This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An unfitted finite element method for two-phase Stokes problems with slip between phases

M. Olshanskii1, A. Quaini1 and Q. Sun1

1Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston TX 77204
[email protected]; [email protected]; [email protected]


Abstract

We present an isoparametric unfitted finite element approach of the CutFEM or Nitsche-XFEM family for the simulation of two-phase Stokes problems with slip between phases. For the unfitted generalized Taylor–Hood finite element pair 𝐏k+1Pk\mathbf{P}_{k+1}-P_{k}, k1k\geq 1, we show an inf-sup stability property with a stability constant that is independent of the viscosity ratio, slip coefficient, position of the interface with respect to the background mesh and, of course, mesh size. In addition, we prove stability and optimal error estimates that follow from this inf-sup property. We provide numerical results in two and three dimensions to corroborate the theoretical findings and demonstrate the robustness of our approach with respect to the contrast in viscosity, slip coefficient value, and position of the interface relative to the fixed computational mesh.

Keywords: XFEM, cutFEM, two-phase flow, Stokes problem, finite elements

1 Introduction

The finite element approximation of two-phase problems involving immiscible fluids features several challenging aspects. The first challenge is the presence of a sharp interface between the two phases, that might move and undergo topological changes. A second critical aspect is the presence of surface tension forces that create a jump in the pressure field at the interface. In addition, if one accounts for slip between phases [25], a jump in the velocity field at the interface needs to be captured as well. Finally, lack of robustness may arise when there is a high contrast in fluid densities and viscosities. Tackling all of these challenges has motivated a large body of literature.

One possible way to categorize numerical methods proposed in the literature is to distinguish between diffusive interface and sharp interface approaches. Phase field methods (e.g., [4, 28]) belong to the first category, while level set methods (e.g., [42]), and conservative level set methods (e.g., [38]) belong to the second. Diffusive interface methods introduce a smoothing region around the interface between the two phases to vary smoothly, instead of sharply, from one phase to the other and usually apply the surface tension forces over the entire smoothing region. The major limitation of diffusive interface methods lies in the need to resolve the smoothing region with an adequate number of elements, which results in high computational costs. Sharp interface methods require less elements to resolve the interface between phases. Thus, we will restrict our attention to sharp interface approaches, which can be further divided into geometrically fitted and unfitted methods.

In fitted methods, the discretization mesh is fitted to the computational interface. Perhaps, Arbitrary Lagrangian Eulerian (ALE) methods [16] are the best known fitted methods. In case of a moving interface, ALE methods deform the mesh to track the interface. While ALE methods are known to be very robust for small interface displacement, complex re-meshing procedures are needed for large deformations and topological changes. Certain variations of the method, like the extended ALE [5, 6], successfully deal with large interface displacement while keeping the same mesh connectivity. The price to pay for such improvement is a higher computational cost. Unfitted methods allow the sharp interface to cut through the elements of a fixed background grid. Their main advantage is the relative ease of handling time-dependent domains, implicitly defined interfaces, and problems with strong geometric deformations [8]. The immersed finite element method (e.g., [3]) and front-tracking methods (e.g., [43]) are examples of unfitted approaches. Applied in the finite element framework, these methods require an enrichment of the elements intersected by the interface in order to capture jumps and kinks in the solution. One complex aspect of these methods is the need for tailored stabilization. Popular unfitted methods that embed discontinuities in finite element solvers are XFEM [36] and CutFEM [12]. XFEM enriches the finite element shape functions by the Partition-of-Unity method. To learn more about XFEM applied to two-phase flow problems, we refer the reader to [14, 19, 21, 30, 40]. CutFEM is a variation of XFEM, also called Nitsche-XFEM [23]. CutFEM uses overlapping fictitious domains in combination with ghost penalty stabilization [11] to enrich and stabilize the solution. See [15, 18, 24, 27, 35, 45] for the application of CutFEM or Nitsche-XFEM to approximate two-phase flows. Finally, recently proposed unfitted methods are a hybrid high-order method [10] and an enriched finite element/level-set method [26].

In this paper, we study an isoparametric unfitted finite element approach of the CutFEM or Nitsche-XFEM family for the simulation of two-phase Stokes problems with slip between phases. All the numerical works cited above consider the homogeneous model of two-phase flow, i.e. no slip is assumed between the phases. This assumption is appropriate in three cases: one of the phases has a relatively small volume, one phase forms drops of minute size, or one phase (representing the continuous medium in which droplets are immersed) has high speed [25]. In all other cases, slip between the phases has to be accounted for. In fact, experimentally it is observed that the velocity of the two phases can be significantly different, also depending on the flow pattern (e.g., plug flow, annular flow, bubble flow, stratified flow, slug flow, churn flow) [29]. A variation of our unfitted approach has been analyzed for the homogeneous two-phase Stokes problem in [13], where robust estimates were proved for individual terms of the Cauchy stress tensor. In the present paper, the analysis is done in the energy norm, allowing a possible slip between phases. In particular, we show an inf-sup stability property of the unfitted generalized Taylor–Hood finite element pair 𝐏k+1Pk\mathbf{P}_{k+1}-P_{k}, k1k\geq 1, with a stability constant that is independent of the viscosity ratio, slip coefficient, position of the interface with respect to the background mesh, and of course mesh size. This inf-sup property implies stability and optimal error estimates for the unfitted finite element method under consideration, which are also shown. For more details on the isoparametric unfitted finite element, we refer to [31, 32, 34].

Two-phase flow problems with high contrast for the viscosity are known to be especially challenging. While some authors test different viscosity ratios but do not comment on the effects of high contrast on the numerics [15, 26, 46], others show or prove that their method is robust for all viscosity ratios [27, 10, 30, 37, 45]. In other cases, numerical parameters, like the penalty parameters, are adjusted to take into account large differences in the viscosity [18]. Through analysis and a series of numerical tests in two and three dimensions, we demonstrate that our approach is robust not only with respect to the contrast in viscosity, but also with respect to the slip coefficient value and the position of the interface relative to the fixed computational mesh.

For all the simulations in this paper, we have used NGsolve [1, 20], a high performance multiphysics finite element software with a Python interface, and add-on library ngsxfem [2], which enables the use of unfitted finite element technologies.

The remainder of the paper is organizes as follows. In Section 2, we introduce the strong and weak formulations of the two-phase Stokes problem with slip between phases, together with the finite element discretization. We present a stability result in Sec. 3, while in Sec. 4 we prove optimal order convergence for the proposed unfitted finite element approach. Numerical results in 2 and 3 dimensions are shown in Sec. 5. Concluding remarks are provided in Sec. 6.

2 Problem definition

We consider a fixed domain Ωd\Omega\subset\mathbb{R}^{d}, with d=2,3d=2,3, filled with two immiscible, viscous, and incompressible fluids separated by an interface Γ\Gamma. In this study, we assume Γ\Gamma does not evolve with time although our approach is designed to handle interface evolution. We assume that Γ\Gamma is closed and sufficiently smooth. Interface Γ\Gamma separates Ω\Omega into two subdomains (phases) Ω+\Omega^{+} and Ω=ΩΩ+¯\Omega^{-}=\Omega\setminus\overline{\Omega^{+}}. We assume Ω\Omega^{-} to be completely internal, i.e. ΩΩ=\partial\Omega^{-}\cap\partial\Omega=\emptyset. See Fig. 1. Let 𝐧±\mathbf{n}^{\pm} be the outward unit normal for Ω±\Omega^{\pm} and 𝐧\mathbf{n} the outward pointing unit normal on Γ\Gamma. It holds that 𝐧=𝐧\mathbf{n}^{-}=\mathbf{n} and 𝐧+=𝐧\mathbf{n}^{+}=-\mathbf{n} at Γ\Gamma.

Refer to caption
Figure 1: Illustration of a domain Ω\Omega in 2\mathbb{R}^{2}. On part of the boundary (dashed line) a Neumann boundary condition is imposed, while on the remaining part of the boundary (solid line with three bars) a Dirichlet boundary condition is enforced.

Let 𝐮±:Ω±d\mathbf{u}^{\pm}:\Omega^{\pm}\to\mathbb{R}^{d} and p±:Ω±p^{\pm}:\Omega^{\pm}\to\mathbb{R} denote the fluid velocity and pressure, respectively. We assume that the motion of the fluids occupying subdomains Ω±\Omega^{\pm} can be modeled by the Stokes equations

𝝈±\displaystyle-\nabla\cdot\boldsymbol{\sigma}^{\pm} =𝐟±\displaystyle=\mathbf{f}^{\pm} in Ω±,\displaystyle\text{ in }\Omega^{\pm}, (2.1)
𝐮±\displaystyle\nabla\cdot{}\mathbf{u}^{\pm} =0\displaystyle=0 in Ω±,\displaystyle\text{ in }\Omega^{\pm}, (2.2)

endowed with boundary conditions

𝐮+\displaystyle\mathbf{u}^{+} =𝐠,\displaystyle=\mathbf{g}, on ΩD,\displaystyle\text{ on }\partial\Omega_{D}, (2.3)
𝝈+𝐧+\displaystyle\boldsymbol{\sigma}^{+}\mathbf{n}^{+} =𝐠N\displaystyle=\mathbf{g}_{N} on ΩN.\displaystyle\text{ on }\partial\Omega_{N}. (2.4)

Here, ΩD¯ΩN¯=Ω¯\overline{\partial\Omega_{D}}\cup\overline{\partial\Omega_{N}}=\overline{\partial\Omega} and ΩDΩN=\partial\Omega_{D}\cap\partial\Omega_{N}=\emptyset. See Fig. 1. In (2.1), 𝐟±\mathbf{f}^{\pm} are external the body forces and 𝝈±\boldsymbol{\sigma}^{\pm} are the Cauchy stress tensors. For Newtonian fluids, the Cauchy stress tensor has the following expression:

𝝈±=p±𝐈+2μ±𝐃(𝐮±),𝐃(𝐮±)=12(𝐮±+(𝐮±)T) in Ω±,\displaystyle\boldsymbol{\sigma}^{\pm}=-p^{\pm}\mathbf{I}+2\mu_{\pm}\mathbf{D}(\mathbf{u}^{\pm}),\quad\mathbf{D}(\mathbf{u}^{\pm})=\frac{1}{2}(\nabla\mathbf{u}^{\pm}+(\nabla\mathbf{u}^{\pm})^{T})\text{ in }\Omega^{\pm},

where constants μ±\mu_{\pm} represent the fluid dynamic viscosities. Finally, 𝐠\mathbf{g} and 𝐠N\mathbf{g}_{N} in (2.3) and (2.4) are given.

Subproblems (2.1)-(2.2) are coupled at the interface Γ\Gamma. The conservation of mass requires the balance of normal fluxes on Γ\Gamma:

𝐮+𝐧\displaystyle\mathbf{u}^{+}\cdot\mathbf{n} =𝐮𝐧 on Γ.\displaystyle=\mathbf{u}^{-}\cdot\mathbf{n}\qquad\text{ on }\Gamma. (2.5)

This is the first coupling condition. We are interested in modelling slip with friction between the two phases. Thus, we consider the following additional coupling conditions:

𝐏𝝈+𝐧\displaystyle\mathbf{P}{\boldsymbol{\sigma}^{+}\mathbf{n}} =f(𝐏𝐮+𝐏𝐮)\displaystyle=f(\mathbf{P}\mathbf{u}^{+}-\mathbf{P}\mathbf{u}^{-}) on Γ,\displaystyle\text{ on }\Gamma, (2.6)
𝐏𝝈𝐧\displaystyle\mathbf{P}{\boldsymbol{\sigma}^{-}\mathbf{n}} =f(𝐏𝐮𝐏𝐮+)\displaystyle=-f(\mathbf{P}\mathbf{u}^{-}-\mathbf{P}\mathbf{u}^{+}) on Γ,\displaystyle\text{ on }\Gamma, (2.7)

where ff is a constant that can be seen as a slip coefficient and 𝐏=𝐏(𝐱)=I𝐧(𝐱)𝐧(𝐱)T\mathbf{P}=\mathbf{P}(\mathbf{x})=I-\mathbf{n}(\mathbf{x})\mathbf{n}(\mathbf{x})^{T} for 𝐱Γ\mathbf{x}\in\Gamma is the orthogonal projection onto the tangent plane. Finally, the jump of the normal stress across Γ\Gamma is given by:

[𝐧T𝝈𝐧]+\displaystyle[\mathbf{n}^{T}\boldsymbol{\sigma}\mathbf{n}]^{-}_{+} =σκ on Γ,\displaystyle=\sigma\kappa\qquad\text{ on }\Gamma, (2.8)

where σ\sigma is the surface tension coefficient and κ\kappa is the double mean curvature of the interface.

Since the boundary conditions on Ω\partial\Omega do not affect the subsequent discussion, from now on we will consider that a Dirichlet condition (2.3) is imposed on the entire boundary. This will simplify the presentation of the fully discrete problem.

2.1.   Variational formulation

The purpose of this section is to derive the variational formulation of coupled problem (2.1)–(2.8). Let us introduce some standard notation. The space of functions whose square is integrable in a domain ω\omega is denoted by L2(ω)L^{2}(\omega). With L02(ω)L^{2}_{0}(\omega), we denote the space of functions in L2(ω)L^{2}(\omega) with zero mean value over ω\omega. The space of functions whose distributional derivatives of order up to m0m\geq 0 (integer) belong to L2(ω)L^{2}(\omega) is denoted by Hm(ω)H^{m}(\omega). The space of vector-valued functions with components in L2(ω)L^{2}(\omega) is denoted with L2(ω)dL^{2}(\omega)^{d}. H1(div,ω)H^{1}(\textrm{div}\ \!,\omega) is the space of functions in L2(ω)L^{2}(\omega) with divergence in L2(ω)L^{2}(\omega). Moreover, we introduce the following functional spaces:

V\displaystyle V^{-} =H1(Ω)d,V+={𝐮H1(Ω+)d,𝐮|ΩD=𝐠},V0+={𝐮H1(Ω+)d,𝐮|ΩD=𝟎},\displaystyle=H^{1}(\Omega^{-})^{d},~{}V^{+}=\{\mathbf{u}\in H^{1}(\Omega^{+})^{d},\mathbf{u}{\big{|}_{\partial\Omega_{D}}}=\mathbf{g}\},~{}V^{+}_{0}=\{\mathbf{u}\in H^{1}(\Omega^{+})^{d},\mathbf{u}{\big{|}_{\partial\Omega_{D}}}=\boldsymbol{0}\},
V±\displaystyle V^{\pm} ={𝐮=(𝐮,𝐮+)V×V+,𝐮𝐧=𝐮+𝐧onΓ},\displaystyle=\{\mathbf{u}=(\mathbf{u}^{-},\mathbf{u}^{+})\in V^{-}\times V^{+},\mathbf{u}^{-}\cdot\mathbf{n}=\mathbf{u}^{+}\cdot\mathbf{n}~{}\text{on}~{}\Gamma\},
V0±\displaystyle V^{\pm}_{0} ={𝐮=(𝐮,𝐮+)V×V0+,𝐮𝐧=𝐮+𝐧onΓ},\displaystyle=\{\mathbf{u}=(\mathbf{u}^{-},\mathbf{u}^{+})\in V^{-}\times V^{+}_{0},\mathbf{u}^{-}\cdot\mathbf{n}=\mathbf{u}^{+}\cdot\mathbf{n}~{}\text{on}~{}\Gamma\},
Q±\displaystyle Q^{\pm} ={p=(p,p+)L2(Ω)×L2(Ω+)}.\displaystyle=\{p=(p^{-},p^{+})\in L^{2}(\Omega^{-})\times L^{2}(\Omega^{+})\}.

