This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An inverse theorem for Generalized Arithmetic Progression with mild multiplicative property

Ernie Croot and Junzhe Mao School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 USA [email protected] School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 USA [email protected]
Abstract.

In this paper we prove a structural theorem for generalized arithmetic progressions in 𝔽p\mathbb{F}_{p} which contain a large product set of two other progressions.

1. Introduction

Let pp be a prime number, 𝔽p\mathbb{F}_{p} be the finite field with pp elements. Recall that a generalized arithmetic progression (GAP) of rank dd in 𝔽p\mathbb{F}_{p} is a set of the form

B=x0+{βˆ‘i=1dai​xi:ai∈[0,Niβˆ’1]}B=x_{0}+\{\sum_{i=1}^{d}a_{i}x_{i}:a_{i}\in[0,N_{i}-1]\}

for some elements x0,x1,…,xdβˆˆπ”½px_{0},x_{1},\ldots,x_{d}\in\mathbb{F}_{p} and positive integers 2≀N1,…,Nd≀p.2\leq N_{1},\ldots,N_{d}\leq p. We say BB is proper if |B|=N1​N2​…​Nd.|B|=N_{1}N_{2}\ldots N_{d}. GAPs play an important role in additive combinatorics, as they exhibit an almost periodic behavior under addition. Another example of additively structured sets is Bohr sets. Given Ξ“βŠ‚π”½p\Gamma\subset\mathbb{F}_{p} and Ο΅>0,\epsilon>0, the Bohr set B​(Ξ“,Ο΅)B(\Gamma,\epsilon) is defined as

B​(Ξ“,Ο΅)={xβˆˆπ”½p:β€–x​rpβ€–<Ο΅,βˆ€rβˆˆΞ“}.B(\Gamma,\epsilon)=\left\{x\in\mathbb{F}_{p}:\left\|\frac{xr}{p}\right\|<\epsilon,\forall r\in\Gamma\right\}.

Here βˆ₯β‹…βˆ₯\left\|\cdot\right\| denotes the distance to the nearest integer. One can think of Bohr sets as approximate subspaces or (additive) subgroups in 𝔽p\mathbb{F}_{p}. It turns out that GAPs and Bohr sets are closely related. Using the geometry of numbers, one can show that any Bohr set B​(Ξ“,Ο΅)B(\Gamma,\epsilon) must contain a large symmetric proper GAP with bounded rank. This fact has been used to prove a foundational result in additive combinatorics, namely Freiman’s theorem: given a finite set AβŠ‚π”½pA\subset\mathbb{F}_{p} and some C>0,C>0, if |A+A|≀C​|A|,|A+A|\leq C|A|, where

A+A={a1+a2:a1,a2∈A},A+A=\{a_{1}+a_{2}:a_{1},a_{2}\in A\},

then there exists a GAP BB such that AβŠ‚BA\subset B and |B|β‰ͺC|A||B|\ll_{C}|A|. Here we use the Vinogradov notation β‰ͺC\ll_{C} meaning that there is some constant K>0K>0 depending on CC so that |B|≀K​|A|.|B|\leq K|A|. Freiman’s theorem tells us that GAPs are the β€œstandard model” for sets with rich additive structures. For more properties and applications of Bohr sets and GAPs, we refer the reader to [9].

One of the reasons people are concerned about these additively structured sets is the sum-product phenomenon, which basically says no set can have rich additive structure and multiplicative structure simultaneously. For example, in [3] ErdΓΆs and SzemerΓ©di conjectured that if a set AβŠ‚β„€A\subset\mathbb{Z} satisfies

|A+A|≀K​|A||A+A|\leq K|A|

for some constant K>0,K>0, then for any Ο΅>0,\epsilon>0, |A​A|≫|A|2βˆ’Ο΅|AA|\gg|A|^{2-\epsilon}, where

A​A={a1​a2:a1,a2∈A}.AA=\{a_{1}a_{2}:a_{1},a_{2}\in A\}.

This has been confirmed for AβŠ‚β„A\subset\mathbb{R} by a result of Elekes and Ruzsa [2], and recently verified for thin sets AβŠ‚π”½pA\subset\mathbb{F}_{p} by a result of Kerr, Mello and Shparlinski [6]. The case when AβŠ‚π”½pA\subset\mathbb{F}_{p} and |A|∼p1/2|A|\sim p^{1/2} remains open. We refer the reader to [7, 8] for some relevant results. To prove such an estimate, a common method is to bound the multiplicative energy E​(A)E(A) of A,A, defined as the number of solutions to the equation

a1​a2=a3​a4,a1,a2,a3,a4∈A.a_{1}a_{2}=a_{3}a_{4},\ a_{1},a_{2},a_{3},a_{4}\in A.

By Freiman’s theorem, this reduces to bounding the multiplicative energy of GAPs in 𝔽p.\mathbb{F}_{p}. Better bounds on the multiplicative energy also have many applications in number theory. For example, Chang [1] used a nontrivial estimate for the multiplicative energy to give a Burgess-type bound for character sums over proper GAPs. Following a similar approach Hanson [4] generalized this to character sums over regular Bohr sets. In fact, if one can prove the optimal bound

E​(B)β‰ͺ|B|2+o​(1)E(B)\ll|B|^{2+o(1)}

for any proper GAP BβŠ‚π”½p,B\subset\mathbb{F}_{p}, then for any nonprincipal Dirichlet character Ο‡\chi of 𝔽p,\mathbb{F}_{p}, Burgess’s bound can be fully generalized to

βˆ‘n∈Bχ​(n)=O​(pβˆ’Ξ΄β€‹|B|)\sum_{n\in B}\chi(n)=O(p^{-\delta}|B|)

whenever |B|β‰₯p1/4+Ο΅.|B|\geq p^{1/4+\epsilon}. With current techniques one can prove near-optimal bounds on the multiplicative energy of GAPs with some extra structure. For example, Kerr [5] proved the following result:

Theorem 1 (Kerr).

