This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

An ordinal analysis of a single stable ordinal

Toshiyasu Arai
Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, JAPAN
tosarai@ms.u-tokyo.ac.jp
Abstract

In this paper we give an ordinal analysis of a set theory extending π–ͺ𝖯​ℓr{\sf KP}\ell^{r} with an axiom stating that β€˜there exists a transitive set MM such that Mβ‰ΊΞ£1VM\prec_{\Sigma_{1}}V’.

1 Introduction

In this paper we give an ordinal analysis of a set theory π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V) extending π–ͺ𝖯​ℓr{\sf KP}\ell^{r} with an axiom stating that β€˜there exists a transitive set MM such that Mβ‰ΊΞ£1VM\prec_{\Sigma_{1}}V’. An ordinal analysis of an extension π–ͺ𝖯​i+(Mβ‰ΊΞ£1V){\sf KP}i+(M\prec_{\Sigma_{1}}V) is given in M. Rathjen[10].

Ξ£21βˆ’β€‹-CA+Ξ 11​-CA0\Sigma^{1-}_{2}\mbox{-CA}+\Pi^{1}_{1}\mbox{-CA}_{0} is a second order arithmetic obtained from Ξ 11​-CA0\Pi^{1}_{1}\mbox{-CA}_{0} by adding the Comprehension Axiom for parameter free Ξ£21\Sigma^{1}_{2}-formulas. It is easy to see that Ξ£21βˆ’β€‹-CA+Ξ 11​-CA0\Sigma^{1-}_{2}\mbox{-CA}+\Pi^{1}_{1}\mbox{-CA}_{0} is interpreted canonically to the set theory π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V).

To obtain an upper bound of the proof-theoretic ordinal of π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V), we employ operator controlled derivations introduced by W. Buchholz[7], in which a set theory π–ͺ𝖯​i{\sf KP}i for recursively inaccessible universes is analyzed proof-theoretically. Our proof is an extension of [3] in which a set theory π–ͺ𝖯​ΠN{\sf KP}\Pi_{N} of Ξ N\Pi_{N}-reflection is analyzed, while [3] is an extension of M. Rathjen’s analysis in [9] for Ξ 3\Pi_{3}-reflection. A new ingredient is a use of an explicit Mostowski collapsing as in [2].

The set theory π–ͺ𝖯​ℓr{\sf KP}\ell^{r} in JΓ€ger’s monograph[8] is obtained from the Kripke-Platek set theory π–ͺ𝖯​ω{\sf KP}\omega with the axiom of Infinity, cf. [6, 8], by deleting Ξ”0\Delta_{0}-Collection on the universe, restricting Foundation schema to Ξ”0\Delta_{0}-formulas, and adding an axiom (L​i​m)(Lim), βˆ€xβ€‹βˆƒy​(x∈y∧A​d​(y))\forall x\exists y(x\in y\land Ad(y)), stating that the universe is a limit of admissible sets, where A​dAd is a unary predicate such that A​d​(y)Ad(y) is intended to designate that β€˜yy is a (transitive and) admissible set’. Then a set theory π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V) extends π–ͺ𝖯​ℓr{\sf KP}\ell^{r} by adding an individual constant MM and the axioms for the constant MM: MM is non-empty, transitive and stable, Mβ‰ΊΞ£1VM\prec_{\Sigma_{1}}V for the universe VV: Mβ‰ βˆ…M\neq\emptyset, βˆ€x∈Mβ€‹βˆ€y∈x​(y∈M)\forall x\in M\forall y\in x(y\in M) and

φ​(u1,…,un)∧{u1,…,un}βŠ‚Mβ†’Ο†M​(u1,…,un)\varphi(u_{1},\ldots,u_{n})\land\{u_{1},\ldots,u_{n}\}\subset M\to\varphi^{M}(u_{1},\ldots,u_{n}) (1)

for each Ξ£1\Sigma_{1}-formula Ο†\varphi in the set-theoretic language.

Note that MM is a model of π–ͺ𝖯​ω{\sf KP}\omega and the axiom (L​i​m)(Lim), i.e., a model of π–ͺ𝖯​i{\sf KP}i.

For positive integers NN, let us define a subtheory TNT_{N} of π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V). The intended model of TNT_{N} is an admissible set MNM_{N} in which there is a set MM with Mβ‰ΊΞ£1MNM\prec_{\Sigma_{1}}M_{N}, and there are (Nβˆ’1)(N-1) admissible sets Mn​(0<n<N)M_{n}\,(0<n<N) above MM such that M∈M1βˆˆβ‹―βˆˆMNβˆ’1∈MNM\in M_{1}\in\cdots\in M_{N-1}\in M_{N}.

Definition 1.1

Let N>0N>0 be a positive integer. TNT_{N} denotes a set theory defined as follows. The language of TNT_{N} is {∈}βˆͺ{Mi}i<N\{\in\}\cup\{M_{i}\}_{i<N} with individual constants MiM_{i}. TNT_{N} is obtained from the set theory π–ͺ𝖯​ω+(Mβ‰ΊΞ£1V){\sf KP}\omega+(M\prec_{\Sigma_{1}}V) with M:=M0M:=M_{0} by adding axioms Mn∈Mn+1M_{n}\in M_{n+1} for n+1<Nn+1<N and axioms stating that each MiM_{i} is a transitive admissible set for n<Nn<N.

Proposition 1.2

For each Ξ£1\Sigma_{1}-formula ΞΈ\theta, if π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V)⊒θ{\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V)\vdash\theta, then there exists an NN such that TN⊒θT_{N}\vdash\theta.

Proof.  This is seen through a partial cut elimination and an asymmetric interpretation. Note that each axiom (1) is a Ξ 1\Pi_{1}-formula. β–‘\Box

In the following theorems, Ξ©=Ο‰1C​K\Omega=\omega_{1}^{CK} and ψΩ\psi_{\Omega} denotes a collapsing function such that ΟˆΞ©β€‹(Ξ±)<Ξ©\psi_{\Omega}(\alpha)<\Omega. π•Š\mathbb{S} is an ordinal term denoting a stable ordinal, and Ξ©π•Š+N\Omega_{\mathbb{S}+N} the NN-th admissible ordinal above π•Š\mathbb{S}. Our aim here is to show the following Theorem 1.3, where Ο‰0​(Ξ±)=Ξ±\omega_{0}(\alpha)=\alpha and Ο‰n+1​(Ξ±)=ωωn​(Ξ±)\omega_{n+1}(\alpha)=\omega^{\omega_{n}(\alpha)}.

Theorem 1.3

Suppose TN⊒θLΞ©T_{N}\vdash\theta^{L_{\Omega}} for a Ξ£1\Sigma_{1}-sentence ΞΈ\theta. Then we can find an n<Ο‰n<\omega such that for Ξ±=ΟˆΞ©β€‹(Ο‰n​(Ξ©π•Š+N+1))\alpha=\psi_{\Omega}(\omega_{n}(\Omega_{\mathbb{S}+N}+1)), Lα⊧θL_{\alpha}\models\theta holds.

Actually the bound is seen to be tight as the following Theorem 1.4 in [5] shows. O​TOT denotes a computable notation system of ordinals, and O​TNOT_{N} a restriction of O​TOT such that O​T=⋃0<N<Ο‰O​TNOT=\bigcup_{0<N<\omega}OT_{N} and ΟˆΞ©β€‹(Ξ΅Ξ©π•Š+N+1)\psi_{\Omega}(\varepsilon_{\Omega_{\mathbb{S}+N}+1}) denotes the order type of O​TN∩ΩOT_{N}\cap\Omega.

Theorem 1.4

Ξ£21βˆ’β€‹-CA+Ξ 11​-CA0\Sigma^{1-}_{2}\mbox{{\rm-CA}}+\Pi^{1}_{1}\mbox{{\rm-CA}}_{0} proves that (O​TN,<)(OT_{N},<) is a well ordering for each NN.

Thus the ordinal ΟˆΞ©β€‹(Ξ©π•Š+Ο‰):=sup{ΟˆΞ©β€‹(Ξ΅Ξ©π•Š+N+1):0<N<Ο‰}\psi_{\Omega}(\Omega_{\mathbb{S}+\omega}):=\sup\{\psi_{\Omega}(\varepsilon_{\Omega_{\mathbb{S}+N}+1}):0<N<\omega\} is the proof-theoretic ordinal of Ξ£21βˆ’β€‹-CA+Ξ 11​-CA0\Sigma^{1-}_{2}\mbox{-CA}+\Pi^{1}_{1}\mbox{-CA}_{0} and of π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V), where |π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V)|Ξ£1Ξ©|{\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V)|_{\Sigma_{1}^{\Omega}} denotes the Ξ£1Ξ©\Sigma_{1}^{\Omega}-ordinal of π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V), i.e., the ordinal min{α≀ω1C​K:βˆ€ΞΈβˆˆΞ£1(π–ͺ𝖯ℓr+(Mβ‰ΊΞ£1V)⊒θLΞ©β‡’Lα⊧θ)}\min\{\alpha\leq\omega_{1}^{CK}:\forall\theta\in\Sigma_{1}\left({\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V)\vdash\theta^{L_{\Omega}}\Rightarrow L_{\alpha}\models\theta\right)\}.

Theorem 1.5

ΟˆΞ©β€‹(Ξ©π•Š+Ο‰)=|Ξ£21βˆ’β€‹-CA+Ξ 11​-CA0|=|π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V)|Ξ£1Ξ©.\psi_{\Omega}(\Omega_{\mathbb{S}+\omega})=|\Sigma^{1-}_{2}\mbox{{\rm-CA}}+\Pi^{1}_{1}\mbox{{\rm-CA}}_{0}|=|{\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V)|_{\Sigma_{1}^{\Omega}}.

Moreover π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V) is seen to be conservative over I​Σ1+{T​I​(Ξ±,Ξ£10​(Ο‰)):Ξ±<ΟˆΞ©β€‹(Ξ©π•Š+Ο‰)}{\rm I}\Sigma_{1}+\{TI(\alpha,\Sigma^{0}_{1}(\omega)):\alpha<\psi_{\Omega}(\Omega_{\mathbb{S}+\omega})\} with respect to Ξ 20​(Ο‰)\Pi^{0}_{2}(\omega)-arithmetic sentences, where T​I​(Ξ±,Ξ£10​(Ο‰))TI(\alpha,\Sigma^{0}_{1}(\omega)) denotes the schema of transfinite induction up to Ξ±\alpha, and applied to Ξ£10\Sigma^{0}_{1}-arithmetic formulas in a language of the first-order arithmetic. In particular each provably computable function in π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V) is defined by Ξ±\alpha-recursion for an Ξ±<ΟˆΞ©β€‹(Ξ©π•Š+Ο‰)\alpha<\psi_{\Omega}(\Omega_{\mathbb{S}+\omega}), cf. Corollary 3.47.

Let us mention the contents of this paper, and give a brief sketch of proofs. In the next section 2 we define simultaneously iterated Skolem hulls ℋα​(X)\mathcal{H}_{\alpha}(X) of sets XX of ordinals, ordinals ψκf​(Ξ±)\psi^{f}_{\kappa}(\alpha) for regular cardinals ΞΊ\kappa, and finite functions ff, and Mahlo classes M​hkα​(ΞΎ)Mh^{\alpha}_{k}(\xi). We invoke an existence of a shrewd cardinal introduced by M. Rathjen[10], to justify the definitions.

Following W. Buchholz[7], operator controlled derivations are introduced, and inference rules for stability and reflections are eliminated from derivations in section 3. Roughly the elimination procedure goes as follows. First the axiom (1) for stability is replaced by axioms of reflections through a Mostwoski collapsing Ο€\pi. Let βˆƒx​φ​(x,u)\exists x\varphi(x,u) be a Ξ£1\Sigma_{1}-formula with a parameter u∈Lπ•Šu\in L_{\mathbb{S}} for a stable ordinal π•Š\mathbb{S}. Let u∈LΞ±u\in L_{\alpha} with an Ξ±<π•Š\alpha<\mathbb{S}. Suppose φ​(v,u)\varphi(v,u) is true for a vv. Since we are considering infinitary images of finite derivations, we can assume that the set vv is constructed from some finite parameters {Ξ²i}i\{\beta_{i}\}_{i} of ordinals. A Skolem hull of LΞ±βˆͺ{Ξ²i}iβˆͺ{Ξ©π•Š+n:n≀N}L_{\alpha}\cup\{\beta_{i}\}_{i}\cup\{\Omega_{\mathbb{S}+n}:n\leq N\} under some functions such as Ξ²β†¦ΟˆΞ©π•Š+n+1​(Ξ²)\beta\mapsto\psi_{\Omega_{\mathbb{S}+n+1}}(\beta), where Ξ©π•Š+n<ΟˆΞ©π•Š+n+1​(Ξ²)<Ξ©π•Š+n+1\Omega_{\mathbb{S}+n}<\psi_{\Omega_{\mathbb{S}+n+1}}(\beta)<\Omega_{\mathbb{S}+n+1}, is collapsed down to an LρL_{\rho} with Ξ±<ρ<π•Š\alpha<\rho<\mathbb{S} through a Mostowski collapsing Ο€\pi. Suppose that φ​(v,u)\varphi(v,u) implies φ​(π​(v),u)\varphi(\pi(v),u). Then the axiom (1) follows. In the implication a reflection in a transfinite level involves since v∈LΞ²v\in L_{\beta} possibly with Ξ²>π•Š\beta>\mathbb{S}. In other words, βˆƒΞ²<Ξ©π•Š+Nβ€‹βˆƒx∈Lβ​φ​(x,u)\exists\beta<\Omega_{\mathbb{S}+N}\exists x\in L_{\beta}\varphi(x,u) should yield βˆƒΞ²0<π•Šβ€‹βˆƒx∈LΞ²0​φ​(x,u)\exists\beta_{0}<\mathbb{S}\exists x\in L_{\beta_{0}}\varphi(x,u), where βˆƒΞ²<Ξ©π•Š+Nβ€‹βˆƒx∈Lβ​φ​(x,u)\exists\beta<\Omega_{\mathbb{S}+N}\exists x\in L_{\beta}\varphi(x,u) is a Ξ£Ξ©π•Š+N\Sigma_{\Omega_{\mathbb{S}+N}}-sentence over Lπ•ŠL_{\mathbb{S}}, so to speak. To resolve such a transfinite reflection, we need collapsing functions ψκf​(Ξ±)\psi_{\kappa}^{f}(\alpha) with finite functions ff indicating Mahlo degrees. In [3] we introduced collapsing functions ΟˆΞΊΞΎβ†’β€‹(Ξ±)\psi_{\kappa}^{\vec{\xi}}(\alpha) with finite sequences ΞΎβ†’\vec{\xi} of ordinals in length Nβˆ’2N-2 to analyze Ξ N\Pi_{N}-reflection. Here for transfinite reflections we need functions ff of finite supports.

IH denotes the Induction Hypothesis, MIH the Main IH and SIH the Subsidiary IH. Throughout of this paper NN denotes a fixed positive integer.

2 Ordinals for one stable ordinal

In this section up to Lemma 2.11, we work in the set theory obtained from 𝖹π–₯𝖒{\sf ZFC} by adding the axiom stating that there exists a weakly inaccessible cardinal π•Š\mathbb{S}. For ordinals Ξ±β‰₯Ξ²\alpha\geq\beta, Ξ±βˆ’Ξ²\alpha-\beta denotes the ordinal Ξ³\gamma such that Ξ±=Ξ²+Ξ³\alpha=\beta+\gamma. Let Ξ±\alpha and Ξ²\beta be ordinals. α​+˙​β\alpha\dot{+}\beta denotes the sum Ξ±+Ξ²\alpha+\beta when Ξ±+Ξ²\alpha+\beta equals to the commutative (natural) sum α​#​β\alpha\#\beta, i.e., when either Ξ±=0\alpha=0 or Ξ±=Ξ±0+ωα1\alpha=\alpha_{0}+\omega^{\alpha_{1}} with ωα1+1>Ξ²\omega^{\alpha_{1}+1}>\beta.

π•Š\mathbb{S} denotes a weakly inaccessible cardinal with Ο‰π•Š=π•Š\omega_{\mathbb{S}}=\mathbb{S}, and Ο‰π•Š+n\omega_{\mathbb{S}+n} the nn-th regular cardinal above π•Š\mathbb{S} for 0<n<Ο‰0<n<\omega. Let 𝕂=Ο‰π•Š+N\mathbb{K}=\omega_{\mathbb{S}+N} for a fixed positive integer NN.

Definition 2.1

For a positive integer NN, Ο†b​(ΞΎ)\varphi_{b}(\xi) denotes the binary Veblen function on 𝕂=Ο‰π•Š+N\mathbb{K}=\omega_{\mathbb{S}+N} with Ο†0​(ΞΎ)=ωξ\varphi_{0}(\xi)=\omega^{\xi}, and Ο†~b​(ΞΎ):=Ο†b​(Ξ›β‹…ΞΎ)\tilde{\varphi}_{b}(\xi):=\varphi_{b}(\Lambda\cdot\xi) for an epsilon number Ξ›<𝕂\Lambda<\mathbb{K}. Each ordinal Ο†b​(ΞΎ)\varphi_{b}(\xi) is a fixed point of the function Ο†c\varphi_{c} for c<bc<b in the sense that Ο†c​(Ο†b​(ΞΎ))=Ο†b​(ΞΎ)\varphi_{c}(\varphi_{b}(\xi))=\varphi_{b}(\xi). The same holds for Ο†~b\tilde{\varphi}_{b} and Ο†~c\tilde{\varphi}_{c} with c<bc<b.

Let b,ΞΎ<Ξ›+b,\xi<\Lambda^{+}. ΞΈb​(ΞΎ)\theta_{b}(\xi) [ΞΈ~b​(ΞΎ)\tilde{\theta}_{b}(\xi)] denotes a bb-th iterate of Ο†0​(ΞΎ)=ωξ\varphi_{0}(\xi)=\omega^{\xi}. [of Ο†~0​(ΞΎ)=Λξ\tilde{\varphi}_{0}(\xi)=\Lambda^{\xi}], resp. Specifically ordinals ΞΈ~b​(ΞΎ)\tilde{\theta}_{b}(\xi) are defined by recursion on bb as follows. ΞΈ0​(ΞΎ)=ΞΈ~0​(ΞΎ)=ΞΎ\theta_{0}(\xi)=\tilde{\theta}_{0}(\xi)=\xi, ΞΈΟ‰b​(ΞΎ)=Ο†b​(ΞΎ)\theta_{\omega^{b}}(\xi)=\varphi_{b}(\xi), and ΞΈ~Ο‰b​(ΞΎ)=Ο†~b​(ΞΎ)\tilde{\theta}_{\omega^{b}}(\xi)=\tilde{\varphi}_{b}(\xi), and ΞΈc​+˙​ωb​(ΞΎ)=ΞΈc​(ΞΈΟ‰b​(ΞΎ))\theta_{c\dot{+}\omega^{b}}(\xi)=\theta_{c}(\theta_{\omega^{b}}(\xi)). ΞΈ~c​+˙​ωb​(ΞΎ)=ΞΈ~c​(ΞΈ~Ο‰b​(ΞΎ))\tilde{\theta}_{c\dot{+}\omega^{b}}(\xi)=\tilde{\theta}_{c}(\tilde{\theta}_{\omega^{b}}(\xi)).

Ξ±>0\alpha>0 is a strongly critical number if βˆ€b,ΞΎ<α​(Ο†b​(ΞΎ)<Ξ±)\forall b,\xi<\alpha(\varphi_{b}(\xi)<\alpha). Ξ“a\Gamma_{a} denotes the aa-th strongly critical number, and Γ​(a)\Gamma(a) the next strongly critical number above aa, while Ξ΅a\varepsilon_{a} denotes the aa-th epsilon number, and Ρ​(a)\varepsilon(a) the next epsilon number above aa.

Let us define a normal form of non-zero ordinals ΞΎ<Γ​(Ξ›)\xi<\Gamma(\Lambda). Let ΞΎ=Λ΢\xi=\Lambda^{\zeta}. If ΞΆ<Λ΢\zeta<\Lambda^{\zeta}, then ΞΈ~1​(ΞΆ)\tilde{\theta}_{1}(\zeta) is the normal form of ΞΎ\xi, denoted by ΞΎ=N​FΞΈ~1​(ΞΆ)\xi=_{NF}\tilde{\theta}_{1}(\zeta). Assume ΞΆ=Λ΢\zeta=\Lambda^{\zeta}, and let b>0b>0 be the maximal ordinal such that there exists an ordinal Ξ·\eta with ΞΎ=Ο†~b​(Ξ·)\xi=\tilde{\varphi}_{b}(\eta). Then ΞΎ=Ο†~b​(Ξ·)=N​FΞΈ~Ο‰b​(Ξ·)\xi=\tilde{\varphi}_{b}(\eta)=_{NF}\tilde{\theta}_{\omega^{b}}(\eta).

Let ΞΎ=ΞΈ~bm​(ΞΎm)β‹…am+β‹―+ΞΈ~b0​(ΞΎ0)β‹…a0\xi=\tilde{\theta}_{b_{m}}(\xi_{m})\cdot a_{m}+\cdots+\tilde{\theta}_{b_{0}}(\xi_{0})\cdot a_{0}, where ΞΈ~bi​(ΞΎi)>ΞΎi\tilde{\theta}_{b_{i}}(\xi_{i})>\xi_{i}, ΞΈ~bm​(ΞΎm)>β‹―>ΞΈ~b0​(ΞΎ0)\tilde{\theta}_{b_{m}}(\xi_{m})>\cdots>\tilde{\theta}_{b_{0}}(\xi_{0}), bi=Ο‰ci<Ξ›b_{i}=\omega^{c_{i}}<\Lambda, and 0<a0,…,am<Ξ›0<a_{0},\ldots,a_{m}<\Lambda. Then ΞΎ=N​FΞΈ~bm​(ΞΎm)β‹…am+β‹―+ΞΈ~b0​(ΞΎ0)β‹…a0\xi=_{NF}\tilde{\theta}_{b_{m}}(\xi_{m})\cdot a_{m}+\cdots+\tilde{\theta}_{b_{0}}(\xi_{0})\cdot a_{0}.

Definition 2.2

Let ΞΎ<Γ​(Ξ›)\xi<\Gamma(\Lambda) be a non-zero ordinal with its normal form111The normal form in (2) is slightly extended from [5].:

ΞΎ=βˆ‘i≀mΞΈ~bi​(ΞΎi)β‹…ai=N​FΞΈ~bm​(ΞΎm)β‹…am+β‹―+ΞΈ~b0​(ΞΎ0)β‹…a0\xi=\sum_{i\leq m}\tilde{\theta}_{b_{i}}(\xi_{i})\cdot a_{i}=_{NF}\tilde{\theta}_{b_{m}}(\xi_{m})\cdot a_{m}+\cdots+\tilde{\theta}_{b_{0}}(\xi_{0})\cdot a_{0} (2)

S​CΛ​(ΞΎ)=⋃i≀m({bi,ai}βˆͺS​CΛ​(ΞΎi))SC_{\Lambda}(\xi)=\bigcup_{i\leq m}(\{b_{i},a_{i}\}\cup SC_{\Lambda}(\xi_{i})). ΞΈ~b0​(ΞΎ0)\tilde{\theta}_{b_{0}}(\xi_{0}) is said to be the tail of ΞΎ\xi, denoted ΞΈ~b0​(ΞΎ0)=t​l​(ΞΎ)\tilde{\theta}_{b_{0}}(\xi_{0})=tl(\xi), and ΞΈ~bm​(ΞΎm)\tilde{\theta}_{b_{m}}(\xi_{m}) the head of ΞΎ\xi, denoted ΞΈ~bm​(ΞΎm)=h​d​(ΞΎ)\tilde{\theta}_{b_{m}}(\xi_{m})=hd(\xi).

  1. 1.

    ΞΆ\zeta is a part of ΞΎ\xi iff there exists an n​(0≀n≀m+1)n\,(0\leq n\leq m+1) such that ΞΆ=N​Fβˆ‘iβ‰₯nΞΈ~bi​(ΞΎi)β‹…ai=ΞΈ~bm​(ΞΎm)β‹…am+β‹―+ΞΈ~bn​(ΞΎn)β‹…an\zeta=_{NF}\sum_{i\geq n}\tilde{\theta}_{b_{i}}(\xi_{i})\cdot a_{i}=\tilde{\theta}_{b_{m}}(\xi_{m})\cdot a_{m}+\cdots+\tilde{\theta}_{b_{n}}(\xi_{n})\cdot a_{n} for ΞΎ\xi in (2).

  2. 2.

    Let ΞΆ=N​FΞΈ~b​(ΞΎ)\zeta=_{NF}\tilde{\theta}_{b}(\xi) with ΞΈ~b​(ΞΎ)>ΞΎ\tilde{\theta}_{b}(\xi)>\xi and b=Ο‰b0b=\omega^{b_{0}}, and cc be ordinals. An ordinal ΞΈ~βˆ’c​(ΞΆ)\tilde{\theta}_{-c}(\zeta) is defined recursively as follows. If bβ‰₯cb\geq c, then ΞΈ~βˆ’c​(ΞΆ)=ΞΈ~bβˆ’c​(ΞΎ)\tilde{\theta}_{-c}(\zeta)=\tilde{\theta}_{b-c}(\xi). Let c>bc>b. If ΞΎ>0\xi>0, then ΞΈ~βˆ’c​(ΞΆ)=ΞΈ~βˆ’(cβˆ’b)​(ΞΈ~bm​(ΞΎm))\tilde{\theta}_{-c}(\zeta)=\tilde{\theta}_{-(c-b)}(\tilde{\theta}_{b_{m}}(\xi_{m})) for the head term h​d​(ΞΎ)=ΞΈ~bm​(ΞΎm)hd(\xi)=\tilde{\theta}_{b_{m}}(\xi_{m}) of ΞΎ\xi in (2). If ΞΎ=0\xi=0, then let ΞΈ~βˆ’c​(ΞΆ)=0\tilde{\theta}_{-c}(\zeta)=0.

A β€˜Mahlo degree’ m​(Ο€)m(\pi) of ordinals Ο€\pi with higher reflections is defined to be a finite function f:Λ→Γ​(Ξ›)f:\Lambda\to\Gamma(\Lambda).

Definition 2.3
  1. 1.

    A function f:Λ→Γ​(Ξ›)f:\Lambda\to\Gamma(\Lambda) with a finite support supp​(f)={c<Ξ›:f​(c)β‰ 0}βŠ‚Ο†Ξ›β€‹(0){\rm supp}(f)=\{c<\Lambda:f(c)\neq 0\}\subset\varphi_{\Lambda}(0) is said to be a finite function if βˆ€i>0​(ai=1)\forall i>0(a_{i}=1) and a0=1a_{0}=1 when b0>1b_{0}>1 f​(c)=N​FΞΈ~bm​(ΞΎm)β‹…am+β‹―+ΞΈ~b0​(ΞΎ0)β‹…a0f(c)=_{NF}\tilde{\theta}_{b_{m}}(\xi_{m})\cdot a_{m}+\cdots+\tilde{\theta}_{b_{0}}(\xi_{0})\cdot a_{0} for any c∈supp​(f)c\in{\rm supp}(f).

    It is identified with the finite function fβ†Ύsupp​(f)f\!\upharpoonright\!{\rm supp}(f). When cβˆ‰supp​(f)c\not\in{\rm supp}(f), let f​(c):=0f(c):=0. S​CΛ​(f):=⋃{{c}βˆͺS​CΛ​(f​(c)):c∈supp​(f)}SC_{\Lambda}(f):=\bigcup\{\{c\}\cup SC_{\Lambda}(f(c)):c\in{\rm supp}(f)\}. f,g,h,…f,g,h,\ldots range over finite functions.

    For an ordinal cc, fcf_{c} and fcf^{c} are restrictions of ff to the domains supp​(fc)={d∈supp​(f):d<c}{\rm supp}(f_{c})=\{d\in{\rm supp}(f):d<c\} and supp​(fc)={d∈supp​(f):dβ‰₯c}{\rm supp}(f^{c})=\{d\in{\rm supp}(f):d\geq c\}. gcβˆ—fcg_{c}*f^{c} denotes the concatenated function such that supp​(gcβˆ—fc)=supp​(gc)βˆͺsupp​(fc){\rm supp}(g_{c}*f^{c})={\rm supp}(g_{c})\cup{\rm supp}(f^{c}), (gcβˆ—fc)​(a)=g​(a)(g_{c}*f^{c})(a)=g(a) for a<ca<c, and (gcβˆ—fc)​(a)=f​(a)(g_{c}*f^{c})(a)=f(a) for aβ‰₯ca\geq c.

  2. 2.

    Let ff be a finite function and c,ΞΎc,\xi ordinals. A relation f<cΞΎf<^{c}\xi is defined by induction on the cardinality of the finite set {d∈supp​(f):d>c}\{d\in{\rm supp}(f):d>c\} as follows. If fc=βˆ…f^{c}=\emptyset, then f<cΞΎf<^{c}\xi holds. For fcβ‰ βˆ…f^{c}\neq\emptyset, f<cΞΎf<^{c}\xi iff there exists a part ΞΌ\mu of ΞΎ\xi such that f​(c)<ΞΌf(c)<\mu and f<c+dΞΈ~βˆ’d​(t​l​(ΞΌ))f<^{c+d}\tilde{\theta}_{-d}(tl(\mu)) for d=min⁑{c+d∈supp​(f):d>0}d=\min\{c+d\in{\rm supp}(f):d>0\}.

The following Proposition 2.4 is shown in [5].

Proposition 2.4
  1. 1.

    ΢≀ξ⇒θ~βˆ’c​(ΞΆ)≀θ~βˆ’c​(ΞΎ)\zeta\leq\xi\Rightarrow\tilde{\theta}_{-c}(\zeta)\leq\tilde{\theta}_{-c}(\xi).

  2. 2.

    ΞΈ~c​(ΞΈ~βˆ’c​(ΞΆ))≀΢\tilde{\theta}_{c}(\tilde{\theta}_{-c}(\zeta))\leq\zeta.

Proposition 2.5

f<cξ≀΢⇒f<cΞΆf<^{c}\xi\leq\zeta\Rightarrow f<^{c}\zeta.

Proof.  By induction on the cardinality nn of the finite set {d∈supp​(f):d>c}={c<c+d1<β‹―<c+dn}\{d\in{\rm supp}(f):d>c\}=\{c<c+d_{1}<\cdots<c+d_{n}\}. If n=0n=0, then f​(c)<ξ≀΢f(c)<\xi\leq\zeta yields f<cΞΆf<^{c}\zeta. Let n>0n>0. We have f​(c)<ΞΌf(c)<\mu, and f<c+d1ΞΈ~βˆ’d1​(t​l​(ΞΌ))f<^{c+d_{1}}\tilde{\theta}_{-d_{1}}(tl(\mu)) for a part ΞΌ\mu of ΞΎ\xi. We show the existence of a part Ξ»\lambda of ΞΆ\zeta such that μ≀λ\mu\leq\lambda, and ΞΈ~βˆ’d1​(t​l​(ΞΌ))≀θ~βˆ’d1​(t​l​(Ξ»))\tilde{\theta}_{-d_{1}}(tl(\mu))\leq\tilde{\theta}_{-d_{1}}(tl(\lambda)). Then IH yields f<c+d1ΞΈ~βˆ’d1​(t​l​(Ξ»))f<^{c+d_{1}}\tilde{\theta}_{-d_{1}}(tl(\lambda)), and f<cΞΆf<^{c}\zeta follows.

If ΞΌ\mu is a part of ΞΆ\zeta, then Ξ»=ΞΌ\lambda=\mu works. Otherwise ΞΎ<ΞΆ\xi<\zeta and there exists a part Ξ»\lambda of ΞΆ\zeta such that ΞΌ<Ξ»\mu<\lambda, and t​l​(ΞΌ)<t​l​(Ξ»)tl(\mu)<tl(\lambda). We obtain ΞΈ~βˆ’d1​(t​l​(ΞΌ))≀θ~βˆ’d1​(t​l​(Ξ»))\tilde{\theta}_{-d_{1}}(tl(\mu))\leq\tilde{\theta}_{-d_{1}}(tl(\lambda)). β–‘\Box

u,v,w,x,y,z,…u,v,w,x,y,z,\ldots range over sets in the universe, a,b,c,Ξ±,Ξ²,Ξ³,Ξ΄,…a,b,c,\alpha,\beta,\gamma,\delta,\ldots range over ordinals<Ρ​(Ξ›)<\varepsilon(\Lambda), ΞΎ,ΞΆ,Ξ·,…\xi,\zeta,\eta,\ldots range over ordinals<Γ​(Ξ›)<\Gamma(\Lambda), and Ο€,ΞΊ,ρ,Οƒ,Ο„,Ξ»,…\pi,\kappa,\rho,\sigma,\tau,\lambda,\ldots range over regular ordinals.

2.1 Skolem hulls and collapsing functions

In this subsection Skolem hulls β„‹a​(Ξ±)\mathcal{H}_{a}(\alpha), collapsing functions ΟˆΟ€f​(Ξ±)\psi_{\pi}^{f}(\alpha) and Mahlo classes M​hca​(ΞΎ)Mh^{a}_{c}(\xi) are defined.

Definition 2.6
  1. 1.

    Let AβŠ‚π•ŠA\subset\mathbb{S} be a set, and Ξ±β‰€π•Š\alpha\leq\mathbb{S} a limit ordinal.

    α∈M(A):⇔A∩α is stationary in Ξ±β‡” every club subset of Ξ± meets A.\alpha\in M(A):\Leftrightarrow A\cap\alpha\mbox{ is stationary in }\alpha\Leftrightarrow\mbox{ every club subset of }\alpha\mbox{ meets }A.
  2. 2.

    ΞΊ+\kappa^{+} denotes the next regular ordinal above ΞΊ\kappa. For n<Ο‰n<\omega, ΞΊ+n\kappa^{+n} is defined recursively by ΞΊ+0=ΞΊ\kappa^{+0}=\kappa and ΞΊ+(n+1)=(ΞΊ+n)+\kappa^{+(n+1)}=\left(\kappa^{+n}\right)^{+}.

  3. 3.

    Ωα:=ωα\Omega_{\alpha}:=\omega_{\alpha} for Ξ±>0\alpha>0, Ξ©0:=0\Omega_{0}:=0, and Ξ©=Ξ©1\Omega=\Omega_{1}. π•Š\mathbb{S} is a weakly inaccessible cardinal, and Ξ©π•Š=π•Š\Omega_{\mathbb{S}}=\mathbb{S}. Ξ©π•Š+n=π•Š+n\Omega_{\mathbb{S}+n}=\mathbb{S}^{+n} is the nn-th cardinal above π•Š\mathbb{S}.

In the following Definition 2.7, φ​α​β=φα​(Ξ²)\varphi\alpha\beta=\varphi_{\alpha}(\beta) denotes the binary Veblen function on 𝕂+=Ο‰π•Š+N+1\mathbb{K}^{+}=\omega_{\mathbb{S}+N+1} with Ο†0​(Ξ²)=ωβ\varphi_{0}(\beta)=\omega^{\beta}, ΞΈ~b​(ΞΎ)\tilde{\theta}_{b}(\xi) the function defined in Definition 2.1 for Ξ›<𝕂=Ο‰π•Š+N\Lambda<\mathbb{K}=\omega_{\mathbb{S}+N} with the positive integer NN.

For a<Ρ​(𝕂)a<\varepsilon(\mathbb{K}), c<Ξ›c<\Lambda, and ΞΎ<Γ​(Ξ›)\xi<\Gamma(\Lambda), define simultaneously classes β„‹a​(X)βŠ‚Ξ“β€‹(𝕂)\mathcal{H}_{a}(X)\subset\Gamma(\mathbb{K}), M​hca​(ΞΎ)βŠ‚(π•Š+1)Mh^{a}_{c}(\xi)\subset(\mathbb{S}+1), and ordinals ψκf​(a)≀κ\psi_{\kappa}^{f}(a)\leq\kappa by recursion on ordinals aa as follows. We see that these are Ξ”1\Delta_{1}-definable in ZFC, cf. Proposition 2.10.

Definition 2.7

Let 𝕂=Ξ©π•Š+N\mathbb{K}=\Omega_{\mathbb{S}+N}, β„‹a​[Y]​(X):=β„‹a​(YβˆͺX)\mathcal{H}_{a}[Y](X):=\mathcal{H}_{a}(Y\cup X) for sets YβŠ‚Ξ“β€‹(𝕂)Y\subset\Gamma(\mathbb{K}). Let a<Ρ​(𝕂)a<\varepsilon(\mathbb{K}) and XβŠ‚Ξ“β€‹(𝕂)X\subset\Gamma(\mathbb{K}).

  1. 1.

    (Inductive definition of β„‹a​(X)\mathcal{H}_{a}(X).)

    1. (a)

      {0,Ξ©1,π•Š}βˆͺ{Ξ©π•Š+n:0<n≀N}βˆͺXβŠ‚β„‹a​(X)\{0,\Omega_{1},\mathbb{S}\}\cup\{\Omega_{\mathbb{S}+n}:0<n\leq N\}\cup X\subset\mathcal{H}_{a}(X).

    2. (b)

      If x,yβˆˆβ„‹a​(X)x,y\in\mathcal{H}_{a}(X), then x+yβˆˆβ„‹a​(X)x+y\in\mathcal{H}_{a}(X), and φ​x​yβˆˆβ„‹a​(X)\varphi xy\in\mathcal{H}_{a}(X).

    3. (c)

      Let Ξ±βˆˆβ„‹a​(X)βˆ©π•Š\alpha\in\mathcal{H}_{a}(X)\cap\mathbb{S}. Then for each 0<k≀N0<k\leq N, Ωα+kβˆˆβ„‹a​(X)\Omega_{\alpha+k}\in\mathcal{H}_{a}(X).

    4. (d)

      Let Ξ±=ΟˆΟ€f​(b)\alpha=\psi_{\pi}^{f}(b) with {Ο€,b}βŠ‚β„‹a​(X)\{\pi,b\}\subset\mathcal{H}_{a}(X), Ο€βˆˆ{π•Š}βˆͺΞ¨N\pi\in\{\mathbb{S}\}\cup\Psi_{N}, b<ab<a, and a finite function ff such that S​C​(f)βŠ‚β„‹a​(X)βˆ©β„‹b​(Ξ±)SC(f)\subset\mathcal{H}_{a}(X)\cap\mathcal{H}_{b}(\alpha).

      Then Ξ±βˆˆβ„‹a​(X)∩ΨN\alpha\in\mathcal{H}_{a}(X)\cap\Psi_{N}.

  2. 2.

    (Definitions of M​hca​(ΞΎ)Mh^{a}_{c}(\xi) and M​hca​(f)Mh^{a}_{c}(f))
    The classes M​hca​(ΞΎ)Mh^{a}_{c}(\xi) are defined for c<Ξ›c<\Lambda, ΞΎ<Γ​(Ξ›)\xi<\Gamma(\Lambda), and ordinals a<Ρ​(𝕂)a<\varepsilon(\mathbb{K}). Let Ο€\pi be a regular ordinalβ‰€π•Š\leq\mathbb{S}. Then by main induction on ordinals Ο€β‰€π•Š\pi\leq\mathbb{S} with subsidiary induction on c<Ξ›c<\Lambda we define Ο€βˆˆM​hca​(ΞΎ)\pi\in Mh^{a}_{c}(\xi) iff {a,c,ΞΎ}βŠ‚β„‹a​(Ο€)\{a,c,\xi\}\subset\mathcal{H}_{a}(\pi) and

    βˆ€f<cΞΎβ€‹βˆ€g​(S​CΛ​(f)βˆͺS​CΛ​(g)βŠ‚β„‹a​(Ο€)&Ο€βˆˆM​h0a​(gc)β‡’Ο€βˆˆM​(M​h0a​(gcβˆ—fc)))\forall f<^{c}\xi\forall g\left(SC_{\Lambda}(f)\cup SC_{\Lambda}(g)\subset\mathcal{H}_{a}(\pi)\,\&\,\pi\in Mh^{a}_{0}(g_{c})\Rightarrow\pi\in M(Mh^{a}_{0}(g_{c}*f^{c}))\right) (3)

    where f,gf,g vary through finite functions from Ξ›\Lambda to φΛ​(0)\varphi_{\Lambda}(0), and

    M​hca​(f):=β‹‚{M​hda​(f​(d)):d∈supp​(fc)}=β‹‚{M​hda​(f​(d)):c≀d∈supp​(f)}.Mh^{a}_{c}(f):=\bigcap\{Mh^{a}_{d}(f(d)):d\in{\rm supp}(f^{c})\}=\bigcap\{Mh^{a}_{d}(f(d)):c\leq d\in{\rm supp}(f)\}.

    In particular M​h0a​(gc)=β‹‚{M​hda​(g​(d)):d∈supp​(gc)}=β‹‚{M​hda​(g​(d)):c>d∈supp​(g)}Mh^{a}_{0}(g_{c})=\bigcap\{Mh^{a}_{d}(g(d)):d\in{\rm supp}(g_{c})\}=\bigcap\{Mh^{a}_{d}(g(d)):c>d\in{\rm supp}(g)\}. When f=βˆ…f=\emptyset or fc=βˆ…f^{c}=\emptyset, let M​hca​(βˆ…):=𝕂Mh^{a}_{c}(\emptyset):=\mathbb{K}.

  3. 3.

    (Definition of ΟˆΟ€f​(a)\psi_{\pi}^{f}(a))
    Let a<Ρ​(𝕂)a<\varepsilon(\mathbb{K}) be an ordinal, Ο€\pi a regular ordinal and ff a finite function. Then let

    ΟˆΟ€f​(a):=min⁑({Ο€}βˆͺ{κ∈M​h0a​(f)βˆ©Ο€:β„‹a​(ΞΊ)βˆ©Ο€βŠ‚ΞΊ,{Ο€,a}βˆͺS​C​(f)βŠ‚β„‹a​(ΞΊ)})\psi_{\pi}^{f}(a):=\min(\{\pi\}\cup\{\kappa\in Mh^{a}_{0}(f)\cap\pi:\mathcal{H}_{a}(\kappa)\cap\pi\subset\kappa,\{\pi,a\}\cup SC(f)\subset\mathcal{H}_{a}(\kappa)\}) (4)

    For the empty function βˆ…\emptyset, ΟˆΟ€β€‹(a):=ΟˆΟ€βˆ…β€‹(a)\psi_{\pi}(a):=\psi_{\pi}^{\emptyset}(a).

  4. 4.

