This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An Inverse Boundary Value Problem arising in Nonlinear Acoustics

Gunther Uhlmann and Yang Zhang
Abstract.

We consider an inverse problem arising in nonlinear ultrasound imaging. The propagation of ultrasound waves is modeled by a quasilinear wave equation. We make measurements at the boundary of the medium encoded in the Dirichlet-to-Neumann map, and we show that these measurements determine the nonlinearity.

1. Introduction

Nonlinear ultrasound waves are widely used in medical imaging, since the propagation of high-intensity ultrasound is not adequately modeled by linear acoustic equations, see [34]. It has many applications in diagnostic and therapeutic medicine, for example, the probe of tissues, the visualization of blood flow, and the potential application in monitoring patients in the operating room. For more details and other applications, see [2, 3, 17, 18, 21, 22, 20, 26, 27, 50, 52, 54, 55, 64].

We consider a bounded domain Ω3\Omega\subset\mathbb{R}^{3} with smooth boundary. Let (t,x)×Ω(t,x^{\prime})\in\mathbb{R}\times\Omega and c(x)>0c(x^{\prime})>0 be the sound speed. Let p(t,x)p(t,x^{\prime}) denote the pressure field of the ultrasound waves. A model for the pressure field in the medium Ω\Omega with no memory terms is given by (see [35])

(1) t2p(t,x)c2(x)Δp(t,x)F(x,p,tp,t2p)\displaystyle\partial_{t}^{2}p(t,x^{\prime})-c^{2}(x^{\prime})\Delta p(t,x^{\prime})-F(x^{\prime},p,\partial_{t}p,\partial^{2}_{t}p) =0,\displaystyle=0, in (0,T)×Ω,\displaystyle\mbox{in }(0,T)\times\Omega,
p(t,x)\displaystyle p(t,x^{\prime}) =f,\displaystyle=f, on (0,T)×Ω,\displaystyle\mbox{on }(0,T)\times\partial\Omega,
p=tp\displaystyle p={\partial_{t}p} =0,\displaystyle=0, on {t=0},\displaystyle\mbox{on }\{t=0\},

where ff is the insonation profile on the boundary and FF is the nonlinear term modeling the nonlinear interaction of the waves.

When F(x,p,tp,t2p)=β(x)t2(p2)F(x^{\prime},p,\partial_{t}p,\partial^{2}_{t}p)=\beta(x^{\prime})\partial_{t}^{2}(p^{2}), this equation is called the Westervelt equation. In this case, the inverse problem of recovering β\beta from some measurements of the waves is studied in [36, 1]. The Westervelt equation can be regarded as a lower order approximation to the more complicated physical model (1). In [35], an inverse problem modeled by (1) with a more general nonlinear term given by

(2) F(x,p,tp,t2p)=t(fW(x,p)tp)\displaystyle F(x^{\prime},p,\partial_{t}p,\partial^{2}_{t}p)=\partial_{t}(f_{W}(x^{\prime},p)\partial_{t}p)

is considered. In this paper, we study the inverse boundary value problem of recovering the general nonlinear term of the form (2) from the boundary measurements ΛF\Lambda_{F}, where ΛF\Lambda_{F} is the Dirichlet-to-Neumann (DN) map given by

ΛFf=νp|(0,T)×Ω,\Lambda_{F}f=\partial_{\nu}p|_{(0,T)\times\partial\Omega},

with ν\nu as the outer unit normal vector to Ω\partial\Omega. We additionally assume that fW(x,p)f_{W}(x^{\prime},p) is analytic in pp and has the expansion

fW(x,p)=m=1+bm(x)pmf_{W}(x^{\prime},p)=\sum_{m=1}^{+\infty}b_{m}(x^{\prime})p^{m}

with bm(x)b_{m}(x^{\prime}) smooth. Then we can rewrite it as

F(x,p,tp,t2p)=m=1+βm+1(x)t2(pm+1),F(x^{\prime},p,\partial_{t}p,\partial^{2}_{t}p)=\sum_{m=1}^{+\infty}\beta_{m+1}(x^{\prime})\partial_{t}^{2}(p^{m+1}),

where βm+1(x)=bm(x)/(m+1)\beta_{m+1}(x^{\prime})=b_{m}(x^{\prime})/(m+1) is smooth. More generally, our method works for the case when the nonlinear coefficient βm\beta_{m} depends on both tt and xx^{\prime}, i.e., we consider the nonlinear term

(3) F(x,p,tp,t2p)=m=1+βm+1(x)t2(pm+1).\displaystyle F(x,p,\partial_{t}p,\partial^{2}_{t}p)=\sum_{m=1}^{+\infty}\beta_{m+1}(x)\partial_{t}^{2}(p^{m+1}).

We make the assumption that

(A) m=1+βm+1(x)pm+1 is analytic in p and there is m1 such that βm+1(x)0,\displaystyle\sum_{m=1}^{+\infty}\beta_{m+1}(x)p^{m+1}\text{ is analytic in }p\text{ and}\text{ there is }m\geq 1\text{ such that }\beta_{m+1}(x)\neq 0,

1.1. Main Results.

We use the notation x=(t,x)=(x0,x1,x2,x3)x=(t,x^{\prime})=(x^{0},x^{1},x^{2},x^{3}) and M=×ΩM=\mathbb{R}\times\Omega in some cases for convenience. Consider the Riemannian metric

(4) g0=c2(x)((dx1)2+(dx2)2+(dx3)2)\displaystyle g_{0}=c^{-2}(x^{\prime})((\mathop{}\!\mathrm{d}x^{1})^{2}+(\mathop{}\!\mathrm{d}x^{2})^{2}+(\mathop{}\!\mathrm{d}x^{3})^{2})

w.r.t. the wave speed c(x)>0c(x^{\prime})>0 on Ω\Omega.

Assumption 1.

Suppose the Riemannian manifold (Ω,g0)(\Omega,g_{0}) is nontrapping and Ω\partial\Omega is strictly convex w.r.t. g0g_{0}. By nontrapping, we mean there exists T>0T>0 such that

diamg0(Ω)=sup{lengths of all geodesics in (Ω,g0)}<T.\mathrm{diam}_{g_{0}}(\Omega)=\sup\{\text{lengths of all geodesics in }(\Omega,g_{0})\}<T.

First suppose that each βm+1(x),m1\beta_{m+1}(x^{\prime}),m\geq 1 is independent of tt and the sound speed c(x)>0c(x^{\prime})>0 is smooth and known. We have the following result.

Theorem 1.1.

Let (Ω,g0)(\Omega,g_{0}) satisfy Assumption 1. Consider the nonlinear wave equation

t2pc2(x)ΔpF(x,p,tp,t2p)=0,\partial_{t}^{2}p-c^{2}(x^{\prime})\Delta p-F(x^{\prime},p,\partial_{t}p,\partial^{2}_{t}p)=0,

where the nonlinear term depending on xx^{\prime} smoothly has the expansion

F(x,p,tp,t2p)=m=1+βm+1(x)t2(pm+1)\displaystyle F(x^{\prime},p,\partial_{t}p,\partial^{2}_{t}p)=\sum_{m=1}^{+\infty}\beta_{m+1}(x^{\prime})\partial_{t}^{2}(p^{m+1})

and satisfies the assumption (A) for each xΩx^{\prime}\in\Omega. Let p(k)p^{(k)} be the solutions corresponding to F(k)(x,p(k),tp(k),t2p(k))F^{(k)}(x^{\prime},p^{(k)},\partial_{t}p^{(k)},\partial^{2}_{t}p^{(k)}), for k=1,2k=1,2. If the Dirichlet-to-Neumann maps satisfy

ΛF(1)(f)=ΛF(2)(f)\Lambda_{F^{(1)}}(f)=\Lambda_{F^{(2)}}(f)

for all ff in a small neighborhood of the zero functions in C6([0,T]×Ω)C^{6}([0,T]\times\partial\Omega), then βm(1)(x)=βm(2)(x)\beta^{(1)}_{m}(x^{\prime})=\beta^{(2)}_{m}(x^{\prime}), for any m2m\geq 2 and xΩx^{\prime}\in\Omega.

If the wave speed c(x)c(x^{\prime}) is unknown, one can recover it from the first order linearization of the DN map, i.e., the DN map for the linear problem, assuming it is smooth, see [9]. For the stable recovery with partial data, see [51]. After recovering c(x)c(x^{\prime}), one can recover βm\beta_{m} for m2m\geq 2 by Theorem 1.1. This gives the following result.

Theorem 1.2.

For k=1,2k=1,2, suppose the wave speeds c(k)(x)>0c^{(k)}(x^{\prime})>0 are smooth. Let g0(k)g_{0}^{(k)} be the Riemannian metrics corresponding to c(k)(x)c^{(k)}(x^{\prime}), see (4). Suppose (Ω,g0(k))(\Omega,g^{(k)}_{0}) satisfy Assumption 1. Consider the nonlinear wave equations

t2p(k)(c(k)(x))2Δp(k)F(k)(x,p(k),tp(k),t2p(k))=0,k=1,2,\partial_{t}^{2}p^{(k)}-(c^{(k)}(x^{\prime}))^{2}\Delta p^{(k)}-F^{(k)}(x^{\prime},p^{(k)},\partial_{t}p^{(k)},\partial^{2}_{t}p^{(k)})=0,\quad k=1,2,

where the nonlinear terms depending on xx^{\prime} smoothly have the expansion

F(k)(x,p(k),tp(k),t2p(k))=m=1+βm+1(x)t2((p(k))m+1)\displaystyle F^{(k)}(x^{\prime},p^{(k)},\partial_{t}p^{(k)},\partial^{2}_{t}p^{(k)})=\sum_{m=1}^{+\infty}\beta_{m+1}(x^{\prime})\partial_{t}^{2}((p^{(k)})^{m+1})

and satisfy the assumption in (A) for each xΩx^{\prime}\in\Omega. If the Dirichlet-to-Neumann maps satisfy

ΛF(1)(f)=ΛF(2)(f)\Lambda_{F^{(1)}}(f)=\Lambda_{F^{(2)}}(f)

for all ff in a small neighborhood of the zero functions in C6([0,T]×Ω)C^{6}([0,T]\times\partial\Omega), then c(1)(x)=c(2)(x)c^{(1)}(x^{\prime})=c^{(2)}(x^{\prime}) and βm(1)(x)=βm(2)(x)\beta^{(1)}_{m}(x^{\prime})=\beta^{(2)}_{m}(x^{\prime}), for any m2m\geq 2 and xΩx^{\prime}\in\Omega.

The result in Theorem 1.1 can be regarded as an example of a more general setting. Recall M=×ΩM=\mathbb{R}\times\Omega and let MoM^{{o}} be the interior of MM. The linear part of the equation in (1) corresponds to the Lorentzian metric

g=dt2+g0=dt2+c2(x)(dx)2\displaystyle g=-\mathop{}\!\mathrm{d}t^{2}+g_{0}=-\mathop{}\!\mathrm{d}t^{2}+c^{-2}(x^{\prime})(\mathop{}\!\mathrm{d}x^{\prime})^{2}

and one denote

cp(t,x)t2p(t,x)c2(x)Δp(t,x).\square_{c}p(t,x^{\prime})\equiv\partial_{t}^{2}p(t,x^{\prime})-c^{2}(x^{\prime})\Delta p(t,x^{\prime}).

Strictly speaking, the operator c\square_{c} is not the Laplace-Beltrami operator g\square_{g} but it has the same principal symbol as g\square_{g}. More generally, we can assume the smooth speed c(t,x)>0c(t,x^{\prime})>0 depends on tt as well.

Note that (M,g)(M,g) is a globally hyperbolic Lorentzian manifold with timelike boundary M=×Ω\partial M=\mathbb{R}\times\partial\Omega. Additionally, we assume M\partial M is null-convex. Here M\partial M is null-convex if for any null vector vTpMv\in T_{p}\partial M one has

(5) κ(v,v)=g(vν,v)0,\displaystyle\kappa(v,v)=g(\nabla_{v}\nu,v)\geq 0,

where we denote by ν\nu the outward pointing unit normal vector field on M\partial M. This is true especially when Ω\partial\Omega is convex w.r.t g0g_{0}. In the following, we consider a globally hyperbolic Lorentzian manifold (M,g)(M,g) with timelike and null-convex boundary.

We first introduce some definitions to state the main results. A smooth path μ:(a,b)M\mu:(a,b)\rightarrow M is timelike if g(μ˙(s),μ˙(s))<0g(\dot{\mu}(s),\dot{\mu}(s))<0 for any s(a,b)s\in(a,b). It is causal if g(μ˙(s),μ˙(s))0g(\dot{\mu}(s),\dot{\mu}(s))\leq 0 and μ˙(s)0\dot{\mu}(s)\neq 0 for any s(a,b)s\in(a,b). For p,qMp,q\in M, we denote by p<qp<q (or pqp\ll q) if pqp\neq q and there is a future pointing casual (or timelike) curve from pp to qq. We denote by pqp\leq q if either p=qp=q or p<qp<q. The chronological future of pp is the set I+(p)={qM:pq}I^{+}(p)=\{q\in M:\ p\ll q\} and the causal future of pp is the set J+(p)={qM:pq}J^{+}(p)=\{q\in M:\ p\leq q\}. Similarly we can define the chronological past I(p)I^{-}(p) and the causal past J(p)J^{-}(p). For convenience, we use the notation J(p,q)=J+(p)J(q)J(p,q)=J^{+}(p)\cap J^{-}(q) to denote the diamond set J+(p)J(q)J^{+}(p)\cap J^{-}(q) and I(p,q)I(p,q) to denote the set I+(p)I(q)I^{+}(p)\cap I^{-}(q), see Figure 1.

Refer to caption
Refer to caption
Figure 1. Left: the causal future J+(p)J^{+}(p), causal past J(q)J^{-}(q), and the diamond set J(p,q)J(p,q). Right: the set 𝕎\mathbb{W}.

We consider the recovery of the nonlinear coefficients in a suitable larger set

𝕎=y,y+(0,T)×ΩI(y,y+)Mo.\mathbb{W}=\bigcup_{y^{-},y^{+}\in(0,T)\times\partial\Omega}I(y^{-},y^{+})\cap M^{{o}}.
Theorem 1.3.

Let Ω\Omega be a bounded domain with smooth boundary in 3\mathbb{R}^{3}. Let M=×ΩM=\mathbb{R}\times\Omega and g=dt2+c2(t,x)(dx)2g=-\mathop{}\!\mathrm{d}t^{2}+c^{-2}(t,x^{\prime})(\mathop{}\!\mathrm{d}x^{\prime})^{2} with c(t,x)>0c(t,x^{\prime})>0 for any xΩx^{\prime}\in\Omega. Suppose the globally hyperbolic Lorentzian manifold (M,g)(M,g) has timelike and null-convex boundary. We define the wave operator

cp(t,x)t2p(t,x)c2(t,x)Δp(t,x).\square_{c}p(t,x^{\prime})\equiv\partial_{t}^{2}p(t,x^{\prime})-c^{2}(t,x^{\prime})\Delta p(t,x^{\prime}).