Let PβŠ‚π”½pP\subset\mathbb{F}_{p} be a GAP given by

P=x0+{βˆ‘i=1dai​xi:ai∈[1,N]}P=x_{0}+\{\sum_{i=1}^{d}a_{i}x_{i}:a_{i}\in[1,N]\}

and suppose

Pβ€²={βˆ‘i=1dai​xi:|ai|≀N2}P^{\prime}=\{\sum_{i=1}^{d}a_{i}x_{i}:|a_{i}|\leq N^{2}\}

is proper. Then E​(P)β‰ͺ|P|2​(log⁑N)2​d+1.E(P)\ll|P|^{2}(\log N)^{2d+1}.

The above discussion suggests that we can only hope for some mild multiplicative structure in a GAP or Bohr set. Let’s consider

B={a+b​t:|a|,|b|≀N},B=\{a+bt:|a|,|b|\leq N\},

which is a symmetric GAP. Assume tt satisfies a quadratic polynomial equation mod pp

c0+c1​t+t2=0c_{0}+c_{1}t+t^{2}=0

with ciβˆˆβ„€c_{i}\in\mathbb{Z} bounded by some constant CC independent of pp . Let A={aβ€²+b′​t:|aβ€²|,|bβ€²|≀12​C​N1/2},A=\{a^{\prime}+b^{\prime}t:|a^{\prime}|,|b^{\prime}|\leq\frac{1}{2C}N^{1/2}\}, then obviously AA satisfies the condition of Kerr’s theorem. As a result E​(A)E(A) is small and AA does not possess a rich multiplicative structure. On the other hand, it’s easy to check that A​AβŠ‚B.AA\subset B. This set BB gives us an example of a GAP with some mild multiplicative properties, i.e. containing a large product set. It raises the following question: if a GAP BB contains a product set A​AAA with |B|1/2β‰ͺ|A|β‰ͺ|B|1/2|B|^{1/2}\ll|A|\ll|B|^{1/2} and AA also a GAP, what can we say about BB? In this paper we show that under some natural assumptions on AA and B,B, the generators of BB must be given by the roots of some low-height, low-degree polynomials.

Notations. For any element xβˆˆπ”½p,x\in\mathbb{F}_{p}, we define its integer height

|x|=min⁑{|a|:aβˆˆβ„€,a≑x(modp)}.|x|=\min{\{|a|:a\in\mathbb{Z},\ a\equiv x\pmod{p}\}}.

For a polynomial fβˆˆβ„€β€‹[x],f\in\mathbb{Z}[x], let f¯​(x){\overline{f}}(x) denote the projection of f​(x)f(x) into 𝔽p​[x]{\mathbb{F}}_{p}[x], let H​(f)H(f) denote the height of f,f, which is the maximum of the absolute value of coefficients of ff. We use Mn​(𝔽p)M_{n}(\mathbb{F}_{p}) to denote the ring of nΓ—nn\times n matrices over 𝔽p.\mathbb{F}_{p}.

For any x>0,x>0, let [x]={1,2,…,⌊xβŒ‹},[x]=\{1,2,\ldots,\lfloor x\rfloor\}, where ⌊xβŒ‹\lfloor x\rfloor denote the integer part of x.x.

Given xβˆˆπ”½p,AβŠ‚π”½p,x\in\mathbb{F}_{p},A\subset\mathbb{F}_{p}, we write the dilation of AA by xx as xβ‹…A={x​a:a∈A}.x\cdot A=\{xa:a\in A\}.

For any nβˆˆβ„•,AβŠ‚π”½p,n\in\mathbb{N},A\subset\mathbb{F}_{p}, we write the iterated sumset as

n​A=A+A+β‹―+A⏟n\begin{matrix}nA=\underbrace{A+A+\cdots+A}\\ \hskip 25.60747ptn\end{matrix}

2. Main Results

We first consider a simple case, namely a proper GAP BB of rank 22 and size at most o​(p2/3)o(p^{2/3}). We show that if BB contains the product set of a sub-GAP AA of size |A|β‰ˆ|B|1/2|A|\approx|B|^{1/2}, then the generators of BB must be β€œalgebraic” in the sense that they are the roots of some low-height quadratic polynomials.

Theorem 2.

Let 0<c<1,N=N​(p)βˆˆβ„•0<c<1,N=N(p)\in\mathbb{N} with limpβ†’βˆžN​(p)=∞\lim_{p\to\infty}N(p)=\infty, N=o​(p1/3)N=o(p^{1/3}), B={a+b​t:|a|,|b|≀N}βŠ‚π”½pB=\{a+bt:|a|,|b|\leq N\}\subset\mathbb{F}_{p} be proper and |B|=o​(p2/3).|B|=o(p^{2/3}). Suppose A={aβ€²+b′​t:|aβ€²|,|bβ€²|≀c​N1/2}A=\{a^{\prime}+b^{\prime}t:|a^{\prime}|,|b^{\prime}|\leq cN^{1/2}\} satisfies A​AβŠ‚B.AA\subset B. Then there is a constant CC depending only on cc so that when pp is sufficiently large, there exists some quadratic polynomial fβˆˆβ„€β€‹[x]βˆ–{0}f\in\mathbb{Z}[x]\setminus\{0\} with H​(f)≀CH(f)\leq C and f¯​(t)=0\overline{f}(t)=0 in 𝔽p{\mathbb{F}}_{p}.

Proof.

