x_{i-1/2})(z_{k+1/2}-z_{k-1/2}),
𝒮ijz\displaystyle{\mathcal{S}}^{z}_{ij} =(xi+1/2xi1/2)(yj+1/2yj1/2),\displaystyle=(x_{i+1/2}-x_{i-1/2})(y_{j+1/2}-y_{j-1/2}),

In Fig 1, a two-dimensional slice of control volumes is depicted (dashed lines). 𝒮x,𝒮y{\mathcal{S}}^{x},{\mathcal{S}}^{y} that make up the boundary of the control volume are also indicated for the point (xi,yj,zk)(x_{i},y_{j},z_{k}).

Refer to caption
Figure 1: A two-dimensional slice of a grid. (i,j,k)(i,j,k) denotes a point in the primal grid (solid lines) and the dashed lines indicate the dual grid (control volumes). VijkV_{ijk}, 𝒮jkx,𝒮iky{\mathcal{S}}^{x}_{jk},{\mathcal{S}}^{y}_{ik} are the control volume and control-volume-boundary areas associated with (i,j,k)(i,j,k).

To simplify notation, we use the indices 1/2-1/2 and N+1/2N+1/2 to denote the values at index 0 and NN, respectively. For instance, x1/2=x0x_{-1/2}=x_{0} and pN+1/2,j,k=pN,j,kp_{N+1/2,j,k}=p_{N,j,k}.

We need the following notation for a scalar aa:

ΔxaI+1jk\displaystyle\Delta_{-}^{x}a_{I+1jk} =Δ+xaIjk=aI+1jkaIjk,\displaystyle=\Delta_{+}^{x}a_{Ijk}=a_{I+1jk}-a_{Ijk},
ΔyaiJ+1k\displaystyle\Delta_{-}^{y}a_{iJ+1k} =Δ+yaiJk=aiJ+1kaiJk,\displaystyle=\Delta_{+}^{y}a_{iJk}=a_{iJ+1k}-a_{iJk},
ΔzaijK+1\displaystyle\Delta_{-}^{z}a_{ijK+1} =Δ+zaijK=aijK+1aijK,\displaystyle=\Delta_{+}^{z}a_{ijK}=a_{ijK+1}-a_{ijK},

where I,J,KI,J,K signify either a “whole” or “half” index and the boundary-index convention 1/20-1/2\rightarrow 0 etc, is applied. The difference operators are given as

DxaI+1jk\displaystyle D^{x}_{-}a_{I+1jk} =ΔxaI+1jkΔxxI+1jk,\displaystyle=\frac{\Delta^{x}_{-}a_{I+1jk}}{\Delta^{x}_{-}x_{I+1jk}},
DyaiJ+1k\displaystyle D^{y}_{-}a_{iJ+1k} =ΔyaiJ+1kΔyyiJ+1k,\displaystyle=\frac{\Delta^{y}_{-}a_{iJ+1k}}{\Delta^{y}_{-}y_{iJ+1k}}, (58)
DzaijK+1\displaystyle D^{z}_{-}a_{ijK+1} =ΔzaijK+1ΔzzijK+1,\displaystyle=\frac{\Delta^{z}_{-}a_{ijK+1}}{\Delta^{z}_{-}z_{ijK+1}},

and similarly for D+x,y,zD_{+}^{x,y,z}.

Furthermore, we need the two-point averages

a¯i+1/2jk\displaystyle\bar{a}_{i+1/2jk} =aijk+ai+1jk2,\displaystyle=\frac{a_{ijk}+a_{i+1jk}}{2},
a^i+1/2jk\displaystyle\hat{a}_{i+1/2jk} ={Δxai+1jkΔxlogai+1jkaijkai+1jkaijkaijk=ai+1jk(log mean),\displaystyle=\left\{\begin{array}[]{cc}\frac{\Delta^{x}_{-}a_{i+1jk}}{\Delta_{-}^{x}\log a_{i+1jk}}&a_{ijk}\neq a_{i+1jk}\\ a_{ijk}&a_{ijk}=a_{i+1jk}\end{array}\right.\quad\textrm{(log mean)}, (61)
aˇi+1/2jk\displaystyle\check{a}_{i+1/2jk} =ai+1jkaijk(geometric mean),\displaystyle=\sqrt{a_{i+1jk}a_{ijk}}\quad\textrm{(geometric mean)},

and for ai0a_{i}\geq 0, the following elementary relations hold:

aˇi+1/2a^i+1/2a¯i+1/2.\displaystyle\check{a}_{i+1/2}\leq\hat{a}_{i+1/2}\leq\bar{a}_{i+1/2}. (62)
Remark 7.

In (61), the half index indicates in which direction the average is taken. See [IR09] for a stable numerical implementation of the log mean.

Remark 8.

The approximate derivative operators (58) are the same as the standard node-centred summation-by-parts (SBP) finite-volume scheme. (See [NFAE03].) In fact, since the grid is Cartesian, they coincide with the standard second-order SBP finite difference scheme. (See e.g. [SN14].)

The following relation between arithmetic averages is frequently needed:

ab¯i+1/2\displaystyle\overline{ab}_{i+1/2} =a¯i+1/2b¯i+1/2+Δ+aiΔ+bi4.\displaystyle=\bar{a}_{i+1/2}\bar{b}_{i+1/2}+\frac{\Delta_{+}a_{i}\Delta_{+}b_{i}}{4}. (63)

The measure of the control volumes satisfies

Vijk=Δxxi+1/2𝒮jkx=Δyyj+1/2𝒮iky=Δzzk+1/2𝒮ikz,\displaystyle V_{ijk}=\Delta_{-}^{x}x_{i+1/2}{\mathcal{S}}^{x}_{jk}=\Delta_{-}^{y}y_{j+1/2}{\mathcal{S}}^{y}_{ik}=\Delta_{-}^{z}z_{k+1/2}{\mathcal{S}}^{z}_{ik}, (64)

and we define the L2L^{2}-equivalent norm,

a2=ijk=0NVijkaijk2.\displaystyle\|a\|^{2}=\sum_{ijk=0}^{N}V_{ijk}a_{ijk}^{2}.

Throughout, we assume a uniform refinement of the grid such that Δxxi+1/2,Δyyj+1/2,Δzzk+1/2\Delta^{x}_{-}x_{i+1/2},\Delta^{y}_{-}y_{j+1/2},\Delta^{z}_{-}z_{k+1/2} are less than hh for all i,j,ki,j,k. In this notation, all 𝒮𝒪(h2){\mathcal{S}}\sim\mathcal{O}(h^{2}) and all V𝒪(h3)V\sim\mathcal{O}(h^{3}).

The discrete L2L^{2}-norms of the derivatives are given by

D+xa2=ijk=0N1,N,NVijk(D+xaijk)2,\displaystyle\|D^{x}_{+}a\|^{2}=\sum_{ijk=0}^{N-1,N,N}V_{ijk}(D_{+}^{x}a_{ijk})^{2},
D+ya2=ijk=0N,N1,NVijk(D+yaijk)2,\displaystyle\|D^{y}_{+}a\|^{2}=\sum_{ijk=0}^{N,N-1,N}V_{ijk}(D_{+}^{y}a_{ijk})^{2}, (65)
D+za2=ijk=0N,N,N1Vijk(D+zaijk)2.\displaystyle\|D^{z}_{+}a\|^{2}=\sum_{ijk=0}^{N,N,N-1}V_{ijk}(D_{+}^{z}a_{ijk})^{2}.

4.1 The numerical scheme

The scheme is given by,

Vijk(𝐮ijk)t+𝒮jkxΔx𝐟i+1/2jk+𝒮ikyΔy𝐠ij+1/2k+𝒮ijzΔz𝐡ijk+1/2\displaystyle V_{ijk}({\bf u}_{ijk})_{t}+{\mathcal{S}}^{x}_{jk}\Delta^{x}_{-}{\bf f}_{i+1/2jk}+{\mathcal{S}}^{y}_{ik}\Delta^{y}_{-}{\bf g}_{ij+1/2k}+{\mathcal{S}}^{z}_{ij}\Delta^{z}_{-}{\bf h}_{ijk+1/2} =0\displaystyle=0 (66)
0i,j,k,N,\displaystyle 0\leq i,j,k,\leq N,

where 𝐮ijk=(ρijk,ρijk𝐯ijk,Eijk)T{\bf u}_{ijk}=(\rho_{ijk},\rho_{ijk}{\bf v}_{ijk},E_{ijk})^{T}. The fluxes consist of a convective and a diffusive part, 𝐟i+1/2jk=𝐟i+1/2jkc𝐟i+1/2jkd{\bf f}_{i+1/2jk}={\bf f}^{c}_{i+1/2jk}-{\bf f}^{d}_{i+1/2jk}, and similarly for 𝐠,𝐡{\bf g},{\bf h}. (These fluxes will be defined below.)

Remark 9.

With the operators defined above, we can equivalently state the scheme on finite difference form as,

(𝐮ijk)t+Dz𝐟i+1/2jk+Dy𝐠ij+1/2k+Dz𝐡ijk+1/2\displaystyle({\bf u}_{ijk})_{t}+D_{-}^{z}{\bf f}_{i+1/2jk}+D_{-}^{y}{\bf g}_{ij+1/2k}+D_{-}^{z}{\bf h}_{ijk+1/2} =0\displaystyle=0 (67)
0i,j,k,N\displaystyle 0\leq i,j,k,\leq N

To define the fluxes, we use the notation:

|𝐯|2¯i+1/2jk\displaystyle\overline{|{\bf v}|^{2}}_{i+1/2jk} =(u2¯)i+1/2jk+(v2¯)i+1/2jk+(w2¯)i+1/2jk,\displaystyle=(\overline{u^{2}})_{i+1/2jk}+(\overline{v^{2}})_{i+1/2jk}+(\overline{w^{2}})_{i+1/2jk},
|𝐯|¯i+1/2jk2\displaystyle\overline{|{\bf v}|}^{2}_{i+1/2jk} =(u¯i+1/2jk)2+(v¯i+1/2jk)2+(w¯i+1/2jk)2and analogously for y,z-means,\displaystyle=(\bar{u}_{i+1/2jk})^{2}+(\bar{v}_{i+1/2jk})^{2}+(\bar{w}_{i+1/2jk})^{2}\quad\textrm{and analogously for y,z-means},

The convective fluxes (defined below) are inspired by the entropy conservative and kinetic energy preserving flux proposed by Chandrashekar in [Cha13] and we adopt his notation β=12RT=ρ2p\beta=\frac{1}{2RT}=\frac{\rho}{2p}.

For i=0N1i=0...N-1 and j,k=0Nj,k=0...N:

pi+1/2jk=\displaystyle p_{i+1/2jk}= ρ¯i+1/2jk2β¯i+1/2jk\displaystyle\frac{\bar{\rho}_{i+1/2jk}}{2\bar{\beta}_{i+1/2jk}}
𝐟i+1/2jkc,1=\displaystyle{\bf f}^{c,1}_{i+1/2jk}= ρu¯i+1/2jk\displaystyle\overline{\rho u}_{i+1/2jk}
𝐟i+1/2jkc,2=\displaystyle{\bf f}^{c,2}_{i+1/2jk}= u¯i+1/2jkρu¯i+1/2jk+pi+1/2jk\displaystyle\bar{u}_{i+1/2jk}\overline{\rho u}_{i+1/2jk}+p_{i+1/2jk}
𝐟i+1/2jkc,3=\displaystyle{\bf f}^{c,3}_{i+1/2jk}= v¯i+1/2jkρu¯i+1/2jk\displaystyle\bar{v}_{i+1/2jk}\overline{\rho u}_{i+1/2jk} (68)
𝐟i+1/2jkc,4=\displaystyle{\bf f}^{c,4}_{i+1/2jk}= w¯i+1/2jkρu¯i+1/2jk\displaystyle\bar{w}_{i+1/2jk}\overline{\rho u}_{i+1/2jk}
𝐟i+1/2jkc,5=\displaystyle{\bf f}^{c,5}_{i+1/2jk}= 12(γ1)β^i+1/2jkρu¯i+1/2jk|𝐯|2¯i+1/2jk2ρu¯i+1/2jk\displaystyle\frac{1}{2(\gamma-1)\hat{\beta}_{i+1/2jk}}\overline{\rho u}_{i+1/2jk}-\frac{\overline{|{\bf v}|^{2}}_{i+1/2jk}}{2}\overline{\rho u}_{i+1/2jk}
+|𝐯|¯i+1/2jk2ρu¯i+1/2jk+pi+1/2jku¯i+1/2jk,\displaystyle+\overline{|{\bf v}|}^{2}_{i+1/2jk}\overline{\rho u}_{i+1/2jk}+p_{i+1/2jk}\bar{u}_{i+1/2jk},

For j=0N1j=0...N-1 and i,k=0Ni,k=0...N:

pij+1/2k=\displaystyle p_{ij+1/2k}= ρ¯ij+1/2k2β¯ij+1/2k\displaystyle\frac{\bar{\rho}_{ij+1/2k}}{2\bar{\beta}_{ij+1/2k}}
𝐠ij+1/2kc,1=\displaystyle{\bf g}^{c,1}_{ij+1/2k}= ρv¯ij+1/2k\displaystyle\overline{\rho v}_{ij+1/2k}
𝐠ij+1/2kc,2=\displaystyle{\bf g}^{c,2}_{ij+1/2k}= u¯ij+1/2kρv¯ij+1/2k\displaystyle\bar{u}_{ij+1/2k}\overline{\rho v}_{ij+1/2k}
𝐠ij+1/2kc,3=\displaystyle{\bf g}^{c,3}_{ij+1/2k}= v¯ij+1/2kρv¯ij+1/2k+pij+1/2k\displaystyle\bar{v}_{ij+1/2k}\overline{\rho v}_{ij+1/2k}+p_{ij+1/2k} (69)
𝐠ij+1/2kc,4=\displaystyle{\bf g}^{c,4}_{ij+1/2k}= w¯ij+1/2kρv¯ij+1/2k\displaystyle\bar{w}_{ij+1/2k}\overline{\rho v}_{ij+1/2k}
𝐠ij+1/2kc,5=\displaystyle{\bf g}^{c,5}_{ij+1/2k}= 12(γ1)β^ij+1/2kρv¯ij+1/2k|𝐯|2¯ij+1/2k2ρv¯ij+1/2k\displaystyle\frac{1}{2(\gamma-1)\hat{\beta}_{ij+1/2k}}\overline{\rho v}_{ij+1/2k}-\frac{\overline{|{\bf v}|^{2}}_{ij+1/2k}}{2}\overline{\rho v}_{ij+1/2k}
+|𝐯|¯ij+1/2k2ρv¯ij+1/2k+pi+1/2jkv¯ij+1/2k.\displaystyle+\overline{|{\bf v}|}^{2}_{ij+1/2k}\overline{\rho v}_{ij+1/2k}+p_{i+1/2jk}\bar{v}_{ij+1/2k}.

For k=0N1k=0...N-1 and i,j=0Ni,j=0...N:

pijk+1/2=\displaystyle p_{ijk+1/2}= ρ¯ijk+1/22β¯ijk+1/2\displaystyle\frac{\bar{\rho}_{ijk+1/2}}{2\bar{\beta}_{ijk+1/2}}
𝐡ijk+1/2c,1=\displaystyle{\bf h}^{c,1}_{ijk+1/2}= ρw¯ijk+1/2\displaystyle\overline{\rho w}_{ijk+1/2}
𝐡ijk+1/2c,2=\displaystyle{\bf h}^{c,2}_{ijk+1/2}= u¯ijk+1/2ρw¯ijk+1/2\displaystyle\bar{u}_{ijk+1/2}\overline{\rho w}_{ijk+1/2}
𝐡ijk+1/2c,3=\displaystyle{\bf h}^{c,3}_{ijk+1/2}= v¯ijk+1/2ρw¯ijk+1/2\displaystyle\bar{v}_{ijk+1/2}\overline{\rho w}_{ijk+1/2} (70)
𝐡ijk+1/2c,4=\displaystyle{\bf h}^{c,4}_{ijk+1/2}= w¯ijk+1/2ρw¯ijk+1/2+pijk+1/2\displaystyle\bar{w}_{ijk+1/2}\overline{\rho w}_{ijk+1/2}+p_{ijk+1/2}
𝐡ijk+1/2c,5=\displaystyle{\bf h}^{c,5}_{ijk+1/2}= 12(γ1)β^ijk+1/2ρw¯ijk+1/2|𝐯|2¯ijk+1/22ρw¯ijk+1/2\displaystyle\frac{1}{2(\gamma-1)\hat{\beta}_{ijk+1/2}}\overline{\rho w}_{ijk+1/2}-\frac{\overline{|{\bf v}|^{2}}_{ijk+1/2}}{2}\overline{\rho w}_{ijk+1/2}
+|𝐯|¯ijk+1/22ρw¯ijk+1/2+pijk+1/2w¯ijk+1/2.\displaystyle+\overline{|{\bf v}|}^{2}_{ijk+1/2}\overline{\rho w}_{ijk+1/2}+p_{ijk+1/2}\bar{w}_{ijk+1/2}.
Remark 10.

Above, we have used the convention that a numeral superscript signifies a component of a flux.

The diffusion coefficient is approximated as,

νi+1/2jk\displaystyle\nu_{i+1/2jk} =μ0ρ^i+1/2jk+μ1ρ¯i+1/2jk,\displaystyle=\frac{\mu_{0}}{\hat{\rho}_{i+1/2jk}}+\mu_{1}\bar{\rho}_{i+1/2jk}, (71)

and similarly in the y- and z-directions.

Furthermore, we augment the diffusion with an with artificial (vanishing) component:

λi+1/2jk\displaystyle\lambda_{i+1/2jk} =|u¯i+1/2jk|Ri+1/2jk+|Δ+xuijk|4,\displaystyle=|\bar{u}_{i+1/2jk}|R^{*}_{i+1/2jk}+\frac{|\Delta^{x}_{+}u_{ijk}|}{4}, (72)
Ri+1/2jk\displaystyle R^{*}_{i+1/2jk} =max(12,|Δ+xlogρijk|).\displaystyle=\max(\frac{1}{2},|\Delta^{x}_{+}\log\rho_{ijk}|).

We need the following Lemma:

Lemma 1.
Ri+1/2jk\displaystyle R^{*}_{i+1/2jk}\geq
max(12,|Δ+xρi12ρ¯i+1/2|,|12(ρi+1ρi)ρi+1+ρi|,ρ¯i+1/22(|ρi+1ρi|ρi+12+ρi+1ρi+ρi2),|ρi+1ρi|ρ^i+1/2)jk.\displaystyle\max\left(\frac{1}{2},\left|\frac{\Delta^{x}_{+}\rho_{i}}{12\bar{\rho}_{i+1/2}}\right|,\left|\frac{1}{2}\frac{(\sqrt{\rho_{i+1}}-\sqrt{\rho_{i}})}{\sqrt{\rho_{i+1}}+\sqrt{\rho_{i}}}\right|,\frac{\bar{\rho}_{i+1/2}}{2}\left(\frac{|\rho_{i+1}-\rho_{i}|}{\rho_{i+1}^{2}+\rho_{i+1}\rho_{i}+\rho_{i}^{2}}\right),\frac{|\rho_{i+1}-\rho_{i}|}{\hat{\rho}_{i+1/2}}\right)_{jk}.

(As usual the obvious generalisations to the other two dimensions holds.)

Proof.

We suppress the common jkjk indices and check one term at the time. We use that ρi>0\rho_{i}>0 (for all ii) and the mean inequalities (62).

1. Trivial.

2.

|Δ+xρi|ρ¯i+1/2|Δ+xρi|ρ^i+1/2=|Δ+xlogρi|.\displaystyle\frac{|\Delta_{+}^{x}\rho_{i}|}{\bar{\rho}_{i+1/2}}\leq\frac{|\Delta_{+}^{x}\rho_{i}|}{\hat{\rho}_{i+1/2}}=|\Delta_{+}^{x}\log\rho_{i}|.

3.

(ρi+1ρi)ρi+1+ρi=(ρi+1ρi)(ρi+1+ρi)2=(ρi+1ρi)ρi+1+ρi+2ρi+1ρi\displaystyle\frac{(\sqrt{\rho_{i+1}}-\sqrt{\rho_{i}})}{\sqrt{\rho_{i+1}}+\sqrt{\rho_{i}}}=\frac{(\rho_{i+1}-\rho_{i})}{(\sqrt{\rho_{i+1}}+\sqrt{\rho_{i}})^{2}}=\frac{(\rho_{i+1}-\rho_{i})}{\rho_{i+1}+\rho_{i}+2\sqrt{\rho_{i+1}}\sqrt{\rho_{i}}} \displaystyle\leq
(ρi+1ρi)ρi+1+ρi\displaystyle\frac{(\rho_{i+1}-\rho_{i})}{\rho_{i+1}+\rho_{i}} 12|Δ+xlogρi|.\displaystyle\leq\frac{1}{2}|\Delta_{+}^{x}\log\rho_{i}|.

4.

ρ¯i+1/22(|ρi+1ρi|ρi+12+ρi+1ρi+ρi2)\displaystyle\frac{\bar{\rho}_{i+1/2}}{2}\left(\frac{|\rho_{i+1}-\rho_{i}|}{\rho_{i+1}^{2}+\rho_{i+1}\rho_{i}+\rho_{i}^{2}}\right)\leq
ρ¯i+1/22(|ρi+1ρi|12(ρi+1+ρi)2)=ρ¯i+1/22(|ρi+1ρi|2ρ¯i+1/22)\displaystyle\frac{\bar{\rho}_{i+1/2}}{2}\left(\frac{|\rho_{i+1}-\rho_{i}|}{\frac{1}{2}(\rho_{i+1}+\rho_{i})^{2}}\right)=\frac{\bar{\rho}_{i+1/2}}{2}\left(\frac{|\rho_{i+1}-\rho_{i}|}{2\bar{\rho}_{i+1/2}^{2}}\right) 14|Δ+xlogρi|.\displaystyle\leq\frac{1}{4}|\Delta_{+}^{x}\log\rho_{i}|.

5.

|ρi+1ρi|ρ^i+1/2\displaystyle\frac{|\rho_{i+1}-\rho_{i}|}{\hat{\rho}_{i+1/2}} =|Δ+xlogρi|.\displaystyle=|\Delta_{+}^{x}\log\rho_{i}|.

Next, we define

ν~i+1/2jk\displaystyle\tilde{\nu}_{i+1/2jk} =νi+1/2jk+(Δ+xxi)λi+1/2jk,\displaystyle=\nu_{i+1/2jk}+(\Delta_{+}^{x}x_{i})\lambda_{i+1/2jk},
ν~ij+1/2k\displaystyle\tilde{\nu}_{ij+1/2k} =νij+1/2k+(Δ+yyj)λij+1/2k,\displaystyle=\nu_{ij+1/2k}+(\Delta_{+}^{y}y_{j})\lambda_{ij+1/2k}, (73)
ν~ijk+1/2\displaystyle\tilde{\nu}_{ijk+1/2} =νijk+1/2+(Δ+zzk)λijk+1/2.\displaystyle=\nu_{ijk+1/2}+(\Delta_{+}^{z}z_{k})\lambda_{ijk+1/2}.

The diffusive fluxes for i,j,k=0N1i,j,k=0...N-1 are given by,

𝐟i+1/2jkd,1\displaystyle{\bf f}^{d,1}_{i+1/2jk} =ν~i+1/2jkD+xρijk,\displaystyle=\tilde{\nu}_{i+1/2jk}D^{x}_{+}\rho_{ijk},
𝐠ij+1/2kd,1\displaystyle{\bf g}^{d,1}_{ij+1/2k} =ν~ij+1/2kD+yρijk,\displaystyle=\tilde{\nu}_{ij+1/2k}D^{y}_{+}\rho_{ijk}, (74)
𝐡ijk+1/2d,1\displaystyle{\bf h}^{d,1}_{ijk+1/2} =ν~ijk+1/2D+zρijk,\displaystyle=\tilde{\nu}_{ijk+1/2}D^{z}_{+}\rho_{ijk},

and

𝐟i+1/2jkd,{2,3,4}\displaystyle{\bf f}^{d,\{2,3,4\}}_{i+1/2jk} =ν~i+1/2jkD+x(ρijk{uijk,vijk,wijk}),\displaystyle=\tilde{\nu}_{i+1/2jk}D^{x}_{+}(\rho_{ijk}\{u_{ijk},v_{ijk},w_{ijk}\}),
𝐠ij+1/2kd,{2,3,4}\displaystyle{\bf g}^{d,\{2,3,4\}}_{ij+1/2k} =ν~ij+1/2kD+y(ρijk{uijk,vijk,wijk}),\displaystyle=\tilde{\nu}_{ij+1/2k}D^{y}_{+}(\rho_{ijk}\{u_{ijk},v_{ijk},w_{ijk}\}), (75)
𝐡ijk+1/2d,{2,3,4}\displaystyle{\bf h}^{d,\{2,3,4\}}_{ijk+1/2} =ν~ijk+1/2D+z(ρijk{uijk,vijk,wijk}),\displaystyle=\tilde{\nu}_{ijk+1/2}D^{z}_{+}(\rho_{ijk}\{u_{ijk},v_{ijk},w_{ijk}\}),

and finally,

𝐟i+1/2jkd,5=\displaystyle{\bf f}^{d,5}_{i+1/2jk}= ν~i+1/2jk((𝔭x)i+1/2jkγ1+12D+x(ρijk|𝐯|ijk2)+(|𝐯|¯i+1/2jk2|𝐯|2¯i+1/2jk)D+xρijk)\displaystyle\tilde{\nu}_{i+1/2jk}\left(\frac{({\mathfrak{p}}_{x})_{i+1/2jk}}{\gamma-1}+\frac{1}{2}D^{x}_{+}(\rho_{ijk}|{\bf v}|^{2}_{ijk})+(\overline{|{\bf v}|}^{2}_{i+1/2jk}-\overline{|{\bf v}|^{2}}_{i+1/2jk})D^{x}_{+}\rho_{ijk}\right)
+κrD+xTijk4\displaystyle+\kappa_{r}D^{x}_{+}T^{4}_{ijk}
𝐠ij+1/2kd,5=\displaystyle{\bf g}^{d,5}_{ij+1/2k}= ν~ij+1/2k((𝔭y)ij+1/2kγ1+12D+y(ρijk|𝐯|ijk2)+(|𝐯|¯ij+1/2k2|𝐯|2¯ij+1/2k)D+yρijk)\displaystyle\tilde{\nu}_{ij+1/2k}\left(\frac{({\mathfrak{p}}_{y})_{ij+1/2k}}{\gamma-1}+\frac{1}{2}D^{y}_{+}(\rho_{ijk}|{\bf v}|^{2}_{ijk})+(\overline{|{\bf v}|}^{2}_{ij+1/2k}-\overline{|{\bf v}|^{2}}_{ij+1/2k})D^{y}_{+}\rho_{ijk}\right)
+κrD+yTijk4\displaystyle+\kappa_{r}D^{y}_{+}T^{4}_{ijk} (76)
𝐡ijk+1/2d,5=\displaystyle{\bf h}^{d,5}_{ijk+1/2}= ν~ijk+1/2((𝔭z)ijk+1/2γ1+12D+z(ρijk|𝐯|ijk2)+(|𝐯|¯ijk+1/22|𝐯|2¯ijk+1/2)D+zρijk)\displaystyle\tilde{\nu}_{ijk+1/2}\left(\frac{({\mathfrak{p}}_{z})_{ijk+1/2}}{\gamma-1}+\frac{1}{2}D^{z}_{+}(\rho_{ijk}|{\bf v}|^{2}_{ijk})+(\overline{|{\bf v}|}_{ijk+1/2}^{2}-\overline{|{\bf v}|^{2}}_{ijk+1/2})D^{z}_{+}\rho_{ijk}\right)
+κrD+zTijk4\displaystyle+\kappa_{r}D^{z}_{+}T^{4}_{ijk}

where

(𝔭x)i+1/2jk\displaystyle({\mathfrak{p}}_{x})_{i+1/2jk} =12β^i+1/2jkD+xρijk+ρ¯i+1/2jk2D+x1βijk,\displaystyle=\frac{1}{2\hat{\beta}_{i+1/2jk}}D_{+}^{x}\rho_{ijk}+\frac{\bar{\rho}_{i+1/2jk}}{2}D_{+}^{x}\frac{1}{\beta_{ijk}},
(𝔭y)ij+1/2k\displaystyle({\mathfrak{p}}_{y})_{ij+1/2k} =12β^ij+1/2kD+yρijk+ρ¯ij+1/2k2D+y1βijk,\displaystyle=\frac{1}{2\hat{\beta}_{ij+1/2k}}D_{+}^{y}\rho_{ijk}+\frac{\bar{\rho}_{ij+1/2k}}{2}D_{+}^{y}\frac{1}{\beta_{ijk}},
(𝔭z)ijk+1/2\displaystyle({\mathfrak{p}}_{z})_{ijk+1/2} =12β^ijk+1/2D+zρijk+ρ¯ijk+1/22D+z1βijk.\displaystyle=\frac{1}{2\hat{\beta}_{ijk+1/2}}D_{+}^{z}\rho_{ijk}+\frac{\bar{\rho}_{ijk+1/2}}{2}D_{+}^{z}\frac{1}{\beta_{ijk}}.

Furthermore, we isolate the artificial diffusion by splitting the diffusive fluxes into

𝐟i+1/2jkd\displaystyle{\bf f}^{d}_{i+1/2jk} =𝐟i+1/2jkν+𝐟i+1/2jkλ,\displaystyle={\bf f}^{\nu}_{i+1/2jk}+{\bf f}^{\lambda}_{i+1/2jk},
𝐠ij+1/2kd\displaystyle{\bf g}^{d}_{ij+1/2k} =𝐠ij+1/2kν+𝐠ij+1/2kλ,\displaystyle={\bf g}^{\nu}_{ij+1/2k}+{\bf g}^{\lambda}_{ij+1/2k},
𝐡ijk+1/2d\displaystyle{\bf h}^{d}_{ijk+1/2} =𝐡ijk+1/2ν+𝐡ijk+1/2λ,\displaystyle={\bf h}^{\nu}_{ijk+1/2}+{\bf h}^{\lambda}_{ijk+1/2},

where the λ\lambda-fluxes are obtained by replacing ν~\tilde{\nu} with λ\lambda, and κr=0\kappa_{r}=0, in (74),(75) and (76). (The ν\nu-fluxes are thus given by the 𝐟d{\bf f}^{d} with ν\nu replacing ν~\tilde{\nu} and include the κr\kappa_{r} part.)