Notice that space V±V^{\pm} can be also characterized as (V×V+)H1(div,Ω)(V^{-}\times V^{+})\cap H^{1}(\textrm{div}\ \!,\Omega). We use (,)ω(\cdot,\cdot)_{\omega} and ,ω\langle,\rangle_{\omega} to denote the L2L^{2} product and the duality pairing, respectively.

The integral formulation of the problem (2.1)-(2.8) reads: Find (𝐮,p)V±×L2(Ω)/(\mathbf{u},p)\in V^{\pm}\times L^{2}(\Omega)/\mathbb{R} such that

(p,𝐯)Ω(p+,𝐯+)Ω++2(μ𝐃(𝐮),𝐃(𝐯))Ω+2(μ+𝐃(𝐮+),𝐃(𝐯+))Ω+\displaystyle-(p^{-},\nabla\cdot\mathbf{v}^{-})_{\Omega^{-}}-(p^{+},\nabla\cdot\mathbf{v}^{+})_{\Omega^{+}}+2(\mu_{-}\mathbf{D}(\mathbf{u}^{-}),\mathbf{D}(\mathbf{v}^{-}))_{\Omega^{-}}+2(\mu_{+}\mathbf{D}(\mathbf{u}^{+}),\mathbf{D}(\mathbf{v}^{+}))_{\Omega^{+}}
+f(𝐏𝐮𝐏𝐮+),𝐏𝐯Γ+f(𝐏𝐮+𝐏𝐮),𝐏𝐯+Γ\displaystyle\quad\quad+\langle f(\mathbf{P}\mathbf{u}^{-}-\mathbf{P}\mathbf{u}^{+}),\mathbf{P}\mathbf{v}^{-}\rangle_{\Gamma}+\langle f(\mathbf{P}\mathbf{u}^{+}-\mathbf{P}\mathbf{u}^{-}),\mathbf{P}\mathbf{v}^{+}\rangle_{\Gamma}
=(𝐟,𝐯)Ω+(𝐟+,𝐯+)Ω++σκ,𝐯𝐧Γ\displaystyle\quad\quad=(\mathbf{f}^{-},\mathbf{v}^{-})_{\Omega^{-}}+(\mathbf{f}^{+},\mathbf{v}^{+})_{\Omega^{+}}+\langle\sigma\kappa,\mathbf{v}^{-}\cdot\mathbf{n}\rangle_{\Gamma} (2.9)
(𝐮,q)Ω+(𝐮+,q+)Ω+=0\displaystyle(\nabla\cdot\mathbf{u}^{-},q^{-})_{\Omega^{-}}+(\nabla\cdot\mathbf{u}^{+},q^{+})_{\Omega^{+}}=0 (2.10)

for all (𝐯,q)V0±×Q±(\mathbf{v},q)\in V^{\pm}_{0}\times Q^{\pm}. The interface terms in (2.9) have been obtained using coupling conditions (2.6), (2.7), and (2.8) as follows:

𝝈𝐧,𝐯Γ+𝝈+𝐧,𝐯+Γ\displaystyle-\langle\boldsymbol{\sigma}^{-}\mathbf{n},\mathbf{v}^{-}\rangle_{\Gamma}+\langle\boldsymbol{\sigma}^{+}\mathbf{n},\mathbf{v}^{+}\rangle_{\Gamma} =𝐏𝝈𝐧,𝐏𝐯Γ+𝐏𝝈+𝐧,𝐏𝐯+Γ[𝐧T𝝈𝐧]+,𝐯𝐧Γ\displaystyle=-\langle\mathbf{P}\boldsymbol{\sigma}^{-}\mathbf{n},\mathbf{P}\mathbf{v}^{-}\rangle_{\Gamma}+\langle\mathbf{P}\boldsymbol{\sigma}^{+}\mathbf{n},\mathbf{P}\mathbf{v}^{+}\rangle_{\Gamma}-\langle[\mathbf{n}^{T}\boldsymbol{\sigma}\mathbf{n}]^{-}_{+},\mathbf{v}^{-}\cdot\mathbf{n}\rangle_{\Gamma}
=f(𝐏𝐮𝐏𝐮+),𝐏𝐯Γ+f(𝐏𝐮+𝐏𝐮),𝐏𝐯+Γ\displaystyle=\langle f(\mathbf{P}\mathbf{u}^{-}-\mathbf{P}\mathbf{u}^{+}),\mathbf{P}\mathbf{v}^{-}\rangle_{\Gamma}+\langle f(\mathbf{P}\mathbf{u}^{+}-\mathbf{P}\mathbf{u}^{-}),\mathbf{P}\mathbf{v}^{+}\rangle_{\Gamma}
σκ,𝐯𝐧Γ.\displaystyle\quad-\langle\sigma\kappa,\mathbf{v}^{-}\cdot\mathbf{n}\rangle_{\Gamma}.

Notice that problem (2.9)-(2.10) can be rewritten as: Find (𝐮,p)V±×L2(Ω)/(\mathbf{u},p)\in V^{\pm}\times L^{2}(\Omega)/\mathbb{R} such that

{a(𝐮,𝐯)+b(𝐯,p)=r(𝐯)b(𝐮,q)=0\left\{\begin{split}a(\mathbf{u},\mathbf{v})+b(\mathbf{v},p)&=r(\mathbf{v})\\ b(\mathbf{u},q)&=0\end{split}\right. (2.11)

for all (𝐯,q)V0±×Q±(\mathbf{v},q)\in V_{0}^{\pm}\times Q^{\pm}, where

a(𝐮,𝐯)=\displaystyle a(\mathbf{u},\mathbf{v})= 2(μ𝐃(𝐮),𝐃(𝐯))Ω+2(μ+𝐃(𝐮+),𝐃(𝐯+))Ω++f(𝐏𝐮𝐏𝐮+),𝐏𝐯𝐏𝐯+Γ,\displaystyle 2(\mu_{-}\mathbf{D}(\mathbf{u}^{-}),\mathbf{D}(\mathbf{v}^{-}))_{\Omega^{-}}+2(\mu_{+}\mathbf{D}(\mathbf{u}^{+}),\mathbf{D}(\mathbf{v}^{+}))_{\Omega^{+}}+\langle f(\mathbf{P}\mathbf{u}^{-}-\mathbf{P}\mathbf{u}^{+}),\mathbf{P}\mathbf{v}^{-}-\mathbf{P}\mathbf{v}^{+}\rangle_{\Gamma},
b(𝐯,p)=\displaystyle b(\mathbf{v},p)= (p,𝐯)Ω(p+,𝐯+)Ω+,\displaystyle-(p^{-},\nabla\cdot\mathbf{v}^{-})_{\Omega^{-}}-(p^{+},\nabla\cdot\mathbf{v}^{+})_{\Omega^{+}},
r(𝐯)=\displaystyle r(\mathbf{v})= (𝐟,𝐯)Ω+(𝐟+,𝐯+)Ω++σκ,𝐯𝐧Γ.\displaystyle(\mathbf{f}^{-},\mathbf{v}^{-})_{\Omega^{-}}+(\mathbf{f}^{+},\mathbf{v}^{+})_{\Omega^{+}}+\langle\sigma\kappa,\mathbf{v}^{-}\cdot\mathbf{n}\rangle_{\Gamma}.

2.2.   Finite element discretization

We consider a family of shape regular triangulations {𝒯h}h>0\{\mathcal{T}_{h}\}_{h>0} of Ω\Omega. We adopt the convention that the elements TT and edges ee are open sets and use the over-line symbol to refer to their closure. Let hTh_{T} denote the diameter of element T𝒯hT\in\mathcal{T}_{h} and heh_{e} the diameter of edge ee. The set of elements intersecting Ω±\Omega^{\pm} and the set of elements having a nonzero intersection with Γ\Gamma are

𝒯h±={T𝒯h:TΩ±},𝒯hΓ={T𝒯h:T¯Γ},\displaystyle\mathcal{T}^{\pm}_{h}=\{T\in\mathcal{T}_{h}:T\cap\Omega^{\pm}\neq\emptyset\},\quad\mathcal{T}_{h}^{\Gamma}=\{T\in\mathcal{T}_{h}:\overline{T}\cap\Gamma\neq\emptyset\}, (2.12)

respectively. We assume {𝒯hΓ}\{\mathcal{T}_{h}^{\Gamma}\} to be quasi-uniform. However, in practice adaptive mesh refinement is possible. The domain formed by all tetrahedra in 𝒯hΓ\mathcal{T}_{h}^{\Gamma} is denoted by ΩhΓ:=int(T𝒯hΓT¯)\Omega^{\Gamma}_{h}:=\text{int}(\cup_{T\in\mathcal{T}_{h}^{\Gamma}}\overline{T}). We define the hh-dependent domains:

Ωh±=int(T𝒯h±T¯)\displaystyle\Omega_{h}^{\pm}=\text{int}\left(\cup_{T\in\mathcal{T}_{h}^{\pm}}\overline{T}\right) (2.13)

and the set of faces of 𝒯hΓ\mathcal{T}_{h}^{\Gamma} restricted to the interior of Ωh±\Omega_{h}^{\pm}:

hΓ,±={e=int(T1T2):T1,T2𝒯h±andT1ΓorT2Γ}.\displaystyle\mathcal{E}_{h}^{\Gamma,\pm}=\{e=\text{int}(\partial T_{1}\cap\partial T_{2}):T_{1},T_{2}\in\mathcal{T}_{h}^{\pm}~{}\text{and}~{}T_{1}\cap\Gamma\neq\emptyset~{}\text{or}~{}T_{2}\cap\Gamma\neq\emptyset\}. (2.14)

For the space discretization of the bulk fluid problems, we restrict our attention to inf-sup stable finite element pair 𝐏k+1Pk\mathbf{P}_{k+1}-P_{k}, k1k\geq 1, i.e. Taylor-Hood elements. Specifically, we consider the spaces of continuous finite element pressures given by:

Qh={pC(Ωh):q|TPk(T)T𝒯h}.\displaystyle Q_{h}^{-}=\{p\in C(\Omega_{h}^{-}):q|_{T}\in P_{k}(T)~{}\forall T\in\mathcal{T}^{-}_{h}\}. (2.15)

Space Qh+Q_{h}^{+} is defined analogously. Our pressure space is given by:

Qh±={p=(p,p+)Qh×Qh+:Ωμ1p+Ω+μ+1p+=0}.\displaystyle Q^{\pm}_{h}=\{p=(p^{-},p^{+})\in Q_{h}^{-}\times Q_{h}^{+}\,:\,\int_{\Omega^{-}}\mu_{-}^{-1}p^{-}+\int_{\Omega^{+}}\mu_{+}^{-1}p^{+}=0\}.

Let

Vh\displaystyle V_{h}^{-} ={𝐮C(Ωh)d:𝐮|T𝐏k+1(T)T𝒯h}.\displaystyle=\{\mathbf{u}\in C(\Omega_{h}^{-})^{d}:\mathbf{u}|_{T}\in\mathbf{P}_{k+1}(T)~{}\forall T\in\mathcal{T}^{-}_{h}\}. (2.16)

with the analogous definition for Vh+V_{h}^{+}. Our velocity spaces are given by:

Vh±={𝐮=(𝐮,𝐮+)Vh×Vh+}\displaystyle V^{\pm}_{h}=\{\mathbf{u}=(\mathbf{u}^{-},\mathbf{u}^{+})\in V_{h}^{-}\times V_{h}^{+}\}

and V0,h±V_{0,h}^{\pm}, a subspace of Vh±V^{\pm}_{h} with vector functions 𝐮+\mathbf{u}^{+} vanishing on Ω\partial\Omega. All above constructions and spaces readily carry over to tessellations of Ω\Omega into squares or cubes and using 𝐐k+1Qk\mathbf{Q}_{k+1}-Q_{k} elements.

Functions in Qh±Q^{\pm}_{h} and Vh±V^{\pm}_{h} and their derivatives are multivalued in ΩhΓ\Omega^{\Gamma}_{h}, the overlap of Ωh\Omega_{h}^{-} and Ωh+\Omega_{h}^{+}. The jump of a multivalued function over the interface is defined as the difference of components coming from Ωh\Omega_{h}^{-} and Ωh+\Omega_{h}^{+}, i.e. [𝐮]=𝐮𝐮+[\mathbf{u}]=\mathbf{u}^{-}-\mathbf{u}^{+} on Γ\Gamma. Note that this is the jump that we have previously denoted with []+[\cdot]^{-}_{+}. We are now using [][\cdot] to simplify the notation. Moreover, we define the following averages:

{𝐮}=α𝐮++β𝐮,\displaystyle\{\mathbf{u}\}=\alpha\mathbf{u}^{+}+\beta\mathbf{u}^{-}, (2.17)
𝐮=β𝐮++α𝐮,\displaystyle\langle\mathbf{u}\rangle=\beta\mathbf{u}^{+}+\alpha\mathbf{u}^{-}, (2.18)

where α\alpha and β\beta are weights to be chosen such that α+β=1\alpha+\beta=1, 0α,β10\leq\alpha,\beta\leq 1. For example, in [15] the setting α=μ/(μ++μ)\alpha=\mu_{-}/(\mu_{+}+\mu_{-}) and β=μ+/(μ++μ)\beta=\mu_{+}/(\mu_{+}+\mu_{-}) is suggested. In [13], the authors choose α=0\alpha=0, β=1\beta=1 if μμ+\mu_{-}\leq\mu_{+} and α=1\alpha=1, β=0\beta=0 otherwise. Below, in (2.22) and (2.25) we will use relationship:

[ab]=[b]{a}+b[a].\displaystyle[ab]=[b]\{a\}+\left\langle b\right\rangle[a]. (2.19)

A discrete variational analogue of problem (2.11) reads: Find {𝐮h,ph}Vh±×Qh±\{\mathbf{u}_{h},p_{h}\}\in V^{\pm}_{h}\times Q^{\pm}_{h} such that