    For classes AβŠ‚(π•Š+1)A\subset(\mathbb{S}+1), let α∈Mca​(A)\alpha\in M^{a}_{c}(A) iff α∈A\alpha\in A and

    βˆ€g​[α∈M​h0a​(gc)&S​C​(gc)βŠ‚β„‹a​(Ξ±)β‡’Ξ±βˆˆM​(M​h0a​(gc)∩A)]\forall g[\alpha\in Mh_{0}^{a}(g_{c})\,\&\,SC(g_{c})\subset\mathcal{H}_{a}(\alpha)\Rightarrow\alpha\in M\left(Mh_{0}^{a}(g_{c})\cap A\right)] (5)
Proposition 2.8

Assume Ο€βˆˆM​hca​(ΞΆ)\pi\in Mh^{a}_{c}(\zeta) and ΞΎ<ΞΆ\xi<\zeta with S​CΛ​(ΞΎ)βŠ‚β„‹a​(Ο€)SC_{\Lambda}(\xi)\subset\mathcal{H}_{a}(\pi). Then Ο€βˆˆM​hca​(ΞΎ)∩Mca​(M​hca​(ΞΎ))\pi\in Mh^{a}_{c}(\xi)\cap M^{a}_{c}(Mh^{a}_{c}(\xi)).

Proof.  Proposition 2.5 yields Ο€βˆˆM​hca​(ΞΎ)\pi\in Mh^{a}_{c}(\xi). Ο€βˆˆMca​(M​hca​(ΞΎ))\pi\in M^{a}_{c}(Mh^{a}_{c}(\xi)) is seen from the function ff such that f<cΞΆf<^{c}\zeta with supp​(f)={c}{\rm supp}(f)=\{c\} and f​(c)=ΞΎf(c)=\xi. β–‘\Box

Proposition 2.9

Suppose Ο€βˆˆM​hca​(ΞΎ)\pi\in Mh^{a}_{c}(\xi).

  1. 1.

    Let f<cΞΎf<^{c}\xi with S​CΛ​(f)βŠ‚β„‹a​(Ο€)SC_{\Lambda}(f)\subset\mathcal{H}_{a}(\pi). Then Ο€βˆˆMca​(M​hca​(fc))\pi\in M_{c}^{a}(Mh^{a}_{c}(f^{c})).

  2. 2.

    Let Ο€βˆˆMda​(A)\pi\in M^{a}_{d}(A) for d>cd>c and AβŠ‚π•ŠA\subset\mathbb{S}. Then Ο€βˆˆMca​(M​hca​(ΞΎ)∩A)\pi\in M_{c}^{a}(Mh^{a}_{c}(\xi)\cap A).

Proof.  2.9.1. Let gg be a function such that Ο€βˆˆM​h0a​(gc)\pi\in Mh_{0}^{a}(g_{c}) with S​CΛ​(gc)βŠ‚β„‹a​(Ο€)SC_{\Lambda}(g_{c})\subset\mathcal{H}_{a}(\pi). By the definition (3) of Ο€βˆˆM​hca​(ΞΎ)\pi\in Mh^{a}_{c}(\xi) we obtain Ο€βˆˆM​(M​h0a​(gc)∩M​hca​(fc))\pi\in M\left(Mh_{0}^{a}(g_{c})\cap Mh^{a}_{c}(f^{c})\right).
2.9.2. Let Ο€βˆˆMda​(A)\pi\in M^{a}_{d}(A) for d>cd>c. Then Ο€βˆˆM​hca​(ΞΎ)∩A\pi\in Mh^{a}_{c}(\xi)\cap A. Let gg be a function such that Ο€βˆˆM​h0a​(gc)\pi\in Mh_{0}^{a}(g_{c}) with S​CΛ​(gc)βŠ‚β„‹a​(Ο€)SC_{\Lambda}(g_{c})\subset\mathcal{H}_{a}(\pi). We obtain by (5) and d>cd>c with the function gcβˆ—hg_{c}*h, Ο€βˆˆM​(M​h0a​(gc)∩M​hca​(ΞΎ)∩A)\pi\in M\left(Mh_{0}^{a}(g_{c})\cap Mh^{a}_{c}(\xi)\cap A\right), where supp​(h)={c}{\rm supp}(h)=\{c\} and h​(c)=ΞΎh(c)=\xi. β–‘\Box

TT denotes the extension of 𝖹π–₯𝖒{\sf ZFC} by the axiom stating that π•Š\mathbb{S} is a weakly inaccessible cardinal.

Proposition 2.10

Each of xβˆˆβ„‹a​(y)​(a<Ρ​(𝕂),y<Γ​(𝕂))x\in\mathcal{H}_{a}(y)\,(a<\varepsilon(\mathbb{K}),y<\Gamma(\mathbb{K})), x∈M​hca​(f)​(c<Ξ›)x\in Mh^{a}_{c}(f)\,(c<\Lambda) and x=ψκf​(a)x=\psi^{f}_{\kappa}(a) is a Ξ”1\Delta_{1}-predicate in TT.

Proof.  An inspection of Definition 2.7 shows that xβˆˆβ„‹a​(y)x\in\mathcal{H}_{a}(y), ψκf​(a)\psi^{f}_{\kappa}(a) and x∈M​hca​(f)x\in Mh^{a}_{c}(f) are simultaneously defined by recursion on a<Ρ​(𝕂)a<\varepsilon(\mathbb{K}), in which x∈M​hca​(f)x\in Mh^{a}_{c}(f) is defined by recursion on ordinals xβ‰€π•Šx\leq\mathbb{S} with subsidiary recursion on c<Ξ›c<\Lambda. β–‘\Box

Shrewd cardinals are introduced by M. Rathjen[10]. A cardinal ΞΊ\kappa is shrewd iff for any Ξ·>0\eta>0, PβŠ‚VΞΊP\subset V_{\kappa}, and formula φ​(x,y)\varphi(x,y), if VΞΊ+Ξ·βŠ§Ο†β€‹[P,ΞΊ]V_{\kappa+\eta}\models\varphi[P,\kappa], then there are 0<ΞΊ0,Ξ·0<ΞΊ0<\kappa_{0},\eta_{0}<\kappa such that VΞΊ0+Ξ·0βŠ§Ο†β€‹[P∩VΞΊ0,ΞΊ0]V_{\kappa_{0}+\eta_{0}}\models\varphi[P\cap V_{\kappa_{0}},\kappa_{0}].

Let T~\tilde{T} denote the extension of TT by the axiom stating that π•Š\mathbb{S} is a shrewd cardinal.

Lemma 2.11

T~\tilde{T} proves that π•ŠβˆˆM​hca​(ΞΎ)∩M​(M​hca​(ΞΎ))\mathbb{S}\in Mh^{a}_{c}(\xi)\cap M(Mh^{a}_{c}(\xi)) for every a<Ρ​(𝕂)a<\varepsilon(\mathbb{K}), c,ΞΎ<𝕂c,\xi<\mathbb{K} such that {a,c,ΞΎ}βŠ‚β„‹a​(π•Š)\{a,c,\xi\}\subset\mathcal{H}_{a}(\mathbb{S}).

Proof.  We show the lemma by induction on ΞΎ<𝕂\xi<\mathbb{K}.

Let {a,c,ΞΎ}βˆͺS​CΛ​(f)βŠ‚β„‹a​(π•Š)\{a,c,\xi\}\cup SC_{\Lambda}(f)\subset\mathcal{H}_{a}(\mathbb{S}) and f<cΞΎf<^{c}\xi. We show π•ŠβˆˆMca​(M​hca​(fc))\mathbb{S}\in M^{a}_{c}(Mh^{a}_{c}(f^{c})), which yields π•ŠβˆˆM​hca​(ΞΎ)\mathbb{S}\in Mh^{a}_{c}(\xi). For each d∈supp​(fc)d\in{\rm supp}(f^{c}) we obtain f​(d)<ΞΎf(d)<\xi by ΞΈ~βˆ’e​(ΞΆ)≀΢\tilde{\theta}_{-e}(\zeta)\leq\zeta. IH yields π•ŠβˆˆM​hca​(fc)\mathbb{S}\in Mh^{a}_{c}(f^{c}). By the definition (5) it suffices to show that βˆ€g​[π•ŠβˆˆM​h0a​(gc)&S​CΛ​(gc)βŠ‚β„‹a​(π•Š)β‡’π•ŠβˆˆM​(M​h0a​(gc)∩M​hca​(fc))]\forall g[\mathbb{S}\in Mh_{0}^{a}(g_{c})\,\&\,SC_{\Lambda}(g_{c})\subset\mathcal{H}_{a}(\mathbb{S})\Rightarrow\mathbb{S}\in M\left(Mh_{0}^{a}(g_{c})\cap Mh^{a}_{c}(f^{c})\right)].

Let gg be a function such that S​CΛ​(gc)βŠ‚β„‹a​(π•Š)SC_{\Lambda}(g_{c})\subset\mathcal{H}_{a}(\mathbb{S}) and π•ŠβˆˆM​h0a​(gc)\mathbb{S}\in Mh_{0}^{a}(g_{c}). We have to show π•ŠβˆˆM​(A∩B)\mathbb{S}\in M(A\cap B) for A=M​h0a​(gc)βˆ©π•ŠA=Mh_{0}^{a}(g_{c})\cap\mathbb{S} and B=M​hca​(fc)βˆ©π•ŠB=Mh^{a}_{c}(f^{c})\cap\mathbb{S}. Let CC be a club subset of π•Š\mathbb{S}.

We have π•ŠβˆˆM​h0a​(gc)∩M​hca​(fc)\mathbb{S}\in Mh_{0}^{a}(g_{c})\cap Mh^{a}_{c}(f^{c}), and {a,c}βˆͺS​CΛ​(gc,fc)βŠ‚β„‹a​(π•Š)\{a,c\}\cup SC_{\Lambda}(g_{c},f^{c})\subset\mathcal{H}_{a}(\mathbb{S}). Pick a b<π•Šb<\mathbb{S} so that {a,c}βˆͺS​CΛ​(gc,fc)βŠ‚β„‹a​(b)\{a,c\}\cup SC_{\Lambda}(g_{c},f^{c})\subset\mathcal{H}_{a}(b). Since the cardinality of the set β„‹a​(π•Š)\mathcal{H}_{a}(\mathbb{S}) is equal to π•Š\mathbb{S}, pick a bijection F:π•Šβ†’β„‹a​(π•Š)F:\mathbb{S}\to\mathcal{H}_{a}(\mathbb{S}). Each Ξ±βˆˆβ„‹a​(π•Š)βˆ©Ξ“β€‹(𝕂)\alpha\in\mathcal{H}_{a}(\mathbb{S})\cap\Gamma(\mathbb{K}) is identified with its code, denoted by Fβˆ’1​(Ξ±)F^{-1}(\alpha). Let PP be the class P={(Ο€,d,Ξ±)βˆˆπ•Š3:Ο€βˆˆM​hF​(d)a​(F​(Ξ±))}P=\{(\pi,d,\alpha)\in\mathbb{S}^{3}:\pi\in Mh^{a}_{F(d)}(F(\alpha))\}, where F​(d),F​(ΞΎ)<𝕂F(d),F(\xi)<\mathbb{K} with {F​(d),F​(Ξ±)}βŠ‚β„‹a​(Ο€)\{F(d),F(\alpha)\}\subset\mathcal{H}_{a}(\pi). For fixed aa, the set {(d,Ξ·)βˆˆπ•‚Γ—π•‚:π•ŠβˆˆM​hda​(Ξ·)}\{(d,\eta)\in\mathbb{K}\times\mathbb{K}:\mathbb{S}\in Mh^{a}_{d}(\eta)\} is defined from the class PP by recursion on ordinals d<𝕂d<\mathbb{K}.

Let Ο†\varphi be a formula such that Vπ•Š+π•‚βŠ§Ο†β€‹[P,C,π•Š,b]V_{\mathbb{S}+\mathbb{K}}\models\varphi[P,C,\mathbb{S},b] iff π•ŠβˆˆM​h0a​(gc)∩M​hca​(fc)\mathbb{S}\in Mh_{0}^{a}(g_{c})\cap Mh^{a}_{c}(f^{c}) and CC is a club subset of π•Š\mathbb{S}. Since π•Š\mathbb{S} is shrewd, pick b<π•Š0<𝕂0<π•Šb<\mathbb{S}_{0}<\mathbb{K}_{0}<\mathbb{S} such that Vπ•Š0+𝕂0βŠ§Ο†β€‹[Pβˆ©π•Š0,Cβˆ©π•Š0,π•Š0,b]V_{\mathbb{S}_{0}+\mathbb{K}_{0}}\models\varphi[P\cap\mathbb{S}_{0},C\cap\mathbb{S}_{0},\mathbb{S}_{0},b]. We obtain π•Š0∈A∩B∩C\mathbb{S}_{0}\in A\cap B\cap C.

Therefore π•ŠβˆˆM​hca​(ΞΎ)\mathbb{S}\in Mh^{a}_{c}(\xi) is shown. π•ŠβˆˆM​(M​hca​(ΞΎ))\mathbb{S}\in M(Mh^{a}_{c}(\xi)) is seen from the shrewdness of π•Š\mathbb{S}. β–‘\Box

Corollary 2.12

T~\tilde{T} proves that βˆ€a<Ξ΅(𝕂)βˆ€c<𝕂[{a,c,ΞΎ}βŠ‚β„‹a(π•Š)β†’Οˆπ•Šf(a)<π•Š)]\forall a<\varepsilon(\mathbb{K})\forall c<\mathbb{K}[\{a,c,\xi\}\subset\mathcal{H}_{a}(\mathbb{S})\to\psi_{\mathbb{S}}^{f}(a)<\mathbb{S})] for every ΞΎ<𝕂\xi<\mathbb{K} and finite functions ff such that supp​(f)={c}{\rm supp}(f)=\{c\}, c<𝕂c<\mathbb{K} and f​(c)=ΞΎf(c)=\xi.

Proof.  By Lemma 2.11 we obtain π•ŠβˆˆM​(M​hca​(ΞΎ))\mathbb{S}\in M(Mh^{a}_{c}(\xi)). Now suppose {a,c,ΞΎ}βŠ‚β„‹a​(π•Š)\{a,c,\xi\}\subset\mathcal{H}_{a}(\mathbb{S}). The set C={ΞΊ<π•Š:β„‹a​(ΞΊ)βˆ©π•ŠβŠ‚ΞΊ,{a,c,ΞΎ}βŠ‚β„‹a​(ΞΊ)}C=\{\kappa<\mathbb{S}:\mathcal{H}_{a}(\kappa)\cap\mathbb{S}\subset\kappa,\{a,c,\xi\}\subset\mathcal{H}_{a}(\kappa)\} is a club subset of the regular cardinal π•Š\mathbb{S}, and M​hca​(ΞΎ)Mh^{a}_{c}(\xi) is stationary in π•Š\mathbb{S}. This shows the existence of a κ∈M​hca​(ΞΎ)∩Cβˆ©π•Š\kappa\in Mh_{c}^{a}(\xi)\cap C\cap\mathbb{S}, and hence Οˆπ•Šf​(a)<π•Š\psi_{\mathbb{S}}^{f}(a)<\mathbb{S} by the definition (4). β–‘\Box

2.2 ψ\psi-functions

Lemma 2.13

Assume π•Šβ‰₯Ο€βˆˆM​hda​(ΞΎ)∩M​hca​(ΞΎ0)\mathbb{S}\geq\pi\in Mh^{a}_{d}(\xi)\cap Mh^{a}_{c}(\xi_{0}), ΞΎ0β‰ 0\xi_{0}\neq 0, and d<cd<c. Moreover let ΞΎ1βˆˆβ„‹a​(Ο€)\xi_{1}\in\mathcal{H}_{a}(\pi) for ΞΎ1≀θ~cβˆ’d​(ΞΎ0)\xi_{1}\leq\tilde{\theta}_{c-d}(\xi_{0}), and t​l​(ΞΎ)β‰₯ΞΎ1tl(\xi)\geq\xi_{1} when ΞΎβ‰ 0\xi\neq 0. Then Ο€βˆˆM​hda​(ΞΎ+ΞΎ1)∩Mda​(M​hda​(ΞΎ+ΞΎ1))\pi\in Mh^{a}_{d}(\xi+\xi_{1})\cap M^{a}_{d}(Mh^{a}_{d}(\xi+\xi_{1})).

Proof.  Ο€βˆˆMda​(M​hda​(ΞΎ+ΞΆ))\pi\in M^{a}_{d}(Mh^{a}_{d}(\xi+\zeta)) follows from Ο€βˆˆM​hda​(ΞΎ+ΞΆ)\pi\in Mh^{a}_{d}(\xi+\zeta) and Ο€βˆˆM​hca​(ΞΎ0)βŠ‚Mca​(M​hca​(βˆ…))\pi\in Mh^{a}_{c}(\xi_{0})\subset M^{a}_{c}(Mh^{a}_{c}(\emptyset)) by Proposition 2.9.1.

Let ff be a finite function such that S​CΛ​(f)βŠ‚β„‹a​(Ο€)SC_{\Lambda}(f)\subset\mathcal{H}_{a}(\pi), and f<dΞΎ+ΞΎ1f<^{d}\xi+\xi_{1}. We show Ο€βˆˆMda​(M​hda​(fd))\pi\in M^{a}_{d}(Mh^{a}_{d}(f^{d})) by main induction on the cardinality of the finite set {e∈supp​(f):e>d}\{e\in{\rm supp}(f):e>d\} with subsidiary induction on ΞΎ1\xi_{1}.

First let f<dΞΌf<^{d}\mu for a part ΞΌ\mu of ΞΎ\xi. By Proposition 2.8 we obtain Ο€βˆˆM​hda​(ΞΌ)\pi\in Mh^{a}_{d}(\mu) and Ο€βˆˆMda​(M​hda​(fd))\pi\in M^{a}_{d}(Mh^{a}_{d}(f^{d})).

In what follows let f​(d)=ΞΎ+ΞΆf(d)=\xi+\zeta with ΞΆ<ΞΎ1\zeta<\xi_{1}. By SIH we obtain Ο€βˆˆM​hda​(f​(d))∩Mda​(M​hda​(f​(d)))\pi\in Mh^{a}_{d}(f(d))\cap M^{a}_{d}(Mh^{a}_{d}(f(d))). If {e∈supp​(f):e>d}=βˆ…\{e\in{\rm supp}(f):e>d\}=\emptyset, then M​hda​(fd)=M​hda​(f​(d))Mh^{a}_{d}(f^{d})=Mh^{a}_{d}(f(d)), and we are done. Otherwise let e=min⁑{e∈supp​(f):e>d}e=\min\{e\in{\rm supp}(f):e>d\}. By SIH we can assume f<eΞΈ~βˆ’(eβˆ’d)​(t​l​(ΞΎ1))f<^{e}\tilde{\theta}_{-(e-d)}(tl(\xi_{1})). By ΞΎ1≀θ~cβˆ’d​(ΞΎ0)\xi_{1}\leq\tilde{\theta}_{c-d}(\xi_{0}), Propositions 2.5 and 2.4.1, we obtain f<eΞΈ~βˆ’(eβˆ’d)​(ΞΈ~cβˆ’d​(ΞΎ0))=ΞΈ~βˆ’e​(ΞΈ~c​(ΞΎ0))f<^{e}\tilde{\theta}_{-(e-d)}(\tilde{\theta}_{c-d}(\xi_{0}))=\tilde{\theta}_{-e}(\tilde{\theta}_{c}(\xi_{0})). We claim that Ο€βˆˆMc0a​(M​hc0a​(fc0))\pi\in M^{a}_{c_{0}}(Mh_{c_{0}}^{a}(f^{c_{0}})) for c0=min⁑{c,e}c_{0}=\min\{c,e\}. If c=ec=e, then the claim follows from the assumption Ο€βˆˆM​hca​(ΞΎ0)\pi\in Mh_{c}^{a}(\xi_{0}) and f<eΞΎ0f<^{e}\xi_{0}. Let e=c+e0>ce=c+e_{0}>c. Then ΞΈ~βˆ’e​(ΞΈ~c​(ΞΎ0))=ΞΈ~βˆ’e0​(h​d​(ΞΎ0))\tilde{\theta}_{-e}(\tilde{\theta}_{c}(\xi_{0}))=\tilde{\theta}_{-e_{0}}(hd(\xi_{0})), and f<cΞΎ0f<^{c}\xi_{0} with f​(c)=0f(c)=0 yields the claim. Let c=e+c1>ec=e+c_{1}>e. Then ΞΈ~βˆ’e​(ΞΈ~c​(ΞΎ0))=ΞΈ~c1​(ΞΎ0)\tilde{\theta}_{-e}(\tilde{\theta}_{c}(\xi_{0}))=\tilde{\theta}_{c_{1}}(\xi_{0}). MIH yields the claim.

On the other hand we have M​hda​(fd)=M​hda​(f​(d))∩M​hc0a​(fc0)Mh_{d}^{a}(f^{d})=Mh^{a}_{d}(f(d))\cap Mh_{c_{0}}^{a}(f^{c_{0}}). Ο€βˆˆM​hda​(f​(d))∩Mc0a​(M​hc0a​(fc0))\pi\in Mh^{a}_{d}(f(d))\cap M^{a}_{c_{0}}(Mh_{c_{0}}^{a}(f^{c_{0}})) with d<c0d<c_{0} yields by Proposition 2.9.2, Ο€βˆˆMda​(M​hda​(f​(d))∩M​hc0a​(fc0))\pi\in M^{a}_{d}(Mh^{a}_{d}(f(d))\cap Mh_{c_{0}}^{a}(f^{c_{0}})), i.e., Ο€βˆˆMda​(M​hda​(fd))\pi\in M^{a}_{d}(Mh^{a}_{d}(f^{d})). β–‘\Box

Definition 2.14

For finite functions ff and gg,

Mh0a(g)β‰ΊMh0a(f):β‡”βˆ€Ο€βˆˆMh0a(f)(SCΞ›(g)βŠ‚β„‹a(Ο€)β‡’Ο€βˆˆM(Mh0a(g))).Mh^{a}_{0}(g)\prec Mh^{a}_{0}(f):\Leftrightarrow\forall\pi\in Mh^{a}_{0}(f)\left(SC_{\Lambda}(g)\subset\mathcal{H}_{a}(\pi)\Rightarrow\pi\in M(Mh^{a}_{0}(g))\right).
Corollary 2.15

Let f,gf,g be finite functions and c∈supp​(f)c\in{\rm supp}(f). Assume that there exists an ordinal d<cd<c such that (d,c)∩supp​(f)=(d,c)∩supp​(g)=βˆ…(d,c)\cap{\rm supp}(f)=(d,c)\cap{\rm supp}(g)=\emptyset, gd=fdg_{d}=f_{d}, g​(d)<f​(d)+ΞΈ~cβˆ’d​(f​(c))β‹…Ο‰g(d)<f(d)+\tilde{\theta}_{c-d}(f(c))\cdot\omega, and g<cf​(c)g<^{c}f(c).

Then M​h0a​(g)β‰ΊM​h0a​(f)Mh^{a}_{0}(g)\prec Mh^{a}_{0}(f) holds. In particular if Ο€βˆˆM​h0a​(f)\pi\in Mh^{a}_{0}(f) and S​CΛ​(g)βŠ‚β„‹a​(Ο€)SC_{\Lambda}(g)\subset\mathcal{H}_{a}(\pi), then ΟˆΟ€g​(a)<Ο€\psi_{\pi}^{g}(a)<\pi.

Proof.  Let Ο€βˆˆM​h0a​(f)=β‹‚{M​hea​(f​(e)):e∈supp​(f)}\pi\in Mh^{a}_{0}(f)=\bigcap\{Mh^{a}_{e}(f(e)):e\in{\rm supp}(f)\} and S​CΛ​(g)βŠ‚β„‹a​(Ο€)SC_{\Lambda}(g)\subset\mathcal{H}_{a}(\pi). Lemma 2.13 with Ο€βˆˆM​hda​(f​(d))∩M​hca​(f​(c))\pi\in Mh^{a}_{d}(f(d))\cap Mh^{a}_{c}(f(c)) yields Ο€βˆˆM​hda​(g​(d))∩Mca​(M​hca​(gc))\pi\in Mh^{a}_{d}(g(d))\cap M^{a}_{c}(Mh^{a}_{c}(g^{c})). On the other hand we have Ο€βˆˆM​h0a​(gd)=β‹‚{M​hea​(f​(e)):e∈supp​(f)∩d}\pi\in Mh^{a}_{0}(g_{d})=\bigcap\{Mh^{a}_{e}(f(e)):e\in{\rm supp}(f)\cap d\}. Hence Ο€βˆˆM​(M​h0a​(g))\pi\in M(Mh^{a}_{0}(g)).

Now suppose S​CΛ​(g)βŠ‚β„‹a​(Ο€)SC_{\Lambda}(g)\subset\mathcal{H}_{a}(\pi). The set C={ΞΊ<Ο€:β„‹a​(ΞΊ)βˆ©Ο€βŠ‚ΞΊ,{Ο€,a}βˆͺS​CΛ​(g)βŠ‚β„‹a​(ΞΊ)}C=\{\kappa<\pi:\mathcal{H}_{a}(\kappa)\cap\pi\subset\kappa,\{\pi,a\}\cup SC_{\Lambda}(g)\subset\mathcal{H}_{a}(\kappa)\} is a club subset of the regular cardinal Ο€\pi, and M​h0a​(g)Mh^{a}_{0}(g) is stationary in Ο€\pi. This shows the existence of a κ∈M​h0a​(g)∩Cβˆ©Ο€\kappa\in Mh_{0}^{a}(g)\cap C\cap\pi, and hence ΟˆΟ€g​(a)<Ο€\psi_{\pi}^{g}(a)<\pi by the definition (4). β–‘\Box

Assume that gc=fcg_{c}=f_{c} and g<cf​(c)g<^{c}f(c) for a c>0c>0. Then there exists a d<cd<c for which the assumption in Corollary 2.15 is met.

2.3 Normal forms in ordinal notations

In this subsection we introduce an irreducibility of finite functions, which is needed to define a normal form in ordinal notations.

Proposition 2.16

Let ff be a finite function such that {a}βˆͺS​CΛ​(f)βŠ‚β„‹a​(Ο€)\{a\}\cup SC_{\Lambda}(f)\subset\mathcal{H}_{a}(\pi). Assume t​l​(f​(c))≀θ~d​(f​(c+d))tl(f(c))\leq\tilde{\theta}_{d}(f(c+d)) holds for some c,c+d∈supp​(f)c,c+d\in{\rm supp}(f) with d>0d>0. Then Ο€βˆˆM​h0a​(f)β‡”Ο€βˆˆM​h0a​(g)\pi\in Mh^{a}_{0}(f)\Leftrightarrow\pi\in Mh^{a}_{0}(g) holds, where gg is a finite function such that g​(c)=f​(c)βˆ’t​l​(f​(c))g(c)=f(c)-tl(f(c)) and g​(e)=f​(e)g(e)=f(e) for every eβ‰ ce\neq c.

Proof.  First assume Ο€βˆˆM​h0a​(f)\pi\in Mh^{a}_{0}(f). We obtain Ο€βˆˆM​h0a​(g)\pi\in Mh^{a}_{0}(g) by Proposition 2.5. Let Ο€βˆˆM​h0a​(g)\pi\in Mh^{a}_{0}(g), and t​l​(f​(c))≀θ~d​(f​(c+d))tl(f(c))\leq\tilde{\theta}_{d}(f(c+d)). On the other hand we have Ο€βˆˆM​hc+da​(f​(c+d))\pi\in Mh^{a}_{c+d}(f(c+d)). By Lemma 2.13 and Ο€βˆˆM​hca​(g​(c))\pi\in Mh^{a}_{c}(g(c)) we obtain Ο€βˆˆM​hca​(f​(c))\pi\in Mh^{a}_{c}(f(c)) for f​(c)=g​(c)+t​l​(f​(c))f(c)=g(c)+tl(f(c)). Hence Ο€βˆˆM​h0a​(f)\pi\in Mh^{a}_{0}(f). β–‘\Box

Definition 2.17

An irreducibility of finite functions ff is defined by induction on the cardinality nn of the finite set supp​(f){\rm supp}(f). If n≀1n\leq 1, ff is defined to be irreducible. Let nβ‰₯2n\geq 2 and c<c+dc<c+d be the largest two elements in supp​(f){\rm supp}(f), and let gg be a finite function such that supp​(g)=supp​(fc)βˆͺ{c}{\rm supp}(g)={\rm supp}(f_{c})\cup\{c\}, gc=fcg_{c}=f_{c} and g​(c)=f​(c)+ΞΈ~d​(f​(c+d))g(c)=f(c)+\tilde{\theta}_{d}(f(c+d)).

Then ff is irreducible iff t​l​(f​(c))>ΞΈ~d​(f​(c+d))tl(f(c))>\tilde{\theta}_{d}(f(c+d)) and gg is irreducible.

Definition 2.18

Let f,gf,g be irreducible finite functions, and bb an ordinal. Let us define a relation f<l​xbgf<^{b}_{lx}g by induction on the cardinality #​{e∈supp​(f)βˆͺsupp​(g):eβ‰₯b}\#\{e\in{\rm supp}(f)\cup{\rm supp}(g):e\geq b\} as follows. f<l​xbgf<^{b}_{lx}g holds iff fbβ‰ gbf^{b}\neq g^{b} and for the ordinal c=min⁑{cβ‰₯b:f​(c)β‰ g​(c)}c=\min\{c\geq b:f(c)\neq g(c)\}, one of the following conditions is met:

  1. 1.

    f​(c)<g​(c)f(c)<g(c) and let ΞΌ\mu be the shortest part of g​(c)g(c) such that f​(c)<ΞΌf(c)<\mu. Then for any c<c+d∈supp​(f)c<c+d\in{\rm supp}(f), if t​l​(ΞΌ)≀θ~d​(f​(c+d))tl(\mu)\leq\tilde{\theta}_{d}(f(c+d)), then f<l​xc+dgf<_{lx}^{c+d}g holds.

  2. 2.

    f​(c)>g​(c)f(c)>g(c) and let Ξ½\nu be the shortest part of f​(c)f(c) such that Ξ½>g​(c)\nu>g(c). Then there exist a c<c+d∈supp​(g)c<c+d\in{\rm supp}(g) such that f<l​xc+dgf<_{lx}^{c+d}g and t​l​(Ξ½)≀θ~d​(g​(c+d))tl(\nu)\leq\tilde{\theta}_{d}(g(c+d)).

In [5] the following Lemma 2.19 is shown.

Lemma 2.19

If f<l​x0gf<^{0}_{lx}g, then M​h0a​(f)β‰ΊM​h0a​(g)Mh^{a}_{0}(f)\prec Mh^{a}_{0}(g), cf. Definition 2.14.

Proposition 2.20

Let f,gf,g be irreducible finite functions, and assume that ΟˆΟ€f​(b)<Ο€\psi_{\pi}^{f}(b)<\pi and ψκg​(a)<ΞΊ\psi_{\kappa}^{g}(a)<\kappa. Then ΟˆΟ€f​(b)<ψκg​(a)\psi_{\pi}^{f}(b)<\psi_{\kappa}^{g}(a) iff one of the following cases holds:

  1. 1.

    Ο€β‰€ΟˆΞΊg​(a)\pi\leq\psi_{\kappa}^{g}(a).

  2. 2.

    b<ab<a, ΟˆΟ€f​(b)<ΞΊ\psi_{\pi}^{f}(b)<\kappa and S​CΛ​(f)βˆͺ{Ο€,b}βŠ‚β„‹a​(ψκg​(a))SC_{\Lambda}(f)\cup\{\pi,b\}\subset\mathcal{H}_{a}(\psi_{\kappa}^{g}(a)).

  3. 3.

    b>ab>a and S​CΛ​(g)βˆͺ{ΞΊ,a}βŠ„β„‹b​(ΟˆΟ€f​(b))SC_{\Lambda}(g)\cup\{\kappa,a\}\not\subset\mathcal{H}_{b}(\psi_{\pi}^{f}(b)).

  4. 4.

    b=ab=a, ΞΊ<Ο€\kappa<\pi and ΞΊβˆ‰β„‹b​(ΟˆΟ€f​(b))\kappa\not\in\mathcal{H}_{b}(\psi_{\pi}^{f}(b)).

  5. 5.

    b=ab=a, Ο€=ΞΊ\pi=\kappa, S​CΛ​(f)βŠ‚β„‹a​(ψκg​(a))SC_{\Lambda}(f)\subset\mathcal{H}_{a}(\psi_{\kappa}^{g}(a)), and f<l​x0gf<^{0}_{lx}g.

  6. 6.

    b=ab=a, Ο€=ΞΊ\pi=\kappa, S​CΛ​(g)βŠ„β„‹b​(ΟˆΟ€f​(b))SC_{\Lambda}(g)\not\subset\mathcal{H}_{b}(\psi_{\pi}^{f}(b)).

Proof.  This is seen as in Proposition 2.19 of [3] using Lemma 2.19. β–‘\Box

In [5] a computable notation system O​TNOT_{N} is defined from Proposition 2.20 for each positive integer NN. Constants are 0 and π•Š\mathbb{S}, and constructors are +,Ο†,Ξ©+,\varphi,\Omega and ψ\psi. Ξ©\Omega-terms Ωα∈O​TN\Omega_{\alpha}\in OT_{N} if α∈{1}βˆͺ{ΞΊ+n:0<n≀N}\alpha\in\{1\}\cup\{\kappa+n:0<n\leq N\} for κ∈{π•Š}βˆͺΞ¨N\kappa\in\{\mathbb{S}\}\cup\Psi_{N} with Ξ©:=Ξ©1\Omega:=\Omega_{1}. Let us spell out clauses for ψ\psi-terms, the set Ξ¨N\Psi_{N} and m​(ρ)m(\rho).

Definition 2.21

Eπ•Šβ€‹(Ξ±)E_{\mathbb{S}}(\alpha) denotes the set of subterms Ξ²\beta of ordinal terms Ξ±\alpha such that Ξ²<π•Š\beta<\mathbb{S}, and the length ℓ​α\ell\alpha of Ξ±\alpha is the total number of occurrences of symbols in Ξ±\alpha.

  1. 1.

    Let Ξ±=ΟˆΟ€β€‹(a)\alpha=\psi_{\pi}(a) with {Ο€,a}βŠ‚O​TN\{\pi,a\}\subset OT_{N}, {Ο€,a}βŠ‚β„‹a​(Ξ±)\{\pi,a\}\subset\mathcal{H}_{a}(\alpha), and if Ο€=Ωκ+n\pi=\Omega_{\kappa+n} with κ∈ΨN\kappa\in\Psi_{N} and 0<k≀N0<k\leq N, then a<Γ​(Ωκ+N)a<\Gamma(\Omega_{\kappa+N}). Then α∈O​TN\alpha\in OT_{N}. Let m​(Ξ±)=βˆ…m(\alpha)=\emptyset.

  2. 2.

    Let Ξ±=Οˆπ•Šf​(a)\alpha=\psi_{\mathbb{S}}^{f}(a), where ΞΎ,a,c∈O​TN\xi,a,c\in OT_{N}, ΞΎ>0\xi>0, c<𝕂c<\mathbb{K}, {ΞΎ,a,c}βŠ‚β„‹a​(Ξ±)\{\xi,a,c\}\subset\mathcal{H}_{a}(\alpha), supp​(f)={c}{\rm supp}(f)=\{c\} and f​(c)=ΞΎf(c)=\xi. Then α∈ΨN\alpha\in\Psi_{N} and f=m​(Ξ±)f=m(\alpha).

  3. 3.

    Let {a,d}βŠ‚O​TN\{a,d\}\subset OT_{N}, Ο€βˆˆΞ¨N\pi\in\Psi_{N}, f=m​(Ο€)f=m(\pi), d<c∈supp​(f)d<c\in{\rm supp}(f), and (d,c)∩supp​(f)=βˆ…(d,c)\cap{\rm supp}(f)=\emptyset. Let gg be an irreducible function such that S​CΛ​(g)βŠ‚O​TNSC_{\Lambda}(g)\subset OT_{N}, gd=fdg_{d}=f_{d}, (d,c)∩supp​(g)=βˆ…(d,c)\cap{\rm supp}(g)=\emptyset, g​(d)<f​(d)+ΞΈ~cβˆ’d​(f​(c))β‹…Ο‰g(d)<f(d)+\tilde{\theta}_{c-d}(f(c))\cdot\omega, and g<cf​(c)g<^{c}f(c).

    Then Ξ±=ΟˆΟ€g​(a)∈ΨN\alpha=\psi_{\pi}^{g}(a)\in\Psi_{N} if {Ο€,a}βˆͺS​CΛ​(f)βˆͺS​CΛ​(g)βŠ‚β„‹a​(Ξ±)\{\pi,a\}\cup SC_{\Lambda}(f)\cup SC_{\Lambda}(g)\subset\mathcal{H}_{a}(\alpha) and

    Eπ•Šβ€‹(S​CΛ​(g))<Ξ±E_{\mathbb{S}}(SC_{\Lambda}(g))<\alpha (6)

The restriction (6) is needed to prove the well-foundednesss of O​TNOT_{N} in [5].

In what follows by ordinals we mean ordinal terms in O​TNOT_{N} for a fixed positive integer NN.

2.4 A Mostowski collapsing

In this subsection we define a Mostowski collapsing α↦α​[ρ/π•Š]\alpha\mapsto\alpha[\rho/\mathbb{S}], which is needed to replace inference rules for stability by ones of reflections.

Proposition 2.22

Let ρ=ψκf​(a)∈ΨN∩κ\rho=\psi_{\kappa}^{f}(a)\in\Psi_{N}\cap\kappa with ℋγ​(ΞΊ)βˆ©π•ŠβŠ‚ΞΊ\mathcal{H}_{\gamma}(\kappa)\cap\mathbb{S}\subset\kappa for γ≀a\gamma\leq a. Then ℋγ​(ρ)βˆ©π•ŠβŠ‚Ο\mathcal{H}_{\gamma}(\rho)\cap\mathbb{S}\subset\rho.

Proof.  If ΞΊ=π•Š\kappa=\mathbb{S}, then ℋγ​(ρ)βˆ©π•ŠβŠ‚β„‹a​(ρ)βˆ©π•ŠβŠ‚Ο\mathcal{H}_{\gamma}(\rho)\cap\mathbb{S}\subset\mathcal{H}_{a}(\rho)\cap\mathbb{S}\subset\rho for γ≀a\gamma\leq a. Let ΞΊ=ΟˆΟ€g​(b)<π•Š\kappa=\psi_{\pi}^{g}(b)<\mathbb{S}. We have ΞΊβˆˆβ„‹a​(ρ)\kappa\in\mathcal{H}_{a}(\rho) by (4), and hence b<ab<a by ΞΊ>ρ\kappa>\rho. We obtain ℋγ​(ρ)βˆ©π•ŠβŠ‚β„‹Ξ³β€‹(ΞΊ)βˆ©π•ŠβŠ‚ΞΊ\mathcal{H}_{\gamma}(\rho)\cap\mathbb{S}\subset\mathcal{H}_{\gamma}(\kappa)\cap\mathbb{S}\subset\kappa. γ≀a\gamma\leq a yields ℋγ​(ρ)βˆ©π•ŠβŠ‚β„‹Ξ³β€‹(ρ)βˆ©ΞΊβŠ‚β„‹a​(ρ)βˆ©ΞΊβŠ‚Ο\mathcal{H}_{\gamma}(\rho)\cap\mathbb{S}\subset\mathcal{H}_{\gamma}(\rho)\cap\kappa\subset\mathcal{H}_{a}(\rho)\cap\kappa\subset\rho. β–‘\Box

Definition 2.23

Let α∈EΟπ•Š\alpha\in E^{\mathbb{S}}_{\rho} iff Eπ•Šβ€‹(Ξ±)βŠ‚ΟE_{\mathbb{S}}(\alpha)\subset\rho for α∈O​TN\alpha\in OT_{N}.

Proposition 2.24

S​CΛ​(m​(ρ))βŠ‚EΟπ•ŠSC_{\Lambda}(m(\rho))\subset E^{\mathbb{S}}_{\rho} for ρ∈ΨN\rho\in\Psi_{N}.

Proof.  This is seen from Definition 2.21.2 and (6) in Definition 2.21.3. β–‘\Box

Proposition 2.25

Let ρ≀δ<π•Š\rho\leq\delta<\mathbb{S}. Then for α∈EΟπ•Šβˆ©O​TN\alpha\in E^{\mathbb{S}}_{\rho}\cap OT_{N}, Ξ±βˆˆβ„‹Ξ³β€‹(ρ)\alpha\in\mathcal{H}_{\gamma}(\rho) iff Ξ±βˆˆβ„‹Ξ³β€‹(Ξ΄)\alpha\in\mathcal{H}_{\gamma}(\delta).

Proof.  We show Ξ±βˆˆβ„‹Ξ³β€‹(ρ)\alpha\in\mathcal{H}_{\gamma}(\rho) iff Ξ±βˆˆβ„‹Ξ³β€‹(Ξ΄)\alpha\in\mathcal{H}_{\gamma}(\delta) by induction on the lengths ℓ​α\ell\alpha of α∈EΟπ•Šβˆ©O​TN\alpha\in E^{\mathbb{S}}_{\rho}\cap OT_{N}. First let Ξ±=ΟˆΟƒβ€‹(a)>π•Š\alpha=\psi_{\sigma}(a)>\mathbb{S}. Then Οƒ=Ξ©π•Š+n\sigma=\Omega_{\mathbb{S}+n} and for π•Š>β∈{ρ,Ξ΄}\mathbb{S}>\beta\in\{\rho,\delta\}, Ξ±βˆˆβ„‹Ξ³β€‹(Ξ²)\alpha\in\mathcal{H}_{\gamma}(\beta) iff aβˆˆβ„‹Ξ³β€‹(Ξ²)∩γa\in\mathcal{H}_{\gamma}(\beta)\cap\gamma, and Eπ•Šβ€‹(Ξ±)=Eπ•Šβ€‹(a)E_{\mathbb{S}}(\alpha)=E_{\mathbb{S}}(a). IH yields aβˆˆβ„‹Ξ³β€‹(ρ)a\in\mathcal{H}_{\gamma}(\rho) iff aβˆˆβ„‹Ξ³β€‹(Ξ΄)a\in\mathcal{H}_{\gamma}(\delta). Next let Ξ±=ΟˆΟ€f​(a)<π•Š\alpha=\psi_{\pi}^{f}(a)<\mathbb{S}. Then Ξ±<ρ≀δ\alpha<\rho\leq\delta by α∈EΟπ•Š\alpha\in E^{\mathbb{S}}_{\rho}. Hence Ξ±βˆˆβ„‹Ξ³β€‹(ρ)βˆ©β„‹Ξ³β€‹(Ξ΄)\alpha\in\mathcal{H}_{\gamma}(\rho)\cap\mathcal{H}_{\gamma}(\delta). Other cases are seen from IH. β–‘\Box

Definition 2.26

Let α∈EΟπ•Š\alpha\in E^{\mathbb{S}}_{\rho} with ρ∈ΨN\rho\in\Psi_{N}. We define an ordinal α​[ρ/π•Š]\alpha[\rho/\mathbb{S}] recursively as follows.