Consider the nonlinear wave equation

cp(k)F(k)(x,p(k),tp(k),t2p(k))=0,k=1,2,\square_{c}p^{(k)}-F^{(k)}(x,p^{(k)},\partial_{t}p^{(k)},\partial^{2}_{t}p^{(k)})=0,\quad k=1,2,

where the nonlinear terms depending on xx smoothly have the expansions

F(k)(x,p(k),tp(k),t2p(k))=m=1+βm+1(k)(x)t2((p(k))m+1)\displaystyle F^{(k)}(x,p^{(k)},\partial_{t}p^{(k)},\partial^{2}_{t}p^{(k)})=\sum_{m=1}^{+\infty}\beta^{(k)}_{m+1}(x)\partial_{t}^{2}((p^{(k)})^{m+1})

and satisfy the assumption in (A) for each x𝕎x\in\mathbb{W}. If the Dirichlet-to-Neumann maps satisfy

ΛF(1)(1)(f)=ΛF(2)(2)(f)\Lambda^{(1)}_{F^{(1)}}(f)=\Lambda^{(2)}_{F^{(2)}}(f)

for all functions ff in a small neighborhood of the zero functions in C6([0,T]×Ω)C^{6}([0,T]\times\partial\Omega), then βm(1)=βm(2),\beta^{(1)}_{m}=\beta^{(2)}_{m}, for any m2m\geq 2 and x𝕎x\in\mathbb{W}.

When c(t,x)c(t,x^{\prime}) is unknown, the problem of recovering c(t,x)c(t,x^{\prime}) from the DN map for the linear problem is still open in general. This theorem shows the unique recovery of the nonlinear term from the DN map under our assumptions, when the sound speed c(t,x)c(t,x^{\prime}) is known. We remark that the same result holds if we consider the metric g=dt2+κ(t,x)g=-\mathop{}\!\mathrm{d}t^{2}+\kappa(t,x^{\prime}) and replace c\square_{c} by the operator =g+A(x,Dx)\square=\square_{g}+A(x,D_{x}), where κ(t,x)\kappa(t,x^{\prime}) is family of Riemannian metrics on Ω\Omega smoothly depending on tt and AA is a first order linear differential operator. The inverse problems of recovering the metric and the nonlinear term for a semilinear wave equation were originated in [39] in a globally hyperbolic Lorentzian manifold without boundary. Starting with [39, 38], there are many works studying inverse problems for nonlinear hyperbolic equations, see [5, 7, 11, 12, 15, 16, 57, 23, 30, 37, 4, 40, 42, 56, 58, 29, 1, 60]. For an overview of the recent progress, see [41, 59].

The plan of this paper is as follows. In Section 2, we establish the well-posedness of the boundary value problems (1) for small boundary data. In Section 3, we present some preliminaries for Lorentzian geometry as well as microlocal analysis, construct the distorted planes waves, and derive the asymptotic expansion. We prove Proposition 2, which implies that Theorem 1.1 is a special case of Theorem 1.3. Therefore, in the rest of the paper the aim is to prove Theorem 1.3 using nonlinear interaction of distorted plane waves. In Section 4 and 5, we analyze the singularities produced by the nonlinear interaction of three and four distorted plane waves. Based on these results, we recover the lower order nonlinear coefficients from the fourth order linearization of the DN map in Section 6. The recovery is based on a special construction of lightlike covectors at each q𝕎q\in\mathbb{W}. In Section 7 and Section 8, we recover other nonlinear coefficients from the higher order linearization of the DN map, using Piriou conormal distributions.

2. Local well-posedness

The well-posedness of the boundary value problem (1) with small boundary data ff can be established by the same arguments as in [30], see also [1] and [61]. For completeness we present the proof below.

Let T>0T>0 be fixed and let m5m\geq 5. Suppose fCm+1([0,T]×Ω)f\in C^{m+1}([0,T]\times\partial\Omega) satisfies fCm+1([0,T]×Ω)ϵ0\|f\|_{C^{m+1}([0,T]\times\partial\Omega)}\leq\epsilon_{0}, with small positive number ϵ0\epsilon_{0} to be specified later. Then there exists a function pfCm+1([0,T]×Ω)p_{f}\in C^{m+1}([0,T]\times\Omega) such that pf|M=fp_{f}|_{\partial M}=f and

pfCm+1([0,T]×Ω)fCm+1([0,T]×Ω).\|p_{f}\|_{C^{m+1}([0,T]\times\Omega)}\leq\|f\|_{C^{m+1}([0,T]\times\partial\Omega)}.

Let p~=ppf\tilde{p}=p-p_{f}. We rewrite the nonlinear term as

(6) F(x,p,tp,t2p)\displaystyle F(x,p,\partial_{t}p,\partial^{2}_{t}p) =j=1+βj+1(x)t2(pj+1)\displaystyle=\sum_{j=1}^{+\infty}\beta_{j+1}(x)\partial_{t}^{2}(p^{j+1})
=(j=1+(j+1)βj+1(x)pj)ptt+(j=1(j+1)jβj+1(x)pj1)ptpt\displaystyle=(\sum_{j=1}^{+\infty}(j+1)\beta_{j+1}(x)p^{j})p_{tt}+(\sum_{j=1}^{\infty}(j+1)j\beta_{j+1}(x)p^{j-1})p_{t}p_{t}
q1(x,p)pptt+q2(x,p)pt2.\displaystyle\equiv q_{1}(x,p)pp_{tt}+q_{2}(x,p)p_{t}^{2}.

By the assumption (A), the functions q1,q2q_{1},q_{2} are smooth functions over M×M\times\mathbb{R}. Then p~\tilde{p} must solve the system

(7) {cp~=cpf+F(x,p~+pf,t(p~+pf),t2(p~+pf)),on M,p~=0,on M,p~=0,for t<0.\begin{cases}\square_{c}\tilde{p}=-\square_{c}p_{f}+F(x,\tilde{p}+p_{f},\partial_{t}(\tilde{p}+p_{f}),\partial^{2}_{t}(\tilde{p}+p_{f})),&\mbox{on }M,\\ \tilde{p}=0,&\mbox{on }\partial M,\\ \tilde{p}=0,&\mbox{for }t<0.\end{cases}

For R>0R>0, we define Zm(R,T)Z^{m}(R,T) as the set containing all functions vv such that

vk=0mWk,([0,T];Hmk(Ω)),vZm2=supt[0,T]k=0mtkv(t)Hmk(Ω)2R2.v\in\bigcap_{k=0}^{m}W^{k,\infty}([0,T];H^{m-k}(\Omega)),\quad\|v\|^{2}_{Z^{m}}=\sup_{t\in[0,T]}\sum_{k=0}^{m}\|\partial_{t}^{k}v(t)\|^{2}_{H^{m-k}(\Omega)}\leq R^{2}.

We abuse the notation CC to denote different constants that depends on m,M,Tm,M,T. One can show the following claim by Sobolev Embedding Theorem, see also [61, Claim 3] and its proof.

Claim 1.

Suppose uZm(R,T)u\in Z^{m}(R,T). Then uZm1uZm\|u\|_{Z^{m-1}}\leq\|u\|_{Z^{m}} and gjuZm1(R,T)\nabla^{j}_{g}u\in Z^{m-1}(R,T), j=1,,4j=1,\dots,4. Moreover, we have the following estimates.

  1. (1)

    If vZm(R,T)v\in Z^{m}(R^{\prime},T), then uvZmCuZmvZm\|uv\|_{Z^{m}}\leq C\|u\|_{Z^{m}}\|v\|_{Z^{m}}.

  2. (2)

    If vZm1(R,T)v\in{Z^{m-1}}(R^{\prime},T), then uvZm1CuZmvZm1\|uv\|_{Z^{m-1}}\leq C\|u\|_{Z^{m}}\|v\|_{Z^{m-1}}.

  3. (3)

    If q(x,u,w)Cm(M××n)q(x,u,w)\in C^{m}(M\times\mathbb{C}\times\mathbb{C}^{n}), then q(x,u,du)ZmCqCm(M××n)(l=0muZml)\|q(x,u,\mathop{}\!\mathrm{d}u)\|_{Z^{m}}\leq C\|q\|_{C^{m}(M\times\mathbb{C}\times\mathbb{C}^{n})}(\sum_{l=0}^{m}\|u\|^{l}_{Z^{m}}).

For vZm(ρ0,T)v\in Z^{m}(\rho_{0},T) with ρ0\rho_{0} to be specified later, we consider the linearized problem

{cp~=cpfF(x,v+pf,t(v+pf),t2(v+pf)),on M,p~=0,on M,p~=0,for t<0,\begin{cases}\square_{c}\tilde{p}=-\square_{c}p_{f}-F(x,v+p_{f},\partial_{t}(v+p_{f}),\partial^{2}_{t}(v+p_{f})),&\mbox{on }M,\\ \tilde{p}=0,&\mbox{on }\partial M,\\ \tilde{p}=0,&\mbox{for }t<0,\end{cases}

and we define the solution operator 𝒥\mathcal{J} which maps vv to the solution u~\tilde{u}. By Claim 1 and (6), we have

cpfF(x,v+pf,t(v+pf),t2(v+pf))Zm2\displaystyle\|-\square_{c}p_{f}-F(x,v+p_{f},\partial_{t}(v+p_{f}),\partial^{2}_{t}(v+p_{f}))\|_{Z^{m-2}}
\displaystyle\leq cpfCm1([0,T]×Ω)+Ck=12qk(x,v+pf)Zmv+pfZmv+pfZm\displaystyle\|-\square_{c}p_{f}\|_{C^{m-1}([0,T]\times\Omega)}+C\sum_{k=1}^{2}\|q_{k}(x,v+p_{f})\|_{Z^{m}}\|v+p_{f}\|_{Z^{m}}\|v+p_{f}\|_{Z^{m}}
\displaystyle\leq C(ϵ0+(1+(ρ0+ϵ0)++(ρ0+ϵ0)m)(ρ0+ϵ0)2).\displaystyle C(\epsilon_{0}+(1+(\rho_{0}+\epsilon_{0})+\ldots+(\rho_{0}+\epsilon_{0})^{m})(\rho_{0}+\epsilon_{0})^{2}).

According to [13, Theorem 3.1], the linearized problem has a unique solution

p~k=0mCk([0,T];Hmk(Ω))\tilde{p}\in\bigcap_{k=0}^{m}C^{k}([0,T];H^{m-k}(\Omega))

such that

p~ZmC(ϵ0+(1+(ρ0+ϵ0)++(ρ0+ϵ0)m)(ρ0+ϵ0)2)eKT,\|\tilde{p}\|_{Z^{m}}\leq C(\epsilon_{0}+(1+(\rho_{0}+\epsilon_{0})+\ldots+(\rho_{0}+\epsilon_{0})^{m})(\rho_{0}+\epsilon_{0})^{2})e^{KT},

where C,KC,K are positive constants. If we assume ρ0\rho_{0} and ϵ0\epsilon_{0} are small enough, then the above inequality implies that

p~ZmC(ϵ0+(ρ0+ϵ0)2)eKT.\|\tilde{p}\|_{Z^{m}}\leq C(\epsilon_{0}+(\rho_{0}+\epsilon_{0})^{2})e^{KT}.

For any ρ0\rho_{0} satisfying ρ0<1/(2CeKT)\rho_{0}<1/({2Ce^{KT}}), we can choose ϵ0=ρ0/(8CeKT)\epsilon_{0}={\rho_{0}}/({8Ce^{KT}}) such that

(8) C(ϵ0+(ρ0+ϵ0)2)eKT<ρ0.C(\epsilon_{0}+(\rho_{0}+\epsilon_{0})^{2})e^{KT}<\rho_{0}.

In this case, we have 𝒥\mathcal{J} maps Zm(ρ0,T)Z^{m}(\rho_{0},T) to itself.

In the following we show that 𝒥\mathcal{J} is a contraction map if ρ0\rho_{0} is small enough. It follows that the boundary value problem (7) has a unique solution u~Zm(ρ0,T)\tilde{u}\in Z^{m}(\rho_{0},T) as a fixed point of 𝒥\mathcal{J}. Indeed, for p~j=𝒥(vj)\tilde{p}_{j}=\mathcal{J}(v_{j}) with vjZm(ρ0,T)v_{j}\in Z^{m}(\rho_{0},T), we have that p~2p~1\tilde{p}_{2}-\tilde{p}_{1} satisfies

c(p~2p~1)\displaystyle\square_{c}(\tilde{p}_{2}-\tilde{p}_{1})
=\displaystyle= F(x,v2+pf,t(v2+pf),t2(v2+pf))F(x,v1+pf,t(v1+pf),t2(v1+pf))\displaystyle F(x,v_{2}+p_{f},\partial_{t}(v_{2}+p_{f}),\partial^{2}_{t}(v_{2}+p_{f}))-F(x,v_{1}+p_{f},\partial_{t}(v_{1}+p_{f}),\partial^{2}_{t}(v_{1}+p_{f}))
=\displaystyle= (q1(x,v2+pf)(v2+pf)q1(x,v1+pf)(v1+pf)t2(v2+pf)\displaystyle(q_{1}(x,v_{2}+p_{f})(v_{2}+p_{f})-q_{1}(x,v_{1}+p_{f})(v_{1}+p_{f})\partial_{t}^{2}(v_{2}+p_{f})
+q1(x,v1+pf)(v1+pf)t2(v2v1)\displaystyle+q_{1}(x,v_{1}+p_{f})(v_{1}+p_{f})\partial^{2}_{t}(v_{2}-v_{1})
+(q2(x,v2+pf)q2(x,v1+pf))t(v2+v1+2pf)t(v2v1).\displaystyle+(q_{2}(x,v_{2}+p_{f})-q_{2}(x,v_{1}+p_{f}))\partial_{t}(v_{2}+v_{1}+2p_{f})\partial_{t}(v_{2}-v_{1}).

We denote the right-hand side by \mathcal{I} and using Claim 1 for each term above, we have

Zm2\displaystyle\|\mathcal{I}\|_{Z^{m-2}} Cv2v1Zm(ρ0+ϵ0),\displaystyle\leq C^{\prime}\|v_{2}-v_{1}\|_{Z^{m}}(\rho_{0}+\epsilon_{0}),

where ρ0,ϵ0\rho_{0},\epsilon_{0} are chosen to be small enough. By [13, Theorem 3.1] and (8), one obtains

p~2p~1Zm\displaystyle\|\tilde{p}_{2}-\tilde{p}_{1}\|_{Z^{m}} CCv2v1Zm(ρ0+ϵ0)eKT<CCeKT(1+1/(8CeKT))ρ0v2v1Zm.\displaystyle\leq CC^{\prime}\|v_{2}-v_{1}\|_{Z^{m}}(\rho_{0}+\epsilon_{0})e^{KT}<CC^{\prime}{{e^{KT}}}(1+1/(8Ce^{KT}))\rho_{0}\|v_{2}-v_{1}\|_{Z^{m}}.