{ah(𝐮h,𝐯h)+bh(𝐯h,ph)=rh(𝐯h)bh(𝐮h,qh)bp(ph,qh)=0\left\{\begin{split}a_{h}(\mathbf{u}_{h},\mathbf{v}_{h})+b_{h}(\mathbf{v}_{h},p_{h})&=r_{h}(\mathbf{v}_{h})\\ b_{h}(\mathbf{u}_{h},q_{h})-b_{p}(p_{h},q_{h})&=0\end{split}\right. (2.20)

for all (𝐯h,qh)V0,h±×Qh±(\mathbf{v}_{h},q_{h})\in V_{0,h}^{\pm}\times Q_{h}^{\pm}. We define all the bilinear forms in (2.20) for all 𝐮hVh±\mathbf{u}_{h}\in V_{h}^{\pm}, 𝐯hV0,h±\mathbf{v}_{h}\in V^{\pm}_{0,h}, pQ±p\in Q^{\pm}. Let us start with form ah(,)a_{h}(\cdot,\cdot):

ah(𝐮h,𝐯h)=\displaystyle a_{h}(\mathbf{u}_{h},\mathbf{v}_{h})= ai(𝐮h,𝐯h)+an(𝐮h,𝐯h)+ap(𝐮h,𝐯h),\displaystyle a_{i}(\mathbf{u}_{h},\mathbf{v}_{h})+a_{n}(\mathbf{u}_{h},\mathbf{v}_{h})+a_{p}(\mathbf{u}_{h},\mathbf{v}_{h}), (2.21)

where we group together the terms that arise from the integration by parts of the divergence of the stress tensors:

ai(𝐮h,𝐯h)=\displaystyle a_{i}(\mathbf{u}_{h},\mathbf{v}_{h})= 2(μ𝐃(𝐮h),𝐃(𝐯h))Ω+2(μ+𝐃(𝐮h+),𝐃(𝐯h+))Ω++f[𝐏𝐮h],[𝐏𝐯h]Γ\displaystyle 2(\mu_{-}\mathbf{D}(\mathbf{u}_{h}^{-}),\mathbf{D}(\mathbf{v}_{h}^{-}))_{\Omega^{-}}+2(\mu_{+}\mathbf{D}(\mathbf{u}_{h}^{+}),\mathbf{D}(\mathbf{v}_{h}^{+}))_{\Omega^{+}}+\langle f[\mathbf{P}\mathbf{u}_{h}],[\mathbf{P}\mathbf{v}_{h}]\rangle_{\Gamma}
2{μ𝐧T𝐃(𝐮h)𝐧},[𝐯h𝐧]Γ,\displaystyle-2\langle\{\mu\mathbf{n}^{T}\mathbf{D}(\mathbf{u}_{h})\mathbf{n}\},[\mathbf{v}_{h}\cdot\mathbf{n}]\rangle_{\Gamma}, (2.22)

and the terms that enforce condition (2.5) weakly using Nitsche’s method

an(𝐮h,𝐯h)=T𝒯hΓγhT{μ}[𝐮h𝐧],[𝐯h𝐧]ΓT2{μ𝐧T𝐃(𝐯h)𝐧},[𝐮h𝐧]Γ.\displaystyle a_{n}(\mathbf{u}_{h},\mathbf{v}_{h})=\sum_{T\in\mathcal{T}_{h}^{\Gamma}}\frac{\gamma}{h_{T}}\{\mu\}\langle[\mathbf{u}_{h}\cdot\mathbf{n}],[\mathbf{v}_{h}\cdot\mathbf{n}]\rangle_{\Gamma\cap T}-2\langle\{\mu\mathbf{n}^{T}\mathbf{D}(\mathbf{v}_{h})\mathbf{n}\},[\mathbf{u}_{h}\cdot\mathbf{n}]\rangle_{\Gamma}. (2.23)

We recall that hTh_{T} is the diameter of element T𝒯hT\in\mathcal{T}_{h}. To define the penalty terms ap(𝐮h,𝐯h)a_{p}(\mathbf{u}_{h},\mathbf{v}_{h}) we need ωe\omega_{e}, the facet patch for ehΓ,±e\in\mathcal{E}_{h}^{\Gamma,\pm} consisting of all T𝒯hT\in\mathcal{T}_{h} sharing ee. Then, we set

ap(𝐮h,𝐯h)\displaystyle a_{p}(\mathbf{u}_{h},\mathbf{v}_{h}) =μ𝐉h(𝐮h,𝐯h)+μ+𝐉h+(𝐮h,𝐯h),\displaystyle={\mu_{-}}\mathbf{J}_{h}^{-}(\mathbf{u}_{h},\mathbf{v}_{h})+{\mu_{+}}\mathbf{J}_{h}^{+}(\mathbf{u}_{h},\mathbf{v}_{h}),
𝐉h±(𝐮h,𝐯h)\displaystyle\mathbf{J}_{h}^{\pm}(\mathbf{u}_{h},\mathbf{v}_{h}) =γ𝐮±ehΓ,±1he2ωe(𝐮1e𝐮2e)(𝐯1e𝐯2e)𝑑x,\displaystyle=\gamma^{\pm}_{\mathbf{u}}\sum_{e\in\mathcal{E}_{h}^{\Gamma,\pm}}\frac{1}{h^{2}_{e}}\int_{\omega_{e}}(\mathbf{u}_{1}^{e}-\mathbf{u}_{2}^{e})\cdot(\mathbf{v}_{1}^{e}-\mathbf{v}_{2}^{e})dx, (2.24)

where 𝐮1e\mathbf{u}_{1}^{e} is the componentwise canonical extension of a polynomial vector function 𝐮h±\mathbf{u}^{\pm}_{h} from T1T_{1} to d\mathbb{R}^{d}, while 𝐮2e\mathbf{u}_{2}^{e} is the canonical extension of 𝐮h±\mathbf{u}^{\pm}_{h} from T2T_{2} to d\mathbb{R}^{d}(and similarly for 𝐯1\mathbf{v}_{1}, 𝐯2\mathbf{v}_{2}). We recall that heh_{e} is the diameter of facet ehΓ,±e\in\mathcal{E}_{h}^{\Gamma,\pm}. This version of the ghost penalty stabilization has been proposed in [39]. In [33], it was shown to be essentially equivalent to other popular ghost penalty stabilizations such as local projection stabilization [11] and normal derivative jump stabilization [12]. In the context of the Stokes problem, this stabilization was recently used in [44]. For the analysis in Sec. 3 and 4, we also define 𝐉h±(𝐮,𝐯)\mathbf{J}_{h}^{\pm}(\mathbf{u},\mathbf{v}) for arbitrary smooth functions 𝐮,𝐯\mathbf{u},\mathbf{v} in Ωh±\Omega_{h}^{\pm}. In this case, we set 𝐮1=(ΠT1𝐮|T1)e\mathbf{u}_{1}=\left(\Pi_{T_{1}}\mathbf{u}|_{T_{1}}\right)^{e}, 𝐮2=(ΠT2𝐮|T2)e\mathbf{u}_{2}=\left(\Pi_{T_{2}}\mathbf{u}|_{T_{2}}\right)^{e}, where ΠTi\Pi_{T_{i}} is the L2(Ti)L^{2}(T_{i})-orthogonal projection into the space of degree k+1k+1 polynomial vector functions on TiT_{i}.

The remaining terms coming from the integration by parts of the divergence of the stress tensors are contained in

bh(𝐯h,ph)=\displaystyle b_{h}(\mathbf{v}_{h},p_{h})= (ph,𝐯h)Ω(ph+,𝐯h+)Ω++{ph},[𝐯h𝐧]Γ,\displaystyle-(p_{h}^{-},\nabla\cdot\mathbf{v}_{h}^{-})_{\Omega^{-}}-(p_{h}^{+},\nabla\cdot\mathbf{v}_{h}^{+})_{\Omega^{+}}+\left\langle\{p_{h}\},[\mathbf{v}_{h}\cdot\mathbf{n}]\right\rangle_{\Gamma}, (2.25)

and the penalty terms are grouped together in

bp(ph,qh)\displaystyle b_{p}(p_{h},q_{h}) =μ1Jh(ph,qh)+μ+1Jh+(ph,qh),\displaystyle=\mu_{-}^{-1}J_{h}^{-}(p_{h},q_{h})+\mu_{+}^{-1}J_{h}^{+}(p_{h},q_{h}),
Jh±(ph,qh)\displaystyle J_{h}^{\pm}(p_{h},q_{h}) =γp±ehΓ,±ωe(p1ep2e)(q1eq2e)𝑑x,\displaystyle={\gamma_{p}^{\pm}}\sum_{e\in\mathcal{E}_{h}^{\Gamma,\pm}}\int_{\omega_{e}}(p_{1}^{e}-p_{2}^{e})(q_{1}^{e}-q_{2}^{e})dx, (2.26)

where p1e,p2e,q1e,q2ep_{1}^{e},p_{2}^{e},q_{1}^{e},q_{2}^{e} are canonical polynomial extensions as defined above.

Finally,

rh(𝐯h)=\displaystyle r_{h}(\mathbf{v}_{h})= (𝐟h,𝐯h)Ω+(𝐟h+,𝐯h+)Ω++σκ,𝐯h𝐧Γ.\displaystyle(\mathbf{f}_{h}^{-},\mathbf{v}_{h}^{-})_{\Omega^{-}}+(\mathbf{f}_{h}^{+},\mathbf{v}_{h}^{+})_{\Omega^{+}}+\langle\sigma\kappa,\left\langle\mathbf{v}_{h}\cdot\mathbf{n}\right\rangle\rangle_{\Gamma}.

We recall that some of the interface terms in ai(,)a_{i}(\cdot,\cdot) and bh(,)b_{h}(\cdot,\cdot) have been obtained using relationship (2.19) and interface conditions.

Parameters γ𝐮±\gamma^{\pm}_{\mathbf{u}}, γp±\gamma_{p}^{\pm} and γ\gamma are all assumed to be independent of μ±\mu_{\pm}, hh, and the position of Γ\Gamma against the underlying mesh. Parameter γ\gamma in (2.23) needs to be large enough to provide the bilinear form ah(,)a_{h}(\cdot,\cdot) with coercivity. Parameters γ𝐮±\gamma^{\pm}_{\mathbf{u}}, γp±\gamma_{p}^{\pm} can be tuned to improve the numerical performance of the method.

2.2.1.   Numerical integration

It is not feasible to compute integrals entering the definition of the bilinear forms over cut elements and over Γ\Gamma for an arbitrary smooth Γ\Gamma. We face the same problem if Γ\Gamma is given implicitly as a zero level of a piecewise polynomial function for polynomial degree greater than one. Piecewise linear approximation of Γ\Gamma on the given mesh and polygonal approximation of subdomains lead to second order geometric consistency error, which is suboptimal for Taylor–Hood elements. To ensure a geometric error of the same order or higher than the finite element (FE) approximation error, we define numerical quadrature rules on the given mesh using the isoparametric approach proposed in [31].

In the isoparametric approach, one considers a smooth function ϕ\phi such that ±ϕ>0\pm\phi>0 in Ω±\Omega^{\pm} and |ϕ|>0|\nabla\phi|>0 in a sufficiently wide strip around Γ\Gamma. Next, one defines polygonal auxiliary domains Ω1±\Omega^{\pm}_{1} given by Ω1±:={𝐱d:±Ih1(ϕ)>0},\Omega^{\pm}_{1}:=\{\mathbf{x}\in\mathbb{R}^{d}\,:\,\pm I_{h}^{1}(\phi)>0\}, where Ih1I_{h}^{1} is the continuous piecewise linear interpolation of ϕ\phi on 𝒯h\mathcal{T}_{h}. Interface Γ1\Gamma_{1} between Ω1+\Omega^{+}_{1} and Ω1\Omega^{-}_{1} is then Γ1:={𝐱d:Ih1(ϕ)=0}.\Gamma_{1}:=\{\mathbf{x}\in\mathbb{R}^{d}\,:\,I_{h}^{1}(\phi)=0\}. On Ω1±\Omega^{\pm}_{1} and Γ1\Gamma_{1} standard quadrature rules can be applied elementwise. Since using Ω1±\Omega^{\pm}_{1}, Γ1\Gamma_{1} alone limits the accuracy to second order, one further constructs a transformation of the mesh in 𝒯hΓ\mathcal{T}^{\Gamma}_{h} with the help of an explicit mapping Ψh\Psi_{h} parameterized by a finite element function. The mapping Ψh\Psi_{h} is such that Γ1\Gamma_{1} is mapped approximately onto Γ\Gamma; see [31] for how Ψh\Psi_{h} is constructed. Then, Ω~±=Ψh(Ω1±)\widetilde{\Omega}^{\pm}=\Psi_{h}(\Omega^{\pm}_{1}), Γ~=Ψh(Γ1)\widetilde{\Gamma}=\Psi_{h}(\Gamma_{1}) are high order accurate approximations to the phases and interface which have an explicit representation so that the integration over Ω~±\widetilde{\Omega}^{\pm} and Γ~\widetilde{\Gamma} can be done exactly. The finite element spaces have to be adapted correspondingly, using the explicit pullback mapping: 𝐯hΨh1\mathbf{v}_{h}\circ\Psi_{h}^{-1}.

3 Stability

For the analysis in this and the next section, we assume that the integrals over cut elements in Ω±\Omega^{\pm} are computed exactly. In addition, we restrict our attention to the choice α=0\alpha=0 and β=1\beta=1 for the averages in (2.17)–(2.18), assuming μμ+\mu_{-}\leq\mu_{+}.

The key for the stability analysis of the two-phase Stokes problem is an inf-sup stability property of the unfitted generalized Taylor–Hood finite element pair, which extends the classical LBB stability result for the standard 𝐏k+1Pk\mathbf{P}_{k+1}-P_{k} Stokes element from [7]. There is no similar stability result in the literature for 𝐐k+1Qk\mathbf{Q}_{k+1}-Q_{k} unfitted elements. However, we expect that the extension, and so the analysis below, can be carried over to these elements as well.

One is interested in the inf-sup inequality with a stability constant that is independent of the viscosity ratio, position of Γ\Gamma with respect to the background mesh and, of course, mesh size hh. The result is given in the following lemma.

Lemma 3.1

Denote by VhV_{h} the space of continuous Pk+1P_{k+1} finite element vector functions on Ω\Omega, Vh={𝐮C(Ω)d:𝐮|T𝐏k+1(T)T𝒯h}V_{h}=\{\mathbf{u}\in C(\Omega)^{d}:\mathbf{u}|_{T}\in\mathbf{P}_{k+1}(T)~{}\forall T\in\mathcal{T}_{h}\}. There exists h0>0h_{0}>0 such that for all h<h0h<h_{0} and any qhQh±q_{h}\in Q_{h}^{\pm} there exists 𝐯hVh\mathbf{v}_{h}\in V_{h} such that it holds

μ1qhΩh2+μ+1qh+Ωh+2(qh,𝐯h)Ω+(qh+,𝐯h)Ω++cbp(qh,qh)μ12𝐯hΩ2C(μ1qhΩh2+μ+1qh+Ωh+2).\begin{split}\mu_{-}^{-1}\|q_{h}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{h}^{+}\|_{{\Omega}_{h}^{+}}^{2}&\leq(q_{h}^{-},\nabla\cdot\mathbf{v}_{h})_{{\Omega}^{-}}+(q_{h}^{+},\nabla\cdot\mathbf{v}_{h})_{{\Omega}^{+}}+c\,b_{p}(q_{h},q_{h})\\ \|\mu^{\frac{1}{2}}\nabla\mathbf{v}_{h}\|_{\Omega}^{2}&\leq C\,\left(\mu_{-}^{-1}\|q_{h}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{h}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right).\end{split} (3.1)

with h0h_{0} and two positive constants cc and CC independent of qhq_{h}, μ±\mu_{\pm}, the position of Γ\Gamma in the background mesh and mesh size hh.