Since t2∈A​AβŠ‚B,t^{2}\in AA\subset B, we have

(1) t2=a0+b0​tt^{2}=a_{0}+b_{0}t

for some |a0|,|b0|≀N.|a_{0}|,|b_{0}|\leq N. We claim that for any integer m,nm,n with |m|,|n|≀5​N,|m|,|n|\leq 5N, mβˆ’n​tβ‰ 0m-nt\neq 0 in 𝔽p.\mathbb{F}_{p}. Suppose for contradiction there exists |m0|,|n0|≀5​N|m_{0}|,|n_{0}|\leq 5N so that m0βˆ’n0​t=0.m_{0}-n_{0}t=0. Without loss of generality we may assume gcd​(m0,n0)=1.{\rm gcd}(m_{0},n_{0})=1. Then (1) implies

(m0n0)2=a0+b0​m0n0(\frac{m_{0}}{n_{0}})^{2}=a_{0}+\frac{b_{0}m_{0}}{n_{0}}

and hence

(2) m02=a0​n02+b0​m0​n0​in​𝔽p.m_{0}^{2}=a_{0}n_{0}^{2}+b_{0}m_{0}n_{0}\ \text{in}\ \mathbb{F}_{p}.

By assumption |B|=(2​N+1)2=o​(p2/3),|B|=(2N+1)^{2}=o(p^{2/3}), when pp is sufficiently large we get

m02<p2,|a​n02+b​m0​n0|<p2.m_{0}^{2}<\frac{p}{2},\ |an_{0}^{2}+bm_{0}n_{0}|<\frac{p}{2}.

Thus (2) holds not only in 𝔽p\mathbb{F}_{p} but also in β„€.\mathbb{Z}. This implies n0∣m02n_{0}\mid m_{0}^{2} and hence |n0|=1,m0≑±t(modp)|n_{0}|=1,m_{0}\equiv\pm t\pmod{p}. From the fact that BB is proper we also know |m0|β‰₯|t|β‰₯N+1,|m_{0}|\geq|t|\geq N+1, therefore

m02Β±b0​m0β‰₯N+1>a0,m_{0}^{2}\pm b_{0}m_{0}\geq N+1>a_{0},

which is a contradiction to (2). This finishes the proof of the claim.

Now since λ​t2∈B\lambda t^{2}\in B for any λ∈Π:={u​v:|u|,|v|≀c​N1/2},\lambda\in\Pi:=\{uv\ :\ |u|,|v|\leq cN^{1/2}\}, consider

{(Ξ»+ΞΌ)​t2:Ξ»,μ∈Π}.\{(\lambda+\mu)t^{2}:\lambda,\mu\in\Pi\}.

This set will include w​t2wt^{2} for any integer |w|<c2​N/2.|w|<c^{2}N/2. (To see this, take b=⌊c​N1/2βŒ‹b=\lfloor cN^{1/2}\rfloor and then consider the base-bb expansion of all positive integers ≀c2​N/2\leq c^{2}N/2, and note that such integers can be written as a​b+1β‹…rab+1\cdot r, where 0≀a≀c​N1/20\leq a\leq cN^{1/2} and 0≀r≀c​N1/20\leq r\leq cN^{1/2}.) Suppose max⁑(|a0|,|b0|)β‰₯8c2,\max(|a_{0}|,|b_{0}|)\geq\frac{8}{c^{2}}, let

w=⌊2​N+1max⁑(|a0|,|b0|)βŒ‹+1,w=\left\lfloor\frac{2N+1}{\max(|a_{0}|,|b_{0}|)}\right\rfloor+1,

it is easy to check that w<c2​N/2w<c^{2}N/2 when pp is large, hence w​t2∈2​B.wt^{2}\in 2B. On the other hand, 2​N<max⁑(|w​a0|,|w​b0|)≀3​N2N<\max(|wa_{0}|,|wb_{0}|)\leq 3N. From the claim we know

w​t2=w​a0+w​b0​tβˆ‰2​B,wt^{2}=wa_{0}+wb_{0}t\notin 2B,

a contradiction. Hence max⁑(|a0|,|b0|)≀8c2\max(|a_{0}|,|b_{0}|)\leq\frac{8}{c^{2}} and equation (1) gives the polynomial we want. ∎

The proof strongly depends on the property that enlarging BB by some constant will still give us a proper GAP. We do not know if it remains true for |B|β‰₯p2/3|B|\geq p^{2/3}. This motivates us to define a special class of GAPs.

Definition 1.

A generalized arithmetic progression B=x0+{βˆ‘i=1dai​xi:ai∈[0,Niβˆ’1]}B=x_{0}+\{\sum_{i=1}^{d}a_{i}x_{i}:a_{i}\in[0,N_{i}-1]\} is called ΞΊ\kappa-isolated if there is no nonzero (a1,…,ad)βˆˆβ„€d(a_{1},...,a_{d})\in{\mathbb{Z}}^{d} with |ai|≀κ​Ni|a_{i}|\leq\kappa N_{i}, for all i=1,…,di=1,...,d, such that βˆ‘iai​xi=0.\sum_{i}a_{i}x_{i}=0.

Working with isolated GAPs we are able to generalize Theorem 2 to arbitrary rank and product set of two different GAPs. Our main result is the following:

Theorem 3.