Thus, if we choose ρ1CCeKT(1+1/(8CeKT))\rho\leq\frac{1}{CC^{\prime}e^{KT}(1+1/(8Ce^{KT}))}, then

𝒥(v2v1)Zm<v2v1Zm\|\mathcal{J}(v_{2}-v_{1})\|_{Z^{m}}<\|v_{2}-v_{1}\|_{Z^{m}}

shows that 𝒥\mathcal{J} is a contraction. This proves that there exists a unique solution u~\tilde{u} to the problem (7). Furthermore, by [13, Theorem 3.1] this solution satisfies the estimates p~Zm8CeKTϵ0.\|\tilde{p}\|_{Z^{m}}\leq 8Ce^{KT}\epsilon_{0}. Therefore, we prove the following proposition.

Proposition 1.

Let fCm+1([0,T]×Ω)f\in C^{m+1}([0,T]\times\partial\Omega) with m5m\geq 5. Suppose f=tf=0f=\partial_{t}f=0 at t=0t=0. Then there exists small positive ϵ0\epsilon_{0} such that for any fCm+1([0,T]×Ω)ϵ0\|f\|_{C^{m+1}([0,T]\times\partial\Omega)}\leq\epsilon_{0}, we can find a unique solution

pk=0mCk([0,T];Hmk(Ω))p\in\bigcap_{k=0}^{m}C^{k}([0,T];H_{m-k}(\Omega))

to the boundary value problem (1), which satisfies the estimate

pZmCfCm+1([0,T]×Ω)\|{p}\|_{Z^{m}}\leq C\|f\|_{C^{m+1}([0,T]\times\partial\Omega)}

for some C>0C>0 independent of ff.

3. Preliminaries

3.1. Lorentzian manifolds

Recall (M,g)(M,g) is globally hyperbolic with timelike and null-convex boundary, where M=×ΩM=\mathbb{R}\times\Omega. As in [30], we extend (M,g)(M,g) smoothly to a slightly larger globally hyperbolic Lorentzian manifold (Me,ge)({M_{\mathrm{e}}},g_{e}) without boundary, where Me=×Ωe{M_{\mathrm{e}}}=\mathbb{R}\times\Omega_{\mathrm{e}} such that Ω\Omega is contained in the interior of the open set Ωe\Omega_{\mathrm{e}}. Let

V=(0,T)×ΩeΩV=(0,T)\times\Omega_{\mathrm{e}}\setminus\Omega

be the observation set. See also [61, Section 7] for more details about the extension. In the following, we abuse the notation and do not distinguish gg with geg_{e} if there is no confusion caused.

We recall some notations and preliminaries in [39]. For ηTpMe\eta\in T_{p}^{*}{M_{\mathrm{e}}}, the corresponding vector of η\eta is denoted by η#TpMe\eta^{\#}\in T_{p}{M_{\mathrm{e}}}. The corresponding covector of a vector ξTpMe\xi\in T_{p}{M_{\mathrm{e}}} is denoted by ξbTpMe\xi^{b}\in T^{*}_{p}{M_{\mathrm{e}}}. We denote by

LpMe={ζTpMe0:g(ζ,ζ)=0}L_{p}{M_{\mathrm{e}}}=\{\zeta\in T_{p}{M_{\mathrm{e}}}\setminus 0:\ g(\zeta,\zeta)=0\}

the set of light-like vectors at pMep\in{M_{\mathrm{e}}} and similarly by LpMeL^{*}_{p}{M_{\mathrm{e}}} the set of light-like covectors. The sets of future (or past) light-like vectors are denoted by Lp+MeL^{+}_{p}{M_{\mathrm{e}}} (or LpMeL^{-}_{p}{M_{\mathrm{e}}}), and those of future (or past) light-like covectors are denoted by Lp,+MeL^{*,+}_{p}{M_{\mathrm{e}}} (or Lp,MeL^{*,-}_{p}{M_{\mathrm{e}}}).

The characteristic set Char(c)\mathrm{Char}(\square_{c}) is the set b1(0)TMeb^{-1}(0)\subset T^{*}{M_{\mathrm{e}}}, where b(x,ζ)=gijζiζjb(x,\zeta)=g^{ij}\zeta_{i}\zeta_{j} is the principal symbol. It is also the set of light-like covectors with respect to gg. We denote by Θx,ζ\Theta_{x,\zeta} the null bicharacteristic of c\square_{c} that contains (x,ζ)LMe(x,\zeta)\in L^{*}{M_{\mathrm{e}}}, which is defined as the integral curve of the Hamiltonian vector field HbH_{b}. Then a covector (y,η)Θx,ζ(y,\eta)\in\Theta_{x,\zeta} if and only if there is a light-like geodesic γx,ζ#\gamma_{x,\zeta^{\#}} such that

(y,η)=(γx,ζ#(s),(γ˙x,ζ#(s))b), for s.(y,\eta)=(\gamma_{x,\zeta^{\#}}(s),(\dot{\gamma}_{x,\zeta^{\#}}(s))^{b}),\ \text{ for }s\in\mathbb{R}.

Here we denote by γx,ζ#\gamma_{x,\zeta^{\#}} the unique null geodesic starting from xx in the direction ζ#\zeta^{\#}.

The time separation function τ(x,y)[0,)\tau(x,y)\in[0,\infty) between two points x<yx<y in Me{M_{\mathrm{e}}} is the supremum of the lengths

L(α)=01g(α˙(s),α˙(s))𝑑sL(\alpha)=\int_{0}^{1}\sqrt{-g(\dot{\alpha}(s),\dot{\alpha}(s))}ds

of the piecewise smooth causal paths α:[0,1]Me\alpha:[0,1]\rightarrow{M_{\mathrm{e}}} from xx to yy. If x<yx<y is not true, we define τ(x,y)=0\tau(x,y)=0. Note that τ(x,y)\tau(x,y) satisfies the reverse triangle inequality

τ(x,y)+τ(y,z)τ(x,z), where xyz.\tau(x,y)+\tau(y,z)\leq\tau(x,z),\text{ where }x\leq y\leq z.

For (x,v)L+Me(x,v)\in L^{+}{M_{\mathrm{e}}}, recall the cut locus function

ρ(x,v)=sup{s[0,𝒯(x,v)]:τ(x,γx,v(s))=0},\rho(x,v)=\sup\{s\in[0,\mathcal{T}(x,v)]:\ \tau(x,\gamma_{x,v}(s))=0\},

where 𝒯(x,v)\mathcal{T}(x,v) is the maximal time such that γx,v(s)\gamma_{x,v}(s) is defined. The cut locus function for past lightlike vector (x,w)LMe(x,w)\in L^{-}{M_{\mathrm{e}}} is defined dually with opposite time orientation, i.e.,

ρ(x,w)=inf{s[𝒯(x,w),0]:τ(γx,w(s),x)=0}.\rho(x,w)=\inf\{s\in[\mathcal{T}(x,w),0]:\ \tau(\gamma_{x,w}(s),x)=0\}.

For convenience, we abuse the notation ρ(x,ζ)\rho(x,\zeta) to denote ρ(x,ζ#)\rho(x,\zeta^{\#}) if ζL,±Me\zeta\in L^{*,\pm}{M_{\mathrm{e}}}. By [8, Theorem 9.15], the first cut point γx,v(ρ(x,v))\gamma_{x,v}(\rho(x,v)) is either the first conjugate point or the first point on γx,v\gamma_{x,v} where there is another different geodesic segment connecting xx and γx,v(ρ(x,v))\gamma_{x,v}(\rho(x,v)).

In particular, when g=dt2+g0g=-\mathop{}\!\mathrm{d}t^{2}+g_{0}, we have the following proposition, which implies Theorem 1.1 is the result of Theorem 1.3.

Proposition 2.

Let (Ω,g0)(\Omega,g_{0}) satisfy the assumption (1) and g=dt2+g0g=-\mathop{}\!\mathrm{d}t^{2}+g_{0}, see (4) for the definition of g0g_{0}. For any x0Ωx^{\prime}_{0}\in\Omega, one can find a point q𝕎q\in\mathbb{W} with q=(tq,x0)q=(t_{q},x^{\prime}_{0}) for some tq(0,T)t_{q}\in(0,T).

Proof.

For each x0inΩx^{\prime}_{0}in\Omega, we consider a unit-speed geodesic λ(s)\lambda(s) in Ω\Omega such that x0=λ(s0)x^{\prime}_{0}=\lambda(s_{0}) and there exists

s1=sup{s<s0:λ(s)Ω}.s_{1}=\sup\{s<s_{0}:\lambda(s)\in\partial\Omega\}.

We write p=λ(s1)p^{\prime}=\lambda(s_{1}). With (1), we can assume s0s1<T/2s_{0}-s_{1}<{T}/{2}. There exists ϵ>0\epsilon>0 such that 2(s0s1)+ϵ<T2(s_{0}-s_{1})+\epsilon<T. First we consider

γ1(s)=(s+ϵ,λ(s+s1)).\gamma_{1}(s)=(s+\epsilon,\lambda(s+s_{1})).

It follows that γ1(s)\gamma_{1}(s) is a null geodesic in MM with γ1(0)=(ϵ,p)(0,T)×Ω\gamma_{1}(0)=(\epsilon,p^{\prime})\in(0,T)\times\partial\Omega. We set q=γ1(s0s1)=(s0s1+ϵ,x0)q=\gamma_{1}(s_{0}-s_{1})=(s_{0}-s_{1}+\epsilon,x^{\prime}_{0}). Note that tq=s0s1+ϵ(0,T)t_{q}=s_{0}-s_{1}+\epsilon\in(0,T). Next, we consider

γ2(s)=(s+s0s1+ϵ,λ(s0s)).\gamma_{2}(s)=(s+s_{0}-s_{1}+\epsilon,\lambda(s_{0}-s)).

Similarly, γ2(s)\gamma_{2}(s) is a null geodesic in MM with γ2(0)=(s0s1+ϵ,x0)=q\gamma_{2}(0)=(s_{0}-s_{1}+\epsilon,x^{\prime}_{0})=q and γ2(s0s1)=(2(s0s1)+ϵ,p)(0,T)×Ω\gamma_{2}(s_{0}-s_{1})=(2(s_{0}-s_{1})+\epsilon,p^{\prime})\in(0,T)\times\partial\Omega. Therefore, we have qJ(γ1(0),γ2(s0s1))q\in J(\gamma_{1}(0),\gamma_{2}(s_{0}-s_{1})), which implies q𝕎q\in\mathbb{W}. ∎

3.2. Distributions

Suppose Λ\Lambda is a conic Lagrangian submanifold in TMeT^{*}{M_{\mathrm{e}}} away from the zero section. We denote by μ(Λ)\mathcal{I}^{\mu}(\Lambda) the set of Lagrangian distributions in Me{M_{\mathrm{e}}} associated with Λ\Lambda of order μ\mu. In local coordinates, a Lagrangian distribution can be written as an oscillatory integral and we regard its principal symbol, which is invariantly defined on Λ\Lambda with values in the half density bundle tensored with the Maslov bundle, as a function in the cotangent bundle. If Λ\Lambda is a conormal bundle of a submanifold KK of Me{M_{\mathrm{e}}}, i.e. Λ=NK\Lambda=N^{*}K, then such distributions are also called conormal distributions. The space of distributions in Me{M_{\mathrm{e}}} associated with two cleanly intersecting conic Lagrangian manifolds Λ0,Λ1TMe0\Lambda_{0},\Lambda_{1}\subset T^{*}{M_{\mathrm{e}}}\setminus 0 is denoted by p,l(Λ0,Λ1)\mathcal{I}^{p,l}(\Lambda_{0},\Lambda_{1}). If up,l(Λ0,Λ1)u\in\mathcal{I}^{p,l}(\Lambda_{0},\Lambda_{1}), then one has WF(u)Λ0Λ1{\text{$\operatorname{WF}$}}{(u)}\subset\Lambda_{0}\cup\Lambda_{1} and

up+l(Λ0Λ1),up(Λ1Λ0)u\in\mathcal{I}^{p+l}(\Lambda_{0}\setminus\Lambda_{1}),\quad u\in\mathcal{I}^{p}(\Lambda_{1}\setminus\Lambda_{0})

away from their intersection Λ0Λ1\Lambda_{0}\cap\Lambda_{1}. The principal symbol of uu on Λ0\Lambda_{0} and Λ1\Lambda_{1} can be defined accordingly and they satisfy some compatible conditions on the intersection.

For more detailed introduction to Lagrangian distributions and paired Lagrangian distributions, see [39, Section 3.2] and [43, Section 2.2]. The main reference are [32, 33] for conormal and Lagrangian distributions and [14, 24, 25, 47] for paired Lagrangian distributions.

3.3. The causal inverse

On a globally hyperbolic Lorentzian manifold (M,g)(M,g), the wave operator c\square_{c} with the principal symbol b(x,ζ)=gijζiζjb(x,\zeta)=g^{ij}\zeta_{i}\zeta_{j} is normally hyperbolic, see [10, Section 1.5]. It has a unique casual inverse c1\square_{c}^{-1} according to [10, Theorem 3.3.1]. By [47, Proposition 6.6], one can symbolically construct a parametrix QgQ_{g}, which is the solution operator to the wave equation

cv\displaystyle\square_{c}v =f, on Me,\displaystyle=f,\quad\text{ on }{M_{\mathrm{e}}},
v\displaystyle v =0, on MeJ+(supp(f)),\displaystyle=0,\quad\text{ on }{M_{\mathrm{e}}}\setminus J^{+}(\operatorname{supp}(f)),

in the microlocal sense. It follows that Qgc1Q_{g}\equiv\square_{c}^{-1} up to a smoothing operator. We denote the kernel of QgQ_{g} by q(x,x~)q(x,\tilde{x}) and it is a paired Lagrangian distribution in 32,12(NDiag,Λg)\mathcal{I}^{-\frac{3}{2},-\frac{1}{2}}(N^{*}\text{Diag},\Lambda_{g}), where Diag denotes the diagonal in M×MM\times M, NDiagN^{*}\text{Diag} is its conormal bundle, and Λg\Lambda_{g} is the flow out of NDiagChar(c)N^{*}\text{Diag}\cap\mathrm{Char}(\square_{c}) under the Hamiltonian vector field HbH_{b}. Here we construct the microlocal solution to the equation

cq(x,x~)=δ(x,x~)modC(M×M).\square_{c}q(x,\tilde{x})=\delta(x,\tilde{x})\mod C^{\infty}(M\times M).

using the proof of [47, Proposition 6.6], and the symbol of QgQ_{g} can be found during the construction there. In particular, the principal symbol of QgQ_{g} along NDiagN^{*}\text{Diag} satisfying σp(δ)=σp(c)σp(Qg)\sigma_{p}(\delta)=\sigma_{p}(\square_{c})\sigma_{p}(Q_{g}) is nonvanishing. The one along ΛgNDiag\Lambda_{g}\setminus N^{*}\text{Diag} solves the transport equation

Hbσp(Qg)+icσp(Qg)=0,\mathcal{L}_{H_{b}}\sigma_{p}(Q_{g})+ic\sigma_{p}(Q_{g})=0,

where Hb\mathcal{L}_{H_{b}} is the Lie action of the Hamiltonian vector field HbH_{b} and cc is the subprincipal symbol of c\square_{c}. The initial condition is given by restricting σp(Qg)|NDiag\sigma_{p}(Q_{g})|_{N^{*}\text{Diag}} to Λg\partial\Lambda_{g}, see (6.7) and Section 4 in [47]. Then one can solve the transport equation by integrating along the bicharacteristics. This implies the solution to the transport equation is nonzero and therefore σp(Qg)|Λg\sigma_{p}(Q_{g})|_{\Lambda_{g}} is nonvanishing. See also [14, 10, 25] for more references.