Proof:

Consider subdomains Ωh,i±Ω±\Omega_{h,i}^{\pm}\subset\Omega^{\pm} built of all strictly internal simplexes in each phase:

Ω¯h,i±:={T¯:T𝒯h,TΩ±}.\overline{\Omega}_{h,i}^{\pm}:=\bigcup\{\overline{T}\,:\,T\in\mathcal{T}_{h},\quad T\subset\Omega^{\pm}\}.

The following two results are central for the proof. First, we have the uniform inf-sup inequalities in Ωh,i{\Omega}_{h,i}^{-} and Ωh,i+{\Omega}_{h,i}^{+} [22]: there exist constants C±C_{\pm} independent of the position of Γ\Gamma and hh such that

0<C±infqQh±L02(Ωh,i±)sup𝐯Vhsupp(𝐯)Ωh,i±(q,𝐯)Ωh,i±𝐯H1(Ωh,i±)qΩh,i±.0<C_{\pm}\leq\inf_{q\in Q_{h}^{\pm}\cap L^{2}_{0}({\Omega}_{h,i}^{\pm})}~{}\sup_{\scriptsize\begin{array}[]{c}\mathbf{v}\in V_{h}\\ {\rm supp}(\mathbf{v})\subset{\Omega}_{h,i}^{\pm}\end{array}}\frac{(q,\nabla\cdot\mathbf{v})_{{\Omega}_{h,i}^{\pm}}}{\|\mathbf{v}\|_{H^{1}({\Omega}_{h,i}^{\pm})}\|q\|_{{\Omega}_{h,i}^{\pm}}}. (3.2)

The above result can be equivalently formulated as follows: For any qQh±L02(Ωh,i±)q\in Q_{h}^{\pm}\cap L^{2}_{0}({\Omega}_{h,i}^{\pm}) there exist 𝐯h±Vh\mathbf{v}_{h}^{\pm}\in V_{h} such that supp(𝐯)Ωh,i±{\rm supp}(\mathbf{v})\subset{\Omega}_{h,i}^{\pm} and

q±Ωh,i±2=(q±,𝐯h±)Ωh±,𝐯h±ΩC±1q±Ωh,i±.\|q^{\pm}\|_{{\Omega}_{h,i}^{\pm}}^{2}=\left(q^{\pm},\nabla\cdot\mathbf{v}_{h}^{\pm}\right)_{{\Omega}^{\pm}_{h}},\quad\|\nabla\mathbf{v}_{h}^{\pm}\|_{\Omega}\leq C_{\pm}^{-1}\|q^{\pm}\|_{{\Omega}_{h,i}^{\pm}}. (3.3)

The second important results is the simple observation that the L2L^{2} norm of qhq_{h} in Ωh±\Omega_{h}^{\pm} can be controlled by the L2L^{2} norm in Ωh,i±{\Omega}_{h,i}^{\pm} plus the stabilization term in (2.26) (see, [33, 39]):

qhΩh±2C(qhΩh,i±2+Jh±(qh,qh)),\|q_{h}\|_{{\Omega}_{h}^{\pm}}^{2}\leq C\,(\|q_{h}\|_{{\Omega}_{h,i}^{\pm}}^{2}+J_{h}^{\pm}(q_{h},q_{h})), (3.4)

with some constant CC independent of the position of Γ\Gamma and hh. We note that (3.4) holds also for discontinuous finite elements.

Consider now

qμ={μ|Ω|1Qhμ+|Ω+|1Qh+.q_{\mu}=\left\{\begin{array}[]{r}~{}\mu_{-}|\Omega^{-}|^{-1}\in Q_{h}^{-}\\ -\mu_{+}|\Omega^{+}|^{-1}\in Q_{h}^{+}.\end{array}\right.

Note that qμq_{\mu} satisfies the orthogonality condition imposed for elements from Qh±Q_{h}^{\pm}, and hence span{qμ}\mbox{span}\{q_{\mu}\} is a subspace in Qh±Q_{h}^{\pm}. Using a trick from [37], we decompose arbitrary qhQh±q_{h}\in Q_{h}^{\pm} into a component collinear with qμq_{\mu} and the orthogonal complement in each phase:

qh=q1+q0,withq1span{qμ},and(q0,1)Ωh,i=(q0+,1)Ωh,i+=0.q_{h}=q_{1}+q_{0},\quad\text{with}~{}q_{1}\in\mbox{span}\{q_{\mu}\},\quad\text{and}~{}~{}(q_{0}^{-},1)_{\Omega_{h,i}^{-}}=(q_{0}^{+},1)_{\Omega_{h,i}^{+}}=0.

Thus, q1q_{1} and q0q_{0} are orthogonal with respect to L2L^{2} product in the inner domains Ωh,i±\Omega_{h,i}^{\pm}. Next, we let q±=μ±12q0±q^{\pm}=\mu^{-\frac{1}{2}}_{\pm}q_{0}^{\pm} in (3.3) and for 𝐯h±Vh\mathbf{v}^{\pm}_{h}\in V_{h} given by (3.3) consider 𝐯h0=μ12𝐯h+μ+12𝐯h+Vh\mathbf{v}_{h}^{0}=\mu_{-}^{\frac{1}{2}}\mathbf{v}^{-}_{h}+\mu_{+}^{\frac{1}{2}}\mathbf{v}^{+}_{h}\in V_{h}. Then after applying (3.4) and summing up, the relations in (3.3) become

μ1q0Ωh2+μ+1q0+Ωh+2C((q0,𝐯h0)Ω+(q0+,𝐯h0)Ω++bp(q0,q0)),μ12𝐯h0ΩC0(μ1q0Ωh2+μ+1q0+Ωh+2)12,\begin{split}\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}_{h}^{+}}^{2}&\leq C\,\left((q_{0}^{-},\nabla\cdot\mathbf{v}_{h}^{0})_{{\Omega}^{-}}+(q_{0}^{+},\nabla\cdot\mathbf{v}_{h}^{0})_{{\Omega}^{+}}+b_{p}(q_{0},q_{0})\right),\\ \|\mu^{\frac{1}{2}}\nabla\mathbf{v}_{h}^{0}\|_{\Omega}&\leq C_{0}\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)^{\frac{1}{2}},\end{split} (3.5)

with CC from (3.4) and C0=max{C1,C+1}C_{0}=\max\{C_{-}^{-1},C_{+}^{-1}\}, both of which are independent of μ±\mu_{\pm} and how Γ\Gamma overlaps the background mesh. In (3.5), we also used the fact that supports of 𝐯\mathbf{v}^{-} and 𝐯+\mathbf{v}^{+} do not overlap. Since supp(𝐯h±)Ω±{\rm supp}(\mathbf{v}_{h}^{\pm})\subset{\Omega}^{\pm} and q1±q_{1}^{\pm} are constant in Ω±{\Omega}^{\pm}, integration by parts shows that

(q1±,𝐯h0)Ωh±=0.(q_{1}^{\pm},\nabla\cdot\mathbf{v}_{h}^{0})_{{\Omega}^{\pm}_{h}}=0. (3.6)

Next, we need the following result from Lemma 5.1 in [30]: For all hh0h\leq h_{0} there exists 𝐯h1Vh\mathbf{v}_{h}^{1}\in V_{h} such that

μ1q1Ωh2+μ+1q1+Ωh+2=(q1,𝐯h1)Ω+(q1,𝐯h1)Ω+,μ12𝐯h1ΩC1(μ1q1Ωh2+μ+1q1+Ωh+2)12,\begin{split}\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h}^{+}}^{2}&=(q_{1},\nabla\cdot\mathbf{v}_{h}^{1})_{{\Omega}^{-}}+(q_{1},\nabla\cdot\mathbf{v}_{h}^{1})_{{\Omega}^{+}},\\ \|\mu^{\frac{1}{2}}\nabla\mathbf{v}_{h}^{1}\|_{\Omega}&\leq C_{1}\left(\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)^{\frac{1}{2}},\end{split} (3.7)

with h0>0h_{0}>0 and C1>0C_{1}>0 independent of μ±\mu_{\pm} and how Γ\Gamma overlaps the background mesh. The above result follows from the classical inf-sup stability condition for 𝐏2P1\mathbf{P}_{2}-P_{1} Taylor–Hood elements and a simple scaling and interpolation argument. See [30] for details.

As the next step, set 𝐯h=τ𝐯h0+𝐯h1\mathbf{v}_{h}=\tau\mathbf{v}_{h}^{0}+\mathbf{v}_{h}^{1} with some τ>0\tau>0 and proceed with calculations using (3.6), (3.5), (3.7), and the Cauchy-Schwartz inequality:

(qh,𝐯h)Ω+(qh+,𝐯h)Ω+=(q1,𝐯h1)Ω+(q1+,𝐯h1)Ω++τ(q0,𝐯h0)Ω+τ(q0+,𝐯h0)Ω++(q0,𝐯h1)Ω+(q0+,𝐯h1)Ω+μ1q1Ωh2+μ+1q1+Ωh+2+τC1(μ1q0Ωh2+μ+1q0+Ωh+2)τbp(q0,q0)(μ1q0Ωh2+μ+1q0+Ωh+2)12d12μ12𝐯h1Ωμ1q1Ωh2+μ+1q1+Ωh+2+τC1(μ1q0Ωh2+μ+1q0+Ωh+2)τbp(q0,q0)(μ1q0Ωh2+μ+1q0+Ωh+2)12C1d12(μ1q1Ωh2+μ+1q1+Ωh+2)1212(μ1q1Ωh2+μ+1q1+Ωh+2)+(τCC12d2)(μ1q0Ωh2+μ+1q0+Ωh+2)τbp(q0,q0).\begin{split}(q_{h}^{-},&\nabla\cdot\mathbf{v}_{h})_{{\Omega}^{-}}+(q_{h}^{+},\nabla\cdot\mathbf{v}_{h})_{{\Omega}^{+}}\\ &=(q_{1}^{-},\nabla\cdot\mathbf{v}_{h}^{1})_{{\Omega}^{-}}+(q_{1}^{+},\nabla\cdot\mathbf{v}_{h}^{1})_{{\Omega}^{+}}+\tau(q_{0}^{-},\nabla\cdot\mathbf{v}_{h}^{0})_{{\Omega}^{-}}+\tau(q_{0}^{+},\nabla\cdot\mathbf{v}_{h}^{0})_{{\Omega}^{+}}\\ &\qquad+(q_{0}^{-},\nabla\cdot\mathbf{v}_{h}^{1})_{{\Omega}^{-}}+(q_{0}^{+},\nabla\cdot\mathbf{v}_{h}^{1})_{{\Omega}^{+}}\\ &\geq\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h}^{+}}^{2}+\tau C^{-1}\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)-\tau b_{p}(q_{0},q_{0})\\ &\qquad-\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}^{-}_{h}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}^{+}_{h}}^{2}\right)^{\frac{1}{2}}d^{\frac{1}{2}}\|\mu^{\frac{1}{2}}\nabla\mathbf{v}_{h}^{1}\|_{\Omega}\\ &\geq\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h}^{+}}^{2}+\tau C^{-1}\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)-\tau b_{p}(q_{0},q_{0})\\ &\qquad-\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}^{-}_{h}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}^{+}_{h}}^{2}\right)^{\frac{1}{2}}\,C_{1}d^{\frac{1}{2}}\left(\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)^{\frac{1}{2}}\\ &\geq\frac{1}{2}\left(\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)+\left(\frac{\tau}{C}-\frac{C_{1}^{2}d}{2}\right)\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)-\tau b_{p}(q_{0},q_{0}).\end{split}

We set τ\tau such that τCC12d2=12\frac{\tau}{C}-\frac{C_{1}^{2}d}{2}=\frac{1}{2} and note that bp(q0,q0)=bp(qh,qh)b_{p}(q_{0},q_{0})=b_{p}(q_{h},q_{h}). Using this and the orthogonality condition for q0q_{0}, we get

(qh,𝐯h)Ω+(qh,𝐯h)Ω+12(μ1q1Ωh2+μ+1q1+Ωh+2)+12(μ1q0Ωh2+μ+1q0+Ωh+2)τbp(qh,qh)12(μ1q1Ωh,i2+μ+1q1+Ωh,i+2)+12(μ1q0Ωh2+μ+1q0+Ωh,i+2)τbp(qh,qh)=12(μ1qhΩh,i2+μ+1qh+Ωh,i+2)τbp(qh,qh)12C(μ1qhΩh2+μ+1qh+Ωh+2)(τ+12)bp(qh,qh).\begin{split}(q_{h},&\nabla\cdot\mathbf{v}_{h})_{{\Omega}^{-}}+(q_{h},\nabla\cdot\mathbf{v}_{h})_{{\Omega}^{+}}\\ &\geq\frac{1}{2}\left(\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)+\frac{1}{2}\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)-\tau b_{p}(q_{h},q_{h})\\ &\geq\frac{1}{2}\left(\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h,i}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h,i}^{+}}^{2}\right)+\frac{1}{2}\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}_{h,i}^{+}}^{2}\right)-\tau b_{p}(q_{h},q_{h})\\ &=\frac{1}{2}\left(\mu_{-}^{-1}\|q_{h}^{-}\|_{{\Omega}_{h,i}^{-}}^{2}+\mu_{+}^{-1}\|q_{h}^{+}\|_{{\Omega}_{h,i}^{+}}^{2}\right)-\tau b_{p}(q_{h},q_{h})\\ &\geq\frac{1}{2C}\left(\mu_{-}^{-1}\|q_{h}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{h}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)-\left(\tau+\frac{1}{2}\right)b_{p}(q_{h},q_{h}).\end{split} (3.8)