Boundary conditions: We invoke the no-slip condition strongly. That is, u,v,wu,v,w are all zero at the boundaries. Therefore,

𝐮0jk=(ρ0jk,0,0,0,p0jkγ1)T,𝐮Njk=(ρNjk,0,0,0,pNjkγ1)T,\displaystyle{\bf u}_{0jk}=(\rho_{0jk},0,0,0,\frac{p_{0jk}}{\gamma-1})^{T},\quad{\bf u}_{Njk}=(\rho_{Njk},0,0,0,\frac{p_{Njk}}{\gamma-1})^{T}, (77)

which are used in the computation of 𝐟1/2jk,𝐟N1/2jk{\bf f}_{1/2jk},{\bf f}_{N-1/2jk}. (Similarly in the other two directions.)

Since the velocities are zero at the boundary, there should be no scheme updating momentum at the boundary points. To to keep the simple structure of (66), we enforce this by stipulating that every partial flux, 𝐟,𝐟c,𝐟d,𝐟λ,{\bf f},{\bf f}^{c},{\bf f}^{d},{\bf f}^{\lambda},... satisfy

𝐟1/2jk2,3,4=𝐟1/2jk2,3,4,𝐠0j+1/2k2,3,4=0,𝐡0jk+1/22,3,4=0,\displaystyle{\bf f}^{2,3,4}_{-1/2jk}={\bf f}^{2,3,4}_{1/2jk},\quad{\bf g}^{2,3,4}_{0j+1/2k}=0,\quad{\bf h}^{2,3,4}_{0jk+1/2}=0, (78)

and similarly for all other boundaries. This choice amounts to (ρ𝐯)t=0(\rho{\bf v})_{t}=0 along the boundaries. Hence, if the momentum/velocity is initially zero, it will remain zero for all time.

Furthermore, invoking the no-slip in the remaining convective boundary flux components (for continuity and total energy), implies that they are all identically zero,

𝐟1/2jkc,1=𝐠1/2jkc,1=𝐡1/2jkc,1=0,\displaystyle{\bf f}^{c,1}_{-1/2jk}={\bf g}^{c,1}_{-1/2jk}={\bf h}^{c,1}_{-1/2jk}=0, (79)
𝐟1/2jkc,5=𝐠1/2jkc,5=𝐡1/2jkc,5=0,\displaystyle{\bf f}^{c,5}_{-1/2jk}={\bf g}^{c,5}_{-1/2jk}={\bf h}^{c,5}_{-1/2jk}=0,

and similarly at the other boundaries.

At the boundaries, the diffusive momentum fluxes are given by (78) which ensures that the momentum terms remain zero (in accordance with the no-slip condition). Using no-slip and homogeneous Neumann approximations for the wall normal gradient of density and temperature, the remaining two diffusive flux components are:

𝐟1/2jkd,1=𝐟N+1/2jkd,1=0,\displaystyle{\bf f}^{d,1}_{-1/2jk}={\bf f}^{d,1}_{N+1/2jk}=0, 𝐟1/2jkd,5=𝐟N+1/2jkd,5=0,\displaystyle\quad{\bf f}^{d,5}_{-1/2jk}={\bf f}^{d,5}_{N+1/2jk}=0,
𝐠i,1/2kd,1=𝐠i,N+1/2kd,1=0,\displaystyle{\bf g}^{d,1}_{i,-1/2k}={\bf g}^{d,1}_{i,N+1/2k}=0, 𝐠i,1/2kd,5=𝐠i,N+1/2kd,5=0,\displaystyle\quad{\bf g}^{d,5}_{i,-1/2k}={\bf g}^{d,5}_{i,N+1/2k}=0, (80)
𝐡ij,1/2d,1=𝐡ij,N+1/2d,1=0,\displaystyle{\bf h}^{d,1}_{ij,-1/2}={\bf h}^{d,1}_{ij,N+1/2}=0, 𝐡ij,1/2d,5=𝐡ij,N+1/2d,5=0\displaystyle\quad{\bf h}^{d,5}_{ij,-1/2}={\bf h}^{d,5}_{ij,N+1/2}=0

Note that it is only the normal boundary flux that is affected by the Neumann boundary condition. The diffusive boundary fluxes (for the 1st and 5th components) tangent to the boundaries are not subject to any boundary conditions.

Initial conditions: We make the following assumptions on the initial data (t=0):

  • All variables are uniformly bounded.

  • Density and temperature are positive and bounded away from zero.

  • At the boundary points, we set 𝐯=0{\bf v}=0 at t=0t=0 (no-slip).

  • The initial data is projected onto the grid by e.g. computing the averages in each control volume. This also determines ρ\rho and TT at the boundary points. (We remark that injecting, instead of averaging, initial values to the grid points, does not change the overall formal accuracy of the method.)

It is possible to relax these assumptions but for practical purposes they are sufficient. Note that there is no smallness assumption on the initial data.

The following is the main result of this paper:

Theorem 1.

Assume that at t=0t=0 the initial data ρ0,𝐯0,T0\rho^{0},{\bf v}^{0},T^{0} are bounded in L(Ω)L^{\infty}(\Omega) and ρ0,T0constant>0\rho^{0},T^{0}\geq constant>0. Let {ρh,𝐯h,Th}\{\rho_{h},{\bf v}_{h},T_{h}\} be the family of numerical solutions generated from the initial data by the scheme (66) (see Section 4.1 for all approximations) as h0h\rightarrow 0. Then a subsequence converges strongly in the spaces,

ρhρ\displaystyle\rho_{h}\rightarrow\rho L23ϵ23ϵ\displaystyle\quad\in L^{23-\epsilon}_{23-\epsilon}
𝐯h𝐯\displaystyle{\bf v}_{h}\rightarrow{\bf v} L10/4ϵ10/4ϵ,(ϵ>0),\displaystyle\quad\in L^{10/4-\epsilon}_{10/4-\epsilon},\quad\quad(\epsilon>0),
ThT\displaystyle T_{h}\rightarrow T L4ϵ4ϵ,\displaystyle\quad\in L^{4-\epsilon}_{4-\epsilon},

and {ρ,𝐯,T}\{\rho,{\bf v},T\} is a weak entropy solution of the problem (4) in the sense of Def. 1.

We summarise some of the estimates that resulting solution satisfies:

ρL(L4(Ω))L23/323/3L155,\displaystyle\rho\in L^{\infty}(L^{4}(\Omega))\cap L^{23/3}_{23/3}\cap L^{5}_{15}, ρ5/2L2(H1),\displaystyle\quad\rho^{5/2}\in L^{2}(H^{1}),
ρ1L1L2(H1)L2(L6),\displaystyle\rho^{-1}\in L^{\infty}_{1}\cap L^{2}(H^{1})\cap L^{2}(L^{6}), (log(ρ))L22,\displaystyle\quad\nabla(\log(\rho))\in L^{2}_{2},
𝐯L1L2(H1)L2(L6)L310/4,\displaystyle{\bf v}\in L^{\infty}_{1}\cap L^{2}(H^{1})\cap L^{2}(L^{6})\cap L^{10/4}_{3}, ρ𝐯L22,\displaystyle\quad\rho\nabla{\bf v}\in L^{2}_{2},
TL4+δ4+δ,for someδ>0,\displaystyle T\in L^{4+\delta}_{4+\delta},\quad\textrm{for some}\quad\delta>0,
T2ϵL2(H1)L2(L6),forϵ>0,\displaystyle T^{2-\epsilon}\in L^{2}(H^{1})\cap L^{2}(L^{6}),\quad\textrm{for}\quad\epsilon>0,
TL1,pL2,\displaystyle\sqrt{T}\in L^{\infty}_{1},\quad p\in L^{\infty}_{2}, ρlog(T)L1.\displaystyle\quad\rho\log(T)\in L^{\infty}_{1}.

The remainder of the paper contains a proof of the theorem.

5 Additional balance laws

Before we derive the discrete versions of the kinetic and internal energy balances, we state some auxiliary relations. For positive entities the following relations (exemplified with the positive density) hold:

1ρˇi+1/2jk1ρ^i+1/2jk1ρ¯i+1/2jk.\displaystyle\frac{1}{\check{\rho}_{i+1/2jk}}\geq\frac{1}{\hat{\rho}_{i+1/2jk}}\geq\frac{1}{\bar{\rho}_{i+1/2jk}}. (81)

They follow directly from (62).

We shall also frequently use (63) to obtain the following alternative form of the first component of the internal inviscid fluxes and artificial diffusion (here exemplified with the x-flux).

𝐟i+1/2jkc,1𝐟i+1/2jkλ,1=\displaystyle{\bf f}^{c,1}_{i+1/2jk}-{\bf f}^{\lambda,1}_{i+1/2jk}= ρu¯i+1/2jkλi+1/2jkΔ+xρijk\displaystyle\overline{\rho u}_{i+1/2jk}-\lambda_{i+1/2jk}\Delta_{+}^{x}\rho_{ijk}
=\displaystyle= ρ¯i+1/2jku¯i+1/2jkλi+1/2jkaΔ+xρijk,\displaystyle\bar{\rho}_{i+1/2jk}\bar{u}_{i+1/2jk}-\lambda^{a}_{i+1/2jk}\Delta_{+}^{x}\rho_{ijk}, (82)

where

λi+1/2jka\displaystyle\lambda^{a}_{i+1/2jk} =λi+1/2jkΔ+xuijk4>0,\displaystyle=\lambda_{i+1/2jk}-\frac{\Delta^{x}_{+}u_{ijk}}{4}>0,

and

𝐟i+1/2jkc,1𝐟i+1/2jkλ,1=\displaystyle{\bf f}^{c,1}_{i+1/2jk}-{\bf f}^{\lambda,1}_{i+1/2jk}= ρ¯i+1/2jku¯i+1/2jkλi+1/2jkaΔ+xρijk\displaystyle\overline{\rho}_{i+1/2jk}\bar{u}_{i+1/2jk}-\lambda^{a}_{i+1/2jk}\Delta_{+}^{x}\rho_{ijk}
=\displaystyle= ρˇi+1/2jku¯i+1/2jkλi+1/2jkcΔ+xρijk,\displaystyle\check{\rho}_{i+1/2jk}\bar{u}_{i+1/2jk}-\lambda^{c}_{i+1/2jk}\Delta_{+}^{x}\rho_{ijk}, (83)

where

λi+1/2jkc\displaystyle\lambda^{c}_{i+1/2jk} =λi+1/2jkΔ+xuijk4+u¯i+1/2jkρ¯i+1/2ρˇi+1/2jkΔ+xρijk>0.\displaystyle=\lambda_{i+1/2jk}-\frac{\Delta^{x}_{+}u_{ijk}}{4}+\bar{u}_{i+1/2jk}\frac{\bar{\rho}_{i+1/2}-\check{\rho}_{i+1/2jk}}{\Delta_{+}^{x}\rho_{ijk}}>0.

The last inequality follows from

ρ¯i+1/2ρˇi+1/2jkΔ+xρijk=ρi+1+ρi2ρi+1ρiΔ+xρijk\displaystyle\frac{\bar{\rho}_{i+1/2}-\check{\rho}_{i+1/2jk}}{\Delta_{+}^{x}\rho_{ijk}}=\frac{\frac{\rho_{i+1}+\rho_{i}}{2}-\sqrt{\rho_{i+1}\rho_{i}}}{\Delta_{+}^{x}\rho_{ijk}} =\displaystyle=
12(ρi+1ρi)2(ρi+1ρi)(ρi+1+ρi)=12(ρi+1ρi)ρi+1+ρi\displaystyle\frac{1}{2}\frac{(\sqrt{\rho_{i+1}}-\sqrt{\rho_{i}})^{2}}{(\sqrt{\rho_{i+1}-\sqrt{\rho_{i}}})(\sqrt{\rho_{i+1}+\sqrt{\rho_{i}}})}=\frac{1}{2}\frac{(\sqrt{\rho_{i+1}}-\sqrt{\rho_{i}})}{\sqrt{\rho_{i+1}+\sqrt{\rho_{i}}}} (84)

and Lemma 1.

5.1 Kinetic and internal energy balances

We derive the kinetic energy balance that will subsequently be subtracted from the total energy equation to produce the internal energy balance.

ddtKijk=12|𝐯|ijk2dρjdt+uijkd(ρu)ijkdt+vijkd(ρv)ijkdt+wijkd(ρw)ijkdt.\displaystyle\frac{d}{dt}K_{ijk}=-\frac{1}{2}|{\bf v}|^{2}_{ijk}\frac{d\rho_{j}}{dt}+u_{ijk}\frac{d(\rho u)_{ijk}}{dt}+v_{ijk}\frac{d(\rho v)_{ijk}}{dt}+w_{ijk}\frac{d(\rho w)_{ijk}}{dt}. (85)

We need the Leibniz rule

aiDfi+1/2=D(a¯i+1/2fi+1/2)12fi+1/2Dai+112fi1/2Dai.\displaystyle a_{i}D_{-}f_{i+1/2}=D_{-}(\bar{a}_{i+1/2}f_{i+1/2})-\frac{1}{2}f_{i+1/2}D_{-}a_{i+1}-\frac{1}{2}f_{i-1/2}D_{-}a_{i}. (86)

At the boundaries, we have the corresponding rules

a0Df1/2=D(a¯1/2f1/2)12f1/2Da1\displaystyle a_{0}D_{-}f_{1/2}=D_{-}(\bar{a}_{1/2}f_{1/2})-\frac{1}{2}f_{1/2}D_{-}a_{1}

where, in accordance with our convention, a¯1/2=a0\bar{a}_{-1/2}=a_{0}. By adopting the convention that Da00D_{-}a_{0}\equiv 0, (86) applies to the boundaries as well, and the derivations below need not be repeated for the boundary points.

First we rewrite,

uijkd(ρu)ijkdt\displaystyle u_{ijk}\frac{d(\rho u)_{ijk}}{dt} =\displaystyle=
uijk(Dx𝐟i+1/2jk2+Dy𝐠ij+1/2k2+Dz𝐡ijk+1/22)\displaystyle-u_{ijk}\left(D_{-}^{x}{\bf f}^{2}_{i+1/2jk}+D_{-}^{y}{\bf g}^{2}_{ij+1/2k}+D_{-}^{z}{\bf h}^{2}_{ijk+1/2}\right) =\displaystyle=
(Dx(u¯i+1/2jk𝐟i+1/2jk2)12(Dxui+1jk)𝐟i+1/2jk212(Dxuijk)𝐟i1/2jk2)\displaystyle-\left(D_{-}^{x}(\bar{u}_{i+1/2jk}{\bf f}^{2}_{i+1/2jk})-\frac{1}{2}(D_{-}^{x}u_{i+1jk}){\bf f}^{2}_{i+1/2jk}-\frac{1}{2}(D_{-}^{x}u_{ijk}){\bf f}^{2}_{i-1/2jk}\right)
(Dy(u¯ij+1/2k𝐠ij+1/2k2)12(Dyuij+1k)𝐠ij+1/2k212(Dyuijk)𝐠ij1/2k2)\displaystyle-\left(D_{-}^{y}(\bar{u}_{ij+1/2k}{\bf g}^{2}_{ij+1/2k})-\frac{1}{2}(D_{-}^{y}u_{ij+1k}){\bf g}^{2}_{ij+1/2k}-\frac{1}{2}(D_{-}^{y}u_{ijk}){\bf g}^{2}_{ij-1/2k}\right) (87)
(Dz(u¯ijk+1/2𝐡ijk+1/22)12(Dzuijk+1)𝐡ijk+1/2212(Dzuijk)𝐡ijk1/22),\displaystyle-\left(D_{-}^{z}(\bar{u}_{ijk+1/2}{\bf h}^{2}_{ijk+1/2})-\frac{1}{2}(D_{-}^{z}u_{ijk+1}){\bf h}^{2}_{ijk+1/2}-\frac{1}{2}(D_{-}^{z}u_{ijk}){\bf h}^{2}_{ijk-1/2}\right),

and similarly for the momentum in the y- and z-directions.

Turning to the contribution from the continuity equation, and again using (86), we have

12|𝐯|ijk2dρjdt\displaystyle-\frac{1}{2}|{\bf v}|^{2}_{ijk}\frac{d\rho_{j}}{dt} =\displaystyle=
12|𝐯|ijk2(Dx𝐟i+1/2jk1+Dy𝐠ij+1/2k1+Dz𝐡ijk+1/21)\displaystyle\frac{1}{2}|{\bf v}|^{2}_{ijk}\left(D_{-}^{x}{\bf f}^{1}_{i+1/2jk}+D_{-}^{y}{\bf g}^{1}_{ij+1/2k}+D_{-}^{z}{\bf h}^{1}_{ijk+1/2}\right) =\displaystyle=
12(Dx(|𝐯|2¯i+1/2jk𝐟i+1/2jk1)12(Dx|𝐯|i+1jk2)𝐟i+1/2jk112(Dx|𝐯|ijk2)𝐟i1/2jk1)\displaystyle\frac{1}{2}\left(D_{-}^{x}(\overline{|{\bf v}|^{2}}_{i+1/2jk}{\bf f}^{1}_{i+1/2jk})-\frac{1}{2}(D_{-}^{x}|{\bf v}|^{2}_{i+1jk}){\bf f}^{1}_{i+1/2jk}-\frac{1}{2}(D_{-}^{x}|{\bf v}|^{2}_{ijk}){\bf f}^{1}_{i-1/2jk}\right)
+12(Dy(|𝐯|2¯ij+1/2k𝐠ij+1/2k1)12(Dy|𝐯|ij+1/2k2)𝐠ij+1/2k112(Dy|𝐯|ijk2)𝐠ij1/2k1)\displaystyle+\frac{1}{2}\left(D_{-}^{y}(\overline{|{\bf v}|^{2}}_{ij+1/2k}{\bf g}^{1}_{ij+1/2k})-\frac{1}{2}(D_{-}^{y}|{\bf v}|^{2}_{ij+1/2k}){\bf g}^{1}_{ij+1/2k}-\frac{1}{2}(D_{-}^{y}|{\bf v}|^{2}_{ijk}){\bf g}^{1}_{ij-1/2k}\right) (88)
+12(Dz(|𝐯|2¯ijk+1/2𝐡ijk+1/21)12(Dz|𝐯|ijk+1/22)𝐡ijk+1/2112(Dz|𝐯|ijk2)𝐡ijk1/21).\displaystyle+\frac{1}{2}\left(D_{-}^{z}(\overline{|{\bf v}|^{2}}_{ijk+1/2}{\bf h}^{1}_{ijk+1/2})-\frac{1}{2}(D_{-}^{z}|{\bf v}|^{2}_{ijk+1/2}){\bf h}^{1}_{ijk+1/2}-\frac{1}{2}(D_{-}^{z}|{\bf v}|^{2}_{ijk}){\bf h}^{1}_{ijk-1/2}\right).

Using the identity,

Dx|𝐯|ijk2=\displaystyle D_{-}^{x}|{\bf v}|^{2}_{ijk}= Dx(uijk2+vijk2+wijk2)=\displaystyle D_{-}^{x}(u_{ijk}^{2}+v^{2}_{ijk}+w_{ijk}^{2})=
2u¯i1/2Dxuijk+2v¯i1/2Dxvijk+2w¯i1/2Dxwijk,\displaystyle 2\bar{u}_{i-1/2}D_{-}^{x}u_{ijk}+2\bar{v}_{i-1/2}D_{-}^{x}v_{ijk}+2\bar{w}_{i-1/2}D_{-}^{x}w_{ijk},

and (87)-(88) in (85), we obtain an expression for the kinetic energy balance:

dKijkdt+Dx𝔉i+1/2jk+Dy𝔊ij+1/2k+Dzijk+1/2(pD𝐯)ijk\displaystyle\frac{dK_{ijk}}{dt}+D_{-}^{x}{\mathfrak{F}}_{i+1/2jk}+D_{-}^{y}{\mathfrak{G}}_{ij+1/2k}+D_{-}^{z}{\mathfrak{H}}_{ijk+1/2}-(pD{\bf v})_{ijk} =𝔇ijk,\displaystyle=-{\mathfrak{D}}_{ijk}, (89)
0i,j,kN,\displaystyle 0\leq i,j,k\leq N,

where

𝔉i+1/2jk\displaystyle{\mathfrak{F}}_{i+1/2jk} =12|𝐯|2¯i+1/2jk𝐟i+1/2jk1+u¯i+1/2jk𝐟i+1/2jk2+v¯i+1/2jk𝐟i+1/2jk3+w¯i+1/2jk𝐟i+1/2jk4\displaystyle=-\frac{1}{2}\overline{|{\bf v}|^{2}}_{i+1/2jk}{\bf f}^{1}_{i+1/2jk}+\bar{u}_{i+1/2jk}{\bf f}^{2}_{i+1/2jk}+\bar{v}_{i+1/2jk}{\bf f}^{3}_{i+1/2jk}+\bar{w}_{i+1/2jk}{\bf f}^{4}_{i+1/2jk}
𝔊ij+1/2k\displaystyle{\mathfrak{G}}_{ij+1/2k} =12|𝐯|2¯ij+1/2k𝐠ij+1/2k1+u¯ij+1/2k𝐠ij+1/2k2+v¯ij+1/2k𝐠ij+1/2k3+w¯ij+1/2k𝐠ij+1/2k4\displaystyle=-\frac{1}{2}\overline{|{\bf v}|^{2}}_{ij+1/2k}{\bf g}^{1}_{ij+1/2k}+\bar{u}_{ij+1/2k}{\bf g}^{2}_{ij+1/2k}+\bar{v}_{ij+1/2k}{\bf g}^{3}_{ij+1/2k}+\bar{w}_{ij+1/2k}{\bf g}^{4}_{ij+1/2k} (90)
ijk+1/2\displaystyle{\mathfrak{H}}_{ijk+1/2} =12|𝐯|2¯ijk+1/2𝐡ijk+1/21+u¯ijk+1/2𝐡ijk+1/22+v¯ijk+1/2𝐡ijk+1/23+w¯ijk+1/2𝐡ijk+1/24,\displaystyle=-\frac{1}{2}\overline{|{\bf v}|^{2}}_{ijk+1/2}{\bf h}^{1}_{ijk+1/2}+\bar{u}_{ijk+1/2}{\bf h}^{2}_{ijk+1/2}+\bar{v}_{ijk+1/2}{\bf h}^{3}_{ijk+1/2}+\bar{w}_{ijk+1/2}{\bf h}^{4}_{ijk+1/2},

and

(pD𝐯)ijk=\displaystyle(pD{\bf v})_{ijk}= 12((Dxui+1jk)pi+1/2jk+(Dxuijk)pi1/2jk)\displaystyle\quad\frac{1}{2}\left((D_{-}^{x}u_{i+1jk})p_{i+1/2jk}+(D_{-}^{x}u_{ijk})p_{i-1/2jk}\right)
+12((Dyvij+1k)pij+1/2k+(Dyvijk)pij1/2k)\displaystyle+\frac{1}{2}\left((D_{-}^{y}v_{ij+1k})p_{ij+1/2k}+(D_{-}^{y}v_{ijk})p_{ij-1/2k}\right)
+12((Dzwijk+1)pijk+1/2+(Dzwijk)pijk1/2).\displaystyle+\frac{1}{2}\left((D_{-}^{z}w_{ijk+1})p_{ijk+1/2}+(D_{-}^{z}w_{ijk})p_{ijk-1/2}\right).

Using the boundary convention introduced in (86) and the no-slip condition (implying that velocity differences along boundaries are zero), we have, 𝔉1/2jk0{\mathfrak{F}}_{-1/2jk}\equiv 0, etc. and

(pD𝐯)0jk=\displaystyle(pD{\bf v})_{0jk}= 12((Dxu1jk)pi+1/2jk)\displaystyle\quad\frac{1}{2}\left((D_{-}^{x}u_{1jk})p_{i+1/2jk}\right)

and similarly for the other boundaries. The diffusive terms are,

𝔇ijk\displaystyle{\mathfrak{D}}_{ijk} =12(ν~i+1/2jkρ¯i+1/2jk(|Dx𝐯i+1jk|)2+ν~i1/2jkρ¯i1/2jk(|Dx𝐯ijk|)2)\displaystyle=\frac{1}{2}\left(\tilde{\nu}_{i+1/2jk}\bar{\rho}_{i+1/2jk}(|D_{-}^{x}{\bf v}_{i+1jk}|)^{2}+\tilde{\nu}_{i-1/2jk}\bar{\rho}_{i-1/2jk}(|D_{-}^{x}{\bf v}_{ijk}|)^{2}\right)
+12(ν~ij+1/2kρ¯ij+1/2k(|Dy𝐯ij+1k|)2+ν~ij1/2kρ¯ij1/2k(|Dy𝐯ijk|)2)\displaystyle+\frac{1}{2}\left(\tilde{\nu}_{ij+1/2k}\bar{\rho}_{ij+1/2k}(|D_{-}^{y}{\bf v}_{ij+1k}|)^{2}+\tilde{\nu}_{ij-1/2k}\bar{\rho}_{ij-1/2k}(|D_{-}^{y}{\bf v}_{ijk}|)^{2}\right)
+12(ν~ijk+1/2ρ¯ijk+1/2(|Dz𝐯ijk+1|)2+ν~ijk1/2ρ¯ijk1/2(|Dz𝐯ijk|)2),\displaystyle+\frac{1}{2}\left(\tilde{\nu}_{ijk+1/2}\bar{\rho}_{ijk+1/2}(|D_{-}^{z}{\bf v}_{ijk+1}|)^{2}+\tilde{\nu}_{ijk-1/2}\bar{\rho}_{ijk-1/2}(|D_{-}^{z}{\bf v}_{ijk|})^{2}\right),

where,

(|Dx𝐯ijk|)2=(|Dxuijk|)2+(|Dxwijk|)2+(|Dxwijk|)2,etc.\displaystyle(|D_{-}^{x}{\bf v}_{ijk}|)^{2}=(|D_{-}^{x}u_{ijk}|)^{2}+(|D_{-}^{x}w_{ijk}|)^{2}+(|D_{-}^{x}w_{ijk}|)^{2},etc.

At the boundary, most of the terms of 𝔇ijk{\mathfrak{D}}_{ijk} are zero due to the no-slip condition and the boundary convention in (86). For instance,

𝔇0jk=12ν~1/2jkρ¯1/2jk(|Dx𝐯1jk|)2.\displaystyle{\mathfrak{D}}_{0jk}=\frac{1}{2}\tilde{\nu}_{1/2jk}\bar{\rho}_{1/2jk}(|D_{-}^{x}{\bf v}_{1jk}|)^{2}.

Subtracting the kinetic energy equation (89) from the total energy equation of (67) gives the internal energy equation:

Dtpijkγ1+(pD𝐯)ijk𝔇ijk\displaystyle D_{t}\frac{p_{ijk}}{\gamma-1}+(pD{\bf v})_{ijk}-{\mathfrak{D}}_{ijk}
+Dx(ρu¯i+1/2jk2(γ1)β^i+1/2jk)+Dy(ρv¯ij+1/2k2(γ1)β^ij+1/2k)+Dy(ρw¯ijk+1/22(γ1)β^ijk+1/2)\displaystyle+D_{-}^{x}(\frac{\overline{\rho u}_{i+1/2jk}}{2(\gamma-1)\hat{\beta}_{i+1/2jk}})+D_{-}^{y}(\frac{\overline{\rho v}_{ij+1/2k}}{2(\gamma-1)\hat{\beta}_{ij+1/2k}})+D_{-}^{y}(\frac{\overline{\rho w}_{ijk+1/2}}{2(\gamma-1)\hat{\beta}_{ijk+1/2}}) =\displaystyle= (91)
Dx(ν~i+1/2jk(𝔭x)i+1/2jkγ1)+Dy(ν~ij+1/2k(𝔭y)ij+1/2kγ1)+\displaystyle D_{-}^{x}(\tilde{\nu}_{i+1/2jk}\frac{({\mathfrak{p}}_{x})_{i+1/2jk}}{\gamma-1})+D_{-}^{y}(\tilde{\nu}_{ij+1/2k}\frac{({\mathfrak{p}}_{y})_{ij+1/2k}}{\gamma-1})+
Dz(ν~ijk+1/2(𝔭z)ijk+1/2γ1)\displaystyle D_{-}^{z}(\tilde{\nu}_{ijk+1/2}\frac{({\mathfrak{p}}_{z})_{ijk+1/2}}{\gamma-1})
+κr(DxD+xTijk4+DyD+yTijk4+DzκrD+zTijk4)\displaystyle+\kappa_{r}\left(D_{-}^{x}D^{x}_{+}T^{4}_{ijk}+D_{-}^{y}D^{y}_{+}T^{4}_{ijk}+D_{-}^{z}\kappa_{r}D^{z}_{+}T^{4}_{ijk}\right) .

6 Stability

Our aim is to derive the same a priori estimates for the semi-discrete system as we found for the PDE system. To carry out the calculations, we need the following summation-by-parts formula,

i=0NaiΔbi+1/2\displaystyle\sum_{i=0}^{N}a_{i}\Delta_{-}b_{i+1/2} =a0b1/2+aNbN+1/2i=0N1(Δ+ai)bi+1/2,\displaystyle=-a_{0}b_{-1/2}+a_{N}b_{N+1/2}-\sum_{i=0}^{N-1}(\Delta_{+}a_{i})b_{i+1/2}, (92)

and product rule

Δ+aibi\displaystyle\Delta_{+}a_{i}b_{i} =a¯i+1/2Δ+bi+b¯i+1/2Δ+ai.\displaystyle=\bar{a}_{i+1/2}\Delta_{+}b_{i}+\bar{b}_{i+1/2}\Delta_{+}a_{i}. (93)

6.1 Conservation

As in the continuous case, we obtain

ρijk,Eijk,piL1,ρijk|𝐯ijk|L2,\displaystyle\rho_{ijk},\,E_{ijk},p_{i}\in L^{\infty}_{1},\quad\sqrt{\rho_{ijk}}|{\bf v}_{ijk}|\in L^{\infty}_{2}, (94)

from conservation, positivity and the boundary conditions.