  1. 1.

    α​[ρ/π•Š]:=Ξ±\alpha[\rho/\mathbb{S}]:=\alpha when Ξ±<π•Š\alpha<\mathbb{S}. In what follows assume Ξ±β‰₯π•Š\alpha\geq\mathbb{S}.

  2. 2.

    π•Šβ€‹[ρ/π•Š]:=ρ\mathbb{S}[\rho/\mathbb{S}]:=\rho. Ξ©π•Š+n​[ρ/π•Š]:=Ωρ+n\Omega_{\mathbb{S}+n}[\rho/\mathbb{S}]:=\Omega_{\rho+n}.

  3. 3.

    The map commutes with ++ and Ο†\varphi, i.e., (φ​α​β)​[ρ/π•Š]=φ​(α​[ρ/π•Š])​(β​[ρ/π•Š])(\varphi\alpha\beta)[\rho/\mathbb{S}]=\varphi(\alpha[\rho/\mathbb{S}])(\beta[\rho/\mathbb{S}]), and (Ξ±1+β‹―+Ξ±n)​[ρ/π•Š]=Ξ±1​[ρ/π•Š]+β‹―+Ξ±n​[ρ/π•Š](\alpha_{1}+\cdots+\alpha_{n})[\rho/\mathbb{S}]=\alpha_{1}[\rho/\mathbb{S}]+\cdots+\alpha_{n}[\rho/\mathbb{S}].

  4. 4.

    (ΟˆΞ©π•Š+n​(a))​[ρ/π•Š]=ψΩρ+n​(a​[ρ/π•Š])\left(\psi_{\Omega_{\mathbb{S}+n}}(a)\right)[\rho/\mathbb{S}]=\psi_{\Omega_{\rho+n}}(a[\rho/\mathbb{S}]) for 0<n≀N0<n\leq N.

Note that α​[ρ/π•Š]βˆˆβ„‹π•Šβ€‹(Eπ•Šβ€‹(Ξ±)βˆͺ{ρ})\alpha[\rho/\mathbb{S}]\in\mathcal{H}_{\mathbb{S}}(E_{\mathbb{S}}(\alpha)\cup\{\rho\}).

Lemma 2.27

For ρ∈ΨN\rho\in\Psi_{N}, {α​[ρ/π•Š]:α∈EΟπ•Š}\{\alpha[\rho/\mathbb{S}]:\alpha\in E^{\mathbb{S}}_{\rho}\} is a transitive collapse of EΟπ•ŠE^{\mathbb{S}}_{\rho}: Ξ²<α⇔β​[ρ/π•Š]<α​[ρ/π•Š]\beta<\alpha\Leftrightarrow\beta[\rho/\mathbb{S}]<\alpha[\rho/\mathbb{S}], Ξ³>π•Šβ‡’(Ξ²βˆˆβ„‹Ξ±(Ξ³)⇔β[ρ/π•Š]βˆˆβ„‹Ξ±β€‹[ρ/π•Š](Ξ³[ρ/π•Š])))\gamma>\mathbb{S}\Rightarrow\left(\beta\in\mathcal{H}_{\alpha}(\gamma)\Leftrightarrow\beta[\rho/\mathbb{S}]\in\mathcal{H}_{\alpha[\rho/\mathbb{S}]}(\gamma[\rho/\mathbb{S}]))\right) and O​TNβˆ©Ξ±β€‹[ρ/π•Š]={β​[ρ/π•Š]:β∈EΟπ•Šβˆ©Ξ±}OT_{N}\cap\alpha[\rho/\mathbb{S}]=\{\beta[\rho/\mathbb{S}]:\beta\in E^{\mathbb{S}}_{\rho}\cap\alpha\} for Ξ±,Ξ²,γ∈EΟπ•Š\alpha,\beta,\gamma\in E^{\mathbb{S}}_{\rho}.

Proof.  Simultaneously we show first Ξ²<α⇔β​[ρ/π•Š]<α​[ρ/π•Š]\beta<\alpha\Leftrightarrow\beta[\rho/\mathbb{S}]<\alpha[\rho/\mathbb{S}], and second Ξ²βˆˆβ„‹Ξ±(Ξ³)⇔β[ρ/π•Š]βˆˆβ„‹Ξ±β€‹[ρ/π•Š](Ξ³[ρ/π•Š]))\beta\in\mathcal{H}_{\alpha}(\gamma)\Leftrightarrow\beta[\rho/\mathbb{S}]\in\mathcal{H}_{\alpha[\rho/\mathbb{S}]}(\gamma[\rho/\mathbb{S}])) if Ξ³>π•Š\gamma>\mathbb{S} by induction on the sum 2ℓ​α+2ℓ​β2^{\ell\alpha}+2^{\ell\beta} of lengths for Ξ±,Ξ²,γ∈EΟπ•Š\alpha,\beta,\gamma\in E^{\mathbb{S}}_{\rho}. We see easily that π•Š>Γ𝕂​[ρ]+1>α​[ρ/π•Š]>ρ\mathbb{S}>\Gamma_{\mathbb{K}[\rho]+1}>\alpha[\rho/\mathbb{S}]>\rho when Ξ±>π•Š\alpha>\mathbb{S}, where 𝕂​[ρ/π•Š]=Ωρ+N\mathbb{K}[\rho/\mathbb{S}]=\Omega_{\rho+N}. Also α​[ρ/π•Š]≀α\alpha[\rho/\mathbb{S}]\leq\alpha.

Let π•Š<Ξ²=ΟˆΟ€β€‹(b)<ΟˆΞΊβ€‹(a)=Ξ±\mathbb{S}<\beta=\psi_{\pi}(b)<\psi_{\kappa}(a)=\alpha with {b,a}βŠ‚EΟπ•Šβˆ©O​TN\{b,a\}\subset E^{\mathbb{S}}_{\rho}\cap OT_{N}, where Ο€=Ξ©π•Š+n\pi=\Omega_{\mathbb{S}+n}, ΞΊ=Ξ©π•Š+m\kappa=\Omega_{\mathbb{S}+m} for 0<n,m≀N0<n,m\leq N, bβˆˆβ„‹b​(Ξ²)b\in\mathcal{H}_{b}(\beta) and aβˆˆβ„‹a​(Ξ±)a\in\mathcal{H}_{a}(\alpha). We have Ξ²=ΟˆΟ€β€‹(b)<ΟˆΞΊβ€‹(a)=Ξ±\beta=\psi_{\pi}(b)<\psi_{\kappa}(a)=\alpha iff either Ο€<ΞΊ\pi<\kappa, i.e., n<mn<m, or Ο€=ΞΊ&b<a\pi=\kappa\,\&\,b<a, and similarly for β​[ρ/π•Š]=ψΩρ+n​(b​[ρ/π•Š])<ψΩρ+m​(a​[ρ/π•Š])\beta[\rho/\mathbb{S}]=\psi_{\Omega_{\rho}+n}(b[\rho/\mathbb{S}])<\psi_{\Omega_{\rho+m}}(a[\rho/\mathbb{S}]). From IH we see that bβˆˆβ„‹b​(Ξ²)⇔b​[ρ/π•Š]βˆˆβ„‹b​[ρ]​(β​[ρ/π•Š])b\in\mathcal{H}_{b}(\beta)\Leftrightarrow b[\rho/\mathbb{S}]\in\mathcal{H}_{b[\rho]}(\beta[\rho/\mathbb{S}]) and b<a⇔b​[ρ/π•Š]<a​[ρ/π•Š]b<a\Leftrightarrow b[\rho/\mathbb{S}]<a[\rho/\mathbb{S}]. Hence Ξ²<α⇔β​[ρ/π•Š]<α​[ρ/π•Š]\beta<\alpha\Leftrightarrow\beta[\rho/\mathbb{S}]<\alpha[\rho/\mathbb{S}]. Other cases are seen by IH. Next suppose Ξ²βˆˆβ„‹Ξ±β€‹(Ξ³)\beta\in\mathcal{H}_{\alpha}(\gamma) for Ξ³>π•Š\gamma>\mathbb{S}. Then β​[ρ/π•Š]βˆˆβ„‹Ξ±β€‹[ρ/π•Š]​(γ​[ρ/π•Š])\beta[\rho/\mathbb{S}]\in\mathcal{H}_{\alpha[\rho/\mathbb{S}]}(\gamma[\rho/\mathbb{S}]) is seen from the first assertion using the fact γ​[ρ/π•Š]>ρ\gamma[\rho/\mathbb{S}]>\rho.

Finally let β∈O​TNβˆ©Ξ±β€‹[ρ/π•Š]\beta\in OT_{N}\cap\alpha[\rho/\mathbb{S}] for α∈EΟπ•Š\alpha\in E^{\mathbb{S}}_{\rho}. We show by induction on ℓ​β\ell\beta that there exists a γ∈EΟπ•Š\gamma\in E^{\mathbb{S}}_{\rho} such that Ξ²=γ​[ρ/π•Š]\beta=\gamma[\rho/\mathbb{S}]. If Ξ²<ρ\beta<\rho, then β​[ρ/π•Š]=Ξ²\beta[\rho/\mathbb{S}]=\beta. Also ρ=π•Šβ€‹[ρ/π•Š]\rho=\mathbb{S}[\rho/\mathbb{S}]. Let Γ𝕂​[ρ]+1>Ξ²=ΟˆΟ€β€‹(b)>ρ\Gamma_{\mathbb{K}[\rho]+1}>\beta=\psi_{\pi}(b)>\rho with bβˆˆβ„‹b​(Ξ²)b\in\mathcal{H}_{b}(\beta). Then we see Ο€=Ωρ+n\pi=\Omega_{\rho+n} for an n≀Nn\leq N and b<Γ𝕂​[ρ]+1b<\Gamma_{\mathbb{K}[\rho]+1}. By IH there is a c∈EΟπ•Šc\in E^{\mathbb{S}}_{\rho} such that c​[ρ/π•Š]=bc[\rho/\mathbb{S}]=b. Then Ξ²=ψΩρ+n​(c​[ρ/π•Š])=γ​[ρ/π•Š]\beta=\psi_{\Omega_{\rho+n}}(c[\rho/\mathbb{S}])=\gamma[\rho/\mathbb{S}] with Ξ³=ΟˆΞ©π•Š+n​(c)\gamma=\psi_{\Omega_{\mathbb{S}+n}}(c), cβˆˆβ„‹c​(Ξ³)c\in\mathcal{H}_{c}(\gamma) and Eπ•Šβ€‹(Ξ³)=Eπ•Šβ€‹(c)E_{\mathbb{S}}(\gamma)=E_{\mathbb{S}}(c). Hence γ∈EΟπ•Š\gamma\in E^{\mathbb{S}}_{\rho}. Other cases are seen by IH. β–‘\Box

Proposition 2.28

ℋγ​(EΟπ•Š)βŠ‚EΟπ•Š\mathcal{H}_{\gamma}(E_{\rho}^{\mathbb{S}})\subset E_{\rho}^{\mathbb{S}} for ρ∈ΨN\rho\in\Psi_{N}.

Proof.  Let ℋγ​(ρ)βˆ©π•ŠβŠ‚Ο\mathcal{H}_{\gamma}(\rho)\cap\mathbb{S}\subset\rho. We show α∈EΟπ•Š\alpha\in E^{\mathbb{S}}_{\rho} by induction on ℓ​α\ell\alpha for Ξ±βˆˆβ„‹Ξ³β€‹(EΟπ•Š)∩O​TN\alpha\in\mathcal{H}_{\gamma}(E^{\mathbb{S}}_{\rho})\cap OT_{N}. Let {ΞΊ,a}βˆͺS​CΛ​(g)βŠ‚β„‹Ξ³β€‹(EΟπ•Š)\{\kappa,a\}\cup SC_{\Lambda}(g)\subset\mathcal{H}_{\gamma}(E^{\mathbb{S}}_{\rho}) be such that a<Ξ³a<\gamma and {ΞΊ,a}βˆͺS​CΛ​(g)βŠ‚β„‹a​(Ξ±)∩O​TN\{\kappa,a\}\cup SC_{\Lambda}(g)\subset\mathcal{H}_{a}(\alpha)\cap OT_{N} with Ξ±=ψκg​(a)βˆˆβ„‹Ξ³β€‹(EΟπ•Š)\alpha=\psi_{\kappa}^{g}(a)\in\mathcal{H}_{\gamma}(E^{\mathbb{S}}_{\rho}). We need to show Ξ±<ρ\alpha<\rho. Suppose ρ≀α<π•Š\rho\leq\alpha<\mathbb{S}. IH yields {ΞΊ,a}βˆͺS​CΛ​(g)βŠ‚EΟπ•Šβˆ©O​TN\{\kappa,a\}\cup SC_{\Lambda}(g)\subset E^{\mathbb{S}}_{\rho}\cap OT_{N}. Proposition 2.25 yields {ΞΊ,a}βˆͺS​CΛ​(g)βŠ‚β„‹a​(ρ)βŠ‚β„‹Ξ³β€‹(ρ)\{\kappa,a\}\cup SC_{\Lambda}(g)\subset\mathcal{H}_{a}(\rho)\subset\mathcal{H}_{\gamma}(\rho) by a<Ξ³a<\gamma. Hence Ξ±βˆˆβ„‹Ξ³β€‹(ρ)βˆ©π•ŠβŠ‚Ο\alpha\in\mathcal{H}_{\gamma}(\rho)\cap\mathbb{S}\subset\rho. Other cases are seen from IH. β–‘\Box

3 Upperbounds

Operator controlled derivations are introduced by W. Buchholz[7]. In this section except otherwise stated, Ξ±,Ξ²,Ξ³,…,a,b,c,d,…\alpha,\beta,\gamma,\ldots,a,b,c,d,\ldots range over ordinals in O​TNOT_{N}, ΞΎ,ΞΆ,Ξ½,ΞΌ,…\xi,\zeta,\nu,\mu,\ldots range over ordinals in 𝕂\mathbb{K}, f,g,h,…f,g,h,\ldots range over finite functions on 𝕂\mathbb{K}, and Ο€,ΞΊ,ρ,Οƒ,Ο„,Ξ»,…\pi,\kappa,\rho,\sigma,\tau,\lambda,\ldots range over regular ordinals in O​TNOT_{N}. R​e​gReg denotes the set of regular ordinals≀𝕂=Ξ©π•Š+N\leq\mathbb{K}=\Omega_{\mathbb{S}+N} with a positive integer NN.

3.1 Classes of sentences

Following Buchholz[7] let us introduce a language for ramified set theory R​SRS.

Definition 3.1

R​SRS-terms and their levels are inductively defined.

  1. 1.

    For each α∈O​TNβˆ©π•‚\alpha\in OT_{N}\cap\mathbb{K}, 𝖫α\mathsf{L}_{\alpha} is an R​SRS-term of level Ξ±\alpha.

  2. 2.

    For a set-theoretic formula ϕ​(x,y1,…,yn)\phi(x,y_{1},\ldots,y_{n}) in the language {∈}\{\in\} and R​SRS-terms a1,…,ana_{1},\ldots,a_{n} of levels<α∈O​TNβˆ©π•‚<\!\alpha\in OT_{N}\cap\mathbb{K}, [xβˆˆπ–«Ξ±:ϕ𝖫α​(x,a1,…,an)][x\in\mathsf{L}_{\alpha}:\phi^{\mathsf{L}_{\alpha}}(x,a_{1},\ldots,a_{n})] is an R​SRS-term of level Ξ±\alpha.

Definition 3.2
  1. 1.

    |u||u| denotes the level of R​SRS-terms uu, and T​m​(Ξ±)Tm(\alpha) the set of R​SRS-terms of level<α∈O​TN∩(𝕂+1)<\alpha\in OT_{N}\cap(\mathbb{K}+1). T​m=T​m​(𝕂)Tm=Tm(\mathbb{K}) is then the set of R​SRS-terms, which are denoted by u,v,w,…u,v,w,\ldots

  2. 2.

    R​SRS-formulas are constructed from literals u∈v,uβˆ‰vu\in v,u\not\in v by propositional connectives ∨,∧\lor,\land, bounded quantifiers βˆƒx∈u,βˆ€x∈u\exists x\in u,\forall x\in u and unbounded quantifiers βˆƒx,βˆ€x\exists x,\forall x. Unbounded quantifiers βˆƒx,βˆ€x\exists x,\forall x are denoted by βˆƒx∈L𝕂,βˆ€x∈L𝕂\exists x\in L_{\mathbb{K}},\forall x\in L_{\mathbb{K}}, resp. It is convenient for us not to restrict propositional connectives ∨,∧\lor,\land to binary ones. Specifically when AiA_{i} are R​SRS-formulas for i<n<Ο‰i<n<\omega, A0βˆ¨β‹―βˆ¨Anβˆ’1A_{0}\lor\cdots\lor A_{n-1} and A0βˆ§β‹―βˆ§Anβˆ’1A_{0}\land\cdots\land A_{n-1} are R​SRS-formulas. Even when n=1n=1, A0βˆ¨β‹―βˆ¨A0A_{0}\lor\cdots\lor A_{0} is understood to be different from the formula A0A_{0}.

  3. 3.

    For R​SRS-terms and R​SRS-formulas ΞΉ\iota, 𝗄​(ΞΉ)\mathsf{k}(\iota) denotes the set of ordinal terms Ξ±\alpha such that the constant LΞ±L_{\alpha} occurs in ΞΉ\iota. |ΞΉ|=max⁑(𝗄​(ΞΉ)βˆͺ{0})|\iota|=\max(\mathsf{k}(\iota)\cup\{0\}).

  4. 4.

    Ξ”0\Delta_{0}-formulas, Ξ£1\Sigma_{1}-formulas and Ξ£\Sigma-formulas are defined as in [6]. Specifically if ψ\psi is a Ξ£\Sigma-formula, then so is the formula βˆ€y∈zβ€‹Οˆ\forall y\in z\psi. ΞΈ(a)\theta^{(a)} denotes a Ξ”0\Delta_{0}-formula obtained from a Ξ£\Sigma-formula ΞΈ\theta by restricting each unbounded existential quantifier to aa.

  5. 5.

    For a set-theoretic Ξ£1\Sigma_{1}-formula Οˆβ€‹(x1,…,xm)\psi(x_{1},\ldots,x_{m}) and u1,…,um∈T​m​(ΞΊ)u_{1},\ldots,u_{m}\in Tm(\kappa) with κ≀𝕂\kappa\leq\mathbb{K}, ψ(LΞΊ)​(u1,…,um)\psi^{(L_{\kappa})}(u_{1},\ldots,u_{m}) is a Ξ£1​(ΞΊ)\Sigma_{1}(\kappa)-formula. Ξ”0​(ΞΊ)\Delta_{0}(\kappa)-formulas and Σ​(ΞΊ)\Sigma(\kappa)-formulas are defined similarly

  6. 6.

    For ΞΈβ‰‘Οˆ(𝖫κ)​(u1,…,um)βˆˆΞ£β€‹(ΞΊ)\theta\equiv\psi^{(\mathsf{L}_{\kappa})}(u_{1},\ldots,u_{m})\in\Sigma(\kappa) and Ξ»<ΞΊ\lambda<\kappa, ΞΈ(Ξ»,ΞΊ):β‰‘Οˆ(𝖫λ)(u1,…,um)\theta^{(\lambda,\kappa)}:\equiv\psi^{(\mathsf{L}_{\lambda})}(u_{1},\ldots,u_{m}).

  7. 7.

    Let Οβ‰€π•Š\rho\leq\mathbb{S}, and ΞΉ\iota an R​SRS-term or an R​SRS-formula such that 𝗄​(ΞΉ)βŠ‚EΟπ•Š\mathsf{k}(\iota)\subset E^{\mathbb{S}}_{\rho} with Eπ•Šπ•Š=𝕂E^{\mathbb{S}}_{\mathbb{S}}=\mathbb{K}. Then ΞΉ[ρ/π•Š]\iota^{[\rho/\mathbb{S}]} denotes the result of replacing each unbounded quantifier Q​xQx by Q​xβˆˆπ–«π•‚β€‹[ρ/π•Š]Qx\in\mathsf{L}_{\mathbb{K}[\rho/\mathbb{S}]}, and each ordinal term Ξ±βˆˆπ—„β€‹(ΞΉ)\alpha\in\mathsf{k}(\iota) by α​[ρ/π•Š]\alpha[\rho/\mathbb{S}] for the Mostowski collapse in Definition 2.26. ΞΉ[ρ/π•Š]\iota^{[\rho/\mathbb{S}]} is defined recursively as follows.

    1. (a)

      (𝖫α)[ρ/π•Š]≑𝖫α​[ρ/π•Š](\mathsf{L}_{\alpha})^{[\rho/\mathbb{S}]}\equiv\mathsf{L}_{\alpha[\rho/\mathbb{S}]} with α∈EΟπ•Š\alpha\in E^{\mathbb{S}}_{\rho}. When {Ξ±}βˆͺ⋃{𝗄​(ui):i≀n}βŠ‚EΟπ•Š\{\alpha\}\cup\bigcup\{\mathsf{k}(u_{i}):i\leq n\}\subset E^{\mathbb{S}}_{\rho}, ([xβˆˆπ–«Ξ±:ϕ𝖫α(x,u1,…,un)])[ρ/π•Š]\left([x\in\mathsf{L}_{\alpha}:\phi^{\mathsf{L}_{\alpha}}(x,u_{1},\ldots,u_{n})]\right)^{[\rho/\mathbb{S}]} is defined to be the R​SRS-term [xβˆˆπ–«Ξ±β€‹[ρ/π•Š]:ϕ𝖫α[ρ/π•Š]]​(x,(u1)[ρ/π•Š],…,(un)[ρ/π•Š])][x\in\mathsf{L}_{\alpha[\rho/\mathbb{S}]}:\phi^{\mathsf{L}_{\alpha[\rho/\mathbb{S}]]}}(x,(u_{1})^{[\rho/\mathbb{S}]},\ldots,(u_{n})^{[\rho/\mathbb{S}]})].

    2. (b)

      (Β¬A)[ρ/π•Š]≑¬A[ρ/π•Š](\lnot A)^{[\rho/\mathbb{S}]}\equiv\lnot A^{[\rho/\mathbb{S}]}. (u∈v)[ρ/π•Š]≑(u[ρ/π•Š]∈v[ρ/π•Š])(u\in v)^{[\rho/\mathbb{S}]}\equiv\left(u^{[\rho/\mathbb{S}]}\in v^{[\rho/\mathbb{S}]}\right). (A0βˆ¨β‹―βˆ¨Anβˆ’1)[ρ/π•Š]≑(A0)[ρ/π•Š]βˆ¨β‹―βˆ¨(Anβˆ’1)[ρ/π•Š](A_{0}\lor\cdots\lor A_{n-1})^{[\rho/\mathbb{S}]}\equiv(A_{0})^{[\rho/\mathbb{S}]}\lor\cdots\lor(A_{n-1})^{[\rho/\mathbb{S}]}. (βˆƒx∈u​A)[ρ/π•Š]≑(βˆƒx∈u[ρ/π•Š]​A[ρ/π•Š])(\exists x\in uA)^{[\rho/\mathbb{S}]}\equiv(\exists x\in u^{[\rho/\mathbb{S}]}A^{[\rho/\mathbb{S}]}). (βˆƒx​A)[ρ/π•Š]≑(βˆƒxβˆˆπ–«π•‚β€‹[ρ/π•Š]​A[ρ/π•Š])(\exists xA)^{[\rho/\mathbb{S}]}\equiv(\exists x\in\mathsf{L}_{\mathbb{K}[\rho/\mathbb{S}]}A^{[\rho/\mathbb{S}]}).

Proposition 3.3

Let ρ∈R​e​g∩(π•Š+1)\rho\in Reg\cap(\mathbb{S}+1).

  1. 1.

    Let vv be an R​SRS-term with 𝗄​(v)βŠ‚EΟπ•Š\mathsf{k}(v)\subset E^{\mathbb{S}}_{\rho}, and Ξ±=|v|\alpha=|v|. Then v[ρ/π•Š]v^{[\rho/\mathbb{S}]} is an R​SRS-term of level α​[ρ/π•Š]\alpha[\rho/\mathbb{S}], |v[ρ/π•Š]|=α​[ρ/π•Š]\left|v^{[\rho/\mathbb{S}]}\right|=\alpha[\rho/\mathbb{S}] and 𝗄​(v[ρ/π•Š])=(𝗄​(v))[ρ/π•Š]\mathsf{k}(v^{[\rho/\mathbb{S}]})=\left(\mathsf{k}(v)\right)^{[\rho/\mathbb{S}]}.

  2. 2.

    Let α≀𝕂\alpha\leq\mathbb{K} be such that α∈EΟπ•Š\alpha\in E^{\mathbb{S}}_{\rho}. Then (T​m​(Ξ±))[ρ/π•Š]:={v[ρ/π•Š]:v∈T​m​(Ξ±),𝗄​(v)βŠ‚EΟπ•Š}=T​m​(α​[ρ/π•Š])\left(Tm(\alpha)\right)^{[\rho/\mathbb{S}]}:=\{v^{[\rho/\mathbb{S}]}:v\in Tm(\alpha),\mathsf{k}(v)\subset E^{\mathbb{S}}_{\rho}\}=Tm(\alpha[\rho/\mathbb{S}]).

  3. 3.

    Let AA be an R​SRS-formula with 𝗄​(A)βŠ‚β„‹Ξ³β€‹(ρ)\mathsf{k}(A)\subset\mathcal{H}_{\gamma}(\rho), and assume ℋγ​(ρ)βˆ©π•ŠβŠ‚Ο\mathcal{H}_{\gamma}(\rho)\cap\mathbb{S}\subset\rho. Then A[ρ/π•Š]A^{[\rho/\mathbb{S}]} is an R​SRS-formula such that 𝗄​(A[ρ/π•Š])βŠ‚{α​[ρ/π•Š]:Ξ±βˆˆπ—„β€‹(A)}βˆͺ{𝕂​[ρ/π•Š]}\mathsf{k}(A^{[\rho/\mathbb{S}]})\subset\{\alpha[\rho/\mathbb{S}]:\alpha\in\mathsf{k}(A)\}\cup\{\mathbb{K}[\rho/\mathbb{S}]\}.

Proof.  3.3.1. We see easily that v[ρ/π•Š]v^{[\rho/\mathbb{S}]} is an R​SRS-term of level α​[ρ/π•Š]\alpha[\rho/\mathbb{S}].
3.3.2. We see (T​m​(Ξ±))[ρ/π•Š]βŠ‚T​m​(α​[ρ/π•Š])\left(Tm(\alpha)\right)^{[\rho/\mathbb{S}]}\subset Tm(\alpha[\rho/\mathbb{S}]) from Proposition 3.3.1. Conversely let uu be an R​SRS-term with 𝗄​(u)={Ξ²i:i<n}\mathsf{k}(u)=\{\beta_{i}:i<n\} and max⁑{Ξ²i:i<n}=|u|<α​[ρ/π•Š]\max\{\beta_{i}:i<n\}=|u|<\alpha[\rho/\mathbb{S}]. By Lemma 2.27 there are ordinal terms Ξ³i∈O​TN\gamma_{i}\in OT_{N} such that Ξ³i∈EΟπ•Š\gamma_{i}\in E^{\mathbb{S}}_{\rho} and Ξ³i​[ρ/π•Š]=Ξ²i\gamma_{i}[\rho/\mathbb{S}]=\beta_{i}. Let vv be an R​SRS-term obtained from uu by replacing each constant 𝖫βi\mathsf{L}_{\beta_{i}} by 𝖫γi\mathsf{L}_{\gamma_{i}}. We obtain v[ρ/π•Š]≑uv^{[\rho/\mathbb{S}]}\equiv u, v∈T​m​(Ξ±)v\in Tm(\alpha), and 𝗄​(v)={Ξ³i:i<n}βŠ‚EΟπ•Š\mathsf{k}(v)=\{\gamma_{i}:i<n\}\subset E^{\mathbb{S}}_{\rho}. This means v∈(T​m​(Ξ±))[ρ/π•Š]v\in\left(Tm(\alpha)\right)^{[\rho/\mathbb{S}]}. β–‘\Box

In what follows we need to consider sentences. Sentences are denoted A,CA,C possibly with indices.

For each sentence AA, either a disjunction is assigned as A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J}, or a conjunction is assigned as A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge(A_{\iota})_{\iota\in J}. In the former case AA is said to be a ⋁\bigvee-formula, and in the latter AA is a β‹€\bigwedge-formula. It is convenient for us, cf. Recapping 3.35, to modify the assignment of disjunctions and conjunctions to sentences from [7] such that if A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J} is a ⋁\bigvee-formula, then each AΞΉA_{\iota} is a β‹€\bigwedge-formula, and similarly for β‹€\bigwedge-formula AA.

Definition 3.4

If AA is a ⋁\bigvee-formula, then let A∨:≑AA^{\lor}:\equiv A. Otherwise let A∨:≑(⋁i≀0Bi)A^{\lor}:\equiv\left(\bigvee_{i\leq 0}B_{i}\right) with B0≑AB_{0}\equiv A. If AA is a β‹€\bigwedge-formula, then let A∧:≑AA^{\land}:\equiv A. Otherwise let A∧:≑(β‹€i≀0Bi)A^{\land}:\equiv\left(\bigwedge_{i\leq 0}B_{i}\right) with B0≑AB_{0}\equiv A.

Definition 3.5

Let [ρ]​T​m​(Ξ±):={u∈T​m​(Ξ±):𝗄​(u)βŠ‚EΟπ•Š}[\rho]Tm(\alpha):=\{u\in Tm(\alpha):\mathsf{k}(u)\subset E^{\mathbb{S}}_{\rho}\}.

  1. 1.

    For v,u∈T​m​(𝕂)v,u\in Tm(\mathbb{K}) with |v|<|u||v|<|u|, let

    (vβˆˆΛ™u):≑{A​(v)if u≑[xβˆˆπ–«Ξ±:A(x)]vβˆ‰π–«0if β€‹u≑𝖫α(v\dot{\in}u):\equiv\left\{\begin{array}[]{ll}A(v)&\mbox{{\rm if }}u\equiv[x\in\mathsf{L}_{\alpha}:A(x)]\\ v\not\in\mathsf{L}_{0}&\mbox{{\rm if }}u\equiv\mathsf{L}_{\alpha}\end{array}\right.

    and (u=v):≑(βˆ€x∈u(x∈v)βˆ§βˆ€x∈v(x∈u))(u=v):\equiv(\forall x\in u(x\in v)\land\forall x\in v(x\in u)).

  2. 2.

    For v,u∈T​m​(𝕂)v,u\in Tm(\mathbb{K}), let [ρ]​J:=[ρ]​T​m​(|u|)[\rho]J:=[\rho]Tm(|u|) with J=T​m​(|u|)J=Tm(|u|). Then (v∈u):≃⋁(Aw,0∧Aw,1∧Aw,2)w∈J(v\in u):\simeq\bigvee(A_{w,0}\land A_{w,1}\land A_{w,2})_{w\in J}, and (vβˆ‰u):≃⋀(Β¬Aw,0∨¬Aw,1∨¬Aw,2)w∈J(v\not\in u):\simeq\bigwedge(\lnot A_{w,0}\lor\lnot A_{w,1}\lor\lnot A_{w,2})_{w\in J}, where Aw,0≑(w​Ρ​u)∨A_{w,0}\equiv(w\varepsilon u)^{\lor}, Aw,1≑(βˆ€x∈w​(x∈v))∨A_{w,1}\equiv(\forall x\in w(x\in v))^{\lor} and Aw,2≑(βˆ€x∈v​(x∈w))∨A_{w,2}\equiv(\forall x\in v(x\in w))^{\lor}.

  3. 3.

    (A0βˆ¨β‹―βˆ¨Anβˆ’1):≃⋁(Aι∧)ι∈J(A_{0}\lor\cdots\lor A_{n-1}):\simeq\bigvee(A_{\iota}^{\land})_{\iota\in J} and (A0βˆ§β‹―βˆ§Anβˆ’1):≃⋀(Aι∨)ι∈J(A_{0}\land\cdots\land A_{n-1}):\simeq\bigwedge(A_{\iota}^{\lor})_{\iota\in J} for J:=nJ:=n.

  4. 4.

    For u∈T​m​(𝕂)βˆͺ{𝖫𝕂}u\in Tm(\mathbb{K})\cup\{\mathsf{L}_{\mathbb{K}}\}, βˆƒx∈uA(x):≃⋁(Av)v∈J\exists x\in u\,A(x):\simeq\bigvee(A_{v})_{v\in J} and βˆ€x∈uΒ¬A(x):≃⋀(Β¬Av)v∈J\forall x\in u\,\lnot A(x):\simeq\bigwedge(\lnot A_{v})_{v\in J} for Av:≑((vβˆˆΛ™u)∨∧(A(v))∨)A_{v}:\equiv((v\dot{\in}u)^{\lor}\land(A(v))^{\lor}), [ρ]​J:=[ρ]​T​m​(|u|)[\rho]J:=[\rho]Tm(|u|) with J=T​m​(|u|)J=Tm(|u|).

Proposition 3.6

Let ρ∈ΨNβˆͺ{π•Š}\rho\in\Psi_{N}\cup\{\mathbb{S}\}. For R​SRS-formulas AA, let A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J} and assume 𝗄​(A)βŠ‚EΟπ•Š\mathsf{k}(A)\subset E^{\mathbb{S}}_{\rho}. Then A[ρ/π•Š]≃⋁((AΞΉ)[ρ/π•Š])ι∈[ρ]​JA^{[\rho/\mathbb{S}]}\simeq\bigvee\left((A_{\iota})^{[\rho/\mathbb{S}]}\right)_{\iota\in[\rho]J}. The case A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge(A_{\iota})_{\iota\in J} is similar.

Proof.  This is seen from Proposition 3.3.2. β–‘\Box

The rank rk​(ΞΉ)\mathrm{rk}(\iota) of sentences or terms ΞΉ\iota is defined as in [7] so that the following Proposition 3.8 holds. For completeness let us reproduce it.

Definition 3.7

rk​(Β¬A):=rk​(A)\mathrm{rk}(\lnot A):=\mathrm{rk}(A). rk​(𝖫α)=ω​α\mathrm{rk}(\mathsf{L}_{\alpha})=\omega\alpha. rk([xβˆˆπ–«Ξ±:A(x)])=max{ωα+1,rk(A(𝖫0))+3}\mathrm{rk}([x\in\mathsf{L}_{\alpha}:A(x)])=\max\{\omega\alpha+1,\mathrm{rk}(A(\mathsf{L}_{0}))+3\}. rk​(v∈u)=max⁑{rk​(v)+7,rk​(u)+2}\mathrm{rk}(v\in u)=\max\{\mathrm{rk}(v)+7,\mathrm{rk}(u)+2\}. rk​(A0βˆ¨β‹―βˆ¨Anβˆ’1)=max⁑({0}βˆͺ{rk​((Ai)∧)+1:i<n})\mathrm{rk}(A_{0}\lor\cdots\lor A_{n-1})=\max(\{0\}\cup\{\mathrm{rk}((A_{i})^{\land})+1:i<n\}). rk​(βˆƒx∈u​A​(x))=max⁑{rk​(u),rk​(A​(𝖫0))+3}\mathrm{rk}(\exists x\in u\,A(x))=\max\{\mathrm{rk}(u),\mathrm{rk}(A(\mathsf{L}_{0}))+3\} for u∈T​m​(𝕂)βˆͺ{𝖫𝕂}u\in Tm(\mathbb{K})\cup\{\mathsf{L}_{\mathbb{K}}\}.

For finite sets Ξ”\Delta of sentences, let rk​(Ξ”)=max⁑({0}βˆͺ{rk​(Ξ΄):Ξ΄βˆˆΞ”})\mathrm{rk}(\Delta)=\max(\{0\}\cup\{\mathrm{rk}(\delta):\delta\in\Delta\}).

Proposition 3.8

Let AA be a sentence with A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J} or A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge(A_{\iota})_{\iota\in J}.

  1. 1.

    rk​(A)<𝕂+Ο‰\mathrm{rk}(A)<\mathbb{K}+\omega.

  2. 2.

    ω​|u|≀rk​(u)∈{Ο‰|u|+i:iβˆˆΟ‰}\omega|u|\leq\mathrm{rk}(u)\in\{\omega|u|+i:i\in\omega\}, and |A|≀rk​(A)∈{Ο‰|A|+i:iβˆˆΟ‰}|A|\leq\mathrm{rk}(A)\in\{\omega|A|+i:i\in\omega\}.

  3. 3.

    βˆ€ΞΉβˆˆJ​(rk​(AΞΉ)<rk​(A))\forall\iota\in J(\mathrm{rk}(A_{\iota})<\mathrm{rk}(A)).

  4. 4.

    Let Ξ±\alpha be an epsilon number. Then rk​(βˆƒxβˆˆπ–«Ξ±β€‹B)=Ξ±\mathrm{rk}(\exists x\in\mathsf{L}_{\alpha}B)=\alpha for BβˆˆΞ”0​(Ξ±)B\in\Delta_{0}(\alpha). Conversely if rk​(A)=Ξ±\mathrm{rk}(A)=\alpha for a ⋁\bigvee-formula AA, then A∈Σ1​(Ξ±)A\in\Sigma_{1}(\alpha).

  5. 5.

    Let ρ∈R​e​g\rho\in Reg and 𝗄​(ΞΉ)βŠ‚EΟπ•Š\mathsf{k}(\iota)\subset E^{\mathbb{S}}_{\rho}. Then rk​(ΞΉ[ρ/π•Š])=(rk​(ΞΉ))​[ρ/π•Š]\mathrm{rk}(\iota^{[\rho/\mathbb{S}]})=\left(\mathrm{rk}(\iota)\right)[\rho/\mathbb{S}].

Proof.  These are shown in [7] except Proposition 3.8.5, which is seen from the facts (ω​α)​[ρ/π•Š]=ω​(α​[ρ/π•Š])(\omega\alpha)[\rho/\mathbb{S}]=\omega(\alpha[\rho/\mathbb{S}]) and (Ξ±+1)​[ρ/π•Š]=α​[ρ/π•Š]+1(\alpha+1)[\rho/\mathbb{S}]=\alpha[\rho/\mathbb{S}]+1 when α∈EΟπ•Š\alpha\in E^{\mathbb{S}}_{\rho}. We see that rk​(ΞΉ)∈EΟπ•Š\mathrm{rk}(\iota)\in E^{\mathbb{S}}_{\rho} from Proposition 3.8.2. β–‘\Box

3.2 Sets Em​(Ξ±)E_{m}(\alpha)

In this subsection sets Em​(Ξ±)βŠ‚Ξ©π•Š+Nβˆ’mβˆ’1E_{m}(\alpha)\subset\Omega_{\mathbb{S}+N-m-1} of ordinals are defined for ordinals Ξ±\alpha so as to have Proposition 3.10. The proposition states that for α∈EΟƒπ•Š\alpha\in E^{\mathbb{S}}_{\sigma}, α​[Οƒ/π•Š]βˆˆβ„‹Ξ³β€‹[Em​(Ξ±)βˆͺ{Οƒ}]\alpha[\sigma/\mathbb{S}]\in\mathcal{H}_{\gamma}[E_{m}(\alpha)\cup\{\sigma\}] holds when Ξ³β‰₯π•Š\gamma\geq\mathbb{S}, and conversely Ξ±βˆˆβ„‹Ξ³β€‹[Em​(α​[Οƒ/π•Š])]\alpha\in\mathcal{H}_{\gamma}[E_{m}(\alpha[\sigma/\mathbb{S}])] holds if Ξ±βˆˆβ„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\alpha\in\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)). This means that if we have an ordinal ΟƒβˆˆΞ˜\sigma\in\Theta and ι∈[Οƒ]​J\iota\in[\sigma]J, then 𝗄​(ΞΉ)βŠ‚β„‹Ξ³β€‹[ΘβˆͺEm​(ΞΉ[Οƒ/π•Š])]\mathsf{k}(\iota)\subset\mathcal{H}_{\gamma}[\Theta\cup E_{m}(\iota^{[\sigma/\mathbb{S}]})] iff 𝗄​(ΞΉ[Οƒ/π•Š])βŠ‚β„‹Ξ³β€‹[ΘβˆͺEm​(ΞΉ)]\mathsf{k}(\iota^{[\sigma/\mathbb{S}]})\subset\mathcal{H}_{\gamma}[\Theta\cup E_{m}(\iota)] under a mild condition, cf. Tautology 3.29.2. We need Em​(Ξ±)E_{m}(\alpha) to be a set of ordinals smaller than Ξ©π•Š+Nβˆ’mβˆ’1\Omega_{\mathbb{S}+N-m-1} in eliminating inferences (Σ​(Ξ©π•Š+Nβˆ’m)​-rfl)(\Sigma(\Omega_{\mathbb{S}+N-m})\mbox{{\rm-rfl}}), cf. Collapsing 3.33.

Definition 3.9

For ordinal terms α∈O​TN\alpha\in OT_{N} and 0≀m<N0\leq m<N, we define recursively finite sets Em​(Ξ±)βŠ‚O​TNE_{m}(\alpha)\subset OT_{N} as follows.

  1. 1.

    If Ξ±\alpha is not strongly critical, then Em​(Ξ±)=⋃{Em​(Ξ²):β∈S​C​(Ξ±)}E_{m}(\alpha)=\bigcup\{E_{m}(\beta):\beta\in SC(\alpha)\}.

  2. 2.

    Em​(Ξ±)=βˆ…E_{m}(\alpha)=\emptyset for α∈{Ξ©}βˆͺ{Ξ©π•Š+n:0≀n≀N}\alpha\in\{\Omega\}\cup\{\Omega_{\mathbb{S}+n}:0\leq n\leq N\}.

  3. 3.

    Em​(Ωσ+n)={Οƒ}E_{m}(\Omega_{\sigma+n})=\{\sigma\} for ΟƒβˆˆΞ¨N\sigma\in\Psi_{N} and 0≀n≀N0\leq n\leq N.

  4. 4.

    Let Ξ±=ΟˆΟ€β€‹(a)\alpha=\psi_{\pi}(a) with Ο€=Ξ©π•Š+n\pi=\Omega_{\mathbb{S}+n}. Then let Em​(Ξ±)=Em​(a)E_{m}(\alpha)=E_{m}(a).