Using (q0±,q1±)Ωh,i±=0(q_{0}^{\pm},q_{1}^{\pm})_{{\Omega}_{h,i}^{\pm}}=0, |Ωh±Ωh,i±|ch|\Omega^{\pm}_{h}\setminus\Omega^{\pm}_{h,i}|\leq c\,h and so q1±Ωh±Ωh,i±ch12q1±Ωh±\|q_{1}^{\pm}\|_{\Omega^{\pm}_{h}\setminus\Omega^{\pm}_{h,i}}\leq ch^{\frac{1}{2}}\|q_{1}^{\pm}\|_{\Omega^{\pm}_{h}}, we estimate

|μ1(q0,q1)Ωh+μ+1(q0+,q1+)Ωh+|ch12(μ1q0Ωh2+μ+1q0+Ωh+2)12(μ1q1Ωh2+μ+1q1+Ωh+2)12.|\mu_{-}^{-1}(q_{0}^{-},q_{1}^{-})_{{\Omega}_{h}^{-}}+\mu_{+}^{-1}(q_{0}^{+},q_{1}^{+})_{{\Omega}_{h}^{+}}|\\ \leq c\,h^{\frac{1}{2}}\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)^{\frac{1}{2}}\left(\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)^{\frac{1}{2}}. (3.9)

From (3.5), (3.7), and (3.9), we also get the following upper bound for 𝐯h\mathbf{v}_{h},

μ12𝐯hΩ22(μ12τ𝐯h0Ω2+μ12𝐯h1Ω2)2τ2C02(μ1q0Ωh2+μ+1q0+Ωh+2)+2C12(μ1q1Ωh2+μ+1q1+Ωh+2)2max{τ2C02,C12}1ch12(μ1qhΩh2+μ+1qh+Ωh+2).\begin{split}\|\mu^{\frac{1}{2}}\nabla\mathbf{v}_{h}\|_{\Omega}^{2}&\leq 2(\|\mu^{\frac{1}{2}}\tau\nabla\mathbf{v}_{h}^{0}\|_{\Omega}^{2}+\|\mu^{\frac{1}{2}}\nabla\mathbf{v}_{h}^{1}\|_{\Omega}^{2})\\ &\leq 2\tau^{2}C_{0}^{2}\left(\mu_{-}^{-1}\|q_{0}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{0}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)+2C_{1}^{2}\left(\mu_{-}^{-1}\|q_{1}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{1}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)\\ &\leq\frac{2\max\{\tau^{2}C_{0}^{2},C_{1}^{2}\}}{1-c\,h^{\frac{1}{2}}}\left(\mu_{-}^{-1}\|q_{h}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q_{h}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right).\end{split} (3.10)

The assertion of the lemma follows from (3.8) and (3.10) after simple calculations.
\square

The next lemma shows the uniform coercivity of the symmetric form ah(𝐮h,𝐯h)a_{h}(\mathbf{u}_{h},\mathbf{v}_{h}) in (2.21) on Vh±×Vh±V_{h}^{\pm}\times V_{h}^{\pm}.

Lemma 3.2

If γ=O(1)\gamma=O(1) in (2.23) is sufficiently large, then it holds

ah(𝐮h,𝐮h)C(μ𝐃(𝐮h)Ωh2+μ+𝐃(𝐮h+)Ωh+2+h1{μ}[𝐮h𝐧]Γ2+f[𝐏𝐮h]Γ2)a_{h}(\mathbf{u}_{h},\mathbf{u}_{h})\geq C\,\left(\mu_{-}\|\mathbf{D}(\mathbf{u}_{h}^{-})\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}\|\mathbf{D}(\mathbf{u}_{h}^{+})\|_{{\Omega}_{h}^{+}}^{2}+h^{-1}\|\{\mu\}[\mathbf{u}_{h}\cdot\mathbf{n}]\|_{\Gamma}^{2}+f\|[\mathbf{P}\mathbf{u}_{h}]\|_{\Gamma}^{2}\right) (3.11)

𝐮hVh±\forall~{}\mathbf{u}_{h}\in V_{h}^{\pm}, with C>0C>0 independent of μ±\mu_{\pm}, hh, f, and the position of Γ\Gamma with respect to the background mesh.

Proof:

For the proof, we need the local trace inequality in T𝒯hΓT\in\mathcal{T}^{\Gamma}_{h} (see, e.g. [22, 23]):

vTΓC(hT12vT+hT12vT),vH1(T),\|v\|_{T\cap\Gamma}\leq C(h_{T}^{-\frac{1}{2}}\|v\|_{T}+h_{T}^{\frac{1}{2}}\|\nabla v\|_{T}),\quad~{}~{}\forall~{}v\in H^{1}(T), (3.12)

with a constant CC independent of vv, TT, how Γ\Gamma intersects TT, and hT<h0h_{T}<h_{0} for some arbitrary but fixed h0h_{0}. We also need the following estimate

𝐃(𝐯h±)L2(Ωh±)2C(𝐃(𝐯h±)L2(Ω±)2+𝐉±(𝐯h±,𝐯h±)),\|\mathbf{D}(\mathbf{v}_{h}^{\pm})\|^{2}_{L^{2}(\Omega_{h}^{\pm})}\leq C(\|\mathbf{D}(\mathbf{v}_{h}^{\pm})\|^{2}_{L^{2}(\Omega^{\pm})}+\mathbf{J}^{\pm}(\mathbf{v}_{h}^{\pm},\mathbf{v}_{h}^{\pm})\,), (3.13)

which follows from (3.4) by applying it componentwise and further using FE inverse inequality (note h2h^{-2} scaling in the definition of 𝐉±\mathbf{J}^{\pm} in (2.24)). Applying (3.12), finite element inverse inequalities and (3.13), we can bound the interface term

{μ𝐧T𝐃(𝐯h)𝐧},[𝐮h𝐧]Γ=μ𝐧T𝐃(𝐯h)𝐧,[𝐮h𝐧]ΓT𝒯hΓ[hTδ2μ12𝐧T𝐃(𝐯h)𝐧TΓ2+12hTδμ12[𝐮h𝐧]TΓ2]δ2μ12𝐧T𝐃(𝐯h)𝐧Ωh2+1hTδ{μ}|[𝐮h𝐧]|Γ2,δ>0,𝐮h,𝐯hVh±.\begin{split}\langle\{\mu\mathbf{n}^{T}\mathbf{D}(\mathbf{v}_{h})\mathbf{n}\},&[\mathbf{u}_{h}\cdot\mathbf{n}]\rangle_{\Gamma}=\langle\mu_{-}\mathbf{n}^{T}\mathbf{D}(\mathbf{v}_{h}^{-})\mathbf{n},[\mathbf{u}_{h}\cdot\mathbf{n}]\rangle_{\Gamma}\\ &\leq\sum_{T\in\mathcal{T}_{h}^{\Gamma}}\left[\frac{h_{T}\delta}{2}\|\mu_{-}^{\frac{1}{2}}\mathbf{n}^{T}\mathbf{D}(\mathbf{v}_{h}^{-})\mathbf{n}\|^{2}_{T\cap\Gamma}+\frac{1}{2h_{T}\delta}\|\mu_{-}^{\frac{1}{2}}[\mathbf{u}_{h}\cdot\mathbf{n}]\|^{2}_{T\cap\Gamma}\right]\\ &\leq\frac{\delta}{2}\|\mu_{-}^{\frac{1}{2}}\mathbf{n}^{T}\mathbf{D}(\mathbf{v}_{h}^{-})\mathbf{n}\|^{2}_{\Omega_{h}^{-}}+\frac{1}{h_{T}\delta}\{\mu\}|[\mathbf{u}_{h}\cdot\mathbf{n}]|^{2}_{\Gamma},\quad\forall~{}\delta>0,~{}\mathbf{u}_{h},\mathbf{v}_{h}\in V_{h}^{\pm}.\end{split}

This estimate with 𝐯h=𝐮h\mathbf{v}_{h}=\mathbf{u}_{h} and with δ>0\delta>0 sufficiently small, together with the definition of the bilinear form ah(𝐮h,𝐮h)a_{h}(\mathbf{u}_{h},\mathbf{u}_{h}), allows to show its coercivity. \square

We further need the continuity result for the velocity stabilization form contained in the next lemma.

Lemma 3.3

It holds

ap(𝐯h,𝐯h)C(μ𝐃(𝐯h)Ωh2+μ+𝐃(𝐯h+)Ωh+2)𝐯hVh±,a_{p}(\mathbf{v}_{h},\mathbf{v}_{h})\leq C\,\left(\mu_{-}\|\mathbf{D}(\mathbf{v}^{-}_{h})\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}\|\mathbf{D}(\mathbf{v}^{+}_{h})\|_{{\Omega}_{h}^{+}}^{2}\right)\qquad\forall~{}\mathbf{v}_{h}\in V^{\pm}_{h},

with C>0C>0 independent of μ±\mu_{\pm}, hh, and the position of Γ\Gamma in the background mesh.

Proof:

For any 𝐯=𝐯hVh\mathbf{v}=\mathbf{v}_{h}^{-}\in V^{-}_{h}, facet ehΓ,e\in\mathcal{E}_{h}^{\Gamma,-} and the corresponding patch ωe\omega_{e} formed by two tetrahedra T1T_{1} and T2T_{2}, it holds

𝐯1e𝐯2eωe2=𝐯1𝐯2eT12+𝐯1e𝐯2T22(1+c)𝐯1𝐯2eT12,\|\mathbf{v}_{1}^{e}-\mathbf{v}_{2}^{e}\|^{2}_{\omega_{e}}=\|\mathbf{v}_{1}-\mathbf{v}_{2}^{e}\|^{2}_{T_{1}}+\|\mathbf{v}_{1}^{e}-\mathbf{v}_{2}\|^{2}_{T_{2}}\leq(1+c)\|\mathbf{v}_{1}-\mathbf{v}_{2}^{e}\|^{2}_{T_{1}},

where the constant cc depends only on shape regularity of the tetrahedra, since 𝐯1e𝐯2\mathbf{v}_{1}^{e}-\mathbf{v}_{2} on T2T_{2} is the canonical polynomial extension of 𝐯1𝐯2e\mathbf{v}_{1}-\mathbf{v}_{2}^{e} from T1T_{1}.

Now, we need the following local Korn’s inequality:

𝐯TC𝐃(𝐯)T,𝐯H1(T)d,s.t.𝐯=0on any face ofT𝒯h,\|\nabla\mathbf{v}\|_{T}\leq C\|\mathbf{D}(\mathbf{v})\|_{T},\quad\forall~{}\mathbf{v}\in H^{1}(T)^{d},~{}~{}\text{s.t.}~{}\mathbf{v}=0~{}\text{on any face of}~{}T\in\mathcal{T}_{h}, (3.14)

where CC depends only on shape regularity of TT. The result in (3.14) follows from eq. (3.3) in [9] and the observation that vector fields vanishing on any face TT support only zero rigid motions. A simple scaling argument also proves the local Poincare inequality:

𝐯TChT2𝐯T,𝐯H1(T)d,s.t.𝐯=0on any face ofT𝒯h,\|\mathbf{v}\|_{T}\leq Ch^{2}_{T}\|\nabla\mathbf{v}\|_{T},\quad\forall~{}\mathbf{v}\in H^{1}(T)^{d},~{}~{}\text{s.t.}~{}\mathbf{v}=0~{}\text{on any face of}~{}T\in\mathcal{T}_{h}, (3.15)

where CC depends only on shape regularity of TT. Applying (3.14), (3.15) and triangle inequalities on T1T_{1} for 𝐯1𝐯2e\mathbf{v}_{1}-\mathbf{v}_{2}^{e} which vanishes on ee (a face of T1T_{1}), we obtain:

𝐯1𝐯2eT12\displaystyle\|\mathbf{v}_{1}-\mathbf{v}_{2}^{e}\|^{2}_{T_{1}} Cph2𝐃(𝐯1𝐯2e)T122Cph2(𝐃𝐯1T12+𝐃𝐯2eT12)\displaystyle\leq C_{p}h^{2}\|\mathbf{D}(\mathbf{v}_{1}-\mathbf{v}_{2}^{e})\|^{2}_{T_{1}}\leq 2C_{p}h^{2}(\|\mathbf{D}\mathbf{v}_{1}\|^{2}_{T_{1}}+\|\mathbf{D}\mathbf{v}_{2}^{e}\|^{2}_{T_{1}})
2Cph2(𝐃𝐯1T12+c𝐃𝐯2T22),\displaystyle\leq 2C_{p}h^{2}(\|\mathbf{D}\mathbf{v}_{1}\|^{2}_{T_{1}}+c\,\|\mathbf{D}\mathbf{v}_{2}\|^{2}_{T_{2}}), (3.16)

where for the last inequality we again use shape regularity and the fact that 𝐃𝐯2e=(𝐃𝐯2)e\mathbf{D}\mathbf{v}_{2}^{e}=(\mathbf{D}\mathbf{v}_{2})^{e}. Thus, we see that 𝐯1e𝐯2eωe2ch2𝐃𝐯ωe2\|\mathbf{v}_{1}^{e}-\mathbf{v}_{2}^{e}\|^{2}_{\omega_{e}}\leq c\,h^{2}\|\mathbf{D}\mathbf{v}\|^{2}_{\omega_{e}}, with some cc depending only on shape regularity. Summing up over all ehΓ,e\in\mathcal{E}_{h}^{\Gamma,-} leads to the required upper bound for 𝐉h(𝐯,𝐯)\mathbf{J}_{h}^{-}(\mathbf{v},\mathbf{v}): 𝐉h(𝐯,𝐯)C𝐃(𝐯)Ωh\mathbf{J}_{h}^{-}(\mathbf{v},\mathbf{v})\leq C\|\mathbf{D}(\mathbf{v})\|_{\Omega_{h}^{-}}. Repeating the same argument for the edges in hΓ,+\mathcal{E}_{h}^{\Gamma,+} and summing up the two bounds scaled by viscosity coefficients proves the lemma.
\square

The finite element problem (2.20) can be equivalently formulated as follows: Find {𝐮h,ph}Vh±×Qh±\{\mathbf{u}_{h},p_{h}\}\in V^{\pm}_{h}\times Q^{\pm}_{h} such that

𝒜(𝐮h,ph;𝐯h,qh)=rh(𝐯h),{𝐯h,qh}Vh±×Qh±\mathcal{A}(\mathbf{u}_{h},p_{h};\mathbf{v}_{h},q_{h})=r_{h}(\mathbf{v}_{h}),\quad\forall~{}\{\mathbf{v}_{h},q_{h}\}\in V^{\pm}_{h}\times Q^{\pm}_{h} (3.17)

with

𝒜(𝐮h,ph;𝐯h,qh)=ah(𝐮h,𝐯h)+bh(𝐯h,ph)bh(𝐮h,qh)+bp(ph,qh).\mathcal{A}(\mathbf{u}_{h},p_{h};\mathbf{v}_{h},q_{h})=a_{h}(\mathbf{u}_{h},\mathbf{v}_{h})+b_{h}(\mathbf{v}_{h},p_{h})-b_{h}(\mathbf{u}_{h},q_{h})+b_{p}(p_{h},q_{h}).