Remark 11.

In the notation above, ρijk\rho_{ijk} is not a point value but symbolises the piecewise constant (in space) and continuous in time grid function on the entire domain that is bounded in L(0,𝒯;L1(Ω))L^{\infty}(0,\mathcal{T};L^{1}(\Omega))

6.2 Entropy

Here, we use the same scaling of the entropy as in [Cha13]. Dropping the ijkijk indices, the entropy variables are:

𝐰=(γγ1sγ1β|𝐯|2,2βu,2βv,2βw,2β),\displaystyle{\bf w}=\left(\frac{\gamma}{\gamma-1}-\frac{s}{\gamma-1}-\beta|{\bf v}|^{2},2\beta u,2\beta v,2\beta w,-2\beta\right),

where |𝐯|2=u2+v2+w2|{\bf v}|^{2}=u^{2}+v^{2}+w^{2} and the specific entropy,

s=logpργ=logβ(γ1)logρlog2.\displaystyle s=\log\frac{p}{\rho^{\gamma}}=-\log\beta-(\gamma-1)\log\rho-\log 2.

Furthermore, the entropy potentials are: Ψx,y,z=m1,2,3=ρ{u,v,w}\Psi^{x,y,z}=m_{1,2,3}=\rho\{u,v,w\}.

An entropy estimate is obtained by contracting the scheme with the entropy variables, summing in space and integrating in time. We begin by multiplying the diffusive fluxes (without artificial viscosity) by 𝐰ijkT{\bf w}_{ijk}^{T} and summing in space.

That is,

ijk=0N𝐰ijkT((Δx𝐟i+1/2jkν)𝒮jkx+(Δy𝐠ij+1/2kν)𝒮iky+(Dz𝐡ijk+1/2ν)𝒮ijz)\displaystyle\sum_{ijk=0}^{N}{\bf w}_{ijk}^{T}\left((\Delta_{-}^{x}{\bf f}^{\nu}_{i+1/2jk}){\mathcal{S}}^{x}_{jk}+(\Delta^{y}_{-}{\bf g}_{ij+1/2k}^{\nu}){\mathcal{S}}^{y}_{ik}+(D_{-}^{z}{\bf h}^{\nu}_{ijk+1/2}){\mathcal{S}}^{z}_{ij}\right) =\displaystyle=
jk=0N(𝐰NjkT𝐟N+1/2jkν𝐰0jkT𝐟1/2jkν)𝒮jkx+ik=0N(𝐰iNkT𝐠iN+1/2kν𝐰i0kT𝐠i,1/2kν)𝒮iky\displaystyle\sum_{jk=0}^{N}({\bf w}_{Njk}^{T}{\bf f}^{\nu}_{N+1/2jk}-{\bf w}_{0jk}^{T}{\bf f}^{\nu}_{-1/2jk}){\mathcal{S}}^{x}_{jk}+\sum_{ik=0}^{N}({\bf w}_{iNk}^{T}{\bf g}_{iN+1/2k}^{\nu}-{\bf w}_{i0k}^{T}{\bf g}^{\nu}_{i,-1/2k}){\mathcal{S}}^{y}_{ik}
+jk=0N(𝐰ijNT𝐡ijN+1/2ν𝐰ij0T𝐡ij,1/2ν)𝒮ijz\displaystyle+\sum_{jk=0}^{N}({\bf w}_{ijN}^{T}{\bf h}^{\nu}_{ijN+1/2}-{\bf w}_{ij0}^{T}{\bf h}^{\nu}_{ij,-1/2}){\mathcal{S}}^{z}_{ij}
ijk=0N1,N,N(Δ+x𝐰ijk)T𝐟i+1/2jkν𝒮jkxijk=0N,N1,N(Δ+y𝐰ijk)T𝐠ij+1/2kν𝒮iky\displaystyle-\sum_{ijk=0}^{N-1,N,N}(\Delta_{+}^{x}{\bf w}_{ijk})^{T}{\bf f}^{\nu}_{i+1/2jk}{\mathcal{S}}^{x}_{jk}-\sum_{ijk=0}^{N,N-1,N}(\Delta^{y}_{+}{\bf w}_{ijk})^{T}{\bf g}_{ij+1/2k}^{\nu}{\mathcal{S}}^{y}_{ik} (95)
ijk=0N,N,N1(Δ+z𝐰ijk)T𝐡ijk+1/2ν𝒮ijz\displaystyle-\sum_{ijk=0}^{N,N,N-1}(\Delta^{z}_{+}{\bf w}_{ijk})^{T}{\bf h}^{\nu}_{ijk+1/2}{\mathcal{S}}^{z}_{ij} .

The boundary conditions (77) and numerical boundary fluxes (80) make all boundary terms vanish.

To further, manipulate (95), we need the entropy-variable differences,

Δ+𝐰i1=\displaystyle\Delta_{+}{\bf w}^{1}_{i}= Δ+ρiρ^i+1/2+(1(γ1)β^i+1/2|𝐮|2¯i+1/2)Δ+βi,\displaystyle\frac{\Delta_{+}\rho_{i}}{\hat{\rho}_{i+1/2}}+\left(\frac{1}{(\gamma-1)\hat{\beta}_{i+1/2}}-\overline{|{\bf u}|^{2}}_{i+1/2}\right)\Delta_{+}\beta_{i},
2u¯i+1/2β¯i+1/2Δ+ui2v¯i+1/2β¯i+1/2Δ+vi2w¯i+1/2β¯i+1/2Δ+wi,\displaystyle-2\bar{u}_{i+1/2}\bar{\beta}_{i+1/2}\Delta_{+}u_{i}-2\bar{v}_{i+1/2}\bar{\beta}_{i+1/2}\Delta_{+}v_{i}-2\bar{w}_{i+1/2}\bar{\beta}_{i+1/2}\Delta_{+}w_{i},
Δ+𝐰i2=\displaystyle\Delta_{+}{\bf w}^{2}_{i}= 2β¯i+1/2Δ+ui+2u¯i+1/2Δ+βi,\displaystyle 2\bar{\beta}_{i+1/2}\Delta_{+}u_{i}+2\bar{u}_{i+1/2}\Delta_{+}\beta_{i}, (96)
Δ+𝐰i3=\displaystyle\Delta_{+}{\bf w}^{3}_{i}= 2β¯i+1/2Δ+vi+2v¯i+1/2Δ+βi,\displaystyle 2\bar{\beta}_{i+1/2}\Delta_{+}v_{i}+2\bar{v}_{i+1/2}\Delta_{+}\beta_{i},
Δ+𝐰i4=\displaystyle\Delta_{+}{\bf w}^{4}_{i}= 2β¯i+1/2Δ+wi+2w¯i+1/2Δ+βi,\displaystyle 2\bar{\beta}_{i+1/2}\Delta_{+}w_{i}+2\bar{w}_{i+1/2}\Delta_{+}\beta_{i},
Δ+𝐰i5=\displaystyle\Delta_{+}{\bf w}^{5}_{i}= 2Δ+βi.\displaystyle-2\Delta_{+}\beta_{i}.

The relations are stated generically to any difference direction. That is, ii represents one of the three indices and the other two are held constant.

Remark 12.

A derivation of the identities (96) is found in [Cha13]. We have verified their correctness and made the trivial extension to 3-D in the current treatise.

Furthermore, we use (93) to obtain the two auxiliary relations,

D+x(ρijkuijk)\displaystyle D_{+}^{x}(\rho_{ijk}u_{ijk}) =ρ¯i+1/2D+x(uijk)+u¯i+1/2jkD+x(ρijk)\displaystyle=\bar{\rho}_{i+1/2}D_{+}^{x}(u_{ijk})+\bar{u}_{i+1/2jk}D_{+}^{x}(\rho_{ijk})
12D+x(ρiui2)\displaystyle\frac{1}{2}D_{+}^{x}(\rho_{i}u^{2}_{i}) =12(D+xρi)u2¯i+1/2+ρ¯i+1/2u¯i+1/2D+xui,\displaystyle=\frac{1}{2}(D_{+}^{x}\rho_{i})\overline{u^{2}}_{i+1/2}+\bar{\rho}_{i+1/2}\bar{u}_{i+1/2}D_{+}^{x}u_{i},

which along with (96) is used to calculate the remaining (volume) diffusive terms in (95). There are a number of cancellations and the three directions are handled independently of each other. Suppressing the common jkjk-indices, the terms in the x-direction from (95) become,

(Δ+x𝐰i)𝐟i+1/2ν=νi+1/2jk((Δ+xρi)(D+xρi)ρ^i+1/2\displaystyle(\Delta_{+}^{x}{\bf w}_{i}){\bf f}^{\nu}_{i+1/2}=\nu_{i+1/2jk}\left(\frac{(\Delta_{+}^{x}\rho_{i})(D_{+}^{x}\rho_{i})}{\hat{\rho}_{i+1/2}}\right.
+2β¯i+1/2ρ¯i+1/2((Δ+xui)(D+xui)+(Δ+xvi)(D+xvi)+(Δ+xwi)(D+xwi))\displaystyle+2\bar{\beta}_{i+1/2}\bar{\rho}_{i+1/2}\left((\Delta^{x}_{+}u_{i})(D^{x}_{+}u_{i})+(\Delta^{x}_{+}v_{i})(D^{x}_{+}v_{i})+(\Delta^{x}_{+}w_{i})(D^{x}_{+}w_{i})\right)
ρ¯i+1/2γ1Δ+xβiD+x(1βijk))κr42(Δ+xβijk)D+xT4i.\displaystyle\left.-\frac{\bar{\rho}_{i+1/2}}{\gamma-1}\Delta_{+}^{x}\beta_{i}D_{+}^{x}\left(\frac{1}{\beta_{ijk}}\right)\right)-\frac{\kappa_{r}}{4}2(\Delta_{+}^{x}\beta_{ijk})D_{+}^{x}T^{4}_{i}. (97)

Furthermore, by (64) and (65), we have

ijk=0N1,N,N(Δ+x𝐰ijk)𝐟i+1/2jkν𝒮jk=ijk=0N1,N,N(D+x𝐰ijk)𝐟i+1/2jkνVijk,\displaystyle\sum_{ijk=0}^{N-1,N,N}(\Delta_{+}^{x}{\bf w}_{ijk}){\bf f}^{\nu}_{i+1/2jk}{\mathcal{S}}_{jk}=\sum_{ijk=0}^{N-1,N,N}(D_{+}^{x}{\bf w}_{ijk}){\bf f}^{\nu}_{i+1/2jk}V_{ijk},

and similarly in the other directions.

Turning to the inviscid fluxes, we must verify that the convective numerical fluxes, augmented with artificial diffusion, are entropy dissipative in the following sense:

Δ+x𝐰ijkT(𝐟i+1/2jkc𝐟i+1/2jkλ)\displaystyle\Delta_{+}^{x}{\bf w}^{T}_{ijk}({\bf f}^{c}_{i+1/2jk}-{\bf f}^{\lambda}_{i+1/2jk}) ΔΨijkx=Δ+x(ρu)ijk,\displaystyle\leq\Delta\Psi^{x}_{ijk}=\Delta^{x}_{+}(\rho u)_{ijk},
Δ+y𝐰ijkT(𝐠ij+1/2kc𝐠ij+1/2kλ)\displaystyle\Delta_{+}^{y}{\bf w}^{T}_{ijk}({\bf g}^{c}_{ij+1/2k}-{\bf g}^{\lambda}_{ij+1/2k}) ΔΨijky=Δ+y(ρv)ijk,\displaystyle\leq\Delta\Psi^{y}_{ijk}=\Delta^{y}_{+}(\rho v)_{ijk}, (98)
Δ+z𝐰ijkT(𝐡ijk+1/2c𝐡ijk+1/2d)\displaystyle\Delta_{+}^{z}{\bf w}^{T}_{ijk}({\bf h}^{c}_{ijk+1/2}-{\bf h}^{d}_{ijk+1/2}) ΔΨijkz=Δ+z(ρw)ijk.\displaystyle\leq\Delta\Psi^{z}_{ijk}=\Delta^{z}_{+}(\rho w)_{ijk}.

(The relations (98) are sometimes called Tadmor’s shuffle conditions.)

To reduce notation, we demonstrate that (98) holds in the one-dimensional case. (It is straightforward to extend the analysis to the three-dimensional case.) To carry out the derivation, we temporarily relabel 𝐰5{\bf w}^{5} as 𝐰3{\bf w}^{3} and similarly for the fluxes. In view of (98), we begin by calculating

LHSc=(Δ+𝐰i1)𝐟i+1/21,c+(Δ+𝐰i2)𝐟i+1/22,c+(Δ+𝐰i3)𝐟i+1/23,c\displaystyle LHS^{c}=(\Delta_{+}{\bf w}^{1}_{i}){\bf f}^{1,c}_{i+1/2}+(\Delta_{+}{\bf w}^{2}_{i}){\bf f}^{2,c}_{i+1/2}+(\Delta_{+}{\bf w}^{3}_{i}){\bf f}^{3,c}_{i+1/2}

Using (96) and (68) (reduced to 1-D), we have

LHSc=\displaystyle LHS^{c}=
(Δ+ρiρ^i+1/2+(1(γ1)β^i+1/2|u|2¯i+1/2)Δ+βi2u¯i+1/2β¯i+1/2Δ+ui)(ρu¯i+1/2)\displaystyle(\frac{\Delta_{+}\rho_{i}}{\hat{\rho}_{i+1/2}}+\left(\frac{1}{(\gamma-1)\hat{\beta}_{i+1/2}}-\overline{|u|^{2}}_{i+1/2}\right)\Delta_{+}\beta_{i}-2\bar{u}_{i+1/2}\bar{\beta}_{i+1/2}\Delta_{+}u_{i})(\overline{\rho u}_{i+1/2})
+(2β¯i+1/2Δ+ui+2u¯i+1/2Δ+βi)(u¯i+1/2ρu¯i+1/2+pi+1/2)\displaystyle+(2\bar{\beta}_{i+1/2}\Delta_{+}u_{i}+2\bar{u}_{i+1/2}\Delta_{+}\beta_{i})(\bar{u}_{i+1/2}\overline{\rho u}_{i+1/2}+p_{i+1/2})
2Δ+βi(12(γ1)β^i+1/2ρu¯i+1/2|u|2¯i+1/22ρu¯i+1/2\displaystyle-2\Delta_{+}\beta_{i}(\frac{1}{2(\gamma-1)\hat{\beta}_{i+1/2}}\overline{\rho u}_{i+1/2}-\frac{\overline{|u|^{2}}_{i+1/2}}{2}\overline{\rho u}_{i+1/2}
+|u|¯i+1/22ρu¯i+1/2+pi+1/2u¯i+1/2)\displaystyle+\overline{|u|}^{2}_{i+1/2}\overline{\rho u}_{i+1/2}+p_{i+1/2}\bar{u}_{i+1/2}) .

After some further manipulations, we obtain

LHSc=(Δ+ρiρ^i+1/2+(1(γ1)β^i+1/2|u|2¯i+1/2)Δ+βi2u¯i+1/2β¯i+1/2Δ+ui)(ρu¯i+1/2)\displaystyle LHS^{c}=(\frac{\Delta_{+}\rho_{i}}{\hat{\rho}_{i+1/2}}+\left(\frac{1}{(\gamma-1)\hat{\beta}_{i+1/2}}-\overline{|u|^{2}}_{i+1/2}\right)\Delta_{+}\beta_{i}-2\bar{u}_{i+1/2}\bar{\beta}_{i+1/2}\Delta_{+}u_{i})(\overline{\rho u}_{i+1/2})
+(2β¯i+1/2Δ+ui+2u¯i+1/2Δ+βi)u¯i+1/2ρu¯i+1/2+(2β¯i+1/2Δ+ui+2u¯i+1/2Δ+βi)pi+1/2\displaystyle+(2\bar{\beta}_{i+1/2}\Delta_{+}u_{i}+2\bar{u}_{i+1/2}\Delta_{+}\beta_{i})\bar{u}_{i+1/2}\overline{\rho u}_{i+1/2}+(2\bar{\beta}_{i+1/2}\Delta_{+}u_{i}+2\bar{u}_{i+1/2}\Delta_{+}\beta_{i})p_{i+1/2}
2Δ+βi(12(γ1)β^i+1/2ρu¯i+1/2|u|2¯i+1/22ρu¯i+1/2+|u|¯i+1/22ρu¯i+1/2+pi+1/2u¯i+1/2)\displaystyle-2\Delta_{+}\beta_{i}(\frac{1}{2(\gamma-1)\hat{\beta}_{i+1/2}}\overline{\rho u}_{i+1/2}-\frac{\overline{|u|^{2}}_{i+1/2}}{2}\overline{\rho u}_{i+1/2}+\overline{|u|}^{2}_{i+1/2}\overline{\rho u}_{i+1/2}+p_{i+1/2}\bar{u}_{i+1/2}) .

Cancelling velocity terms, leads to

LHSc=(Δ+ρiρ^i+1/2+(1(γ1)β^i+1/2)Δ+βi)(ρu¯i+1/2)\displaystyle LHS^{c}=(\frac{\Delta_{+}\rho_{i}}{\hat{\rho}_{i+1/2}}+\left(\frac{1}{(\gamma-1)\hat{\beta}_{i+1/2}}\right)\Delta_{+}\beta_{i})(\overline{\rho u}_{i+1/2})
+(2β¯i+1/2Δ+ui+2u¯i+1/2Δ+βi)pi+1/2\displaystyle+(2\bar{\beta}_{i+1/2}\Delta_{+}u_{i}+2\bar{u}_{i+1/2}\Delta_{+}\beta_{i})p_{i+1/2}
2Δ+βi(12(γ1)β^i+1/2ρu¯i+1/2+pi+1/2u¯i+1/2)\displaystyle-2\Delta_{+}\beta_{i}(\frac{1}{2(\gamma-1)\hat{\beta}_{i+1/2}}\overline{\rho u}_{i+1/2}+p_{i+1/2}\bar{u}_{i+1/2}) .

Cancelling pressure terms, results in

LHSc=(Δ+ρiρ^i+1/2)(ρu¯i+1/2)+2β¯i+1/2Δ+uipi+1/2.\displaystyle LHS^{c}=(\frac{\Delta_{+}\rho_{i}}{\hat{\rho}_{i+1/2}})(\overline{\rho u}_{i+1/2})+2\bar{\beta}_{i+1/2}\Delta_{+}u_{i}p_{i+1/2}.

Similarly, the artificial diffusion part of the left-hand side of (98) leads to

LHSAD=λi+1/2((Δ+ρi)2ρ^i+1/2+2β¯i+1/2ρ¯i+1/2(Δ+ui)2+ρ¯i+1/2γ1Δ+βi(D+1βi)),\displaystyle LHS^{AD}=\lambda_{i+1/2}\left(\frac{(\Delta_{+}\rho_{i})^{2}}{\hat{\rho}_{i+1/2}}+2\bar{\beta}_{i+1/2}\bar{\rho}_{i+1/2}(\Delta_{+}u_{i})^{2}+\frac{\bar{\rho}_{i+1/2}}{\gamma-1}\Delta_{+}\beta_{i}(D_{+}\frac{1}{\beta_{i}})\right),

in the same way as (97) was obtained. The complete left-hand side of (98), is given by LHS=LHSc+LHSADLHS=LHS^{c}+LHS^{AD}. By substituting

ρu¯i+1/2=ρ¯i+1/2u¯i+1/2+(Δ+ui)(Δ+ρi)4=ρ^i+1/2u¯i+1/2+(ρ¯i+1/2ρ^i+1/2)u¯i+1/2+(Δ+ui)(Δ+ρi)4,\displaystyle\overline{\rho u}_{i+1/2}=\bar{\rho}_{i+1/2}\bar{u}_{i+1/2}+\frac{(\Delta_{+}u_{i})(\Delta_{+}\rho_{i})}{4}=\hat{\rho}_{i+1/2}\bar{u}_{i+1/2}+(\bar{\rho}_{i+1/2}-\hat{\rho}_{i+1/2})\bar{u}_{i+1/2}+\frac{(\Delta_{+}u_{i})(\Delta_{+}\rho_{i})}{4},

we obtain

LHS=(Δ+ρiρ^i+1/2)(ρ^i+1/2u¯i+1/2+(ρ¯i+1/2ρ^i+1/2)u¯i+1/2+(Δ+ui)(Δ+ρi)4)+2β¯i+1/2Δ+uipi+1/2\displaystyle LHS=(\frac{\Delta_{+}\rho_{i}}{\hat{\rho}_{i+1/2}})\left(\hat{\rho}_{i+1/2}\bar{u}_{i+1/2}+(\bar{\rho}_{i+1/2}-\hat{\rho}_{i+1/2})\bar{u}_{i+1/2}+\frac{(\Delta_{+}u_{i})(\Delta_{+}\rho_{i})}{4}\right)+2\bar{\beta}_{i+1/2}\Delta_{+}u_{i}p_{i+1/2}
+λi+1/2((Δ+ρi)2ρ^i+1/2+2β¯i+1/2ρ¯i+1/2(Δ+ui)2+ρ¯i+1/2γ1Δ+βi(D+1βi))\displaystyle+\lambda_{i+1/2}(\frac{(\Delta_{+}\rho_{i})^{2}}{\hat{\rho}_{i+1/2}}+2\bar{\beta}_{i+1/2}\bar{\rho}_{i+1/2}(\Delta_{+}u_{i})^{2}+\frac{\bar{\rho}_{i+1/2}}{\gamma-1}\Delta_{+}\beta_{i}(D_{+}\frac{1}{\beta_{i}})) .

Use pi+1/2=ρ¯i+1/22β¯i+1/2p_{i+1/2}=\frac{\bar{\rho}_{i+1/2}}{2\bar{\beta}_{i+1/2}} (defined in (68)), to obtain

LHS=u¯i+1/2(Δ+ρi)+ρ¯i+1/2(Δ+ui)+(Δ+ρi)2ρ^i+1/2(ρ¯i+1/2ρ^i+1/2Δ+ρiu¯i+1/2+Δ+ui4)\displaystyle LHS=\bar{u}_{i+1/2}(\Delta_{+}\rho_{i})+\bar{\rho}_{i+1/2}(\Delta_{+}u_{i})+\frac{(\Delta_{+}\rho_{i})^{2}}{\hat{\rho}_{i+1/2}}\left(\frac{\bar{\rho}_{i+1/2}-\hat{\rho}_{i+1/2}}{\Delta_{+}\rho_{i}}\bar{u}_{i+1/2}+\frac{\Delta_{+}u_{i}}{4}\right)
+λi+1/2((Δ+ρi)2ρ^i+1/2+2β¯i+1/2ρ¯i+1/2(Δ+ui)2+ρ¯i+1/2γ1Δ+βi(D+1βi))\displaystyle+\lambda_{i+1/2}(\frac{(\Delta_{+}\rho_{i})^{2}}{\hat{\rho}_{i+1/2}}+2\bar{\beta}_{i+1/2}\bar{\rho}_{i+1/2}(\Delta_{+}u_{i})^{2}+\frac{\bar{\rho}_{i+1/2}}{\gamma-1}\Delta_{+}\beta_{i}(D_{+}\frac{1}{\beta_{i}})) .

The first two terms combine to Δ(ρu)i=ΔΨi\Delta(\rho u)_{i}=\Delta\Psi_{i}, which is the right-hand side of (98). The last terms are positive and the λi+1/2\lambda_{i+1/2} bounds |ρ¯ρ^Δ+ρiu¯+Δu4||\frac{\bar{\rho}-\hat{\rho}}{\Delta_{+}\rho_{i}}\bar{u}+\frac{\Delta u}{4}|. (In this expression and the next, we have suppressed the indices since all averages and differences are taken between i,i+1i,i+1.) The latter is realised by the following calculation using (62),

|ρ¯ρ^Δρ|=|ρ¯ΔρΔlogρΔρ|=|ρ¯ΔlogρΔρΔlogρΔρ|=|1Δlogρ(ρ¯ρ^1)|\displaystyle\left|\frac{\bar{\rho}-\hat{\rho}}{\Delta\rho}\right|=\left|\frac{\bar{\rho}-\frac{\Delta\rho}{\Delta\log\rho}}{\Delta\rho}\right|=\left|\frac{\bar{\rho}\Delta\log\rho-\Delta\rho}{\Delta\log\rho\Delta\rho}\right|=\left|\frac{1}{\Delta\log\rho}\left(\frac{\bar{\rho}}{\hat{\rho}}-1\right)\right| =\displaystyle=
|1Δlogρρ¯ρ^ρ^||1ΔlogρΔρ2ρ^|=|ρ^2ρ^|\displaystyle\left|\frac{1}{\Delta\log\rho}\frac{\bar{\rho}-\hat{\rho}}{\hat{\rho}}\right|\leq\left|\frac{1}{\Delta\log\rho}\frac{\Delta\rho}{2\hat{\rho}}\right|=\left|\frac{\hat{\rho}}{2\hat{\rho}}\right| =12,\displaystyle=\frac{1}{2}, (99)

Hence, the fluxes (68),(69) and (70), augmented with the artificial diffusion fluxes, satisfy (98).

Next, we use the above results when contracting the convective terms of the scheme (66) with 𝐰ijkT{\bf w}_{ijk}^{T}, and use (98), to obtain

ijk=0N𝐰ijkT((Δx(𝐟i+1/2jkc𝐟i+1/2jkλ))𝒮jkx+(Δy(𝐠ij+1/2kc𝐠ij+1/2kλ))𝒮iky\displaystyle\sum_{ijk=0}^{N}{\bf w}_{ijk}^{T}\left((\Delta_{-}^{x}({\bf f}^{c}_{i+1/2jk}-{\bf f}^{\lambda}_{i+1/2jk})){\mathcal{S}}^{x}_{jk}+(\Delta_{-}^{y}({\bf g}_{ij+1/2k}^{c}-{\bf g}_{ij+1/2k}^{\lambda})){\mathcal{S}}^{y}_{ik}\right.
+(Δz(𝐡ijk+1/2c𝐡ijk+1/2λ))𝒮ijz)\displaystyle\left.+(\Delta_{-}^{z}({\bf h}^{c}_{ijk+1/2}-{\bf h}^{\lambda}_{ijk+1/2})){\mathcal{S}}^{z}_{ij}\right) \displaystyle\leq
jk=0N(𝐰NjkT𝐟N+1/2jkc𝐰0jkT𝐟1/2jkc+Ψ0jkxΨNjkx)𝒮jkx\displaystyle\sum_{jk=0}^{N}({\bf w}_{Njk}^{T}{\bf f}^{c}_{N+1/2jk}-{\bf w}_{0jk}^{T}{\bf f}^{c}_{-1/2jk}+\Psi^{x}_{0jk}-\Psi^{x}_{Njk}){\mathcal{S}}^{x}_{jk}
+ik=0N(𝐰iNkT𝐠iN+1/2kc𝐰i0kT𝐠i,1/2kc+Ψi0kyΨiNky)𝒮iky\displaystyle+\sum_{ik=0}^{N}({\bf w}_{iNk}^{T}{\bf g}_{iN+1/2k}^{c}-{\bf w}_{i0k}^{T}{\bf g}^{c}_{i,-1/2k}+\Psi^{y}_{i0k}-\Psi^{y}_{iNk}){\mathcal{S}}^{y}_{ik}
+jk=0N(𝐰ijNT𝐡ijN+1/2c𝐰ij0T𝐡ij,1/2c+Ψij0zΨikNz)𝒮ijz\displaystyle+\sum_{jk=0}^{N}({\bf w}_{ijN}^{T}{\bf h}^{c}_{ijN+1/2}-{\bf w}_{ij0}^{T}{\bf h}^{c}_{ij,-1/2}+\Psi^{z}_{ij0}-\Psi^{z}_{ikN}){\mathcal{S}}^{z}_{ij} =0.\displaystyle=0. (100)

All the boundary terms vanish thanks to the no-slip condition implying that w2,3,4=0w^{2,3,4}=0; the first and fifth components are zero since the flux components are zero (see (79)); the entropy potentials also vanish due to the no-slip condition.

Combining (100) and (95), we compute the entropy estimate

ijk=0NVijk(Uijk)t+ijk=0N1,N,N(Δ+x𝐰ijk)T𝐟i+1/2jkd𝒮jkx\displaystyle\sum_{ijk=0}^{N}V_{ijk}(U_{ijk})_{t}+\sum_{ijk=0}^{N-1,N,N}(\Delta_{+}^{x}{\bf w}_{ijk})^{T}{\bf f}^{d}_{i+1/2jk}{\mathcal{S}}^{x}_{jk} (101)
+ijk=0N,N1,N(Δ+y𝐰ijk)T𝐠ij+1/2kd𝒮iky+ijk=0N,N,N1(Δ+z𝐰ijk)T𝐡ijk+1/2d𝒮ijz\displaystyle+\sum_{ijk=0}^{N,N-1,N}(\Delta^{y}_{+}{\bf w}_{ijk})^{T}{\bf g}_{ij+1/2k}^{d}{\mathcal{S}}^{y}_{ik}+\sum_{ijk=0}^{N,N,N-1}(\Delta^{z}_{+}{\bf w}_{ijk})^{T}{\bf h}^{d}_{ijk+1/2}{\mathcal{S}}^{z}_{ij} 0,\displaystyle\leq 0,

where we have used 𝐰ijkT(𝐮ijk)t=U(𝐮ijk)t=(Uijk)t{\bf w}_{ijk}^{T}({\bf u}_{ijk})_{t}=U({\bf u}_{ijk})_{t}=(U_{ijk})_{t}\quad.