We have the following proposition according to [25, Proposition 2.1], see also [43, Proposition 2.1].

Proposition 3.

Let Λ\Lambda be a conic Lagrangian submanifold in TM0T^{*}M\setminus 0. Suppose Λ\Lambda intersects Char(c)\mathrm{Char}(\square_{c}) transversally, such that its intersection with each bicharacteristics has finite many times. Then

Qg:μ(Λ)p,l(Λ,Λg),Q_{g}:\mathcal{I}^{\mu}(\Lambda)\rightarrow\mathcal{I}^{p,l}(\Lambda,\Lambda^{g}),

where Λg\Lambda^{g} is the flow out of ΛChar(c)\Lambda\cap\mathrm{Char}(\square_{c}) under the Hamiltonian flow. Moreover, for (x,ξ)ΛgΛ(x,\xi)\in\Lambda^{g}\setminus\Lambda, we have

σp(Qgu)(x,ξ)=σ(Qg)(x,ξ,yj,ηj)σp(u)(yj,ηj),\sigma_{p}(Q_{g}u)(x,\xi)=\sum\sigma(Q_{g})(x,\xi,y_{j},\eta_{j})\sigma_{p}(u)(y_{j},\eta_{j}),

where the summation is over the points (yj,ηj)Λ(y_{j},\eta_{j})\in\Lambda that lie on the bicharacteristics from (x,ξ)(x,\xi).

3.4. Distorted plane waves.

We review the distorted plane waves constructed in [39]. Roughly speaking, they are conormal distributions propagating along the fixed null geodesic before the first cut point.

Let g+g^{+} be a Riemannian metric on Me{M_{\mathrm{e}}} and L+MeL^{+}{M_{\mathrm{e}}} be the bundle of future-pointing light-like vectors. For (x0,ξ0)L+Me(x_{0},\xi_{0})\in L^{+}{M_{\mathrm{e}}} and a small parameter s0>0s_{0}>0, we define

𝒲(x0,ξ0,s0)\displaystyle\mathcal{W}({x_{0},\xi_{0},s_{0}}) ={ηLx0+Me:ηξ0g+<s0 with ηg+=ξ0g+}\displaystyle=\{\eta\in L^{+}_{x_{0}}{M_{\mathrm{e}}}:\|\eta-\xi_{0}\|_{g^{+}}<s_{0}\text{ with }\|\eta\|_{g^{+}}=\|\xi_{0}\|_{g^{+}}\}

as a neighborhood of ξ0\xi_{0} at the point x0x_{0}. We denote by γx0,ξ0(s),s0\gamma_{x_{0},\xi_{0}}(s),\ s\geq 0 the unique null geodesic starting from x0x_{0} with direction ξ0\xi_{0}, and we define

K(x0,ξ0,s0)\displaystyle K({x_{0},\xi_{0},s_{0}}) ={γx0,η(s)Me:η𝒲(x0,ξ0,s0),s(0,)}\displaystyle=\{\gamma_{x_{0},\eta}(s)\in{M_{\mathrm{e}}}:\eta\in\mathcal{W}({x_{0},\xi_{0},s_{0}}),s\in(0,\infty)\}

as the subset of the light cone emanating from x0x_{0} by light-like vectors in 𝒲(x0,ξ0,s0)\mathcal{W}({x_{0},\xi_{0},s_{0}}). As s0s_{0} goes to zero, the surface K(x0,ξ0,s0)K({x_{0},\xi_{0},s_{0}}) tends to the geodesic γx0,ξ0(+)\gamma_{x_{0},\xi_{0}}(\mathbb{R}_{+}). Consider the Lagrangian submanifold

Σ(x0,ξ0,s0)={(x0,rηb)TMe:η𝒲(x0,ξ0,s0),r0},\displaystyle\Sigma(x_{0},\xi_{0},s_{0})=\{(x_{0},r\eta^{b})\in T^{*}{M_{\mathrm{e}}}:\eta\in\mathcal{W}({x_{0},\xi_{0},s_{0}}),\ r\neq 0\},

which is a subset of the conormal bundle N{x0}N^{*}\{x_{0}\}. We define

Λ(x0,ξ0,s0)=\displaystyle\Lambda({x_{0},\xi_{0},s_{0}})= {(γx0,η(s),rγ˙x0,η(s)b)Me:\displaystyle\{(\gamma_{x_{0},\eta}(s),r\dot{\gamma}_{x_{0},\eta}(s)^{b})\in{M_{\mathrm{e}}}:
η𝒲(x0,ξ0,s0),s(0,),r{0}}\displaystyle\quad\quad\quad\quad\quad\eta\in\mathcal{W}({x_{0},\xi_{0},s_{0}}),s\in(0,\infty),r\in\mathbb{R}\setminus\{0\}\}

as the flow out from Char(c)Σ(x0,ξ0,s0)\mathrm{Char}(\square_{c})\cap\Sigma(x_{0},\xi_{0},s_{0}) by the Hamiltonian vector field of c\square_{c} in the future direction. Note that Λ(x0,ξ0,s0)\Lambda({x_{0},\xi_{0},s_{0}}) is the conormal bundle of K(x0,ξ0,s0)K({x_{0},\xi_{0},s_{0}}) near γx0,ξ0(+)\gamma_{x_{0},\xi_{0}}(\mathbb{R}_{+}) before the first cut point of x0x_{0}.

Now suppose J=3J=3 or 44 is given. According to [39, Lemma 3.1], we can construct distributions

ujμ(Λ(xj,ξj,s0)) satisfying gujC(M),j=1,,J,u_{j}\in\mathcal{I}^{\mu}(\Lambda(x_{j},\xi_{j},s_{0}))\text{ satisfying }\square_{g}u_{j}\in C^{\infty}(M),\quad j=1,\ldots,J,

with nonzero principal symbol along (γxj,ξj(s),(γ˙xj,ξj(s))b)(\gamma_{x_{j},\xi_{j}}(s),(\dot{\gamma}_{x_{j},\xi_{j}}(s))^{b}) for s>0s>0. Note that uj𝒟(Me)u_{j}\in\mathcal{D}^{\prime}({M_{\mathrm{e}}}) has no singularities conormal to M\partial M. Thus its restriction to the submanifold M\partial M is well-defined, see [31, Corollary 8.2.7]. Let fj=uj|Mf_{j}=u_{j}|_{\partial M} and vjv_{j} solve the boundary value problem

(9) cvj\displaystyle\square_{c}v_{j} =0,\displaystyle=0, on M,\displaystyle\mbox{on }M,
vj\displaystyle v_{j} =fj,\displaystyle=f_{j}, on M,\displaystyle\mbox{on }\partial M,
vj\displaystyle v_{j} =0,\displaystyle=0, for t<0.\displaystyle\mbox{for }t<0.

It follows that vj=ujmodC(M)v_{j}=u_{j}\mod C^{\infty}(M). We consider the boundary value problem (1) for the nonlinear wave equation with the Dirichlet boundary condition f=j=1Jϵjfj,f=\sum_{j=1}^{J}\epsilon_{j}f_{j}, and write the solution pp to (1) as an asymptotic expansion with respect to vjv_{j} later.

For j=1,,Jj=1,\ldots,J, let (xj,ξj)L+V(x_{j},\xi_{j})\in L^{+}V be lightlike vectors. In some cases, we denote this triplet or quadruplet by (x,ξ)=(xj,ξj)j=1J(\vec{x},\vec{\xi})=(x_{j},\xi_{j})^{J}_{j=1}. We omit the parameters xj,ξj,s0x_{j},\xi_{j},s_{0} and use the following notations

γj=γxj,ξj,Kj=K(xj,ξj,s0),Σj=Σ(xj,ξj,s0),Λj=Λ(xj,ξj,s0),\gamma_{j}=\gamma_{x_{j},\xi_{j}},\quad K_{j}=K({x_{j},\xi_{j},s_{0}}),\quad\Sigma_{j}=\Sigma({x_{j},\xi_{j},s_{0}}),\quad\Lambda_{j}=\Lambda({x_{j},\xi_{j},s_{0}}),

if there is no confusion. We say (xj,ξj)j=1J(x_{j},\xi_{j})_{j=1}^{J} are causally independent if

(10) xjJ+(xk), for jk.\displaystyle x_{j}\notin J^{+}(x_{k}),\quad\text{ for }j\neq k.

Note the null geodesic γxj,ξj(s)\gamma_{x_{j},\xi_{j}}(s) starting from xjVx_{j}\in V could never intersect MM or could enter MM more than once. Thus, we define

(11) tj0=inf{s>0:γxj,ξj(s)M},tjb=inf{s>tj0:γxj,ξj(s)MeM}\displaystyle t_{j}^{0}=\inf\{s>0:\ \gamma_{x_{j},\xi_{j}}(s)\in M\},\quad t_{j}^{b}=\inf\{s>t_{j}^{0}:\ \gamma_{x_{j},\xi_{j}}(s)\in{M_{\mathrm{e}}}\setminus M\}

as the first time when it enters MM and the first time when it leaves MM from inside, if such limits exist.

We introduce the definition of the regular intersection of three or four null geodesics at a point qq, as in [39, Definition 3.2].

Definition 1.

Let J=3J=3 or 44. We say the geodesics corresponding to (xj,ξj)j=1J(x_{j},\xi_{j})_{j=1}^{J} intersect regularly at a point qq, if one has

  1. (1)

    there are 0<sj<ρ(xj,ξj)0<s_{j}<\rho(x_{j},\xi_{j}) such that q=γxj,ξj(sj)q=\gamma_{x_{j},\xi_{j}}(s_{j}), for j=1,,Jj=1,\ldots,J,

  2. (2)

    the vectors γ˙xj,ξj(sj),j=1,,J\dot{\gamma}_{x_{j},\xi_{j}}(s_{j}),j=1,\ldots,J are linearly independent.

It is shown in [39, Lemma 3.5] that for any q𝕎q\in\mathbb{W}, there exists (z,w)L+V(z,w)\in L^{+}V such that q=γz,w(sq)q=\gamma_{z,w}(s_{q}) with 0<sq<ρ(z,w)0<s_{q}<\rho(z,w). Moreover, in any neighborhood of (z,w)(z,w), we can find lightlike vectors (xj,ξj),j=1,2,3,4(x_{j},\xi_{j}),\ j=1,2,3,4 such that they are causally independent as in (10) and the four null geodesics corresponding to (xj,ξj)(x_{j},\xi_{j}) intersect regularly at qq. To determine the nonlinear terms at fixed point q𝕎q\in\mathbb{W}, in the following we focus on (xj,ξj)j=1J(x_{j},\xi_{j})_{j=1}^{J} that are causally independent and intersect regularly at qq.

For convenience, we introduce the following definition on the intersection of three or four submanifolds as in [43, Definition 3.1].

Definition 2.

We say four codimension 1 submanifolds K1,K2,K3,K4K_{1},K_{2},K_{3},K_{4} intersect 4-transversally if

  1. (1)

    Ki,KjK_{i},K_{j} intersect transversally at a codimension 22 manifold KijK_{ij}, for i<ji<j;

  2. (2)

    Ki,Kj,KkK_{i},K_{j},K_{k} intersect at a codimension 33 submanifold KijkK_{ijk}, for i<j<ki<j<k;

  3. (3)

    K1,K2,K3,K4K_{1},K_{2},K_{3},K_{4} intersect at a point qq;

  4. (4)

    for any two disjoint index subsets I,J{1,2,3,4}I,J\subset\{1,2,3,4\}, the intersection of iIKi\cap_{i\in I}K_{i} and jJKj\cap_{j\in J}K_{j} is transversal if not empty.

If K1,K2,K3K_{1},K_{2},K_{3} satisfy condition (1) and (2), then we say they intersect 3-transversally.

By [43], such K1,K2,K3,K4K_{1},K_{2},K_{3},K_{4} intersect at qq with linearly independent normal covectors ζ(j)NqKj\zeta^{(j)}\in N_{q}^{*}K_{j}, j=1,2,3,4j=1,2,3,4. These covectors form a basis for the cotangent space TqMT^{*}_{q}M such that each ζTqM\zeta\in T^{*}_{q}M has a unique decomposition with respect to them. Additionally, if four null geodesics γj,j=1,2,3,4\gamma_{j},j=1,2,3,4 intersect regularly at qq, then we can always construct KjK_{j} with small enough s0s_{0} such that they intersect 4-transversally at qq.

For convenience, we introduce the following notations

Λij=N(KiKj),Λijk=N(KiKjKk),Λq=TqM0,\Lambda_{ij}=N^{*}(K_{i}\cap K_{j}),\quad\Lambda_{ijk}=N^{*}(K_{i}\cap K_{j}\cap K_{k}),\quad\Lambda_{q}=T^{*}_{q}M\setminus 0,

where qq is the intersection point in j=14γxj,ξj(+){\cap_{j=1}^{4}\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+})}. We define

Λ(1)=j=14Λj,Λ(2)=i<jΛij,Λ(3)=i<j<kΛijk.\Lambda^{(1)}=\cup_{j=1}^{4}\Lambda_{j},\quad\Lambda^{(2)}=\cup_{i<j}\Lambda_{ij},\quad\Lambda^{(3)}=\cup_{i<j<k}\Lambda_{ijk}.

Then we denote the flow out of Λ(3)Char(c)\Lambda^{(3)}\cap\mathrm{Char}(\square_{c}) under the null bicharacteristics of c\square_{c} in TMeT^{*}{M_{\mathrm{e}}} by

Λ(3),g={(z,ζ)TM:(y,η)Λ(3)Char(c) such that (z,ζ)Θy,η}.\Lambda^{(3),g}=\{(z,\zeta)\in T^{*}M:\ \exists\ (y,\eta)\in\Lambda^{(3)}\cap\mathrm{Char}(\square_{c})\text{ such that }(z,\zeta)\in\Theta_{y,\eta}\}.