Lemmas 3.13.3 enable us to show the inf-sup stability of the bilinear form 𝒜\mathcal{A}. The stability result is formulated using the following composite norm:

𝐯,q2:=μ𝐃(𝐯)Ωh2+μ+𝐃(𝐯+)Ωh+2+h1{μ}[𝐯𝐧]Γ2+f[𝐏𝐯]Γ2+μ1qΩh2+μ+1q+Ωh+2\|\mathbf{v},q\|^{2}:=\mu_{-}\|\mathbf{D}(\mathbf{v}^{-})\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}\|\mathbf{D}(\mathbf{v}^{+})\|_{{\Omega}_{h}^{+}}^{2}+h^{-1}\|\{\mu\}[\mathbf{v}\cdot\mathbf{n}]\|_{\Gamma}^{2}+f\|[\mathbf{P}\mathbf{v}]\|_{\Gamma}^{2}+\mu_{-}^{-1}\|q^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|q^{+}\|_{{\Omega}_{h}^{+}}^{2}

for 𝐯Vh±,qQh±\mathbf{v}\in V^{\pm}_{h},~{}q\in Q^{\pm}_{h}.

Theorem 3.4

There exists h0>0h_{0}>0 such that for all h<h0h<h_{0} it holds

sup{𝐯h,qh}Vh±×Qh±𝒜(𝐮h,ph;𝐯h,qh)𝐯h,qhC𝐮h,pp,{𝐮h,ph}Vh±×Qh±,\sup_{\{\mathbf{v}_{h},q_{h}\}\in V^{\pm}_{h}\times Q^{\pm}_{h}}\frac{\mathcal{A}(\mathbf{u}_{h},p_{h};\mathbf{v}_{h},q_{h})}{\|\mathbf{v}_{h},q_{h}\|}\geq C\,\|\mathbf{u}_{h},p_{p}\|,\quad\forall\,\{\mathbf{u}_{h},p_{h}\}\in V^{\pm}_{h}\times Q^{\pm}_{h},

with h0>0h_{0}>0 and C>0C>0 independent of μ±\mu_{\pm}, hh, f, and the position of Γ\Gamma in the background mesh.

Proof:

For a given phQh±p_{h}\in Q^{\pm}_{h}, Lemma 3.1 implies the existence of such 𝐰hVh\mathbf{w}_{h}\in V_{h} that

bh(𝐰h,ph)+bp(ph,qh)c(μ1phΩh2+μ+1ph+Ωh+2)b_{h}(\mathbf{w}_{h},p_{h})+b_{p}(p_{h},q_{h})\geq c\,\left(\mu_{-}^{-1}\|p_{h}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|p_{h}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right) (3.18)

and

μ12𝐰hΩ2C(μ1phΩh2+μ+1ph+Ωh+2),\|\mu^{\frac{1}{2}}\nabla\mathbf{w}_{h}\|_{\Omega}^{2}\leq C\,\left(\mu_{-}^{-1}\|p_{h}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|p_{h}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right), (3.19)

with some positive cc, CC independent of μ\mu and how Γ\Gamma overlaps the background mesh. Next, we extend the finite element function 𝐰hVh\mathbf{w}_{h}\in V_{h} to the element of the product space 𝐰^hVh±\widehat{\mathbf{w}}_{h}\in V_{h}^{\pm} by setting 𝐰^h±=𝐰h|Ωh±Vh±\widehat{\mathbf{w}}_{h}^{\pm}=\mathbf{w}_{h}|_{\Omega_{h}^{\pm}}\in V_{h}^{\pm}. We let 𝐯h=𝐮h+τ𝐰^h\mathbf{v}_{h}=\mathbf{u}_{h}+\tau\widehat{\mathbf{w}}_{h} for some τ>0\tau>0 and qh=phq_{h}=p_{h}. Using the definition of the form 𝒜\mathcal{A} and (3.18), we calculate

𝒜(𝐮h,ph;𝐯h,qh)=ah(𝐮h,𝐮h)+τah(𝐮h,𝐰^h)+τbh(𝐰^h,ph)+bp(ph,ph)12ah(𝐮h,𝐮h)τ22ah(𝐰^h,𝐰^h)+min{τ,1}c(μ1phΩh2+μ+1ph+Ωh+2),\begin{split}\mathcal{A}(\mathbf{u}_{h}&,p_{h};\mathbf{v}_{h},q_{h})=a_{h}(\mathbf{u}_{h},\mathbf{u}_{h})+\tau a_{h}(\mathbf{u}_{h},\widehat{\mathbf{w}}_{h})+\tau b_{h}(\widehat{\mathbf{w}}_{h},p_{h})+b_{p}(p_{h},p_{h})\\ &\geq\frac{1}{2}a_{h}(\mathbf{u}_{h},\mathbf{u}_{h})-\frac{\tau^{2}}{2}a_{h}(\widehat{\mathbf{w}}_{h},\widehat{\mathbf{w}}_{h})+\min\{\tau,1\}\,c\,\left(\mu_{-}^{-1}\|p_{h}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|p_{h}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right),\end{split} (3.20)

where we used the Cauchy-Schwartz inequality:

τah(𝐮h,𝐰^h)τ|ah(𝐮h,𝐮h)|12|ah(𝐰^h,𝐰^h)|1212ah(𝐮h,𝐮h)+τ22ah(𝐰^h,𝐰^h).\tau a_{h}(\mathbf{u}_{h},\widehat{\mathbf{w}}_{h})\leq\tau|a_{h}(\mathbf{u}_{h},\mathbf{u}_{h})|^{\frac{1}{2}}|a_{h}(\widehat{\mathbf{w}}_{h},\widehat{\mathbf{w}}_{h})|^{\frac{1}{2}}\leq\frac{1}{2}a_{h}(\mathbf{u}_{h},\mathbf{u}_{h})+\frac{\tau^{2}}{2}a_{h}(\widehat{\mathbf{w}}_{h},\widehat{\mathbf{w}}_{h}).

Note that it holds [𝐰^h𝐧]=0[\widehat{\mathbf{w}}_{h}\cdot\mathbf{n}]=0 and [𝐏𝐰^h]=0[\mathbf{P}\widehat{\mathbf{w}}_{h}]=0 on Γ\Gamma. Since all Nitsche and ‘friction’ terms in ah(𝐰^h,𝐰^h)a_{h}(\widehat{\mathbf{w}}_{h},\widehat{\mathbf{w}}_{h}) vanish, the results of the Lemma 3.3 and estimate (3.19) imply the upper bound

ah(𝐰^h,𝐰^h)Cμ12𝐰^hΩ2C(μ1phΩh2+μ+1ph+Ωh+2).a_{h}(\widehat{\mathbf{w}}_{h},\widehat{\mathbf{w}}_{h})\leq C\,\|\mu^{\frac{1}{2}}\nabla\widehat{\mathbf{w}}_{h}\|_{\Omega}^{2}\leq C\,\left(\mu_{-}^{-1}\|p_{h}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|p_{h}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right).

Using it in (3.20) and choosing τ>0\tau>0 small enough, but independent of all problem parameters, leads us to the lower bound

𝒜(𝐮h,ph;𝐯h,qh)12ah(𝐮h,𝐮h)+c(μ1phΩh2+μ+1ph+Ωh+2)c𝐮h,ph2,\mathcal{A}(\mathbf{u}_{h},p_{h};\mathbf{v}_{h},q_{h})\geq\frac{1}{2}a_{h}(\mathbf{u}_{h},\mathbf{u}_{h})+c\,\left(\mu_{-}^{-1}\|p_{h}^{-}\|_{{\Omega}_{h}^{-}}^{2}+\mu_{+}^{-1}\|p_{h}^{+}\|_{{\Omega}_{h}^{+}}^{2}\right)\geq c\,\|\mathbf{u}_{h},p_{h}\|^{2}, (3.21)

with some c>0c>0 independent of μ±\mu_{\pm}, hh, and the position of Γ\Gamma in the background mesh. For the last inequality, we used (3.11).

Finally, by the construction of 𝐯h\mathbf{v}_{h} and thanks to (3.19) it is straightforward to see the upper bound:

𝐯h,qhc𝐮h,ph.\|\mathbf{v}_{h},q_{h}\|\leq c\,\|\mathbf{u}_{h},p_{h}\|.

This combined with (3.21) proves the theorem.
\square

The stability of the finite element solution in the composite norm immediately follows from (3.17) and Theorem 3.4:

𝐮h,phCsup{𝐯h,qh}Vh±×Qh±|rh(𝐯h)|𝐯h,qh,\|\mathbf{u}_{h},p_{h}\|\leq C\,\sup_{\{\mathbf{v}_{h},q_{h}\}\in V^{\pm}_{h}\times Q^{\pm}_{h}}\frac{|r_{h}(\mathbf{v}_{h})|}{\|\mathbf{v}_{h},q_{h}\|},

where on the right-hand side we see the dual norm of the functional rhr_{h} and constant CC, which is independent of the mesh size hh, the ratio of the viscosity coefficients μ±\mu_{\pm}, and the position of Γ\Gamma in the background mesh.

4 Error analysis

The stability result shown in Sec. 3 and interpolation properties of finite elements enable us to prove optimal order convergence with uniformly bounded constants.

We assume in this section that the solution to problem (2.1)–(2.8) is piecewise smooth in the following sense: 𝐮±Hk+2(Ω±)d\mathbf{u}^{\pm}\in H^{k+2}(\Omega^{\pm})^{d} and p±Hk+1(Ω±)p^{\pm}\in H^{k+1}(\Omega^{\pm}). For the sake of notation, we define the following semi-norm

𝐮,p=(μ|𝐮|Hk+2(Ω)2+μ+|𝐮+|Hk+2(Ω+)2+μ1|p|Hk+1(Ω)2+μ+1|p+|Hk+1(Ω+)2)12.\|\mathbf{u},p\|_{\ast}=\left(\mu_{-}|\mathbf{u}^{-}|_{H^{k+2}(\Omega^{-})}^{2}+\mu_{+}|\mathbf{u}^{+}|_{H^{k+2}(\Omega^{+})}^{2}+\mu_{-}^{-1}|p^{-}|_{H^{k+1}(\Omega^{-})}^{2}+\mu_{+}^{-1}|p^{+}|_{H^{k+1}(\Omega^{+})}^{2}\right)^{\frac{1}{2}}. (4.1)

Since we assume Γ\Gamma to be at least Lipschitz, there exist extensions 𝐮±\mathcal{E}\mathbf{u}^{\pm} and p±\mathcal{E}p^{\pm} of the solution from each phase to d\mathbb{R}^{d} such that 𝐮±Hk+2(d)3\mathcal{E}\mathbf{u}^{\pm}\in H^{k+2}(\mathbb{R}^{d})^{3}, p±Hk+1(d)\mathcal{E}p^{\pm}\in H^{k+1}(\mathbb{R}^{d}). The corresponding norms are bounded as follows

𝐮±Hk+2(d)C𝐮±Hk+2(Ω±),p±Hk+1(d)Cp±Hk+1(Ω±)\|\mathcal{E}\mathbf{u}^{\pm}\|_{H^{k+2}(\mathbb{R}^{d})}\leq C\,\|\mathbf{u}^{\pm}\|_{H^{k+2}(\Omega^{\pm})},\quad\|\mathcal{E}p^{\pm}\|_{H^{k+1}(\mathbb{R}^{d})}\leq C\,\|p^{\pm}\|_{H^{k+1}(\Omega^{\pm})} (4.2)

See [41]. Denote by Ih𝐮±I_{h}\mathbf{u}^{\pm} the Scott-Zhang interpolants of 𝐮±\mathcal{E}\mathbf{u}^{\pm} onto Vh±V^{\pm}_{h} and Ih𝐮:={Ih𝐮,Ih𝐮+}I_{h}\mathbf{u}:=\{I_{h}\mathbf{u}^{-},I_{h}\mathbf{u}^{+}\}. Same notation Ihp±I_{h}p^{\pm} will be used for the Scott-Zhang interpolants of p±\mathcal{E}p^{\pm} onto Qh±Q^{\pm}_{h}. For the pressure interpolants, we can always satisfy the orthogonality condition of Qh±Q^{\pm}_{h} by choosing a suitable additive constant in the definition of pp.

Applying trace inequality (3.12), standard approximation properties of IhI_{h}, and bounds (4.2), one obtains the approximation property in the product norm:

𝐮Ih𝐮,pIhpChk+1𝐮,p.\|\mathbf{u}-I_{h}\mathbf{u},p-I_{h}p\|\leq C\,h^{k+1}\|\mathbf{u},p\|_{\ast}. (4.3)

The following continuity result is the immediate consequence of the Cauchy–Schwatz inequality:

𝒜(𝐮Ih𝐮,pIhp;𝐯h,qh)C𝐮Ih𝐮,pIhp𝐯h,qh+|{μ𝐧T𝐃(𝐯h)𝐧},[(𝐮Ih𝐮)𝐧]Γ+{μ𝐧T𝐃(𝐮Ih𝐮)𝐧},[𝐯h𝐧]Γ|,\mathcal{A}(\mathbf{u}-I_{h}\mathbf{u},p-I_{h}p;\,\mathbf{v}_{h},q_{h})\leq C\,\|\mathbf{u}-I_{h}\mathbf{u},p-I_{h}p\|\|\mathbf{v}_{h},q_{h}\|\\ +|\langle\{\mu\mathbf{n}^{T}\mathbf{D}(\mathbf{v}_{h})\mathbf{n}\},[(\mathbf{u}-I_{h}\mathbf{u})\cdot\mathbf{n}]\rangle_{\Gamma}+\langle\{\mu\mathbf{n}^{T}\mathbf{D}(\mathbf{u}-I_{h}\mathbf{u})\mathbf{n}\},[\mathbf{v}_{h}\cdot\mathbf{n}]\rangle_{\Gamma}|, (4.4)

for all {𝐯h,qh}Vh±×Qh±\{\mathbf{v}_{h},q_{h}\}\in V_{h}^{\pm}\times Q_{h}^{\pm}. The last term on the right-hand side in (4.4) needs a special treatment. Applying the Cauchy–Schwatz, inequalities (3.12) and (3.13), FE inverse inequalities and approximation properties of the interpolants, we get

|{μ𝐧T𝐃(𝐯h)𝐧},[(𝐮Ih𝐮)𝐧]Γ|Chk+1𝐮,0𝐯h,0,|{μ𝐧T𝐃(𝐮Ih𝐮)𝐧},[𝐯h𝐧]Γ|Chk+1𝐮,0𝐯h,0.\begin{split}|\langle\{\mu\mathbf{n}^{T}\mathbf{D}(\mathbf{v}_{h})\mathbf{n}\},[(\mathbf{u}-I_{h}\mathbf{u})\cdot\mathbf{n}]\rangle_{\Gamma}|\leq C\,h^{k+1}\|\mathbf{u},0\|_{\ast}\|\mathbf{v}_{h},0\|,\\ |\langle\{\mu\mathbf{n}^{T}\mathbf{D}(\mathbf{u}-I_{h}\mathbf{u})\mathbf{n}\},[\mathbf{v}_{h}\cdot\mathbf{n}]\rangle_{\Gamma}|\leq C\,h^{k+1}\|\mathbf{u},0\|_{\ast}\|\mathbf{v}_{h},0\|.\end{split} (4.5)