Integrating (101) and using (97) and (71), we obtain (among others) the following bounds

𝒞\displaystyle\mathcal{C}\geq 0𝒯ijk=0N1,N,Nνi+1/2jk(D+xρijk)2ρ^Vijkdt\displaystyle\int_{0}^{\mathcal{T}}\sum_{ijk=0}^{N-1,N,N}\nu_{i+1/2jk}\frac{(D_{+}^{x}\rho_{ijk})^{2}}{\hat{\rho}}V_{ijk}\,dt
=\displaystyle= 0𝒯ijk=0N1,N,N(μ1ρ¯i+1/2jk+μ0ρ^i+1/2jk)(D+xρijk)2ρ^i+1/2jkVijkdt\displaystyle\int_{0}^{\mathcal{T}}\sum_{ijk=0}^{N-1,N,N}(\mu_{1}\bar{\rho}_{i+1/2jk}+\frac{\mu_{0}}{\hat{\rho}_{i+1/2jk}})\frac{(D_{+}^{x}\rho_{ijk})^{2}}{\hat{\rho}_{i+1/2jk}}V_{ijk}\,dt
=\displaystyle= 0𝒯ijk=0N1,N,N(μ1ρ¯i+1/2jkρ^i+1/2jk(D+xρijk)2+μ0(D+xlogρijk)2)Vijkdt,\displaystyle\int_{0}^{\mathcal{T}}\sum_{ijk=0}^{N-1,N,N}(\mu_{1}\frac{\bar{\rho}_{i+1/2jk}}{\hat{\rho}_{i+1/2jk}}(D_{+}^{x}\rho_{ijk})^{2}+\mu_{0}(D_{+}^{x}\log\rho_{ijk})^{2})V_{ijk}\,dt, (102)

where 𝒞\mathcal{C} is a constant obtained from the initial data. Noting that, ρ¯/ρ^1\bar{\rho}/\hat{\rho}\geq 1, we obtain bounds on D+xρijkD_{+}^{x}\rho_{ijk} and D+xlogρijkD_{+}^{x}\log\rho_{ijk}. Along with (94), we have,

ρijk\displaystyle\rho_{ijk} L2(0,𝒯;H1(Ω)),\displaystyle\in L^{2}(0,\mathcal{T};H^{1}(\Omega)), (103)
+logρijk\displaystyle\nabla_{+}\log\rho_{ijk} L2(0,𝒯;L2(Ω)),\displaystyle\in L^{2}(0,\mathcal{T};L^{2}(\Omega)),

where +\nabla_{+} is short for the finite differences (D+x,D+y,D+z)(D_{+}^{x},D_{+}^{y},D_{+}^{z})

In the same way as in the derivation following (16), and again by using that ρ¯i+1/2jkρ^i+1/2jk1\frac{\bar{\rho}_{i+1/2jk}}{\hat{\rho}_{i+1/2jk}}\geq 1, we obtain the discrete counterpart of (17) and (18):

ρijklog(ρijk)\displaystyle\rho_{ijk}\log(\rho_{ijk}) L(0,𝒯,L1(Ω)),\displaystyle\in L^{\infty}(0,\mathcal{T},L^{1}(\Omega)),
ρijklog(Tijk)\displaystyle\rho_{ijk}\log(T_{ijk}) L(0,𝒯,L1(Ω)),\displaystyle\in L^{\infty}(0,\mathcal{T},L^{1}(\Omega)), (104)
+log(Tijk)\displaystyle\nabla_{+}\log(T_{ijk}) L2(0,𝒯,L2(Ω)).\displaystyle\in L^{2}(0,\mathcal{T},L^{2}(\Omega)).

(We remark that we get all the counterparts of (18) but limit ourselves to list the estimates necessary for the convergence proof below.)

Next, we turn to the temperature estimate from radiation in (101). We have,

𝒞0𝒯ijk=0NVijkκr2(D+xβijk)D+xTijk4dt,\displaystyle\mathcal{C}\geq\int_{0}^{\mathcal{T}}\sum_{ijk=0}^{N}-V_{ijk}\kappa_{r}2(D_{+}^{x}\beta_{ijk})D_{+}^{x}T^{4}_{ijk}\,dt,

where

D+xβijk=D+xTijk2RTˇi+1/2jk2,\displaystyle D_{+}^{x}\beta_{ijk}=-\frac{D_{+}^{x}T_{ijk}}{2R\check{T}_{i+1/2jk}^{2}},

and

D+x(Ti+1/2jk)4\displaystyle D_{+}^{x}(T_{i+1/2jk})^{4} =4T3~i+1/2jkD+xTi\displaystyle=4\widetilde{T^{3}}_{i+1/2jk}D_{+}^{x}T_{i}
4T3~i+1/2jk\displaystyle 4\widetilde{T^{3}}_{i+1/2jk} =(Ti+13+Ti3+Ti2Ti+1+Ti+12Ti)jk.\displaystyle=(T_{i+1}^{3}+T_{i}^{3}+T_{i}^{2}T_{i+1}+T_{i+1}^{2}T_{i})_{jk}.

Hence, we have a bound on

T3~i+1/2jkTi+1jkTijkD+xTiL22.\displaystyle\frac{\sqrt{\widetilde{T^{3}}_{i+1/2jk}}}{\sqrt{T_{i+1jk}T_{ijk}}}D_{+}^{x}T_{i}\in L^{2}_{2}.

We wish to show that

D+xTijk3/2L22.\displaystyle D_{+}^{x}T^{3/2}_{ijk}\in L^{2}_{2}. (105)

Hence, we need to demonstrate that

T3~i+1/2jkTi+1jkTijkD+xTijk3/2D+xTijk.\displaystyle\frac{\sqrt{\widetilde{T^{3}}_{i+1/2jk}}}{\sqrt{T_{i+1jk}T_{ijk}}}\gtrsim\frac{D_{+}^{x}T^{3/2}_{ijk}}{D^{x}_{+}T_{ijk}}. (106)

We note that T3~i+1/2jkTi+1jkTijkTi+1jk+Tijk\frac{{\widetilde{T^{3}}_{i+1/2jk}}}{T_{i+1jk}T_{ijk}}\gtrsim T_{i+1jk}+T_{ijk}. That is, the left-hand side majorises the arithmetic mean (with an appropriate scaling) and twice the arithmetic mean majorises both TijkT_{ijk} and Ti+1jkT_{i+1jk}. Furthermore, by the mean-value theorem

(D+xTijk3/2)(D+xTijk)=32T,T(Ti,Ti+1),\displaystyle\frac{(D_{+}^{x}T^{3/2}_{ijk})}{(D^{x}_{+}T_{ijk})}=\frac{3}{2}\sqrt{T^{*}},\quad T^{*}\in(T_{i},T_{i+1}),

showing that it is a monotone average. Since it is a monotone average, it is majorised by either end points and therefore by the left-hand side of (106). We conclude that (105), holds. (The same arguments apply in the y- and z-directions.)

By repeating the arguments in the continuous case, we have a |||\mathcal{B}| (as in (20)) of non-zero measure and TiL(0,𝒯;L1())T_{i}\in L^{\infty}(0,\mathcal{T};L^{1}(\mathcal{B})). Hence,

Tijk3/2\displaystyle T_{ijk}^{3/2} L2(H1),\displaystyle\in L^{2}(H^{1}),
Tijk\displaystyle T_{ijk} L3(L9).\displaystyle\in L^{3}(L^{9}). (107)

Finally, the bound on (D+xTijk)2Tˇi+1/2jk2Ti+1/2jk3~\frac{(D_{+}^{x}T_{ijk})^{2}}{\check{T}^{2}_{i+1/2jk}}\widetilde{T^{3}_{i+1/2jk}} implies

Tijk3/2+logTijk\displaystyle T_{ijk}^{3/2}\nabla_{+}\log T_{ijk} L2(L2).\displaystyle\in L^{2}(L^{2}). (108)

6.3 Kinetic energy

Summing (89) by parts over the spatial domain, results in,

ijk=1nVijkddtKijk=jk=1N,N(𝔉1/2jk𝔉N+1/2jk)𝒮jkx\displaystyle\sum_{ijk=1}^{n}V_{ijk}\frac{d}{dt}K_{ijk}=\sum_{jk=1}^{N,N}\left({\mathfrak{F}}_{-1/2jk}-{\mathfrak{F}}_{N+1/2jk}\right){\mathcal{S}}^{x}_{jk}
+ik=1N,N(𝔊i,1/2k𝔊i,N+1/2k)𝒮iky+ij=1N,N(ij,1/2ij,N+1/2)𝒮ijz\displaystyle+\sum_{ik=1}^{N,N}\left({\mathfrak{G}}_{i,-1/2k}-{\mathfrak{G}}_{i,N+1/2k}\right){\mathcal{S}}^{y}_{ik}+\sum_{ij=1}^{N,N}\left({\mathfrak{H}}_{ij,-1/2}-{\mathfrak{H}}_{ij,N+1/2}\right){\mathcal{S}}^{z}_{ij} (109)
ijk=1NVijk(𝔇ijk(pDv)ijk).\displaystyle-\sum_{ijk=1}^{N}V_{ijk}\left({\mathfrak{D}}_{ijk}-(pDv)_{ijk}\right).

The fluxes were defined in (90) and vanish at the boundary thanks to no-slip.

As in the continuous case, we split the pressure term, using

ijk=1N1,N,NVijk(D+xuijk)ρ¯i+1/2jk2β¯i+1/2jkρi+1/2jkD+xuijk22+12β¯i+1/2jk22,\displaystyle-\sum_{ijk=1}^{N-1,N,N}V_{ijk}(D_{+}^{x}u_{ijk})\frac{\bar{\rho}_{i+1/2jk}}{2\bar{\beta}_{i+1/2jk}}\leq\|\rho_{i+1/2jk}D_{+}^{x}u_{ijk}\|^{2}_{2}+\|\frac{1}{2\bar{\beta}_{i+1/2jk}}\|_{2}^{2},

and similarly for the other terms. Since νi+1/2jk\nu_{i+1/2jk} contains a ρ¯i+1/2jk\bar{\rho}_{i+1/2jk} term (see (71)) the first term on the right-hand side is controlled by ijk=1NVijk𝔇ijk\sum_{ijk=1}^{N}V_{ijk}{\mathfrak{D}}_{ijk}. The second term, is controlled by (107) via

1β¯i+1/2=112RTi+1+12RTi=1Ti+Ti+12RTi+1Ti=RTi+1TiTi+Ti+12RTˇi+1/22T¯i+1/2RT¯i+1/2,\displaystyle\frac{1}{\bar{\beta}_{i+1/2}}=\frac{1}{\frac{1}{2RT_{i+1}}+\frac{1}{2RT_{i}}}=\frac{1}{\frac{T_{i}+T_{i+1}}{2RT_{i+1}T_{i}}}=\frac{RT_{i+1}T_{i}}{\frac{T_{i}+T_{i+1}}{2}}\leq\frac{R\check{T}_{i+1/2}^{2}}{\bar{T}_{i+1/2}}\leq R\bar{T}_{i+1/2},

where the last inequality follows from (62) and positivity of temperature.

Using that ρ¯/ρ^1\bar{\rho}/\hat{\rho}\geq 1, we conclude that

ρ¯i+1/2jk(|D+xuijk|+|D+xvijk|+|D+xwijk|)\displaystyle\bar{\rho}_{i+1/2jk}\left(|D_{+}^{x}u_{ijk}|+|D_{+}^{x}v_{ijk}|+|D_{+}^{x}w_{ijk}|\right) L2(0,𝒯;L2),\displaystyle\in L^{2}(0,\mathcal{T};L^{2}),
|D+xuijk|+|D+xvijk|+|D+xwijk|\displaystyle|D_{+}^{x}u_{ijk}|+|D_{+}^{x}v_{ijk}|+|D_{+}^{x}w_{ijk}| L2(0,𝒯;L2),and\displaystyle\in L^{2}(0,\mathcal{T};L^{2}),\quad\textrm{and} (110)
ρ¯i+1/2jkρ^i+1/2jk(|D+xuijk|+|D+xvijk|+|D+xwijk|)\displaystyle\sqrt{\frac{\bar{\rho}_{i+1/2jk}}{\hat{\rho}_{i+1/2jk}}}\left(|D_{+}^{x}u_{ijk}|+|D_{+}^{x}v_{ijk}|+|D_{+}^{x}w_{ijk}|\right) L2(0,𝒯;L2),\displaystyle\in L^{2}(0,\mathcal{T};L^{2}),

and similarly in the other two directions. These bounds are the discrete equivalents of (24) and also imply that

𝐯ijkL2(H1)L2(L6).\displaystyle{\bf v}_{ijk}\in L^{2}(H^{1})\cap L^{2}(L^{6}). (111)

We will also need the complete estimate obtained from 𝔇ijk{\mathfrak{D}}_{ijk}:

ν~i+1/2jkρ¯i+1/2jk((D+xuijk)2+(D+xvijk)2+(D+xwijk)2)\displaystyle\tilde{\nu}_{i+1/2jk}\bar{\rho}_{i+1/2jk}\left((D_{+}^{x}u_{ijk})^{2}+(D_{+}^{x}v_{ijk})^{2}+(D_{+}^{x}w_{ijk})^{2}\right) L1(0,𝒯;L1),\displaystyle\in L^{1}(0,\mathcal{T};L^{1}), (112)

and the corresponding bounds in the other two directions.

6.4 Specific volume

We need the following identities

D+x1ρi2=1Δ+xxi(1ρi+1+1ρi)(1ρi+11ρi)\displaystyle D_{+}^{x}\frac{1}{\rho_{i}^{2}}=\frac{1}{\Delta_{+}^{x}x_{i}}\left(\frac{1}{\rho_{i+1}}+\frac{1}{\rho_{i}}\right)\left(\frac{1}{\rho_{i+1}}-\frac{1}{\rho_{i}}\right) =\displaystyle=
1Δ+xxiρi+1+ρiρi+1ρiρi+1ρiρi+1ρi=2ρ¯i+1/2ρˇi+1/24D+xρi,\displaystyle-\frac{1}{\Delta_{+}^{x}x_{i}}\frac{\rho_{i+1}+\rho_{i}}{\rho_{i+1}\rho_{i}}\frac{\rho_{i+1}-\rho_{i}}{\rho_{i+1}\rho_{i}}=-\frac{2\bar{\rho}_{i+1/2}}{\check{\rho}_{i+1/2}^{4}}D_{+}^{x}\rho_{i},

and

D+x1ρi=1ρˇi+1/22D+xρi,\displaystyle D_{+}^{x}\frac{1}{\rho_{i}}=-\frac{1}{\check{\rho}_{i+1/2}^{2}}D_{+}^{x}\rho_{i},

where ρˇi+1/2\check{\rho}_{i+1/2} is given by (61).

Remark 13.

To reduce notation, we take the grid to be uniform in each direction, such that Δ+xxi=Δ+xxi+1/2=h\Delta_{+}^{x}x_{i}=\Delta_{+}^{x}x_{i+1/2}=h. This is not a necessity and all estimates are derivable on a non-uniform grid. In fact, the scheme (and the on-going convergence proof) is readily generalised unstructured to Voronoi grids as well.

Next, multiply the continuity equation of (66) by 1/ρijk2-1/\rho_{ijk}^{2},

Vijk(ρijk1)t\displaystyle V_{ijk}(\rho^{-1}_{ijk})_{t} =1ρijk2(Δx𝐟cλ,1)i+1/2jk𝒮jkx+Δy(𝐠cλ,1)ij+1/2k𝒮iky+Δz(𝐡cλ,1)ijk+1/2𝒮ijz)\displaystyle=\frac{1}{\rho_{ijk}^{2}}\left(\Delta_{-}^{x}{\bf f}^{c\lambda,1})_{i+1/2jk}{\mathcal{S}}^{x}_{jk}+\Delta_{-}^{y}({\bf g}^{c\lambda,1})_{ij+1/2k}{\mathcal{S}}_{ik}^{y}+\Delta_{-}^{z}({\bf h}^{c\lambda,1})_{ijk+1/2}{\mathcal{S}}_{ij}^{z}\right)
1ρijk2(Δx(νi+1/2jkD+xρijk)𝒮jkx+Δy(νij+1/2kD+yρijk)𝒮iky+Δz(νijk+1/2D+zρijk)𝒮ijz)\displaystyle-\frac{1}{\rho_{ijk}^{2}}\left(\Delta_{-}^{x}(\nu_{i+1/2jk}D_{+}^{x}\rho_{ijk}){\mathcal{S}}_{jk}^{x}+\Delta_{-}^{y}(\nu_{ij+1/2k}D_{+}^{y}\rho_{ijk}){\mathcal{S}}_{ik}^{y}+\Delta_{-}^{z}(\nu_{ijk+1/2}D_{+}^{z}\rho_{ijk}){\mathcal{S}}_{ij}^{z}\right) (113)

where 𝐟cλ,1=𝐟c,1𝐟λ,1{\bf f}^{c\lambda,1}={\bf f}^{c,1}-{\bf f}^{\lambda,1} etc. We rewrite the flux as,

𝐟i+1/2jkcλ,1=ρu¯i+1/2jkλi+1/2jkΔ+xρijk=ρi+1/2jku¯i+1/2jkλi+1/2jkΔ+xρijk\displaystyle{\bf f}^{c\lambda,1}_{i+1/2jk}=\overline{\rho u}_{i+1/2jk}-\lambda_{i+1/2jk}\Delta_{+}^{x}\rho_{ijk}=\rho^{*}_{i+1/2jk}\bar{u}_{i+1/2jk}-\lambda^{*}_{i+1/2jk}\Delta_{+}^{x}\rho_{ijk}

where λ=λρρ¯Δρu¯+ΔuΔρ40\lambda^{*}=\lambda-\frac{\rho^{*}-\bar{\rho}}{\Delta\rho}\bar{u}+\frac{\Delta u\Delta\rho}{4}\geq 0. (Again, we momentarily suppress the indices ijkijk and i+1jki+1jk.) Furthermore, we choose

ρ=ρˇ2ρ^ρ¯,\displaystyle\rho^{*}=\frac{\check{\rho}^{2}}{\sqrt{\hat{\rho}}\sqrt{\bar{\rho}}},

and calculate

|ρρ¯|\displaystyle|\rho^{*}-\bar{\rho}| =|ρˇ2ρ^ρ¯ρ¯|=|ρˇ2ρ¯3/2ρ^|ρ^ρ¯.\displaystyle=\left|\frac{\check{\rho}^{2}}{\sqrt{\hat{\rho}}\sqrt{\bar{\rho}}}-\bar{\rho}\right|=\frac{|\check{\rho}^{2}-\bar{\rho}^{3/2}\sqrt{\hat{\rho}}|}{\sqrt{\hat{\rho}}\sqrt{\bar{\rho}}}.

Since ρˇρ¯\check{\rho}\leq\bar{\rho} and ρ^ρ¯\hat{\rho}\leq\bar{\rho}, we have

|ρρ¯|Δρ|ρˇ2ρ¯2|ρ^ρ¯Δρ=|(Δρ)2|4ρ^ρ¯Δρ|(Δρ)2|4ρ^Δρ=14|Δlogρ|.\displaystyle\frac{|\rho^{*}-\bar{\rho}|}{\Delta\rho}\leq\frac{|\check{\rho}^{2}-\bar{\rho}^{2}|}{\sqrt{\hat{\rho}}\sqrt{\bar{\rho}}\Delta\rho}=\frac{|(\Delta\rho)^{2}|}{4\sqrt{\hat{\rho}}\sqrt{\bar{\rho}}\Delta\rho}\leq\frac{|(\Delta\rho)^{2}|}{4\hat{\rho}\Delta\rho}=\frac{1}{4}|\Delta\log\rho|.

In view of (72), the resulting artificial diffusion coefficient is

λ=λ(ρρ¯Δρu¯Δu4)0.\displaystyle\lambda^{*}=\lambda-(\frac{\rho^{*}-\bar{\rho}}{\Delta\rho}\bar{u}-\frac{\Delta u}{4})\geq 0.

We introduce the notation, νi+1/2jk=νi+1/2jk+(Δ+xxi)λi+1/2jk\nu^{*}_{i+1/2jk}=\nu_{i+1/2jk}+(\Delta_{+}^{x}x_{i})\lambda^{*}_{i+1/2jk} in analogy with (73).

Next, we sum the x-terms of (113) by parts and use the boundary conditions. Furthermore, we choose η\eta such that μ0/2>η>0\mu_{0}/2>\eta>0, and obtain

i=0N𝒮jkx(1ρijk2Δx(ρu¯)i+1/2jk1ρijk2Δx(νi+1/2jkD+xρijk))\displaystyle\sum_{i=0}^{N}{\mathcal{S}}_{jk}^{x}\left(\frac{1}{\rho_{ijk}^{2}}\Delta_{-}^{x}(\rho^{*}\bar{u})_{i+1/2jk}-\frac{1}{\rho_{ijk}^{2}}\Delta_{-}^{x}(\nu^{*}_{i+1/2jk}D_{+}^{x}\rho_{ijk})\right) =\displaystyle=
i=0N1𝒮jkxΔ+xxi(2ρ¯i+1/2jkρˇi+1/2jk4(D+xρijk)ρi+1/2jku¯i+1/2jkνi+1/2jk2ρ¯i+1/2jkρˇi+1/2jk4(D+xρijk)2)\displaystyle\sum_{i=0}^{N-1}{\mathcal{S}}_{jk}^{x}\Delta^{x}_{+}x_{i}\left(\frac{2\bar{\rho}_{i+1/2jk}}{\check{\rho}_{i+1/2jk}^{4}}(D_{+}^{x}\rho_{ijk})\rho^{*}_{i+1/2jk}\bar{u}_{i+1/2jk}-\nu^{*}_{i+1/2jk}\frac{2\bar{\rho}_{i+1/2jk}}{\check{\rho}_{i+1/2jk}^{4}}(D_{+}^{x}\rho_{ijk})^{2}\right) \displaystyle\leq
i=0N1Vijk(2ρ¯i+1/2jkρi+1/2jkρˇi+1/2jk2(D+x1ρijk)u¯i+1/2jkνi+1/2jk2ρ¯i+1/2jk(D+x1ρijk)2)\displaystyle\sum_{i=0}^{N-1}V_{ijk}\left(-\frac{2\bar{\rho}_{i+1/2jk}\rho^{*}_{i+1/2jk}}{\check{\rho}_{i+1/2jk}^{2}}(D_{+}^{x}\frac{1}{\rho_{ijk}})\bar{u}_{i+1/2jk}-\nu^{*}_{i+1/2jk}2\bar{\rho}_{i+1/2jk}(D_{+}^{x}\frac{1}{\rho_{ijk}})^{2}\right) \displaystyle\leq
i=0N1Vijk(η|2ρ¯i+1/2ρi+1/2jkρˇi+1/2jk2D+x1ρijk|2+η1|u¯i+1/2jk|22μ0ρ¯i+1/2jkρ^i+1/2jk|D+x1ρijk|2)\displaystyle\sum_{i=0}^{N-1}V_{ijk}\left(\eta|\frac{2\bar{\rho}_{i+1/2}\rho^{*}_{i+1/2jk}}{\check{\rho}_{i+1/2jk}^{2}}D_{+}^{x}\frac{1}{\rho_{ijk}}|^{2}+\eta^{-1}|\bar{u}_{i+1/2jk}|^{2}-\frac{2\mu_{0}\bar{\rho}_{i+1/2jk}}{\hat{\rho}_{i+1/2jk}}|D_{+}^{x}\frac{1}{\rho_{ijk}}|^{2}\right) ,

where we have used (71) in the last row. Since ρ¯ijkρˇijk>1\frac{\bar{\rho}_{ijk}}{\check{\rho}_{ijk}}>1, and by summing over jkjk, we obtain the bounds

sup0,𝒯ρijk11𝒞,\displaystyle\sup_{0,\mathcal{T}}\|\rho^{-1}_{ijk}\|_{1}\leq\mathcal{C}, 0𝒯+ρijk122dt,𝒞,\displaystyle\quad\int_{0}^{\mathcal{T}}\|\nabla_{+}\rho^{-1}_{ijk}\|_{2}^{2}\,dt,\leq\mathcal{C}, (114)
ρijk1L2(H1),\displaystyle\rho_{ijk}^{-1}\in L^{2}(H^{1}), ρijk1L2(L6).\displaystyle\quad\rho_{ijk}^{-1}\in L^{2}(L^{6}).

(Recall that +\nabla_{+} is short for the finite differences (D+x,D+y,D+z)(D_{+}^{x},D_{+}^{y},D_{+}^{z}).) These estimates correspond to (28)-(29)). Furthermore, we get

TijkL1,\displaystyle\sqrt{T_{ijk}}\in L^{\infty}_{1}, (115)

as in (30).

6.5 Estimates from the continuity equation

Multiply the continuity equation by ρijk\rho_{ijk} and sum in space.

i,j,k=0N12Vijk(ρijk2)t=\displaystyle\sum_{i,j,k=0}^{N}\frac{1}{2}V_{ijk}(\rho^{2}_{ijk})_{t}=
i,j,k=0NρijkVijk(Dx(𝐟c,1)i+1/2jk+Dy(𝐠c,1)ij+1/2k+Dz(𝐡c,1)ijk+1/2)\displaystyle\sum_{i,j,k=0}^{N}-\rho_{ijk}V_{ijk}\left(D_{-}^{x}({\bf f}^{c,1})_{i+1/2jk}+D_{-}^{y}({\bf g}^{c,1})_{ij+1/2k}+D_{-}^{z}({\bf h}^{c,1})_{ijk+1/2}\right)
+i,j,k=0NρijkVijk(Dxν~i+1/2jkD+xρijk+Dyν~ij+1/2kD+yρijk+Dzν~ijk+1/2D+zρijk).\displaystyle+\sum_{i,j,k=0}^{N}\rho_{ijk}V_{ijk}\left(D_{-}^{x}\tilde{\nu}_{i+1/2jk}D_{+}^{x}\rho_{ijk}+D_{-}^{y}\tilde{\nu}_{ij+1/2k}D_{+}^{y}\rho_{ijk}+D_{-}^{z}\tilde{\nu}_{ijk+1/2}D_{+}^{z}\rho_{ijk}\right).

We sum by parts and thanks to the boundary conditions, the boundary terms vanish. (Again, all three directions are handled analogously and we focus on the x-direction and denote the remaining terms by YZYZ)

i,j,k=0N12Vijk(ρijk2)t\displaystyle\sum_{i,j,k=0}^{N}\frac{1}{2}V_{ijk}(\rho^{2}_{ijk})_{t} =i,j,k=0N1,N,N((D+xρijk)ρu¯i+1/2jk(D+xρijk)ν~i+1/2jkD+xρijk)+YZ.\displaystyle=\sum_{i,j,k=0}^{N-1,N,N}\left((D_{+}^{x}\rho_{ijk})\overline{\rho u}_{i+1/2jk}-(D_{+}^{x}\rho_{ijk})\tilde{\nu}_{i+1/2jk}D_{+}^{x}\rho_{ijk}\right)+YZ.

Use ρu¯i+1/2=ρiρiui+ρi+1ρi+1ui+1\overline{\rho u}_{i+1/2}=\sqrt{\rho_{i}}\sqrt{\rho_{i}}u_{i}+\sqrt{\rho_{i+1}}\sqrt{\rho_{i+1}}u_{i+1} which allows us to proceed as in the continuous case. We have L2L^{\infty}_{2} bounds of ρiui\sqrt{\rho_{i}}u_{i}. We need the diffusive term to provide a bound ρiD+xρiL22\sqrt{\rho_{i}}D_{+}^{x}\rho_{i}\in L^{2}_{2} and ρi+1D+xρi\sqrt{\rho_{i+1}}D_{+}^{x}\rho_{i}, which is what we get since ν~i+1/2ρ¯i+1/2\tilde{\nu}_{i+1/2}\sim\bar{\rho}_{i+1/2} and ρ¯i+1/212(ρi+ρi+1)\sqrt{\bar{\rho}_{i+1/2}}\geq\frac{1}{2}(\sqrt{\rho_{i}}+\sqrt{\rho_{i+1}}). We collect the estimates,

ρijkL2,\displaystyle\rho_{ijk}\in L^{\infty}_{2}, (116)
ρ¯i+1/2jkD+xρijkL2.\displaystyle\sqrt{\bar{\rho}_{i+1/2jk}}D_{+}^{x}\rho_{ijk}\in L^{\infty}_{2}.

Next, we test the equation with ρi2\rho_{i}^{2}. The procedure follows the same route as above and we turn directly to the convective terms. In the x-direction, we have

i=0Nρi2Dx𝐟i+1/2cλ,1=i=0N1(D+xρi2)𝐟i+1/2cλ,1,\displaystyle\sum_{i=0}^{N}\rho_{i}^{2}D_{-}^{x}{\bf f}^{c\lambda,1}_{i+1/2}=-\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{2}){\bf f}^{c\lambda,1}_{i+1/2},

where we have dropped the sum over jkjk and suppressed those indices. As above, we denote 𝐟cλ,1=𝐟c,1𝐟λ,1{\bf f}^{c\lambda,1}={\bf f}^{c,1}-{\bf f}^{\lambda,1}. The boundary terms vanish thanks to the boundary conditions. Some further manipulations yield,

i=0N1(D+xρi2)𝐟i+1/2cλ,1\displaystyle\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{2}){\bf f}^{c\lambda,1}_{i+1/2} =\displaystyle=
i=0N1(D+xρi2)(ρi+1/2u¯i+1/2+ρ¯i+1/2ρi+1/2Δ+xρiu¯i+1/2Δ+xρi+Δ+xui4Δ+xρiλi+1/2Δ+xρiRTi+1/2).\displaystyle\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{2})\left(\rho^{*}_{i+1/2}\bar{u}_{i+1/2}+\underbrace{\frac{\bar{\rho}_{i+1/2}-\rho^{*}_{i+1/2}}{\Delta_{+}^{x}\rho_{i}}\bar{u}_{i+1/2}\Delta_{+}^{x}\rho_{i}+\frac{\Delta_{+}^{x}u_{i}}{4}\Delta_{+}^{x}\rho_{i}-\lambda_{i+1/2}\Delta_{+}^{x}\rho_{i}}_{RT_{i+1/2}}\right).