    Let ΟƒβˆˆΞ¨N\sigma\in\Psi_{N} be an ordinal such that α∈EΟƒπ•Š\alpha\in E^{\mathbb{S}}_{\sigma}. Then define

    Em​(α​[Οƒ/π•Š])={{α​[Οƒ/π•Š],Οƒ}βˆͺEm​(a​[Οƒ/π•Š]) if β€‹nβ‰₯Nβˆ’m{Ξ±,Οƒ}βˆͺEm​(a​[Οƒ/π•Š]) if β€‹n<Nβˆ’mE_{m}(\alpha[\sigma/\mathbb{S}])=\left\{\begin{array}[]{ll}\{\alpha[\sigma/\mathbb{S}],\sigma\}\cup E_{m}(a[\sigma/\mathbb{S}])&\mbox{ if }n\geq N-m\\ \{\alpha,\sigma\}\cup E_{m}(a[\sigma/\mathbb{S}])&\mbox{ if }n<N-m\end{array}\right.
Proposition 3.10

Let ρ∈ΨNβˆͺ{𝚞}\rho\in\Psi_{N}\cup\{\mathtt{u}\} with Eπšžπ•Š=O​TNE^{\mathbb{S}}_{\mathtt{u}}=OT_{N}.

  1. 1.

    Em​(Ξ±)βŠ‚Ξ©π•Š+Nβˆ’mβˆ’1E_{m}(\alpha)\subset\Omega_{\mathbb{S}+N-m-1}.

  2. 2.

    Let α∈EΟƒπ•Šβˆ©EΟπ•Š\alpha\in E^{\mathbb{S}}_{\sigma}\cap E^{\mathbb{S}}_{\rho} and Ξ³β‰₯π•Š\gamma\geq\mathbb{S}. Then α​[Οƒ/π•Š]βˆˆβ„‹Ξ³β€‹[(Em​(Ξ±)βˆͺ{Οƒ})∩EΟπ•Š]\alpha[\sigma/\mathbb{S}]\in\mathcal{H}_{\gamma}[(E_{m}(\alpha)\cup\{\sigma\})\cap E^{\mathbb{S}}_{\rho}].

  3. 3.

    Let α∈EΟƒπ•Šβˆ©EΟπ•Šβˆ©β„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\alpha\in E^{\mathbb{S}}_{\sigma}\cap E^{\mathbb{S}}_{\rho}\cap\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)). Then Ξ±βˆˆβ„‹Ξ³β€‹[Em​(α​[Οƒ/π•Š])∩EΟπ•Š]\alpha\in\mathcal{H}_{\gamma}[E_{m}(\alpha[\sigma/\mathbb{S}])\cap E^{\mathbb{S}}_{\rho}].

  4. 4.

    Let α∈EΟπ•Šβˆ©β„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\alpha\in E^{\mathbb{S}}_{\rho}\cap\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)) and Ξ³β‰₯π•Š\gamma\geq\mathbb{S}. Then Ξ±βˆˆβ„‹Ξ³β€‹[Em​(Ξ±)∩EΟπ•Š]\alpha\in\mathcal{H}_{\gamma}[E_{m}(\alpha)\cap E^{\mathbb{S}}_{\rho}].

  5. 5.

    Let α∈EΟƒπ•Šβˆ©β„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\alpha\in E^{\mathbb{S}}_{\sigma}\cap\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)) and Ξ³β‰₯π•Š\gamma\geq\mathbb{S}. Then ℋγ​[(Em​(Ξ±)βˆͺ{Οƒ})∩EΟπ•Š]=ℋγ​[(Em​(α​[Οƒ/π•Š])βˆͺ{Οƒ})∩EΟπ•Š]\mathcal{H}_{\gamma}[(E_{m}(\alpha)\cup\{\sigma\})\cap E^{\mathbb{S}}_{\rho}]=\mathcal{H}_{\gamma}[(E_{m}(\alpha[\sigma/\mathbb{S}])\cup\{\sigma\})\cap E^{\mathbb{S}}_{\rho}].

  6. 6.

    If α∈EΟπ•Š\alpha\in E^{\mathbb{S}}_{\rho}, then Em​(Ξ±)βŠ‚EΟπ•ŠE_{m}(\alpha)\subset E^{\mathbb{S}}_{\rho}.

  7. 7.

    Let m≀Nm\leq N, Ξ±βˆˆβ„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’mβˆ’1​(Ξ³))\alpha\in\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m-1}}(\gamma)) and Ξ³β‰₯π•Š\gamma\geq\mathbb{S}. Then ℋγ​[Em+1​(Ξ±)∩EΟπ•Š]=ℋγ​[Em​(Ξ±)∩EΟπ•Š]\mathcal{H}_{\gamma}[E_{m+1}(\alpha)\cap E^{\mathbb{S}}_{\rho}]=\mathcal{H}_{\gamma}[E_{m}(\alpha)\cap E^{\mathbb{S}}_{\rho}].

Proof.  Each is seen by induction on the lengths ℓ​α\ell\alpha of ordinal terms Ξ±\alpha. Let Ξ±=ΟˆΟ€β€‹(a)\alpha=\psi_{\pi}(a) with Ο€=Ξ©π•Š+n\pi=\Omega_{\mathbb{S}+n}.
3.10.2. IH with a∈EΟƒπ•Šβˆ©EΟπ•Ša\in E^{\mathbb{S}}_{\sigma}\cap E^{\mathbb{S}}_{\rho} yields Ξ³β‰₯π•Š>a​[Οƒ/π•Š]βˆˆβ„‹Ξ³β€‹[(Em​(a)βˆͺ{Οƒ})∩EΟπ•Š]\gamma\geq\mathbb{S}>a[\sigma/\mathbb{S}]\in\mathcal{H}_{\gamma}[(E_{m}(a)\cup\{\sigma\})\cap E^{\mathbb{S}}_{\rho}], where Em​(a)=Em​(Ξ±)E_{m}(a)=E_{m}(\alpha). We obtain α​[Οƒ/π•Š]=ΟˆΞ©Οƒ+n​(a​[Οƒ/π•Š])βˆˆβ„‹Ξ³β€‹[(Em​(Ξ±)βˆͺ{Οƒ})∩EΟπ•Š]\alpha[\sigma/\mathbb{S}]=\psi_{\Omega_{\sigma+n}}(a[\sigma/\mathbb{S}])\in\mathcal{H}_{\gamma}[(E_{m}(\alpha)\cup\{\sigma\})\cap E^{\mathbb{S}}_{\rho}].
3.10.3. We may assume nβ‰₯Nβˆ’mn\geq N-m. Then a<Ξ³a<\gamma by Ξ±βˆˆβ„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\alpha\in\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)). On the other, IH yields aβˆˆβ„‹Ξ³β€‹[Em​(a​[Οƒ/π•Š])∩EΟπ•Š]a\in\mathcal{H}_{\gamma}[E_{m}(a[\sigma/\mathbb{S}])\cap E^{\mathbb{S}}_{\rho}] with Em​(a​[Οƒ/π•Š])βŠ‚Em​(α​[Οƒ/π•Š])E_{m}(a[\sigma/\mathbb{S}])\subset E_{m}(\alpha[\sigma/\mathbb{S}]). We obtain Ξ±βˆˆβ„‹Ξ³β€‹[Em​(α​[Οƒ/π•Š])∩EΟπ•Š]\alpha\in\mathcal{H}_{\gamma}[E_{m}(\alpha[\sigma/\mathbb{S}])\cap E^{\mathbb{S}}_{\rho}].
3.10.5 follows from Propositions 3.10.2, 3.10.3 and 3.10.4.
3.10.6. Let Ξ±=ΟˆΟ€β€‹(a)∈EΟƒπ•Š\alpha=\psi_{\pi}(a)\in E^{\mathbb{S}}_{\sigma} with Ο€=Ξ©π•Š+n\pi=\Omega_{\mathbb{S}+n} and Οƒ<ρ\sigma<\rho. We obtain a∈EΟƒπ•ŠβŠ‚EΟπ•Ša\in E^{\mathbb{S}}_{\sigma}\subset E^{\mathbb{S}}_{\rho}, and Em​(a​[Οƒ/π•Š])βŠ‚EΟπ•ŠE_{m}(a[\sigma/\mathbb{S}])\subset E^{\mathbb{S}}_{\rho} by IH. Furthermore we have {α​[Οƒ/π•Š],Ξ±,Οƒ}βŠ‚EΟπ•Š\{\alpha[\sigma/\mathbb{S}],\alpha,\sigma\}\subset E^{\mathbb{S}}_{\rho}.
3.10.7. We obtain Ξ±βˆˆβ„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\alpha\in\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)). Let Ξ±=ΟˆΟ€β€‹(a)∈EΟƒπ•Š\alpha=\psi_{\pi}(a)\in E^{\mathbb{S}}_{\sigma} with Ο€=Ξ©π•Š+Nβˆ’mβˆ’1\pi=\Omega_{\mathbb{S}+N-m-1}. Then Em​(α​[Οƒ/π•Š])={Ξ±,Οƒ}βˆͺEm​(a​[Οƒ/π•Š])E_{m}(\alpha[\sigma/\mathbb{S}])=\{\alpha,\sigma\}\cup E_{m}(a[\sigma/\mathbb{S}]), and Em+1​(α​[Οƒ/π•Š])={α​[Οƒ/π•Š],Οƒ}βˆͺEm+1​(a​[Οƒ/π•Š])E_{m+1}(\alpha[\sigma/\mathbb{S}])=\{\alpha[\sigma/\mathbb{S}],\sigma\}\cup E_{m+1}(a[\sigma/\mathbb{S}]). We obtain ℋγ​[Em+1​(a​[Οƒ/π•Š])∩EΟπ•Š]=ℋγ​[Em​(a​[Οƒ/π•Š])∩EΟπ•Š]\mathcal{H}_{\gamma}[E_{m+1}(a[\sigma/\mathbb{S}])\cap E^{\mathbb{S}}_{\rho}]=\mathcal{H}_{\gamma}[E_{m}(a[\sigma/\mathbb{S}])\cap E^{\mathbb{S}}_{\rho}] by IH. Proposition 3.10.3 yields {Ξ±}∩EΟπ•ŠβŠ‚β„‹Ξ³β€‹[Em+1​(α​[Οƒ/π•Š])∩EΟπ•Š]\{\alpha\}\cap E^{\mathbb{S}}_{\rho}\subset\mathcal{H}_{\gamma}[E_{m+1}(\alpha[\sigma/\mathbb{S}])\cap E^{\mathbb{S}}_{\rho}] by Ξ±βˆˆβ„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’mβˆ’1​(Ξ³))\alpha\in\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m-1}}(\gamma)), while {α​[Οƒ/π•Š]}∩EΟπ•ŠβŠ‚β„‹Ξ³β€‹[Em​(α​[Οƒ/π•Š])∩EΟπ•Š]\{\alpha[\sigma/\mathbb{S}]\}\cap E^{\mathbb{S}}_{\rho}\subset\mathcal{H}_{\gamma}[E_{m}(\alpha[\sigma/\mathbb{S}])\cap E^{\mathbb{S}}_{\rho}] by Proposition 3.10.4 and Ξ³β‰₯π•Š\gamma\geq\mathbb{S}. β–‘\Box

Definition 3.11

Em​(ΞΉ):=⋃{Em​(Ξ±):Ξ±βˆˆπ—„β€‹(ΞΉ)}E_{m}(\iota):=\bigcup\{E_{m}(\alpha):\alpha\in\mathsf{k}(\iota)\} for R​SRS-terms and R​SRS-formulas ΞΉ\iota.

Proposition 3.12

Let ΞΉ\iota be R​SRS-terms and R​SRS-formulas.

  1. 1.

    Em​(ΞΉ)βŠ‚π•ŠE_{m}(\iota)\subset\mathbb{S}.

  2. 2.

    Let 𝗄​(ΞΉ)βŠ‚EΟƒπ•Šβˆ©β„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\mathsf{k}(\iota)\subset E^{\mathbb{S}}_{\sigma}\cap\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)) and Ξ³β‰₯π•Š\gamma\geq\mathbb{S}. Then ℋγ​[(𝗄​(ΞΉ)βˆͺEm​(ΞΉ)βˆͺ{Οƒ})∩EΟπ•Š]=ℋγ​[(𝗄​(ΞΉ[Οƒ/π•Š])βˆͺEm​(ι​[Οƒ/π•Š])βˆͺ{Οƒ})∩EΟπ•Š]\mathcal{H}_{\gamma}[(\mathsf{k}(\iota)\cup E_{m}(\iota)\cup\{\sigma\})\cap E^{\mathbb{S}}_{\rho}]=\mathcal{H}_{\gamma}[(\mathsf{k}(\iota^{[\sigma/\mathbb{S}]})\cup E_{m}(\iota{[\sigma/\mathbb{S}]})\cup\{\sigma\})\cap E^{\mathbb{S}}_{\rho}].

  3. 3.

    If 𝗄​(ΞΉ)βŠ‚EΟπ•Š\mathsf{k}(\iota)\subset E^{\mathbb{S}}_{\rho}, then Em​(ΞΉ)βŠ‚EΟπ•ŠE_{m}(\iota)\subset E^{\mathbb{S}}_{\rho}.

Proof.  3.12.2 follows from Propositions 3.10.2, 3.10.3 and 3.10.5.
3.12.3 follows from Proposition 3.10.6. β–‘\Box

3.3 Operator controlled βˆ—*-derivations

Inference rules are formulated in one-sided sequent calculi. Let ℋγ​[Θ]:=ℋγ​(Θ)\mathcal{H}_{\gamma}[\Theta]:=\mathcal{H}_{\gamma}(\Theta), and β„‹Ξ³:=ℋγ​(βˆ…)\mathcal{H}_{\gamma}:=\mathcal{H}_{\gamma}(\emptyset). We define a derivability relation (β„‹Ξ³,Θ)⊒cβˆ—aΞ“(\mathcal{H}_{\gamma},\Theta)\vdash^{*a}_{c}\Gamma, where cc is a bound of ranks of cut formulas and of initial sequents (stbl)({\rm stbl}). The derivability relation is designed to do the following job. An infinitary derivation π’Ÿ0\mathcal{D}_{0} in the relation βŠ’βˆ—\vdash^{*} arises from a finitary proof, in which initial sequents (stbl)({\rm stbl}) occur to prove an axiom for stability, cf. Lemma 3.19.

Inferences (Σ​-rfl)(\Sigma\mbox{{\rm-rfl}}) of 𝕂=Ξ©π•Š+N\mathbb{K}=\Omega_{\mathbb{S}+N} are removed by collapsing, ranks of formulas in the derivations are lowered to ordinals less than 𝕂\mathbb{K}, and the initial sequents (stbl)({\rm stbl}) are replaced by inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) by putting a cap ρ\rho on formulas to get a derivation π’Ÿ1\mathcal{D}_{1} in another derivability relation (β„‹Ξ³,Θ,πš€)⊒c,d,0,Ξ›0,Ξ³0aΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,0,\Lambda_{0},\gamma_{0}}\Gamma, cf. Capping 3.34 in subsection 3.5.

Definition 3.13

(β„‹Ξ³,Θ)⊒cβˆ—aΞ“(\mathcal{H}_{\gamma},\Theta)\vdash^{*a}_{c}\Gamma holds for a set Ξ“\Gamma of formulas if

{Ξ³,a,c}βˆͺE0​({Ξ³,a,c})βˆͺ𝗄​(Ξ“)βˆͺE0​(Ξ“)βŠ‚β„‹Ξ³β€‹[Θ]\{\gamma,a,c\}\cup E_{0}(\{\gamma,a,c\})\cup\mathsf{k}(\Gamma)\cup E_{0}(\Gamma)\subset\mathcal{H}_{\gamma}[\Theta] (7)

and one of the following cases holds :

(⋁)(\bigvee)
222The condition |ΞΉ|<a|\iota|<a is absent in the inference (⋁)(\bigvee).

There exist A≃⋁{AΞΉ:ι∈J}A\simeq\bigvee\{A_{\iota}:\iota\in J\}, a​(ΞΉ)<aa(\iota)<a and an ι∈J\iota\in J such that AβˆˆΞ“A\in\Gamma and (β„‹Ξ³,Θ)⊒cβˆ—a​(ΞΉ)Ξ“,AΞΉ(\mathcal{H}_{\gamma},\Theta)\vdash^{*a(\iota)}_{c}\Gamma,A_{\iota}.

(β‹€)(\bigwedge)

There exist A≃⋀{AΞΉ:ι∈J}A\simeq\bigwedge\{A_{\iota}:\iota\in J\}, ordinals a​(ΞΉ)<aa(\iota)<a for each ι∈J\iota\in J such that AβˆˆΞ“A\in\Gamma and (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺE0(ΞΉ))⊒cβˆ—a​(ΞΉ)Ξ“,AΞΉ(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{0}(\iota))\vdash^{*a(\iota)}_{c}\Gamma,A_{\iota}.

(c​u​t)(cut)

There exist a0<aa_{0}<a and CC such that rk​(C)<c\mathrm{rk}(C)<c, (β„‹Ξ³,Θ)⊒cβˆ—a0Ξ“,Β¬C(\mathcal{H}_{\gamma},\Theta)\vdash^{*a_{0}}_{c}\Gamma,\lnot C and (β„‹Ξ³,Θ)⊒cβˆ—a0C,Ξ“(\mathcal{H}_{\gamma},\Theta)\vdash^{*a_{0}}_{c}C,\Gamma.

(Σ​(Ο€)​-rfl)(\Sigma(\pi)\mbox{{\rm-rfl}})

There exist aβ„“,ar<aa_{\ell},a_{r}<a and a formula C≑(βˆ€x∈u​B​(x))βˆˆΞ£β€‹(Ο€)C\equiv(\forall x\in u\,B(x))\in\Sigma(\pi) for a Ο€βˆˆ{Ξ©}βˆͺ{Ξ©π•Š+n+1:0≀n<N}\pi\in\{\Omega\}\cup\{\Omega_{\mathbb{S}+n+1}:0\leq n<N\}, a u∈T​m​(Ο€)u\in Tm(\pi) and a B​(𝖫0)∈Σ1​(Ο€)B(\mathsf{L}_{0})\in\Sigma_{1}(\pi) such that c>Ο€c>\pi, (β„‹Ξ³,Θ)⊒cβˆ—aβ„“Ξ“,C(\mathcal{H}_{\gamma},\Theta)\vdash^{*a_{\ell}}_{c}\Gamma,C and (β„‹Ξ³,Θ)⊒cβˆ—arΒ¬βˆƒx<Ο€C(x,Ο€),Ξ“(\mathcal{H}_{\gamma},\Theta)\vdash^{*a_{r}}_{c}\lnot\exists x<\pi\,C^{(x,\pi)},\Gamma.

(stbl)

There exist a β‹€\bigwedge-formula B​(𝖫0)βˆˆΞ”0​(π•Š)B(\mathsf{L}_{0})\in\Delta_{0}(\mathbb{S}) and a term u∈T​m​(𝕂)u\in Tm(\mathbb{K}) such that rk​(B​(u))<c\mathrm{rk}(B(u))<c and {Β¬B​(u),βˆƒxβˆˆπ–«π•Šβ€‹B​(x)}βŠ‚Ξ“\{\lnot B(u),\exists x\in\mathsf{L}_{\mathbb{S}}B(x)\}\subset\Gamma.

Lemma 3.14

(Tautology) (β„‹0,Θβˆͺ𝗄(A)βˆͺE0(A))⊒0βˆ—2​dΒ¬A,A(\mathcal{H}_{0},\Theta\cup\mathsf{k}(A)\cup E_{0}(A))\vdash^{*2d}_{0}\lnot A,A holds for d=rk​(A)d=\mathrm{rk}(A).

Proof.  By induction on dd. β–‘\Box

Lemma 3.15

(Equality) (β„‹0,Θβˆͺ𝗄(A,u,v)βˆͺE0(A,u,v))⊒0βˆ—Ο‰β€‹(|u|​#​|v|)​#​2​duβ‰ v,Β¬A(u),A(v)(\mathcal{H}_{0},\Theta\cup\mathsf{k}(A,u,v)\cup E_{0}(A,u,v))\vdash^{*\omega(|u|\#|v|)\#2d}_{0}u\neq v,\lnot A(u),A(v) holds for d=rk​(A​(𝖫0))d=\mathrm{rk}(A(\mathsf{L}_{0})).

Proof.  By induction on dd, cf.[7, 4]. β–‘\Box

Lemma 3.16

(Inversion) Let A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge(A_{\iota})_{\iota\in J}, (β„‹Ξ³,Θ)⊒cβˆ—aΞ“,A(\mathcal{H}_{\gamma},\Theta)\vdash^{*a}_{c}\Gamma,A and rk​(A)β‰₯𝕂\mathrm{rk}(A)\geq\mathbb{K}. Then for each ι∈J\iota\in J, (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺE0(ΞΉ))⊒cβˆ—aΞ“,AΞΉ(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{0}(\iota))\vdash^{*a}_{c}\Gamma,A_{\iota} holds.

Proof.  By induction on aa. Since rk​(A)β‰₯𝕂\mathrm{rk}(A)\geq\mathbb{K}, AA is not a major formula of any of (stbl). β–‘\Box

Lemma 3.17

(Reduction) Let (β„‹Ξ³,Θ)⊒cβˆ—aΞ“0,Β¬C(\mathcal{H}_{\gamma},\Theta)\vdash^{*a}_{c}\Gamma_{0},\lnot C and (β„‹Ξ³,Θ)⊒cβˆ—bC,Ξ“1(\mathcal{H}_{\gamma},\Theta)\vdash^{*b}_{c}C,\Gamma_{1} for C≃⋁(CΞΉ)ι∈JC\simeq\bigvee(C_{\iota})_{\iota\in J} with 𝕂≀rk​(C)≀c\mathbb{K}\leq\mathrm{rk}(C)\leq c and aβ‰₯ba\geq b. Then (β„‹Ξ³,Θ)⊒cβˆ—a+bΞ“0,Ξ“1(\mathcal{H}_{\gamma},\Theta)\vdash^{*a+b}_{c}\Gamma_{0},\Gamma_{1} holds.

Proof.  By induction on bb. Since rk​(C)β‰₯𝕂\mathrm{rk}(C)\geq\mathbb{K}, CC is not a major formula of any (stbl). If b=0b=0, then (β„‹Ξ³,Θ)⊒cβˆ—bC,Ξ“1(\mathcal{H}_{\gamma},\Theta)\vdash^{*b}_{c}C,\Gamma_{1} follows from a void (β‹€)(\bigwedge) with a major formula in Ξ“1\Gamma_{1}. Let b>0b>0. If rk​(C)<c\mathrm{rk}(C)<c, then a (c​u​t)(cut) yields the lemma by b≀a<a+bb\leq a<a+b. Consider the case when the last inference in (β„‹Ξ³,Θ)⊒cβˆ—bC,Ξ“1(\mathcal{H}_{\gamma},\Theta)\vdash^{*b}_{c}C,\Gamma_{1} is a (⋁)(\bigvee) with the major formula CC. We have (β„‹Ξ³,Θ)⊒cβˆ—b0CΞΉ,C,Ξ“1(\mathcal{H}_{\gamma},\Theta)\vdash^{*b_{0}}_{c}C_{\iota},C,\Gamma_{1} for ι∈J\iota\in J and b0<bb_{0}<b. IH yields (β„‹Ξ³,Θ)⊒cβˆ—a+b0CΞΉ,Ξ“0,Ξ“1(\mathcal{H}_{\gamma},\Theta)\vdash^{*a+b_{0}}_{c}C_{\iota},\Gamma_{0},\Gamma_{1}. On the other hand we have (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺE0(ΞΉ))⊒cβˆ—aΞ“0,Β¬CΞΉ(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{0}(\iota))\vdash^{*a}_{c}\Gamma_{0},\lnot C_{\iota} by Inversion 3.16. Assuming 𝗄​(ΞΉ)βŠ‚π—„β€‹(CΞΉ)\mathsf{k}(\iota)\subset\mathsf{k}(C_{\iota}), we obtain 𝗄​(ΞΉ)βˆͺE0​(ΞΉ)βŠ‚β„‹Ξ³β€‹[Θ]\mathsf{k}(\iota)\cup E_{0}(\iota)\subset\mathcal{H}_{\gamma}[\Theta] by (7), and (β„‹Ξ³,Θ)⊒cβˆ—aΞ“0,Β¬CΞΉ(\mathcal{H}_{\gamma},\Theta)\vdash^{*a}_{c}\Gamma_{0},\lnot C_{\iota}. We obtain rk​(CΞΉ)<rk​(C)\mathrm{rk}(C_{\iota})<\mathrm{rk}(C) by Proposition 3.8.3, and (β„‹Ξ³,Θ)⊒cβˆ—a+bΞ“0,Ξ“1(\mathcal{H}_{\gamma},\Theta)\vdash^{*a+b}_{c}\Gamma_{0},\Gamma_{1} by a (c​u​t)(cut). β–‘\Box

Lemma 3.18

(Cut-elimination)
Suppose (β„‹Ξ³,Θ)βŠ’π•‚+1+mβˆ—aΞ“(\mathcal{H}_{\gamma},\Theta)\vdash^{*a}_{\mathbb{K}+1+m}\Gamma for m<Ο‰m<\omega. Then (β„‹Ξ³,Θ)βŠ’π•‚+1Ο‰m​(a)Ξ“(\mathcal{H}_{\gamma},\Theta)\vdash^{\omega_{m}(a)}_{\mathbb{K}+1}\Gamma holds.

Proof.  By main induction on mm with subsidiary induction on aa. β–‘\Box

Lemma 3.19

(Embedding of Axioms) For each axiom AA in TNT_{N}, there is an m<Ο‰m<\omega such that (β„‹0,βˆ…)βŠ’π•‚+mβˆ—π•‚β‹…2A(\mathcal{H}_{0},\emptyset)\vdash^{*\mathbb{K}\cdot 2}_{\mathbb{K}+m}A holds.

Proof.  We show that the axiom A​(v)∧vβˆˆπ–«π•Šβ†’A(π•Š,𝕂)​(v)​(A∈Σ1)A(v)\land v\in\mathsf{L}_{\mathbb{S}}\to A^{(\mathbb{S},\mathbb{K})}(v)\,(A\in\Sigma_{1}) follows by an inference (stbl)({\rm stbl}). Let B​(𝖫0)βˆˆΞ”0​(π•Š)B(\mathsf{L}_{0})\in\Delta_{0}(\mathbb{S}) be a β‹€\bigwedge-formula and u∈T​m​(𝕂)u\in Tm(\mathbb{K}). Then rk​(B​(u))<𝕂\mathrm{rk}(B(u))<\mathbb{K}. Let 𝗄0=𝗄​(B​(𝖫0))\mathsf{k}_{0}=\mathsf{k}(B(\mathsf{L}_{0})) and 𝗄u=𝗄​(u)\mathsf{k}_{u}=\mathsf{k}(u). We obtain (β„‹0,𝗄0βˆͺ𝗄u)βŠ’π•‚βˆ—0Β¬B(u),βˆƒxβˆˆπ–«π•ŠB(x)(\mathcal{H}_{0},\mathsf{k}_{0}\cup\mathsf{k}_{u})\vdash^{*0}_{\mathbb{K}}\lnot B(u),\exists x\in\mathsf{L}_{\mathbb{S}}B(x) by a (stbl)({\rm stbl}). A (β‹€)(\bigwedge) yields (β„‹0,𝗄0)βŠ’π•‚βˆ—1Β¬βˆƒxB(x),βˆƒxβˆˆπ–«π•ŠB(x)(\mathcal{H}_{0},\mathsf{k}_{0})\vdash^{*1}_{\mathbb{K}}\lnot\exists x\,B(x),\exists x\in\mathsf{L}_{\mathbb{S}}B(x). β–‘\Box

Lemma 3.20

(Embedding) If TNβŠ’Ξ“T_{N}\vdash\Gamma for sets Ξ“\Gamma of sentences, there are m,k<Ο‰m,k<\omega such that (β„‹0,βˆ…)βŠ’π•‚+mβˆ—π•‚β‹…2+kΞ“(\mathcal{H}_{0},\emptyset)\vdash_{\mathbb{K}+m}^{*\mathbb{K}\cdot 2+k}\Gamma holds.

Lemma 3.21

(Collapsing) Assume Ξ˜βŠ‚β„‹Ξ³β€‹(Οˆπ•‚β€‹(Ξ³))\Theta\subset\mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma)) and (β„‹Ξ³,Θ)βŠ’π•‚+1βˆ—aΞ“(\mathcal{H}_{\gamma},\Theta)\vdash^{*a}_{\mathbb{K}+1}\Gamma with Ξ“βŠ‚Ξ£β€‹(𝕂)\Gamma\subset\Sigma(\mathbb{K}). Then (β„‹a^+1,Θ)βŠ’Ξ²βˆ—Ξ²Ξ“(Ξ²,𝕂)(\mathcal{H}_{\hat{a}+1},\Theta)\vdash^{*\beta}_{\beta}\Gamma^{(\beta,\mathbb{K})} holds for a^=Ξ³+Ο‰a\hat{a}=\gamma+\omega^{a} and Ξ›0=Ξ²=Οˆπ•‚β€‹(a^)\Lambda_{0}=\beta=\psi_{\mathbb{K}}(\hat{a}).

Proof.  This is seen as in [7] by induction on aa. We have {Ξ³,a}βˆͺE0​({Ξ³,a})βˆͺ𝗄​(Ξ“)βˆͺE0​(Ξ“)βŠ‚β„‹Ξ³β€‹[Θ]\{\gamma,a\}\cup E_{0}(\{\gamma,a\})\cup\mathsf{k}(\Gamma)\cup E_{0}(\Gamma)\subset\mathcal{H}_{\gamma}[\Theta] by (7), and E0​(Ξ²)=E0​({Ξ³,a})E_{0}(\beta)=E_{0}(\{\gamma,a\}). We obtain {Ξ²}βˆͺE0​(Ξ²)βŠ‚β„‹a^+1​[Θ]\{\beta\}\cup E_{0}(\beta)\subset\mathcal{H}_{\hat{a}+1}[\Theta] for (7).
Case 1. First consider the case when the last inference is a (stbl)({\rm stbl}): We have a β‹€\bigwedge-formula B​(𝖫0)βˆˆΞ”0​(π•Š)B(\mathsf{L}_{0})\in\Delta_{0}(\mathbb{S}), and a term u∈T​m​(𝕂)u\in Tm(\mathbb{K}) such that 𝗄​(B​(u))βŠ‚β„‹Ξ³β€‹[Θ]βˆ©π•‚\mathsf{k}(B(u))\subset\mathcal{H}_{\gamma}[\Theta]\cap\mathbb{K} by (7). The assumption Ξ˜βŠ‚β„‹Ξ³β€‹(Οˆπ•‚β€‹(Ξ³))\Theta\subset\mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma)) yields 𝗄​(B​(u))βŠ‚β„‹Ξ³β€‹(Οˆπ•‚β€‹(Ξ³))βˆ©π•‚=Οˆπ•‚β€‹(Ξ³)\mathsf{k}(B(u))\subset\mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma))\cap\mathbb{K}=\psi_{\mathbb{K}}(\gamma), and rk​(B​(u))<Οˆπ•‚β€‹(Ξ³)≀β\mathrm{rk}(B(u))<\psi_{\mathbb{K}}(\gamma)\leq\beta.
Case 2. Second consider the case when the last inference is a (Σ​(Ο€)​-rfl)(\Sigma(\pi)\mbox{{\rm-rfl}}) on π≀𝕂\pi\leq\mathbb{K}: There exist ordinals aβ„“,ar<aa_{\ell},a_{r}<a and a formula CβˆˆΞ£β€‹(Ο€)C\in\Sigma(\pi) such that (β„‹Ξ³,Θ)βŠ’π•‚+1βˆ—aβ„“Ξ“,C(\mathcal{H}_{\gamma},\Theta)\vdash^{*a_{\ell}}_{\mathbb{K}+1}\Gamma,C, and (β„‹Ξ³,Θ)βŠ’π•‚+1βˆ—arΒ¬βˆƒx<Ο€C(x,Ο€),Ξ“(\mathcal{H}_{\gamma},\Theta)\vdash^{*a_{r}}_{\mathbb{K}+1}\lnot\exists x<\pi\,C^{(x,\pi)},\Gamma. Let Ο€=𝕂\pi=\mathbb{K}. IH yields (β„‹a^+1,Θ)βŠ’Ξ²βˆ—Ξ²β„“Ξ“(Ξ²,𝕂),C(Ξ²β„“,𝕂)(\mathcal{H}_{\widehat{a}+1},\Theta)\vdash^{*\beta_{\ell}}_{\beta}\Gamma^{(\beta,\mathbb{K})},C^{(\beta_{\ell},\mathbb{K})} for Ξ²β„“=Οˆπ•‚β€‹(aβ„“^)\beta_{\ell}=\psi_{\mathbb{K}}(\widehat{a_{\ell}}) with aβ„“^=Ξ³+Ο‰aβ„“\widehat{a_{\ell}}=\gamma+\omega^{a_{\ell}}, where Ξ²β„“βˆˆβ„‹aβ„“^+1​[Θ]\beta_{\ell}\in\mathcal{H}_{\widehat{a_{\ell}}+1}[\Theta] and E0​(Ξ²β„“)=E0​(aβ„“^)βŠ‚E0​({Ξ³,aβ„“})βŠ‚β„‹Ξ³β€‹[Θ]E_{0}(\beta_{\ell})=E_{0}(\widehat{a_{\ell}})\subset E_{0}(\{\gamma,a_{\ell}\})\subset\mathcal{H}_{\gamma}[\Theta].

On the other hand we have (β„‹aβ„“^+1,Θβˆͺ{Ξ²β„“}βˆͺE0(Ξ²β„“))βŠ’π•‚+1βˆ—arΒ¬C(Ξ²β„“,𝕂),Ξ“(\mathcal{H}_{\widehat{a_{\ell}}+1},\Theta\cup\{\beta_{\ell}\}\cup E_{0}(\beta_{\ell}))\vdash^{*a_{r}}_{\mathbb{K}+1}\lnot C^{(\beta_{\ell},\mathbb{K})},\Gamma by Inversion 3.16, and (β„‹aβ„“^+1,Θ)βŠ’π•‚+1βˆ—arΒ¬C(Ξ²β„“,𝕂),Ξ“(\mathcal{H}_{\widehat{a_{\ell}}+1},\Theta)\vdash^{*a_{r}}_{\mathbb{K}+1}\lnot C^{(\beta_{\ell},\mathbb{K})},\Gamma.

Let Ξ²r=Οˆπ•‚β€‹(ar^)<Ξ²\beta_{r}=\psi_{\mathbb{K}}(\widehat{a_{r}})<\beta with ar^=aβ„“^+1+Ο‰ar=Ξ³+Ο‰aβ„“+Ο‰ar<Ξ³+Ο‰a=a^\widehat{a_{r}}=\widehat{a_{\ell}}+1+\omega^{a_{r}}=\gamma+\omega^{a_{\ell}}+\omega^{a_{r}}<\gamma+\omega^{a}=\hat{a}. IH yields (β„‹a^+1,Θ)βŠ’Ξ²βˆ—Ξ²rΒ¬C(Ξ²β„“,𝕂),Ξ“(Ξ²,𝕂)(\mathcal{H}_{\hat{a}+1},\Theta)\vdash^{*\beta_{r}}_{\beta}\lnot C^{(\beta_{\ell},\mathbb{K})},\Gamma^{(\beta,\mathbb{K})}. A (c​u​t)(cut) yields (β„‹a^+1,Θ)βŠ’Ξ²βˆ—Ξ²Ξ“(Ξ²,𝕂)(\mathcal{H}_{\hat{a}+1},\Theta)\vdash^{*\beta}_{\beta}\Gamma^{(\beta,\mathbb{K})} for rk​(C(Ξ²β„“,𝕂))<Ξ²\mathrm{rk}(C^{(\beta_{\ell},\mathbb{K})})<\beta. When Ο€<𝕂\pi<\mathbb{K}, IH followed by a (Σ​(Ο€)​-rfl)(\Sigma(\pi)\mbox{{\rm-rfl}}) yields the lemma.
Case 3. Third consider the case when the last inference is a (c​u​t)(cut): There exist a0<aa_{0}<a and a ⋁\bigvee-formula CC such that rk​(C)≀𝕂\mathrm{rk}(C)\leq\mathbb{K}, (β„‹Ξ³,Θ)βŠ’π•‚+1βˆ—a0Ξ“,Β¬C(\mathcal{H}_{\gamma},\Theta)\vdash^{*a_{0}}_{\mathbb{K}+1}\Gamma,\lnot C and (β„‹Ξ³,Θ)βŠ’π•‚+1βˆ—a0C,Ξ“(\mathcal{H}_{\gamma},\Theta)\vdash^{*a_{0}}_{\mathbb{K}+1}C,\Gamma. We obtain C∈Σ1​(𝕂)βˆͺΞ”0​(𝕂)C\in\Sigma_{1}(\mathbb{K})\cup\Delta_{0}(\mathbb{K}) by Proposition 3.8.4. IH yields (β„‹a0^+1,Θ)βŠ’Ξ²βˆ—Ξ²0C(Ξ²0,𝕂),Ξ“(Ξ²,𝕂)(\mathcal{H}_{\widehat{a_{0}}+1},\Theta)\vdash^{*\beta_{0}}_{\beta}C^{(\beta_{0},\mathbb{K})},\Gamma^{(\beta,\mathbb{K})} for Ξ²0=Οˆπ•‚β€‹(a0^)βˆˆβ„‹a0^+1​[Θ]\beta_{0}=\psi_{\mathbb{K}}(\widehat{a_{0}})\in\mathcal{H}_{\widehat{a_{0}}+1}[\Theta] with a0^=Ξ³+Ο‰a0\widehat{a_{0}}=\gamma+\omega^{a_{0}}, and E0​(Ξ²0)βŠ‚β„‹Ξ³β€‹[Θ]E_{0}(\beta_{0})\subset\mathcal{H}_{\gamma}[\Theta]. On the other, we obtain (β„‹a0^+1,Θβˆͺ{Ξ²0}βˆͺE0(Ξ²0))βŠ’π•‚+1βˆ—a0Β¬C(Ξ²0,𝕂),Ξ“(\mathcal{H}_{\widehat{a_{0}}+1},\Theta\cup\{\beta_{0}\}\cup E_{0}(\beta_{0}))\vdash^{*a_{0}}_{\mathbb{K}+1}\lnot C^{(\beta_{0},\mathbb{K})},\Gamma by Inversion 3.16, and (β„‹a0^+1,Θ)βŠ’π•‚+1βˆ—a0Β¬C(Ξ²0,𝕂),Ξ“(\mathcal{H}_{\widehat{a_{0}}+1},\Theta)\vdash^{*a_{0}}_{\mathbb{K}+1}\lnot C^{(\beta_{0},\mathbb{K})},\Gamma. Let Ξ²1=Οˆπ•‚β€‹(a1^)<Ξ²\beta_{1}=\psi_{\mathbb{K}}(\widehat{a_{1}})<\beta with a1^=a0^+Ο‰a0=Ξ³+Ο‰a0β‹…2<a^\widehat{a_{1}}=\widehat{a_{0}}+\omega^{a_{0}}=\gamma+\omega^{a_{0}}\cdot 2<\hat{a}. IH yields (β„‹a^+1,Θ)βŠ’Ξ²βˆ—Ξ²1Β¬C(Ξ²0,𝕂),Ξ“(Ξ²,𝕂)(\mathcal{H}_{\hat{a}+1},\Theta)\vdash^{*\beta_{1}}_{\beta}\lnot C^{(\beta_{0},\mathbb{K})},\Gamma^{(\beta,\mathbb{K})}. We obtain (β„‹a^+1,Θ)βŠ’Ξ²βˆ—Ξ²Ξ“(Ξ²,𝕂)(\mathcal{H}_{\hat{a}+1},\Theta)\vdash^{*\beta}_{\beta}\Gamma^{(\beta,\mathbb{K})} by a (c​u​t)(cut) with rk​(C(Ξ²0,𝕂))<Ξ²\mathrm{rk}(C^{(\beta_{0},\mathbb{K})})<\beta.
Case 4. Fourth consider the case when the last inference is a (⋁)(\bigvee): A ⋁\bigvee-formula with AβˆˆΞ“A\in\Gamma is introduced. Let Ai≑A≃⋁(AΞΉ)ι∈JA_{i}\equiv A\simeq\bigvee\left(A_{\iota}\right)_{\iota\in J}. There are an ι∈J\iota\in J, an ordinal a​(ΞΉ)<aa(\iota)<a such that (β„‹Ξ³,Θ)βŠ’π•‚+1βˆ—a​(ΞΉ)Ξ“,AΞΉ(\mathcal{H}_{\gamma},\Theta)\vdash^{*a(\iota)}_{\mathbb{K}+1}\Gamma,A_{\iota}. We may assume 𝗄​(ΞΉ)βŠ‚π—„β€‹(AΞΉ)\mathsf{k}(\iota)\subset\mathsf{k}(A_{\iota}). We obtain by (7), 𝗄​(ΞΉ)βŠ‚β„‹Ξ³β€‹[Θ]βˆ©π•‚βŠ‚β„‹Ξ³β€‹(Οˆπ•‚β€‹(Ξ³))βˆ©π•‚βŠ‚Οˆπ•‚β€‹(Ξ³)βŠ‚Ξ²\mathsf{k}(\iota)\subset\mathcal{H}_{\gamma}[\Theta]\cap\mathbb{K}\subset\mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma))\cap\mathbb{K}\subset\psi_{\mathbb{K}}(\gamma)\subset\beta. IH yields (β„‹a^+1,Θ)βŠ’Ξ²βˆ—Ξ²β€‹(ΞΉ)Ξ“(Ξ²,𝕂),AΞΉ(Ξ²,𝕂)(\mathcal{H}_{\hat{a}+1},\Theta)\vdash^{*\beta(\iota)}_{\beta}\Gamma^{(\beta,\mathbb{K})},A_{\iota}^{(\beta,\mathbb{K})} for β​(ΞΉ)=Οˆπ•‚β€‹(a​(ΞΉ)^)\beta(\iota)=\psi_{\mathbb{K}}(\widehat{a(\iota)}) with a​(ΞΉ)^=Ξ³+Ο‰a​(ΞΉ)\widehat{a(\iota)}=\gamma+\omega^{a(\iota)}. (β„‹a^+1,Ξ˜βŠ’Ξ²βˆ—Ξ²Ξ“(Ξ²,𝕂)(\mathcal{H}_{\hat{a}+1},\Theta\vdash^{*\beta}_{\beta}\Gamma^{(\beta,\mathbb{K})} follows from a (⋁)(\bigvee).
Case 5. Fifth consider the case when the last inference is a (β‹€)(\bigwedge): A formula AβˆˆΞ£β€‹(𝕂)A\in\Sigma(\mathbb{K}) with A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge\left(A_{\iota}\right)_{\iota\in J} is introduced in Ξ“\Gamma. For every ι∈J\iota\in J there exists an a​(ΞΉ)<aa(\iota)<a such that (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺE0(ΞΉ))βŠ’π•‚+1βˆ—a​(ΞΉ)Ξ“,AΞΉ(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{0}(\iota))\vdash^{*a(\iota)}_{\mathbb{K}+1}\Gamma,A_{\iota}. We see 𝗄​(ΞΉ)βˆͺE0​(ΞΉ)βŠ‚Οˆπ•‚β€‹(Ξ³)\mathsf{k}(\iota)\cup E_{0}(\iota)\subset\psi_{\mathbb{K}}(\gamma) as follows. First E0​(ΞΉ)βŠ‚Ξ©π•Š+Nβˆ’1<Οˆπ•‚β€‹(Ξ³)E_{0}(\iota)\subset\Omega_{\mathbb{S}+N-1}<\psi_{\mathbb{K}}(\gamma) by Proposition 3.12.1. Second for example let A≑(βˆ€x∈u​B​(x))A\equiv(\forall x\in u\,B(x)). Then u∈T​m​(𝕂)u\in Tm(\mathbb{K}) by AβˆˆΞ£β€‹(𝕂)A\in\Sigma(\mathbb{K}), and J=T​m​(|u|)J=Tm(|u|). We obtain 𝗄​(u)βŠ‚β„‹Ξ³β€‹[Θ]βˆ©π•‚βŠ‚Οˆπ•‚β€‹(Ξ³)\mathsf{k}(u)\subset\mathcal{H}_{\gamma}[\Theta]\cap\mathbb{K}\subset\psi_{\mathbb{K}}(\gamma). Hence |ΞΉ|<|u|<Οˆπ•‚β€‹(Ξ³)|\iota|<|u|<\psi_{\mathbb{K}}(\gamma) for ι∈J\iota\in J. IH yields (β„‹a^+1,Θβˆͺ𝗄(ΞΉ)βˆͺE0(ΞΉ))βŠ’Ξ²βˆ—Ξ²β€‹(ΞΉ)Ξ“,AΞΉ(\mathcal{H}_{\hat{a}+1},\Theta\cup\mathsf{k}(\iota)\cup E_{0}(\iota))\vdash^{*\beta(\iota)}_{\beta}\Gamma,A_{\iota} for each ι∈J\iota\in J, where β​(ΞΉ)=Οˆπ•‚β€‹(a​(ΞΉ)^)\beta(\iota)=\psi_{\mathbb{K}}(\widehat{a(\iota)}) with a​(ΞΉ)^=Ξ³+Ο‰a​(ΞΉ)\widehat{a(\iota)}=\gamma+\omega^{a(\iota)}. We obtain (β„‹a^+1,Θ)βŠ’Ξ²βˆ—Ξ²Ξ“(\mathcal{H}_{\hat{a}+1},\Theta)\vdash^{*\beta}_{\beta}\Gamma by a (β‹€)(\bigwedge) and β​(ΞΉ)<Ξ²\beta(\iota)<\beta. β–‘\Box

3.4 Stepping-down

The following Definition 3.23 is mainly needed in subsection 3.6, but also in Definition 3.26, cf. the beginning of subsection 3.6. Let Ξ›0<𝕂\Lambda_{0}<\mathbb{K} be the ordinal in Collapsing 3.21, and Ξ›=Γ​(Ξ›0)\Lambda=\Gamma(\Lambda_{0}).