The consistency of the stabilization term is formalized in the estimates that follow from [33, lemma 5.5]: For pHk+1(Ω)p^{-}\in H^{k+1}(\Omega^{-}), 𝐮Hk+2(Ω)d\mathbf{u}^{-}\in H^{k+2}(\Omega^{-})^{d}, it holds

Jh(p,p)Ch2k+2pHk+1(Ω)2,𝐉h(𝐮,𝐮)Ch2k+2𝐮Hk+2(Ω)2.J_{h}^{-}(p^{-},p^{-})\leq C\,h^{2k+2}\|p^{-}\|_{H^{k+1}(\Omega^{-})}^{2},\quad\mathbf{J}_{h}^{-}(\mathbf{u}^{-},\mathbf{u}^{-})\leq C\,h^{2k+2}\|\mathbf{u}^{-}\|_{H^{k+2}(\Omega^{-})}^{2}. (4.6)

The above estimates and the stability of the interpolants also imply

Jh(pIhp,pIhp)Ch2k+2|p|Hk+1(Ω)2,𝐉h(𝐮Ih𝐮,𝐮Ih𝐮)Ch2k+2|𝐮|Hk+2(Ω)2.\begin{split}J_{h}^{-}(p^{-}-I_{h}p^{-},p^{-}-I_{h}p^{-})&\leq C\,h^{2k+2}{|p^{-}|}_{H^{k+1}(\Omega^{-})}^{2},\\ \mathbf{J}_{h}^{-}(\mathbf{u}^{-}-I_{h}\mathbf{u}^{-},\mathbf{u}^{-}-I_{h}\mathbf{u}^{-})&\leq C\,h^{2k+2}{|\mathbf{u}^{-}|}_{H^{k+2}(\Omega^{-})}^{2}.\end{split} (4.7)

Similar estimates to (4.6), (4.7) hold for Jh+J_{h}^{+} and 𝐉h+\mathbf{J}_{h}^{+} with p+Hk+1(Ω+)p^{+}\in H^{k+1}(\Omega^{+}), 𝐮+Hk+2(Ω+)d\mathbf{u}^{+}\in H^{k+2}(\Omega^{+})^{d}, which can be combined with suitable weights to yield

bp(pIhp,pIhp)+ap(𝐮Ih𝐮,𝐮Ih𝐮)Ch2k+2𝐮,p2.b_{p}(p-I_{h}p,p-I_{h}p)+a_{p}(\mathbf{u}-I_{h}\mathbf{u},\mathbf{u}-I_{h}\mathbf{u})\leq C\,h^{2k+2}\|\mathbf{u},p\|_{\ast}^{2}. (4.8)

Denote the error functions by 𝐞u=𝐮𝐮h\mathbf{e}_{u}=\mathcal{E}\mathbf{u}-\mathbf{u}_{h} and ep=pphe_{p}=\mathcal{E}p-p_{h}. Galerkin orthogonality holds up to the consistency terms

𝒜(𝐞u,ep;𝐯h,qh)=bp(pIhp,qh)+ap(𝐮Ih𝐮,𝐯h),\mathcal{A}(\mathbf{e}_{u},e_{p};\,\mathbf{v}_{h},q_{h})=b_{p}(p-I_{h}p,q_{h})+a_{p}(\mathbf{u}-I_{h}\mathbf{u},\mathbf{v}_{h}), (4.9)

for all 𝐯hVh±\mathbf{v}_{h}\in V_{h}^{\pm} and qhQh±q_{h}\in Q_{h}^{\pm}.

The result of Lemma 3.2, (4.8) and the trivial bound bp(qh,qh)C𝟎,qh2b_{p}(q_{h},q_{h})\leq C\|\mathbf{0},q_{h}\|^{2} imply the following estimate for the consistency term on the right-hand side of (4.9):

|bp(pIhp,qh)+ap(𝐮Ih𝐮,𝐯h)||bp(pIhp,pIhp)|12|bp(qh,qh)|12+|ap(𝐮Ih𝐮,𝐮Ih𝐮)|12|ap(𝐯h,𝐯h)|12Chk+1𝐮,p𝐯h,qh,\begin{split}|b_{p}(p&-I_{h}p,q_{h})+a_{p}(\mathbf{u}-I_{h}\mathbf{u},\mathbf{v}_{h})|\\ &\leq|b_{p}(p-I_{h}p,p-I_{h}p)|^{\frac{1}{2}}|b_{p}(q_{h},q_{h})|^{\frac{1}{2}}+|a_{p}(\mathbf{u}-I_{h}\mathbf{u},\mathbf{u}-I_{h}\mathbf{u})|^{\frac{1}{2}}|a_{p}(\mathbf{v}_{h},\mathbf{v}_{h})|^{\frac{1}{2}}\\ &\leq C\,h^{k+1}\|\mathbf{u},p\|_{\ast}\|\mathbf{v}_{h},q_{h}\|,\end{split} (4.10)

The optimal order error estimate in the energy norm is given in the next theorem.

Theorem 4.1

For sufficiently regular 𝐮,p\mathbf{u},p solving problem (2.1)–(2.8) and 𝐮h,ph\mathbf{u}_{h},p_{h} solving problem (2.20), the following error estimate holds:

𝐮𝐮h,pphChk+1𝐮,p,\|\mathbf{u}-\mathbf{u}_{h},p-p_{h}\|\leq\,Ch^{k+1}\|\mathbf{u},p\|_{\ast}, (4.11)

with a constant CC independent of hh, the values of viscosities μ±\mu_{\pm}, slip coefficient f0f\geq 0, and the position of Γ\Gamma with respect to the triangulation 𝒯h\mathcal{T}_{h}.

Proof:

This result follows by standard arguments (see, for example, section 2.3 in [17]) from the inf-sup stability results of Theorem 3.4, continuity estimates (4.4) and (4.5), Galerkin orthogonality and consistency (4.9)–(4.10), and approximation properties (4.3). \square

Remark 4.2

If we consider using isoparametric elements to handle numerical integration over cut cells (see section 2.2.1), then the Sobolev seminorms in the definition of 𝐮,p\|\mathbf{u},p\|_{\ast} on the right-hand side in (4.11) should be replaced by the full Sobolev norms of the same order; see the error analysis of the isoparametric unfitted FEM in [34].

5 Numerical results

The aim of the numerical results collected in this section is twofold: (i) support the theoretical results presented in Sec. 4 and (ii) provide evidence of the robustness of the proposed finite element approach with respect to the contrast in viscosity, slip coefficient value, and position of the interface relative to the fixed computational mesh.

For the averages in (2.17)-(2.18), we set α=0\alpha=0 and β=1\beta=1 for all the numerical experiments since we have μμ+\mu_{-}\leq\mu_{+}. Recall that this is the choice for the analysis carried out in Sec. 3 and 4. In addition, we set γ𝐮±=0.05\gamma^{\pm}_{\mathbf{u}}=0.05, γp±=0.05\gamma_{p}^{\pm}=0.05, and γ=40\gamma=40. The value of all other parameters will depend on the specific test.

For all the results presented below, we will report the L2L^{2} error and a weighted H1H^{1} error for the velocity defined as

(2μD(𝐮𝐮h)L2(Ω)2+2μ+D(𝐮𝐮h+)L2(Ω+)2)12,\left(2\mu_{-}\|D(\mathbf{u}-\mathbf{u}_{h}^{-})\|_{L^{2}(\Omega^{-})}^{2}+2\mu_{+}\|D(\mathbf{u}-\mathbf{u}_{h}^{+})\|_{L^{2}(\Omega^{+})}^{2}\right)^{\frac{1}{2}}, (5.1)

and a weighted L2L^{2} error for the pressure defined as

(μ1pphL2(Ω)2+μ+1pph+L2(Ω+)2)12.\left(\mu^{-1}_{-}\|p-p_{h}^{-}\|_{L^{2}(\Omega^{-})}^{2}+\mu^{-1}_{+}\|p-p_{h}^{+}\|_{L^{2}(\Omega^{+})}^{2}\right)^{\frac{1}{2}}. (5.2)

5.1.   2D tests

First, we perform a series of tests in 2D. For all the tests, the domain Ω\Omega is square [1,1]×[1,1][-1,1]\times[-1,1] and interface Γ\Gamma is a circle of radius 2/32/3 centered at 𝐜=(c1,c2)\mathbf{c}=(c_{1},c_{2}). Let (x,y)=(x~c1,y~c2)(x,y)=(\tilde{x}-c_{1},\tilde{y}-c_{2}), (x~,y~)Ω(\tilde{x},\tilde{y})\in\Omega. The exact solution we consider is given by:

p\displaystyle p^{-} =(xc1)3,p+=(xc1)312,\displaystyle=(x-c_{1})^{3},\hskip 68.28644ptp^{+}=(x-c_{1})^{3}-\frac{1}{2}, (5.3)
𝐮\displaystyle\mathbf{u}^{-} =g(x,y)[yx],𝐮+=g+(x,y)[yx],\displaystyle=g^{-}(x,y)\left[\begin{array}[]{c}-y\\ x\end{array}\right],\qquad\mathbf{u}^{+}=g^{+}(x,y)\left[\begin{array}[]{c}-y\\ x\end{array}\right], (5.8)

where

g+(x,y)=34μ+(x2+y2),g(x,y)=34μ(x2+y2)+μμ+3μ+μ+1f.\displaystyle g^{+}(x,y)=\frac{3}{4\mu_{+}}(x^{2}+y^{2}),\quad g^{-}(x,y)=\frac{3}{4\mu_{-}}(x^{2}+y^{2})+\frac{\mu_{-}-\mu_{+}}{3\mu_{+}\mu_{-}}+\frac{1}{f}.

The forcing terms 𝐟\mathbf{f}^{-} and 𝐟+\mathbf{f}^{+} are found by plugging the above solution in (2.1). The surface tension coefficient σ\sigma is set to -0.5. The value of the other physical parameters will be specified for each test.

We impose a Dirichlet condition (2.3) on the entire boundary, where function 𝐠\mathbf{g} is found from 𝐮+\mathbf{u}^{+} in (5.8).

Spatial convergence. First, we check the spatial accuracy of the finite element method described in Sec. 2.2. The aim is to validate our implementation of the method and support the theoretical findings in Sec. 4. For this purpose, we consider exact solution (5.3)-(5.8) with 𝐜=𝟎\mathbf{c}=\boldsymbol{0} (i.e., interface Γ\Gamma is a circle centered at the origin of the axes), viscosities μ=1\mu_{-}=1 and μ+=10\mu_{+}=10, and f=10f=10.

We consider structured meshes of quads with six levels of refinement. The initial triangulation has a mesh size h=1/2h=1/2 and all the other meshes are obtained by halving hh till h=1/128h=1/128. We choose to use finite element pairs 𝐐2Q1\mathbf{Q}_{2}-Q_{1}. Fig. 2 shows the velocity vectors colored with the velocity magnitude and the pressure computed with mesh h=1/128h=1/128. Fig. 3 shows the L2L^{2} error and weighted H1H^{1} error (5.1) for the velocity and weighted L2L^{2} error (5.2) for the pressure against the mesh size hh. For the range of mesh sizes under consideration, we observe close to cubic convergence in the L2L^{2} norm for the velocity and quadratic convergence in the weighted L2L^{2} norm for the pressure and in the weighted H1H^{1} norm for the velocity.

Refer to caption
Refer to caption
Figure 2: Approximation of exact solution (5.3)-(5.8) for 𝐜=𝟎\mathbf{c}=\boldsymbol{0}, μ=1\mu_{-}=1, μ+=10\mu_{+}=10, and f=10f=10, computed with mesh h=1/128h=1/128: velocity vectors colored with the velocity magnitude (left) and pressure (right).
Refer to caption
Figure 3: 2D test with 𝐜=𝟎\mathbf{c}=\boldsymbol{0}, μ=1\mu_{-}=1, μ+=10\mu_{+}=10, and f=10f=10: L2L^{2} error and weighted H1H^{1} error (5.1) for the velocity and weighted L2L^{2} error (5.2) for the pressure against the mesh size hh.

Robustness with respect to the viscosity contrast. As mentioned in Sec. 1, the case of high contrast for the viscosities in a two-phase problem is especially challenging from the numerical point of view. To test the robustness of our approach, we consider exact solution (5.3)-(5.8) and fix μ=1\mu_{-}=1, while we let μ+\mu_{+} vary from 1 to 10810^{8}. We set 𝐜=𝟎\mathbf{c}=\boldsymbol{0} and f=10f=10.

We consider one of the meshes adopted for the previous sets of simulations (with h=1/64h=1/64) and use again 𝐐2Q1\mathbf{Q}_{2}-Q_{1} finite elements. Fig. 4 (left) shows the L2L^{2} error and weighted H1H^{1} error (5.1) for the velocity and weighted L2L^{2} error (5.2) for the pressure against the value of μ+\mu_{+}. We observe that all the errors quickly reach a plateau as the μ+/μ\mu_{+}/\mu_{-} ratio increases, after initially decreasing. These results show that our approach is substantially robust with respect to the viscosity contrast μ+/μ\mu_{+}/\mu_{-}.

Refer to caption
Refer to caption
Figure 4: 2D test with 𝐜=𝟎\mathbf{c}=\boldsymbol{0} and μ=1\mu_{-}=1: L2L^{2} error and weighted H1H^{1} error (5.1) for the velocity and weighted L2L^{2} error (5.2) for the pressure against the value of μ+\mu_{+} (left) and against the value of the slip coefficient ff (right).

Robustness with respect to the slip coefficient. For the next set of simulations, we consider exact solution (5.3)-(5.8) and let the slip coefficient ff in (2.6)-(2.7) vary from 1/256 to 256. Notice that the larger ff becomes, the closer the two-phase problem gets to the homogeneous model. The other parameters are set as follows: 𝐜=𝟎\mathbf{c}=\boldsymbol{0}, μ=1\mu_{-}=1, and μ+=10\mu_{+}=10.

We consider again the structured mesh with mesh size h=1/64h=1/64 and 𝐐2Q1\mathbf{Q}_{2}-Q_{1} finite elements. Fig. 4 (right) shows the L2L^{2} error and weighted H1H^{1} error (5.1) for the velocity scaled by the H3H^{3} norm of 𝐮\mathbf{u} and weighted L2L^{2} error (5.2) for the pressure against the value of ff. We observe that the scaled weighted H1H^{1} error for the velocity does not vary substantially as ff varies, while the other two errors increase as ff decreases. When ff goes to zero, the external phase loses its control over tangential motions in the internal fluid on Γ\Gamma, thus allowing for purely rigid rotations in the perfectly circular Ω\Omega^{-}; see the definition of 𝐮\mathbf{u}^{-} in (5.8). While the seminorm 𝐮,p\|\mathbf{u},p\|_{\ast} appearing on the right-hand side in (4.11) remains the same, the full Sobolev norm 𝐮k+2\|\mathbf{u}^{-}\|_{k+2} grows as O(f1)O(f^{-1}). Since we use isoparametric unfitted FE, we indeed see the uniform error bound with respect to f0f\to 0 if we normalize the error by the full Sobolev norm of the solution. See Remark 4.2. Summarizing, the approach proves to be robust in the energy norm as the physical parameter ff varies.