Here, we choose the average:

ρi+1/2=23D+xρi3D+xρi2.\displaystyle\rho^{*}_{i+1/2}=\frac{2}{3}\frac{D_{+}^{x}\rho_{i}^{3}}{D_{+}^{x}\rho_{i}^{2}}.

Noting that (D+xρi2)=2ρ¯i+1/2D+xρi(D_{+}^{x}\rho_{i}^{2})=2\bar{\rho}_{i+1/2}D_{+}^{x}\rho_{i}, the rest terms (RTi+1/2RT_{i+1/2}) are bounded since

λi+1/2|ρ¯i+1/2ρi+1/2Δ+xρiu¯i+1/2+Δ+xui4|.\displaystyle\lambda_{i+1/2}\geq|\frac{\bar{\rho}_{i+1/2}-\rho^{*}_{i+1/2}}{\Delta_{+}^{x}\rho_{i}}\bar{u}_{i+1/2}+\frac{\Delta_{+}^{x}u_{i}}{4}|.

The last inequality follows from the following calculation,

ρ¯i+1/2ρi+1/2Δ+xρi=ρ¯i+1/223ρi+13ρi3ρi+12ρi2Δ+xρi\displaystyle\frac{\bar{\rho}_{i+1/2}-\rho^{*}_{i+1/2}}{\Delta_{+}^{x}\rho_{i}}=\frac{\bar{\rho}_{i+1/2}-\frac{2}{3}\frac{\rho_{i+1}^{3}-\rho_{i}^{3}}{\rho_{i+1}^{2}-\rho_{i}^{2}}}{\Delta_{+}^{x}\rho_{i}} =\displaystyle=
ρ¯i+1/22(ρi+12+ρi2+ρi+1ρi)3(ρi+1+ρi)Δ+xρi=3(ρi+1+ρi)24(ρi+12+ρi2+ρi+1ρi)6(ρi+1+ρi)Δ+xρi\displaystyle\frac{\bar{\rho}_{i+1/2}-\frac{2(\rho_{i+1}^{2}+\rho_{i}^{2}+\rho_{i+1}\rho_{i})}{3(\rho_{i+1}+\rho_{i})}}{\Delta_{+}^{x}\rho_{i}}=\frac{\frac{3(\rho_{i+1}+\rho_{i})^{2}-4(\rho_{i+1}^{2}+\rho_{i}^{2}+\rho_{i+1}\rho_{i})}{6(\rho_{i+1}+\rho_{i})}}{\Delta_{+}^{x}\rho_{i}} =\displaystyle=
ρi+12ρi2+2ρi+1ρi6(ρi+1+ρi)Δ+xρi=(ρi+1ρi)26(ρi+1+ρi)Δ+xρi\displaystyle\frac{-\rho_{i+1}^{2}-\rho_{i}^{2}+2\rho_{i+1}\rho_{i}}{6(\rho_{i+1}+\rho_{i})\Delta_{+}^{x}\rho_{i}}=\frac{-(\rho_{i+1}-\rho_{i})^{2}}{6(\rho_{i+1}+\rho_{i})\Delta_{+}^{x}\rho_{i}} =\displaystyle=
(ρi+1ρi)6(ρi+1+ρi)\displaystyle-\frac{(\rho_{i+1}-\rho_{i})}{6(\rho_{i+1}+\rho_{i})} ,

and (72).

Using (92),

i=0Nρi2Dx𝐟i+1/2cλ,1=i=0N1(D+xρi2)𝐟i+1/2cλ,1=23i=0N1(D+xρi3)u¯i+1/2+(D+xρi2)RTi+1/2,\displaystyle\sum_{i=0}^{N}\rho_{i}^{2}D_{-}^{x}{\bf f}^{c\lambda,1}_{i+1/2}=-\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{2}){\bf f}^{c\lambda,1}_{i+1/2}=-\frac{2}{3}\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{3})\bar{u}_{i+1/2}+(D_{+}^{x}\rho_{i}^{2})RT_{i+1/2},

where RTRT denotes a damping term from the rest terms and artificial diffusion and we have used u0jk=uNjk=0u_{0jk}=u_{Njk}=0 in the summation-by-parts step. We drop the rest terms, as they have the correct sign and recast the sums using the no-slip condition (u0=uN=0u_{0}=u_{N}=0),

23i=0N1(D+xρi3)u¯i+1/2=23i=0N1(D+xρi3)ui+1+ui2=13i=0N1(D+xρi3)ui+1+13i=0N1(D+xρi3)ui\displaystyle\frac{2}{3}\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{3})\bar{u}_{i+1/2}=\frac{2}{3}\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{3})\frac{u_{i+1}+u_{i}}{2}=\frac{1}{3}\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{3})u_{i+1}+\frac{1}{3}\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{3})u_{i}
13i=1N1(D+xρi13)ui+13i=1N1(D+xρi3)ui=13i=1Nρi13Dxui13i=1Nρi3Dxui\displaystyle\frac{1}{3}\sum_{i=1}^{N-1}(D_{+}^{x}\rho_{i-1}^{3})u_{i}+\frac{1}{3}\sum_{i=1}^{N-1}(D_{+}^{x}\rho_{i}^{3})u_{i}=-\frac{1}{3}\sum_{i=1}^{N}\rho_{i-1}^{3}D_{-}^{x}u_{i}-\frac{1}{3}\sum_{i=1}^{N}\rho_{i}^{3}D_{-}^{x}u_{i} =\displaystyle=
23i=1Nρ3¯i1/2Dxui=23i=0N1ρ3¯i+1/2D+xui\displaystyle-\frac{2}{3}\sum_{i=1}^{N}\overline{\rho^{3}}_{i-1/2}D_{-}^{x}u_{i}=-\frac{2}{3}\sum_{i=0}^{N-1}\overline{\rho^{3}}_{i+1/2}D_{+}^{x}u_{i} . (117)

Since ρ¯i+1/2jkD+xuijkL22\bar{\rho}_{i+1/2jk}D_{+}^{x}u_{ijk}\in L^{2}_{2} by (110), we can proceed as in the continuous derivation. First,

ρi+13+ρi3=(ρi+1+ρi)(ρi+12ρiρi+1+ρi2).\displaystyle\rho_{i+1}^{3}+\rho_{i}^{3}=(\rho_{i+1}+\rho_{i})(\rho_{i+1}^{2}-\rho_{i}\rho_{i+1}+\rho_{i}^{2}).

We can now split the term |ρ3¯i+1/2D+xui|η(ρi+12ρiρi+1+ρi2)2+η1((ρi+1+ρi)D+xui)2|\overline{\rho^{3}}_{i+1/2}D_{+}^{x}u_{i}|\leq\eta(\rho_{i+1}^{2}-\rho_{i}\rho_{i+1}+\rho_{i}^{2})^{2}+\eta^{-1}((\rho_{i+1}+\rho_{i})D_{+}^{x}u_{i})^{2} Hence, we need ρi+12ρiρi+1+ρi2L22\rho_{i+1}^{2}-\rho_{i}\rho_{i+1}+\rho_{i}^{2}\in L^{2}_{2}. This follows if ρiL44\rho_{i}\in L^{4}_{4}, which we will get from the diffusive term as in the continuous case.

To this end, we need to recast the diffusive term to bound the gradient of ρijk2\rho_{ijk}^{2}. In the x-direction, we have

i=0Nρi2Dx(νi+1/2D+xρi)=i=0N1(D+xρi2)νi+1/2D+xρi\displaystyle\sum_{i=0}^{N}\rho_{i}^{2}D_{-}^{x}(\nu_{i+1/2}D_{+}^{x}\rho_{i})=-\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{2})\nu_{i+1/2}D_{+}^{x}\rho_{i} =\displaystyle=
i=0N12ρ¯i+1/2(D+xρi)νi+1/2D+ρi\displaystyle-\sum_{i=0}^{N-1}2\bar{\rho}_{i+1/2}(D_{+}^{x}\rho_{i})\nu_{i+1/2}D_{+}\rho_{i} .

Since νi+1/2ρ¯i+1/2\nu_{i+1/2}\sim\bar{\rho}_{i+1/2} and seeing that ρ¯i+1/2D+ρi=12D+ρi2\bar{\rho}_{i+1/2}D_{+}\rho_{i}=\frac{1}{2}D_{+}\rho_{i}^{2}, we obtain the necessary estimate to bound ρiL44\rho_{i}\in L^{4}_{4}. We obtain all the estimates of (33):

ρijkL3,ρijk2L2(H1),ρijkL124,ρijkL66.\displaystyle\rho_{ijk}\in L^{\infty}_{3},\quad\quad\rho_{ijk}^{2}\in L^{2}(H^{1}),\quad\quad\rho_{ijk}\in L^{4}_{12},\quad\quad\rho_{ijk}\in L^{6}_{6}. (118)

Next, we test against ρi3\rho_{i}^{3}. As above, we begin with the convective term (and drop the common jkjk indices),

i=0Nρi3Dx𝐟i+1/2cλ,1=i=0N1D+xρi3𝐟i+1/2cλ,1,\displaystyle\sum_{i=0}^{N}\rho_{i}^{3}D_{-}^{x}{\bf f}^{c\lambda,1}_{i+1/2}=-\sum_{i=0}^{N-1}D_{+}^{x}\rho_{i}^{3}{\bf f}^{c\lambda,1}_{i+1/2},

and rewrite the flux as,

𝐟i+1/2cλ,1=ρi+1/2u¯i+1/2+(ρ¯i+1/2ρi+1/2)u¯i+1/2λi+1/2aΔ+xρi.\displaystyle{\bf f}^{c\lambda,1}_{i+1/2}=\rho^{*}_{i+1/2}\bar{u}_{i+1/2}+(\bar{\rho}_{i+1/2}-\rho^{*}_{i+1/2})\bar{u}_{i+1/2}-\lambda^{a}_{i+1/2}\Delta^{x}_{+}\rho_{i}. (119)

This time we choose,

ρi+1/2=34Δ+xρi4Δ+xρi3=34(ρi+12+ρi2)(ρi+1+ρi)ρi+12+ρi+1ρi+ρi2.\displaystyle\rho^{*}_{i+1/2}=\frac{3}{4}\frac{\Delta^{x}_{+}\rho_{i}^{4}}{\Delta^{x}_{+}\rho_{i}^{3}}=\frac{3}{4}\frac{(\rho_{i+1}^{2}+\rho_{i}^{2})(\rho_{i+1}+\rho_{i})}{\rho_{i+1}^{2}+\rho_{i+1}\rho_{i}+\rho_{i}^{2}}. (120)

Since, by the mean value theorem

Δ+xρi4Δ+xρi3=(ρi+13)4/3(ρi)4/3ρi+13ρi3=43(ρ3)1/3,\displaystyle\frac{\Delta^{x}_{+}\rho_{i}^{4}}{\Delta^{x}_{+}\rho_{i}^{3}}=\frac{(\rho^{3}_{i+1})^{4/3}-(\rho_{i})^{4/3}}{\rho_{i+1}^{3}-\rho_{i}^{3}}=\frac{4}{3}(\rho_{\star}^{3})^{1/3},

for some ρ(ρi,ρi+1)\rho_{\star}\in(\rho_{i},\rho_{i+1}), we conclude that ρi+1/2(ρi,ρi+1)\rho^{*}_{i+1/2}\in(\rho_{i},\rho_{i+1}). (That is, it is a monotone average.)

As before, we must verify that the artificial diffusion term dominates the error term in (119). That is, the following expression must be positive:

λi+1/2aρ¯i+1/2ρi+1/2Δx+ρiu¯i+1/2\displaystyle\lambda^{a}_{i+1/2}-\frac{\bar{\rho}_{i+1/2}-\rho^{*}_{i+1/2}}{\Delta^{+}_{x}\rho_{i}}\bar{u}_{i+1/2} =\displaystyle=
λi+1/2Δ+xui4ρ¯i+1/2ρi+1/2Δ+xρiu¯i+1/2\displaystyle\lambda_{i+1/2}-\frac{\Delta_{+}^{x}u_{i}}{4}-\frac{\bar{\rho}_{i+1/2}-\rho^{*}_{i+1/2}}{\Delta^{x}_{+}\rho_{i}}\bar{u}_{i+1/2} . (121)

Using (120), we calculate

ρ¯i+1/2ρi+1/2=ρ¯i+1/234(ρi+12+ρi2)(ρi+1+ρi)ρi+12+ρi+1ρi+ρi2\displaystyle\bar{\rho}_{i+1/2}-\rho^{*}_{i+1/2}=\bar{\rho}_{i+1/2}-\frac{3}{4}\frac{(\rho_{i+1}^{2}+\rho_{i}^{2})(\rho_{i+1}+\rho_{i})}{\rho_{i+1}^{2}+\rho_{i+1}\rho_{i}+\rho_{i}^{2}} =\displaystyle=
ρ¯i+1/2(132(ρi+12+ρi2)ρi+12+ρi+1ρi+ρi2)=ρ¯i+1/2(ρi+12+ρi+1ρi+ρi232(ρi+12+ρi2)ρi+12+ρi+1ρi+ρi2)\displaystyle\bar{\rho}_{i+1/2}\left(1-\frac{3}{2}\frac{(\rho_{i+1}^{2}+\rho_{i}^{2})}{\rho_{i+1}^{2}+\rho_{i+1}\rho_{i}+\rho_{i}^{2}}\right)=\bar{\rho}_{i+1/2}\left(\frac{\rho_{i+1}^{2}+\rho_{i+1}\rho_{i}+\rho_{i}^{2}-\frac{3}{2}(\rho_{i+1}^{2}+\rho_{i}^{2})}{\rho_{i+1}^{2}+\rho_{i+1}\rho_{i}+\rho_{i}^{2}}\right) =\displaystyle=
ρ¯i+1/22((ρi+1ρi)2ρi+12+ρi+1ρi+ρi2).\displaystyle-\frac{\bar{\rho}_{i+1/2}}{2}\left(\frac{(\rho_{i+1}-\rho_{i})^{2}}{\rho_{i+1}^{2}+\rho_{i+1}\rho_{i}+\rho_{i}^{2}}\right).

Using the last expression and the definition of the artificial diffusion coefficient (72), it is clear that (121) is positive.

Next, we recast convective term. Using (120) and the analogous derivation as (117), we get

i=0N1(D+xρi3)ρi+1/2u¯i+1/2=34i=0N1(D+xρi4)u¯i+1/2=34i=0N1ρ4¯i+1/2D+xui.\displaystyle-\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{3})\rho^{*}_{i+1/2}\bar{u}_{i+1/2}=-\frac{3}{4}\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{4})\bar{u}_{i+1/2}=\frac{3}{4}\sum_{i=0}^{N-1}\overline{\rho^{4}}_{i+1/2}D_{+}^{x}u_{i}.

We proceed as in the previous estimate and factorise ρ4¯i+1/2=ρ¯i+1/2ρ4¯i+1/2ρ¯i+1/2\overline{\rho^{4}}_{i+1/2}=\bar{\rho}_{i+1/2}\frac{\overline{\rho^{4}}_{i+1/2}}{\bar{\rho}_{i+1/2}} and use (110) to bound one part. The other is bounded since ρ4¯i+1/2ρ¯i+1/2\frac{\overline{\rho^{4}}_{i+1/2}}{\bar{\rho}_{i+1/2}} can be majorised by maxj=i,i+1|ρj3|\max_{j=i,i+1}|\rho_{j}^{3}|, which in turn is bounded in L22L^{2}_{2} by (118).

Turning to the diffusive terms, we have

i=0Nρi3D+x𝐟i+1/2d,1=i=0N1(D+xρi3)𝐟i+1/2d,1=i=0N1D+xρi3νi+1/2D+ρi\displaystyle\sum_{i=0}^{N}\rho_{i}^{3}D_{+}^{x}{\bf f}^{d,1}_{i+1/2}=-\sum_{i=0}^{N-1}(D_{+}^{x}\rho_{i}^{3}){\bf f}^{d,1}_{i+1/2}=-\sum_{i=0}^{N-1}D_{+}^{x}\rho_{i}^{3}\nu_{i+1/2}D_{+}\rho_{i} =\displaystyle=
i=0N1(ρi+12+ρiρi+1+ρi2)νi+1/2(D+ρi)2\displaystyle-\sum_{i=0}^{N-1}(\rho^{2}_{i+1}+\rho_{i}\rho_{i+1}+\rho_{i}^{2})\nu_{i+1/2}(D_{+}\rho_{i})^{2} . (122)

We use that νi+1/2ρi+1/2\nu_{i+1/2}\sim\rho_{i+1/2}, which implies that (ρi+12+ρiρi+1+ρi2)νi+1/2(\rho^{2}_{i+1}+\rho_{i}\rho_{i+1}+\rho_{i}^{2})\nu_{i+1/2} is dominating c(max(ρi,ρi+1))c\cdot(\max(\rho_{i},\rho_{i+1})) for some c>0c>0. Hence, (122) dominates D+xρi5/2D_{+}^{x}\rho_{i}^{5/2} since as, by the same argument as above

D+xρi5/2D+xρi=52ρ3/2,\displaystyle\frac{D_{+}^{x}\rho_{i}^{5/2}}{D_{+}^{x}\rho_{i}}=\frac{5}{2}\rho_{\star}^{3/2},

is an average and by the mean-value theorem, ρ(ρi,ρi+1)\rho_{\star}\in(\rho_{i},\rho_{i+1}). Hence, we obtain

ρL4,+ρ5/2L22ρL155,ρL23/323/3.\displaystyle\rho\in L^{\infty}_{4},\quad\nabla_{+}\rho^{5/2}\in L^{2}_{2}\quad\rho\in L^{5}_{15},\quad\rho\in L^{23/3}_{23/3}. (123)

6.6 Renormalised internal energy

The internal energy balance was derived in (91) and is repeated here for convenience,

Dtpijkγ1+(pD𝐯)ijk𝔇ijk\displaystyle D_{t}\frac{p_{ijk}}{\gamma-1}+(pD{\bf v})_{ijk}-{\mathfrak{D}}_{ijk}
+Dx(ρu¯i+1/2jk2(γ1)β^i+1/2jk)+Dy(ρv¯ij+1/2k2(γ1)β^ij+1/2k)+Dy(ρw¯ijk+1/22(γ1)β^ijk+1/2)\displaystyle+D_{-}^{x}(\frac{\overline{\rho u}_{i+1/2jk}}{2(\gamma-1)\hat{\beta}_{i+1/2jk}})+D_{-}^{y}(\frac{\overline{\rho v}_{ij+1/2k}}{2(\gamma-1)\hat{\beta}_{ij+1/2k}})+D_{-}^{y}(\frac{\overline{\rho w}_{ijk+1/2}}{2(\gamma-1)\hat{\beta}_{ijk+1/2}}) =\displaystyle= (124)
Dx(ν~i+1/2jk(𝔭x)i+1/2jkγ1)+Dy(ν~ij+1/2k(𝔭y)ij+1/2kγ1)+\displaystyle D_{-}^{x}(\tilde{\nu}_{i+1/2jk}\frac{({\mathfrak{p}}_{x})_{i+1/2jk}}{\gamma-1})+D_{-}^{y}(\tilde{\nu}_{ij+1/2k}\frac{({\mathfrak{p}}_{y})_{ij+1/2k}}{\gamma-1})+
Dz(ν~ijk+1/2(𝔭z)ijk+1/2γ1)\displaystyle D_{-}^{z}(\tilde{\nu}_{ijk+1/2}\frac{({\mathfrak{p}}_{z})_{ijk+1/2}}{\gamma-1})
+κr(DxD+xTijk4+DyD+yTijk4+DzκrD+zTijk4)\displaystyle+\kappa_{r}\left(D_{-}^{x}D^{x}_{+}T^{4}_{ijk}+D_{-}^{y}D^{y}_{+}T^{4}_{ijk}+D_{-}^{z}\kappa_{r}D^{z}_{+}T^{4}_{ijk}\right) .

As in the continuous case, we multiply by H(Ti)=HiH^{\prime}(T_{i})=H^{\prime}_{i} and sum in space. Since T0T\geq 0, we have

H(T)=(1+T)1ω<1+T,ω>0,\displaystyle H(T)=(1+T)^{1-\omega}<1+T,\,\,\omega>0,
0<H(T)<1,H′′(T)<0,|H′′|<c<1.\displaystyle 0<H^{\prime}(T)<1,\quad H^{\prime\prime}(T)<0,\quad|H^{\prime\prime}|<c<1.

We carry out the calculations for a few of the terms separately and begin with the temporal term of (124):

H(Ti)Dtpijkγ1=cv(ρijkHijk)t+cv(HijkTijkHijk)tρijk.\displaystyle H^{\prime}(T_{i})D_{t}\frac{p_{ijk}}{\gamma-1}=c_{v}(\rho_{ijk}H_{ijk})_{t}+c_{v}(H^{\prime}_{ijk}T_{ijk}-H_{ijk})\partial_{t}\rho_{ijk}.

Next, we multiply by ViV_{i} and sum. Using the continuity equation and the boundary conditions/fluxes, we obtain

ijk=0NVijkH(Tijk)Dtpijkγ1\displaystyle\sum_{ijk=0}^{N}V_{ijk}H^{\prime}(T_{ijk})D_{t}\frac{p_{ijk}}{\gamma-1} =\displaystyle=
ijk=0NVijkcv(ρijkHijk)t+cv(HijkTijkHijk)((𝐟i+1/2jkc,1,𝐠ij+1/2jkc,1,𝐡ijk+1/2c,1)\displaystyle\sum_{ijk=0}^{N}V_{ijk}c_{v}(\rho_{ijk}H_{ijk})_{t}+c_{v}(H^{\prime}_{ijk}T_{ijk}-H_{ijk})(-\nabla_{-}\cdot({\bf f}^{c,1}_{i+1/2jk},{\bf g}^{c,1}_{ij+1/2jk},{\bf h}^{c,1}_{ijk+1/2})
+ijk=0NVijkcv(HijkTijkHijk)((𝐟i+1/2jkd,1,𝐠ij+1/2jkd,1,𝐡ijk+1/2d,1)\displaystyle+\sum_{ijk=0}^{N}V_{ijk}c_{v}(H^{\prime}_{ijk}T_{ijk}-H_{ijk})(\nabla_{-}\cdot({\bf f}^{d,1}_{i+1/2jk},{\bf g}^{d,1}_{ij+1/2jk},{\bf h}^{d,1}_{ijk+1/2}) , (125)

where /+=(D/+x,D/+y,D/+z)\nabla_{-/+}=(D_{-/+}^{x},D_{-/+}^{y},D_{-/+}^{z}).

We adopt the short-hand notation 𝐟i+1/2jkT=ρu¯i+1/2jk2(γ1)β^i+1/2jk{\bf f}^{T}_{i+1/2jk}=\frac{\overline{\rho u}_{i+1/2jk}}{2(\gamma-1)\hat{\beta}_{i+1/2jk}} etc. for the discrete thermal fluxes and define the corresponding discrete renormalised thermal flux as, 𝐟i+1/2jkRT=cvH(Ti+1jk)+H(Tijk)2ρu¯i+1/2jk{\bf f}^{RT}_{i+1/2jk}=c_{v}\frac{H(T_{i+1jk})+H(T_{ijk})}{2}\overline{\rho u}_{i+1/2jk}.

Remark 14.

As above, we adopt the convention that values “outside” the domain are identical with the boundary value. That is, 𝐟1/2jkRT=cvH(T0jk)+H(T1jk)2ρu¯1/2jk=cvH(T0)(ρu)0jk=0{\bf f}^{RT}_{-1/2jk}=c_{v}\frac{H(T_{0jk})+H(T_{-1jk})}{2}\overline{\rho u}_{-1/2jk}=c_{v}H(T_{0})(\rho u)_{0jk}=0.

Multiplying the first convective thermal flux of (124) by VijkH(Tijk)V_{ijk}H^{\prime}(T_{ijk}), yields

VijkH(Tijk)Dx(ρu¯i+1/2jk2(γ1)β^i+1/2jk)=VijkH(Tijk)Dx(𝐟i+1/2jkT)\displaystyle V_{ijk}H^{\prime}(T_{ijk})D_{-}^{x}(\frac{\overline{\rho u}_{i+1/2jk}}{2(\gamma-1)\hat{\beta}_{i+1/2jk}})=V_{ijk}H^{\prime}(T_{ijk})D_{-}^{x}({\bf f}^{T}_{i+1/2jk}) =\displaystyle=
VijkDx𝐟i+1/2jkRT\displaystyle V_{ijk}D_{-}^{x}{\bf f}^{RT}_{i+1/2jk}
VijkcvDxH(Ti+1jk)+H(Tijk)2ρu¯i+1/2jk+VijkH(Tijk)(𝐟i+1/2jkT𝐟i1/2jkT)Δxxi+1/2\displaystyle-V_{ijk}c_{v}D_{-}^{x}\frac{H(T_{i+1jk})+H(T_{ijk})}{2}\overline{\rho u}_{i+1/2jk}+V_{ijk}H^{\prime}(T_{ijk})\frac{({\bf f}^{T}_{i+1/2jk}-{\bf f}^{T}_{i-1/2jk})}{\Delta_{-}^{x}x_{i+1/2}} =\displaystyle=
VijkDx𝐟i+1/2jkRT+Eijkx,\displaystyle V_{ijk}D_{-}^{x}{\bf f}^{RT}_{i+1/2jk}+E^{x}_{ijk}, (126)

where

Eijkx=VijkΔxxi+1/2(cvH(Ti+1jk)+H(Tijk)2H(Tijk)2(γ1)β^i+1/2jk)ρu¯i+1/2jk\displaystyle E^{x}_{ijk}=-\frac{V_{ijk}}{\Delta_{-}^{x}x_{i+1/2}}\left(c_{v}\frac{H(T_{i+1jk})+H(T_{ijk})}{2}-\frac{H^{\prime}(T_{ijk})}{2(\gamma-1)\hat{\beta}_{i+1/2jk}}\right)\overline{\rho u}_{i+1/2jk} (127)
+VijkΔxxi+1/2(cvH(Tijk)+H(Ti1jk)2H(Tijk)2(γ1)β^i1/2jk)ρu¯i1/2jk.\displaystyle+\frac{V_{ijk}}{\Delta_{-}^{x}x_{i+1/2}}\left(c_{v}\frac{H(T_{ijk})+H(T_{i-1jk})}{2}-\frac{H^{\prime}(T_{ijk})}{2(\gamma-1)\hat{\beta}_{i-1/2jk}}\right)\overline{\rho u}_{i-1/2jk}.

We carry out the same operations for the thermal fluxes in the y,zy,z-directions resulting in the analogous definition of Eijky,zE^{y,z}_{ijk}.

Next, we multiply (124) by VijkHijkV_{ijk}H^{\prime}_{ijk}, sum in space and use (125) and (126) (along with the similar expressions obtained in the other two directions) to obtain

ijk=0NVijk(cv(ρijkHijk)t+Dx𝐟i+1/2jkRT+Dx𝐠ij+1/2kRT+Dz𝐡ijk+1/2RT)+ijk=0N(Eijkx+Eijky+Eijkz)\displaystyle\sum_{ijk=0}^{N}V_{ijk}\left(c_{v}(\rho_{ijk}H_{ijk})_{t}+D_{-}^{x}{\bf f}^{RT}_{i+1/2jk}+D_{-}^{x}{\bf g}^{RT}_{ij+1/2k}+D_{-}^{z}{\bf h}^{RT}_{ijk+1/2}\right)+\sum_{ijk=0}^{N}(E^{x}_{ijk}+E^{y}_{ijk}+E^{z}_{ijk})
+ijk=0NVijkcv(HijkTijkHijk)(𝐟i+1/2jkd,1,𝐠ij+1/2jkd,1,𝐡ijk+1/2d,1)\displaystyle+\sum_{ijk=0}^{N}V_{ijk}c_{v}(H^{\prime}_{ijk}T_{ijk}-H_{ijk})\nabla_{-}\cdot({\bf f}^{d,1}_{i+1/2jk},{\bf g}^{d,1}_{ij+1/2jk},{\bf h}^{d,1}_{ijk+1/2})
ijk=0NVijkcv(HijkTijkHijk)(𝐟i+1/2jkc,1,𝐠ij+1/2jkc,1,𝐡ijk+1/2c,1)\displaystyle-\sum_{ijk=0}^{N}V_{ijk}c_{v}(H^{\prime}_{ijk}T_{ijk}-H_{ijk})\nabla_{-}\cdot({\bf f}^{c,1}_{i+1/2jk},{\bf g}^{c,1}_{ij+1/2jk},{\bf h}^{c,1}_{ijk+1/2})
+ijk=0NVijkH(Tijk)((pD𝐯)ijk𝔇ijk)\displaystyle+\sum_{ijk=0}^{N}V_{ijk}H^{\prime}(T_{ijk})((pD{\bf v})_{ijk}-{\mathfrak{D}}_{ijk}) =\displaystyle= (128)
ijk=0NVijkH(Tijk)(ν~i+1/2jk(𝔭x)i+1/2jkγ1,ν~ij+1/2k(𝔭y)ij+1/2kγ1,ν~ijk+1/2(𝔭z)ijk+1/2γ1)\displaystyle\sum_{ijk=0}^{N}V_{ijk}H^{\prime}(T_{ijk})\nabla_{-}\cdot\left(\tilde{\nu}_{i+1/2jk}\frac{({\mathfrak{p}}_{x})_{i+1/2jk}}{\gamma-1},\tilde{\nu}_{ij+1/2k}\frac{({\mathfrak{p}}_{y})_{ij+1/2k}}{\gamma-1},\tilde{\nu}_{ijk+1/2}\frac{({\mathfrak{p}}_{z})_{ijk+1/2}}{\gamma-1}\right)
+ijk=0NVijkH(Tijk)κr(DxD+xTijk4+DyD+yTijk4+DzD+zTijk4).\displaystyle+\sum_{ijk=0}^{N}V_{ijk}H^{\prime}(T_{ijk})\kappa_{r}\left(D_{-}^{x}D^{x}_{+}T^{4}_{ijk}+D_{-}^{y}D^{y}_{+}T^{4}_{ijk}+D_{-}^{z}D^{z}_{+}T^{4}_{ijk}\right).