Let 0<c,cβ€²,Ο΅<1,dβˆˆβ„•,N=N​(p)βˆˆβ„•0<c,c^{\prime},\epsilon<1,d\in\mathbb{N},N=N(p)\in\mathbb{N} with limpβ†’βˆžN​(p)=∞\lim_{p\to\infty}N(p)=\infty,

B={βˆ‘i=1dai​xi:|ai|≀N}βŠ‚π”½pB=\{\sum_{i=1}^{d}a_{i}x_{i}:|a_{i}|\leq N\}\subset\mathbb{F}_{p}

be 66-isolated with x1=1.x_{1}=1. Suppose there exist proper GAPs

A={βˆ‘i=1dai​yi:|ai|≀c​N1βˆ’Ο΅},Aβ€²={βˆ‘i=1dai​yiβ€²:|ai|≀c′​NΟ΅}A=\{\sum_{i=1}^{d}a_{i}y_{i}:|a_{i}|\leq cN^{1-\epsilon}\},\ A^{\prime}=\{\sum_{i=1}^{d}a_{i}y_{i}^{\prime}:|a_{i}|\leq c^{\prime}N^{\epsilon}\}

such that A​Aβ€²βŠ‚B.AA^{\prime}\subset B. Then there is a constant C=C​(c,cβ€²,d)C=C(c,c^{\prime},d) so that when pp is sufficiently large, for any i∈[d],i\in[d], there exists some polynomial fiβˆˆβ„€β€‹[x]βˆ–{0}f_{i}\in\mathbb{Z}[x]\setminus\{0\} of degree at most dd with H​(fi)≀CH(f_{i})\leq C and fΒ―i​(xi)=0\overline{f}_{i}(x_{i})=0 in 𝔽p{\mathbb{F}}_{p}.

To prove Theorem 3, we need the following lemma from linear algebra.

Lemma 4.

Let T=(ti​j)∈Md​(𝔽p)T=(t_{ij})\in M_{d}(\mathbb{F}_{p}). Suppose there exists Cβ‰₯1C\geq 1 so that |ti​j|≀C|t_{ij}|\leq C and TT is not invertible. Then there exists a nonzero vector (a1,a2,…,ad)βˆˆπ”½pd(a_{1},a_{2},\ldots,a_{d})\in\mathbb{F}_{p}^{d} with |ai|≀d!​Cd|a_{i}|\leq d!C^{d} such that

(a1,a2,β‹―,ad)​T=0.(a_{1},a_{2},\cdots,a_{d})T=0.
Proof.

Let

viβ†’=(ti​1,ti​2,…,ti​d)βˆˆπ”½pd\vec{v_{i}}=(t_{i1},t_{i2},\ldots,t_{id})\in\mathbb{F}_{p}^{d}

be the iith row vector of T.T. If viβ†’=0\vec{v_{i}}=0 for some i,i, we can take ai=1a_{i}=1 and aj=0a_{j}=0 for jβ‰ i.j\neq i. Hence we may assume viβ†’β‰ 0\vec{v_{i}}\neq 0 for all i.i. Without loss of generality, assume {v1β†’,…,vkβ†’}\{\vec{v_{1}},\ldots,\vec{v_{k}}\} forms a maximal linearly independent set, since TT is not invertible we must have k<d.k<d. Let Tβ€²βˆˆMk​(𝔽p)T^{\prime}\in M_{k}(\mathbb{F}_{p}) be a submatrix of TT using the first kk rows so that rank​(Tβ€²)=k.{\rm rank}(T^{\prime})=k. Suppose the columns of Tβ€²T^{\prime} correspond to the j1<j2<β‹―<jkj_{1}<j_{2}<\cdots<j_{k}th columns of T,T, let

uβ†’i=(ti​j1,ti​j2,…,ti​jk)βˆˆπ”½pk,\vec{u}_{i}=(t_{ij_{1}},t_{ij_{2}},\ldots,t_{ij_{k}})\in\mathbb{F}_{p}^{k},

We claim that u→(k+1)≠0.\vec{u}_{(k+1)}\neq 0. Indeed, by our choice of {vi}\{v_{i}\}, there exists a linear combination

vβ†’(k+1)=βˆ‘i=1kbi​vβ†’i,\vec{v}_{(k+1)}=\sum_{i=1}^{k}b_{i}\vec{v}_{i},

where the bib_{i}’s are not all zero since vβ†’k+1β‰ 0.\vec{v}_{k+1}\neq 0. This implies

uβ†’(k+1)=βˆ‘i=1kbi​uβ†’i\vec{u}_{(k+1)}=\sum_{i=1}^{k}b_{i}\vec{u}_{i}

and hence u→k+1≠0.\vec{u}_{k+1}\neq 0.

Now by adding the (k+1)(k+1)th row and another column to Tβ€²,T^{\prime}, we obtain a matrix Tβ€²β€²βˆˆMk+1​(𝔽p)T^{\prime\prime}\in M_{k+1}(\mathbb{F}_{p}) with rank​(Tβ€²β€²)=k{\rm rank}(T^{\prime\prime})=k and all the row vectors of Tβ€²β€²T^{\prime\prime} are nonzero. It follows that the adjugate matrix adj​(Tβ€²β€²){\rm adj}(T^{\prime\prime}) 111Which is the (k+1)Γ—(k+1)(k+1)\times(k+1) matrix such that adj​(Tβ€²β€²)β‹…Tβ€²β€²=det​(Tβ€²β€²)​Ik+1{\rm adj}(T^{\prime\prime})\cdot T^{\prime\prime}={\rm det}(T^{\prime\prime})I_{k+1}, where Ik+1I_{k+1} is the (k+1)Γ—(k+1)(k+1)\times(k+1) identity matrix. of Tβ€²β€²T^{\prime\prime} has the (k+1)(k+1)th row (a1,a2,…,ak+1)(a_{1},a_{2},\ldots,a_{k+1}) with ak+1β‰ 0a_{k+1}\neq 0. Since det​(Tβ€²β€²)=0{\rm det}(T^{\prime\prime})=0, we get

βˆ‘i=1k+1ai​uβ†’i=0.\sum_{i=1}^{k+1}a_{i}\vec{u}_{i}=0.