The flow out of Λ(3)Char(c)\Lambda^{(3)}\cap\mathrm{Char}(\square_{c}) under the broken bicharacteristic arcs of g\square_{g} in TMT^{*}M is denoted by

Λ(3),b={(z,ζ)TM:(y,η)Λ(3) such that (z,ζ)Θy,ηb},\Lambda^{(3),b}=\{(z,\zeta)\in T^{*}M:\ \exists\ (y,\eta)\in\Lambda^{(3)}\text{ such that }(z,\zeta)\in\Theta^{b}_{y,\eta}\},

see Section 3.5 for the broken characteristics and the definition of Θy,ηb\Theta^{b}_{y,\eta}. Let

Γ(x,ξ,s0)=(Λ(1)Λ(2)Λ(3)Λ(3),b)TM,\displaystyle\Gamma({\vec{x},\vec{\xi}},s_{0})=(\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)}\cup\Lambda^{(3),b})\cap T^{*}M,

which depends on the parameter s0s_{0} by definition. Then we define

(12) Γ(x,ξ)=s0>0Γ(x,ξ,s0)\displaystyle\Gamma({\vec{x},\vec{\xi}})=\bigcap_{s_{0}>0}\Gamma({\vec{x},\vec{\xi}},s_{0})

as the set containing all possible singularities caused by the Hamiltonian flow and the interaction of at most three distorted plane waves.

As in [39], to deal with the complications caused by the cut points, for j=1,,Jj=1,\ldots,J, we consider the interaction in the set

(13) 𝒩(x,ξ)=Mj=1JJ+(γxj,ξj(ρ(xj,ξj))),\displaystyle{\mathcal{N}(\vec{x},\vec{\xi})}=M\setminus\bigcup_{j=1}^{J}J^{+}(\gamma_{x_{j},\xi_{j}}(\rho(x_{j},\xi_{j}))),

which is the complement of the causal future of the first cut points. In 𝒩(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}, any two of the null geodesics γxj,ξj(+)\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+}) intersect at most once, by [8, Lemma 9.13].

To deal with the complications caused by the reflection part, for j=1,,Jj=1,\ldots,J, we define

(14) (x,ξ)=Mj=1JJ+(γxj,ξj(tjb)),\displaystyle{{\mathcal{R}}(\vec{x},\vec{\xi})}=M\setminus\bigcup_{j=1}^{J}J^{+}(\gamma_{x_{j},\xi_{j}}(t_{j}^{b})),

as the complement of the causal future of the point γxj,ξj(tjb)\gamma_{x_{j},\xi_{j}}(t_{j}^{b}) in MM, where γxj,ξj(+)\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+}) leaves MM from the inside for the first time. Note that in 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})}, each null geodesic γxj,ξj(+)\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+}) enters MM at most once and any two of them intersect at most once. Let MoM^{{o}} be the interior of MM and let Σ(4)\Sigma(4) denote the permutation group of {1,2,3,4}\{1,2,3,4\}. In particular, assuming the four null geodesics intersect regularly at a point in MoM^{{o}}, we can show the following lemma.

Lemma 1.

Suppose (xj,ξj)j=14(x_{j},\xi_{j})_{j=1}^{4} intersect regularly at q𝒩(x,ξ)Moq\in{\mathcal{N}(\vec{x},\vec{\xi})}\cap M^{{o}}. Let p𝒩(x,ξ)(x,ξ)p\in{\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})}.

  • (a)

    If (p,ζ)Λ(2)Λ(3)(p,\zeta)\in\Lambda^{(2)}\cup\Lambda^{(3)} for arbitrarily small s0>0s_{0}>0, then pMop\in M^{{o}}.

  • (b)

    For fixed (i,j,k,l)Σ(4)(i,j,k,l)\in\Sigma(4), if (p,ζ)ΛiΛjklb(p,\zeta)\in\Lambda_{i}\cap\Lambda_{jkl}^{b} with arbitrarily small s0>0s_{0}>0, then pMop\in M^{{o}}.

Proof.

We prove by contradiction. For (a), assume pMeMop\in{M_{\mathrm{e}}}\setminus M^{{o}}. Then we can find Ki,KjK_{i},K_{j} such that pp is in their intersection. If pγxi,ξi(+)γxj,ξj(+)p\notin\gamma_{x_{i},\xi_{i}}(\mathbb{R}_{+})\cap\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+}), then by choosing small enough s0s_{0} one has pKiKjp\notin K_{i}\cap K_{j}. This implies p=γxi,ξi(si)=γxj,ξj(sj)p=\gamma_{x_{i},\xi_{i}}(s_{i})=\gamma_{x_{j},\xi_{j}}(s_{j}) for some si,sj>0s_{i},s_{j}>0. In (x,ξ){{\mathcal{R}}(\vec{x},\vec{\xi})}, we must have si=ti0s_{i}=t_{i}^{0} and sj=tj0s_{j}=t_{j}^{0}. This contradicts with p,q𝒩(x,ξ)p,q\in{\mathcal{N}(\vec{x},\vec{\xi})} by [8, Lemma 9.13].

For (b), similarly we have pγxi,ξi(+)p\in\gamma_{x_{i},\xi_{i}}(\mathbb{R}_{+}) otherwise pKip\notin K_{i} for sufficiently small s0>0s_{0}>0. Since p(x,ξ)p\in{{\mathcal{R}}(\vec{x},\vec{\xi})}, we have p=γxi,ξi(ti0)p=\gamma_{x_{i},\xi_{i}}(t_{i}^{0}), if (b) is not true. It follows from (p,ζ)Λjklb(p,\zeta)\in\Lambda_{jkl}^{b} that there exists (p0,ζ0)Λjkl(p_{0},\zeta^{0})\in\Lambda_{jkl} such that (p,ζ)Θp0,ζ0b(p,\zeta)\in\Theta^{b}_{p_{0},\zeta^{0}}. With p𝒩(x,ξ)p\in{\mathcal{N}(\vec{x},\vec{\xi})}, we must have p0𝒩(x,ξ)p_{0}\in{\mathcal{N}(\vec{x},\vec{\xi})} since pp0p\geq p_{0}. Assume p0γxj,ξj(+)γxk,ξk(+)γxl,ξl(+)p_{0}\notin\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+})\cap\gamma_{x_{k},\xi_{k}}(\mathbb{R}_{+})\cap\gamma_{x_{l},\xi_{l}}(\mathbb{R}_{+}). Without loss of generosity, we can assume p0γxj,ξj(+)p_{0}\notin\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+}). Then there exists s0>0s_{0}>0 small enough such that p0Kjp_{0}\notin K_{j}, which contradicts with (p0,ζ0)Λjkl(p_{0},\zeta^{0})\in\Lambda_{jkl}. It follows that p0=qp_{0}=q, since qq is the only intersection point in 𝒩(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})} by [8, Lemma 9.13]. Then one has γxi,ξi(ti0)=p>q\gamma_{x_{i},\xi_{i}}(t_{i}^{0})=p>q, which is impossible. ∎

3.5. The solution operator QgbvpQ^{\mathrm{bvp}}_{g}

In this subsection, we present how the singularities propagate after applying QgbvpQ^{\mathrm{bvp}}_{g}, i.e., the solution operator to the boundary value problem

(15) cw\displaystyle\square_{c}w =h,\displaystyle=h, on ×Ω,\displaystyle\mbox{on }\mathbb{R}\times\Omega,
w\displaystyle w =0,\displaystyle=0, on ×Ω,\displaystyle\mbox{on }\mathbb{R}\times\partial\Omega,
w\displaystyle w =0,\displaystyle=0, for t<0.\displaystyle\mbox{for }t<0.

The similar analysis is in [61, Section 3.4].

We denote the outward (+) and inward (-) pointing tangent bundles by

(16) TM,±M={(x,v)TM:±g(v,n)>0},T_{\partial M,\pm}M=\{(x,v)\in\partial TM:\ \pm g(v,n)>0\},

where nn is the outward pointing unit normal of M\partial M. For convenience, we also introduce the notation

(17) LM,±M={(z,ζ)LM such that (z,ζ#)TM,±M}L^{*}_{\partial M,\pm}M=\{(z,\zeta)\in L^{*}M\text{ such that }(z,\zeta^{\#})\in T_{\partial M,\pm}M\}

to denote the lightlike covectors that are outward or inward pointing on the boundary.

First we recall some definitions and notations in [46, 45, 62, 32, 48] (see also [44, 53]). For a smooth manifold MM with boundary M\partial M, let T˙bM{}^{b}\dot{T}^{*}M be the compressed cotangent bundle, see [48, Lemma 2.3]. There is a natural map

πb:TMT˙bM\pi_{b}:T^{*}M\rightarrow{}^{b}\dot{T}^{*}M

satisfying that it is the identity map in TMoT^{*}M^{{o}} and for pMp\in\partial M it has the kernel Np(M)N^{*}_{p}(\partial M) and the range identified with Tp(M)T^{*}_{p}(\partial M). Suppose locally MM is given by (x|,xn)(x_{|},x^{n}) with xn0x^{n}\geq 0 and the one forms are given by ξ|dx|+ξndxn\sum\xi_{|}\mathop{}\!\mathrm{d}x_{|}+\xi_{n}\mathop{}\!\mathrm{d}x^{n}. Then in local coordinates, πb\pi_{b} takes the from

πb(x|,xn,ξ|,ξn)=(x|,xn,ξ|,xnξn).\pi_{b}(x_{|},x^{n},\xi_{|},\xi_{n})=(x_{|},x^{n},\xi_{|},x^{n}\xi_{n}).

The compressed cotangent bundle T˙bM{}^{b}\dot{T}^{*}M can be decomposed into the elliptic, glancing, and hyperbolic sets by

={μT˙bM0,πb1(μ)Char(g)=},\displaystyle\mathcal{E}=\{\mu\in{}^{b}\dot{T}^{*}M\setminus 0,\ \pi_{b}^{-1}(\mu)\cap\mathrm{Char}(\square_{g})=\emptyset\},
𝒢={μT˙bM0,Card(πb1(μ)Char(g))=1},\displaystyle\mathcal{G}=\{\mu\in{}^{b}\dot{T}^{*}M\setminus 0,\ \text{Card}(\pi_{b}^{-1}(\mu)\cap\mathrm{Char}(\square_{g}))=1\},
={μT˙bM0,Card(πb1(μ)Char(g))=2}.\displaystyle\mathcal{H}=\{\mu\in{}^{b}\dot{T}^{*}M\setminus 0,\ \text{Card}(\pi_{b}^{-1}(\mu)\cap\mathrm{Char}(\square_{g}))=2\}.

Recall Char(c)\mathrm{Char}(\square_{c}) is the characteristic set of c\square_{c} and we define its image

Σ˙g=πb(Char(c))\dot{\Sigma}_{g}=\pi_{b}{(\mathrm{Char}(\square_{c}))}

as the compressed bicharacteristic set. Obviously the set Σ˙g\dot{\Sigma}_{g} is a union of the glancing set 𝒢\mathcal{G} and the hyperbolic set \mathcal{H}. If μTMo\mu\in T^{*}M^{{o}} and μChar(c)\mu\in\mathrm{Char}{(\square_{c})}, then μ\mu is in 𝒢\mathcal{G}. Let 𝒢int\mathcal{G}^{\mathrm{int}} be the subset of 𝒢\mathcal{G} containing such μ\mu. Note 𝒢int\mathcal{G}^{\mathrm{int}} can be identified with TMoT^{*}M^{{o}}. If μTMo\mu\in T^{*}M^{{o}} and μChar(c)\mu\notin\mathrm{Char}({\square_{c})}, then μ\mu is in the elliptic set \mathcal{E}.

The glancing set on the boundary 𝒢𝒢int\mathcal{G}\setminus\mathcal{G}^{\mathrm{int}} is the set of all points μΣ˙g\mu\in\dot{\Sigma}_{g} such that πb1(μ)T(M)\pi_{b}^{-1}(\mu)\in T^{*}(\partial M) and the Hamilton vector field HpH_{p} of c\square_{c} is tangent to M\partial M at πb1(μ)\pi_{b}^{-1}(\mu). We define 𝒢k\mathcal{G}^{k} as the subset where HpH_{p} is tangent to M\partial M with the order less than kk, for k2k\geq 2, see [46, (3.2)] and [32, Definiton 24.3.2]. Note that 𝒢=𝒢int𝒢2\mathcal{G}=\mathcal{G}^{\mathrm{int}}\cup\mathcal{G}^{2}. In particular, we denote by 𝒢\mathcal{G}^{\infty} the subset with infinite order of bicharacteristic tangency. The subset 𝒢2𝒢3\mathcal{G}^{2}\setminus\mathcal{G}^{3} is the union of the diffractive part 𝒢d\mathcal{G}_{d} and the gliding part 𝒢g\mathcal{G}_{g} depending on whether Hp2xn>0H_{p}^{2}x^{n}>0 or Hp2xn<0H_{p}^{2}x^{n}<0.

Next we are ready to define the generalized broken bicharacteristic of c\square_{c}, see [46, 45, 32] and [62, Definition 1.1].

Definition 3 ([32, Definition 24.3.7]).

Let II\subset\mathbb{R} be an open interval and BIB\subset I is a discrete subset. A generalized broken bicharacteristic arc of c\square_{c} is a map ν:Iπb1(𝒢)\nu:I\rightarrow\pi_{b}^{-1}(\mathcal{G}\cup\mathcal{H}) satisfying the following properties:

  1. (1)

    ν(t)\nu(t) is differentiable and ν(t)=Hp(ν(t))\nu^{\prime}(t)=H_{p}(\nu(t)), if ν(t)TMo\nu(t)\in T^{*}M^{{o}}

  2. (2)

    ν(t)\nu(t) is differentiable and ν(t)=HpG(ν(t))\nu^{\prime}(t)=H_{p}^{G}(\nu(t)) , if ν(t)πb1(𝒢2𝒢d)\nu(t)\in\pi_{b}^{-1}(\mathcal{G}^{2}\setminus\mathcal{G}_{d}), see [32, Definition 24.3.6] for the vector field HpG(ν(t))H_{p}^{G}(\nu(t)),

  3. (3)

    every tBt\in B is isolated, and ν(s)TMo\nu(s)\in T^{*}M^{{o}} if |st||s-t| is small enough and sts\neq t. The limits ν(t±0)\nu(t\pm 0) exist and are different points in the same fiber of TM\partial T^{*}M.

The continuous curve ν˙\dot{\nu} obtained by mapping ν\nu into Σ˙g\dot{\Sigma}_{g} by πb\pi_{b} is called a generalized broken bicharacteristic.