Combining the error terms (Eijkx,y,z)(E^{x,y,z}_{ijk}) and the convective “c,1” terms lead to,

ijk=0NVijk(cv(ρijkHijk)t+Dx𝐟i+1/2jkRT+Dx𝐠ij+1/2kRT+Dz𝐡ijk+1/2RT)+ijk=0N(ijkx+ijky+ijkz)\displaystyle\sum_{ijk=0}^{N}V_{ijk}\left(c_{v}(\rho_{ijk}H_{ijk})_{t}+D_{-}^{x}{\bf f}^{RT}_{i+1/2jk}+D_{-}^{x}{\bf g}^{RT}_{ij+1/2k}+D_{-}^{z}{\bf h}^{RT}_{ijk+1/2}\right)+\sum_{ijk=0}^{N}({\mathcal{E}}^{x}_{ijk}+{\mathcal{E}}^{y}_{ijk}+{\mathcal{E}}^{z}_{ijk})
+ijk=0NVijkcv(HijkTijkHijk)(𝐟i+1/2jkd,1,𝐠ij+1/2jkd,1,𝐡ijk+1/2d,1)\displaystyle+\sum_{ijk=0}^{N}V_{ijk}c_{v}(H^{\prime}_{ijk}T_{ijk}-H_{ijk})\nabla_{-}\cdot({\bf f}^{d,1}_{i+1/2jk},{\bf g}^{d,1}_{ij+1/2jk},{\bf h}^{d,1}_{ijk+1/2})
+ijk=0NVijkH(Tijk)((pD𝐯)ijk𝔇ijk)\displaystyle+\sum_{ijk=0}^{N}V_{ijk}H^{\prime}(T_{ijk})((pD{\bf v})_{ijk}-{\mathfrak{D}}_{ijk}) =\displaystyle= (129)
ijk=0NVijkH(Tijk)(ν~i+1/2jk(𝔭x)i+1/2jkγ1,ν~ij+1/2k(𝔭y)ij+1/2kγ1),ν~ijk+1/2(𝔭z)ijk+1/2γ1)\displaystyle\sum_{ijk=0}^{N}V_{ijk}H^{\prime}(T_{ijk})\nabla_{-}\cdot\left(\tilde{\nu}_{i+1/2jk}\frac{({\mathfrak{p}}_{x})_{i+1/2jk}}{\gamma-1},\tilde{\nu}_{ij+1/2k}\frac{({\mathfrak{p}}_{y})_{ij+1/2k}}{\gamma-1}),\tilde{\nu}_{ijk+1/2}\frac{({\mathfrak{p}}_{z})_{ijk+1/2}}{\gamma-1}\right)
+ijk=0NVijkH(Tijk)κr(DxD+xTijk4+DyD+yTijk4+DzD+zTijk4),\displaystyle+\sum_{ijk=0}^{N}V_{ijk}H^{\prime}(T_{ijk})\kappa_{r}\left(D_{-}^{x}D^{x}_{+}T^{4}_{ijk}+D_{-}^{y}D^{y}_{+}T^{4}_{ijk}+D_{-}^{z}D^{z}_{+}T^{4}_{ijk}\right),

where the error terms are given by

ijkx=cvVijkΔxxi+1/2(H(Ti+1jk)+H(Tijk)2H(Tijk)(T1)^i+1/2jk(H(Tijk)H(Tijk)Tijk))ρu¯i+1/2jk\displaystyle{\mathcal{E}}^{x}_{ijk}=-\frac{c_{v}V_{ijk}}{\Delta_{-}^{x}x_{i+1/2}}\left(\frac{H(T_{i+1jk})+H(T_{ijk})}{2}-\frac{H^{\prime}(T_{ijk})}{\widehat{(T^{-1})}_{i+1/2jk}}-(H(T_{ijk})-H^{\prime}(T_{ijk})T_{ijk})\right)\overline{\rho u}_{i+1/2jk} (130)
+cvVijkΔxxi+1/2(H(Tijk)+H(Ti1jk)2H(Tijk)T1^i1/2jk(H(Tijk)H(Tijk)Tijk))ρu¯i1/2jk,\displaystyle+\frac{c_{v}V_{ijk}}{\Delta_{-}^{x}x_{i+1/2}}\left(\frac{H(T_{ijk})+H(T_{i-1jk})}{2}-\frac{H^{\prime}(T_{ijk})}{\widehat{T^{-1}}_{i-1/2jk}}-(H(T_{ijk})-H^{\prime}(T_{ijk})T_{ijk})\right)\overline{\rho u}_{i-1/2jk},

and analogously for ijky,z{\mathcal{E}}^{y,z}_{ijk}. Since HH^{\prime} is bounded, we have that

1Δxxi+1/2|H(Ti+1jk)+H(Tijk)2H(Tijk)|C|Dx+Tijk|.\displaystyle\frac{1}{\Delta_{-}^{x}x_{i+1/2}}|\frac{H(T_{i+1jk})+H(T_{ijk})}{2}-H(T_{ijk})|\leq C|D^{+}_{x}T_{ijk}|.

By (62), 1Δxxi+1/2|1T1^i+1/2jkTijk||Dx+Tijk|\frac{1}{\Delta_{-}^{x}x_{i+1/2}}|\frac{1}{\widehat{T^{-1}}_{i+1/2jk}}-T_{ijk}|\leq|D^{+}_{x}T_{ijk}|. We conclude that,

|ijk=0Nijkx|𝒞ijk=0N|(Dx+Tijk)ρu¯i+1/jk|D+T2ρu¯2.\displaystyle|\sum_{ijk=0}^{N}{\mathcal{E}}^{x}_{ijk}|\leq\mathcal{C}\sum_{ijk=0}^{N}|(D_{x}^{+}T_{ijk})\overline{\rho u}_{i+1/jk}|\lesssim\|D_{+}T\|_{2}\|\overline{\rho u}\|_{2}.

Since Dx+TijkL2(H1)D^{+}_{x}T_{ijk}\in L^{2}(H^{1}) by (104) and (107), and ρu¯i+1/2jkL22\overline{\rho u}_{i+1/2jk}\in L^{2}_{2} by (123) and (111), we conclude that the error term |ijkx||\sum{\mathcal{E}}^{x}_{ijk}| is bounded. By repeating the arguments in the y,zy,z-directions, the remaining two error terms are also bounded.

Next, we consider the terms

ijk=0NVijkH(Tijk)((pD𝐯)ijk𝔇ijk),\displaystyle\sum_{ijk=0}^{N}V_{ijk}H^{\prime}(T_{ijk})((pD{\bf v})_{ijk}-{\mathfrak{D}}_{ijk}),

in (129). Noting that HH^{\prime} is bounded, the pressure term is controlled just like in (109) and the viscous terms are bounded by the estimate obtained by (109).

We must also control the diffusive terms in (129). As usual, we present the arguments for the xx-term. Namely, we use

(𝔭x)i+1/2jk\displaystyle({\mathfrak{p}}_{x})_{i+1/2jk} =12β^i+1/2jkD+xρijk+ρ¯i+1/2jk2D+x1βijk,\displaystyle=\frac{1}{2\hat{\beta}_{i+1/2jk}}D_{+}^{x}\rho_{ijk}+\frac{\bar{\rho}_{i+1/2jk}}{2}D_{+}^{x}\frac{1}{\beta_{ijk}},

in the diffusive terms,

ijk=0NVijk(H(Tijk)Dx(ν~i+1/2jk(𝔭x)i+1/2jkγ1)cv(HijkTijkHijk)Dx𝐟i+1/2jkd,1)\displaystyle\sum_{ijk=0}^{N}V_{ijk}\left(H^{\prime}(T_{ijk})D_{-}^{x}\left(\tilde{\nu}_{i+1/2jk}\frac{({\mathfrak{p}}_{x})_{i+1/2jk}}{\gamma-1}\right)-c_{v}(H^{\prime}_{ijk}T_{ijk}-H_{ijk})D_{-}^{x}{\bf f}^{d,1}_{i+1/2jk}\right) =\displaystyle=
ijk=0N1,N,NVijk(D+xH(Tijk))(ν~i+1/2jk1γ1(12β^i+1/2jkD+xρijk+ρ¯i+1/2jk2D+x1βijk))\displaystyle-\sum_{ijk=0}^{N-1,N,N}V_{ijk}(D_{+}^{x}H^{\prime}(T_{ijk}))\left(\tilde{\nu}_{i+1/2jk}\frac{1}{\gamma-1}\left(\frac{1}{2\hat{\beta}_{i+1/2jk}}D_{+}^{x}\rho_{ijk}+\frac{\bar{\rho}_{i+1/2jk}}{2}D_{+}^{x}\frac{1}{\beta_{ijk}}\right)\right)
+ijk=0N1,N,NVijkcv(D+x(HijkTijkHijk))𝐟i+1/2jkd,1\displaystyle+\sum_{ijk=0}^{N-1,N,N}V_{ijk}c_{v}(D_{+}^{x}(H^{\prime}_{ijk}T_{ijk}-H_{ijk})){\bf f}^{d,1}_{i+1/2jk} =\displaystyle=
ijk=0N1,N,NVijk(D+xH(Tijk))(ν~i+1/2jk1γ1(ρ¯i+1/2jk2D+x1βijk))\displaystyle-\sum_{ijk=0}^{N-1,N,N}V_{ijk}(D_{+}^{x}H^{\prime}(T_{ijk}))\left(\tilde{\nu}_{i+1/2jk}\frac{1}{\gamma-1}\left(\frac{\bar{\rho}_{i+1/2jk}}{2}D_{+}^{x}\frac{1}{\beta_{ijk}}\right)\right) (131)
+ijk=0N1,N,NVijkcv((D+x(HijkTijkHijk))D+xH(Tijk)cv(γ1)2β^i+1/2jk)𝐟i+1/2jkd,1\displaystyle+\sum_{ijk=0}^{N-1,N,N}V_{ijk}c_{v}\left((D_{+}^{x}(H^{\prime}_{ijk}T_{ijk}-H_{ijk}))-\frac{D_{+}^{x}H^{\prime}(T_{ijk})}{c_{v}(\gamma-1)2\hat{\beta}_{i+1/2jk}}\right){\bf f}^{d,1}_{i+1/2jk} ,

where we have summed by parts and used the boundary conditions/fluxes.

Using,

1β^i+1/2=Δ+logβiΔβi=2RΔ+logTiΔ+Ti1=2RTiTi+1Δ+logTiΔ+Ti=2RTˇi+1/22T^i+1/2\displaystyle\frac{1}{\hat{\beta}_{i+1/2}}=\frac{\Delta_{+}\log\beta_{i}}{\Delta\beta_{i}}=2R\frac{-\Delta_{+}\log T_{i}}{\Delta_{+}T_{i}^{-1}}=2RT_{i}T_{i+1}\frac{\Delta_{+}\log T_{i}}{\Delta_{+}T_{i}}=2R\frac{\check{T}_{i+1/2}^{2}}{\hat{T}_{i+1/2}}

and cv(γ1)=cv(cpcv1)=Rc_{v}(\gamma-1)=c_{v}(\frac{c_{p}}{c_{v}}-1)=R the last term of (131) can be rewritten as,

D+xH(Ti)cv(γ1)2β^i+1/2jk𝐟i+1/2jkd,1=D+xH(Ti)2Rβ^i+1/2jk𝐟i+1/2jkd,1\displaystyle\frac{D_{+}^{x}H^{\prime}(T_{i})}{c_{v}(\gamma-1)2\hat{\beta}_{i+1/2jk}}{\bf f}^{d,1}_{i+1/2jk}=\frac{D_{+}^{x}H^{\prime}(T_{i})}{2R\hat{\beta}_{i+1/2jk}}{\bf f}^{d,1}_{i+1/2jk} =\displaystyle=
(D+xH(Ti))Tˇi+1/22T^i+1/2𝐟i+1/2jkd,1\displaystyle(D_{+}^{x}H^{\prime}(T_{i}))\frac{\check{T}_{i+1/2}^{2}}{\hat{T}_{i+1/2}}{\bf f}^{d,1}_{i+1/2jk} .

This allows us to rewrite the error term in (131), i.e., the last sum (denoted EE). We make the following manipulations.

Ecv|Tˇi+1/22T^i+1/2D+xH(Tijk)D+x(HijkTijkHijk)||𝐟i+1/2jkd,1|\displaystyle E\leq c_{v}\left|\frac{\check{T}_{i+1/2}^{2}}{\hat{T}_{i+1/2}}D_{+}^{x}H^{\prime}(T_{ijk})-D_{+}^{x}(H^{\prime}_{ijk}T_{ijk}-H_{ijk})\right||{\bf f}^{d,1}_{i+1/2jk}| =\displaystyle=
cv|Tˇi+1/22T^i+1/2D+xHijkH¯i+1/2jkD+xTijkT¯i+1/2jkD+xHijk+D+xHijk||𝐟i+1/2jkd,1|\displaystyle c_{v}\left|\frac{\check{T}_{i+1/2}^{2}}{\hat{T}_{i+1/2}}D_{+}^{x}H^{\prime}_{ijk}-\overline{H^{\prime}}_{i+1/2jk}D_{+}^{x}T_{ijk}-\bar{T}_{i+1/2jk}D_{+}^{x}H^{\prime}_{ijk}+D_{+}^{x}H_{ijk}\right||{\bf f}^{d,1}_{i+1/2jk}| =\displaystyle=
cv|(Tˇi+1/22T^i+1/2T¯i+1/2jk)D+xHijk(H¯i+1/2jkDTHi+1/2jk)D+xTijk||𝐟i+1/2jkd,1|\displaystyle c_{v}\left|\left(\frac{\check{T}_{i+1/2}^{2}}{\hat{T}_{i+1/2}}-\bar{T}_{i+1/2jk}\right)D_{+}^{x}H^{\prime}_{ijk}-(\overline{H^{\prime}}_{i+1/2jk}-D^{T}H_{i+1/2jk})D_{+}^{x}T_{ijk}\right||{\bf f}^{d,1}_{i+1/2jk}| ,

where DTHi+1/2jk=Hi+1jkHijkTi+1jkTijkD^{T}H_{i+1/2jk}=\frac{H_{i+1jk}-H_{ijk}}{T_{i+1jk}-T_{ijk}} denotes the finite difference w.r.t. temperature. By the mean value theorem, we have DTHi+1/2jk=H(θ)D^{T}H_{i+1/2jk}=H^{\prime}(\theta) for some θ[Ti,Ti+1]\theta\in[T_{i},T_{i+1}] and |H(T)|1|H^{\prime}(T)|\leq 1 for all T0T\geq 0. Furthermore,

(Tˇi+1/22T^i+1/2T¯i+1/2jk)D+xHijk\displaystyle(\frac{\check{T}_{i+1/2}^{2}}{\hat{T}_{i+1/2}}-\bar{T}_{i+1/2jk})D_{+}^{x}H^{\prime}_{ijk} =1Δ+xi1/2(Tˇi+1/22T^i+1/2T¯i+1/2jk)Δ+xHijk,\displaystyle=\frac{1}{\Delta_{+}x_{i-1/2}}(\frac{\check{T}_{i+1/2}^{2}}{\hat{T}_{i+1/2}}-\bar{T}_{i+1/2jk})\Delta_{+}^{x}H^{\prime}_{ijk},

and |1Δ+xi1/2(Tˇi+1/22T^i+1/2T¯i+1/2jk)||D+xTijk||\frac{1}{\Delta_{+}x_{i-1/2}}(\frac{\check{T}_{i+1/2}^{2}}{\hat{T}_{i+1/2}}-\bar{T}_{i+1/2jk})|\lesssim|D_{+}^{x}T_{ijk}|. Hence, we conclude that all temperature dependent factors appearing in EE scale as H|D+xTijk|H^{\prime}|D_{+}^{x}T_{ijk}| where HH^{\prime} is bounded. Hence,

E|D+xTijk||𝐟i+1/2jkd,1|,\displaystyle E\lesssim|D_{+}^{x}T_{ijk}||{\bf f}^{d,1}_{i+1/2jk}|,

and to control the last term in (131), we need +TijkL22\nabla_{+}T_{ijk}\in L^{2}_{2} and the fluxes 𝐟d,1,𝐠d,1,𝐡d,1{\bf f}^{d,1},{\bf g}^{d,1},{\bf h}^{d,1} all in L22L^{2}_{2}. The temperature bound is obtained from (107). The diffusive flux (in the x-direction) is given by

𝐟i+1/2jkd,1=(μ0ρ^i+1/2jk+μ1ρ¯i+1/2jk+(Δ+xxijk)λi+1/2jk)D+xρijk.\displaystyle{\bf f}^{d,1}_{i+1/2jk}=(\frac{\mu_{0}}{\hat{\rho}_{i+1/2jk}}+\mu_{1}\bar{\rho}_{i+1/2jk}+(\Delta_{+}^{x}x_{ijk})\lambda_{i+1/2jk})D_{+}^{x}\rho_{ijk}.

The first term is, μ0D+xlogρijk\mu_{0}D_{+}^{x}\log\rho_{ijk} which bounded in L22L^{2}_{2} by (103). The second is in L22L^{2}_{2} by (118). The third is proportional to (R|u¯|+Δu4)Δ+xρijk(R^{*}|\bar{u}|+\frac{\Delta u}{4})\Delta_{+}^{x}\rho_{ijk}, where R=max(12,Δlogρ)R^{*}=\max(\frac{1}{2},\Delta\log\rho). Hence, we must control terms that are majorised by: |u|ρ|u|\rho, logρ|u|ρ\log\rho|u|\rho, and ρΔu\rho\Delta u. By noting that logρ\log\rho is controlled in any LppL^{p}_{p} space by L22L^{2}_{2} estimates of ρ\rho and ρ1\rho^{-1} (c.f. (52)), the estimates (111), (123) and (114) provide the necessary control. (As usual, the other two directions are handled analogously.)

We have now handled the last term of (131) and we turn to the second last,

ijk=0N1,N,NVijk(D+xH(Tijk))(ν~i+1/2jk1γ1(ρ¯i+1/2jk2D+x1βijk)).\displaystyle-\sum_{ijk=0}^{N-1,N,N}V_{ijk}(D_{+}^{x}H^{\prime}(T_{ijk}))\left(\tilde{\nu}_{i+1/2jk}\frac{1}{\gamma-1}\left(\frac{\bar{\rho}_{i+1/2jk}}{2}D_{+}^{x}\frac{1}{\beta_{ijk}}\right)\right). (132)

Using the mean-value theorem again, we have

D+xH(Tijk)=H′′(θi+1/2jk)D+xTijk,θi+1/2jk[Tijk,Ti+1jk].\displaystyle D_{+}^{x}H^{\prime}(T_{ijk})=H^{\prime\prime}(\theta_{i+1/2jk})D_{+}^{x}T_{ijk},\quad\theta_{i+1/2jk}\in[T_{ijk},T_{i+1jk}].

Furthermore, D+x1βijk=2RD+xTijkD_{+}^{x}\frac{1}{\beta_{ijk}}=2RD_{+}^{x}T_{ijk} such that (132) is a negative definite term. (Hence, it makes a negative contribution to the right-hand side of (129), which is what we wish.)

We now have all estimates, to repeat the argument made for the continuous a priori estimate. Hence, we integrate (129) in time and arrive at the desired bound

𝒞0𝒯ijk=0N1,N,NVijkκrD+xHi+1/2jkD+xTijk4dt.\displaystyle\mathcal{C}\geq-\int_{0}^{\mathcal{T}}\sum_{ijk=0}^{N-1,N,N}V_{ijk}\kappa_{r}D_{+}^{x}H^{\prime}_{i+1/2jk}D_{+}^{x}T^{4}_{ijk}\,dt. (133)

Our goal is to mimic the continuous estimate. That is, we wish to demonstrate that

D+Tijk2ωL22.\displaystyle D_{+}T_{ijk}^{2-\omega}\in L^{2}_{2}.

follows from (133).

Dropping the recurring jkjk indices, we use

D+Ti4=(Ti+13+Ti3+Ti2Ti+1+Ti+12Ti)D+Ti,\displaystyle D_{+}T_{i}^{4}=(T_{i+1}^{3}+T_{i}^{3}+T_{i}^{2}T_{i+1}+T_{i+1}^{2}T_{i})D_{+}T_{i},

to rewrite

D+HiDiTi4=Δ+HiΔTi(Ti+13+Ti3+Ti2Ti+1+Ti+12Ti)(D+Ti)2.\displaystyle-D_{+}H^{\prime}_{i}D_{i}T_{i}^{4}=-\frac{\Delta_{+}H^{\prime}_{i}}{\Delta T_{i}}(T_{i+1}^{3}+T_{i}^{3}+T_{i}^{2}T_{i+1}+T_{i+1}^{2}T_{i})(D_{+}T_{i})^{2}. (134)

By the mean-value theorem, we have

Δ+HiΔTi=ω(1ω)(1+θi+1/2)ω1>0,θi+1/2[Ti,Ti+1].\displaystyle-\frac{\Delta_{+}H^{\prime}_{i}}{\Delta T_{i}}=\omega(1-\omega)(1+\theta_{i+1/2})^{-\omega-1}>0,\quad\theta_{i+1/2}\in[T_{i},T_{i+1}].

We recast (134) as

D+HiDiTi4=ω(1ω)(Ti+13+Ti3+Ti2Ti+1+Ti+12Ti)(1+θi+1/2)ω+1(D+Ti)2.\displaystyle-D_{+}H^{\prime}_{i}D_{i}T_{i}^{4}=\omega(1-\omega)\frac{(T_{i+1}^{3}+T_{i}^{3}+T_{i}^{2}T_{i+1}+T_{i+1}^{2}T_{i})}{(1+\theta_{i+1/2})^{\omega+1}}(D_{+}T_{i})^{2}. (135)

Without restriction, assume that TiTi+10T_{i}\geq T_{i+1}\geq 0. Then

(1+θi+1/2)ω+1(1+Ti)ω+1.\displaystyle(1+\theta_{i+1/2})^{\omega+1}\leq(1+T_{i})^{\omega+1}.

Hence,

Ti3(1+θi+1/2)ω+1Ti3(1+Ti)ω+1.\displaystyle\frac{T_{i}^{3}}{(1+\theta_{i+1/2})^{\omega+1}}\geq\frac{T_{i}^{3}}{(1+T_{i})^{\omega+1}}.

Noting that all terms in (135) are positive, we can extract the bound

Ti2ω(D+Ti)2=(Ti1ω/2D+Ti)2.\displaystyle T_{i}^{2-\omega}(D_{+}T_{i})^{2}=(T_{i}^{1-\omega/2}D_{+}T_{i})^{2}.

By the mean-value theorem,

D+Ti2ω/2=(2ω/2)θ1ω/2D+Ti,\displaystyle D_{+}T_{i}^{2-\omega/2}=(2-\omega/2)\theta^{1-\omega/2}D_{+}T_{i}, (136)

for some θ[Ti,Ti+1]\theta\in[T_{i},T_{i+1}]. Since TiθT_{i}\geq\theta, Ti1ω/2D+TiT_{i}^{1-\omega/2}D_{+}T_{i} bounds D+Ti2ω/2D_{+}T_{i}^{2-\omega/2}. Finally, we note that the choice Ti+1<TiT_{i+1}<T_{i} was arbitrary and we can reverse the argument. Hence, we have

D+Ti2ω/2L22\displaystyle D_{+}T_{i}^{2-\omega/2}\in L^{2}_{2}

and, as in the continuous case, Sobolev embeddings and an interpolation inequality ensures that

TiL4+δ4+δ,\displaystyle T_{i}\in L^{4+\delta}_{4+\delta}, (137)

for some δ>0\delta>0.

6.7 Improved estimates

The derivations of the improved estimates are the same as in Section 6.7. We summarise the ones that are necessary to prove convergence:

pijkL2+δ2+δ,δ>0,\displaystyle p_{ijk}\in L^{2+\delta}_{2+\delta},\quad\delta>0, (138)
𝐯ijkL1,𝐯L210/3L310/4,\displaystyle{\bf v}_{ijk}\in L^{\infty}_{1},\quad{\bf v}\in L^{10/3}_{2}\cap L^{10/4}_{3}, (139)
ρijk|𝐯ijk|L2+δ2+δ,δ>0,\displaystyle\quad\rho_{ijk}|{\bf v}_{ijk}|\in L^{2+\delta}_{2+\delta},\quad\delta>0, (140)
(ρ(𝐯l)𝐯m)ijkL1+δ1+δ,δ>0,l,m={1,2,3},\displaystyle(\rho({\bf v}_{l}){\bf v}_{m})_{ijk}\in L^{1+\delta}_{1+\delta},\quad\delta>0,\quad l,m=\{1,2,3\}, (141)
(ρ|𝐯|2𝐯)ijkL1+δ1+δ,δ>0.\displaystyle(\rho|{\bf v}|^{2}{\bf v})_{ijk}\in L^{1+\delta}_{1+\delta},\quad\delta>0. (142)

We also add the following estimate that is a consequence of the bounds (114) and (123):

logρLpp,for any0<p<.\displaystyle\log\rho\in L^{p}_{p},\quad\textrm{for any}\quad 0<p<\infty. (143)

7 Convergence to a weak solution

We begin by introducing some notation. First, we denote discrete grid functions with a subscript hh, ie., ρh\rho_{h} is a field whose ijkijkth component is (ρijk)(\rho_{ijk}). A solution obtained from the numerical scheme is hence denoted 𝐮(t)h=(ρ(t)h,𝐦(t)h,E(t)h){\bf u}(t)_{h}=(\rho(t)_{h},{\bf m}(t)_{h},E(t)_{h}), where (𝐦h)ijk=ρijk(uijk,vijk,wijk)({\bf m}_{h})_{ijk}=\rho_{ijk}(u_{ijk},v_{ijk},w_{ijk}). We will use the convention that the fields are multiplied component-wise such that e.g. (m1)h=ρhuh(m_{1})_{h}=\rho_{h}u_{h} and 𝐦h=ρh𝐯h{\bf m}_{h}=\rho_{h}{\bf v}_{h}. In this notation, Eh=12ρh|𝐯h|2+phγ1E_{h}=\frac{1}{2}\rho_{h}|{\bf v}_{h}|^{2}+\frac{p_{h}}{\gamma-1} with components (Eh)ijk=12ρijk|𝐯ijk|2+pijkγ1(E_{h})_{ijk}=\frac{1}{2}\rho_{ijk}|{\bf v}_{ijk}|^{2}+\frac{p_{ijk}}{\gamma-1}. Furthermore, differences will be collected into fields using the same the short-hand notation, e.g. D+xρhD_{+}^{x}\rho_{h} and λhD+xρh\lambda_{h}D_{+}^{x}\rho_{h}. Finally, it is often necessary to look at the precise structure of terms and then we may say that e.g. ai+1/2jkbijka_{i+1/2jk}b_{ijk} is bounded in some space, by that we mean that the field ahbha_{h}b_{h} is bounded in said space.

7.1 Solvability of the semi-discrete scheme

The first step towards demonstrating the existence of a weak solution, is to establish that the semi-discrete system (66) can be solved in time. Given the strong a priori estimates and that ρ,T>0\rho,T>0 (as have been demonstrated above), we can apply Carathéodory’s existence theorem, to conclude that there exists a unique and continuous solution to the semi-discrete system (66), for 0t𝒯0\leq t\leq\mathcal{T} and for any h>0h>0. Hence, we can generate a sequence of triplets {ρh,𝐯h,Th}\{\rho_{h},{\bf v}_{h},T_{h}\}.

The next step is to show that this triplet converges (up to a subsequence) to a weak solution in the sense of Def. 1 as h0h\rightarrow 0. To that end, we proceed as in the preliminary discussion on compactness in Section 3.7. A difference in the semi-discrete case, is that we must also show that the approximate numerical fluxes are consistent with the mathematical fluxes, i.e., that the error terms vanish. (In the subsequent analysis, we will tacitly draw subsequences where necessary.)

7.2 Convergence a.e.

First, we apply Aubin-Lions lemma (Lemma 2) to the continuity equation. The arguments are initially the same as in Section 3.7, partial sums replacing partial integration. Hence, we begin to verify that the numerical fluxes of the continuity equation reside in L11L^{1}_{1}.

The total flux in the x-direction is given by (68) and (74):

𝐟i+1/2jk1\displaystyle{\bf f}^{1}_{i+1/2jk} =(ρu)i+1jk+(ρu)ijk2ν~i+1/2jkD+xρijk\displaystyle=\frac{(\rho u)_{i+1jk}+(\rho u)_{ijk}}{2}-\tilde{\nu}_{i+1/2jk}D_{+}^{x}\rho_{ijk} (144)
ν~i+1/2jk\displaystyle\tilde{\nu}_{i+1/2jk} =μ0ρ^i+1/2jk+μ1ρi+1jk+ρijk2+(Δ+xx)i+1/2λi+1/2jk\displaystyle=\frac{\mu_{0}}{\hat{\rho}_{i+1/2jk}}+\mu_{1}\frac{\rho_{i+1jk}+\rho_{ijk}}{2}+(\Delta_{+}^{x}x)_{i+1/2}\lambda_{i+1/2jk}
λi+1/2jk\displaystyle\lambda_{i+1/2jk} |Δ+xuijk|+|u¯i+1/2jk||Δ+xlogρijk|.\displaystyle\sim|\Delta_{+}^{x}u_{ijk}|+|\bar{u}_{i+1/2jk}||\Delta_{+}^{x}\log\rho_{ijk}|.

The boundedness of the first two flux terms follows (140).

Next, we consider the artificial diffusion term. Δ+xuh\Delta^{x}_{+}u_{h} is bounded (and vanishes) by (111) in L22L^{2}_{2}. |Δ+xlogρh||u¯h||\Delta_{+}^{x}\log\rho_{h}||\bar{u}_{h}| is bounded in (at least) L22L^{2}_{2} by (139) and by logρh\log\rho_{h} being bounded in an arbitrary LppL^{p}_{p} space (see (143)). Using the bound (103) on the density gradient, we have

limh00𝒯(Δ+xxi+1/2)λi+1/2jkD+xρijk1𝑑t\displaystyle\lim_{h\rightarrow 0}\int_{0}^{\mathcal{T}}\|(\Delta_{+}^{x}x_{i+1/2})\lambda_{i+1/2jk}D_{+}^{x}\rho_{ijk}\|_{1}\,dt \displaystyle\leq
limh0h0𝒯(λi+1/2jk22+D+xρijk22)𝑑t\displaystyle\lim_{h\rightarrow 0}h\int_{0}^{\mathcal{T}}(\|\lambda_{i+1/2jk}\|_{2}^{2}+\|D_{+}^{x}\rho_{ijk}\|^{2}_{2})\,dt 0.\displaystyle\rightarrow 0.