From the fact that {vβ†’1,vβ†’2,…,vβ†’k}\{\vec{v}_{1},\vec{v}_{2},\ldots,\vec{v}_{k}\} forms a maximal linearly independent set we can deduce

βˆ‘i=1k+1ai​vβ†’i=0.\sum_{i=1}^{k+1}a_{i}\vec{v}_{i}=0.

Set ai=0a_{i}=0 for all i>k+1i>k+1, since each entry of adj​(Tβ€²β€²){\rm adj}(T^{\prime\prime}) is the determinant of some submatrix of Tβ€²β€²,T^{\prime\prime}, it follows that |ai|≀d!​Cd.|a_{i}|\leq d!C^{d}. This gives us a nonzero vector (a1,…,ad)βˆˆπ”½pd(a_{1},\ldots,a_{d})\in\mathbb{F}_{p}^{d} so that

(a1,a2,β‹―,ad)​T=βˆ‘i=1dai​vβ†’i=0.(a_{1},a_{2},\cdots,a_{d})T=\sum_{i=1}^{d}a_{i}\vec{v}_{i}=0.

∎

Proof of Theorem 3.

For any i,j∈[d],i,j\in[d],

(3) yi​yjβ€²=βˆ‘kai​j(k)​xk,where​|ai,j(k)|≀N.y_{i}y_{j}^{\prime}=\sum_{k}a_{ij}^{(k)}x_{k},\ {\rm where\ }|a_{i,j}^{(k)}|\leq N.

Now since λ​yi​yjβ€²βˆˆB\lambda y_{i}y_{j}^{\prime}\in B for any λ∈Π:={u​v:|u|≀c​N1βˆ’Ο΅,|v|≀c′​NΟ΅}\lambda\in\Pi:=\{uv\ :\ |u|\leq cN^{1-\epsilon},\ |v|\leq c^{\prime}N^{\epsilon}\}, consider

{(Ξ»+ΞΌ)​yi​yjβ€²:Ξ»,μ∈Π},\{(\lambda+\mu)y_{i}y_{j}^{\prime}\ :\ \lambda,\mu\in\Pi\},

As in the proof of Theorem 2, this set will include w​yi​yjβ€²wy_{i}y_{j}^{\prime} for any |w|<c′′​N,|w|<c^{\prime\prime}N, where 0<cβ€²β€²<10<c^{\prime\prime}<1 is some constant depending on cc and cβ€².c^{\prime}. This implies that

w​yi​yjβ€²βˆˆA​Aβ€²+A​Aβ€²βŠ‚2​Bwy_{i}y_{j}^{\prime}\in AA^{\prime}+AA^{\prime}\subset 2B

for any |w|<c′′​N.|w|<c^{\prime\prime}N. Therefore we have

wβ€‹βˆ‘kai​j(k)​xk=βˆ‘kbw(k)​xkw\sum_{k}a_{ij}^{(k)}x_{k}=\sum_{k}b_{w}^{(k)}x_{k}

where |bw(k)|≀2​N.|b_{w}^{(k)}|\leq 2N. If

max⁑{|ai​j(k)|:k∈[d]}β‰₯3cβ€²β€²,\max\{|a_{ij}^{(k)}|:k\in[d]\}\geq\frac{3}{c^{\prime\prime}},

then for some |w|<c′′​N|w|<c^{\prime\prime}N we would have

2​N<max⁑{|w​ai​j(k)|:k∈[d]}≀4​N,2N<\max\{|wa_{ij}^{(k)}|:k\in[d]\}\leq 4N,

contradicts with BB being 66-isolated. Hence

(4) max⁑{|ai​j(k)|:k∈[d]}<3cβ€²β€².\max\{|a_{ij}^{(k)}|:k\in[d]\}<\frac{3}{c^{\prime\prime}}.

Now fix some i∈[d],i\in[d], and let vβ†’=(x1,x2,…,xd)T\vec{v}=(x_{1},x_{2},\ldots,x_{d})^{T}, uβ€²β†’=(y1β€²,y2β€²,…,ydβ€²)Tβˆˆπ”½pd\vec{u^{\prime}}=(y_{1}^{\prime},y_{2}^{\prime},\ldots,y_{d}^{\prime})^{T}\in\mathbb{F}_{p}^{d}. Also, let T∈Md​(𝔽p)T\in M_{d}(\mathbb{F}_{p}) be the matrix whose entry in the jjth row and kkth column is

Tj,k=ai​j(k)T_{j,k}\ =\ a_{ij}^{(k)}

so that (3) becomes

(5) T​vβ†’=yi​uβ€²β†’.T\vec{v}\ =\ y_{i}\vec{u^{\prime}}.

From (4) it follows that all the entries of the adjugate matrix adj​(T){\rm adj}(T) are bounded by

C=(dβˆ’1)!​3dβˆ’1/(cβ€²β€²)dβˆ’1.C=(d-1)!3^{d-1}/(c^{\prime\prime})^{d-1}.

Moreover, TT must be invertible since otherwise from Lemma 4, there exists a nonzero vector (a1,a2,…,ad)βˆˆπ”½pd(a_{1},a_{2},\ldots,a_{d})\in\mathbb{F}_{p}^{d} with |ai||a_{i}| bounded by some constant depending on cβ€²β€²c^{\prime\prime} and

(a1,a2,…,ad)​T=0.(a_{1},a_{2},\ldots,a_{d})T=0.

Combining this with (5) gives us

yiβ‹…βˆ‘j=1daj​yjβ€²=(a1,a2,…,ad)​T​vβ†’=0,y_{i}\cdot\sum_{j=1}^{d}a_{j}y_{j}^{\prime}=(a_{1},a_{2},\ldots,a_{d})T\vec{v}=0,

which would imply that Aβ€²A^{\prime} is not proper, a contradiction.