If ν\nu is a generalized bicharacteristic arc contained in 𝒢int\mathcal{G}^{\mathrm{int}}\cup\mathcal{H}, then we call it a broken bicharacteristic arc, see [32, Definiton 24.2.2], which is roughly speaking the union of bicharacteristics of c\square_{c} over MoM^{{o}} with reflection points on the boundary. By the definition, a broken bicharacteristic arc arrives transversally to M\partial M at ν(t0)\nu(t-0) and then leaves the boundary transversally from the reflected point ν(t+0)\nu(t+0), with the same projection in TM0T^{*}\partial M\setminus 0. The image of such ν\nu under πb\pi_{b} is called a broken bicharacteristic.

In this paper, with the assumption that M\partial M is null-convex, the generalized broken bicharacteristics we consider in Section 4 and 5 are contained in 𝒢int\mathcal{G}^{\mathrm{int}}\cup\mathcal{H}, and therefore are all broken bicharacteristics. We denote the broken bicharacteristic arc of c\square_{c} that contains the covector (y,η)LM(y,\eta)\in L^{*}M by Θy,ηb\Theta^{b}_{y,\eta}. According to [32, Corollary 24.3.10], the arc Θy,ηb\Theta^{b}_{y,\eta} is unique for each πb(y,η)𝒢\pi_{b}(y,\eta)\notin\mathcal{G}^{\infty}. The following lemma shows that with proper assumptions on the boundary, a generalized bicharacteristics passing a point in 𝒢int\mathcal{G}^{\mathrm{int}}\cup\mathcal{H} is always contained in 𝒢int\mathcal{G}^{\mathrm{int}}\cup\mathcal{H}, i.e., is always a broken bicharacteristic.

Lemma 2.

Let (M,g)(M,g) be a Lorentzian manifold with timelike boundary M\partial M. Suppose M\partial M is null-convex, see (5). If ν˙\dot{\nu} is a future pointing generalized bicharacteristic with ν˙(0)𝒢int\dot{\nu}(0)\in\mathcal{G}^{\mathrm{int}}\cup\mathcal{H}, then ν˙𝒢int\dot{\nu}\subset\mathcal{G}^{\mathrm{int}}\cup\mathcal{H} and therefore it is a future pointing broken characteristic.

Proof.

If ν˙(0)\dot{\nu}(0)\in\mathcal{H}, then there are two different points in πb1(ν˙)(0)Char(c)\pi_{b}^{-1}(\dot{\nu})(0)\cap\mathrm{Char}({\square_{c}}). In this case suppose ν±TM±M\nu^{\pm}\in T^{\pm}_{\partial M}M such that πb(ν±)=ν˙(0)\pi_{b}(\nu^{\pm})=\dot{\nu}(0). By Definition 3, the generalized bicharacteristic arc ν\nu of ν˙\dot{\nu} has ν(0)=ν+\nu(0-)=\nu^{+} and ν(0+)=ν\nu(0+)=\nu^{-}. It leaves M\partial M transversally after t>0t>0 and one has ν˙(t)𝒢int\dot{\nu}(t)\in\mathcal{G}^{\mathrm{int}} for small enough positive tt.

Now we consider the second case where ν˙(0)𝒢int\dot{\nu}(0)\in\mathcal{G}^{\mathrm{int}}. The generalized bicharacteristic arc ν\nu of ν˙\dot{\nu} has ν(0)TMo\nu(0)\in T^{*}M^{{o}} and therefore near ν(0)\nu(0) it is the null bicharacteristic of c\square_{c}. Let π:TMM\pi:T^{*}M\rightarrow M be the natural projection. Then π(ν)(t)\pi(\nu)(t) near t=0t=0 is a light-like geodesic in MoM^{{o}}. If π(ν)(t)\pi(\nu)(t) hits the boundary at π(ν)(t0)=p0\pi(\nu)(t_{0})=p_{0}, then by [28, Proposition 2.4] the null-convex boundary implies that the intersection is transversal with the tangent vector v+v^{+} such that (p0,v+)TM+M(p_{0},v^{+})\in T^{+}_{\partial M}M. Let v=v+2g(v+,n)nv^{-}=v^{+}-2g(v^{+},n)n and it follows that g(v,n)<0,g(v,v)=0g(v^{-},n)<0,\ g(v^{-},v^{-})=0 and πb(v+)=πb(v)\pi_{b}(v^{+})=\pi_{b}(v^{-}). Thus, ν˙(t0)\dot{\nu}(t_{0})\in\mathcal{H} and we arrive at the first case.

Combining the two cases, we have ν˙\dot{\nu} is always contained in 𝒢int\mathcal{G}^{\mathrm{int}}\cup\mathcal{H}. ∎

Let 𝒟˙(M)\dot{\mathcal{D}}^{\prime}(M) be the set of distributions supported in MM. The boundary wave front set WFb(u){\text{$\operatorname{WF}$}}_{b}(u) of a distribution u𝒟˙(M)u\in\dot{\mathcal{D}^{\prime}}(M) is defined by

WFb(u)=πb(Char(B)),{\text{$\operatorname{WF}$}}_{b}(u)=\bigcap\pi_{b}(\mathrm{Char}(B)),

where the intersection takes for any properly supported BΨb0(M)B\in\Psi^{0}_{b}(M) and Bu𝒜˙(M)Bu\in\dot{\mathcal{A}}(M). Here Ψb0(M)\Psi^{0}_{b}(M) is the set of b-pseudodifferential operators on MM of order zero, for more details see [32, Definition 18.3.18]. The set 𝒜˙(M)mIm(M,M)\dot{\mathcal{A}}(M)\equiv\bigcup_{m}I^{m}(M,\partial M) contains distributions that are smooth in MoM^{{o}} and have tangential smoothness at M\partial M, where Im(M,M)I^{m}(M,\partial M) denotes the class of conormal distributions on M\partial M of order mm. Note that away from the boundary it coincides with the usual definition of wave from set, i.e. WFb(u)|Mo=WF(u|Mo){\text{$\operatorname{WF}$}}_{b}(u)|_{M^{{o}}}={\text{$\operatorname{WF}$}}(u|_{M^{{o}}}). We present the result about the singularities of solutions to the boundary value problem (15) in the following proposition according to [46, 45], [62, Theorem 8.1], and [32].

Proposition 4.

Let h𝒟˙(M)h\in\dot{\mathcal{D}^{\prime}}(M) and w=Qgbvp(h)w=Q^{\mathrm{bvp}}_{g}(h) be the solution to the boundary value problem (15) in MM. Then

WFb(w)WFb(h)Σ˙g{\text{$\operatorname{WF}$}}_{b}(w)\setminus{\text{$\operatorname{WF}$}}_{b}(h)\subset\dot{\Sigma}_{g}

is a union of maximally extended generalized characteristics of c\square_{c}.

Combining this proposition and Lemma 2, we have the following corollary.

Corollary 1.

In particular, if M\partial M is timelike and null-convex with WFb(h){\text{$\operatorname{WF}$}}_{b}(h) contained in 𝒢int\mathcal{G}^{\mathrm{int}}\cup\mathcal{H}, then

WFb(w)𝒢int{\text{$\operatorname{WF}$}}_{b}(w)\subset\mathcal{G}^{\mathrm{int}}\cup\mathcal{H}

and is a union of broken bicharacteristics.

3.6. The asymptotic expansion

Let f=j=1Jϵjfjf=\sum_{j=1}^{J}\epsilon_{j}f_{j}, where J=3J=3 or 44. The small boundary data fjf_{j} are properly chosen as before. Let vjv_{j} solve the boundary value problem (9) and recall we write w=Qgbvp(h)w=Q_{g}^{\text{bvp}}(h) if ww solves the boundary value problem (15).

Let v=j=1Jϵjvjv=\sum_{j=1}^{J}\epsilon_{j}v_{j} and by (1) we have

c(pv)=F(x,p,tp,t2p).\square_{c}(p-v)=F(x,p,\partial_{t}p,\partial^{2}_{t}p).

It follows from (3) that

p\displaystyle p =v+m=1Qgbvp(βm+1(x)t2(pm+1)),\displaystyle=v+\sum_{m=1}{Q_{g}^{\text{bvp}}(\beta_{m+1}(x)\partial_{t}^{2}(p^{m+1}))},
(18) =v+A2+A3+A4+,\displaystyle=v+{A_{2}+A_{3}+A_{4}+\dots},

where we write the term m=1Qgbvp(βm+1(x)t2(pm+1))\sum_{m=1}Q_{g}^{\text{bvp}}(\beta_{m+1}(x)\partial_{t}^{2}(p^{m+1})) by the order of ϵ\epsilon-terms, such that A2A_{2} denotes the terms with ϵiϵj\epsilon_{i}\epsilon_{j}, A3A_{3} denotes the terms with ϵiϵjϵk\epsilon_{i}\epsilon_{j}\epsilon_{k}, and A4A_{4} denotes the terms with ϵiϵjϵkϵl\epsilon_{i}\epsilon_{j}\epsilon_{k}\epsilon_{l}, for 1i,j,k,lJ1\leq i,j,k,l\leq J. By (3.6), one can find the expansions of A2,A3,A4A_{2},A_{3},A_{4} as

A2\displaystyle A_{2} =Qgbvp(β2t2(v2)),\displaystyle=Q_{g}^{\text{bvp}}(\beta_{2}\partial_{t}^{2}(v^{2})),
A3\displaystyle A_{3} =Qgbvp(2β2t2(vA2)+β3t2(v3))\displaystyle=Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(vA_{2})+\beta_{3}\partial_{t}^{2}(v^{3}))
A4\displaystyle A_{4} =Qgbvp(2β2t2(vA3)+β2t2(A2A2)+3β3t2(v2A2)+β4t2(v4)).\displaystyle=Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(vA_{3})+\beta_{2}\partial_{t}^{2}(A_{2}A_{2})+3\beta_{3}\partial_{t}^{2}(v^{2}A_{2})+\beta_{4}\partial_{t}^{2}(v^{4})).

For N5N\geq 5, we can write

AN=Qgbvp(βNt2(vN))+𝒬N(β2,β3,,βN1),\displaystyle A_{N}=Q_{g}^{\text{bvp}}(\beta_{N}\partial_{t}^{2}(v^{N}))+\mathcal{Q}_{N}(\beta_{2},\beta_{3},\ldots,\beta_{N-1}),

where 𝒬N(β2,β3,,βN1)\mathcal{Q}_{N}(\beta_{2},\beta_{3},\ldots,\beta_{N-1}) contains the terms involved only with β2,,βN1\beta_{2},\ldots,\beta_{N-1}. Note that vv appears jj times in each AjA_{j}, j=2,3,4j=2,3,4. Therefore, we introduce the notation A2ijA_{2}^{ij} to denote the result if we replace vv by vi,vjv_{i},v_{j} in A2A_{2} in order, and similarly the notations A3ijkA_{3}^{ijk}, A4ijklA_{4}^{ijkl}, such that

A2=i,jϵiϵjA2ij,A3=i,j,kϵiϵjϵkA3ijk,A4=i,j,k,lϵiϵjϵkϵlA4ijkl.A_{2}=\sum_{i,j}\epsilon_{i}\epsilon_{j}A_{2}^{ij},\quad A_{3}=\sum_{i,j,k}\epsilon_{i}\epsilon_{j}\epsilon_{k}A_{3}^{ijk},\quad A_{4}=\sum_{i,j,k,l}\epsilon_{i}\epsilon_{j}\epsilon_{k}\epsilon_{l}A_{4}^{ijkl}.

More explicitly, we have

(19) A2ij=Qgbvp(β2t2(vivj)),A3ijk=Qgbvp(2β2t2(viA2jk)+β3t2(vivjvk))A4ijkl=Qgbvp(2β2t2(viA3jkl)+β2t2(A2ijA2kl)+3β3t2(vivjA2kl)+β4t2(vivjvkvl)).\displaystyle\begin{split}A_{2}^{ij}&=Q_{g}^{\text{bvp}}(\beta_{2}\partial_{t}^{2}(v_{i}v_{j})),\\ A_{3}^{ijk}&=Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}A_{2}^{jk})+\beta_{3}\partial_{t}^{2}(v_{i}v_{j}v_{k}))\\ A_{4}^{ijkl}&=Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}A_{3}^{jkl})+\beta_{2}\partial_{t}^{2}(A_{2}^{ij}A_{2}^{kl})+3\beta_{3}\partial_{t}^{2}(v_{i}v_{j}A_{2}^{kl})+\beta_{4}\partial_{t}^{2}(v_{i}v_{j}v_{k}v_{l})).\end{split}

4. The nonlinear interaction of three waves

In this section, we consider the interaction of three distorted plane waves. Suppose (xj,ξj)j=13(x_{j},\xi_{j})_{j=1}^{3} intersect regularly at qMoq\in M^{{o}} and are casually independent as in (10). Let Kj=K(xj,ξj,s0)K_{j}=K(x_{j},\xi_{j},s_{0}) and Λj=Λ(xj,ξj,s0)\Lambda_{j}=\Lambda(x_{j},\xi_{j},s_{0}) be defined as in Section 3.4. With sufficiently small s0>0s_{0}>0, we can assume the submanifolds K1,K2,K3K_{1},K_{2},K_{3} intersect 3-transversally, i.e.,

  • (1)

    KiK_{i} and KjK_{j} intersect transversally at a codimension 22 submanifold KijK_{ij}, for 1i<j31\leq i<j\leq 3;

  • (2)

    K1,K2,K3K_{1},K_{2},K_{3} intersect transversally at a codimension 33 submanifold K123K_{123}.

By Lemma 1, in 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})}, one has Kij,KijkMoK_{ij},K_{ijk}\subset M^{{o}} with sufficiently small s0s_{0}, and therefore πb(Λij),πb(Λijk)𝒢int\pi_{b}(\Lambda_{ij}),\pi_{b}(\Lambda_{ijk})\subset\mathcal{G}^{\mathrm{int}} for 1i<j31\leq i<j\leq 3.

Recall we can construct distorted waves uju_{j} associated with (xj,ξj)j=13(x_{j},\xi_{j})_{j=1}^{3} such that

ujIμ(Λ(xj,ξj,s0)),j=1,2,3,u_{j}\in I^{\mu}(\Lambda(x_{j},\xi_{j},s_{0})),\quad j=1,2,3,

solves the linearized wave problem in MM, i.e., cujC(M)\square_{c}u_{j}\in C^{\infty}(M), with the principal symbol nonvanishing along γxj,ξj(+)\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+}). Let fj=uj|Mf_{j}=u_{j}|_{\partial M} and f=j=13ϵjfjf=\sum_{j=1}^{3}\epsilon_{j}f_{j} as the Dirichlet data for (1). Suppose vjv_{j} solves (9). It follows that vjv_{j} is equal to uju_{j} module C(M)C^{\infty}(M). We define

𝒰(3)=ϵ1ϵ2ϵ3u|ϵ1=ϵ2=ϵ3=0,\mathcal{U}^{(3)}=\partial_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}u|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=0},

and combine (3.6), (19) to have

𝒰(3)\displaystyle\mathcal{U}^{(3)} =(i,j,k)Σ(3)A3ijk=(i,j,k)Σ(3)Qgbvp(2β2t2(viA2jk)+β3t2(vivjvk)).\displaystyle=\sum_{(i,j,k)\in\Sigma(3)}A_{3}^{ijk}=\sum_{(i,j,k)\in\Sigma(3)}Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}A_{2}^{jk})+\beta_{3}\partial_{t}^{2}(v_{i}v_{j}v_{k})).