Definition 3.22

Let s​(f)=max⁑({0}βˆͺsupp​(f))s(f)=\max(\{0\}\cup{\rm supp}(f)) for finite function ff, and s​(ρ)=s​(m​(ρ))s(\rho)=s(m(\rho)). Let ff be a non-empty and irreducible finite function. Then ff is said to be special if there exists an ordinal Ξ±\alpha such that f​(s​(f))=Ξ±+Ξ›f(s(f))=\alpha+\Lambda for the base Ξ›\Lambda of the ΞΈ~\tilde{\theta}-function. For a special finite function ff, fβ€²f^{\prime} denotes a finite function such that supp​(fβ€²)=supp​(f){\rm supp}(f^{\prime})={\rm supp}(f), f′​(c)=f​(c)f^{\prime}(c)=f(c) for cβ‰ s​(f)c\neq s(f), and f′​(s​(f))=Ξ±f^{\prime}(s(f))=\alpha with f​(s​(f))=Ξ±+Ξ›f(s(f))=\alpha+\Lambda.

A special function gg has a room Ξ›\Lambda on its top g​(s​(g))=Ξ±+Ξ›g(s(g))=\alpha+\Lambda. A stepping-down hb​(g;a)h^{b}(g;a) of a special function gg to an ordinal bb is introduced in Definition 3.23 by replacing the room Ξ›\Lambda by an ordinal aa. Such a stepping-down is needed to analyze inference rules for reflections in subsection 3.6.

Definition 3.23

Let f,g:Λ→Γ​(Ξ›)f,g:\Lambda\to\Gamma(\Lambda) be special finite functions and ΞΈ~b\tilde{\theta}_{b} denotes the bb-th iterate of the function ΞΈ~1​(ΞΎ)=Λξ\tilde{\theta}_{1}(\xi)=\Lambda^{\xi} in Definition 2.1.

  1. 1.

    For ordinals a<Ξ›a<\Lambda, b≀s​(g)b\leq s(g), let us define a finite function h=hb​(g;a):Λ→Γ​(Ξ›)h=h^{b}(g;a):\Lambda\to\Gamma(\Lambda) as follows. s​(h)=bs(h)=b, and hb=gbh_{b}=g_{b}. To define h​(b)h(b), let {b=b0<b1<β‹―<bn=s​(g)}={b,s​(g)}βˆͺ((b,s​(g))∩supp​(g))\{b=b_{0}<b_{1}<\cdots<b_{n}=s(g)\}=\{b,s(g)\}\cup\left((b,s(g))\cap{\rm supp}(g)\right). Define recursively ordinals Ξ±i\alpha_{i} by Ξ±n=Ξ±+a\alpha_{n}=\alpha+a with g​(s​(g))=Ξ±+Ξ›g(s(g))=\alpha+\Lambda. Ξ±i=g​(bi)+ΞΈ~ci​(Ξ±i+1)\alpha_{i}=g(b_{i})+\tilde{\theta}_{c_{i}}(\alpha_{i+1}) for ci=bi+1βˆ’bic_{i}=b_{i+1}-b_{i}. Finally let h​(b)=Ξ±0+Ξ›h(b)=\alpha_{0}+\Lambda.

  2. 2.

    Let b=s​(f)b=s(f). Then fβˆ—gb+1f*g^{b+1} denotes a special finite function hh defined as follows. If gb+1=βˆ…g^{b+1}=\emptyset, then h=fh=f. Let gb+1β‰ βˆ…g^{b+1}\neq\emptyset. Then supp​(h)=supp​(f)βˆͺsupp​(gb+1){\rm supp}(h)={\rm supp}(f)\cup{\rm supp}(g^{b+1}), h​(c)=f​(c)h(c)=f(c) for c<bc<b, h​(b)=f′​(b)h(b)=f^{\prime}(b) and h​(c)=g​(c)h(c)=g(c) for c>bc>b.

Proposition 3.24

Let a≀Λa\leq\Lambda, and f,g:Λ→Γ​(Ξ›)f,g:\Lambda\to\Gamma(\Lambda) be special finite functions with a strongly critical number Ξ›<𝕂\Lambda<\mathbb{K} such that fd=gdf_{d}=g_{d} and f<dg′​(d)f<^{d}g^{\prime}(d) for a d∈supp​(g)d\in{\rm supp}(g). Let ρ∈ΨN\rho\in\Psi_{N} with g=m​(ρ)g=m(\rho).

  1. 1.

    Let d<s​(f)d<s(f) and h=hd​(f;a)h=h^{d}(f;a). Then hd=gdh_{d}=g_{d} and h<dg′​(d)h<^{d}g^{\prime}(d).

  2. 2.

    If b<db<d, then fb=(hb​(g;a))bf_{b}=(h^{b}(g;a))_{b}, f<b(hb​(g;a))′​(b)f<^{b}(h^{b}(g;a))^{\prime}(b).

  3. 3.

    Let b<b0<db<b_{0}<d, a0,a1<a<Ξ›a_{0},a_{1}<a<\Lambda, g0=hb0​(g;a0)βˆ—fb0+1g_{0}=h^{b_{0}}(g;a_{0})*f^{b_{0}+1}, and k=hb​(g0;a1)k=h^{b}(g_{0};a_{1}) Then kb=(hb​(g;a))bk_{b}=(h^{b}(g;a))_{b} and k<b(hb​(g;a))′​(b)k<^{b}(h^{b}(g;a))^{\prime}(b).

Proof.  3.24.1. We have hd=fd=gdh_{d}=f_{d}=g_{d}. We show h​(d)<g′​(d)h(d)<g^{\prime}(d). Let {d=d0<d1<β‹―<dn=s​(f)}={d,s​(f)}βˆͺ((d,s​(f))∩supp​(f))\{d=d_{0}<d_{1}<\cdots<d_{n}=s(f)\}=\{d,s(f)\}\cup\left((d,s(f))\cap{\rm supp}(f)\right) for n>0n>0. Let Ξ±i\alpha_{i} be ordinals defined by Ξ±n=Ξ±+a\alpha_{n}=\alpha+a with f​(s​(f))=Ξ±+Ξ›f(s(f))=\alpha+\Lambda. Ξ±i=f​(di)+ΞΈ~ci​(Ξ±i+1)\alpha_{i}=f(d_{i})+\tilde{\theta}_{c_{i}}(\alpha_{i+1}) for ci=di+1βˆ’dic_{i}=d_{i+1}-d_{i}. Then h​(d)=Ξ±0+Ξ›h(d)=\alpha_{0}+\Lambda.

On the other, let ΞΌ0\mu_{0} be a part of g′​(d0)g^{\prime}(d_{0}) such that f​(d0)<ΞΌ0f(d_{0})<\mu_{0} and f<d1ΞΈ~βˆ’c0​(t​l​(ΞΌ0))f<^{d_{1}}\tilde{\theta}_{-c_{0}}(tl(\mu_{0})). For i<ni<n, let ΞΌi+1\mu_{i+1} be a part of ΞΈ~βˆ’ci​(t​l​(ΞΌi))\tilde{\theta}_{-c_{i}}(tl(\mu_{i})) such that f​(di+1)<ΞΌi+1f(d_{i+1})<\mu_{i+1}.

For f​(dn)=Ξ±+Ξ›f(d_{n})=\alpha+\Lambda we have Ξ±n=Ξ±+a<Ξ±+Ξ›<ΞΌn\alpha_{n}=\alpha+a<\alpha+\Lambda<\mu_{n}, and ΞΈ~cnβˆ’1​(Ξ±+a)<ΞΈ~cnβˆ’1​(ΞΌn)≀θ~cnβˆ’1​(ΞΈ~βˆ’cnβˆ’1​(t​l​(ΞΌnβˆ’1)))≀t​l​(ΞΌnβˆ’1)\tilde{\theta}_{c_{n-1}}(\alpha+a)<\tilde{\theta}_{c_{n-1}}(\mu_{n})\leq\tilde{\theta}_{c_{n-1}}(\tilde{\theta}_{-c_{n-1}}(tl(\mu_{n-1})))\leq tl(\mu_{n-1}) by Proposition 2.4.2. We obtain Ξ±nβˆ’1=f​(dnβˆ’1)+ΞΈ~cnβˆ’1​(Ξ±n)<ΞΌnβˆ’1\alpha_{n-1}=f(d_{n-1})+\tilde{\theta}_{c_{n-1}}(\alpha_{n})<\mu_{n-1} by f​(dnβˆ’1)<ΞΌnβˆ’1f(d_{n-1})<\mu_{n-1}. We see inductively that Ξ±i<ΞΌi\alpha_{i}<\mu_{i}, and Ξ±0<ΞΌ0\alpha_{0}<\mu_{0}. Hence we obtain h​(d)=Ξ±0+Ξ›<ΞΌ0≀g′​(d0)h(d)=\alpha_{0}+\Lambda<\mu_{0}\leq g^{\prime}(d_{0}).
3.24.2. Let h=hb​(g;a)h=h^{b}(g;a). We have hb=gb=fbh_{b}=g_{b}=f_{b}. Let b+x∈supp​(f)∩dβŠ‚supp​(g)∩db+x\in{\rm supp}(f)\cap d\subset{\rm supp}(g)\cap d. Then f​(b+x)=g​(b+x)<ΞΈ~βˆ’x​(h′​(b))f(b+x)=g(b+x)<\tilde{\theta}_{-x}(h^{\prime}(b)) and g′​(d)<ΞΈ~βˆ’(dβˆ’b)​(h′​(b))g^{\prime}(d)<\tilde{\theta}_{-(d-b)}(h^{\prime}(b)). Proposition 2.5 yields the proposition.
3.24.3. We have hb=gb=(hb​(g;a))bh_{b}=g_{b}=(h^{b}(g;a))_{b}. We obtain h′​(b)=(hb​(g;a0))′​(b)<(hb​(g;a))′​(b)h^{\prime}(b)=(h^{b}(g;a_{0}))^{\prime}(b)<(h^{b}(g;a))^{\prime}(b) by a0<aa_{0}<a. As in Proposition 3.24.2 we see that f​(b+x)=g​(b+x)<ΞΈ~βˆ’x​(h′​(b))f(b+x)=g(b+x)<\tilde{\theta}_{-x}(h^{\prime}(b)) and g′​(d)<ΞΈ~βˆ’(dβˆ’b)​(h′​(b))g^{\prime}(d)<\tilde{\theta}_{-(d-b)}(h^{\prime}(b)) for b+x∈supp​(f)∩dβŠ‚supp​(g)∩db+x\in{\rm supp}(f)\cap d\subset{\rm supp}(g)\cap d. β–‘\Box

3.5 Operator controlled derivations with caps

Our cut-elimination procedure goes roughly as follows, cf. the beginning of subsection 3.3. The initial sequents (stbl)({\rm stbl}) in a given βˆ—*-derivation are replaced by inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) by putting a cap ρ\rho on formulas, cf. Capping 3.34. Our main task is to eliminate inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) from a resulting derivation π’Ÿ1\mathcal{D}_{1}. Although a capped formula A(ρ)A^{(\rho)} in Definition 3.25.1 is intended to denote the formula A[ρ/π•Š]A^{[\rho/\mathbb{S}]}, we need to distinguish A(ρ)A^{(\rho)} from A[ρ/π•Š]A^{[\rho/\mathbb{S}]}. The cap ρ\rho in A(ρ)A^{(\rho)} is a temporary one, and the formula AA could put on a smaller cap A(ΞΊ)A^{(\kappa)}. Let ρ<π•Š\rho<\mathbb{S} be an ordinal for which inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) occur in π’Ÿ1\mathcal{D}_{1}. In Recapping 3.35 the caps A(ρ)A^{(\rho)} are lowered by substituting a smaller ordinal ΞΊ\kappa for ρ\rho, and simultaneously the ranks rk​(B){\rm rk}(B) of formulas B(ΞΊ)B^{(\kappa)} to be reflected are lowered. In this process new inferences (rfl​(Οƒ,e1,f1))({\rm rfl}(\sigma,e_{1},f_{1})) arise with Οƒ<ΞΊ\sigma<\kappa, whose ranks might not be smaller.

Iterating this process, we arrive at a derivation π’Ÿ2\mathcal{D}_{2} such that every formula AA occurring in it is in Ξ£1​(π•Š)βˆͺΞ 1​(π•Š)\Sigma_{1}(\mathbb{S})\cup\Pi_{1}(\mathbb{S}). Then caps play no rΓ΄le, i.e., A(ρ)A^{(\rho)} is β€˜equivalent’ to AA, and inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) are removed from π’Ÿ2\mathcal{D}_{2} by replacing these by a series of (c​u​t)(cut)’s, cf. Lemmas 3.43 and 3.45. See the beginning of subsection 3.6 for more on an elimination procedure.

In what follows strongly critical numbers Ξ›0=Ξ²<Ξ›=Γ​(Ξ²)<𝕂\Lambda_{0}=\beta<\Lambda=\Gamma(\beta)<\mathbb{K} will be fixed, which are ordinals in Collapsing 3.21. Also Ξ³0\gamma_{0} denotes a fixed ordinal.

Definition 3.25
  1. 1.

    By a capped formula we mean a pair (A,ρ)(A,\rho) of R​SRS-sentence AA and an ordinal ρ<π•Š\rho<\mathbb{S} such that 𝗄​(A)βŠ‚EΟπ•Š\mathsf{k}(A)\subset E^{\mathbb{S}}_{\rho}. Such a pair is denoted by A(ρ)A^{(\rho)}. Sometimes it is convenient for us to regard uncapped formulas AA as capped formulas A(𝚞)A^{(\mathtt{u})} with its cap 𝚞\mathtt{u}. A sequent is a finite set of capped or uncapped formulas, denoted by Ξ“0(ρ0),…,Ξ“n(ρn)\Gamma_{0}^{(\rho_{0})},\ldots,\Gamma_{n}^{(\rho_{n})}, where each formula in the set Ξ“i(ρi)\Gamma_{i}^{(\rho_{i})} puts on the cap ρiβˆˆπ•Šβˆͺ{𝚞}\rho_{i}\in\mathbb{S}\cup\{\mathtt{u}\}. When we write Ξ“(ρ)\Gamma^{(\rho)}, we tacitly assume that 𝗄​(Ξ“)βŠ‚EΟπ•Š\mathsf{k}(\Gamma)\subset E^{\mathbb{S}}_{\rho}, where Eπšžπ•Š=O​TNE^{\mathbb{S}}_{\mathtt{u}}=OT_{N}. A capped formula A(ρ)A^{(\rho)} is said to be a Σ​(Ο€)\Sigma(\pi)-formula if AβˆˆΞ£β€‹(Ο€)A\in\Sigma(\pi). Let 𝗄​(A(ρ)):=𝗄​(A)\mathsf{k}(A^{(\rho)}):=\mathsf{k}(A).

  2. 2.

    Let Ξ›<𝕂\Lambda<\mathbb{K} be a strongly critical number. A non-empty finite set πš€\mathtt{Q} of ordinals is said to be a finite family (for ordinals Ξ›,Ξ³0\Lambda,\gamma_{0}) if each Οβˆˆπš€\rho\in\mathtt{Q} is an ordinal ρ=ΟˆΟƒf​(a)∈ΨN\rho=\psi_{\sigma}^{f}(a)\in\Psi_{N} such that m​(ρ):Λ→Γ​(Ξ›)m(\rho):\Lambda\to\Gamma(\Lambda)333Actually m​(ρ):Λ→φΛ​(Ξ›β‹…Ο‰)m(\rho):\Lambda\to\varphi_{\Lambda}(\Lambda\cdot\omega) suffices. is special, Ξ³0≀b​(ρ):=a<Ξ³0+π•Š\gamma_{0}\leq b(\rho):=a<\gamma_{0}+\mathbb{S}, and β„‹Ξ³0​(ρ)βˆ©π•ŠβŠ‚Ο\mathcal{H}_{\gamma_{0}}(\rho)\cap\mathbb{S}\subset\rho.

    For a finite family πš€\mathtt{Q} let

    Οπš€:=minβ‘πš€.\rho_{\mathtt{Q}}:=\min\mathtt{Q}.
Definition 3.26

Hρ​(f,Ξ³0,Θ)H_{\rho}(f,\gamma_{0},\Theta) denotes the resolvent class defined by κ∈Hρ​(f,Ξ³0,Θ)\kappa\in H_{\rho}(f,\gamma_{0},\Theta) iff κ∈ΨN∩ρ\kappa\in\Psi_{N}\cap\rho, {ρ,ΞΊ}\{\rho,\kappa\} is a finite family, Θ∩EΟπ•ŠβŠ‚EΞΊπ•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\kappa}, and f≀m​(ΞΊ)f\leq m(\kappa), where f≀g:β‡”βˆ€i(f(i)≀g(i))f\leq g:\Leftrightarrow\forall i(f(i)\leq g(i)) for finite functions f,gf,g.

We define another derivability relation (β„‹Ξ³,Θ,πš€)⊒c,d,maΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m}\Gamma, where cc is a bound of ranks of cut formulas, dd is a bound of ranks of minor formulas in inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) in a witnessed derivation. The relation depends on ordinals Ξ›0,Ξ³0\Lambda_{0},\gamma_{0}, and should be written as (β„‹Ξ³,Θ,πš€)⊒c,d,,m,Ξ›0,Ξ³0aΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,,m,\Lambda_{0},\gamma_{0}}\Gamma. The ordinals Ξ›0,Ξ³0\Lambda_{0},\gamma_{0} will be fixed. So let us omit these. Note that if 𝗄​(ΞΉ)βŠ‚EΟπ•Š\mathsf{k}(\iota)\subset E^{\mathbb{S}}_{\rho}, then Em​(ΞΉ)βŠ‚EΟπ•ŠE_{m}(\iota)\subset E^{\mathbb{S}}_{\rho} by Proposition 3.12.3.

Definition 3.27

Let Θ\Theta be a finite set of ordinals, γ≀γ0\gamma\leq\gamma_{0} and c,d≀Λ0c,d\leq\Lambda_{0}. Let πš€\mathtt{Q} be a finite family. Let Ξ“=⋃{Γσ(Οƒ):Οƒβˆˆπš€}βŠ‚Ξ”0​(𝕂)\Gamma=\bigcup\{\Gamma_{\sigma}^{(\sigma)}:\sigma\in\mathtt{Q}\}\subset\Delta_{0}(\mathbb{K}) a set of formulas such that 𝗄​(Γσ)βŠ‚EΟƒπ•Š\mathsf{k}(\Gamma_{\sigma})\subset E^{\mathbb{S}}_{\sigma} for each Οƒβˆˆπš€\sigma\in\mathtt{Q}.

(β„‹Ξ³,Θ,πš€)⊒c,d,maΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m}\Gamma holds if

πš€βŠ‚Ξ˜\mathtt{Q}\subset\Theta (8)
βˆ€Οƒβˆˆπš€β€‹(𝗄​(Γσ)βˆͺEm​(Γσ)βŠ‚β„‹Ξ³β€‹[Θ∩EΟƒπ•Š])\forall\sigma\in\mathtt{Q}\left(\mathsf{k}(\Gamma_{\sigma})\cup E_{m}(\Gamma_{\sigma})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\sigma}]\right) (9)
{Ξ³0,Ξ³,Ξ›0,a,c,d}βˆͺEm​({Ξ³0,Ξ³,Ξ›0,a,c,d})βŠ‚β„‹Ξ³β€‹[Θ∩EΟπš€π•Š]\{\gamma_{0},\gamma,\Lambda_{0},a,c,d\}\cup E_{m}(\{\gamma_{0},\gamma,\Lambda_{0},a,c,d\})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho_{\mathtt{Q}}}] (10)

and one of the following cases holds:

(⋁)(\bigvee)

There exist A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J}, an ordinal a​(ΞΉ)<aa(\iota)<a, A(ρ)βˆˆΞ“A^{(\rho)}\in\Gamma with a cap Οβˆˆπš€\rho\in\mathtt{Q}, and an ι∈J\iota\in J and (β„‹Ξ³,Θ,πš€)⊒c,d,ma​(ΞΉ)Ξ“,(AΞΉ)(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a(\iota)}_{c,d,m}\Gamma,\left(A_{\iota}\right)^{(\rho)}.

(β‹€)(\bigwedge)

There exist A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge(A_{\iota})_{\iota\in J}, a cap Οβˆˆπš€\rho\in\mathtt{Q}, ordinals a​(ΞΉ)<aa(\iota)<a such that A(ρ)βˆˆΞ“A^{(\rho)}\in\Gamma and (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺEm(ΞΉ),πš€)⊒c,d,ma​(ΞΉ)Ξ“,AΞΉ(ρ)(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota),\mathtt{Q})\vdash^{a(\iota)}_{c,d,m}\Gamma,A_{\iota}^{(\rho)} for each ι∈[ρ]​J\iota\in[\rho]J.

(c​u​t)(cut)

There exist an ordinal a0<aa_{0}<a and a capped formula C(ρ)C^{(\rho)} such that ρ=Οπš€\rho=\rho_{\mathtt{Q}}, rk​(C)<c≀Λ0\mathrm{rk}(C)<c\leq\Lambda_{0}, (β„‹Ξ³,Θ,πš€)⊒c,d,ma0Ξ“,Β¬C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c,d,m}\Gamma,\lnot C^{(\rho)} and (β„‹Ξ³,Θ,πš€)⊒c,d,ma0C(ρ),Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c,d,m}C^{(\rho)},\Gamma.

(Σ​(Ο€)​-rfl)(\Sigma(\pi)\mbox{{\rm-rfl}})

There exist ordinals c>Ο€βˆˆ{Ξ©}βˆͺ{Ξ©π•Š+k:0<k<Nβˆ’m}c>\pi\in\{\Omega\}\cup\{\Omega_{\mathbb{S}+k}:0<k<N-m\}, aβ„“,ar<aa_{\ell},a_{r}<a, and a formula C≑(βˆ€x∈u​B​(x))βˆˆΞ£β€‹(Ο€)C\equiv(\forall x\in u\,B(x))\in\Sigma(\pi) for a u∈T​m​(Ο€)u\in Tm(\pi) and a B​(𝖫0)∈Σ1​(Ο€)B(\mathsf{L}_{0})\in\Sigma_{1}(\pi) such that (β„‹Ξ³,Θ,πš€)⊒c,d,maβ„“Ξ“,C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{\ell}}_{c,d,m}\Gamma,C^{(\rho)} and (β„‹Ξ³,Θ,πš€)⊒c,d,mar(Β¬βˆƒx<Ο€C(x,Ο€))(ρ),Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{r}}_{c,d,m}\left(\lnot\exists x<\pi\,C^{(x,\pi)}\right)^{(\rho)},\Gamma for ρ=Οπš€\rho=\rho_{\mathtt{Q}}.

(rfl​(ρ,e,f))({\rm rfl}(\rho,e,f))

For ρ=Οπš€\rho=\rho_{\mathtt{Q}}, there exist a finite function f:Λ→Γ​(Ξ›)f:\Lambda\to\Gamma(\Lambda), ordinals Ξ©π•Š+Nβˆ’1βˆ’m+1≀e∈supp​(m​(ρ))\Omega_{\mathbb{S}+N-1-m}+1\leq e\in{\rm supp}(m(\rho)), a0<aa_{0}<a, a set ΞžβŠ‚Ξ“\Xi\subset\Gamma of formulas such that A∈Σ1​(π•Š)A\in\Sigma_{1}(\mathbb{S}) if A(ρ)∈ΞA^{(\rho)}\in\Xi, and a finite set Ξ”\Delta of uncapped formulas enjoying the following conditions (r1), (r2), (r3), (r4) and (r5). Let πš€Οƒ=πš€βˆͺ{Οƒ}\mathtt{Q}^{\sigma}=\mathtt{Q}\cup\{\sigma\} and rk​(Ξ”)=max⁑({0}βˆͺ{rk​(Ξ΄):Ξ΄βˆˆΞ”})\mathrm{rk}(\Delta)=\max(\{0\}\cup\{\mathrm{rk}(\delta):\delta\in\Delta\}).

  1. (r1)

    Ξ”βŠ‚β‹(e):β‡”βˆ€Ξ΄βˆˆΞ”[(Ξ΄ is a⋁-formula)&rk(Ξ΄)<e]\Delta\subset\bigvee(e):\Leftrightarrow\forall\delta\in\Delta\left[(\delta\mbox{ {\rm is a}}\bigvee\mbox{{\rm-formula}})\,\&\,\mathrm{rk}(\delta)<e\right], and rk​(Ξ”)<d≀Λ0\mathrm{rk}(\Delta)<d\leq\Lambda_{0}.

  2. (r2)

    fe=ge&f<eg​(e)f_{e}=g_{e}\,\&\,f<^{e}g(e) for the finite function g=m​(ρ)g=m(\rho), and S​CΛ​(f)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]SC_{\Lambda}(f)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}].

  3. (r3)

    For each Ξ΄βˆˆΞ”\delta\in\Delta, (β„‹Ξ³,Θ,πš€)⊒c,d,ma0Ξ“,¬δ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c,d,m}\Gamma,\lnot\delta^{(\rho)} holds.

  4. (r4)

    max⁑{s​(ρ),s​(f)}>Ξ©π•Š+Nβˆ’1βˆ’m+1\max\{s(\rho),s(f)\}>\Omega_{\mathbb{S}+N-1-m}+1: Then (β„‹Ξ³,Θβˆͺ{Οƒ},πš€Οƒ)⊒c,d,ma0Ξ”(Οƒ),Ξ(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\},\mathtt{Q}^{\sigma})\vdash^{a_{0}}_{c,d,m}\Delta^{(\sigma)},\Xi holds for each ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta).

  5. (r5)

    max⁑{s​(ρ),s​(f)}β‰€Ξ©π•Š+Nβˆ’1βˆ’m+1\max\{s(\rho),s(f)\}\leq\Omega_{\mathbb{S}+N-1-m}+1: (β„‹Ξ³,Θβˆͺ{Οƒ},πš€Οƒ)⊒c,d,ma0Ξ”(Οƒ),Ξ(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\},\mathtt{Q}^{\sigma})\vdash^{a_{0}}_{c,d,m}\Delta^{(\sigma)},\Xi holds for every ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta) such that m​(Οƒ)=fm(\sigma)=f. The case (r5) is said to be degenerated.

    {(β„‹Ξ³,Θ,πš€)⊒c,d,ma0Ξ“,¬δ(ρ)}δ {(β„‹Ξ³,Θβˆͺ{Οƒ},πš€Οƒ)⊒c,d,ma0Ξ”(Οƒ),Ξ}Οƒ(rfl​(ρ,e,f))(β„‹Ξ³,Θ,πš€)⊒c,d,maΞ“β€Ύ(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m}\Gamma\lx@proof@logical@and\{(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c,d,m}\Gamma,\lnot\delta^{(\rho)}\}_{\delta}\{(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\},\mathtt{Q}^{\sigma})\vdash^{a_{0}}_{c,d,m}\Delta^{(\sigma)},\Xi\}_{\sigma}

We see from (r1) that ee in (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) as well as dd is a bound of ranks of the formulas Ξ΄\delta to be reflected. The conditions (9) and (10) ensure us (6) of Definition 2.21 in Lemma 3.35.

Note that the cap ρ\rho of cut formulas C(ρ)C^{(\rho)} in inferences (c​u​t)(cut) as well as the cap of minor formulas in (Σ​(Ο€)​-rfl)(\Sigma(\pi)\mbox{{\rm-rfl}}), and ordinals ρ\rho in inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) are restricted to the case ρ=Οπš€\rho=\rho_{\mathtt{Q}}. Also note that the side formulas A(ρ)βˆˆΞžβŠ‚Ξ“A^{(\rho)}\in\Xi\subset\Gamma in the right upper sequents of a (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) has to be Ξ£1​(π•Š)\Sigma_{1}(\mathbb{S})-formula, cf. Reduction 3.31.

In this subsection the ordinals Ξ›0,Ξ³0\Lambda_{0},\gamma_{0} will be fixed, and we write ⊒c,d,ma\vdash^{a}_{c,d,m} for ⊒c,d,m,Ξ›0,Ξ³0a\vdash^{a}_{c,d,m,\Lambda_{0},\gamma_{0}}.

Lemma 3.28

(Weakening) Let (β„‹Ξ³,Θ,πš€)⊒c,d,maΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m}\Gamma and 𝗄​(A)βˆͺEm​(A)βŠ‚β„‹Ξ³β€‹[Θ∩EΟ„π•Š]\mathsf{k}(A)\cup E_{m}(A)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\tau}] with Ο„βˆˆπš€\tau\in\mathtt{Q}. Then (β„‹Ξ³,Θ,πš€)⊒c,d,maΞ“,A(Ο„)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m}\Gamma,A^{(\tau)} holds.

Proof.  By induction on aa. By the assumption 𝗄​(A)βˆͺEm​(A)βŠ‚β„‹Ξ³β€‹[Θ∩EΟ„π•Š]\mathsf{k}(A)\cup E_{m}(A)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\tau}], (9) is enjoyed. In inferences (rfl​(ρ,e,f)){(\rm rfl}(\rho,e,f)), add the formula A(Ο„)A^{(\tau)} only to the left upper sequents Ξ“,¬δ(ρ)\Gamma,\lnot\delta^{(\rho)}. β–‘\Box

Lemma 3.29

(Tautology) Let {Ξ³}βˆͺEm​(Ξ³)βˆͺ𝗄​(A)βˆͺEm​(A)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\{\gamma\}\cup E_{m}(\gamma)\cup\mathsf{k}(A)\cup E_{m}(A)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}], 𝗄​(A)βŠ‚Ξ›m\mathsf{k}(A)\subset\Lambda_{m}, and πš€\mathtt{Q} be a finite family such that πš€βŠ‚Ξ˜\mathtt{Q}\subset\Theta and ρ=Οπš€\rho=\rho_{\mathtt{Q}}. Let d=rk​(A)d=\mathrm{rk}(A).

  1. 1.

    (β„‹Ξ³,Θ,πš€)⊒0,0,m2​dΒ¬A(ρ),A(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{2d}_{0,0,m}\lnot A^{(\rho)},A^{(\rho)} holds.

  2. 2.

    Assume 𝗄​(A)βŠ‚β„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\mathsf{k}(A)\subset\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)), Ξ³β‰₯π•Š\gamma\geq\mathbb{S}, and ρ>Οƒ\rho>\sigma be an ordinal such that πš€Οƒ=πš€βˆͺ{Οƒ}\mathtt{Q}^{\sigma}=\mathtt{Q}\cup\{\sigma\} is a finite family, and Θ∩EΟπ•ŠβŠ‚EΟƒπ•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\sigma}. Then (β„‹Ξ³,Ξ˜Οƒ,πš€Οƒ)⊒0,0,m2​dΒ¬A(Οƒ),(A[Οƒ/π•Š])(ρ)(\mathcal{H}_{\gamma},\Theta_{\sigma},\mathtt{Q}^{\sigma})\vdash^{2d}_{0,0,m}\lnot A^{(\sigma)},(A^{[\sigma/\mathbb{S}]})^{(\rho)} holds for Ξ˜Οƒ=Θβˆͺ{Οƒ}\Theta_{\sigma}=\Theta\cup\{\sigma\}.

Proof.  By induction on dd. We have 𝗄​(A)βˆͺEm​(A)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\mathsf{k}(A)\cup E_{m}(A)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] with ρ=Οπš€\rho=\rho_{\mathtt{Q}}. We obtain {d}βˆͺEm​(d)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\{d\}\cup E_{m}(d)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] by Proposition 3.8.2 for (10). In the proof let us write ⊒0a\vdash^{a}_{0} for ⊒0,0,ma\vdash^{a}_{0,0,m}.
3.29.1. Let A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J} and ι∈[ρ]​J\iota\in[\rho]J. Let dΞΉ=rk​(AΞΉ)d_{\iota}=\mathrm{rk}(A_{\iota}). We obtain 𝗄​(ΞΉ)βˆͺEm​(ΞΉ)βŠ‚EΟπ•Š\mathsf{k}(\iota)\cup E_{m}(\iota)\subset E^{\mathbb{S}}_{\rho}, and (𝗄​(ΞΉ)βˆͺEm​(ΞΉ))∩EΟπ•Š=𝗄​(ΞΉ)βˆͺEm​(ΞΉ)βŠ‚β„‹Ξ³β€‹[(Θβˆͺ𝗄​(ΞΉ)βˆͺEm​(ΞΉ))∩EΟπ•Š](\mathsf{k}(\iota)\cup E_{m}(\iota))\cap E^{\mathbb{S}}_{\rho}=\mathsf{k}(\iota)\cup E_{m}(\iota)\subset\mathcal{H}_{\gamma}[(\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota))\cap E^{\mathbb{S}}_{\rho}]. IH yields (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺEm(ΞΉ),πš€)⊒02​dΞΉΒ¬AΞΉ(ρ),AΞΉ(ρ)(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota),\mathtt{Q})\vdash^{2d_{\iota}}_{0}\lnot A_{\iota}^{(\rho)},A_{\iota}^{(\rho)} for dΞΉ<dd_{\iota}<d. A (⋁)(\bigvee) followed by a (β‹€)(\bigwedge) yields the lemma.
3.29.2. We have Οπš€Οƒ=Οƒ\rho_{\mathtt{Q}^{\sigma}}=\sigma. We see {Ξ³,d}βˆͺEm​(Ξ³,d)βˆͺ𝗄​(A)βˆͺEm​(A)βŠ‚β„‹Ξ³β€‹[Θ∩EΟƒπ•Š]\{\gamma,d\}\cup E_{m}(\gamma,d)\cup\mathsf{k}(A)\cup E_{m}(A)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\sigma}] from Θ∩EΟπ•ŠβŠ‚EΟƒπ•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\sigma}. Hence (10) is enjoyed.

We have ρ>ΟƒβˆˆΞ˜Οƒ\rho>\sigma\in\Theta_{\sigma}. We obtain 𝗄​(A[Οƒ/π•Š])βˆͺEm​(A[Οƒ/π•Š])βŠ‚β„‹Ξ³β€‹[Ξ˜Οƒβˆ©EΟπ•Š]\mathsf{k}(A^{[\sigma/\mathbb{S}]})\cup E_{m}(A^{[\sigma/\mathbb{S}]})\subset\mathcal{H}_{\gamma}[\Theta_{\sigma}\cap E^{\mathbb{S}}_{\rho}] by Proposition 3.12.2 and 𝗄​(A)βŠ‚β„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\mathsf{k}(A)\subset\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)). Hence (9) is enjoyed.

Let A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J} or A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge(A_{\iota})_{\iota\in J}. By Proposition 3.6 we obtain A[Οƒ/π•Š]≃⋁(AΞΉ[Οƒ/π•Š])ι∈[Οƒ]​JA^{[\sigma/\mathbb{S}]}\simeq\bigvee(A^{[\sigma/\mathbb{S}]}_{\iota})_{\iota\in[\sigma]J} or A[Οƒ/π•Š]≃⋀(AΞΉ[Οƒ/π•Š])ι∈[Οƒ]​JA^{[\sigma/\mathbb{S}]}\simeq\bigwedge(A^{[\sigma/\mathbb{S}]}_{\iota})_{\iota\in[\sigma]J}. Let I={ΞΉ[Οƒ/π•Š]:ι∈[Οƒ]​J}I=\{\iota^{[\sigma/\mathbb{S}]}:\iota\in[\sigma]J\}. We see ι∈[Οƒ]​J⇔ι[Οƒ/π•Š]∈[ρ]​I=I\iota\in[\sigma]J\Leftrightarrow\iota^{[\sigma/\mathbb{S}]}\in[\rho]I=I from Οƒ<ρ\sigma<\rho. Note that when rk​(A)<π•Š\mathrm{rk}(A)<\mathbb{S}, we have A[Οƒ/π•Š]≑AA^{[\sigma/\mathbb{S}]}\equiv A and J=[Οƒ]​J=IJ=[\sigma]J=I.

For each ι∈[Οƒ]​J\iota\in[\sigma]J, we have dΞΉ=rk​(AΞΉ)<dd_{\iota}=\mathrm{rk}(A_{\iota})<d by Proposition 3.8.3. On the other hand we have 𝗄​(ΞΉ)βŠ‚EΟƒπ•Šβˆ©β„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\mathsf{k}(\iota)\subset E^{\mathbb{S}}_{\sigma}\cap\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)) by Proposition 3.12.3, ι∈[Οƒ]​J\iota\in[\sigma]J and 𝗄​(A)βŠ‚β„‹Ξ³β€‹(ΟˆΞ©π•Š+Nβˆ’m​(Ξ³))\mathsf{k}(A)\subset\mathcal{H}_{\gamma}(\psi_{\Omega_{\mathbb{S}+N-m}}(\gamma)). IH yields (β„‹Ξ³,Ξ˜Οƒβˆͺ𝗄(ΞΉ)βˆͺEm(ΞΉ),πš€Οƒ)⊒02​dΞΉΒ¬AΞΉ(Οƒ),(AΞΉ[Οƒ/π•Š])(ρ)(\mathcal{H}_{\gamma},\Theta_{\sigma}\cup\mathsf{k}(\iota)\cup E_{m}(\iota),\mathtt{Q}^{\sigma})\vdash^{2d_{\iota}}_{0}\lnot A_{\iota}^{(\sigma)},(A_{\iota}^{[\sigma/\mathbb{S}]})^{(\rho)}. On the other hand we have ℋγ​[(Θβˆͺ𝗄​(ΞΉ)βˆͺEm​(ΞΉ))∩EΟ„π•Š]=ℋγ​[(Θβˆͺ𝗄​(ΞΉ[Οƒ/π•Š])βˆͺEm​(ΞΉ[Οƒ/π•Š]))∩EΟ„π•Š]\mathcal{H}_{\gamma}[(\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota))\cap E^{\mathbb{S}}_{\tau}]=\mathcal{H}_{\gamma}[(\Theta\cup\mathsf{k}(\iota^{[\sigma/\mathbb{S}]})\cup E_{m}(\iota^{[\sigma/\mathbb{S}]}))\cap E^{\mathbb{S}}_{\tau}] for any Ο„\tau by Proposition 3.12.2. We obtain (β„‹Ξ³,Ξ˜Οƒβˆͺ𝗄(ΞΉ[Οƒ/π•Š])βˆͺEm(ΞΉ[Οƒ/π•Š]),πš€Οƒ)⊒02​dΞΉΒ¬AΞΉ(Οƒ),(AΞΉ[Οƒ/π•Š])(ρ)(\mathcal{H}_{\gamma},\Theta_{\sigma}\cup\mathsf{k}(\iota^{[\sigma/\mathbb{S}]})\cup E_{m}(\iota^{[\sigma/\mathbb{S}]}),\mathtt{Q}^{\sigma})\vdash^{2d_{\iota}}_{0}\lnot A_{\iota}^{(\sigma)},(A_{\iota}^{[\sigma/\mathbb{S}]})^{(\rho)}. A (⋁)(\bigvee) followed by a (β‹€)(\bigwedge) yields (β„‹Ξ³,Ξ˜Οƒ,πš€Οƒ)⊒02​dΒ¬A(Οƒ),(A[Οƒ/π•Š])(ρ)(\mathcal{H}_{\gamma},\Theta_{\sigma},\mathtt{Q}^{\sigma})\vdash^{2d}_{0}\lnot A^{(\sigma)},(A^{[\sigma/\mathbb{S}]})^{(\rho)}. β–‘\Box

Lemma 3.30

(Inversion) Let (β„‹Ξ³,Θ,πš€)⊒c,d,maΞ“,A(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m}\Gamma,A^{(\rho)}, A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge(A_{\iota})_{\iota\in J}, and ι∈[ρ]​J\iota\in[\rho]J. Then (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺEm(ΞΉ),πš€)⊒c,d,maΞ“,(AΞΉ)(ρ)(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota),\mathtt{Q})\vdash^{a}_{c,d,m}\Gamma,\left(A_{\iota}\right)^{(\rho)} holds.