Multiplying (5) by adj​(T){\rm adj}(T) on the left on both sides we get

det​(T)​vβ†’=yiβ‹…adj​(T)​uβ€²β†’.{\rm det}(T)\vec{v}\ =\ y_{i}\cdot{\rm adj}(T)\vec{u^{\prime}}.

Taking linear combinations of coordinates on both sides (using coefficients bjb_{j}), we can deduce

A1:={det​(T)β€‹βˆ‘jbj​xj:|bj|<cβ€²C​NΟ΅}βŠ‚yiβ‹…Aβ€².A_{1}:=\{{\rm det}(T)\sum_{j}b_{j}x_{j}:|b_{j}|<\frac{c^{\prime}}{C}N^{\epsilon}\}\subset y_{i}\cdot A^{\prime}.

Let uβ†’=(y1,y2,…,yd)T\vec{u}=(y_{1},y_{2},\ldots,y_{d})^{T}. As before, we define a matrix Tβ€²βˆˆMd​(𝔽p)T^{\prime}\in M_{d}(\mathbb{F}_{p}) where the entry in the jjth row, kkth column is

Tj,kβ€²=aj​i(k).T^{\prime}_{j,k}\ =\ a_{ji}^{(k)}.

Again (3) becomes

(6) T′​vβ†’=u→​yiβ€²,T^{\prime}\vec{v}\ =\ \vec{u}y_{i}^{\prime},

and from (4), all the entries of adj​(Tβ€²){\rm adj}(T^{\prime}) are bounded by CC. Using the same argument that we did earlier for the matrix TT, we can deduce that Tβ€²T^{\prime} is also invertible since AA is proper. Multiplying both sides of (6) on the left by adj​(Tβ€²){\rm adj}(T^{\prime}) we get

A2:={det​(Tβ€²)β€‹βˆ‘jbj​xj:|bj|<cC​N1βˆ’Ο΅}βŠ‚Aβ‹…yiβ€².A_{2}:=\{{\rm det}(T^{\prime})\sum_{j}b_{j}x_{j}:|b_{j}|<\frac{c}{C}N^{1-\epsilon}\}\subset A\cdot y_{i}^{\prime}.

Hence

A1​A2βŠ‚yiβ‹…(A′​A)β‹…yiβ€²βŠ‚yi​B​yiβ€².A_{1}A_{2}\subset y_{i}\cdot(A^{\prime}A)\cdot y_{i}^{\prime}\subset y_{i}By_{i}^{\prime}.

Now for any j,k∈[d],j,k\in[d], we have

det​(T)​det​(Tβ€²)​xj​xk=yi​(βˆ‘l=1dsj​k(l)​xl)​yiβ€²{\rm det}(T){\rm det}(T^{\prime})x_{j}x_{k}\ =\ y_{i}\left(\sum_{l=1}^{d}s_{jk}^{(l)}x_{l}\right)y_{i}^{\prime}

and the set

{det​(T)​det​(Tβ€²)​w​xj​xk:|w|<c​cβ€²C2​N}\{{\rm det}(T){\rm det}(T^{\prime})wx_{j}x_{k}:|w|<\frac{cc^{\prime}}{C^{2}}N\}

will be a subset of yi​(2​B)​yiβ€²y_{i}(2B)y_{i}^{\prime} from the same argument as the one at the beginning of our proof. Again from the fact that BB is 66-isolated we would have

max⁑{|sj​k(l)|:l∈[d]}<Cβ€²\max\{|s_{jk}^{(l)}|:l\in[d]\}<C^{\prime}

for some Cβ€²=C′​(c,cβ€²,d)C^{\prime}=C^{\prime}(c,c^{\prime},d). Thus there exists Tj∈Md​(𝔽p)T_{j}\in M_{d}(\mathbb{F}_{p}) whose entries are bounded by Cβ€²C^{\prime} so that

det​(T)​det​(Tβ€²)​xj​vβ†’=yi​(Tj​vβ†’)​yiβ€².{\rm det}(T){\rm det}(T^{\prime})x_{j}\vec{v}\ =y_{i}(T_{j}\vec{v})y_{i}^{\prime}.

This equality implies that for any j∈[d]j\in[d], det​(T)​det​(Tβ€²)​xj/(yi​yiβ€²){\rm det}(T){\rm det}(T^{\prime})x_{j}/(y_{i}y_{i}^{\prime}) is an eigenvalue of TjT_{j}, hence is the root of the characteristic polynomial of Tj,T_{j}, which has degree dd and height bounded by some constant depending on Cβ€².C^{\prime}. From Lemma 4 and the fact that BB is proper, T1T_{1} must be invertible. Notice that all these eigenvalues share the same eigenvector vβ†’,\vec{v}, thus

(adj​(T1)​Tj)​vβ†’=det​(T1)​T1βˆ’1​Tj​vβ†’=det​(T1)​xjx1​vβ†’=det​(T1)​xj​vβ†’.({\rm adj}(T_{1})T_{j})\vec{v}={\rm det}(T_{1})T_{1}^{-1}T_{j}\vec{v}={\rm det}(T_{1})\frac{x_{j}}{x_{1}}\vec{v}={\rm det}(T_{1})x_{j}\vec{v}.

This shows that det​(T1)​xj{\rm det}(T_{1})x_{j} is the root of the characteristic polynomial of adj​(T1)​Tj,{\rm adj}(T_{1})T_{j}, hence xjx_{j} is the root of some polynomial of degree at most dd with bounded height. ∎

Remark 1.