Note that 𝒰(3)\mathcal{U}^{(3)} is not the third order linearization of ΛF\Lambda_{F} but they are related by

(20) ϵ1ϵ2ϵ3ΛF(f)|ϵ1=ϵ2=ϵ3=0=ν,𝒰(3)|M.\displaystyle\partial_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}\Lambda_{F}(f)|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=0}=\langle\nu,\nabla\mathcal{U}^{(3)}\rangle|_{\partial M}.

As in [30], we introduce the trace operator \mathcal{R} on M\partial M. It is an FIO and maps distributions in (M)\mathcal{E}^{\prime}(M) whose singularities are away from N(M)N^{*}(\partial M) to (M)\mathcal{E}^{\prime}(\partial M), see [19, Section 5.1]. Notice for any timelike covector (y|,η|)TM0(y_{|},\eta_{|})\in T^{*}\partial M\setminus 0, there is exactly one outward pointing lightlike covector (y,η+)(y,\eta^{+}) and one inward pointing lightlike covector (y,η)(y,\eta^{-}) satisfying y|=y,η|=η±|TyMy_{|}=y,\ \eta_{|}=\eta^{\pm}|_{T^{*}_{y}\partial M}. The trace operator \mathcal{R} has a nonzero principal symbol at such (y|,η|,y,η+)(y_{|},\eta_{|},y,\eta^{+}) or (y|,η|,y,η)(y_{|},\eta_{|},y,\eta^{-}) .

We emphasize that vj𝒟˙(M)v_{j}\in\dot{\mathcal{D}}^{\prime}(M) and we can always identify it as en element of 𝒟(Me)\mathcal{D}^{\prime}({M_{\mathrm{e}}}). Particularly in 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})}, it can be identified as a conormal distribution in Me{M_{\mathrm{e}}}. Note that vivjv_{i}v_{j} or vivjvkv_{i}v_{j}v_{k} has singularities away from NMN^{*}\partial M, since we have Kij,KijkMoK_{ij},K_{ijk}\subset M^{{o}}. Then we use Proposition 4 and its corollary to analyze the singularities of Qgbvp(vivj)Q_{g}^{\text{bvp}}(v_{i}v_{j}) or Qgbvp(vivjvk)Q_{g}^{\text{bvp}}(v_{i}v_{j}v_{k}). This is the same argument we use in [61, Section 4, 5]. We present the proof in the following for completeness.

4.1. The analysis of A2ijA_{2}^{ij}

First we analyze the singularities of

A2ij=Qgbvp(β2t2(vivj)),1i<j3.A_{2}^{ij}=Q_{g}^{\text{bvp}}(\beta_{2}\partial_{t}^{2}(v_{i}v_{j})),\quad 1\leq i<j\leq 3.

By [43, Lemma 3.3] and [63, Lemma 4.1], one has

β2t2(vivj)Iμ+2,μ+1(Λij,Λi)+Iμ+2,μ+1(Λij,Λj).\beta_{2}\partial_{t}^{2}(v_{i}v_{j})\in I^{\mu+2,\mu+1}(\Lambda_{ij},\Lambda_{i})+I^{\mu+2,\mu+1}(\Lambda_{ij},\Lambda_{j}).

In the following, let (q,ζ(j))Λj(q,{\zeta^{(j)}})\in\Lambda_{j} and we write ζ(j)=(ζ0(j),ζ1(j),ζ2(j),ζ3(j))\zeta^{(j)}=(\zeta_{0}^{(j)},\zeta_{1}^{(j)},\zeta_{2}^{(j)},\zeta_{3}^{(j)}), for j=1,2,3j=1,2,3. With Ki,KjK_{i},K_{j} intersecting transversally, any (q,ζ)Λij(q,\zeta)\in\Lambda_{ij} has a unique decomposition ζ=ζ(i)+ζ(j)\zeta={\zeta^{(i)}}+{\zeta^{(j)}}. Away from Λi\Lambda_{i} and Λj\Lambda_{j}, the principal symbol of β2t2(vivj)\beta_{2}\partial_{t}^{2}(v_{i}v_{j}) equals to

(2π)1β2(ζ0(i)+ζ0(j))2σp(vi)(q,ζ(i))σp(vj)(q,ζ(j))-(2\pi)^{-1}\beta_{2}(\zeta_{0}^{(i)}+\zeta_{0}^{(j)})^{2}{{\sigma_{p}}}(v_{i})(q,\zeta^{(i)}){{\sigma_{p}}}(v_{j})(q,\zeta^{(j)})

at (q,ζ)Λij(q,\zeta)\in\Lambda_{ij}.

Note that β2t2(vivj)\beta_{2}\partial_{t}^{2}(v_{i}v_{j}) is also a distribution supported in MM. Its boundary wave front set is contained in πb(ΛiΛjΛij)\pi_{b}(\Lambda_{i}\cup\Lambda_{j}\cup{\Lambda_{ij}}) and thus as a subset of 𝒢int\mathcal{G}^{\text{int}}\cup\mathcal{H}. Then by Proposition 4 and its corollary, the set WFb(A2ij){\text{$\operatorname{WF}$}}_{b}(A_{2}^{ij}) is contained in the union of πb(ΛiΛjΛij)\pi_{b}(\Lambda_{i}\cup\Lambda_{j}\cup{\Lambda_{ij}}) and their flow out under the broken bicharacteristics. We notice that away from J+(γxi,ξi(tib))J^{+}(\gamma_{x_{i},\xi_{i}}(t_{i}^{b})) and J+(γxi,ξi(tjb))J^{+}(\gamma_{x_{i},\xi_{i}}(t_{j}^{b})), there are no new singularities produced by the flow out.

In (x,ξ){{\mathcal{R}}(\vec{x},\vec{\xi})}, we identify QgbvpQ_{g}^{\text{bvp}} by QgQ_{g}, the causal inverse of c\square_{c} on Me{M_{\mathrm{e}}}, to have

A2ijIμ+1,μ(Λij,Λi)+Iμ+1,μ(Λij,Λj),A_{2}^{ij}\in I^{\mu+1,\mu}(\Lambda_{ij},\Lambda_{i})+I^{\mu+1,\mu}(\Lambda_{ij},\Lambda_{j}),

by [43, Lemma 3.4]. Here we regard the restriction of A2ijA_{2}^{ij} to 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})} as a distribution in Me{M_{\mathrm{e}}}. Additionally, at (q,ζ)Λij(q,\zeta)\in\Lambda_{ij} away from Λi\Lambda_{i} and Λj\Lambda_{j}, the principal symbol equals to

σp(A2ij)(q,ζ)\displaystyle{{\sigma_{p}}}(A_{2}^{ij})(q,\zeta) =(2π)1β2(ζ0(i)+ζ0(j))2|ζ(i)+ζ(j)|g2σp(vi)(q,ζ(i))σp(vj)(q,ζ(j)).\displaystyle=-(2\pi)^{-1}\beta_{2}\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(j)})^{2}}{|\zeta^{(i)}+\zeta^{(j)}|_{g^{*}}^{2}}{{\sigma_{p}}}(v_{i})(q,\zeta^{(i)}){{\sigma_{p}}}(v_{j})(q,\zeta^{(j)}).

4.2. The analysis of A3ijkA_{3}^{ijk}

Recall

A3ijk=Qgbvp(2β2t2(viA2jk)+β3t2(vivjvk)).A_{3}^{ijk}=Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}A_{2}^{jk})+\beta_{3}\partial_{t}^{2}(v_{i}v_{j}v_{k})).

The following proposition describes the singularities of A3ijkA_{3}^{ijk} produced by three waves interaction.

Proposition 5.

Suppose Ki,Kj,KkK_{i},K_{j},K_{k} intersect 3-transversally at KijkK_{ijk}. Then in 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\ \cap\ {{\mathcal{R}}(\vec{x},\vec{\xi})}, for the definition see (13) and (14), we have the following statements.

  1. (a)

    There is a decomposition A3ijk=w~0+w~1+w~2+w~3A_{3}^{ijk}={\widetilde{w}}_{0}+{\widetilde{w}}_{1}+{\widetilde{w}}_{2}+{\widetilde{w}}_{3} with

    (21) w~0I3μ+3(Λijk),WFb(w~1)πb((Λijkg(ϵ)Λijk)Λijkb),WFb(w~2)πb(Λ(1)(Λ(1)(ϵ)Λijk)Λijkb),WF(w~3)Λ(1)Λ(2).\displaystyle\begin{split}&{\widetilde{w}}_{0}\in I^{3\mu+3}(\Lambda_{ijk}),\quad{\text{$\operatorname{WF}$}}_{b}({\widetilde{w}}_{1})\subset\pi_{b}((\Lambda_{ijk}^{g}(\epsilon)\cap\Lambda_{ijk})\cup\Lambda_{ijk}^{b}),\\ &{\text{$\operatorname{WF}$}}_{b}({\widetilde{w}}_{2})\subset\pi_{b}(\Lambda^{(1)}\cup(\Lambda^{(1)}(\epsilon)\cap\Lambda_{ijk})\cup\Lambda_{ijk}^{b}),\quad{\text{$\operatorname{WF}$}}({\widetilde{w}}_{3})\subset\Lambda^{(1)}\cup\Lambda^{(2)}.\end{split}

    In particular, for (q,ζ)Λijk(q,\zeta)\in\Lambda_{ijk}, the leading term w~0{\widetilde{w}}_{0} has the principal symbol (30).

  2. (b)

    Let (y,η)LM,+M(y,\eta)\in L^{*}_{\partial M,+}M be a covector lying along the forward null-bicharacteristic starting at (q,ζ)Λijk(q,\zeta)\in\Lambda_{ijk}. Suppose (y,η)(y,\eta) is away from Λ(1)\Lambda^{(1)}. Then σp(𝒰(3))(y,η){\sigma_{p}}(\mathcal{U}^{(3)})(y,\eta) is given in (31).

  3. (c)

    Let (y|,η|)(y_{|},\eta_{|}) be the projection of (y,η)(y,\eta) on the boundary. Moreover, we have

    σp(ϵ1ϵ2ϵ3ΛF(f)|ϵ1=ϵ2=ϵ3=0)(y|,η|)=ιν,ηgσp(𝒰(3))(y|,η|).{{\sigma_{p}}}({\partial_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}\Lambda_{F}(f)|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=0}})(y_{|},\eta_{|})=\iota\langle\nu,\eta\rangle_{g}{{\sigma_{p}}}(\mathcal{U}^{(3)})(y_{|},\eta_{|}).
Proof.

We write A3ijk=B3ijk+C3ijkA_{3}^{ijk}=B_{3}^{ijk}+C_{3}^{ijk}, where

B3ijk=Qgbvp(2β2t2(viA2jk)),C3ijk=Qgbvp(β3t2(vivjvk))).B_{3}^{ijk}=Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}A_{2}^{jk})),\quad C_{3}^{ijk}=Q_{g}^{\text{bvp}}(\beta_{3}\partial_{t}^{2}(v_{i}v_{j}v_{k}))).

In the following, let (q,ζ(m))Λm,m=i,j,k(q,\zeta^{(m)})\in\Lambda_{m},m=i,j,k and (q,ζ)Λijk(q,\zeta)\in\Lambda_{ijk} with ζ=ζ(i)+ζ(j)+ζ(k)\zeta={\zeta^{(i)}}+{\zeta^{(j)}}+{\zeta^{(k)}}. The transversal intersection implies the decomposition of ζ\zeta is unique.

For B3ijkB_{3}^{ijk}, since we are away from J+(γxi,ξi(tib))J^{+}(\gamma_{x_{i},\xi_{i}}(t_{i}^{b})) and J+(γxj,ξj(tjb))J^{+}(\gamma_{x_{j},\xi_{j}}(t_{j}^{b})), first one can write viA2jk=w0+w1+w2v_{i}A_{2}^{jk}=w_{0}+w_{1}+w_{2} using [43, Lemma 3.6], where

(22) w0I3μ+2(Λijk),WF(w2)Λ(1)Λ(2),WF(w1)Λ(1)(Λ(1)(ϵ)Λijk).\displaystyle\begin{split}\ &w_{0}\in I^{3\mu+2}(\Lambda_{ijk}),\quad{\text{$\operatorname{WF}$}}(w_{2})\subset\Lambda^{(1)}\cup\Lambda^{(2)},\\ \ &{\text{$\operatorname{WF}$}}(w_{1})\subset\Lambda^{(1)}\cup(\Lambda^{(1)}(\epsilon)\cap\Lambda_{ijk}).\end{split}

The leading term w0w_{0} has principal symbol

σp(w0)(q,ζ)=(2π)2β2(ζ0(j)+ζ0(k))2|ζ(j)+ζ(k)|g2m=i,j,kσp(vm)(q,ζ(m)).\displaystyle{{\sigma_{p}}}(w_{0})(q,\zeta)=-(2\pi)^{-2}\beta_{2}\frac{(\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}}\prod_{m=i,j,k}{{\sigma_{p}}}(v_{m})(q,\zeta^{(m)}).

Next, we apply 2β2t22\beta_{2}\partial_{t}^{2} to w0,w1,w2w_{0},w_{1},w_{2} respectively. The wave front sets remain the same and we have 2β2t2w0I3μ+4(Λijk)2\beta_{2}\partial_{t}^{2}w_{0}\in I^{3\mu+4}(\Lambda_{ijk}) with

(23) σp(2β2t2w0)(q,ζ)=(2π)2(ζ0)2(2β22(ζ0(j)+ζ0(k))2|ζ(j)+ζ(k)|g2)m=i,j,kσp(vm)(q,ζ(m)).\displaystyle{{\sigma_{p}}}(2\beta_{2}\partial_{t}^{2}w_{0})(q,\zeta)=(2\pi)^{-2}(\zeta_{0})^{2}(2\beta^{2}_{2}\frac{(\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}})\prod_{m=i,j,k}{{\sigma_{p}}}(v_{m})(q,\zeta^{(m)}).

Then, we apply QgbvpQ_{g}^{\text{bvp}}. By Proposition 4 and its corollary, the set WFb(Qgbvp(wk)){\text{$\operatorname{WF}$}}_{b}(Q_{g}^{\text{bvp}}(w_{k})) is a union of WFb(wk){\text{$\operatorname{WF}$}}_{b}(w_{k}) and its flow out under the broken bicharacteristics. For this first term, it follows that

WFb(Qgbvp(2β2t2w0))πb(ΛijkΛijkb).{\text{$\operatorname{WF}$}}_{b}(Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}w_{0}))\subset\pi_{b}(\Lambda_{ijk}\cup\Lambda_{ijk}^{b}).