Likewise, 1ρ^i+1/2jkD+xρijk=D+xlogρijk\frac{1}{\hat{\rho}_{i+1/2jk}}D_{+}^{x}\rho_{ijk}=D_{+}^{x}\log\rho_{ijk}, which is bounded in L22L^{2}_{2} by e.g. (103), and (μ1ρi+1+ρi2)D+xρijk\left(\mu_{1}\frac{\rho_{i+1}+\rho_{i}}{2}\right)D_{+}^{x}\rho_{ijk} by (118). Hence, we may conclude, as in Section 3.7 using Aubin-Lions Lemma, that ρijk\rho_{ijk} converges a.e. in the limit h0h\rightarrow 0.

Using the analogous arguments as in Section 3.7, we obtain that ρi,𝐯i,pi,Ti\rho_{i},{\bf v}_{i},p_{i},T_{i} all converges a.e. Likewise, we can use the arguments of Section 3.7 to conclude that the magnitude of the gradients converge a.e. and in particular that,

{|Δ+x,y,zρijk|,|Δ+x,y,zuijk|,|Δ+x,y,zTijk|}0a.e..\displaystyle\{\,|\Delta_{+}^{x,y,z}\rho_{ijk}|,\quad|\Delta_{+}^{x,y,z}u_{ijk}|,\quad|\Delta_{+}^{x,y,z}T_{ijk}|\,\}\rightarrow 0\quad\textrm{a.e.}. (145)

7.3 Weak convergence of fluxes

Before considering the numerical fluxes, we briefly explain the techniques we use and why convergence is a little more delicate than in Section 3.8. First (m1)h=ρhuhρu(m_{1})_{h}=\rho_{h}u_{h}\rightarrow\rho u strongly in L22L^{2}_{2} by the same arguments as laid out in Section 3.8. (We remind that ρhuh\rho_{h}u_{h} is the pointwise multiplication of the two fields, i.e. ρijkuijk\rho_{ijk}u_{ijk}.)

This also ensures that e.g. ρu¯i+1/2jk=ρi+1jkui+1jk+ρijkuijk2\overline{\rho u}_{i+1/2jk}=\frac{\rho_{i+1jk}u_{i+1jk}+\rho_{ijk}u_{ijk}}{2} converges to the correct limit in L22L^{2}_{2}. However, it does not ensure that e.g. ρ¯i+1/2jku¯i+1/2jk\bar{\rho}_{i+1/2jk}\bar{u}_{i+1/2jk} converges to the same limit since,

ρ¯i+1/2jku¯i+1/2jk=ρu¯i+1/2jkΔ+xρijkΔ+xuijk4.\displaystyle\bar{\rho}_{i+1/2jk}\bar{u}_{i+1/2jk}=\overline{\rho u}_{i+1/2jk}-\frac{\Delta_{+}^{x}\rho_{ijk}\Delta_{+}^{x}u_{ijk}}{4}.

Here, ρu¯i+1/2jk\overline{\rho u}_{i+1/2jk} yields the desired limit and the last term is an error term that must vanish in L11L^{1}_{1}. We can see that it does, since D+xρijkD_{+}^{x}\rho_{ijk} reside in L22L^{2}_{2} it follows that Δ+xρijkhD+xρijk\Delta_{+}^{x}\rho_{ijk}\sim hD_{+}^{x}\rho_{ijk} vanishes in L22L^{2}_{2} and the same is true for D+xuijkD_{+}^{x}u_{ijk}.

The error term can also be handled in another way: From the estimates of ρh\rho_{h} and uhu_{h}, we can immediately conclude that ρ¯hu¯h\bar{\rho}_{h}\bar{u}_{h} is bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}, i.e., the sequence is equi-integrable. Since that is also true for (ρu)h(\rho u)_{h}, we conclude that the error term has to reside in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}. Then by a.e. convergence of the magnitude of the gradients, using (145) it follows that that (|Δ+xρ|)h(|\Delta_{+}^{x}\rho|)_{h} as well as (|Δ+xu|h(|\Delta_{+}^{x}u|_{h} vanish a.e. (Note that the last approach does not rely on an explicit bound of the error term via gradient estimates.)

We will employ both methods to demonstrate consistency of the numerical fluxes.

Continuity equation: We need to show that 𝐟h1{\bf f}^{1}_{h} in (144) converges weakly in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}, ϵ>0\epsilon>0. (As usual, the yzyz-fluxes are handled in the same way and omitted.)

As discussed above, ρu¯i+1/2jk\overline{\rho u}_{i+1/2jk} converges strongly in (at least) L22L^{2}_{2}, by (140) and a.e. convergence of ρi\rho_{i} and uiu_{i}. The remaining terms are handled as in Section 3.8: First, we use a.e. convergence of ρ\rho and the estimates in (114), to deduce strong convergence of ρh1\rho^{-1}_{h} in L2+δ2+δL^{2+\delta}_{2+\delta} for some δ>0\delta>0. Then we consider the diffusive xx-flux:

ν~i+1/2jkD+xρijk\displaystyle\tilde{\nu}_{i+1/2jk}D_{+}^{x}\rho_{ijk} =\displaystyle=
((Δ+xxijk)(R|u¯i+1/2jk|+|Δu|4)+μ0ρ^i+1/2jk+μ1ρ¯i+1/2jk)D+xρijk.\displaystyle\left((\Delta_{+}^{x}x_{ijk})(R^{*}|\bar{u}_{i+1/2jk}|+\frac{|\Delta u|}{4})+\frac{\mu_{0}}{\hat{\rho}_{i+1/2jk}}+\mu_{1}\bar{\rho}_{i+1/2jk}\right)D_{+}^{x}\rho_{ijk}.

These terms are proportional to: |Δlogρ||u¯|Δρ,|Δu|Δρ,D+ρ2|\Delta\log\rho||\bar{u}|\Delta\rho,|\Delta u|\Delta\rho,D_{+}\rho^{2} and D+logρD_{+}\log\rho, which are controlled in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} by (123), (103), (111), (143) and (139). Weak convergence of the two diffusion terms in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} is immediate and the artificial diffusion terms vanish since |Δρ|0|\Delta\rho|\rightarrow 0 a.e. by (145) (and the remaining factors are functions of the primary variables that converge a.e.).

Momentum equations: We consider a few typical terms and the remaining can be handled in the same way. We show that all terms are bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}, ϵ>0\epsilon>0, and convergent a.e. to the correct limit.

Convergence of the temporal term follows immediately from the strong convergence of ρh𝐯h\rho_{h}{\bf v}_{h} in L22L^{2}_{2}. (See (140).)

The inviscid velocity terms are all of the form:

u¯i+1/2jk(ρv)¯i+1/2jk=uρv¯i+1/2jk14Δ+xuijkΔ+x(ρv)ijk.\displaystyle\bar{u}_{i+1/2jk}\overline{(\rho v)}_{i+1/2jk}=\overline{u\rho v}_{i+1/2jk}-\frac{1}{4}\Delta_{+}^{x}u_{ijk}\Delta_{+}^{x}(\rho v)_{ijk}.

uρv¯i+1/2jk\overline{u\rho v}_{i+1/2jk} is equi-integrable thanks to ρh𝐯hL22\rho_{h}{\bf v}_{h}\in L^{2}_{2} (c.f. (140)) and 𝐯hL5/25/2{\bf v}_{h}\in L^{5/2}_{5/2}. Pointwise convergence of ρ\rho and 𝐯{\bf v} ensure the correct limit. Noting that u¯i+1/2jk(ρv)¯i+1/2jk\bar{u}_{i+1/2jk}\overline{(\rho v)}_{i+1/2jk} is bounded in the same space by the same estimates, we conclude immediately that the error term 14Δ+xuijkΔ+x(ρv)ijk\frac{1}{4}\Delta_{+}^{x}u_{ijk}\Delta_{+}^{x}(\rho v)_{ijk} is bounded in L1+δ1+δL^{1+\delta}_{1+\delta}. Furthermore, by (145) both differences approach zero a.e. Hence, we conclude that these terms converge weakly in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} for 0<ϵ<δ0<\epsilon<\delta.

Next, we consider the pressure term (suppressing the jkjk indices):

1Rρ¯i+1/22β¯i+1/2=(ρi+1+ρi)221Ti+1+1Ti\displaystyle\frac{1}{R}\frac{\bar{\rho}_{i+1/2}}{2\bar{\beta}_{i+1/2}}=\frac{(\rho_{i+1}+\rho_{i})}{2}\frac{2}{\frac{1}{T_{i+1}}+\frac{1}{T_{i}}} =\displaystyle=
ρi+1Ti+1+ρiTi2ρi(Ti211Ti+1Ti+1)ρi+1(Ti+1211Ti+1Ti+1).\displaystyle\frac{\rho_{i+1}T_{i+1}+\rho_{i}T_{i}}{2}-\rho_{i}(\frac{T_{i}}{2}-\frac{1}{\frac{1}{T_{i}}+\frac{1}{T_{i+1}}})-\rho_{i+1}(\frac{T_{i+1}}{2}-\frac{1}{\frac{1}{T_{i}}+\frac{1}{T_{i+1}}}).

The ρiTi\rho_{i}T_{i} terms converge to pip_{i} in L22L^{2}_{2} thanks to a.e. convergence and (138). Moreover, ρ¯i+1/2\bar{\rho}_{i+1/2} is controlled by (123) and 12β¯i+1/2TiTi+1Ti+Ti+1Ti+1+Ti\frac{1}{2\bar{\beta}_{i+1/2}}\sim\frac{T_{i}T_{i+1}}{T_{i}+T_{i+1}}\lesssim T_{i+1}+T_{i} is controlled by (137). Hence, ρ¯i+1/22β¯i+1/2\frac{\bar{\rho}_{i+1/2}}{2\bar{\beta}_{i+1/2}} is bounded in (a better space than) L22L^{2}_{2}. Therefore, we conclude that the error terms are bounded in L22L^{2}_{2}.

Consider the first error term:

ρi(Ti2(Ti+1TiTi+Ti+1)=ρiTi(12(Ti+1Ti+Ti+1)\displaystyle\rho_{i}(\frac{T_{i}}{2}-(\frac{T_{i+1}T_{i}}{T_{i}+T_{i+1}})=\rho_{i}T_{i}(\frac{1}{2}-(\frac{T_{i+1}}{T_{i}+T_{i+1}}) =\displaystyle=
ρiTi(Ti+Ti+12Ti+12(Ti+Ti+1))=ρiTi(TiTi+12(Ti+Ti+1))\displaystyle\rho_{i}T_{i}(\frac{T_{i}+T_{i+1}-2T_{i+1}}{2(T_{i}+T_{i+1})})=\rho_{i}T_{i}(\frac{T_{i}-T_{i+1}}{2(T_{i}+T_{i+1})})

In the last expression, we note that ρi,Ti,Ti+1\rho_{i},T_{i},T_{i+1} are a.e convergent and ΔTi0\Delta T_{i}\rightarrow 0 a.e. Hence, the error terms vanish.

Turning to the diffusive terms, we must show that

νD+xρ𝐯(ρ¯+1ρ^)(ρ¯D+x𝐯+𝐯¯D+xρ),\displaystyle\nu D_{+}^{x}\rho{\bf v}\sim(\bar{\rho}+\frac{1}{\hat{\rho}})(\bar{\rho}D_{+}^{x}{\bf v}+\bar{\bf v}D_{+}^{x}\rho),

converge weakly to the correct limits. (Here, and frequently below, we have dropped the indices altogether, since the calculations only involve to neighbouring points.) That is to say that the following error terms converge to zero:

|ρ2¯D+x𝐯(ρ¯)2D+x𝐯|,\displaystyle\left|\overline{\rho^{2}}D_{+}^{x}{\bf v}-(\bar{\rho})^{2}D_{+}^{x}{\bf v}\right|,
|12𝐯¯D+xρ2𝐯¯ρ¯D+xρ|,\displaystyle\left|\frac{1}{2}\bar{\bf v}D_{+}^{x}\rho^{2}-\bar{\bf v}\bar{\rho}D_{+}^{x}\rho\right|,
|ρ¯ρ^D+x𝐯D+x𝐯|,\displaystyle\left|\frac{\bar{\rho}}{\hat{\rho}}D_{+}^{x}{\bf v}-D_{+}^{x}{\bf v}\right|,
|1ρ^𝐯¯D+xρ𝐯¯D+xlogρ|.\displaystyle\left|\frac{1}{\hat{\rho}}\bar{\bf v}D_{+}^{x}\rho-\bar{\bf v}D_{+}^{x}\log\rho\right|.

In the first, both terms are bounded in L1+δ1+δL^{1+\delta}_{1+\delta} by the a priori estimates. (We have D𝐯L22D{\bf v}\in L^{2}_{2} and ρi\rho_{i} in a better space than L44L^{4}_{4}.) Hence, also the difference is bounded in the same space. Furthermore, |ρ2¯(ρ¯)2|=12|(Δ+xρ)2||\overline{\rho^{2}}-(\bar{\rho})^{2}|=\frac{1}{2}|(\Delta_{+}^{x}\rho)^{2}| which vanishes a.e. such that it converges strongly in a space better than L44L^{4}_{4}. Hence, the error is a product of a weakly and a strongly convergent sequence, such that the product converges weakly to zero.

The second error term is identically zero, since D+xρi2=2ρ¯i+1/2D+xρiD_{+}^{x}\rho_{i}^{2}=2\bar{\rho}_{i+1/2}D_{+}^{x}\rho_{i} and both terms are bounded in L1+δ1+δL^{1+\delta}_{1+\delta} by (139) and (118).

In the third, we have a direct bound on D+x𝐯L22D_{+}^{x}{\bf v}\in L^{2}_{2}. Furthermore, 1/ρ^L2+δ2+δ1/\hat{\rho}\in L^{2+\delta}_{2+\delta} thanks to the L1L^{\infty}_{1} and L2(H1)L^{2}(H^{1}) bounds of ρi1\rho_{i}^{-1}, and since ρ^i+1/2\hat{\rho}_{i+1/2} is a monotone average bounded below and above by ρi\rho_{i} and ρi+1\rho_{i+1}. As before, we have ρ¯D+x𝐯L22\bar{\rho}D_{+}^{x}{\bf v}\in L^{2}_{2} and therefore ρ¯ρ^D+x𝐯L1+δ1+δ\frac{\bar{\rho}}{\hat{\rho}}D_{+}^{x}{\bf v}\in L^{1+\delta}_{1+\delta}. Hence, the difference is also bounded in L1+δ1+δL^{1+\delta}_{1+\delta}. Seeing that |ρ¯ρ^1|=|ρ¯ρ^ρ^||Δ+xρ|ρ^|\frac{\bar{\rho}}{\hat{\rho}}-1|=|\frac{\bar{\rho}-\hat{\rho}}{\hat{\rho}}|\leq\frac{|\Delta_{+}^{x}\rho|}{\hat{\rho}} approaches zero a.e., we have the desired convergence.

The last term is identically zero, since D+xρρ^=D+xlogρ\frac{D_{+}^{x}\rho}{\hat{\rho}}=D_{+}^{x}\log\rho.

Turning to the artificial diffusion, we consider,

λi+1/2jkΔ+x(ρu)ijk.\displaystyle\lambda_{i+1/2jk}\Delta_{+}^{x}(\rho u)_{ijk}. (146)

This term is bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} since λh|logρh||u|hL2+δ2+δ\lambda_{h}\sim|\log\rho_{h}||u|_{h}\in L^{2+\delta}_{2+\delta} (by (143) and (139)) and by using (140) to bound ρhuh\rho_{h}u_{h}. To see that (146) vanishes a.e., we recast it as,

|λi+1/2jkΔ+x(ρu)ijk|λi+1/2jk(|ρ¯i+1/2jk|Δ+xuijk|+|u¯i+1/2jk||Δ+xρijk|).\displaystyle|\lambda_{i+1/2jk}\Delta_{+}^{x}(\rho u)_{ijk}|\leq\lambda_{i+1/2jk}(|\bar{\rho}_{i+1/2jk}|\Delta_{+}^{x}u_{ijk}|+|\bar{u}_{i+1/2jk}||\Delta_{+}^{x}\rho_{ijk}|).

Since all factors converge a.e., and the differences to zero a.e., the artificial diffusion term is a.e. converging to zero. Hence, it vanishes in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}, for some ϵ>0\epsilon>0.

Total energy:

The equation for total energy is the most difficult one. We consider some representative terms and demonstrate convergence one by one. The remaining terms follow the same pattern.

Time derivative [pijk/(γ1)+12ρijk|𝐯ijk|2p_{ijk}/(\gamma-1)+\frac{1}{2}\rho_{ijk}|{\bf v}_{ijk}|^{2}]: The pressure part converges strongly (at least in L22L^{2}_{2}) thanks to (138) and a.e. convergence of ρh,Th\rho_{h},T_{h}. The kinetic energy is bounded by (141) and converges a.e., and therefore also strongly in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} (0<ϵ<δ0<\epsilon<\delta).

inviscid flux: The x-flux is given by:

𝐟i+1/2jkc,5=\displaystyle{\bf f}^{c,5}_{i+1/2jk}= 12(γ1)β^i+1/2jkρu¯i+1/2jk|𝐯|2¯i+1/2jk2ρu¯i+1/2jk\displaystyle\frac{1}{2(\gamma-1)\hat{\beta}_{i+1/2jk}}\overline{\rho u}_{i+1/2jk}-\frac{\overline{|{\bf v}|^{2}}_{i+1/2jk}}{2}\overline{\rho u}_{i+1/2jk}
+|𝐯|¯i+1/2jk2ρu¯i+1/2jk+pi+1/2jku¯i+1/2jk\displaystyle+\overline{|{\bf v}|}^{2}_{i+1/2jk}\overline{\rho u}_{i+1/2jk}+p_{i+1/2jk}\bar{u}_{i+1/2jk} (147)

Consider the internal-energy flux, IE1=12(γ1)β^i+1/2ρu¯i+1/2IE_{1}=\frac{1}{2(\gamma-1)\hat{\beta}_{i+1/2}}\overline{\rho u}_{i+1/2} (dropping the recurring jkjk indices.). Our aim is to prove consistency with pu¯i+1/2γ1\frac{\overline{pu}_{i+1/2}}{\gamma-1}. That is, we need to show that

E1=|IE1pu¯i+1/2γ1|0.\displaystyle E_{1}=|IE_{1}-\frac{\overline{pu}_{i+1/2}}{\gamma-1}|\rightarrow 0.

Or,

E1|IE1RT¯i+1/2ρu¯i+1/2γ1|+|RT¯i+1/2ρu¯i+1/2γ1pu¯i+1/2γ1|0.\displaystyle E_{1}\leq|IE_{1}-\frac{R\bar{T}_{i+1/2}\overline{\rho u}_{i+1/2}}{\gamma-1}|+|\frac{R\bar{T}_{i+1/2}\overline{\rho u}_{i+1/2}}{\gamma-1}-\frac{\overline{pu}_{i+1/2}}{\gamma-1}|\rightarrow 0.

The available a priori estimates provide bounds on all terms (in at least L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}). Hence, both differences are bounded in the same space. The second one is easily handled by using (63),

|RT¯i+1/2ρu¯i+1/2γ1pu¯i+1/2γ1||Δ+xTi||Δ+x(ρu)i|.\displaystyle|\frac{R\bar{T}_{i+1/2}\overline{\rho u}_{i+1/2}}{\gamma-1}-\frac{\overline{pu}_{i+1/2}}{\gamma-1}|\lesssim|\Delta_{+}^{x}T_{i}||\Delta_{+}^{x}(\rho u)_{i}|.

This approaches zero a.e since |Δ+xTi||\Delta_{+}^{x}T_{i}| does and ρu\rho u converges a.e.

Turning to the first part of the error, we need an estimate of

A=T¯1T1^=T¯1Δ1/TΔlogT1\displaystyle A=\bar{T}-\frac{1}{\widehat{T^{-1}}}=\bar{T}-\frac{1}{\frac{\Delta 1/T}{\Delta\log T^{-1}}} =\displaystyle=
T¯1ΔT1ΔlogT=T¯+ΔlogTΔT1\displaystyle\bar{T}-\frac{1}{\frac{\Delta T^{-1}}{-\Delta\log T}}=\bar{T}+\frac{\Delta\log T}{\Delta T^{-1}} =\displaystyle=
T¯+ΔlogTΔTTˇ2=T¯Tˇ2T^\displaystyle\bar{T}+\frac{\Delta\log T}{-\frac{\Delta T}{\check{T}^{2}}}=\bar{T}-\frac{\check{T}^{2}}{\hat{T}} =T¯T^Tˇ2T^,\displaystyle=\frac{\bar{T}\hat{T}-\check{T}^{2}}{\hat{T}}, (148)

where again we have suppressed the indices for brevity. We introduce T2=T¯T^[T^2,T¯2]T_{*}^{2}=\bar{T}\hat{T}\in[\hat{T}^{2},\bar{T}^{2}], to get,

A=(T+Tˇ)(TTˇ)T^(T+Tˇ)|ΔT|ΔTΔlogT(T+Tˇ)|ΔlogT|.\displaystyle A=\frac{(T_{*}+\check{T})(T_{*}-\check{T})}{\hat{T}}\leq\frac{(T_{*}+\check{T})|\Delta T|}{\frac{\Delta T}{\Delta\log T}}\leq(T_{*}+\check{T})|\Delta\log T|. (149)

Hence,

|IE1RT¯i+1/2ρu¯i+1/2γ1|(T+Tˇ)i+1/2|Δ+logTi|(ρu¯)i+1/2.\displaystyle|IE_{1}-\frac{R\bar{T}_{i+1/2}\overline{\rho u}_{i+1/2}}{\gamma-1}|\sim(T_{*}+\check{T})_{i+1/2}|\Delta_{+}\log T_{i}|(\overline{\rho u})_{i+1/2}.

We already know that this difference is equi-integrable and we conclude that it vanishes since all factors converge a.e, and in particular |ΔT|0|\Delta T|\rightarrow 0. (The term pi+1/2jku¯i+1/2jkp_{i+1/2jk}\bar{u}_{i+1/2jk} in (147) can be handled in the same way.)

Next, we turn to the convective part of the inviscid flux. The kinetic-energy fluxes appearing in (147) are bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} by the same arguments leading to (51) (seeing that both terms are bounded by products of ρ𝐯\rho{\bf v} and |𝐯|2|{\bf v}|^{2}.).

The numerical kinetic-energy flux is compared with the simple average, 12ρ|𝐯|2u¯i+1/2jk\frac{1}{2}\overline{\rho|{\bf v}|^{2}u}_{i+1/2jk}, which is bounded (as in (51)) and converges to the correct limit in the weak formulation thanks to the a.e. convergence of ρ\rho and 𝐯{\bf v}.

The error term that should vanish is thus:

E2=12ρ|𝐯|2u¯i+1/2jk(|𝐯|2¯i+1/2jk2ρu¯i+1/2jk+|𝐯|¯i+1/2jk2ρu¯i+1/2jk).\displaystyle E_{2}=\frac{1}{2}\overline{\rho|{\bf v}|^{2}u}_{i+1/2jk}-\left(-\frac{\overline{|{\bf v}|^{2}}_{i+1/2jk}}{2}\overline{\rho u}_{i+1/2jk}+\overline{|{\bf v}|}^{2}_{i+1/2jk}\overline{\rho u}_{i+1/2jk}\right).

Since both the numerical flux and the target flux are bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon}, the error E2E_{2} is bounded in the same space.

Using (63), we recast the error,

E2=12ρu¯|𝐯|2¯+ΔρuΔ|𝐯|28(|𝐯|2¯2ρu¯+|𝐯|¯2ρu¯).\displaystyle E_{2}=\frac{1}{2}\overline{\rho u}\overline{|{\bf v}|^{2}}+\frac{\Delta\rho u\Delta|{\bf v}|^{2}}{8}-\left(-\frac{\overline{|{\bf v}|^{2}}}{2}\overline{\rho u}+\overline{|{\bf v}|}^{2}\overline{\rho u}\right).

Noting that Δ|𝐯|2=2𝐯¯D𝐯\Delta|{\bf v}|^{2}=2\bar{\bf v}D{\bf v} and |𝐯|2¯|𝐯|¯2=14(|Δ𝐯|)2\overline{|{\bf v}|^{2}}-\overline{|{\bf v}|}^{2}=\frac{1}{4}(|\Delta{\bf v}|)^{2}, the error terms take the form

ΔρuΔ|𝐯|28\displaystyle\frac{\Delta\rho u\Delta|{\bf v}|^{2}}{8} =Δ(ρu)𝐯¯Δ𝐯4,\displaystyle=\frac{\Delta(\rho u)\bar{\bf v}\Delta{\bf v}}{4},
ρu¯(|𝐯|2¯|𝐯|¯2)\displaystyle\overline{\rho u}(\overline{|{\bf v}|^{2}}-\overline{|{\bf v}|}^{2}) =14ρu¯(|Δ𝐯|)2.\displaystyle=\frac{1}{4}\overline{\rho u}(|\Delta{\bf v}|)^{2}.

Both of these terms can be bounded as products of ρ𝐯\rho{\bf v} and |𝐯|2|{\bf v}|^{2} and are thus equi-integrable. We see that they vanish a.e. since they are products of primitive variables and differences.

Diffusive flux:

We begin by considering the kinetic-energy part of the flux in the x-direction:

ν~i+1/2jk(12(D+xρijk|𝐯ijk|2)+(|𝐯|¯i+1/2jk2|𝐯|2¯i+1/2jk)D+xρijk)\displaystyle\tilde{\nu}_{i+1/2jk}\left(\frac{1}{2}(D_{+}^{x}\rho_{ijk}|{\bf v}_{ijk}|^{2})+(\overline{|{\bf v}|}^{2}_{i+1/2jk}-\overline{|{\bf v}|^{2}}_{i+1/2jk})D_{+}^{x}\rho_{ijk}\right) (150)

The last two terms two terms approximate the same quantity and we begin by showing that their sum converges to zero (in L11L^{1}_{1}). Since |𝐯|2¯|𝐯|¯2=14(|Δ𝐯|)2\overline{|{\bf v}|^{2}}-\overline{|{\bf v}|}^{2}=\frac{1}{4}(|\Delta{\bf v}|)^{2}, we get,

ν~(|𝐯|¯2|𝐯|2¯)D+xρ=ν~4(|Δ+x𝐯|)2D+xρ=hν~4(|D+x𝐯|)2Δ+xρ\displaystyle\tilde{\nu}(\overline{|{\bf v}|}^{2}-\overline{|{\bf v}|^{2}})D_{+}^{x}\rho=\frac{\tilde{\nu}}{4}(|\Delta_{+}^{x}{\bf v}|)^{2}D_{+}^{x}\rho=h\frac{\tilde{\nu}}{4}(|D_{+}^{x}{\bf v}|)^{2}\Delta_{+}^{x}\rho

Using (112), we conclude that the term vanishes in L11L^{1}_{1}. (Note that the hh-factor also makes it equi-integrable.)

Next, we turn to the part of (150) that should converge to the correct average as given in Def. 1. That is, the term

ν~i+1/2jk12D+xρijk|𝐯ijk|2.\displaystyle\tilde{\nu}_{i+1/2jk}\frac{1}{2}D_{+}^{x}\rho_{ijk}|{\bf v}_{ijk}|^{2}. (151)

First, we handle the terms arising from the ρ¯\bar{\rho} dependence of ν~\tilde{\nu}. We also limit the analysis to one velocity component as the others can be handled analogously. We have (when suppressing the indices),

ρ¯D(ρu2)=ρ¯(ρ¯Du2+u2¯Dρ).\displaystyle\bar{\rho}D(\rho u^{2})=\bar{\rho}(\bar{\rho}Du^{2}+\overline{u^{2}}D\rho). (152)

The first term of (152):

ρ¯ρ¯Du2=ρ¯ρ¯u¯Du=(ρ¯u¯)(ρ¯Du)=(ρu¯ΔρΔu4)ρ¯Du.\displaystyle\bar{\rho}\bar{\rho}Du^{2}=\bar{\rho}\bar{\rho}\bar{u}Du=(\bar{\rho}\bar{u})(\bar{\rho}Du)=(\overline{\rho u}-\frac{\Delta\rho\Delta u}{4})\bar{\rho}Du. (153)

We use that ρ¯DuL22\bar{\rho}Du\in L^{2}_{2} and ρu¯L2+δ2+δ\overline{\rho u}\in L^{2+\delta}_{2+\delta}. We need the error term to vanish. To this end we note that ΔρΔu=h(ρ1Duρ2Du)\Delta\rho\Delta u=h(\rho_{1}Du-\rho_{2}Du) and ρ1,2Du\rho_{1,2}Du is bounded in L22L^{2}_{2}. Furthermore, the hh-factor makes (153) both equi-integrable and ensures that it vanishes in L11L^{1}_{1}.

Furthermore, ρu¯ρ¯Du\overline{\rho u}\bar{\rho}Du approximates ρ2u¯Du\overline{\rho^{2}u}Du up to an error term,

Δ(ρu)ΔρDu=u¯(Δρ)2Du+ρ¯(Δρ)(Δu)Du.\displaystyle\Delta(\rho u)\Delta\rho Du=\bar{u}(\Delta\rho)^{2}Du+\bar{\rho}(\Delta\rho)(\Delta u)Du.

The last term is the same as in (153) and handled in the same way. The second last is rewritten as:

u¯(Δρ)2Du=u¯Δρ(ΔρDu)=(Δ(ρu)(Δu)ρ¯)(ΔρDu).\displaystyle\bar{u}(\Delta\rho)^{2}Du=\bar{u}\Delta\rho(\Delta\rho Du)=(\Delta(\rho u)-(\Delta u)\bar{\rho})(\Delta\rho Du).