The same proof works for non-symmetric GAP BB under slightly stronger conditions. Consider Bβˆ’B,B-B, which is a symmetric GAP, and assume the two symmetric GAPs Aβˆ’AA-A and Aβ€²βˆ’Aβ€²A^{\prime}-A^{\prime} are proper, then A​Aβ€²βŠ‚BAA^{\prime}\subset B implies that (Aβˆ’A)​(Aβ€²βˆ’Aβ€²)βŠ‚2​(Bβˆ’B).(A-A)(A^{\prime}-A^{\prime})\subset 2(B-B). If BB is 2424-isolated, then 2​(Bβˆ’B)2(B-B) is 66-isolated and we can repeat the proof for 2​(Bβˆ’B),Aβˆ’A2(B-B),A-A and Aβ€²βˆ’Aβ€².A^{\prime}-A^{\prime}.

Remark 2.

If we remove the condition that x1=1,x_{1}=1, we can only prove that the ratio xi/xjx_{i}/x_{j} of any two generators xi,xjx_{i},x_{j} satisfies a low-height, low-degree polynomial equation. This is what we expect since the condition A​Aβ€²βŠ‚BAA^{\prime}\subset B is not invariant under dilation in general.

Since the conclusion of Theorem 3 is about roots of polynomials, which also make sense in the non-commutative ring Mn​(𝔽p)M_{n}(\mathbb{F}_{p}), a natural question is if we consider GAPs in Mn​(𝔽p),M_{n}(\mathbb{F}_{p}), can we get a result similar to Theorem 3? It turns out that under some extra conditions, we can modify the proof of Theorem 3 to get the following:

Corollary 5.

Let 0<c,cβ€²,Ο΅<1,n,dβˆˆβ„•,N=N​(p)βˆˆβ„•0<c,c^{\prime},\epsilon<1,n,d\in\mathbb{N},N=N(p)\in\mathbb{N} with limpβ†’βˆžN​(p)=∞\lim_{p\to\infty}N(p)=\infty,

B={βˆ‘i=1dai​Xi:|ai|≀N}βŠ‚Mn​(𝔽p)B=\{\sum_{i=1}^{d}a_{i}X_{i}:|a_{i}|\leq N\}\subset M_{n}(\mathbb{F}_{p})

be 66-isolated with X1=In.X_{1}=I_{n}. Suppose there exist proper GAPs

A={βˆ‘i=1dai​Yi:|ai|≀c​N1βˆ’Ο΅},Aβ€²={βˆ‘i=1dai​Yiβ€²:|ai|≀c′​NΟ΅}A=\{\sum_{i=1}^{d}a_{i}Y_{i}:|a_{i}|\leq cN^{1-\epsilon}\},\ A^{\prime}=\{\sum_{i=1}^{d}a_{i}Y_{i}^{\prime}:|a_{i}|\leq c^{\prime}N^{\epsilon}\}

such that A​Aβ€²βŠ‚B,A′​AβŠ‚B.AA^{\prime}\subset B,A^{\prime}A\subset B. Moreover, assume Yi,Yjβ€²Y_{i},Y_{j}^{\prime} are invertible for some i,j∈[d]i,j\in[d]. Then there is a constant C=C​(c,cβ€²,d)C=C(c,c^{\prime},d) so that when pp is sufficiently large, for any k∈[d],k\in[d], there exists some polynomial fkβˆˆβ„€β€‹[x]βˆ–{0}f_{k}\in\mathbb{Z}[x]\setminus\{0\} of degree at most dd with H​(fk)≀CH(f_{k})\leq C and fΒ―k​(Xk)=0\overline{f}_{k}(X_{k})=0 in Mn​(𝔽p)M_{n}(\mathbb{F}_{p}).

Proof.

Replacing xi,yi,yiβ€²x_{i},y_{i},y_{i}^{\prime} by Xi,Yi,Yiβ€²X_{i},Y_{i},Y_{i}^{\prime} in the proof of Theorem 3, in the same way we obtain

A1βŠ‚Yiβ‹…Aβ€²,A2βŠ‚Aβ‹…Yjβ€².A_{1}\subset Y_{i}\cdot A^{\prime},\ A_{2}\subset A\cdot Y_{j}^{\prime}.

By assumption A′​AβŠ‚B,A^{\prime}A\subset B, it follows that

A1​A2βŠ‚Yiβ‹…Bβ‹…Yjβ€².A_{1}A_{2}\subset Y_{i}\cdot B\cdot Y_{j}^{\prime}.

Now for any k∈[d],k\in[d], there exists Tk∈Md​(𝔽p)T_{k}\in M_{d}(\mathbb{F}_{p}) with bounded entries so that

det​(T)​det​(Tβ€²)​Xk​vβ†’=Yi​(Tk​vβ†’)​Yjβ€².{\rm det}(T){\rm det}(T^{\prime})X_{k}\vec{v}\ =Y_{i}(T_{k}\vec{v})Y_{j}^{\prime}.

Since X1=In,X_{1}=I_{n}, Yi,Yjβ€²Y_{i},Y_{j}^{\prime} are invertible, by Lemma 4 and the fact that BB is proper, we conclude that T1T_{1} must be invertible. Moreover,

Tk​vβ†’=det​(T)​det​(Tβ€²)​Yiβˆ’1​Xk​v→​(Yjβ€²)βˆ’1,det​(T)​det​(Tβ€²)​T1βˆ’1​vβ†’=Yi​v→​Yjβ€².T_{k}\vec{v}\ ={\rm det}(T){\rm det}(T^{\prime})Y_{i}^{-1}X_{k}\vec{v}(Y_{j}^{\prime})^{-1},\ {\rm det}(T){\rm det}(T^{\prime})T_{1}^{-1}\vec{v}\ =Y_{i}\vec{v}Y_{j}^{\prime}.