Furthermore if 𝗄​(ΞΉ)βˆͺEm​(ΞΉ)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\mathsf{k}(\iota)\cup E_{m}(\iota)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}], then (β„‹Ξ³,Θ,πš€)⊒c,d,maΞ“,(AΞΉ)(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m}\Gamma,\left(A_{\iota}\right)^{(\rho)} holds.

Proof.  This is seen as in Inversion 3.16. Since AA is a β‹€\bigwedge-formula, AA is not a Ξ£1​(π•Š)\Sigma_{1}(\mathbb{S})-side formula in a right upper sequent of a (rfl​(Ο„,e,f))({\rm rfl}(\tau,e,f)). We need to prune some branches at (rfl​(Ο„,e,f))({\rm rfl}(\tau,e,f)) since κ∈Hτ​(f,Ξ³0,Θβˆͺ𝗄​(ΞΉ)βˆͺEm​(ΞΉ))βŠ‚Hτ​(f,Ξ³0,Θ)\kappa\in H_{\tau}(f,\gamma_{0},\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota))\subset H_{\tau}(f,\gamma_{0},\Theta) such that (𝗄​(ΞΉ)βˆͺEm​(ΞΉ))∩EΟ„π•ŠβŠ‚EΞΊπ•Š(\mathsf{k}(\iota)\cup E_{m}(\iota))\cap E^{\mathbb{S}}_{\tau}\subset E^{\mathbb{S}}_{\kappa}. β–‘\Box

Lemma 3.31

(Reduction) Let (β„‹Ξ³,Θ,πš€)⊒c,d,ma0Ξ“0,Β¬Ck(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c,d,m}\Gamma_{0},\lnot C_{k}^{(\rho)} for 1≀k≀n1\leq k\leq n, and (β„‹Ξ³,Θ,πš€)⊒c,d,ma1Ξ (ρ),Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{1}}_{c,d,m}\Pi^{(\rho)},\Gamma_{1}, where Ξ (ρ)={C1(ρ),…,Cn(ρ)}\Pi^{(\rho)}=\{C_{1}^{(\rho)},\ldots,C_{n}^{(\rho)}\}, ρ=Οπš€\rho=\rho_{\mathtt{Q}}, and Ck≃⋁(Ck,ΞΉ)ι∈JkC_{k}\simeq\bigvee(C_{k,\iota})_{\iota\in J_{k}}. Let max⁑{rk​(C):C∈Π}≀c+b\max\{\mathrm{rk}(C):C\in\Pi\}\leq c+b with c>π•Šc>\mathbb{S}, and {c,b}βˆͺEm​(c,b)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\{c,b\}\cup E_{m}(c,b)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}]. Then (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a0+a1)Ξ“0,Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a_{0}+a_{1})}_{c,d,m}\Gamma_{0},\Gamma_{1} holds.

Proof.  By main induction on bb with subsidiary induction on a1a_{1}.
Case 1. a1=0a_{1}=0: Then (β„‹Ξ³,Θ,πš€)⊒c,d,ma1Ξ (ρ),Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{1}}_{c,d,m}\Pi^{(\rho)},\Gamma_{1} follows by a void (β‹€)(\bigwedge) with a major formula in Ξ“1\Gamma_{1}. In what follows assume a1>0a_{1}>0.
Case 2. The last inference in (β„‹Ξ³,Θ,πš€)⊒c,d,ma1Ξ (ρ),Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{1}}_{c,d,m}\Pi^{(\rho)},\Gamma_{1} is a (⋁)(\bigvee) with a major formula Ck(ρ)C_{k}^{(\rho)}: We have (β„‹Ξ³,Θ,πš€)⊒c,d,ma2Ξ (ρ),Ck,ΞΉ(ρ),Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{2}}_{c,d,m}\Pi^{(\rho)},C_{k,\iota}^{(\rho)},\Gamma_{1} for an ι∈Jk\iota\in J_{k} and an a2<a1a_{2}<a_{1}.

SIH yields (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a0+a2)Ck,ΞΉ(ρ),Ξ“0,Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a_{0}+a_{2})}_{c,d,m}C_{k,\iota}^{(\rho)},\Gamma_{0},\Gamma_{1}. Assuming 𝗄​(ΞΉ)βŠ‚π—„β€‹(Ck,ΞΉ)\mathsf{k}(\iota)\subset\mathsf{k}(C_{k,\iota}), we obtain 𝗄​(ΞΉ)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\mathsf{k}(\iota)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] by (9). Hence ι∈[ρ]​Jk\iota\in[\rho]J_{k}. We obtain (β„‹Ξ³,Θ,πš€)⊒c,d,ma0Ξ“0,Β¬Ck,ΞΉ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c,d,m}\Gamma_{0},\lnot C_{k,\iota}^{(\rho)} by Inversion 3.30, and (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a0+a2)Ξ“0,Β¬Ck,ΞΉ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a_{0}+a_{2})}_{c,d,m}\Gamma_{0},\lnot C_{k,\iota}^{(\rho)} for a0≀φb​(a0+a2)a_{0}\leq\varphi_{b}(a_{0}+a_{2}). If rk​(Ck,ΞΉ)<c\mathrm{rk}(C_{k,\iota})<c, then a (c​u​t)(cut) yields the lemma. Let rk​(Ck,ΞΉ)=c+b1\mathrm{rk}(C_{k,\iota})=c+b_{1} with b1<bb_{1}<b. We obtain 𝗄​(c+b1)βˆͺEm​(c+b1)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\mathsf{k}(c+b_{1})\cup E_{m}(c+b_{1})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] by (9). This yields 𝗄​(b1)βˆͺEm​(b1)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\mathsf{k}(b_{1})\cup E_{m}(b_{1})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}]. MIH then yields (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a0+a1)Ξ“0,Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a_{0}+a_{1})}_{c,d,m}\Gamma_{0},\Gamma_{1} for Ο†b1​(Ο†b​(a0+a2)β‹…2)<Ο†b​(a0+a1)\varphi_{b_{1}}(\varphi_{b}(a_{0}+a_{2})\cdot 2)<\varphi_{b}(a_{0}+a_{1}) by b1<bb_{1}<b and a2<a1a_{2}<a_{1}.
Case 3. The last inference in (β„‹Ξ³,Θ,πš€)⊒c,d,ma1Ξ (ρ),Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{1}}_{c,d,m}\Pi^{(\rho)},\Gamma_{1} is a (rfl​(Ο„,e,f))({\rm rfl}(\tau,e,f)): Then Ο„=Οπš€=ρ\tau=\rho_{\mathtt{Q}}=\rho. We have an ordinal a2<a1a_{2}<a_{1}, sets Ξ(ρ)\Xi^{(\rho)} and Ξ1\Xi_{1} of capped formulas, and a set Ξ”\Delta of uncapped formulas such that Ξ(ρ)βŠ‚Ξ (ρ)\Xi^{(\rho)}\subset\Pi^{(\rho)}, Ξ1βŠ‚Ξ“1\Xi_{1}\subset\Gamma_{1}, βˆ€Ck(ρ)∈Ξ(ρ)​(Ck∈Σ1​(π•Š))\forall C_{k}^{(\rho)}\in\Xi^{(\rho)}(C_{k}\in\Sigma_{1}(\mathbb{S})), (β„‹Ξ³,Θ,πš€)⊒c,d,ma2Ξ (ρ),Ξ“1,¬δ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{2}}_{c,d,m}\Pi^{(\rho)},\Gamma_{1},\lnot\delta^{(\rho)} for each Ξ΄βˆˆΞ”\delta\in\Delta, and (β„‹Ξ³,Θβˆͺ{Οƒ},πš€Οƒ)⊒c,d,ma2Ξ”(Οƒ),Ξ(ρ),Ξ1(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\},\mathtt{Q}^{\sigma})\vdash^{a_{2}}_{c,d,m}\Delta^{(\sigma)},\Xi^{(\rho)},\Xi_{1} holds for each ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta). SIH yields (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a0+a2)Ξ“0,Ξ“1,¬δ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a_{0}+a_{2})}_{c,d,m}\Gamma_{0},\Gamma_{1},\lnot\delta^{(\rho)} for each Ξ΄βˆˆΞ”\delta\in\Delta. We obtain (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a0+a2)+1Ξ“0,Ξ“1,Ξ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a_{0}+a_{2})+1}_{c,d,m}\Gamma_{0},\Gamma_{1},\Xi^{(\rho)} by a (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)). For each Ck(ρ)∈Ξ(ρ)C_{k}^{(\rho)}\in\Xi^{(\rho)}, we have rk​(Ck)=π•Š<c\mathrm{rk}(C_{k})=\mathbb{S}<c. (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a0+a1)Ξ“0,Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a_{0}+a_{1})}_{c,d,m}\Gamma_{0},\Gamma_{1} follows by a series of (c​u​t)(cut)’s. β–‘\Box

Lemma 3.32

(Cut-elimination) Let (β„‹Ξ³,Θ,πš€)⊒c+b,d,maΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c+b,d,m}\Gamma with c>π•Šc>\mathbb{S} and 𝗄​(c)βˆͺEm​(c)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπš€π•Š]\mathsf{k}(c)\cup E_{m}(c)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho_{\mathtt{Q}}}]. Then (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a)Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a)}_{c,d,m}\Gamma holds.

Proof.  By induction on aa. We may assume b>0b>0. Consider the case when the last inference is a (c​u​t)(cut). We have an a0<aa_{0}<a and a ⋁\bigvee-formula C(ρ)C^{(\rho)} with ρ=Οπš€\rho=\rho_{\mathtt{Q}} such that (β„‹Ξ³,Θ,πš€)⊒c+b,d,ma0Ξ“,Β¬C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c+b,d,m}\Gamma,\lnot C^{(\rho)} and (β„‹Ξ³,Θ,πš€)⊒c+b,d,ma0C(ρ),Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c+b,d,m}C^{(\rho)},\Gamma. IH yields (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a0)Ξ“,Β¬C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a_{0})}_{c,d,m}\Gamma,\lnot C^{(\rho)} and (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b​(a0)C(ρ),Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b}(a_{0})}_{c,d,m}C^{(\rho)},\Gamma. Let c+b1=max⁑{c,rk​(C)}<c+bc+b_{1}=\max\{c,\mathrm{rk}(C)\}<c+b. Then 𝗄​(b1)βˆͺEm​(b1)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπš€π•Š]\mathsf{k}(b_{1})\cup E_{m}(b_{1})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho_{\mathtt{Q}}}] by (9). We obtain (β„‹Ξ³,Θ,πš€)⊒c,d,mΟ†b1​(Ο†b​(a0)β‹…2)Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\varphi_{b_{1}}(\varphi_{b}(a_{0})\cdot 2)}_{c,d,m}\Gamma by Reduction 3.31, where Ο†b1​(Ο†b​(a0)β‹…2)<Ο†b​(a)\varphi_{b_{1}}(\varphi_{b}(a_{0})\cdot 2)<\varphi_{b}(a). β–‘\Box

Lemma 3.33

(Collapsing) Let Ο€=Ξ©π•Š+Nβˆ’1βˆ’m\pi=\Omega_{\mathbb{S}+N-1-m} for m<Nβˆ’1m<N-1. Assume Ξ˜βŠ‚β„‹Ξ³β€‹(ΟˆΟ€β€‹(Ξ³))\Theta\subset\mathcal{H}_{\gamma}(\psi_{\pi}(\gamma)) and (β„‹Ξ³,Θ,πš€)βŠ’Ο€+1,Ο€+1,maΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{\pi+1,\pi+1,m}\Gamma with Ξ“βŠ‚Ξ£β€‹(Ο€)\Gamma\subset\Sigma(\pi) and Ξ³β‰₯π•Š\gamma\geq\mathbb{S}. Then (β„‹a^+1,Θ,πš€)⊒β,Ξ²,m+1Ξ²Ξ“(Ξ²,Ο€)(\mathcal{H}_{\hat{a}+1},\Theta,\mathtt{Q})\vdash^{\beta}_{\beta,\beta,m+1}\Gamma^{(\beta,\pi)} holds for a^=Ξ³+Ο‰a\hat{a}=\gamma+\omega^{a} and Ξ²=ΟˆΟ€β€‹(a^)\beta=\psi_{\pi}(\hat{a}), where (A(Οƒ))(Ξ²,Ο€):≑(A(Ξ²,Ο€))(Οƒ)(A^{(\sigma)})^{(\beta,\pi)}:\equiv(A^{(\beta,\pi)})^{(\sigma)}.

Proof.  By induction on aa. Let Οβˆˆπš€\rho\in\mathtt{Q}, A(ρ)βˆˆΞ“A^{(\rho)}\in\Gamma and Ξ±βˆˆπ—„β€‹(A)βŠ‚EΟπ•Š\alpha\in\mathsf{k}(A)\subset E^{\mathbb{S}}_{\rho}. We have {Ξ±}βˆͺEm​(Ξ±)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\{\alpha\}\cup E_{m}(\alpha)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] by (9). The assumption Ξ˜βŠ‚β„‹Ξ³β€‹(ΟˆΟ€β€‹(Ξ³))\Theta\subset\mathcal{H}_{\gamma}(\psi_{\pi}(\gamma)) yields Ξ±βˆˆβ„‹Ξ³β€‹(ΟˆΟ€β€‹(Ξ³))\alpha\in\mathcal{H}_{\gamma}(\psi_{\pi}(\gamma)). On the other hand we have Em​(Ξ±)βˆͺEm+1​(Ξ±)βŠ‚EΟπ•ŠE_{m}(\alpha)\cup E_{m+1}(\alpha)\subset E^{\mathbb{S}}_{\rho} by Proposition 3.10.6. We obtain Em+1​(Ξ±)βŠ‚β„‹Ξ³β€‹[Em+1​(Ξ±)]=ℋγ​[Em​(Ξ±)]βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]E_{m+1}(\alpha)\subset\mathcal{H}_{\gamma}[E_{m+1}(\alpha)]=\mathcal{H}_{\gamma}[E_{m}(\alpha)]\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] by Proposition 3.10.7. Hence (9) is enjoyed in (β„‹a^+1,Θ,πš€)⊒β,Ξ²,m+1Ξ²Ξ“(Ξ²,Ο€)(\mathcal{H}_{\hat{a}+1},\Theta,\mathtt{Q})\vdash^{\beta}_{\beta,\beta,m+1}\Gamma^{(\beta,\pi)}. (10) is similarly seen from Em+1​(Ξ²)βŠ‚Em+1​(Ξ³,a)E_{m+1}(\beta)\subset E_{m+1}(\gamma,a).
Case 1. First consider the case when the last inference is a (β‹€)(\bigwedge): A formula A(ρ)βˆˆΞ£β€‹(Ο€)A^{(\rho)}\in\Sigma(\pi) with A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge\left(A_{\iota}\right)_{\iota\in J} is introduced in Ξ“\Gamma. For every ι∈[ρ]​J\iota\in[\rho]J there exists an a​(ΞΉ)<aa(\iota)<a such that (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺEm(ΞΉ),πš€)βŠ’Ο€+1,Ο€+1,ma​(ΞΉ)Ξ“,AΞΉ(ρ)(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota),\mathtt{Q})\vdash^{a(\iota)}_{\pi+1,\pi+1,m}\Gamma,A_{\iota}^{(\rho)}. We see 𝗄​(ΞΉ)βŠ‚ΟˆΟ€β€‹(Ξ³)\mathsf{k}(\iota)\subset\psi_{\pi}(\gamma) from AβˆˆΞ£β€‹(Ο€)A\in\Sigma(\pi) and 𝗄​(A)βŠ‚β„‹Ξ³β€‹[Θ]\mathsf{k}(A)\subset\mathcal{H}_{\gamma}[\Theta] as in Collapsing 3.21. Proposition 3.10.7 with Ξ³β‰₯π•Š\gamma\geq\mathbb{S} then yields ℋγ​[(Θβˆͺ𝗄​(ΞΉ)βˆͺEm​(ΞΉ))∩EΟ„π•Š]=ℋγ​[(Θβˆͺ𝗄​(ΞΉ)βˆͺEm+1​(ΞΉ))∩EΟ„π•Š]\mathcal{H}_{\gamma}[(\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota))\cap E^{\mathbb{S}}_{\tau}]=\mathcal{H}_{\gamma}[(\Theta\cup\mathsf{k}(\iota)\cup E_{m+1}(\iota))\cap E^{\mathbb{S}}_{\tau}] for every Ο„\tau. Hence (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺEm+1(ΞΉ),πš€)βŠ’Ο€+1,Ο€+1,ma​(ΞΉ)Ξ“,AΞΉ(ρ)(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{m+1}(\iota),\mathtt{Q})\vdash^{a(\iota)}_{\pi+1,\pi+1,m}\Gamma,A_{\iota}^{(\rho)}. On the other hand we have Em+1​(ΞΉ)βŠ‚Ξ©π•Š+Nβˆ’mβˆ’2<ΟˆΟ€β€‹(Ξ³)E_{m+1}(\iota)\subset\Omega_{\mathbb{S}+N-m-2}<\psi_{\pi}(\gamma) by Proposition 3.10.1. Therefore IH yields (β„‹a^+1,Θβˆͺ𝗄(ΞΉ)βˆͺEm+1(ΞΉ),πš€)⊒β,Ξ²,m+1β​(ΞΉ)Ξ“(Ξ²,Ο€),(AΞΉ(Ξ²,Ο€))(ρ)(\mathcal{H}_{\hat{a}+1},\Theta\cup\mathsf{k}(\iota)\cup E_{m+1}(\iota),\mathtt{Q})\vdash^{\beta(\iota)}_{\beta,\beta,m+1}\Gamma^{(\beta,\pi)},(A_{\iota}^{(\beta,\pi)})^{(\rho)} for every ι∈[ρ]​J\iota\in[\rho]J, where β​(ΞΉ)=ΟˆΟ€β€‹(a​(ΞΉ)^)\beta(\iota)=\psi_{\pi}(\widehat{a(\iota)}) with a​(ΞΉ)^=Ξ³+Ο‰a​(ΞΉ)\widehat{a(\iota)}=\gamma+\omega^{a(\iota)}. We obtain (β„‹a^+1,Θ,πš€)⊒β,Ξ²,m+1Ξ²Ξ“(Ξ²,Ο€)(\mathcal{H}_{\hat{a}+1},\Theta,\mathtt{Q})\vdash^{\beta}_{\beta,\beta,m+1}\Gamma^{(\beta,\pi)} by a (β‹€)(\bigwedge).
Case 2. Second consider the case when the last inference is a (Σ​(Ο€)​-rfl)(\Sigma(\pi)\mbox{{\rm-rfl}}): Let ρ=Οπš€\rho=\rho_{\mathtt{Q}}. There exist ordinals aβ„“,ar<aa_{\ell},a_{r}<a and a formula CβˆˆΞ£β€‹(Ο€)C\in\Sigma(\pi) such that (β„‹Ξ³,Θ,πš€)βŠ’Ο€+1,Ο€+1,maβ„“Ξ“,C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{\ell}}_{\pi+1,\pi+1,m}\Gamma,C^{(\rho)}, and (β„‹Ξ³,Θ,πš€)βŠ’Ο€+1,Ο€+1,mar(Β¬βˆƒx<Ο€C(x,Ο€))(ρ),Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{r}}_{\pi+1,\pi+1,m}(\lnot\exists x<\pi\,C^{(x,\pi)})^{(\rho)},\Gamma. As in Collapsing 3.21 we see from IH that (β„‹a^+1,Θ,πš€)⊒β,Ξ²,m+1Ξ²β„“Ξ“(Ξ²,𝕂),(C(Ξ²β„“,Ο€))(ρ)(\mathcal{H}_{\widehat{a}+1},\Theta,\mathtt{Q})\vdash^{\beta_{\ell}}_{\beta,\beta,m+1}\Gamma^{(\beta,\mathbb{K})},(C^{(\beta_{\ell},\pi)})^{(\rho)} and (β„‹a^+1,Θ,πš€)⊒β,Ξ²,m+1Ξ²r(Β¬C(Ξ²β„“,Ο€))(ρ),Ξ“(Ξ²,Ο€)(\mathcal{H}_{\hat{a}+1},\Theta,\mathtt{Q})\vdash^{\beta_{r}}_{\beta,\beta,m+1}(\lnot C^{(\beta_{\ell},\pi)})^{(\rho)},\Gamma^{(\beta,\pi)}, where Ξ²β„“=ΟˆΟ€β€‹(aβ„“^)\beta_{\ell}=\psi_{\pi}(\widehat{a_{\ell}}), aβ„“^=Ξ³+Ο‰aβ„“\widehat{a_{\ell}}=\gamma+\omega^{a_{\ell}}, Ξ²β„“βˆˆβ„‹aβ„“^+1​[Θ]\beta_{\ell}\in\mathcal{H}_{\widehat{a_{\ell}}+1}[\Theta], Ξ²r=ΟˆΟ€β€‹(ar^)<Ξ²\beta_{r}=\psi_{\pi}(\widehat{a_{r}})<\beta and ar^=aβ„“^+1+Ο‰ar<a^\widehat{a_{r}}=\widehat{a_{\ell}}+1+\omega^{a_{r}}<\hat{a}.

A (c​u​t)(cut) with the cap ρ=Οπš€\rho=\rho_{\mathtt{Q}} yields (β„‹a^+1,Θ,πš€)⊒β,Ξ²,m+1Ξ²Ξ“(Ξ²,Ο€)(\mathcal{H}_{\hat{a}+1},\Theta,\mathtt{Q})\vdash^{\beta}_{\beta,\beta,m+1}\Gamma^{(\beta,\pi)}.
Case 3. Third consider the case when the last inference is a (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) with ρ=Οπš€\rho=\rho_{\mathtt{Q}}: We have sets Ξ”\Delta and ΞžβŠ‚Ξ“\Xi\subset\Gamma of formulas and a0<aa_{0}<a such that Ξ”βŠ‚β‹(Ο€+1)βŠ‚Ξ£1​(Ο€)βˆͺΞ”0​(Ο€)\Delta\subset\bigvee(\pi+1)\subset\Sigma_{1}(\pi)\cup\Delta_{0}(\pi), (β„‹Ξ³,Θ,πš€)βŠ’Ο€+1,Ο€+1,ma0Ξ“,¬δ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{\pi+1,\pi+1,m}\Gamma,\lnot\delta^{(\rho)} for each Ξ΄βˆˆΞ”\delta\in\Delta, and (β„‹Ξ³,Θβˆͺ{Οƒ},πš€Οƒ)βŠ’Ο€+1,Ο€+1,ma0Ξ”(Οƒ),Ξ(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\},\mathtt{Q}^{\sigma})\vdash^{a_{0}}_{\pi+1,\pi+1,m}\Delta^{(\sigma)},\Xi for each ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta). IH with Οƒ<π•Š<ΟˆΟ€β€‹(Ξ³)\sigma<\mathbb{S}<\psi_{\pi}(\gamma) yields (β„‹a^+1,Θβˆͺ{Οƒ},πš€Οƒ)⊒β,Ξ²,m+1Ξ²0(Ξ”(Ξ²0,Ο€))(Οƒ),Ξ(Ξ²,Ο€)(\mathcal{H}_{\hat{a}+1},\Theta\cup\{\sigma\},\mathtt{Q}^{\sigma})\vdash^{\beta_{0}}_{\beta,\beta,m+1}(\Delta^{(\beta_{0},\pi)})^{(\sigma)},\Xi^{(\beta,\pi)} for Ξ²0=ΟˆΟ€β€‹(a0^)\beta_{0}=\psi_{\pi}(\widehat{a_{0}}), a0^=Ξ³+Ο‰a0\widehat{a_{0}}=\gamma+\omega^{a_{0}} and rk​(Ξ”(Ξ²0,Ο€))<Ξ²\mathrm{rk}(\Delta^{(\beta_{0},\pi)})<\beta.

Let δ∈Σ1​(Ο€)\delta\in\Sigma_{1}(\pi) with δ≃⋁(δι)ι∈J\delta\simeq\bigvee(\delta_{\iota})_{\iota\in J}, and ι∈[ρ]​J\iota\in[\rho]J with 𝗄​(ΞΉ)βŠ‚Ξ²0\mathsf{k}(\iota)\subset\beta_{0}. On the other hand we have (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺEm(ΞΉ),πš€)βŠ’Ο€+1,Ο€+1,ma0Ξ“,¬δι(ρ)(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota),\mathtt{Q})\vdash^{a_{0}}_{\pi+1,\pi+1,m}\Gamma,\lnot\delta_{\iota}^{(\rho)} by Inversion 3.30. As in Case 1 we obtian (β„‹a0^,Θβˆͺ𝗄(ΞΉ)βˆͺEm+1(ΞΉ),πš€)βŠ’Ο€+1,Ο€+1,ma0Ξ“,¬δι(ρ)(\mathcal{H}_{\widehat{a_{0}}},\Theta\cup\mathsf{k}(\iota)\cup E_{m+1}(\iota),\mathtt{Q})\vdash^{a_{0}}_{\pi+1,\pi+1,m}\Gamma,\lnot\delta_{\iota}^{(\rho)} for Em+1​(ΞΉ)βŠ‚Ξ©π•Š+Nβˆ’mβˆ’2E_{m+1}(\iota)\subset\Omega_{\mathbb{S}+N-m-2}. IH yields (β„‹a^+1,Θβˆͺ𝗄(ΞΉ)βˆͺEm+1(ΞΉ),πš€)⊒β,Ξ²,m+1Ξ²1Ξ“(Ξ²,Ο€),¬δι(ρ)(\mathcal{H}_{\hat{a}+1},\Theta\cup\mathsf{k}(\iota)\cup E_{m+1}(\iota),\mathtt{Q})\vdash^{\beta_{1}}_{\beta,\beta,m+1}\Gamma^{(\beta,\pi)},\lnot\delta_{\iota}^{(\rho)} for Ξ΄ΞΉβˆˆΞ”0​(Ο€)\delta_{\iota}\in\Delta_{0}(\pi), Ξ²1=ΟˆΟ€β€‹(a1^)\beta_{1}=\psi_{\pi}(\widehat{a_{1}}) and a1^=a0^+Ο‰a0=Ξ³+Ο‰a0β‹…2\widehat{a_{1}}=\widehat{a_{0}}+\omega^{a_{0}}=\gamma+\omega^{a_{0}}\cdot 2. We obtain (β„‹a^+1,Θ,πš€)⊒β,Ξ²,m+1Ξ²1+1Ξ“(Ξ²,Ο€),(¬δ(Ξ²0,Ο€))(ρ)(\mathcal{H}_{\hat{a}+1},\Theta,\mathtt{Q})\vdash^{\beta_{1}+1}_{\beta,\beta,m+1}\Gamma^{(\beta,\pi)},(\lnot\delta^{(\beta_{0},\pi)})^{(\rho)} by a (β‹€)(\bigwedge). When Ξ΄βˆˆΞ”0​(Ο€)\delta\in\Delta_{0}(\pi), this follows from IH. A (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) yields (β„‹a^+1,Θ,πš€)⊒β,Ξ²,m+1Ξ²Ξ“(Ξ²,Ο€)(\mathcal{H}_{\hat{a}+1},\Theta,\mathtt{Q})\vdash^{\beta}_{\beta,\beta,m+1}\Gamma^{(\beta,\pi)}.

Other case are seen from IH. We have rk​(C)≀π\mathrm{rk}(C)\leq\pi for each cut formula C(ρ)C^{(\rho)}, and the case when the last inference is a (c​u​t)(cut) is similar to Case 3. β–‘\Box

Let us embed the derivability relation βŠ’βˆ—\vdash^{*} in ⊒\vdash. Let Ξ›0=Ξ²=Οˆπ•‚β€‹(Ξ΄)\Lambda_{0}=\beta=\psi_{\mathbb{K}}(\delta) be the fixed ordinal in Collapsing 3.21 with Ξ΄=a^\delta=\hat{a}.

Lemma 3.34

(Capping)
Let Ξ©π•Š+Nβˆ’1<Ξ›0=Οˆπ•‚β€‹(Ξ΄)<𝕂=Ξ©π•Š+N\Omega_{\mathbb{S}+N-1}<\Lambda_{0}=\psi_{\mathbb{K}}(\delta)<\mathbb{K}=\Omega_{\mathbb{S}+N} be a strongly critical number with Ξ΄β‰₯π•Š\delta\geq\mathbb{S}. Let Ξ“βŠ‚Ξ”0​(𝕂)\Gamma\subset\Delta_{0}(\mathbb{K}) be a set of uncapped formulas. Suppose (β„‹Ξ³,Θ)βŠ’Ξ›0βˆ—aΞ“(\mathcal{H}_{\gamma},\Theta)\vdash^{*a}_{\Lambda_{0}}\Gamma with δ≀γ≀γ0\delta\leq\gamma\leq\gamma_{0}.

Let ρ=Οˆπ•Šg​(γρ)\rho=\psi_{\mathbb{S}}^{g}(\gamma_{\rho}) be an ordinal such that Ξ˜βŠ‚EΟπ•Š\Theta\subset E^{\mathbb{S}}_{\rho}, and g=m​(ρ)g=m(\rho) is a special finite function such that supp​(g)={Ξ›0}\mathrm{supp}(g)=\{\Lambda_{0}\} with g​(Ξ›0)=Ξ›β‹…3g(\Lambda_{0})=\Lambda\cdot 3 and Ξ›β‹…3≀γ0≀γρ<Ξ³0+π•Š\Lambda\cdot 3\leq\gamma_{0}\leq\gamma_{\rho}<\gamma_{0}+\mathbb{S} with Ξ›=Γ​(Ξ›0)\Lambda=\Gamma(\Lambda_{0}) and Ξ³Οβˆˆβ„‹Ξ³β€‹[Θ]\gamma_{\rho}\in\mathcal{H}_{\gamma}[\Theta]. Let πš€={ρ}\mathtt{Q}=\{\rho\} be a finite family for ordinals Ξ›,Ξ³0\Lambda,\gamma_{0}.

Then (β„‹Ξ³,Θβˆͺ{ρ},πš€)βŠ’Ξ›0,Ξ›0,0,Ξ›0,Ξ³0Ξ›0+aΞ“(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho\},\mathtt{Q})\vdash^{\Lambda_{0}+a}_{\Lambda_{0},\Lambda_{0},0,\Lambda_{0},\gamma_{0}}\Gamma^{(\rho)} holds for c=d=Ξ›0c=d=\Lambda_{0} and m=0m=0.

Proof.  By induction on aa. We have s​(ρ)=Ξ›0>Ξ©π•Š+Nβˆ’1s(\rho)=\Lambda_{0}>\Omega_{\mathbb{S}+N-1}, β„‹Ξ³0​(ρ)βˆ©π•ŠβŠ‚Ο\mathcal{H}_{\gamma_{0}}(\rho)\cap\mathbb{S}\subset\rho, {Ξ³,a,Ξ›0}βˆͺE0​({Ξ³,a,Ξ›0})βˆͺ𝗄​(Ξ“)βˆͺE0​(Ξ“)βŠ‚β„‹Ξ³β€‹[Θ]\{\gamma,a,\Lambda_{0}\}\cup E_{0}(\{\gamma,a,\Lambda_{0}\})\cup\mathsf{k}(\Gamma)\cup E_{0}(\Gamma)\subset\mathcal{H}_{\gamma}[\Theta] by (7). We obtain ρ=Οπš€\rho=\rho_{\mathtt{Q}}. Also Θ∩EΟπ•Š=Ξ˜βŠ‚EΟπ•Š\Theta\cap E^{\mathbb{S}}_{\rho}=\Theta\subset E^{\mathbb{S}}_{\rho} by the assumption. We obtain E0​(Ξ“)βŠ‚EΟπ•ŠE_{0}(\Gamma)\subset E^{\mathbb{S}}_{\rho} by Proposition 3.12.3. Hence each of (8), (9) and (10) is enjoyed in (β„‹Ξ³,Θβˆͺ{ρ},πš€)βŠ’Ξ›0,Ξ›0,0,Ξ›0,Ξ³0aΞ“(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho\},\mathtt{Q})\vdash^{a}_{\Lambda_{0},\Lambda_{0},0,\Lambda_{0},\gamma_{0}}\Gamma^{(\rho)}. In the proof we write (β„‹Ξ³,Θβˆͺ{ρ},πš€)βŠ’Ξ›0a(\mathcal{H}_{\gamma},\Theta\cup\{\rho\},\mathtt{Q})\vdash^{a}_{\Lambda_{0}} for (β„‹Ξ³,Θβˆͺ{ρ},πš€)βŠ’Ξ›0,Ξ›0,0,Ξ›0,Ξ³0a(\mathcal{H}_{\gamma},\Theta\cup\{\rho\},\mathtt{Q})\vdash^{a}_{\Lambda_{0},\Lambda_{0},0,\Lambda_{0},\gamma_{0}}.
Case 1. First consider the case when the last inference is a (stbl)({\rm stbl}): We have a β‹€\bigwedge-formula B​(𝖫0)βˆˆΞ”0​(π•Š)B(\mathsf{L}_{0})\in\Delta_{0}(\mathbb{S}), and a term u∈T​m​(𝕂)u\in Tm(\mathbb{K}) such that {Β¬B​(u),βˆƒxβˆˆπ–«π•Šβ€‹B​(x)}βŠ‚Ξ“\{\lnot B(u),\exists x\in\mathsf{L}_{\mathbb{S}}B(x)\}\subset\Gamma, π•Šβ‰€d=rk​(B​(u))<Ξ›0\mathbb{S}\leq d=\mathrm{rk}(B(u))<\Lambda_{0} and 𝗄​(B​(u))βŠ‚β„‹Ξ³β€‹[Θ]=ℋγ​[Θ∩EΟπ•Š]\mathsf{k}(B(u))\subset\mathcal{H}_{\gamma}[\Theta]=\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}]. We obtain

(β„‹Ξ³,Θβˆͺ{ρ},πš€)⊒02​dΒ¬B(u)(ρ),B(u)(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho\},\mathtt{Q})\vdash^{2d}_{0}\lnot B(u)^{(\rho)},B(u)^{(\rho)} (11)

by Tautology 3.29.1. Let ff be a special finite function such that supp​(f)={Ξ›0}\mathrm{supp}(f)=\{\Lambda_{0}\} and f​(Ξ›0)=Ξ›f(\Lambda_{0})=\Lambda. Then fΞ›0=gΞ›0=βˆ…f_{\Lambda_{0}}=g_{\Lambda_{0}}=\emptyset and f<Ξ›0g′​(Ξ›0)f<^{\Lambda_{0}}g^{\prime}(\Lambda_{0}) by f​(Ξ›0)=Ξ›<Ξ›β‹…2=g′​(Ξ›0)f(\Lambda_{0})=\Lambda<\Lambda\cdot 2=g^{\prime}(\Lambda_{0}). Let ΟƒβˆˆHρ​(f,Ξ³0,Θβˆͺ{ρ})\sigma\in H_{\rho}(f,\gamma_{0},\Theta\cup\{\rho\}) with Θ=(Θβˆͺ{ρ})∩EΟπ•ŠβŠ‚EΟƒπ•Š\Theta=(\Theta\cup\{\rho\})\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\sigma}. We obtain d<Ξ›0=s​(f)≀s​(Οƒ)d<\Lambda_{0}=s(f)\leq s(\sigma) and 𝗄​(B​(u))βˆͺ{Ξ›0}βŠ‚EΟƒπ•Š\mathsf{k}(B(u))\cup\{\Lambda_{0}\}\subset E^{\mathbb{S}}_{\sigma}, cf. (6). We have Οπš€Οƒ=Οƒ<ρ\rho_{\mathtt{Q}^{\sigma}}=\sigma<\rho for πš€Οƒ=πš€βˆͺ{Οƒ}\mathtt{Q}^{\sigma}=\mathtt{Q}\cup\{\sigma\}.

We have 𝗄​(B​(u))βŠ‚Ξ›0=Οˆπ•‚β€‹(Ξ΄)\mathsf{k}(B(u))\subset\Lambda_{0}=\psi_{\mathbb{K}}(\delta) with π•Šβ‰€Ξ΄β‰€Ξ³\mathbb{S}\leq\delta\leq\gamma. Hence 𝗄​(B​(u))βŠ‚β„‹Ξ³β€‹(Οˆπ•‚β€‹(Ξ³))\mathsf{k}(B(u))\subset\mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma)). (β„‹Ξ³,Θβˆͺ{ρ,Οƒ},πš€Οƒ)⊒02​dΒ¬B(u)(Οƒ),B(u[Οƒ/π•Š])(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho,\sigma\},\mathtt{Q}^{\sigma})\vdash^{2d}_{0}\lnot B(u)^{(\sigma)},B(u^{[\sigma/\mathbb{S}]})^{(\rho)} follows by Tautology 3.29.2. A (⋁)(\bigvee) with u[Οƒ/π•Š]∈T​m​(π•Š)u^{[\sigma/\mathbb{S}]}\in Tm(\mathbb{S}) yields

(β„‹Ξ³,Θβˆͺ{ρ,Οƒ},πš€Οƒ)βŠ’Ξ›02​d+1Β¬B(u)(Οƒ),(βˆƒxβˆˆπ–«π•ŠB(x))(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho,\sigma\},\mathtt{Q}^{\sigma})\vdash^{2d+1}_{\Lambda_{0}}\lnot B(u)^{(\sigma)},(\exists x\in\mathsf{L}_{\mathbb{S}}B(x))^{(\rho)} (12)

An inference (rfl​(ρ,Ξ›0,f))({\rm rfl}(\rho,\Lambda_{0},f)) with rk​(B​(u))<Ξ›0∈supp​(m​(ρ))\mathrm{rk}(B(u))<\Lambda_{0}\in\mathrm{supp}(m(\rho)), (11) and (12) yields (β„‹Ξ³,Θβˆͺ{ρ},πš€)βŠ’Ξ›0Ξ›0Ξ“(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho\},\mathtt{Q})\vdash^{\Lambda_{0}}_{\Lambda_{0}}\Gamma^{(\rho)}.
Case 2. Second the last inference (⋁)(\bigvee) introduces a ⋁\bigvee-formula AβˆˆΞ“A\in\Gamma with A≃⋁(AΞΉ)ι∈JA\simeq\bigvee\left(A_{\iota}\right)_{\iota\in J}: There are an ι∈J\iota\in J an ordinal a​(ΞΉ)<aa(\iota)<a such that (β„‹Ξ³,Θ)βŠ’Ξ›0βˆ—a​(ΞΉ)Ξ“,AΞΉ(\mathcal{H}_{\gamma},\Theta)\vdash^{*a(\iota)}_{\Lambda_{0}}\Gamma,A_{\iota}. Assume 𝗄​(ΞΉ)βŠ‚π—„β€‹(AΞΉ)\mathsf{k}(\iota)\subset\mathsf{k}(A_{\iota}). We obtain ℋγ​(ρ)βˆ©π•ŠβŠ‚Ο\mathcal{H}_{\gamma}(\rho)\cap\mathbb{S}\subset\rho by γ≀γ0≀γρ\gamma\leq\gamma_{0}\leq\gamma_{\rho}, and hence 𝗄​(ΞΉ)βŠ‚β„‹Ξ³β€‹[Θ]βŠ‚EΟπ•Š\mathsf{k}(\iota)\subset\mathcal{H}_{\gamma}[\Theta]\subset E^{\mathbb{S}}_{\rho} by (7), Ξ˜βŠ‚EΟπ•Š\Theta\subset E^{\mathbb{S}}_{\rho} and Proposition 2.28. Hence ι∈[ρ]​J\iota\in[\rho]J. IH yields (β„‹Ξ³,Θβˆͺ{ρ},πš€)βŠ’Ξ›0a​(ΞΉ)Ξ“(ρ),(AΞΉ)(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho\},\mathtt{Q})\vdash^{a(\iota)}_{\Lambda_{0}}\Gamma^{(\rho)},\left(A_{\iota}\right)^{(\rho)}. (β„‹Ξ³,Θβˆͺ{ρ},πš€)βŠ’Ξ›0aΞ“(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho\},\mathtt{Q})\vdash^{a}_{\Lambda_{0}}\Gamma^{(\rho)} follows from a (⋁)(\bigvee).
Case 3. Third the last inference (β‹€)(\bigwedge) introduces a β‹€\bigwedge-formula AβˆˆΞ“A\in\Gamma with A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge\left(A_{\iota}\right)_{\iota\in J}: For every ι∈J\iota\in J there exists an a​(ΞΉ)<aa(\iota)<a such that (β„‹Ξ³,Θβˆͺ𝗄(ΞΉ)βˆͺE0(ΞΉ))βŠ’Ξ›0βˆ—a​(ΞΉ)Ξ“,AΞΉ(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}(\iota)\cup E_{0}(\iota))\vdash^{*a(\iota)}_{\Lambda_{0}}\Gamma,A_{\iota}. IH yields (β„‹Ξ³,Θβˆͺ{ρ}βˆͺ𝗄(ΞΉ)βˆͺE0(ΞΉ),πš€)βŠ’Ξ›0a​(ΞΉ)Ξ“(ρ),(AΞΉ)(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho\}\cup\mathsf{k}(\iota)\cup E_{0}(\iota),\mathtt{Q})\vdash^{a(\iota)}_{\Lambda_{0}}\Gamma^{(\rho)},\left(A_{\iota}\right)^{(\rho)} for each ι∈[ρ]​J\iota\in[\rho]J, where 𝗄​(ΞΉ)βˆͺE0​(ΞΉ)βŠ‚EΟπ•Š\mathsf{k}(\iota)\cup E_{0}(\iota)\subset E^{\mathbb{S}}_{\rho}. We obtain (β„‹Ξ³,Θβˆͺ{ρ},πš€)βŠ’Ξ›0aΞ“(ρ)(\mathcal{H}_{\gamma},\Theta\cup\{\rho\},\mathtt{Q})\vdash^{a}_{\Lambda_{0}}\Gamma^{(\rho)} by a (β‹€)(\bigwedge).