The Δ(ρu)(ΔρDu)\Delta(\rho u)(\Delta\rho Du) is equi-integrable by ρ¯DuL22\bar{\rho}Du\in L^{2}_{2} and ρuL2+δ2+δ\rho u\in L^{2+\delta}_{2+\delta} (see 140) and (110)). It vanishes a.e. since |(Δρu)(ΔρDu)||ρu||Δρ||Du||(\Delta\rho u)(\Delta\rho Du)|\lesssim|\rho u||\Delta\rho||Du| where |Du||Du| and ρu\rho u converges a.e and |Δρ|0|\Delta\rho|\rightarrow 0 a.e. Finally, the (ρ¯Δu)(ΔρDu)(\bar{\rho}\Delta u)(\Delta\rho Du) is the same as a previously handled term.

The second term of (152) is u2¯ρ¯Dρ=12u2¯Dρ2=12D(ρ2u2)ρ2¯u¯Du\overline{u^{2}}\bar{\rho}D\rho=\frac{1}{2}\overline{u^{2}}D\rho^{2}=\frac{1}{2}D(\rho^{2}u^{2})-\overline{\rho^{2}}\bar{u}Du. (This is the numerical counterpart of (56).) In view of (56) and by using (63), the ρ2¯u¯Du\overline{\rho^{2}}\bar{u}Du-term results in an error term,

(ρ2¯u¯ρ2u¯)Du=Δρ2Δu4Du=12(ΔρΔu)(ρ¯Du).\displaystyle-(\overline{\rho^{2}}\bar{u}-\overline{\rho^{2}u})Du=\frac{\Delta\rho^{2}\Delta u}{4}Du=\frac{1}{2}(\Delta\rho\Delta u)(\bar{\rho}Du).

We have already handled a term of this form and know that it vanishes.

The above considerations show that the ρ¯\bar{\rho}-dependent part of ν~\tilde{\nu} in the kinetic-energy flux can be recast as

14D(ρ2u2)12ρ2u¯Du+error terms,\displaystyle\frac{1}{4}D(\rho^{2}u^{2})-\frac{1}{2}\overline{\rho^{2}u}Du+\textrm{error terms},

where the error terms all vanish. The remaining part converges to the correct limit by the same arguments as in Section 3.8. In short, in the term 14D(ρ2u2)\frac{1}{4}D(\rho^{2}u^{2}) we move the difference to the test function which results in a momentum term that is equi-integrable and a.e. convergent. Moreover, recasting the second term as

ρ2u¯Du=12(ρ12u1+ρ22u2)Du\displaystyle\overline{\rho^{2}u}Du=\frac{1}{2}\left(\rho^{2}_{1}u_{1}+\rho^{2}_{2}u_{2}\right)Du =\displaystyle=
12((ρ1u1)(ρ1Du)+(ρ2u2)(ρ2))Du\displaystyle\frac{1}{2}\left((\rho_{1}u_{1})(\rho_{1}Du)+(\rho_{2}u_{2})(\rho_{2})\right)Du ,

(1,21,2 denotes the two points appearing in the average and differences) and using the same estimates as above, shows that it is equi-integrable. To demonstrate convergence to the correct limit, we argue that ρ¯Du\bar{\rho}Du converges weakly to the correct limit as in Section 3.8. Strong convergence of momentum, completes the argument.

Second, we handle the terms arising from the (ρ^)1(\hat{\rho})^{-1} dependence of ν~\tilde{\nu} in (151). Namely,

1ρ^D(ρu2)=1ρ^(u2¯Dρ+2ρ¯u¯Du)=u2¯Dlogρ+2ρ¯ρ^u¯Du\displaystyle\frac{1}{\hat{\rho}}D(\rho u^{2})=\frac{1}{\hat{\rho}}\left(\overline{u^{2}}D\rho+2\bar{\rho}\bar{u}Du\right)=\overline{u^{2}}D\log\rho+2\frac{\bar{\rho}}{\hat{\rho}}\bar{u}Du =\displaystyle=
D(u2logρ)2logρ¯u¯Du+2ρ¯ρ^u¯Du.\displaystyle D(u^{2}\log\rho)-2\overline{\log\rho}\bar{u}Du+2\frac{\bar{\rho}}{\hat{\rho}}\bar{u}Du.

The difference in the D(u2logρ)D(u^{2}\log\rho) is moved to the test function. It is bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} and consistent with the corresponding term in Def. 1. In the second, u¯Du\bar{u}Du is bounded in L1+ϵ1+ϵL^{1+\epsilon}_{1+\epsilon} and weakly convergent (by the analogous argument as ρ𝐯\rho\nabla{\bf v} is weakly convergent. See end of Section 3.7.) Since logρ\log\rho can be bounded in any LppL^{p}_{p} space, and is a.e. convergent, it is also strongly convergent in a sufficiently good space. This ensures convergence to the right limit of ulogρ¯Du\overline{u\log\rho}Du. The error term |logρ¯u¯Duulogρ¯Du||\overline{\log\rho}\bar{u}Du-\overline{u\log\rho}Du| vanishes, since it is majorised by |Δu||Δlogρ||Du||\Delta u||\Delta\log\rho||Du|. This is equi-integrable thanks to u¯DuL1+ϵ1+ϵ\bar{u}Du\in L^{1+\epsilon}_{1+\epsilon} and the LppL^{p}_{p} estimates of logρ\log\rho. It approaches zero a.e, since all factors are a.e. convergent and |Δlogρ|0|\Delta\log\rho|\rightarrow 0.

Finally, the last term should converge to u¯Du\bar{u}Du, which is weakly convergent in L11L^{1}_{1}. Hence, we must show that the following error term vanishes:

|(1ρ¯ρ^)u¯Du|=|ρ^ρ¯ρ^u¯Du|\displaystyle|(1-\frac{\bar{\rho}}{\hat{\rho}})\bar{u}Du|=|\frac{\hat{\rho}-\bar{\rho}}{\hat{\rho}}\bar{u}Du| \displaystyle\leq
|Δρρ^u¯Du|\displaystyle|\frac{\Delta\rho}{\hat{\rho}}\bar{u}Du| =|(Δlogρ)u¯Du|.\displaystyle=|(\Delta\log\rho)\bar{u}Du|.

We have already shown that such a term is equi-integrable and vanishes.

Turning to the artificial diffusion part of (151), we need that

hλD(ρu2)h(|u|+|Δlogρ||u|+|Δu|)D(ρu2),\displaystyle h\lambda D(\rho u^{2})\sim h(|u|+|\Delta\log\rho||u|+|\Delta u|)D(\rho u^{2}),

vanishes in L11L^{1}_{1}. We begin with

h|Δu|D(ρu2)=|Δu|Δ(ρu2).\displaystyle h|\Delta u|D(\rho u^{2})=|\Delta u|\Delta(\rho u^{2}). (154)

Let the subscripts 1,21,2 denote the two points on which the flux term is based. Then,

(u1u2)(ρ1u12ρ2u22)=ρ1u13ρ2u23ρ1u12u2ρ2u22u1\displaystyle(u_{1}-u_{2})(\rho_{1}u_{1}^{2}-\rho_{2}u_{2}^{2})=\rho_{1}u_{1}^{3}-\rho_{2}u_{2}^{3}-\rho_{1}u_{1}^{2}u_{2}-\rho_{2}u_{2}^{2}u_{1} =\displaystyle=
ρ1u13ρ2u23ρ1u1(u1u2)ρ2u2(u2u1)\displaystyle\rho_{1}u_{1}^{3}-\rho_{2}u_{2}^{3}-\rho_{1}u_{1}(u_{1}u_{2})-\rho_{2}u_{2}(u_{2}u_{1}) \displaystyle\leq
ρ1u13+ρ2u23ρ1u1(u12+u22)ρ2u2(u22+u12),\displaystyle\rho_{1}u_{1}^{3}+\rho_{2}u_{2}^{3}-\rho_{1}u_{1}(u_{1}^{2}+u_{2}^{2})-\rho_{2}u_{2}(u_{2}^{2}+u_{1}^{2}),

shows that (154) can be majorised by ρu¯u2¯\overline{\rho u}\overline{u^{2}}, which can be split in the same way leading to the bound (142). Hence, it is equi-integrable. Moreover, |Δu|0|\Delta u|\rightarrow 0 a.e. ensures that (154) vanishes a.e.

The same argument applies directly to h|u|D(ρu2)h|u|D(\rho u^{2}).

This leaves us with the artificial diffusion term,

|Δlogρ||u¯|Δ(ρu2).\displaystyle|\Delta\log\rho||\bar{u}|\Delta(\rho u^{2}). (155)

As previously shown, |u¯|Δ(ρu2)L1+ϵ1+ϵ|\bar{u}|\Delta(\rho u^{2})\in L^{1+\epsilon}_{1+\epsilon} and Δlogρ\Delta\log\rho can be bounded in a sufficiently high LppL^{p}_{p} space to obtain equi-integrability of the error term (155). Moreover, (155) vanishes a.e. since Δ(ρu2)=(Δρ)u2¯+2u¯ρ¯Δu\Delta(\rho u^{2})=(\Delta\rho)\overline{u^{2}}+2\bar{u}\bar{\rho}\Delta u and the differences vanish.

Diffusive flux, internal energy [ν~i+1/2jk(𝔭x)i+1/2jkγ1\tilde{\nu}_{i+1/2jk}\frac{({\mathfrak{p}}_{x})_{i+1/2jk}}{\gamma-1}]:

ν~i+1/2jk(𝔭x)i+1/2jk\displaystyle\tilde{\nu}_{i+1/2jk}({\mathfrak{p}}_{x})_{i+1/2jk} =ν~i+1/2jk(12β^i+1/2jkD+xρijk+ρ¯i+1/2jk2D+x1βijk)\displaystyle=\tilde{\nu}_{i+1/2jk}\left(\frac{1}{2\hat{\beta}_{i+1/2jk}}D_{+}^{x}\rho_{ijk}+\frac{\bar{\rho}_{i+1/2jk}}{2}D_{+}^{x}\frac{1}{\beta_{ijk}}\right) (156)

The “target terms” that, up to some constants, should be approximated are,

ρTDρ,ρ2DT,TDlogρ,DT.\displaystyle\rho TD\rho,\quad\rho^{2}DT,\quad TD\log\rho,\quad DT.

We begin with the terms associated with ν~ρ¯\tilde{\nu}\sim\bar{\rho}. They generate error terms of the form:

(ρ¯2β^RρT¯)Dρ\displaystyle\left(\frac{\bar{\rho}}{2\hat{\beta}}-\overline{R\rho T}\right)D\rho , (157)
(ρ¯2ρ2¯)DT\displaystyle\left(\bar{\rho}^{2}-\overline{\rho^{2}}\right)DT =14(ρ1ρ2)2DT.\displaystyle=-\frac{1}{4}\left(\rho_{1}-\rho_{2}\right)^{2}DT. (158)

The second term, (158), is bounded by ρL44\rho\in L^{4}_{4} and DTL22DT\in L^{2}_{2}. Furthermore, DTDT converges weakly and (Δρ)2(\Delta\rho)^{2} strongly since |Δρ|0|\Delta\rho|\rightarrow 0 a.e. Hence, the error term (158) vanishes in L11L^{1}_{1}. The term ρ2¯DT\overline{\rho^{2}}DT converges to the correct limit thanks to the strong convergence of ρ\rho and weak convergence of DTDT.

Turning to (157), we make the following manipulations,

(ρ¯2β^RρT¯)=(ρ¯2β^Rρ¯T¯+RΔρΔT4)=(ρ¯(12β^RT¯)+RΔρΔT4)\displaystyle\left(\frac{\bar{\rho}}{2\hat{\beta}}-\overline{R\rho T}\right)=\left(\frac{\bar{\rho}}{2\hat{\beta}}-R\bar{\rho}\bar{T}+R\frac{\Delta\rho\Delta T}{4}\right)=\left(\bar{\rho}\left(\frac{1}{2\hat{\beta}}-R\bar{T}\right)+R\frac{\Delta\rho\Delta T}{4}\right) (159)

Inserting (159) in (157), we see that we need to control ΔρΔTDρ\Delta\rho\Delta TD\rho, or equivalently, (Δρ)2DT(\Delta\rho)^{2}DT. This is the same as term as (158), which we have already handled. This leaves us with ρ¯(12β^RT¯)Dρ\bar{\rho}\left(\frac{1}{2\hat{\beta}}-R\bar{T}\right)D\rho (from (159) and (157)). To handle this term, we use (148) and (149), to obtain

|12Rβ^T¯|T¯|ΔlogT|.\displaystyle|\frac{1}{2R\hat{\beta}}-\bar{T}|\lesssim\bar{T}|\Delta\log T|.

Hence, we must control ρ¯(Dρ)T¯|ΔlogT|\bar{\rho}(D\rho)\bar{T}|\Delta\log T|. ρ¯Dρ=12Dρ2L22\bar{\rho}D\rho=\frac{1}{2}D\rho^{2}\in L^{2}_{2} which converges weakly. We need strong convergence (to zero) of |T¯ΔlogT||\bar{T}\Delta\log T| in a better space than L22L^{2}_{2}. We note that it converges a.e. to zero and only need the bound. This follows by interpolating the bounds T3/2DlogTL22T^{3/2}D\log T\in L^{2}_{2} (see (108)) and DlogTL22D\log T\in L^{2}_{2} (see (104)) such that TDlogTL22TD\log T\in L^{2}_{2}. This implies that |T¯ΔlogT|L2+δ2+δ|\bar{T}\Delta\log T|\in L^{2+\delta}_{2+\delta}, δ>0\delta>0. Finally, the target entity RρT¯Dρ\overline{R\rho T}D\rho converges to the correct limit thanks to the strong convergence of pL2+δ2+δp\in L^{2+\delta}_{2+\delta} (following from (138) and a.e. convergence) and the weak convergence of DρL22D\rho\in L^{2}_{2}.

Next, we consider error terms of (156) for ν~1/ρ^\tilde{\nu}\sim 1/\hat{\rho}:

|(12β^T¯)Dρρ^|=|(12β^T¯)Dlogρ|\displaystyle\left|\left(\frac{1}{2\hat{\beta}}-\overline{T}\right)\frac{D\rho}{\hat{\rho}}\right|=\left|\left(\frac{1}{2\hat{\beta}}-\overline{T}\right)D\log\rho\right| T¯|ΔlogT||Dlogρ|\displaystyle\lesssim\bar{T}|\Delta\log T||D\log\rho|
|(1ρ¯ρ^)DT||(|Δρ|ρ^)DT|\displaystyle\left|\left(1-\frac{\bar{\rho}}{\hat{\rho}}\right)DT\right|\leq\left|\left(\frac{|\Delta\rho|}{\hat{\rho}}\right)DT\right| |Δlogρ||DT||Dlogρ||ΔT|.\displaystyle\leq|\Delta\log\rho||DT|\sim|D\log\rho||\Delta T|.

The first is handled in the same way as above, only now we are using that DlogρL22D\log\rho\in L^{2}_{2}. The second is handled by the strong bound on TT and a.e. convergence, implying strong convergence of |ΔT||\Delta T| (to zero), and DlogρL22D\log\rho\in L^{2}_{2}. Here, the target is T¯Dlogρ\bar{T}D\log\rho and it is easy to verify convergence to the correct limit.

The error terms of (156) for ν~h((12+|Δlogρ|)|u¯|+Δu)\tilde{\nu}\sim h((\frac{1}{2}+|\Delta\log\rho|)|\bar{u}|+\Delta u) (artificial diffusion):

h((12+|Δlogρ|)|u¯|+|Δu|)(Dρβ^+ρ¯DT)\displaystyle h((\frac{1}{2}+|\Delta\log\rho|)|\bar{u}|+|\Delta u|)\left(\frac{D\rho}{\hat{\beta}}+\bar{\rho}DT\right) =\displaystyle=
((12+|Δlogρ|)|u¯|+|Δu|)(Δρβ^+ρ¯ΔT)\displaystyle((\frac{1}{2}+|\Delta\log\rho|)|\bar{u}|+|\Delta u|)\left(\frac{\Delta\rho}{\hat{\beta}}+\bar{\rho}\Delta T\right)

The strong bounds imply that

(Δρβ^+ρ¯ΔT)\displaystyle\left(\frac{\Delta\rho}{\hat{\beta}}+\bar{\rho}\Delta T\right) L2+ϵ2+ϵand\displaystyle\in L^{2+\epsilon}_{2+\epsilon}\quad\textrm{and}
(12+|Δlogρ|)|u¯|+|Δu|\displaystyle(\frac{1}{2}+|\Delta\log\rho|)|\bar{u}|+|\Delta u| L22.\displaystyle\in L^{2}_{2}.

(Note that ΔTL44\Delta T\in L^{4}_{4} and 1/β^L441/\hat{\beta}\in L^{4}_{4}.) This gives equi-integrability. The a.e. vanishing differences ensures that the error terms disappear.

Radiation diffusion [κrDxD+xTijk4\kappa_{r}D_{-}^{x}D_{+}^{x}T^{4}_{ijk}]: This term is straightforwardly handled by moving the differences to the test function. This results in a Th4T^{4}_{h} term, which is strongly convergent thanks to (137) and the a.e convergence of temperature.

Entropy inequality: The global entropy diffusivity condition in Def. 1 follows directly from (101), the strong bounds on the solution and the positive definiteness of the diffusive terms appearing in the left-hand side of (101).

8 Concluding remarks

The main result of this paper (Theorem 1) is the existence of weak entropy solutions to the alternative Navier-Stokes system (4). These weak solutions ensure positivity of temperature and density, except possibly on a set of Lebesgue measure zero. To the best of our knowledge, such results are not available for the standard Navier-Stokes-Fourier system.

The weak solutions are obtained as the limits of solutions to a finite volume scheme. We make some further remarks on the scheme:

  • As presented, the scheme is formally first-order accurate for smooth solutions (on regular grids). This is due to the first-order artificial-diffusion coefficent, namely the “1/21/2” appearing in (72), which results in an “upwind”-type diffusion. As this is only needed in the entropy estimate (see (99)), we can replace λ\lambda in (72) by

    λi+1/2jk\displaystyle\lambda_{i+1/2jk} =|u¯i+1/2jk|Ri+1/2jk#+|Δ+xuijk|4\displaystyle=|\bar{u}_{i+1/2jk}|R^{\#}_{i+1/2jk}+\frac{|\Delta_{+}^{x}u_{ijk}|}{4}
    Ri+1/2jk#\displaystyle R^{\#}_{i+1/2jk} =max(|ρ¯i+1/2jkρ^i+1/2jkΔ+xρijk|,|Δ+xlogρijk|)\displaystyle=\max\left(\left|\frac{\bar{\rho}_{i+1/2jk}-\hat{\rho}_{i+1/2jk}}{\Delta_{+}^{x}\rho_{ijk}}\right|,|\Delta_{+}^{x}\log\rho_{ijk}|\right)

    The first entry in the maximum is 𝒪(|Δ+xρijk|)\mathcal{O}(|\Delta_{+}^{x}\rho_{ijk}|). (Formally, this implies second-order accuracy.) Since R#R^{\#} is dominated by RR^{*} (c.f. (99)), and converges to zero a.e., it does not affect the convergence proof.

    However, in order to prevent that the finite arithmetic pollutes the numerical solutions, the first entry of R#R^{\#} requires a well-conditioned numerical approximation. This should be obtainable in the same way that the approximation of the log mean was derived (see Appendix B of [IR09]), but we leave this as future work.

  • Unfortunately, the generalisation to high-order accuracy (three or higher for smooth solutions), discovered in [FC13] is effectively ruled out, since it requires the use of entropy-conservative fluxes, which in turn appears incompatible with the current approach.

  • The scheme is trivially generelisable to the unstructured finite-volume framework developed by Eymard et al. ([EGH97]) for Voronoi control volumes and two-point fluxes. The convergence proof holds in this case as well, thanks to the summation-by-parts property of such schemes.

  • The extension of this theory to allow some form of far-field boundary condition to close the domain for external flows, appears to be non-trivial. The ideas used in [Svä21] may be a possible route to this end.

Future work, also includes investigating if (4), like many other fluid systems, has some weak-strong uniqueness property.

9 Acknowledgements

I am very grateful to Prof. Josef Málek whose help has enabled me to write this article.

References

  • [Bre05a] H. Brenner. Kinematics of volume transport. Physica A, 349:11, 2005.
  • [Bre05b] H. Brenner. Navier-Stokes revisited. Physica A, 349:60, 2005.
  • [Cha13] P. Chandrashekar. Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations. Comm. Comp. Phys., 14(5):1252–1256, 2013.
  • [DS21] Vít Dolejší and Magnus Svärd. Numerical study of two models for viscous compressible fluid flows. J. Comp. Phys, 427:110068, 2021.
  • [EGH97] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, volume 7, pages 713–1020. Elsevier, 1997.
  • [Eva10] L. C. Evans. Partial Differential Equations, 2nd ed. American Mathematical Society, 2010.
  • [FC13] T. C. Fisher and M. H. Carpenter. High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains. J. Comput. Phys., 252:518–557, 2013.
  • [FN17] E. Feireisl and A. Novotný. Singular limits in thermodynamics of viscous fluids, 2nd Ed. Birkhäuser, 2017.
  • [FV10] Eduard Feireisl and Alexis Vasseur. New Perspectives in Fluid Dynamics: Mathematical Analysis of a Model Proposed by Howard Brenner, pages 153–179. Birkhäuser Basel, Basel, 2010.
  • [GSH21] G.J. Gassner, M. Svärd, and F.J. Hindenlang. Stability issues of entropy-stable and/or split-form high-order schemes. to appear in Journal of Scientific Computing, 2021.
  • [IR09] F. Ismail and P.L. Roe. Affordable, entropy-consistent euler flux functions II: Entropy production at shocks. J. Comp. Phys., pages 5410–5436, 2009.
  • [NFAE03] J. Nordström, K. Forsberg, C. Adamsson, and P. Eliasson. Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Applied Numerical Mathematics, 45(4):453–473, June 2003.
  • [RDO+19] M. H. L. Reddy, S. K. Dadzie, R. Ocone, M. K. Borg, and J. M. Reese. Recasting Navier-Stokes equations. Journ. Phys. Comm., 3(10):1–25, 2019.
  • [SDP21] M. Sayyari, L. Dalcin, and M. Parsani. Development and analysis of entropy stable no-slip wall boundary conditions for the Eulerian model for viscous and heat conducting compressible flows. SN PDEA, 2, 2021.
  • [Sim86] J. Simon. Compact sets in the space Lp(O,T;B)L^{p}(O,T;B). Annali di Matematica Pura ed Applicata, 146:65–96, 1986.
  • [SN14] M. Svärd and J. Nordström. Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys., 268:17–38, 2014.
  • [Sto45] G. G. Stokes. On the theories of internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society, 8:287–305, 1845.
  • [Svä18] M. Svärd. A new Eulerian model for viscous and heat conducting compressible flows. Physica A, 506:350–375, 2018.
  • [Svä21] M. Svärd. Entropy stable boundary conditions for the Euler equations. J. Comput. Phys., 426:1–17, 2021.

APPENDIX

I Prerequisites

An elementary identity: urpq=urprq\|u^{r}\|_{p}^{q}=\|u\|_{rp}^{rq}.

A list of standard inequalities:

  • Cauchy-Schwarz inequality: If u,vL2u,v\in L^{2} then <u,v>u2v2<u,v>\leq\|u\|_{2}\|v\|_{2}.

  • Hölder’s inequality: uv1upvq\|uv\|_{1}\leq\|u\|_{p}\|v\|_{q} where (p,q)[1,)(p,q)\in[1,\infty) are Hölder conjugates, 1/p+1/q=11/p+1/q=1.

  • A generalisation of Hölder’s inequality (see [FN17]): uvrupvq\|uv\|_{r}\leq\|u\|_{p}\|v\|_{q} where (p,q,r)[1,)(p,q,r)\in[1,\infty) are Hölder conjugates, 1/p+1/q=1/r1/p+1/q=1/r.

  • Minkowski (triangle) inequality: u+vpup+vp\|u+v\|_{p}\leq\|u\|_{p}+\|v\|_{p} for p[1,)p\in[1,\infty).

  • Young’s inequality: For a,ba,b\in\mathcal{R}, abapp+bqqa\cdot b\leq\frac{a^{p}}{p}+\frac{b^{q}}{q}, where (p,q)(p,q) is the Hölder conjugate.

  • Young’s inequality is often combined with Hölder in the following way:

    uv1ϵupϵ1vq(ϵu)pp+(ϵ1v)qq.\displaystyle\|uv\|_{1}\leq\epsilon\|u\|_{p}\epsilon^{-1}\|v\|_{q}\leq\frac{(\epsilon\|u\|)^{p}}{p}+\frac{(\epsilon^{-1}\|v\|)^{q}}{q}. (160)
  • Ladyzhenskaya’s inequality in 3-D: u4𝒞u21/4u23/4\|u\|_{4}\leq\mathcal{C}\|u\|^{1/4}_{2}\|\nabla u\|_{2}^{3/4}.

  • Nash’ inequality in n\mathcal{R}^{n}: u21+2/n𝒞u12/nDu2\|u\|_{2}^{1+2/n}\leq\mathcal{C}\|u\|^{2/n}_{1}\|Du\|_{2}.

  • Sobolev embedding (in 3-D): u6𝒞(u2+u2)\|u\|_{6}\leq\mathcal{C}(\|u\|_{2}+\|\nabla u\|_{2}).

  • Riesz-Thorin (interpolation) inequality:

    urup1θuqθ\displaystyle\|u\|_{r}\leq\|u\|_{p}^{1-\theta}\|u\|^{\theta}_{q}
    1r=1θp+θq,0<θ<.1\displaystyle\frac{1}{r}=\frac{1-\theta}{p}+\frac{\theta}{q},\quad 0<\theta<.1

    An important special case of this inequality is the “10/3”-rule,

    u10/310/3u24/3u62\displaystyle\|u\|^{10/3}_{10/3}\leq\|u\|^{4/3}_{2}\|u\|^{2}_{6} (161)

    which is often used in combination with Sobolev embedding. Some other special cases:

    u20/320/3\displaystyle\|u\|^{20/3}_{20/3} u12/3u186\displaystyle\leq\|u\|^{2/3}_{1}\|u\|^{6}_{18} (162)
    u33\displaystyle\|u\|^{3}_{3} u13/5u612/5\displaystyle\leq\|u\|^{3/5}_{1}\|u\|^{12/5}_{6} (163)
    u66\displaystyle\|u\|^{6}_{6} u32/3u124\displaystyle\leq\|u\|^{2/3}_{3}\|u\|^{4}_{12} (164)
  • A special case of the Gagliardo-Nirenberg inequality:

    u3𝒞u21/2u21/2\displaystyle\|u\|_{3}\leq\mathcal{C}\|u\|_{2}^{1/2}\|\nabla u\|_{2}^{1/2}

A generalised Poincare inequality:

Theorem 2.

Let 1p1\leq p\leq\infty, 0<Γ<0<\Gamma<\infty, V0>0V_{0}>0 and let ΩN\Omega\subset\mathcal{R}^{N} be a bounded Lipschitz domain. Then there exists a positive constant c=(p,Γ,V0)c=(p,\Gamma,V_{0}) such that,

vW1,p(Ω)c[vLp(Ω;RN)+(V|v|Γ𝑑𝐱)1Γ]\displaystyle\|v\|_{W^{1,p}}(\Omega)\leq c\left[\|\nabla v\|_{L^{p}(\Omega;R^{N})}+(\int_{V}|v|^{\Gamma}d{\bf x})^{\frac{1}{\Gamma}}\right] (165)

for any measurable VΩV\subset\Omega, |V|>V0|V|>V_{0} and any vW1,p(Ω)v\in W^{1,p}(\Omega).

Proof.

This is Theorem 11.20 in [FN17], where it is also proved. ∎

Aubin-Lions Lemma (see e.g. [Sim86]):

Lemma 2.

For Banach spaces XBYX\subset B\subset Y where the embedding of XX in BB is compact and BB in YY is continuous. Let U={u|uLp(0,𝒯;X)andutLq(0,𝒯;Y)}U=\{u|u\in L^{p}(0,\mathcal{T};X)\,\textrm{and}\,u_{t}\in L^{q}(0,\mathcal{T};Y)\} where 1p,q<1\leq p,q<\infty. Then UU is compactly embedded in Lp(0,𝒯;B)L^{p}(0,\mathcal{T};B).

The following Lemma for weakly and strongly converging sequences is a standard result.

Lemma 3.

Let 1<p<1<p<\infty and 1/p+1/q=11/p+1/q=1 and ΩN\Omega\subset\mathcal{R}^{N}. If

unuinLp(Ω),\displaystyle u_{n}\rightharpoonup u\quad\textrm{in}\quad L^{p}(\Omega),
vnvinLq(Ω),\displaystyle v_{n}\rightarrow v\quad\textrm{in}\quad L^{q}(\Omega),

then

unvnuvinL1(Ω),\displaystyle u_{n}v_{n}\rightharpoonup uv\quad\textrm{in}\quad L^{1}(\Omega),

The following Lemma, that we state without proof, is a consequence of Vitali’s Convergence Theorem:

Lemma 4.

Let ΩN\Omega\subset\mathcal{R}^{N} be bounded. If unuu_{n}\rightarrow u a.e. in Ω\Omega and unu_{n} is bounded in Lp(Ω)L^{p}(\Omega), p>1p>1. Then, unuu_{n}\rightarrow u in LrL^{r} for all 1r<p1\leq r<p.

The next theorem is found in [Eva10] (Appendix D, Theorem 3).

Theorem 3.

Let unLp(Ω)u_{n}\in L^{p}(\Omega), 1<p<1<p<\infty be a uniformly bounded sequence. Then, there is a subsequence (still denoted {un}\{u_{n}\}) and a function uLp(Ω)u\in L^{p}(\Omega), such that unuu_{n}\rightharpoonup u in Lp(Ω)L^{p}(\Omega).