Therefore

(adj​(T1)​Tk)​vβ†’=det​(T1)​T1βˆ’1​Tk​vβ†’=det​(T1)​Yiβˆ’1​Xk​Yi​vβ†’.({\rm adj}(T_{1})T_{k})\vec{v}={\rm det}(T_{1})T_{1}^{-1}T_{k}\vec{v}={\rm det}(T_{1})Y_{i}^{-1}X_{k}Y_{i}\vec{v}.

Let fk​(x)βˆˆβ„€β€‹[x]f_{k}(x)\in\mathbb{Z}[x] be the characteristic polynomial of adj​(T1)​Tk,{\rm adj}(T_{1})T_{k}, then by Cayley-Hamilton’s theorem

fΒ―k​(det​(T1)​Yiβˆ’1​Xk​Yi)​vβ†’=fΒ―k​(adj​(T1)​Tk)​vβ†’=0.\overline{f}_{k}({\rm det}(T_{1})Y_{i}^{-1}X_{k}Y_{i})\vec{v}=\overline{f}_{k}({\rm adj}(T_{1})T_{k})\vec{v}=0.

In particular, using the fact X1=InX_{1}=I_{n} we can deduce

Yiβˆ’1​fΒ―k​(det​(T1)​Xk)​Yi=fΒ―k​(det​(T1)​Yiβˆ’1​Xk​Yi)=0,Y_{i}^{-1}\overline{f}_{k}({\rm det}(T_{1})X_{k})Y_{i}=\overline{f}_{k}({\rm det}(T_{1})Y_{i}^{-1}X_{k}Y_{i})=0,

which implies

fΒ―k​(det​(T1)​Xk)=0.\overline{f}_{k}({\rm det}(T_{1})X_{k})=0.

∎

3. Open questions

A natural question is can we weaken the condition on BB or AA to get the same result as in Theorem 3. A simple example shows that if we remove the isolated condition on BB and allow AA to be some arbitrary set with |A|β‰ˆ|B|1/2|A|\approx|B|^{1/2}, then the conclusion of Theorem 3 is no longer true. Let B={a+b​N:a,b∈[0,Nβˆ’1]}=[0,N2βˆ’1],B=\{a+bN:a,b\in[0,N-1]\}=[0,N^{2}-1], which is a degenerate rank-22 GAP. We can take A=[0,Nβˆ’1]A=[0,N-1] so that A​AβŠ‚BAA\subset B and |A|β‰ˆ|B|1/2.|A|\approx|B|^{1/2}. By choosing NN to be about p1/4p^{1/4} so that it’s not the root of a low-height, low-degree polynomial, we’ve got a counterexample. From the argument of Theorem 2 we guess the isolated condition could probably be replaced by some restriction on the size of B.B.

One can also consider unbalanced GAPs. Suppose

B={βˆ‘i=1dai​xi:|ai|≀Ni}βŠ‚π”½pB=\{\sum_{i=1}^{d}a_{i}x_{i}:|a_{i}|\leq N_{i}\}\subset\mathbb{F}_{p}

and

A={βˆ‘i=1dai​yi:|ai|≀c​Mi},Aβ€²={βˆ‘i=1dai​yiβ€²:|ai|≀c′​Miβ€²}A=\{\sum_{i=1}^{d}a_{i}y_{i}:|a_{i}|\leq cM_{i}\},\ A^{\prime}=\{\sum_{i=1}^{d}a_{i}y_{i}^{\prime}:|a_{i}|\leq c^{\prime}M_{i}^{\prime}\}

with |A|​|Aβ€²|β‰ˆ|B|.|A||A^{\prime}|\approx|B|. If we make no restriction on the NiN_{i}’s, then there is no hope to obtain the same result. For example, BB can be constructed with Ni=1N_{i}=1 for some i,i, and the corresponding xix_{i} is not the root of some low-height, low-degree polynomial. The question is whether the conclusion of Theorem 3 remains true if we assume

limpβ†’βˆžNi=limpβ†’βˆžMi=limpβ†’βˆžMiβ€²=∞\lim_{p\rightarrow\infty}N_{i}=\lim_{p\rightarrow\infty}M_{i}=\lim_{p\rightarrow\infty}M_{i}^{\prime}=\infty

for each i∈[d]i\in[d] to rule out the extreme case.

References

  • [1] M.-C. Chang. On a question of Davenport and Lewis and new character sum bounds in finite fields. Duke Math. J., 145(3):409–442, 2008.
  • [2] G.Β Elekes and I.Β Z. Ruzsa. Few sums, many products. Studia Sci. Math. Hungar., 40(3):301–308, 2003.
  • [3] P.Β ErdΕ‘s and E.Β SzemerΓ©di. On sums and products of integers. In Studies in pure mathematics, pages 213–218. BirkhΓ€user, Basel, 1983.
  • [4] B.Β Hanson. Character sums over Bohr sets. Canad. Math. Bull., 58(4):774–786, 2015.
  • [5] B.Β Kerr. Some multiplicative equations in finite fields. Finite Fields Appl., 75:Paper No. 101883, 28, 2021.
  • [6] B.Β Kerr, J.Β Mello, and I.Β E. Shparlinski. An effective local-global principle and additive combinatorics in finite fields. J. Anal. Math., 152(1):109–135, 2024.
  • [7] A.Β Mohammadi and S.Β Stevens. Attaining the exponent 5/4 for the sum-product problem in finite fields. Int. Math. Res. Not. IMRN, (4):3516–3532, 2023.
  • [8] M.Β Rudnev, G.Β Shakan, and I.Β D. Shkredov. Stronger sum-product inequalities for small sets. Proc. Amer. Math. Soc., 148(4):1467–1479, 2020.
  • [9] T.Β Tao and V.Β Vu. Additive combinatorics, volume 105 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006.