Other cases (c​u​t)(cut) or (Σ​(Ο€)​-rfl)​(Ο€<Ξ›0)(\Sigma(\pi)\mbox{{\rm-rfl}})\,(\pi<\Lambda_{0}) are seen from IH. Each uncapped cut formula CC as well as formulas CC and Β¬βˆƒx<π​C(x,Ο€)\lnot\exists x<\pi\,C^{(x,\pi)} in (Σ​(Ο€)​-rfl)(\Sigma(\pi)\mbox{{\rm-rfl}}) puts on the cap ρ=Οπš€\rho=\rho_{\mathtt{Q}} with rk​(C)<Ξ›0\mathrm{rk}(C)<\Lambda_{0}. β–‘\Box

3.6 Reducing ranks

In this subsection, ranks in inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) are lowered to π•Š\mathbb{S} in operator controlled derivations π’Ÿ1\mathcal{D}_{1} of Ξ£1\Sigma_{1}-sentences ΞΈLΞ©\theta^{L_{\Omega}} over Ξ©\Omega. Let π’Ÿ2\mathcal{D}_{2} be a derivation such that every formula occurring in it is in Ξ£1​(π•Š)βˆͺΞ 1​(π•Š)\Sigma_{1}(\mathbb{S})\cup\Pi_{1}(\mathbb{S}). We see in Lemma 3.43 that inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) are removed from π’Ÿ2\mathcal{D}_{2}, where each capped formula A(ρ)A^{(\rho)} becomes the uncapped formula AA in Lemma 3.45. To have πš€βŠ‚β„‹Ξ³1​[Θ]\mathtt{Q}\subset\mathcal{H}_{\gamma_{1}}[\Theta] for finite families πš€\mathtt{Q}, we break through the threshold Ξ³0\gamma_{0} in the sense that Ξ³1β‰₯Ξ³0+π•Š\gamma_{1}\geq\gamma_{0}+\mathbb{S}. We need the condition (10) to be enjoyed in Recapping 3.35. Everything has to be done inside β„‹Ξ³0​[Θ]\mathcal{H}_{\gamma_{0}}[\Theta] except ordinals in πš€\mathtt{Q} until the rank is lowered to π•Š\mathbb{S}. Our goal in this subsection is to transform derivations π’Ÿ1\mathcal{D}_{1} to π’Ÿ2\mathcal{D}_{2}. For this π’Ÿ1\mathcal{D}_{1} is first transformed to a derivation β„°\mathcal{E} in which every capped formula is in Σ​(Ξ©π•Š+Nβˆ’m)\Sigma(\Omega_{\mathbb{S}+N-m}). Then Collapsing 3.33 yields a derivation in rank less than Ξ©π•Š+Nβˆ’m\Omega_{\mathbb{S}+N-m}. Iterating this process, we arrive at a derivation π’Ÿ2\mathcal{D}_{2}.

In the following Recapping 3.35 we show that inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) can be replaced by a series of (c​u​t)(cut)’s. Here caps ρ\rho are replaced by smaller caps κ∈Hρ​(g1,Ξ³0,Θ)\kappa\in H_{\rho}(g_{1},\gamma_{0},\Theta) for g1=hb​(m​(ρ);a1)g_{1}=h^{b}(m(\rho);a_{1}) with an ordinal a1a_{1}, and other inferences (rfl​(ΞΊ,b,h))({\rm rfl}(\kappa,b,h)) are introduced for smaller ranks b<eb<e.

When bβ‰€π•Š+1b\leq\mathbb{S}+1, we obtain Ξ΄(Οƒ)∈Σ1​(π•Š)\delta^{(\sigma)}\in\Sigma_{1}(\mathbb{S}) for the formula Ξ΄\delta to be reflected in inferences (rfl​(ΞΊ,b,h))({\rm rfl}(\kappa,b,h)). However it may be the case s​(ΞΊ)β‰€π•Š+1<s​(h)≀s​(Οƒ)s(\kappa)\leq\mathbb{S}+1<s(h)\leq s(\sigma) for Οƒ\sigma in the resolvent class of (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)). Therefore we need to replace inferences (rfl​(Οƒ,e,g))({\rm rfl}(\sigma,e,g)) in higher ranks by a series of (c​u​t)(cut)’s. We have to iterate the replacement inside β„‹Ξ³0​[Θ]\mathcal{H}_{\gamma_{0}}[\Theta], and an induction on Οƒ<ρ\sigma<\rho must be avoided.

For the ordinals o​nm​(πš€)on_{m}(\mathtt{Q}) in Definition 3.36 we obtain o​nm​(πš€)βˆˆβ„‹Ξ³β€‹[Θ]on_{m}(\mathtt{Q})\in\mathcal{H}_{\gamma}[\Theta] if S​CΛ​(f)βŠ‚β„‹Ξ³β€‹[Θ]SC_{\Lambda}(f)\subset\mathcal{H}_{\gamma}[\Theta], and we see o​nm​(πš€Ξ»)<o​nm​(πš€)on_{m}(\mathtt{Q}^{\lambda})<on_{m}(\mathtt{Q}) from Proposition 3.24.1, where Ξ»\lambda is a replacement for Οƒ\sigma and πš€Ξ»=πš€βˆͺ{Ξ»}\mathtt{Q}^{\lambda}=\mathtt{Q}\cup\{\lambda\}. By induction on the ordinals o​nm​(πš€)on_{m}(\mathtt{Q}) we see in Lemma 3.37 that the rank is lowered to Ξ©π•Š+Nβˆ’m\Omega_{\mathbb{S}+N-m}. This ends a rough sketch of the removals of inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)), and the details follow.

Lemma 3.35

(Recapping)
Suppose (β„‹Ξ³,Θρ,πš€)⊒c,d,m,Ξ›0,Ξ³0aΞ ,Ξ“(ρ)(\mathcal{H}_{\gamma},\Theta_{\rho},\mathtt{Q})\vdash^{a}_{c,d,m,\Lambda_{0},\gamma_{0}}\Pi,\Gamma^{(\rho)}, where Θρ=Θβˆͺ{ρ}\Theta_{\rho}=\Theta\cup\{\rho\}, a<Ξ›a<\Lambda, c=Ξ©π•Š+Nβˆ’mβˆ’1+1<s​(ρ)c=\Omega_{\mathbb{S}+N-m-1}+1<s(\rho), c<d≀Λ0<Ξ›c<d\leq\Lambda_{0}<\Lambda, Οβˆˆπš€\rho\in\mathtt{Q} with Θ∩EΟπ•ŠβŠ‚EΟπš€π•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\rho_{\mathtt{Q}}}, and Ξ \Pi is a set of formulas such that τ≠ρ\tau\neq\rho for each A(Ο„)∈ΠA^{(\tau)}\in\Pi.

Let bb be an ordinal such that c≀b<s​(ρ)≀Λ0c\leq b<s(\rho)\leq\Lambda_{0} and Ξ“βŠ‚β‹(b)\Gamma\subset\bigvee(b). Assume that bβˆˆβ„‹Ξ³β€‹[Θ∩EΟπ•Š]b\in\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] and S​CΛ​(g)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]SC_{\Lambda}(g)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] for g=m​(ρ)g=m(\rho).

Let κ∈Hρ​(g1,Ξ³0,Θ)\kappa\in H_{\rho}(g_{1},\gamma_{0},\Theta) with g1=hb​(g;Ο†d​(a))g_{1}=h^{b}(g;\varphi_{d}(a)), and πš€[ΞΊ/ρ]={Ο„βˆˆπš€:τ≠ρ}βˆͺ{ΞΊ}\mathtt{Q}^{[\kappa/\rho]}=\{\tau\in\mathtt{Q}:\tau\neq\rho\}\cup\{\kappa\}. Then

(β„‹Ξ³,Θκ,πš€[ΞΊ/ρ])⊒c,d,m,Ξ›0,Ξ³0Ο†d​(a)Ξ ,Ξ“(ΞΊ)(\mathcal{H}_{\gamma},\Theta_{\kappa},\mathtt{Q}^{[\kappa/\rho]})\vdash^{\varphi_{d}(a)}_{c,d,m,\Lambda_{0},\gamma_{0}}\Pi,\Gamma^{(\kappa)} (13)

holds, where Θκ=Θβˆͺ{ΞΊ}\Theta_{\kappa}=\Theta\cup\{\kappa\}.

Proof.  By induction on aa. We have Ο†d​(a)<Ξ›\varphi_{d}(a)<\Lambda and g1:Λ→Γ​(Ξ›)g_{1}:\Lambda\to\Gamma(\Lambda) with S​CΛ​(g1)βŠ‚Ξ›SC_{\Lambda}(g_{1})\subset\Lambda. Let κ∈Hρ​(g1,Ξ³0,Θ)\kappa\in H_{\rho}(g_{1},\gamma_{0},\Theta). By Definition 3.26 we have Θ∩EΟπ•ŠβŠ‚EΞΊπ•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\kappa}. On the other hand we have {a,d,b}βˆͺ𝗄​(Ξ“)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\{a,d,b\}\cup\mathsf{k}(\Gamma)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] by ρβ‰₯Οπš€\rho\geq\rho_{\mathtt{Q}}, (9), (10) and the assumption. Moreover Οπš€[ΞΊ/ρ]=ΞΊ\rho_{\mathtt{Q}^{[\kappa/\rho]}}=\kappa if ρ=Οπš€\rho=\rho_{\mathtt{Q}}. Otherwise Οπš€[ΞΊ/ρ]=Οπš€\rho_{\mathtt{Q}^{[\kappa/\rho]}}=\rho_{\mathtt{Q}}, cf. Definition 3.25.2. In each case we obtain Θ∩EΟπ•ŠβŠ‚EΟπš€[ΞΊ/ρ]π•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\rho_{\mathtt{Q}^{[\kappa/\rho]}}}. Hence each of (9) and (10) is enjoyed in (13).

Also {b,d,a}βˆͺS​CΛ​(g)βŠ‚EΞΊπ•Š\{b,d,a\}\cup SC_{\Lambda}(g)\subset E^{\mathbb{S}}_{\kappa} by {b,d,a}βˆͺS​CΛ​(g)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\{b,d,a\}\cup SC_{\Lambda}(g)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}], Proposition 2.28 with γ≀γ0\gamma\leq\gamma_{0}. Hence S​CΛ​(hb​(g;Ο†d​(a)))βŠ‚EΞΊπ•ŠSC_{\Lambda}(h^{b}(g;\varphi_{d}(a)))\subset E^{\mathbb{S}}_{\kappa}, cf. (6).

In the proof let us suppress the fourth and fifth subscripts, and we write (β„‹Ξ³,Θ,πš€)⊒c,d,maΞ ,Ξ“(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m}\Pi,\Gamma^{(\rho)} for (β„‹Ξ³,Θ,πš€)⊒c,d,m,Ξ›0,Ξ³0aΞ ,Ξ“(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m,\Lambda_{0},\gamma_{0}}\Pi,\Gamma^{(\rho)}.
Case 1. First consider the case when the last inference is a (rfl​(Ο„,e,f))({\rm rfl}(\tau,e,f)): Then Ο„=Οπš€\tau=\rho_{\mathtt{Q}}. If Ο„<ρ\tau<\rho, then (13) follows from IH.

In what follows assume Οπš€=Ο„=ρ\rho_{\mathtt{Q}}=\tau=\rho. Then Οπš€[ΞΊ/ρ]=ΞΊ\rho_{\mathtt{Q}^{[\kappa/\rho]}}=\kappa. We have a finite set Ξ”βŠ‚β‹(e)\Delta\subset\bigvee(e) of formulas with b0=max⁑{c,rk​(Ξ”)}<db_{0}=\max\{c,\mathrm{rk}(\Delta)\}<d and an ordinal a0<aa_{0}<a such that

(β„‹Ξ³,Θρ,πš€)⊒c,d,ma0Ξ ,Ξ“(ρ),¬δ(ρ)(\mathcal{H}_{\gamma},\Theta_{\rho},\mathtt{Q})\vdash^{a_{0}}_{c,d,m}\Pi,\Gamma^{(\rho)},\lnot\delta^{(\rho)}

for each Ξ΄βˆˆΞ”\delta\in\Delta. Inversion 3.30 yields

(β„‹Ξ³,Θρβˆͺ𝗄(ΞΉ)βˆͺEm(ΞΉ),πš€)⊒c,d,ma0Ξ ,Ξ“(ρ),¬δι(ρ)(\mathcal{H}_{\gamma},\Theta_{\rho}\cup\mathsf{k}(\iota)\cup E_{m}(\iota),\mathtt{Q})\vdash^{a_{0}}_{c,d,m}\Pi,\Gamma^{(\rho)},\lnot\delta_{\iota}^{(\rho)} (14)

for each ι∈[ρ]​J\iota\in[\rho]J. We have (¬δι)βˆˆβ‹(b0)(\lnot\delta_{\iota})\in\bigvee(b_{0}). Then b0<e≀s​(ρ)b_{0}<e\leq s(\rho) and b0<db_{0}<d. On the other hand we have

(β„‹Ξ³,Ξ˜Οβ€‹Οƒ,πš€Οƒ)⊒c,d,ma0Ξ”(Οƒ),Ξ(ρ),Ξ 1(\mathcal{H}_{\gamma},\Theta_{\rho\sigma},\mathtt{Q}^{\sigma})\vdash^{a_{0}}_{c,d,m}\Delta^{(\sigma)},\Xi^{(\rho)},\Pi_{1} (15)

where Ξ(ρ)βˆˆΞ“(ρ)∩Σ1​(π•Š)\Xi^{(\rho)}\in\Gamma^{(\rho)}\cap\Sigma_{1}(\mathbb{S}), Ξ 1βŠ‚Ξ \Pi_{1}\subset\Pi, Ξ˜Οβ€‹Οƒ=Θβˆͺ{ρ,Οƒ}\Theta_{\rho\sigma}=\Theta\cup\{\rho,\sigma\} and ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta). We have Θ∩EΟπ•ŠβŠ‚EΟƒπ•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\sigma} for Οƒ=Οπš€Οƒ\sigma=\rho_{\mathtt{Q}^{\sigma}}. When max⁑{s​(ρ),s​(f)}β‰€Ξ©π•Š+Nβˆ’1βˆ’m+1\max\{s(\rho),s(f)\}\leq\Omega_{\mathbb{S}+N-1-m}+1, we have (15) for every Οƒ\sigma such that m​(Οƒ)=fm(\sigma)=f.

ff is a finite function such that e∈supp​(g)e\in{\rm supp}(g) and

fe=ge&f<eg′​(e)&S​CΛ​(f)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]f_{e}=g_{e}\,\&\,f<^{e}g^{\prime}(e)\,\&\,SC_{\Lambda}(f)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] (16)

Case 1.1. b0≀bb_{0}\leq b: Let Ξ΄βˆˆΞ”\delta\in\Delta, and ι∈J\iota\in J for δ≃⋁(δι)ι∈J\delta\simeq\bigvee(\delta_{\iota})_{\iota\in J}. We have rk​(¬δι)<rk​(¬δ)≀b\mathrm{rk}(\lnot\delta_{\iota})<\mathrm{rk}(\lnot\delta)\leq b, and rk​(Ξ“βˆͺ{¬δι})<b\mathrm{rk}(\Gamma\cup\{\lnot\delta_{\iota}\})<b. Let ι∈[ΞΊ]​J\iota\in[\kappa]J. We obtain ι∈[ρ]​J\iota\in[\rho]J by κ≀ρ\kappa\leq\rho, and 𝗄​(ΞΉ)βŠ‚EΞΊπ•Š\mathsf{k}(\iota)\subset E^{\mathbb{S}}_{\kappa} by ι∈[ΞΊ]​J\iota\in[\kappa]J. Hence κ∈Hρ​(g1,Ξ³0,Θβˆͺ𝗄​(ΞΉ)βˆͺEm​(ΞΉ))\kappa\in H_{\rho}(g_{1},\gamma_{0},\Theta\cup\mathsf{k}(\iota)\cup E_{m}(\iota)). By IH with (14) we obtain (β„‹Ξ³,Θκβˆͺ𝗄(ΞΉ)βˆͺEm(ΞΉ),πš€[ΞΊ/ρ])⊒c,d,mΟ†d​(a0)Ξ ,Ξ“(ΞΊ),¬δι(ΞΊ)(\mathcal{H}_{\gamma},\Theta_{\kappa}\cup\mathsf{k}(\iota)\cup E_{m}(\iota),\mathtt{Q}^{[\kappa/\rho]})\vdash^{\varphi_{d}(a_{0})}_{c,d,m}\Pi,\Gamma^{(\kappa)},\lnot\delta_{\iota}^{(\kappa)}. A (β‹€)(\bigwedge) yields

(β„‹Ξ³,Θκ,πš€[ΞΊ/ρ])⊒c,d,mΟ†d​(a0)+1Ξ ,Ξ“(ΞΊ),¬δ(ΞΊ)(\mathcal{H}_{\gamma},\Theta_{\kappa},\mathtt{Q}^{[\kappa/\rho]})\vdash^{\varphi_{d}(a_{0})+1}_{c,d,m}\Pi,\Gamma^{(\kappa)},\lnot\delta^{(\kappa)} (17)

Let d1=min⁑{b,e}d_{1}=\min\{b,e\}. We claim that

fd1=(g1)d1&f<d1g1′​(d1)f_{d_{1}}=(g_{1})_{d_{1}}\,\&\,f<^{d_{1}}g_{1}^{\prime}(d_{1}) (18)

We have g1=hb​(g;Ο†d​(a))g_{1}=h^{b}(g;\varphi_{d}(a)). If d1=e≀bd_{1}=e\leq b, then (g1)e=ge=fe(g_{1})_{e}=g_{e}=f_{e} and g′​(e)≀g1′​(e)g^{\prime}(e)\leq g_{1}^{\prime}(e). We obtain the claim by Proposition 2.5. If d1=b<ed_{1}=b<e, then the claim follows from Proposition 3.24.2.

Let ΟƒβˆˆHκ​(f,Ξ³0,Θ)\sigma\in H_{\kappa}(f,\gamma_{0},\Theta). Then ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta) by ΞΊ<ρ\kappa<\rho, Θ∩EΟπ•ŠβŠ‚EΞΊπ•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\kappa}. By IH with (15) we obtain for Ξ˜ΞΊβ€‹Οƒ=Θβˆͺ{ΞΊ,Οƒ}\Theta_{\kappa\sigma}=\Theta\cup\{\kappa,\sigma\}

(β„‹Ξ³,Ξ˜ΞΊβ€‹Οƒ,πš€[ΞΊ/ρ]βˆͺ{Οƒ})⊒c,d,mΟ†d​(a0)Ξ”(Οƒ),Ξ(ΞΊ),Ξ 1(\mathcal{H}_{\gamma},\Theta_{\kappa\sigma},\mathtt{Q}^{[\kappa/\rho]}\cup\{\sigma\})\vdash^{\varphi_{d}(a_{0})}_{c,d,m}\Delta^{(\sigma)},\Xi^{(\kappa)},\Pi_{1} (19)

(13) follows by an inference (rfl​(ΞΊ,d1,f))({\rm rfl}(\kappa,d_{1},f)) with (18), (17) and (19).

If max⁑{s​(ΞΊ),s​(f)}β‰€Ξ©π•Š+Nβˆ’mβˆ’1+1\max\{s(\kappa),s(f)\}\leq\Omega_{\mathbb{S}+N-m-1}+1, then the inference is degenerated, and it suffices to have (19) for ordinals Οƒ\sigma with m​(Οƒ)=fm(\sigma)=f.
Case 1.2. b<b0b<b_{0}: We obtain rk​(Ξ”)βˆˆβ„‹Ξ³β€‹[Θ∩EΟπ•Š]\mathrm{rk}(\Delta)\in\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}] by (9). We have b<b0<e≀s​(ρ)b<b_{0}<e\leq s(\rho) and b0<db_{0}<d. Let g0=hb0​(g;Ο†d​(a0))βˆ—fb0+1g_{0}=h^{b_{0}}(g;\varphi_{d}(a_{0}))*f^{b_{0}+1}, and ΟƒβˆˆHρ​(g0,Ξ³0,Θ)\sigma\in H_{\rho}(g_{0},\gamma_{0},\Theta). We have g0≀m​(Οƒ)g_{0}\leq m(\sigma) by Definition 3.26. We see S​CΛ​(g0)βŠ‚β„‹Ξ³β€‹[Θ∩EΞΊπ•Š]SC_{\Lambda}(g_{0})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\kappa}] from {b0,d,a0}βˆͺS​CΛ​(g)βˆͺS​CΛ​(f)βŠ‚β„‹Ξ³β€‹[Θ∩EΞΊπ•Š]\{b_{0},d,a_{0}\}\cup SC_{\Lambda}(g)\cup SC_{\Lambda}(f)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\kappa}]. As in Case 1.1, we obtain (β„‹Ξ³,Ξ˜Οƒ,πš€[Οƒ/ρ])⊒c,d,mΟ†d​(a0)+1Ξ ,Ξ“(Οƒ),¬δ(Οƒ)(\mathcal{H}_{\gamma},\Theta_{\sigma},\mathtt{Q}^{[\sigma/\rho]})\vdash^{\varphi_{d}(a_{0})+1}_{c,d,m}\Pi,\Gamma^{(\sigma)},\lnot\delta^{(\sigma)} by IH and (14).

Let ΟƒβˆˆHκ​(g0,Ξ³0,Θ)=Hρ​(g0,Ξ³0,Θ)∩κ\sigma\in H_{\kappa}(g_{0},\gamma_{0},\Theta)=H_{\rho}(g_{0},\gamma_{0},\Theta)\cap\kappa. Then for πš€[ΞΊ/ρ]βˆͺ{Οƒ}=πš€[Οƒ/ρ]βˆͺ{ΞΊ}\mathtt{Q}^{[\kappa/\rho]}\cup\{\sigma\}=\mathtt{Q}^{[\sigma/\rho]}\cup\{\kappa\}, we have Οƒ=Οπš€[Οƒ/ρ]=Οπš€[Οƒ/ρ]βˆͺ{ΞΊ}=Οπš€[ΞΊ/ρ]βˆͺ{Οƒ}\sigma=\rho_{\mathtt{Q}^{[\sigma/\rho]}}=\rho_{\mathtt{Q}^{[\sigma/\rho]}\cup\{\kappa\}}=\rho_{\mathtt{Q}^{[\kappa/\rho]}\cup\{\sigma\}}. Hence (10) holds by adding the ordinal ΞΊ\kappa to πš€[Οƒ/ρ]\mathtt{Q}^{[\sigma/\rho]}, and we obtain

(β„‹Ξ³,Ξ˜ΞΊβ€‹Οƒ,πš€[ΞΊ/ρ]βˆͺ{Οƒ})⊒c,d,mΟ†d​(a0)+1Ξ ,Ξ“(Οƒ),¬δ(Οƒ)(\mathcal{H}_{\gamma},\Theta_{\kappa\sigma},\mathtt{Q}^{[\kappa/\rho]}\cup\{\sigma\})\vdash^{\varphi_{d}(a_{0})+1}_{c,d,m}\Pi,\Gamma^{(\sigma)},\lnot\delta^{(\sigma)} (20)

We have f≀g0f\leq g_{0}. Hence ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta). We obtain by IH and (15)

(β„‹Ξ³,Ξ˜ΞΊβ€‹Οƒ,πš€[ΞΊ/ρ]βˆͺ{Οƒ})⊒c,d,mΟ†d​(a0)Ξ”(Οƒ),Ξ(ΞΊ),Ξ 1(\mathcal{H}_{\gamma},\Theta_{\kappa\sigma},\mathtt{Q}^{[\kappa/\rho]}\cup\{\sigma\})\vdash^{\varphi_{d}(a_{0})}_{c,d,m}\Delta^{(\sigma)},\Xi^{(\kappa)},\Pi_{1} (21)

We have Οƒ=Οπš€[ΞΊ/ρ]βˆͺ{Οƒ}\sigma=\rho_{\mathtt{Q}^{[\kappa/\rho]}\cup\{\sigma\}}, and rk​(Ξ΄)≀b0≀c+b0\mathrm{rk}(\delta)\leq b_{0}\leq c+b_{0} with {c,b0}βˆͺE​(c,b0)βŠ‚β„‹Ξ³β€‹[Θ∩EΟƒπ•Š]\{c,b_{0}\}\cup E(c,b_{0})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\sigma}] by Θ∩EΟπ•ŠβŠ‚EΟƒπ•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\sigma}. Reduction 3.31 with (20) and (21) yields for Hκ​(g0,Ξ³0,Θ)=Hρ​(g0,Ξ³0,Θ)∩κH_{\kappa}(g_{0},\gamma_{0},\Theta)=H_{\rho}(g_{0},\gamma_{0},\Theta)\cap\kappa

βˆ€ΟƒβˆˆHΞΊ(g0,Ξ³0,Θ)[(β„‹Ξ³,Ξ˜ΞΊβ€‹Οƒ,πš€[ΞΊ/ρ]βˆͺ{Οƒ})⊒c,d,ma1Ξ ,Ξ“(Οƒ),Ξ(ΞΊ)]\forall\sigma\in H_{\kappa}(g_{0},\gamma_{0},\Theta)\left[(\mathcal{H}_{\gamma},\Theta_{\kappa\sigma},\mathtt{Q}^{[\kappa/\rho]}\cup\{\sigma\})\vdash^{a_{1}}_{c,d,m}\Pi,\Gamma^{(\sigma)},\Xi^{(\kappa)}\right] (22)

for 2​b≀a1=Ο†b0​(Ο†d​(a0)β‹…2)<Ο†d​(a)2b\leq a_{1}=\varphi_{b_{0}}(\varphi_{d}(a_{0})\cdot 2)<\varphi_{d}(a) by b<b0<db<b_{0}<d and a0<aa_{0}<a.

On the other, Tautology 3.29.1 yields for each ΞΈβˆˆΞ“\theta\in\Gamma

(β„‹Ξ³,Θκ,πš€[ΞΊ/ρ])⊒0,0,m2​bΞ“(ΞΊ),¬θ(ΞΊ)(\mathcal{H}_{\gamma},\Theta_{\kappa},\mathtt{Q}^{[\kappa/\rho]})\vdash^{2b}_{0,0,m}\Gamma^{(\kappa)},\lnot\theta^{(\kappa)} (23)

For g1=hb​(g;Ο†d​(a))g_{1}=h^{b}(g;\varphi_{d}(a)), we obtain (g0)b=gb=(g1)b(g_{0})_{b}=g_{b}=(g_{1})_{b} and g0<bg1′​(b)g_{0}<^{b}g_{1}^{\prime}(b) by Proposition 3.24.3.

By an inference rule (rfl​(ΞΊ,b,g0))({\rm rfl}(\kappa,b,g_{0})) with its resolvent class Hκ​(g0,Ξ³0,Θ)H_{\kappa}(g_{0},\gamma_{0},\Theta), we conclude (13) by (23), (22) with ΞΊ=Οπš€[ΞΊ/ρ]\kappa=\rho_{\mathtt{Q}^{[\kappa/\rho]}} and rk​(Ξ“)<b<d\mathrm{rk}(\Gamma)<b<d.
Case 2. Second consider the case when the last inference (⋁)(\bigvee) introduces a ⋁\bigvee-formula BB: Let B≑A(ρ)βˆˆΞ“(ρ)B\equiv A^{(\rho)}\in\Gamma^{(\rho)} with A≃⋁(AΞΉ)ι∈JA\simeq\bigvee\left(A_{\iota}\right)_{\iota\in J}. We have (β„‹Ξ³,Θ,πš€)⊒c,d,ma0Ξ ,Ξ“(ρ),(AΞΉ)(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c,d,m}\Pi,\Gamma^{(\rho)},\left(A_{\iota}\right)^{(\rho)}, where 𝗄​(AΞΉ)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]\mathsf{k}(A_{\iota})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}]. Assuming 𝗄​(ΞΉ)βŠ‚π—„β€‹(AΞΉ)\mathsf{k}(\iota)\subset\mathsf{k}(A_{\iota}), we obtain 𝗄​(ΞΉ)βŠ‚EΞΊπ•Š\mathsf{k}(\iota)\subset E^{\mathbb{S}}_{\kappa}, i.e., ι∈[ΞΊ]​J\iota\in[\kappa]J by Θ∩EΟπ•ŠβŠ‚EΞΊπ•Š\Theta\cap E^{\mathbb{S}}_{\rho}\subset E^{\mathbb{S}}_{\kappa}. IH yields (β„‹Ξ³,Θκ,πš€[ΞΊ/ρ])⊒c,d,mΟ†d​(a0)Ξ ,Ξ“(ΞΊ),(AΞΉ)(ΞΊ)(\mathcal{H}_{\gamma},\Theta_{\kappa},\mathtt{Q}^{[\kappa/\rho]})\vdash^{\varphi_{d}(a_{0})}_{c,d,m}\Pi,\Gamma^{(\kappa)},\left(A_{\iota}\right)^{(\kappa)} for rk​(Ξ“βˆͺ{AΞΉ})=rk​(Ξ“)\mathrm{rk}(\Gamma\cup\{A_{\iota}\})=\mathrm{rk}(\Gamma). We obtain (13) by a (⋁)(\bigvee).

Other cases are seen from IH. Note that for each capped cut formula C(Οπš€)C^{(\rho_{\mathtt{Q}})}, we have rk​(C)<c=Ξ©π•Š+Nβˆ’1βˆ’m+1≀b\mathrm{rk}(C)<c=\Omega_{\mathbb{S}+N-1-m}+1\leq b, and for a minor formula (βˆ€x∈u​B​(x))(Οπš€)(\forall x\in u\,B(x))^{(\rho_{\mathtt{Q}})} of a (Σ​(Ο€)βˆ’rfl)(\Sigma(\pi)\mathrm{-rfl}), rk​(B​(v))=Ο€<Ξ©π•Š+Nβˆ’1βˆ’m+1\mathrm{rk}(B(v))=\pi<\Omega_{\mathbb{S}+N-1-m}+1 for |v|<|u|<Ο€|v|<|u|<\pi. These formulas put on the cap Οπš€[ΞΊ/ρ]\rho_{\mathtt{Q}^{[\kappa/\rho]}}. Also [ΞΊ]​JβŠ‚[ρ]​J[\kappa]J\subset[\rho]J for (β‹€)(\bigwedge). β–‘\Box

Definition 3.36

For a finite family πš€\mathtt{Q} with ρ=Οπš€\rho=\rho_{\mathtt{Q}} and g=m​(ρ)g=m(\rho), let

o​nm​(πš€)=g​(Ξ©π•Š+Nβˆ’mβˆ’1+1).on_{m}(\mathtt{Q})=g(\Omega_{\mathbb{S}+N-m-1}+1).
Lemma 3.37

Let (β„‹Ξ³,Θ,πš€)⊒c,d,m,Ξ›0,Ξ³0aΞ (\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{c,d,m,\Lambda_{0},\gamma_{0}}\Pi, where a<Ξ›a<\Lambda, c=Ξ©π•Š+Nβˆ’mβˆ’1+1<d<Ξ›c=\Omega_{\mathbb{S}+N-m-1}+1<d<\Lambda, and Ξ βŠ‚Ξ”0​(𝕂)\Pi\subset\Delta_{0}(\mathbb{K}). Assume s​(Οπš€)β‰€Ξ©π•Š+Nβˆ’mβˆ’1+1s(\rho_{\mathtt{Q}})\leq\Omega_{\mathbb{S}+N-m-1}+1 and S​CΛ​(m​(Οπš€))βŠ‚β„‹Ξ³β€‹[Θ∩EΟπš€π•Š]SC_{\Lambda}(m(\rho_{\mathtt{Q}}))\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho_{\mathtt{Q}}}]. Then the following holds for a^=Ο†d+η​(a)\hat{a}=\varphi_{d+\eta}(a) and Ξ·=o​nm​(πš€)\eta=on_{m}(\mathtt{Q})

(β„‹Ξ³,Θ,πš€)⊒c,c,m,Ξ›0,Ξ³0a^Ξ (\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\hat{a}}_{c,c,m,\Lambda_{0},\gamma_{0}}\Pi (24)

Proof.  By main induction on Ξ·=o​nm​(πš€)\eta=on_{m}(\mathtt{Q}) with subsidiary induction on aa.

We have S​CΛ​(m​(Οπš€))βŠ‚β„‹Ξ³β€‹[Θ∩EΟπš€π•Š]SC_{\Lambda}(m(\rho_{\mathtt{Q}}))\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho_{\mathtt{Q}}}] by the assumption, and {a,d}βŠ‚β„‹Ξ³β€‹[Θ∩EΟπš€π•Š]\{a,d\}\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho_{\mathtt{Q}}}] by (10). We obtain {a^}βˆͺE​(a,d,Ξ·)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπš€π•Š]\{\hat{a}\}\cup E(a,d,\eta)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho_{\mathtt{Q}}}] for (10). In the proof let us omit the fourth and fifth subscripts in ⊒c,d,m,Ξ›0,Ξ³0a\vdash^{a}_{c,d,m,\Lambda_{0},\gamma_{0}}.

Consider the case when the last inference is a (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) with ρ=Οπš€\rho=\rho_{\mathtt{Q}}: Let g=m​(ρ)g=m(\rho). We have a finite set Ξ”βŠ‚β‹(c)\Delta\subset\bigvee(c) of formulas with rk​(Ξ”)<e≀s​(ρ)≀c=Ξ©π•Š+Nβˆ’mβˆ’1+1≀e\mathrm{rk}(\Delta)<e\leq s(\rho)\leq c=\Omega_{\mathbb{S}+N-m-1}+1\leq e and an ordinal a0<aa_{0}<a such that

(β„‹Ξ³,Θ,πš€)⊒c,d,ma0Ξ ,¬δ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{c,d,m}\Pi,\lnot\delta^{(\rho)} (25)

for each Ξ΄βˆˆΞ”\delta\in\Delta. ff is a finite function such that c=e∈supp​(g)c=e\in{\rm supp}(g) and fc=gcf_{c}=g_{c}, f<cg′​(c)f<^{c}g^{\prime}(c) and S​CΛ​(f)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]SC_{\Lambda}(f)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}].

SIH yields for a0^=Ο†d+η​(a0)\widehat{a_{0}}=\varphi_{d+\eta}(a_{0})

(β„‹Ξ³,Θ,πš€)⊒c,c,ma0^Ξ ,¬δ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\widehat{a_{0}}}_{c,c,m}\Pi,\lnot\delta^{(\rho)} (26)

On the other hand we have

(β„‹Ξ³,Ξ˜Οƒ,πš€Οƒ)⊒c,d,ma0Ξ 1,Ξ”(Οƒ)(\mathcal{H}_{\gamma},\Theta_{\sigma},\mathtt{Q}^{\sigma})\vdash^{a_{0}}_{c,d,m}\Pi_{1},\Delta^{(\sigma)} (27)

for every ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta) with m​(Οƒ)=fm(\sigma)=f, S​CΛ​(m​(Οƒ))=S​CΛ​(f)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]βŠ‚EΟπ•ŠSC_{\Lambda}(m(\sigma))=SC_{\Lambda}(f)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}]\subset E^{\mathbb{S}}_{\rho}, where Ξ 1βŠ‚Ξ \Pi_{1}\subset\Pi and βˆ€A(ρ)∈Π1​(A∈Σ1​(π•Š))\forall A^{(\rho)}\in\Pi_{1}(A\in\Sigma_{1}(\mathbb{S})).

If s​(f)≀cs(f)\leq c, then SIH yields for each ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta)

(β„‹Ξ³,Ξ˜Οƒ,πš€Οƒ)⊒c,c,ma0^Ξ 1,Ξ”(Οƒ)(\mathcal{H}_{\gamma},\Theta_{\sigma},\mathtt{Q}^{\sigma})\vdash^{\widehat{a_{0}}}_{c,c,m}\Pi_{1},\Delta^{(\sigma)} (28)

We obtain (24) by a degenerated (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) with (26) and (28).

Assume s​(Οƒ)=s​(f)>cs(\sigma)=s(f)>c. Let f0=hc​(f;Ο†d​(a0))f_{0}=h^{c}(f;\varphi_{d}(a_{0})), where S​CΛ​(f0)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]βŠ‚EΟπ•ŠSC_{\Lambda}(f_{0})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}]\subset E^{\mathbb{S}}_{\rho}. Let λ∈Hρ​(f0,Ξ³0,Θ)\lambda\in H_{\rho}(f_{0},\gamma_{0},\Theta) with m​(Ξ»)=f0m(\lambda)=f_{0}, and Οƒ=ψρf​(Ξ½+Ξ±)\sigma=\psi_{\rho}^{f}(\nu+\alpha) for Ξ½=b​(ρ)\nu=b(\rho) and Ξ±=max({Ξ»}βˆͺ((ΘβˆͺSCΞ›(f))∩EΟπ•Š)}\alpha=\max(\{\lambda\}\cup((\Theta\cup SC_{\Lambda}(f))\cap E^{\mathbb{S}}_{\rho})\}. Then we see Ξ½+Ξ±<Ξ³0+π•Š\nu+\alpha<\gamma_{0}+\mathbb{S} from Ξ½<Ξ³0+π•Š\nu<\gamma_{0}+\mathbb{S} and Ξ±<π•Š\alpha<\mathbb{S}. Hence ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta) and λ∈Hσ​(f0,Ξ³0,Θ)\lambda\in H_{\sigma}(f_{0},\gamma_{0},\Theta). Recapping 3.35 with (27) yields

(β„‹Ξ³,Θλ,πš€Ξ»)⊒c,d,mΟ†d​(a0)Ξ 1,Ξ”(Ξ»)(\mathcal{H}_{\gamma},\Theta_{\lambda},\mathtt{Q}^{\lambda})\vdash^{\varphi_{d}(a_{0})}_{c,d,m}\Pi_{1},\Delta^{(\lambda)} (29)

where S​CΛ​(m​(Ξ»))=S​CΛ​(f0)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]SC_{\Lambda}(m(\lambda))=SC_{\Lambda}(f_{0})\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}], πš€Ξ»=πš€βˆͺ{Ξ»}\mathtt{Q}^{\lambda}=\mathtt{Q}\cup\{\lambda\}, Οπš€Ξ»=Ξ»<Οƒ<ρ=Οπš€\rho_{\mathtt{Q}^{\lambda}}=\lambda<\sigma<\rho=\rho_{\mathtt{Q}}, and s​(f0)=cs(f_{0})=c. We obtain ΞΎ=o​nm​(πš€Ξ»)=f0​(c)<g​(c)=o​nm​(πš€)=Ξ·\xi=on_{m}(\mathtt{Q}^{\lambda})=f_{0}(c)<g(c)=on_{m}(\mathtt{Q})=\eta by Proposition 3.24.1.

MIH then yields

(β„‹Ξ³,Θλ,πš€Ξ»)⊒c,c,ma1^Ξ 1,Ξ”(Ξ»)(\mathcal{H}_{\gamma},\Theta_{\lambda},\mathtt{Q}^{\lambda})\vdash^{\widehat{a_{1}}}_{c,c,m}\Pi_{1},\Delta^{(\lambda)} (30)

where a1^=Ο†d+ξ​(Ο†d​(a0))<Ο†d+η​(a)\widehat{a_{1}}=\varphi_{d+\xi}(\varphi_{d}(a_{0}))<\varphi_{d+\eta}(a) by ΞΎ<Ξ·\xi<\eta and a0<aa_{0}<a.

A degenerated (rfl​(ρ,c,f0))({\rm rfl}(\rho,c,f_{0})) with (26) and (30) yields (24).

Other cases are seen from SIH. β–‘\Box

3.7 A third calculus

Combining Cut-elimination 3.32, Lemma 3.37 and Collapsing 3.33, the rank of formulas in derivations is lowered to π•Š\mathbb{S}. In other words, every formula occurring in derivations is in Ξ£1​(π•Š)βˆͺΞ 1​(π•Š)βˆͺΞ”0​(π•Š)\Sigma_{1}(\mathbb{S})\cup\Pi_{1}(\mathbb{S})\cup\Delta_{0}(\mathbb{S}). We are going to eliminate inferences (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)) and Ξ£1​(π•Š)\Sigma_{1}(\mathbb{S})-formulas, and throw caps away. In doing so, it is better to shift the calculus from ⊒\vdash in subsection 3.5 to a third one βŠ’β‹„\vdash^{\diamond}.

An uncapped formula AA is denoted by A(𝚞)A^{(\mathtt{u})}, and let [𝚞]​J=J[\mathtt{u}]J=J for Eπšžπ•Š=O​TNE^{\mathbb{S}}_{\mathtt{u}}=OT_{N}. Let 𝗄E​(ΞΉ):=⋃{{Ξ±}βˆͺENβˆ’1​(Ξ±):Ξ±βˆˆπ—„β€‹(ΞΉ)}\mathsf{k}_{E}(\iota):=\bigcup\{\{\alpha\}\cup\ E_{N-1}(\alpha):\alpha\in\mathsf{k}(\iota)\} for R​SRS-terms and R​SRS-formulas ΞΉ\iota. Also 𝗄E​(Ξ“)=⋃{𝗄E​(A):AβˆˆΞ“}\mathsf{k}_{E}(\Gamma)=\bigcup\{\mathsf{k}_{E}(A):A\in\Gamma\} for sets Ξ“\Gamma of formulas.

Definition 3.38

Let πš€\mathtt{Q} be either πš€=βˆ…\mathtt{Q}=\emptyset or a finite family (for Ξ›,Ξ³0\Lambda,\gamma_{0}), Θ\Theta a finite set of ordinals, and cβ‰€π•Šc\leq\mathbb{S}. Let Ξ“=⋃{Γσ(Οƒ):Οƒβˆˆπš€βˆͺ{𝚞}}βŠ‚Ξ”0​(𝕂)\Gamma=\bigcup\{\Gamma_{\sigma}^{(\sigma)}:\sigma\in\mathtt{Q}\cup\{\mathtt{u}\}\}\subset\Delta_{0}(\mathbb{K}) a set of formulas such that 𝗄​(Γσ)βŠ‚EΟƒπ•Š\mathsf{k}(\Gamma_{\sigma})\subset E^{\mathbb{S}}_{\sigma} for each Οƒβˆˆπš€βˆͺ{𝚞}\sigma\in\mathtt{Q}\cup\{\mathtt{u}\}. (β„‹Ξ³,Θ,πš€)⊒cβ‹„aΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a}_{c}\Gamma holds if

{Ξ³0,Ξ³,Ξ›0,a,c}βˆͺENβˆ’1​(Ξ³0,Ξ³,Ξ›0,a,c)βˆͺ𝗄E​(Ξ“)βŠ‚β„‹Ξ³β€‹[Θ]\{\gamma_{0},\gamma,\Lambda_{0},a,c\}\cup E_{N-1}(\gamma_{0},\gamma,\Lambda_{0},a,c)\cup\mathsf{k}_{E}(\Gamma)\subset\mathcal{H}_{\gamma}[\Theta] (31)

and one of the following cases holds:

(⋁)(\bigvee)

There exist A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J}, an ordinal a​(ΞΉ)<aa(\iota)<a, A(ρ)βˆˆΞ“A^{(\rho)}\in\Gamma with a cap Οβˆˆπš€βˆͺ{𝚞}\rho\in\mathtt{Q}\cup\{\mathtt{u}\}, and an ι∈[ρ]​J\iota\in[\rho]J and (β„‹Ξ³,Θ,πš€)⊒cβ‹„a​(ΞΉ)Ξ“,(AΞΉ)(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a(\iota)}_{c}\Gamma,\left(A_{\iota}\right)^{(\rho)}.