Robustness with respect to the position of the interface. We conclude the series of the 2D tests with a set of simulations aimed at checking that our approach is not sensitive to the position of the interface with respect to the background mesh. For this purpose, we vary the center of the circle that represents Γ\Gamma:

𝐜=(c1,c2),c1=h20kcos(k10π),c2=h20ksin(k10π),k=1,2,,20,\mathbf{c}=(c_{1},c_{2}),~{}c_{1}=\frac{h}{20}k\cos\left(\frac{k}{10}\pi\right),~{}c_{2}=\frac{h}{20}k\sin\left(\frac{k}{10}\pi\right),\quad k=1,2,...,20, (5.9)

where hh is the mesh size. We set μ=1\mu_{-}=1, μ+=10\mu_{+}=10 and f=10f=10.

Just like the two previous sets of simulations, we consider the mesh with mesh size h=1/64h=1/64 and the 𝐐2Q1\mathbf{Q}_{2}-Q_{1} pair. Fig. 5 shows the L2L^{2} error and weighted H1H^{1} error (5.1) for the velocity and weighted L2L^{2} error (5.2) for the pressure against the value of kk in (5.9). We see that all the errors are fairly insensitive to the position of Γ\Gamma with respect to the background mesh, indicating robustness.

Refer to caption
Figure 5: 2D test with 𝐜=𝟎\mathbf{c}=\boldsymbol{0}, μ=1\mu_{-}=1, μ+=10\mu_{+}=10, and f=10f=10: L2L^{2} error and weighted H1H^{1} error (5.1) for the velocity and weighted L2L^{2} error (5.2) for the pressure against the value of kk in (5.9).

5.2.   3D tests

For the 3D tests, the domain Ω\Omega is cube [1.5,1.5]×[1.5,1.5]×[1.5,1.5][-1.5,1.5]\times[-1.5,1.5]\times[-1.5,1.5] and interface Γ\Gamma is the unit sphere, centered at origin of the axes. We characterize Γ\Gamma as the zero level set of function ϕ(𝐱)=𝐱221\phi(\mathbf{x})=||\mathbf{x}||^{2}_{2}-1, with 𝐱=(x,y,z)\mathbf{x}=(x,y,z). We consider the exact solution given by:

p+\displaystyle p^{+} =12x,p=x,\displaystyle=\frac{1}{2}x,\hskip 79.6678ptp^{-}=x, (5.10)
𝐮\displaystyle\mathbf{u}^{-} =g(x,y)[yx0],𝐮+=g+(x,y)[yx0],\displaystyle=g^{-}(x,y)\left[\begin{array}[]{c}-y\\ x\\ 0\end{array}\right],\qquad\mathbf{u}^{+}=g^{+}(x,y)\left[\begin{array}[]{c}-y\\ x\\ 0\end{array}\right], (5.17)

where

g+(x,y)=12μ+(x2+y2+z2),\displaystyle g^{+}(x,y)=\frac{1}{2\mu_{+}}(x^{2}+y^{2}+z^{2}),
g(x,y)=12μ(x2+y2+z2)+μ2μ+μμ+2μ+μ.\displaystyle g^{-}(x,y)=\frac{1}{2\mu_{-}}(x^{2}+y^{2}+z^{2})+\frac{\mu_{-}-2\mu_{+}\mu_{-}-\mu_{+}}{2\mu_{+}\mu_{-}}.

The forcing terms 𝐟\mathbf{f}^{-} and 𝐟+\mathbf{f}^{+} are found by plugging the above solution in in (2.1). We set f=1f=1, μ=1\mu_{-}=1, and μ+=100\mu_{+}=100. The surface tension coefficient is set to σ=0.5x\sigma=-0.5x.

Just like for the 2D tests, we impose a Dirichlet condition (2.3) on the entire boundary, where function 𝐠\mathbf{g} is found from 𝐮+\mathbf{u}^{+} in (5.17).

To verify our implementation of the finite element method in Sec. 2.2 in three dimensions and to further corroborate the results in Sec. 4, we consider structured meshes of tetrahedra with four levels of refinement. The initial triangulation has mesh size h=1h=1 and all the other meshes are obtained by halving hh till h=0.125h=0.125. All the meshes feature a local one-level refinement near the corners of Ω\Omega. We choose to use finite element pair 𝐏2P1\mathbf{P}_{2}-P_{1}. Fig. 6 shows a visualization of the solution computed with mesh h=0.125h=0.125. Fig. 7 shows the L2L^{2} error and weighted H1H^{1} error (5.1) for the velocity and weighted L2L^{2} error (5.2) for the pressure against the mesh size hh. For the small range of mesh sizes that we consider, we observe almost cubic convergence in the L2L^{2} norm for the velocity, quadratic convergence in the weighted L2L^{2} norm for the pressure and in the weighted H1H^{1} norm for the velocity.

Refer to caption
Refer to caption
Figure 6: Approximation of exact solution (5.10)-(5.17) computed with the mesh with h=0.125h=0.125: velocity vectors colored with the velocity magnitude on the xzxz-section of Ω+\Omega^{+} and in Ω\Omega^{-} (left) and pressure in Ω\Omega^{-} and half Ω+\Omega^{+} (right).
Refer to caption
Figure 7: 3D test: L2L^{2} error and weighted H1H^{1} error (5.1) for the velocity and weighted L2L^{2} error (5.2) for the pressure against the mesh size hh.

6 Conclusions

In this paper, we focused on the two-phase Stokes problem with slip between phases, which has received much less attention than its homogeneous counterpart (i.e. no slip between the phases). For the numerical approximation of this problem, we chose an isoparametric unfitted finite element approach of the CutFEM or Nitsche-XFEM family. For the unfitted generalized Taylor–Hood finite element pair 𝐏k+1Pk\mathbf{P}_{k+1}-P_{k}, we prove stability and optimal error estimates, which follow from an inf-sup stability property. We show that the inf-sup stability constant is independent of the viscosity ratio, slip coefficient, position of the interface with respect to the background mesh and, of course, mesh size.

The 2D and 3D numerical experiments we used to test our approach feature an exact solution. They have been designed to support the theoretical findings and demonstrate the robustness of our approach for a wide range of physical parameter values. Finally, we show that our unfitted approach is insensitive to the position of the interface between the two phases with respect to the fixed computational mesh.

Acknowledgments

This work was partially supported by US National Science Foundation (NSF) through grant DMS-1953535. M.O. also acknowledges the support from NSF through DMS-2011444. A.Q. also acknowledges the support from NSF through DMS-1620384.

References

  • [1] Netgen/NGSolve. https://ngsolve.org/.
  • [2] ngsxfem. https://github.com/ngsxfem/ngsxfem/tree/49205a1ae637771a0ed56d4993ce99008f3a00e0.
  • [3] Slimane Adjerid, Nabil Chaabane, and Tao Lin. An immersed discontinuous finite element method for stokes interface problems. Computer Methods in Applied Mechanics and Engineering, 293:170 – 190, 2015.
  • [4] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 30(1):139–165, 1998.
  • [5] S. Basting and M. Weismann. A hybrid level set/front tracking approach for finite element simulations of two-phase flows. Journal of Computational and Applied Mathematics, 270:471–483, 2014.
  • [6] Steffen Basting, Annalisa Quaini, Suncica Canic, and Roland Glowinski. Extended ALE method for fluid-structure interaction problems with large structural displacements. Journal of Computational Physics, 331:312 – 336, 2017.
  • [7] Michel Bercovier and Olivier Pironneau. Error estimates for finite element method solution of the stokes problem in the primitive variables. Numerische Mathematik, 33(2):211–224, 1979.
  • [8] S.P. Bordas, E. Burman, M.G. Larson, and eds. M. A. Olshanskii. Geometrically Unfitted Finite Element Methods and Applications, volume Lecture Notes in Computational Science and Engineering 121. Springer, Berlin, 2018.
  • [9] Susanne C Brenner. Korn’s inequalities for piecewise H1 vector fields. Mathematics of Computation, pages 1067–1087, 2004.
  • [10] E. Burman, G. Delay, and A. Ern. An unfitted hybrid high-order method for the Stokes interface problem. hal-02519896v3, 2020.
  • [11] Erik Burman. Ghost penalty. C. R. Math. Acad. Sci. Paris, 348(21-22):1217–1220, 2010.
  • [12] Erik Burman, Susanne Claus, Peter Hansbo, Mats G Larson, and André Massing. Cutfem: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7):472–501, 2015.
  • [13] Ernesto Cáceres, Johnny Guzmán, and Maxim Olshanskii. New stability estimates for an unfitted finite element method for two-phase stokes problem. SIAM Journal on Numerical Analysis, 58(4):2165–2192, 2020.
  • [14] J. Chessa and T. Belytschko. An extended finite element method for two-phase fluids. ASME Journal of Applied Mechanics, 70:10–17, 2003.
  • [15] Susanne Claus and Pierre Kerfriden. A cutfem method for two-phase flow problems. Computer Methods in Applied Mechanics and Engineering, 348:185 – 206, 2019.
  • [16] Jean Donea, Antonio Huerta, J.-Ph. Ponthot, and A. Rodríguez-Ferran. Arbitrary Lagrangian–Eulerian Methods, chapter 14. John Wiley & Sons Ltd.,, 2004.
  • [17] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159. Springer, New York, 2013.
  • [18] Thomas Frachon and Sara Zahedi. A cut finite element method for incompressible two-phase Navier–Stokes flows. Journal of Computational Physics, 384:77 – 98, 2019.
  • [19] T. P. Fries. The intrinsic XFEM for two-fluid flows. International Journal for Numerical Methods in Fluids, 60(4):437–471, 2009.
  • [20] P. Gangl, K. Sturm, M. Neunteufel, and J. Schöberl. Fully and semi-automated shape differentiation in NGSolve. arXiv:2004.06783, 2020.
  • [21] S. Groß, V. Reichelt, and A. Reusken. A finite element based level set method for two-phase incompressible flows. Comp. Visual. Sci., 9:239–257, 2006.
  • [22] Johnny Guzmán and Maxim Olshanskii. Inf-sup stability of geometrically unfitted stokes finite elements. Mathematics of Computation, 87(313):2091–2112, 2018.
  • [23] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191:5537–5552, 2002.
  • [24] Peter Hansbo, Mats G. Larson, and Sara Zahedi. A cut finite element method for a Stokes interface problem. Applied Numerical Mathematics, 85:90 – 114, 2014.
  • [25] Jerzy Hapanowicz. Slip between the phases in two-phase water–oil flow in a horizontal pipe. International Journal of Multiphase Flow, 34(6):559 – 566, 2008.
  • [26] Mohammad R. Hashemi, Pavel B. Ryzhakov, and Riccardo Rossi. An enriched finite element/level-set method for simulating two-phase incompressible fluid flows with surface tension. Computer Methods in Applied Mechanics and Engineering, 370:113277, 2020.
  • [27] X. He, F. Song, and W. Deng. Stabilized nonconforming Nitsche’s extended finite element method for Stokes interface problems. https://arxiv.org/abs/1905.04844, 2019.
  • [28] David Jacqmin. Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling. Journal of Computational Physics, 155(1):96–127, October 1999.
  • [29] Mohammad J. Kermani and John M. Stockie. The effect of slip velocity on saturation for multiphase condensing mixtures in a pem fuel cell. International Journal of Hydrogen Energy, 36(20):13235 – 13240, 2011. 3rd Iranian Fuel Cell Seminar.
  • [30] Matthias Kirchhart, Sven Gross, and Arnold Reusken. Analysis of an XFEM discretization for Stokes interface problems. SIAM Journal on Scientific Computing, 38(2):A1019–A1043, 2016.
  • [31] Christoph Lehrenfeld. High order unfitted finite element methods on level set domains using isoparametric mappings. Computer Methods in Applied Mechanics and Engineering, 300:716–733, 2016.
  • [32] Christoph Lehrenfeld. A higher order isoparametric fictitious domain method for level set domains. In Stéphane P. A. Bordas, Erik Burman, Mats G. Larson, and Maxim A. Olshanskii, editors, Geometrically Unfitted Finite Element Methods and Applications, pages 65–92, Cham, 2017. Springer International Publishing.
  • [33] Christoph Lehrenfeld and Maxim Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: Mathematical Modelling and Numerical Analysis, 53(2):585–614, 2019.
  • [34] Christoph Lehrenfeld and Arnold Reusken. Analysis of a high-order unfitted finite element method for elliptic interface problems. IMA Journal of Numerical Analysis, 38(3):1351–1387, 2018.
  • [35] A Massing, M.G. Larson, A. Logg, and M.E. Rognes. A stabilized Nitsche overlapping mesh method for the Stokes problem. Numer. Math., 128:73 – 101, 2014.
  • [36] Nicolas Moës, John Dolbow, and Ted Belytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1):131–150, 1999.
  • [37] Maxim A Olshanskii and Arnold Reusken. Analysis of a Stokes interface problem. Numerische Mathematik, 103(1):129–149, 2006.
  • [38] Elin Olsson and Gunilla Kreiss. A conservative level set method for two phase flow. Journal of Computational Physics, 210(1):225 – 246, 2005.
  • [39] J. Preuß. Higher order unfitted isoparametric space-time FEM on moving domains. Master’s thesis, NAM, University of Göttingen, 2018.
  • [40] Henning Sauerland and Thomas-Peter Fries. The stable XFEM for two-phase flows. Computers & Fluids, 87:41 – 49, 2013. USNCCM Moving Boundaries.
  • [41] Elias M Stein. Singular integrals and differentiability properties of functions, volume 30. Princeton university press, 1970.
  • [42] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114(1):146 – 159, 1994.
  • [43] S O Unverdi and G Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics; (United States), 100, 3 1992.
  • [44] Henry von Wahl, Thomas Richter, and Christoph Lehrenfeld. An unfitted Eulerian finite element method for the time-dependent Stokes problem on moving domains. arXiv preprint arXiv:2002.02352, 2020.
  • [45] N. Wang and J. Chen. A nonconforming Nitsche’s extended finite element method for Stokes interface problems. J Sci Comput, 81:342–374, 2019.
  • [46] Qiuliang Wang and Jinru Chen. A new unfitted stabilized Nitsche’s finite element method for Stokes interface problems. Computers & Mathematics with Applications, 70(5):820 – 834, 2015.