(β‹€)(\bigwedge)

There exist A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge(A_{\iota})_{\iota\in J}, a cap Οβˆˆπš€βˆͺ{𝚞}\rho\in\mathtt{Q}\cup\{\mathtt{u}\}, ordinals a​(ΞΉ)<aa(\iota)<a such that A(ρ)βˆˆΞ“A^{(\rho)}\in\Gamma and (β„‹Ξ³,Θβˆͺ𝗄E(ΞΉ),πš€)⊒cβ‹„a​(ΞΉ)Ξ“,AΞΉ(ρ)(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}_{E}(\iota),\mathtt{Q})\vdash^{\diamond a(\iota)}_{c}\Gamma,A_{\iota}^{(\rho)} for each ι∈[ρ]​J\iota\in[\rho]J.

(c​u​t)(cut)

There exist Οβˆˆπš€βˆͺ{𝚞}\rho\in\mathtt{Q}\cup\{\mathtt{u}\}, an ordinal a0<aa_{0}<a and an uncapped ⋁\bigvee-formula CC such that rk​(C)<c\mathrm{rk}(C)<c, (β„‹Ξ³,Θ,πš€)⊒cβ‹„a0Ξ“,Β¬C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{0}}_{c}\Gamma,\lnot C^{(\rho)} and (β„‹Ξ³,Θ,πš€)⊒cβ‹„a0C(ρ),Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{0}}_{c}C^{(\rho)},\Gamma.

(Σ​(Ξ©)​-rfl)(\Sigma(\Omega)\mbox{{\rm-rfl}})

There exist ordinals aβ„“,ar<aa_{\ell},a_{r}<a, Οβˆˆπš€βˆͺ{𝚞}\rho\in\mathtt{Q}\cup\{\mathtt{u}\} and a formula CβˆˆΞ£β€‹(Ξ©)C\in\Sigma(\Omega) such that (β„‹Ξ³,Θ,πš€)⊒cβ‹„aβ„“Ξ“,C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{\ell}}_{c}\Gamma,C^{(\rho)} and (β„‹Ξ³,Θ,πš€)⊒cβ‹„ar(Β¬βˆƒx<Ξ©C(x,Ξ©))(ρ),Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{r}}_{c}\left(\lnot\exists x<\Omega\,C^{(x,\Omega)}\right)^{(\rho)},\Gamma with Ξ©<c\Omega<c.

Lemma 3.39

(Inversion) Let (β„‹Ξ³,Θ,πš€)⊒cβ‹„aΞ“,A(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a}_{c}\Gamma,A^{(\rho)}, A≃⋀(AΞΉ)ι∈JA\simeq\bigwedge(A_{\iota})_{\iota\in J}, ι∈[ρ]​J\iota\in[\rho]J. Then (β„‹Ξ³,Θβˆͺ𝗄E(ΞΉ),πš€)⊒cβ‹„aΞ“,(AΞΉ)(ρ)(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}_{E}(\iota),\mathtt{Q})\vdash^{\diamond a}_{c}\Gamma,\left(A_{\iota}\right)^{(\rho)} holds.

Proof.  This is seen as in Inversion 3.30. β–‘\Box

Lemma 3.40

(Reduction) Let (β„‹Ξ³,Θ,πš€)⊒cβ‹„a0Ξ“0,Β¬C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{0}}_{c}\Gamma_{0},\lnot C^{(\rho)} and (β„‹Ξ³,Θ,πš€)⊒cβ‹„a1C(ρ),Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{1}}_{c}C^{(\rho)},\Gamma_{1}, where C≃⋁(CΞΉ)ι∈JC\simeq\bigvee(C_{\iota})_{\iota\in J} and rk​(C)≀c\mathrm{rk}(C)\leq c.

Then (β„‹Ξ³,Θ,πš€)⊒cβ‹„a0+a1Ξ“0,Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{0}+a_{1}}_{c}\Gamma_{0},\Gamma_{1} holds.

Proof.  By induction on a1a_{1} as in Reduction 3.31. Consider the case when the last inference in (β„‹Ξ³,Θ,πš€)⊒cβ‹„a1C(ρ),Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{1}}_{c}C^{(\rho)},\Gamma_{1} is a (⋁)(\bigvee) with a major formula C(ρ)C^{(\rho)}: We have (β„‹Ξ³,Θ,πš€)βŠ’π•Šβ‹„a2C(ρ),CΞΉ(ρ),Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{2}}_{\mathbb{S}}C^{(\rho)},C_{\iota}^{(\rho)},\Gamma_{1} for an ι∈[ρ]​J\iota\in[\rho]J and an a2<a1a_{2}<a_{1}.

IH yields (β„‹Ξ³,Θ,πš€)βŠ’π•Šβ‹„a0+a2CΞΉ(ρ),Ξ“0,Ξ“1(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{0}+a_{2}}_{\mathbb{S}}C_{\iota}^{(\rho)},\Gamma_{0},\Gamma_{1}. We obtain (β„‹Ξ³,Θβˆͺ𝗄E(ΞΉ),πš€)⊒cβ‹„a0Ξ“0,Β¬CΞΉ(ρ)(\mathcal{H}_{\gamma},\Theta\cup\mathsf{k}_{E}(\iota),\mathtt{Q})\vdash^{\diamond a_{0}}_{c}\Gamma_{0},\lnot C_{\iota}^{(\rho)} by Inversion 3.39, and (β„‹Ξ³,Θ,πš€)⊒cβ‹„a0+a2Ξ“0,Β¬CΞΉ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a_{0}+a_{2}}_{c}\Gamma_{0},\lnot C_{\iota}^{(\rho)} for a0≀a0+a2a_{0}\leq a_{0}+a_{2} and 𝗄E​(ΞΉ)βŠ‚β„‹Ξ³β€‹[Θ]\mathsf{k}_{E}(\iota)\subset\mathcal{H}_{\gamma}[\Theta] by (31). We have rk​(CΞΉ)<rk​(C)≀c\mathrm{rk}(C_{\iota})<\mathrm{rk}(C)\leq c. A (c​u​t)(cut) yields the lemma. β–‘\Box

Lemma 3.41

(Cut-elimination) Let (β„‹Ξ³,Θ,πš€)⊒c+bβ‹„aΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a}_{c+b}\Gamma where {c}βˆͺENβˆ’1​(c)βŠ‚β„‹Ξ³β€‹[Θ]\{c\}\cup E_{N-1}(c)\subset\mathcal{H}_{\gamma}[\Theta], c+bβ‰€π•Šc+b\leq\mathbb{S} and Β¬(c≀Ω<c+b)\lnot(c\leq\Omega<c+b). Then (β„‹Ξ³,Θ,πš€)⊒cβ‹„ΞΈb​(a)Ξ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond\theta_{b}(a)}_{c}\Gamma holds.

Proof.  By main induction on bb with subsidiary induction on aa using Reduction 3.40. β–‘\Box

Lemma 3.42

Let (β„‹Ξ³,Θ,πš€βˆͺ{Οƒ})⊒cβ‹„aΞ“,Ξ (Οƒ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q}\cup\{\sigma\})\vdash^{\diamond a}_{c}\Gamma,\Pi^{(\sigma)}, where cβ‰€π•Šc\leq\mathbb{S}, ΟƒβˆˆΞ¨N\sigma\in\Psi_{N}, Ο„β‰ Οƒ\tau\neq\sigma for each A(Ο„)βˆˆΞ“A^{(\tau)}\in\Gamma, and Ξ βŠ‚β‹(π•Š+1)\Pi\subset\bigvee(\mathbb{S}+1). Then (β„‹Ξ³,Θ,πš€)⊒cβ‹„aΞ“,Ξ (ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{\diamond a}_{c}\Gamma,\Pi^{(\rho)} holds for Οƒβ‰€Οβˆˆπš€\sigma\leq\rho\in\mathtt{Q} and for ρ=𝚞\rho=\mathtt{u}.

Proof.  By induction on aa. We obtain 𝗄​(Ξ )βŠ‚EΟƒπ•ŠβŠ‚EΟπ•Š\mathsf{k}(\Pi)\subset E^{\mathbb{S}}_{\sigma}\subset E^{\mathbb{S}}_{\rho}. Let A(Οƒ)∈Π(Οƒ)A^{(\sigma)}\in\Pi^{(\sigma)} and A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J}. If AβˆˆΞ”0​(π•Š)A\in\Delta_{0}(\mathbb{S}), then [ρ]​J=[Οƒ]​J=J=[𝚞]​J[\rho]J=[\sigma]J=J=[\mathtt{u}]J holds by 𝗄​(A)βŠ‚EΟƒπ•Šβˆ©π•Š=σ≀ρ\mathsf{k}(A)\subset E^{\mathbb{S}}_{\sigma}\cap\mathbb{S}=\sigma\leq\rho. Let A∈Σ1​(π•Š)A\in\Sigma_{1}(\mathbb{S}). Then [Οƒ]​J=T​m​(Οƒ)βŠ‚T​m​(ρ)=[ρ]​J[\sigma]J=Tm(\sigma)\subset Tm(\rho)=[\rho]J when ρ∈ΨN\rho\in\Psi_{N}, and [Οƒ]​J=T​m​(Οƒ)βŠ‚T​m​(π•Š)=[𝚞]​J=J[\sigma]J=Tm(\sigma)\subset Tm(\mathbb{S})=[\mathtt{u}]J=J. Note that each cut formula as well as minor formulas of (Σ​(Ξ©)​-rfl)(\Sigma(\Omega)\mbox{{\rm-rfl}}) is a Ξ”0​(π•Š)\Delta_{0}(\mathbb{S})-formula since cβ‰€π•Šc\leq\mathbb{S}. β–‘\Box

Lemma 3.43

Let (β„‹Ξ³,Θ,πš€)βŠ’π•Š+1,π•Š+1,Nβˆ’1,Ξ›0,Ξ³0aΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{\mathbb{S}+1,\mathbb{S}+1,N-1,\Lambda_{0},\gamma_{0}}\Gamma with γ≀γ0\gamma\leq\gamma_{0}.

Then (β„‹Ξ³1,Θ(πš€),πš€)βŠ’π•Šβ‹„Ο‰aΞ“(\mathcal{H}_{\gamma_{1}},\Theta(\mathtt{Q}),\mathtt{Q})\vdash^{\diamond\omega^{a}}_{\mathbb{S}}\Gamma holds for Ξ³1=Ξ³0+π•Š\gamma_{1}=\gamma_{0}+\mathbb{S} and Ξ˜β€‹(πš€)=ΘβˆͺEπ•Šβ€‹(Θ)βˆͺb​(πš€)\Theta(\mathtt{Q})=\Theta\cup E_{\mathbb{S}}(\Theta)\cup b(\mathtt{Q}), where Eπ•Šβ€‹(Θ):=⋃{Eπ•Šβ€‹(Ξ±):α∈Θ}E_{\mathbb{S}}(\Theta):=\bigcup\{E_{\mathbb{S}}(\alpha):\alpha\in\Theta\} and b​(πš€)={b​(ρ):Οβˆˆπš€}b(\mathtt{Q})=\{b(\rho):\rho\in\mathtt{Q}\}.

Proof.  By induction on aa. We have (31) by (10). In the proof let us write (β„‹Ξ³,Θ,πš€)βŠ’π•Š+1aΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{\mathbb{S}+1}\Gamma for (β„‹Ξ³,Θ,πš€)βŠ’π•Š+1,π•Š+1,Nβˆ’1,Ξ›0,Ξ³0aΞ“(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a}_{\mathbb{S}+1,\mathbb{S}+1,N-1,\Lambda_{0},\gamma_{0}}\Gamma.
Case 1. Consider first the case when the last inference is a (c​u​t)(cut): We have (β„‹Ξ³,Θ,πš€)βŠ’π•Š+1a0Ξ“,Β¬C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{\mathbb{S}+1}\Gamma,\lnot C^{(\rho)} and (β„‹Ξ³,Θ,πš€)βŠ’π•Š+1a0Ξ“,C(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{\mathbb{S}+1}\Gamma,C^{(\rho)} for ρ=Οπš€\rho=\rho_{\mathtt{Q}}, a0<aa_{0}<a and rk​(C)β‰€π•Š\mathrm{rk}(C)\leq\mathbb{S}. IH yields (β„‹Ξ³1,Θ(πš€),πš€)βŠ’π•Šβ‹„Ο‰a0Ξ“,Β¬C(ρ)(\mathcal{H}_{\gamma_{1}},\Theta(\mathtt{Q}),\mathtt{Q})\vdash^{\diamond\omega^{a_{0}}}_{\mathbb{S}}\Gamma,\lnot C^{(\rho)} and (β„‹Ξ³1,Θ(πš€),πš€)βŠ’π•Šβ‹„Ο‰a0Ξ“,C(ρ)(\mathcal{H}_{\gamma_{1}},\Theta(\mathtt{Q}),\mathtt{Q})\vdash^{\diamond\omega^{a_{0}}}_{\mathbb{S}}\Gamma,C^{(\rho)}. By Reduction 3.40 we obtain (β„‹Ξ³1,Θ(πš€),πš€)βŠ’π•Šβ‹„Ο‰aΞ“(\mathcal{H}_{\gamma_{1}},\Theta(\mathtt{Q}),\mathtt{Q})\vdash^{\diamond\omega^{a}}_{\mathbb{S}}\Gamma for Ο‰a0β‹…2<Ο‰a\omega^{a_{0}}\cdot 2<\omega^{a}.
Case 2. Second consider the case when the last inference is a degenerated (rfl​(ρ,e,f))({\rm rfl}(\rho,e,f)): We have a0<aa_{0}<a, ρ=Οπš€\rho=\rho_{\mathtt{Q}}, S​CΛ​(f)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]SC_{\Lambda}(f)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}], (β„‹Ξ³,Θ,πš€)βŠ’π•Š+1a0Ξ“,¬δ(ρ)(\mathcal{H}_{\gamma},\Theta,\mathtt{Q})\vdash^{a_{0}}_{\mathbb{S}+1}\Gamma,\lnot\delta^{(\rho)} for each Ξ΄βˆˆΞ”\delta\in\Delta. IH yields

(β„‹Ξ³1,Θ(πš€),πš€)βŠ’π•Šβ‹„Ο‰a0Ξ“,¬δ(ρ)(\mathcal{H}_{\gamma_{1}},\Theta(\mathtt{Q}),\mathtt{Q})\vdash^{\diamond\omega^{a_{0}}}_{\mathbb{S}}\Gamma,\lnot\delta^{(\rho)} (32)

On the other hand we have (β„‹Ξ³,Θβˆͺ{Οƒ},πš€βˆͺ{Οƒ})βŠ’π•Š+1a0Ξ,Ξ”(Οƒ)(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\},\mathtt{Q}\cup\{\sigma\})\vdash^{a_{0}}_{\mathbb{S}+1}\Xi,\Delta^{(\sigma)} for ΞžβŠ‚Ξ“\Xi\subset\Gamma and Ξ”βŠ‚β‹(π•Š+1)\Delta\subset\bigvee(\mathbb{S}+1), where Οƒ\sigma ranges over ordinals such that ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta) with m​(Οƒ)=fm(\sigma)=f, and Ο„β‰ Οƒ\tau\neq\sigma for each A(Ο„)βˆˆΞžβŠ‚Ξ“A^{(\tau)}\in\Xi\subset\Gamma. We have (Θβˆͺ{Οƒ})​(πš€βˆͺ{Οƒ})=Ξ˜β€‹(πš€)βˆͺ{b​(Οƒ),Οƒ}(\Theta\cup\{\sigma\})(\mathtt{Q}\cup\{\sigma\})=\Theta(\mathtt{Q})\cup\{b(\sigma),\sigma\}.

We have Ξ³0≀ν=b​(ρ)<Ξ³0+π•Š\gamma_{0}\leq\nu=b(\rho)<\gamma_{0}+\mathbb{S} by Definition 3.25.2 and S​CΛ​(f)βŠ‚β„‹Ξ³β€‹[Θ∩EΟπ•Š]βŠ‚EΟπ•ŠSC_{\Lambda}(f)\subset\mathcal{H}_{\gamma}[\Theta\cap E^{\mathbb{S}}_{\rho}]\subset E^{\mathbb{S}}_{\rho}. Furthermore {ρ,Ξ½}βˆͺEπ•Šβ€‹(Θ)βŠ‚Ξ˜β€‹(πš€)\{\rho,\nu\}\cup E_{\mathbb{S}}(\Theta)\subset\Theta(\mathtt{Q}) by (8). Let Οƒ=ψρf​(Ξ½+Ξ±)\sigma=\psi_{\rho}^{f}(\nu+\alpha) for Ξ±=max⁑({1}βˆͺ(Eπ•Šβ€‹(Θ)∩EΟπ•Š))\alpha=\max(\{1\}\cup(E_{\mathbb{S}}(\Theta)\cap E^{\mathbb{S}}_{\rho})). We see Ξ½+Ξ±<Ξ³0+π•Š=Ξ³1\nu+\alpha<\gamma_{0}+\mathbb{S}=\gamma_{1} from Ξ±<π•Š\alpha<\mathbb{S}. Hence {b​(Οƒ),Οƒ}βŠ‚β„‹Ξ³1​[Ξ˜β€‹(πš€)]\{b(\sigma),\sigma\}\subset\mathcal{H}_{\gamma_{1}}[\Theta(\mathtt{Q})], ΟƒβˆˆHρ​(f,Ξ³0,Θ)\sigma\in H_{\rho}(f,\gamma_{0},\Theta) and m​(Οƒ)=fm(\sigma)=f.

(β„‹Ξ³1,Θ(πš€),πš€βˆͺ{Οƒ})βŠ’π•Šβ‹„Ο‰a0Ξ,Ξ”(Οƒ)(\mathcal{H}_{\gamma_{1}},\Theta(\mathtt{Q}),\mathtt{Q}\cup\{\sigma\})\vdash^{\diamond\omega^{a_{0}}}_{\mathbb{S}}\Xi,\Delta^{(\sigma)} follows from IH, and by Lemma 3.42

(β„‹Ξ³1,Θ(πš€),πš€)βŠ’π•Šβ‹„Ο‰a0Ξ,Ξ”(ρ)(\mathcal{H}_{\gamma_{1}},\Theta(\mathtt{Q}),\mathtt{Q})\vdash^{\diamond\omega^{a_{0}}}_{\mathbb{S}}\Xi,\Delta^{(\rho)} (33)

Let n=#​(Ξ”)n=\#(\Delta) be the number of formulas in Ξ”\Delta. (β„‹Ξ³1,Θ(πš€),πš€)βŠ’π•Šβ‹„Ο‰a0​(n+1)Ξ“(\mathcal{H}_{\gamma_{1}},\Theta(\mathtt{Q}),\mathtt{Q})\vdash^{\diamond\omega^{a_{0}}(n+1)}_{\mathbb{S}}\Gamma follows from (32), (33) and Reduction 3.40, where Ο‰a0β‹…(n+1)<Ο‰a\omega^{a_{0}}\cdot(n+1)<\omega^{a} by a0<aa_{0}<a.

Other cases are seen from IH. In (⋁)(\bigvee) with a minor formula (AΞΉ)(ρ)(A_{\iota})^{(\rho)} and A≃⋁(AΞΉ)ι∈JA\simeq\bigvee(A_{\iota})_{\iota\in J}, we obtain ι∈[ρ]​J\iota\in[\rho]J by (9). β–‘\Box

Definition 3.44

For sets Ξ“\Gamma of uncapped formulas, let

(β„‹Ξ³,Θ)⊒cβ‹„aΞ“:⇔(β„‹Ξ³,Θ,βˆ…)⊒cβ‹„aΞ“(\mathcal{H}_{\gamma},\Theta)\vdash^{\diamond a}_{c}\Gamma:\Leftrightarrow(\mathcal{H}_{\gamma},\Theta,\emptyset)\vdash^{\diamond a}_{c}\Gamma

for the empty family πš€=βˆ…\mathtt{Q}=\emptyset.

Lemma 3.45

(Uncapping) Suppose (β„‹Ξ³1,Θ,πš€)βŠ’π•Šβ‹„aΞ“(β‹…)(\mathcal{H}_{\gamma_{1}},\Theta,\mathtt{Q})\vdash^{\diamond a}_{\mathbb{S}}\Gamma^{(\cdot)} for Ξ³1=Ξ³0+π•Š\gamma_{1}=\gamma_{0}+\mathbb{S}, where Ξ“βŠ‚Ξ”0​(π•Š)\Gamma\subset\Delta_{0}(\mathbb{S}) is a set of uncapped formulas, Ξ“=⋃{Γρ:Οβˆˆπš€βˆͺ{𝚞}}\Gamma=\bigcup\{\Gamma_{\rho}:\rho\in\mathtt{Q}\cup\{\mathtt{u}\}\}, and Ξ“(β‹…)=⋃{Γρ(ρ):Οβˆˆπš€βˆͺ{𝚞}}\Gamma^{(\cdot)}=\bigcup\{\Gamma_{\rho}^{(\rho)}:\rho\in\mathtt{Q}\cup\{\mathtt{u}\}\}. Then (β„‹Ξ³1,Θ)βŠ’π•Šβ‹„aΞ“(\mathcal{H}_{\gamma_{1}},\Theta)\vdash^{\diamond a}_{\mathbb{S}}\Gamma holds.

Proof.  This is seen from Lemma 3.42. β–‘\Box

Lemma 3.46

(Collapsing) Assume Ξ˜βŠ‚β„‹Ξ³β€‹(ΟˆΞ©β€‹(Ξ³))\Theta\subset\mathcal{H}_{\gamma}(\psi_{\Omega}(\gamma)) and (β„‹Ξ³,Θ)⊒Ω+1β‹„aΞ“(\mathcal{H}_{\gamma},\Theta)\vdash^{\diamond a}_{\Omega+1}\Gamma with Ξ“βŠ‚Ξ£β€‹(Ξ©)\Gamma\subset\Sigma(\Omega). Then (β„‹a^+1,Θ)βŠ’Ξ²β‹„Ξ²Ξ“(Ξ²,Ξ©)(\mathcal{H}_{\hat{a}+1},\Theta)\vdash^{\diamond\beta}_{\beta}\Gamma^{(\beta,\Omega)} holds for a^=Ξ³+Ο‰a\hat{a}=\gamma+\omega^{a} and Ξ²=ΟˆΞ©β€‹(a^)\beta=\psi_{\Omega}(\hat{a}).

Proof.  This is seen as in [7] by induction on aa. β–‘\Box

3.8 Proof of Theorem 1.3

Let us prove Theorem 1.3. Let TNβŠ’ΞΈπ–«Ξ©T_{N}\vdash\theta^{\mathsf{L}_{\Omega}} for a Ξ£\Sigma-sentence ΞΈ\theta. By Lemma 3.20 pick an mm so that (β„‹0,βˆ…)βŠ’π•‚+1+mβˆ—π•‚β‹…2+mθ𝖫Ω(\mathcal{H}_{0},\emptyset)\vdash_{\mathbb{K}+1+m}^{*\mathbb{K}\cdot 2+m}\theta^{\mathsf{L}_{\Omega}}. Let Ξ³0:=Ο‰m+2​(𝕂+1)βˆˆβ„‹0​[βˆ…]\gamma_{0}:=\omega_{m+2}(\mathbb{K}+1)\in\mathcal{H}_{0}[\emptyset].

Cut-elimination 3.18 yields (β„‹0,βˆ…)βŠ’π•‚+1βˆ—aθ𝖫Ω(\mathcal{H}_{0},\emptyset)\vdash^{*a}_{\mathbb{K}+1}\theta^{\mathsf{L}_{\Omega}}, where a=Ο‰m​(𝕂⋅2+m)a=\omega_{m}(\mathbb{K}\cdot 2+m). Let a^=Ο‰a<Ξ³0\hat{a}=\omega^{a}<\gamma_{0} and Ξ›0=Ξ²0=Οˆπ•‚β€‹(a^)\Lambda_{0}=\beta_{0}=\psi_{\mathbb{K}}(\hat{a}). We obtain (β„‹a^+1,βˆ…)βŠ’Ξ›0βˆ—Ξ›0θ𝖫Ω(\mathcal{H}_{\hat{a}+1},\emptyset)\vdash^{*\Lambda_{0}}_{\Lambda_{0}}\theta^{\mathsf{L}_{\Omega}} by Collapsing 3.21.

In what follows each finite function is an f:Λ→Γ​(Ξ›)f:\Lambda\to\Gamma(\Lambda) with Ξ›=Γ​(Ξ›0)\Lambda=\Gamma(\Lambda_{0}). Let ρ0=Οˆπ•Šg0​(Ξ³0)βˆˆβ„‹Ξ³0+π•Šβ€‹[βˆ…]\rho_{0}=\psi_{\mathbb{S}}^{g_{0}}(\gamma_{0})\in\mathcal{H}_{\gamma_{0}+\mathbb{S}}[\emptyset] with supp​(g0)={Ξ›0}\mathrm{supp}(g_{0})=\{\Lambda_{0}\} with s​(ρ0)=Ξ›0>π•Š+1s(\rho_{0})=\Lambda_{0}>\mathbb{S}+1 and g0​(Ξ›0)=Ξ›β‹…3g_{0}(\Lambda_{0})=\Lambda\cdot 3. Capping 3.34 yields (β„‹a^+1,{ρ0},πš€0)βŠ’Ξ›0,Ξ›0,0,Ξ›0,Ξ³0Ξ›0β‹…2(θ𝖫Ω)(ρ0)(\mathcal{H}_{\hat{a}+1},\{\rho_{0}\},\mathtt{Q}_{0})\vdash_{\Lambda_{0},\Lambda_{0},0,\Lambda_{0},\gamma_{0}}^{\Lambda_{0}\cdot 2}(\theta^{\mathsf{L}_{\Omega}})^{(\rho_{0})} for πš€0={ρ0}\mathtt{Q}_{0}=\{\rho_{0}\}. In the following we write ⊒c,d,ma\vdash^{a}_{c,d,m} for ⊒c,d,m,Ξ›0,Ξ³0a\vdash^{a}_{c,d,m,\Lambda_{0},\gamma_{0}}, and let Ο€m=Ξ©π•Š+Nβˆ’m\pi_{m}=\Omega_{\mathbb{S}+N-m} for m≀Nm\leq N and 𝕂=Ο€0\mathbb{K}=\pi_{0}.

We have (β„‹b0+1,{ρ0},πš€0)⊒β0,Ξ²0,0a0(θ𝖫Ω)(ρ0)(\mathcal{H}_{b_{0}+1},\{\rho_{0}\},\mathtt{Q}_{0})\vdash_{\beta_{0},\beta_{0},0}^{a_{0}}(\theta^{\mathsf{L}_{\Omega}})^{(\rho_{0})} for b0=a^b_{0}=\hat{a}, Ξ²0=Ξ›0\beta_{0}=\Lambda_{0} and a0=Ξ›0β‹…2a_{0}=\Lambda_{0}\cdot 2. We obtain (β„‹b0+1,{ρ0},πš€0)βŠ’Ο€1+1,Ξ²0,0c(θ𝖫Ω)(ρ0)(\mathcal{H}_{b_{0}+1},\{\rho_{0}\},\mathtt{Q}_{0})\vdash_{\pi_{1}+1,\beta_{0},0}^{c}(\theta^{\mathsf{L}_{\Omega}})^{(\rho_{0})} for c=φβ0​(a0)<Ξ›c=\varphi_{\beta_{0}}(a_{0})<\Lambda by Cut-elimination 3.32. We have Ο€1+1<Ξ›0=s​(ρ0)\pi_{1}+1<\Lambda_{0}=s(\rho_{0}). Let g1=hΟ€1+1​(g0;φβ0​(c))g_{1}=h^{\pi_{1}+1}(g_{0};\varphi_{\beta_{0}}(c)) and ρ1=ψρ0g1​(Ξ³0+1)∈Hρ0​(g1,Ξ³0,βˆ…)\rho_{1}=\psi_{\rho_{0}}^{g_{1}}(\gamma_{0}+1)\in H_{\rho_{0}}(g_{1},\gamma_{0},\emptyset). Also let πš€1=πš€[ρ1/ρ0]={ρ1}\mathtt{Q}_{1}=\mathtt{Q}^{[\rho_{1}/\rho_{0}]}=\{\rho_{1}\}. Recapping 3.35 then yields for s​(ρ1)=Ο€1+1s(\rho_{1})=\pi_{1}+1, (β„‹b0+1,{ρ1},πš€1)βŠ’Ο€1+1,Ξ²0,0φβ0​(c)(θ𝖫Ω)(ρ1)(\mathcal{H}_{b_{0}+1},\{\rho_{1}\},\mathtt{Q}_{1})\vdash_{\pi_{1}+1,\beta_{0},0}^{\varphi_{\beta_{0}}(c)}(\theta^{\mathsf{L}_{\Omega}})^{(\rho_{1})}. We obtain Οπš€1=ρ1βˆˆβ„‹Ξ³1​[βˆ…]\rho_{\mathtt{Q}_{1}}=\rho_{1}\in\mathcal{H}_{\gamma_{1}}[\emptyset] and φβ0​(c)<Ξ›\varphi_{\beta_{0}}(c)<\Lambda. Let Ξ·1=o​n0​(πš€1)=g1​(Ο€1+1)\eta_{1}=on_{0}(\mathtt{Q}_{1})=g_{1}(\pi_{1}+1). Lemma 3.37 yields (β„‹b0+1,{ρ1},πš€1)βŠ’Ο€1+1,Ο€1+1,0c1(θ𝖫Ω)(ρ1)(\mathcal{H}_{b_{0}+1},\{\rho_{1}\},\mathtt{Q}_{1})\vdash^{c_{1}}_{\pi_{1}+1,\pi_{1}+1,0}(\theta^{\mathsf{L}_{\Omega}})^{(\rho_{1})} for c1=φβ0+Ξ·1​(φβ0​(c))c_{1}=\varphi_{\beta_{0}+\eta_{1}}(\varphi_{\beta_{0}}(c)).

Collapsing 3.33 yields (β„‹b1+1,{ρ1},πš€1)⊒β1,Ξ²1,1a1(θ𝖫Ω)(ρ1)(\mathcal{H}_{b_{1}+1},\{\rho_{1}\},\mathtt{Q}_{1})\vdash^{a_{1}}_{\beta_{1},\beta_{1},1}(\theta^{\mathsf{L}_{\Omega}})^{(\rho_{1})} for a1=Ξ²1=ΟˆΟ€1​(b1)a_{1}=\beta_{1}=\psi_{\pi_{1}}(b_{1}) and b1=b0+Ο‰c1b_{1}=b_{0}+\omega^{c_{1}}.

Let Ξ²0=Ξ›0\beta_{0}=\Lambda_{0}, a0=Ξ›0β‹…2a_{0}=\Lambda_{0}\cdot 2, b0=Ο‰ab_{0}=\omega^{a}, and πš€0={ρ0}\mathtt{Q}_{0}=\{\rho_{0}\} with ρ0=Οˆπ•Šg0​(Ξ³0)\rho_{0}=\psi_{\mathbb{S}}^{g_{0}}(\gamma_{0}). For m<Nm<N, let gm+1=hΟ€m+1+1​(gm;φβm​(φβm​(am)))g_{m+1}=h^{\pi_{m+1}+1}(g_{m};\varphi_{\beta_{m}}(\varphi_{\beta_{m}}(a_{m}))), ρm+1=ψρmgm+1​(Ξ³0+m+1)\rho_{m+1}=\psi_{\rho_{m}}^{g_{m+1}}(\gamma_{0}+m+1), πš€m+1={ρm+1}\mathtt{Q}_{m+1}=\{\rho_{m+1}\}, Ξ·m+1=o​nm​(πš€m+1)\eta_{m+1}=on_{m}(\mathtt{Q}_{m+1}), and cm+1=φβm+Ξ·m+1​(φβm​(φβm​(am)))c_{m+1}=\varphi_{\beta_{m}+\eta_{m+1}}(\varphi_{\beta_{m}}(\varphi_{\beta_{m}}(a_{m}))). Also let am+1=Ξ²m+1=ΟˆΟ€m+1​(bm+1)a_{m+1}=\beta_{m+1}=\psi_{\pi_{m+1}}(b_{m+1}), and bm+1=bm+Ο‰cm+1b_{m+1}=b_{m}+\omega^{c_{m+1}} for m<Nβˆ’1m<N-1.

We see inductively that am,Ξ²m<Ξ›a_{m},\beta_{m}<\Lambda, bm,cm<Ξ³0b_{m},c_{m}<\gamma_{0}, {am,bm,cm,Ξ²m,Ξ·m,ρm}βˆͺS​CΛ​(gm)βŠ‚β„‹Ξ³0+π•Šβ€‹[βˆ…]\{a_{m},b_{m},c_{m},\beta_{m},\eta_{m},\rho_{m}\}\cup SC_{\Lambda}(g_{m})\subset\mathcal{H}_{\gamma_{0}+\mathbb{S}}[\emptyset], and for each m<Nβˆ’1m<N-1, (β„‹bm+1,{ρm},πš€m)⊒βm,Ξ²m,mam(θ𝖫Ω)(ρm)(\mathcal{H}_{b_{m}+1},\{\rho_{m}\},\mathtt{Q}_{m})\vdash^{a_{m}}_{\beta_{m},\beta_{m},m}(\theta^{\mathsf{L}_{\Omega}})^{(\rho_{m})}. We obtain (β„‹bNβˆ’1+1,{ρN},πš€N)βŠ’Ο€N+1,Ο€N+1,Nβˆ’1cN(θ𝖫Ω)(ρN)(\mathcal{H}_{b_{N-1}+1},\{\rho_{N}\},\mathtt{Q}_{N})\vdash^{c_{N}}_{\pi_{N}+1,\pi_{N}+1,N-1}(\theta^{\mathsf{L}_{\Omega}})^{(\rho_{N})} for Ο€N=π•Š\pi_{N}=\mathbb{S}.

Let Ξ³1=Ξ³0+π•Š\gamma_{1}=\gamma_{0}+\mathbb{S}. By Lemma 3.43 we obtain (β„‹Ξ³1,βˆ…,πš€N)βŠ’π•Šβ‹„cN(θ𝖫Ω)(ρN)(\mathcal{H}_{\gamma_{1}},\emptyset,\mathtt{Q}_{N})\vdash^{\diamond c_{N}}_{\mathbb{S}}(\theta^{\mathsf{L}_{\Omega}})^{(\rho_{N})}, where Ο‰cN=cN\omega^{c_{N}}=c_{N} and Ξ˜β€‹(πš€N)={ρN,Ξ³0+N}βŠ‚β„‹Ξ³1​[βˆ…]\Theta(\mathtt{Q}_{N})=\{\rho_{N},\gamma_{0}+N\}\subset\mathcal{H}_{\gamma_{1}}[\emptyset] for Θ={ρN}\Theta=\{\rho_{N}\}. Uncapping 3.45 yields (β„‹Ξ³1,βˆ…,βˆ…)βŠ’π•Šβ‹„cNθ𝖫Ω(\mathcal{H}_{\gamma_{1}},\emptyset,\emptyset)\vdash^{\diamond c_{N}}_{\mathbb{S}}\theta^{\mathsf{L}_{\Omega}}. In what follows we write (β„‹Ξ³1,βˆ…)(\mathcal{H}_{\gamma_{1}},\emptyset) for (β„‹Ξ³1,βˆ…,βˆ…)(\mathcal{H}_{\gamma_{1}},\emptyset,\emptyset).

By Cut-elimination 3.41 we obtain (β„‹Ξ³1,βˆ…)⊒Ω+1β‹„dθ𝖫Ω(\mathcal{H}_{\gamma_{1}},\emptyset)\vdash^{\diamond d}_{\Omega+1}\theta^{\mathsf{L}_{\Omega}} for d=ΞΈπ•Šβ€‹(cN)<𝕂d=\theta_{\mathbb{S}}(c_{N})<\mathbb{K}. Collapsing 3.46 then yields (β„‹Ξ³1+d+1,βˆ…)βŠ’Ξ΄β‹„Ξ΄ΞΈπ–«Ξ΄(\mathcal{H}_{\gamma_{1}+d+1},\emptyset)\vdash^{\diamond\delta}_{\delta}\theta^{\mathsf{L}_{\delta}} for Ξ΄=ΟˆΞ©β€‹(Ξ³1+d)<ΟˆΞ©β€‹(Ο‰m+2​(𝕂+1))\delta=\psi_{\Omega}(\gamma_{1}+d)<\psi_{\Omega}(\omega_{m+2}(\mathbb{K}+1)) with Ο‰d=d\omega^{d}=d. We finally obtain (β„‹Ξ³1+d+1,βˆ…)⊒0⋄θδ​(Ξ΄)θ𝖫δ(\mathcal{H}_{\gamma_{1}+d+1},\emptyset)\vdash^{\diamond\theta_{\delta}(\delta)}_{0}\theta^{\mathsf{L}_{\delta}} by Cut-elimination 3.41. We conclude Lδ⊧θL_{\delta}\models\theta by induction up to θδ​(Ξ΄)\theta_{\delta}(\delta).

Corollary 3.47

π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V) is conservative over I​Σ1+{T​I​(Ξ±,Ξ£10​(Ο‰)):Ξ±<ΟˆΞ©β€‹(Ξ©π•Š+Ο‰)}{\rm I}\Sigma_{1}+\{TI(\alpha,\Sigma^{0}_{1}(\omega)):\alpha<\psi_{\Omega}(\Omega_{\mathbb{S}+\omega})\} with respect to Ξ 20​(Ο‰)\Pi^{0}_{2}(\omega)-arithmetic sentences, and each provably computable function in π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V) is defined by Ξ±\alpha-recursion for an Ξ±<ΟˆΞ©β€‹(Ξ©π•Š+Ο‰)\alpha<\psi_{\Omega}(\Omega_{\mathbb{S}+\omega}).

Proof.  Let ΞΈ\theta be a Ξ 20​(Ο‰)\Pi^{0}_{2}(\omega)-arithmetic sentence on Ο‰\omega, and assume that π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V) proves ΞΈ\theta. Pick an N>0N>0 such that TN⊒θT_{N}\vdash\theta. Theorem 1.3 shows that ΞΈ\theta is true. The proof of Theorem 1.3 is seen to be formalizable in an intuitionistic fixed point theory π–₯𝗂𝖷i​(T){\sf FiX}^{i}(T) over an extension T=𝖯𝖠+{T​I​(Ξ±):Ξ±<ΟˆΞ©β€‹(Ξ΅Ξ©π•Š+N+1)}T={\sf PA}+\{TI(\alpha):\alpha<\psi_{\Omega}(\varepsilon_{\Omega_{\mathbb{S}+N}+1})\} of the first order arithmetic PA, where transfinite induction schema applied to arithmetical formulas with fixed point predicates is available up to each Ξ±<ΟˆΞ©β€‹(Ξ΅Ξ©π•Š+N+1)\alpha<\psi_{\Omega}(\varepsilon_{\Omega_{\mathbb{S}+N}+1}) in the extension TT. From [1] we see that π–₯𝗂𝖷i​(T){\sf FiX}^{i}(T) is a conservative extension of TT. Therefore T⊒θT\vdash\theta. Since the ordinal ΟˆΞ©β€‹(Ξ©π•Š+Ο‰)\psi_{\Omega}(\Omega_{\mathbb{S}+\omega}) is an epsilon number, we see that ΞΈ\theta is provable in I​Σ1+{T​I​(Ξ±,Ξ£10​(Ο‰)):Ξ±<ΟˆΞ©β€‹(Ξ©π•Š+Ο‰)}{\rm I}\Sigma_{1}+\{TI(\alpha,\Sigma^{0}_{1}(\omega)):\alpha<\psi_{\Omega}(\Omega_{\mathbb{S}+\omega})\}.

Conversely we see that π–ͺ𝖯​ℓr+(Mβ‰ΊΞ£1V){\sf KP}\ell^{r}+(M\prec_{\Sigma_{1}}V) proves T​I​(Ξ±,Ξ£10​(Ο‰))TI(\alpha,\Sigma^{0}_{1}(\omega)) up to each Ξ±<ΟˆΞ©β€‹(Ξ©π•Š+Ο‰)\alpha<\psi_{\Omega}(\Omega_{\mathbb{S}+\omega}) from Theorem 1.4 in [5]. β–‘\Box

References

  • [1] T. Arai, Quick cut-elimination for strictly positive cuts, Ann. Pure Appl. Logic 162 (2011), 807-815.
  • [2] T. Arai, A sneak preview of proof theory of ordinals, Ann. Japan Asso. Phil. Sci. 20 (2012), 29-47.
  • [3] T. Arai, A simplified ordinal analysis of first-order reflection, Jour. Symb. Logic 85 (2020), 1163-1185.
  • [4] T. Arai, Ordinal Analysis with an Introduction to Proof Theory, (Springer, Singapore, 2020)
  • [5] T. Arai, Wellfoundedness proof with the maximal distinguished set, Arch. Math. Logic 62 (2023), 333-357.
  • [6] J. Barwise, Admissible sets and structures, Springer, Berlin, 1975.
  • [7] W. Buchholz, A simplified version of local predicativity, in Proof Theory, eds. P. H. G. Aczel, H. Simmons and S. S. Wainer (Cambridge UP,1992), pp. 115–147.
  • [8] G. JΓ€ger, Theories for admissible sets, a unifying approach to proof theory, Studies in Proof Theory Lecture Notes vol.2, Bibliopolis, Napolis, 1986.
  • [9] M. Rathjen, Proof theory of reflection, Ann. Pure Appl. Logic 68 (1994) 181–224.
  • [10] M. Rathjen, An ordinal analysis of parameter free Ξ 21\Pi^{1}_{2}-comprehension, Arch. Math. Logic 44 (2005), 263-362.