To find its principal symbol, we decompose it as Qgbvp(2β2t2w0)=uinc+urefQ_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}w_{0})=u^{\text{inc}}+u^{\text{ref}}, where uincu^{\text{inc}} is the incident wave before the reflection on the boundary and urefu^{\text{ref}} is the reflected one. Recall QgQ_{g} is the causal inverse of c\square_{c} on Me{M_{\mathrm{e}}}. Then uinc=Qg(2β2t2w0)u^{\text{inc}}=Q_{g}(2\beta_{2}\partial_{t}^{2}w_{0}) and by [25, Proposition 2.1] we have

(24) uinc=Qg(2β2t2w0)I3μ+52,12(Λijk,Λijkg).\displaystyle u^{\text{inc}}=Q_{g}(2\beta_{2}\partial_{t}^{2}w_{0})\in I^{3\mu+\frac{5}{2},-\frac{1}{2}}(\Lambda_{ijk},\Lambda_{ijk}^{g}).

The principal symbol at (q,ζ)Λijk(q,\zeta)\in\Lambda_{ijk} equals to

(25) σp(uinc)(q,ζ)=|ζ(i)+ζ(j)+ζ(k)|g2σp(2β2t2w0)(q,ζ).\displaystyle{{\sigma_{p}}}(u^{\text{inc}})(q,\zeta)=|\zeta^{(i)}+\zeta^{(j)}+\zeta^{(k)}|^{-2}_{g^{*}}{{\sigma_{p}}}(2\beta_{2}\partial_{t}^{2}w_{0})(q,\zeta).

If (y,η)LM,+M(y,\eta)\in L^{*}_{\partial M,+}M lies along the forward null-bicharacteristic starting from (q,ζ)Λijk(q,\zeta)\in\Lambda_{ijk}, then (y,η)(y,\eta) belongs to Λijkb\Lambda_{ijk}^{b} and is the first point there to hit the boundary. The principal symbol of uincu^{\text{inc}} at (y,η)(y,\eta) is

(26) σp(uinc)(y,η)=σp(Qg)(y,η,q,ζ)σp(2β2t2w0)(q,ζ).\displaystyle{{\sigma_{p}}}(u^{\text{inc}})(y,\eta)={{\sigma_{p}}}(Q_{g})(y,\eta,q,\zeta){{\sigma_{p}}}(2\beta_{2}\partial_{t}^{2}w_{0})(q,\zeta).

Near (y,η)(y,\eta), the reflected wave urefu^{\text{ref}} satisfies

curef=0,(uinc+uref)|M=0,\square_{c}u^{\text{ref}}=0,\quad(u^{\text{inc}}+u^{\text{ref}})|_{\partial M}=0,

where the second equation comes from the Dirichlet boundary condition. In a small conic neighborhood of (y,η)(y,\eta), we write

u=(2π)3eiϕ(x,θ)a(x,θ)dθ,u^{\bullet}=(2\pi)^{-3}\int e^{i\phi^{\bullet}(x,\theta)}a^{\bullet}(x,\theta)\mathop{}\!\mathrm{d}\theta,

for =inc, ref\bullet=\text{inc, ref}, with suitable amplitude a(x,θ)a^{\bullet}(x,\theta) satisfying the transport equation and the phase functions ϕ(x,θ)\phi^{\bullet}(x,\theta) satisfying the eikonal equation. Note that νϕref|M=νϕinc|M\partial_{\nu}\phi^{\text{ref}}|_{\partial M}=-\partial_{\nu}\phi^{\text{inc}}|_{\partial M} near (y,η)(y,\eta), since the incident wave is the incoming solution and the reflected wave is the outgoing one. The Dirichlet boundary condition implies ainc|M=aref|Ma^{\text{inc}}|_{\partial M}=-a^{\text{ref}}|_{\partial M} near (y,η)(y,\eta). In local coordinates, if we omit the half-density factor, then we have

σp(ν,u|M)(y|,η|)=ι(νϕ)a(y|,η|),{\sigma_{p}}(\langle\nu,\nabla u^{\bullet}\rangle|_{\partial M})(y_{|},\eta_{|})=\iota(\partial_{\nu}\phi^{\bullet})a^{\bullet}(y_{|},\eta_{|}),

where =inc, ref\bullet=\text{inc, ref} and (y|,η|)(y_{|},\eta_{|}) is the projection of the lightlike covector (y,η)(y,\eta) on the boundary. It follows that

σp(ν,uinc|M)(y|,η|)=σp(ν,uref|M)(y|,η|),{\sigma_{p}}(\langle\nu,\nabla u^{\text{inc}}\rangle|_{\partial M})(y_{|},\eta_{|})={\sigma_{p}}(\langle\nu,\nabla u^{\text{ref}}\rangle|_{\partial M})(y_{|},\eta_{|}),

and therefore

(27) σp(Qgbvp(2β2t2w0))(y,η)\displaystyle{\sigma_{p}}(Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}w_{0}))(y,\eta) =2σp(uinc)(y,η),\displaystyle=2{\sigma_{p}}(u^{\text{inc}})(y,\eta),
σp(ν,(Qgbvp(2β2t2w0))|M)(y|,η|)\displaystyle{\sigma_{p}}(\langle\nu,\nabla(Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}w_{0}))\rangle|_{\partial M})(y_{|},\eta_{|}) =2σp(ν,uinc|M)(y|,η|)\displaystyle=2{\sigma_{p}}(\langle\nu,\nabla u^{\text{inc}}\rangle|_{\partial M})(y_{|},\eta_{|})
=2ισp()(y|,η|,y,η)ν,ηgσp(uinc)(y,η),\displaystyle=2\iota{\sigma_{p}}(\mathcal{R})(y_{|},\eta_{|},y,\eta)\langle\nu,\eta\rangle_{g}{\sigma_{p}}(u^{\text{inc}})(y,\eta),

where the last equality is by [63, Lemma 4.1].

For Qgbvp(2β2t2w1)Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}w_{1}), first we identify w1w_{1} as an element in D˙(M)\dot{D}^{\prime}(M). Its boundary wave front set in MM is a subset of πb(Λ(1))πb(Λ(1)(ϵ)Λijk)\pi_{b}(\Lambda^{(1)})\cup\pi_{b}(\Lambda^{(1)}(\epsilon)\cap\Lambda_{ijk}). Then WFb(Qgbvp(2β2t2w1)){\text{$\operatorname{WF}$}}_{b}(Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}w_{1})) is contained in the union of this set and its flow out under broken bicharacteristics, i.e. πb(Λ(1)(Λ(1)(ϵ)Λijk)Λijkb)\pi_{b}(\Lambda^{(1)}\cup(\Lambda^{(1)}(\epsilon)\cap\Lambda_{ijk})\cup\Lambda_{ijk}^{b}), away from j=13J+(γxj,ξj(tjb))\bigcup_{j=1}^{3}J^{+}(\gamma_{x_{j},\xi_{j}}(t_{j}^{b})). When ϵ\epsilon goes to zero, the boundary wave front set tends to πb(Λ(1)Λijkb)\pi_{b}(\Lambda^{(1)}\cup\Lambda_{ijk}^{b}).

For Qgbvp(2β2t2w2)Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}w_{2}), the boundary wave front set of w2w_{2} in MM is a subset of πb(Λ(1)Λ(2))\pi_{b}(\Lambda^{(1)}\cup\Lambda^{(2)}). Then WFb(Qgbvp(2β2t2w2)){\text{$\operatorname{WF}$}}_{b}(Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}w_{2})) is contained in the union of this set and its flow out under the broken bicharacteristics, i.e., πb(Λ(1)Λ(2))\pi_{b}(\Lambda^{(1)}\cup\Lambda^{(2)}), away from j=13J+(γxj,ξj(tjb))\bigcup_{j=1}^{3}J^{+}(\gamma_{x_{j},\xi_{j}}(t_{j}^{b})).

Thus, we write B3ijk=w~0+w~1+w~2+w~3B_{3}^{ijk}={\widetilde{w}}_{0}+{\widetilde{w}}_{1}+{\widetilde{w}}_{2}+{\widetilde{w}}_{3} with

w~0I3μ+2(Λijk),WFb(w~1)πb((Λijkg(ϵ)Λijk)Λijkb),WFb(w~2)πb(Λ(1)(Λ(1)(ϵ)Λijk)Λijkb),WF(w~3)Λ(1)Λ(2),\displaystyle\begin{split}&{\widetilde{w}}_{0}\in I^{3\mu+2}(\Lambda_{ijk}),\quad{\text{$\operatorname{WF}$}}_{b}({\widetilde{w}}_{1})\subset\pi_{b}((\Lambda_{ijk}^{g}(\epsilon)\cap\Lambda_{ijk})\cup\Lambda_{ijk}^{b}),\\ &{\text{$\operatorname{WF}$}}_{b}({\widetilde{w}}_{2})\subset\pi_{b}(\Lambda^{(1)}\cup(\Lambda^{(1)}(\epsilon)\cap\Lambda_{ijk})\cup\Lambda_{ijk}^{b}),\quad{\text{$\operatorname{WF}$}}({\widetilde{w}}_{3})\subset\Lambda^{(1)}\cup\Lambda^{(2)},\end{split}

where the first two terms w~0,w~1{\widetilde{w}}_{0},{\widetilde{w}}_{1} come from applying [43, Lemma 3.9] to (24). Indeed, [43, Lemma 3.9] implies that we can decompose (24) as a conormal distribution supported in Λijk\Lambda_{ijk} and a distribution microlocally supported in Λijkg(ϵ)\Lambda_{ijk}^{g}(\epsilon). Since uincu^{\text{inc}} in (24) has wave front set contained in ΛijkΛijkg\Lambda_{ijk}\cup\Lambda_{ijk}^{g}, the second distribution in the decomposition must be microlocally supported in (Λijkg(ϵ)Λijk)Λijkg(\Lambda_{ijk}^{g}(\epsilon)\cap\Lambda_{ijk})\cup\Lambda_{ijk}^{g}. Then we include the wave front set after Λijkg\Lambda_{ijk}^{g} hits the boundary for the first time to have WFb(w~1){\text{$\operatorname{WF}$}}_{b}({\widetilde{w}}_{1}) in (21).

For C3ijkC_{3}^{ijk}, note that it has the same pattern as B3ijkB_{3}^{ijk}. In this case, the leading term in (22) is a conormal distribution in I3μ+2(Λijk)I^{3\mu+2}(\Lambda_{ijk}), with principal symbol

(28) (2π)2m=i,j,kσp(vm)(q,ζ(m))\displaystyle(2\pi)^{-2}\prod_{m=i,j,k}{{\sigma_{p}}}(v_{m})(q,\zeta^{(m)})

at (q,ζ)Λijk(q,\zeta)\in\Lambda_{ijk}. We apply β3t2\beta_{3}\partial_{t}^{2} to have β3t2w0I3μ+4(Λijk)\beta_{3}\partial_{t}^{2}w_{0}\in I^{3\mu+4}(\Lambda_{ijk}) with

(29) σp(β3t2w0)(q,ζ)=(2π)2(ζ0)2β3m=i,j,kσp(vm)(q,ζ(m)).\displaystyle{{\sigma_{p}}}(\beta_{3}\partial_{t}^{2}w_{0})(q,\zeta)=-(2\pi)^{-2}(\zeta_{0})^{2}\beta_{3}\prod_{m=i,j,k}{{\sigma_{p}}}(v_{m})(q,\zeta^{(m)}).

Then we apply QgbvpQ_{g}^{\text{bvp}} and follow the same analysis as above.

Combining the analysis of B3ijkB_{3}^{ijk} and C3ijkC_{3}^{ijk}, we conclude that we can write A3ijk=w~0+w~1+w~2+w~3A_{3}^{ijk}={\widetilde{w}}_{0}+{\widetilde{w}}_{1}+{\widetilde{w}}_{2}+{\widetilde{w}}_{3} with w~j{\widetilde{w}}_{j} satisfying (21) for j=0,1,2,3j=0,1,2,3. In particular, the leading term w~0{\widetilde{w}}_{0} has principal symbol at (q,ζ)Λijk(q,\zeta)\in\Lambda_{ijk} given by

(30) σp(w~0)(q,ζ)\displaystyle{{\sigma_{p}}}({\widetilde{w}}_{0})(q,\zeta)
=\displaystyle= (2π)2(ζ0)2|ζ(i)+ζ(j)+ζ(k)|g2(2β22(ζ0(j)+ζ0(k))2|ζ(j)+ζ(k)|g2β3)m=i,j,kσp(vm)(q,ζ(m)).\displaystyle(2\pi)^{-2}\frac{(\zeta_{0})^{2}}{|\zeta^{(i)}+\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}}(2\beta^{2}_{2}\frac{(\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}}-\beta_{3})\prod_{m=i,j,k}{{\sigma_{p}}}(v_{m})(q,\zeta^{(m)}).

Suppose (y,η)LM,+M(y,\eta)\in L^{*}_{\partial M,+}M lies along the forward null-bicharacteristic starting from (q,ζ)Λijk(q,\zeta)\in\Lambda_{ijk} and is away from Λ(1)Λ(2)Λ(3)\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)}. We combine (23), (26), (27), and (29) to have

(31) σp(𝒰(3))(y,η)=2(2π)2σp(Qg)(y,η,q,ζ)(ζ0)2𝒬(ζ(1),ζ(2),ζ(3))m=13σp(vm)(q,ζ(m)),\displaystyle{{\sigma_{p}}}(\mathcal{U}^{(3)})(y,\eta)=2(2\pi)^{-2}{{\sigma_{p}}}(Q_{g})(y,\eta,q,\zeta)(\zeta_{0})^{2}\mathcal{Q}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)})\prod_{m=1}^{3}{{\sigma_{p}}}(v_{m})(q,\zeta^{(m)}),

where

𝒬(ζ(1),ζ(2),ζ(3))\displaystyle\mathcal{Q}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)}) =(i,j,k)Σ(3)2(ζ0(j)+ζ0(k))2|ζ(j)+ζ(k)|g2β22β3.\displaystyle=\sum_{(i,j,k)\in\Sigma(3)}2\frac{(\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}}\beta^{2}_{2}-\beta_{3}.

5. The nonlinear interaction of four waves

In this section, we consider the interaction of four distorted plane waves. Suppose (xj,ξj)j=14(x_{j},\xi_{j})_{j=1}^{4} intersect regularly at qq and are casually independent as in (10). Let Kj=K(xj,ξj,s0)K_{j}=K(x_{j},\xi_{j},s_{0}) and Λj=Λ(xj,ξj,s0)\Lambda_{j}=\Lambda(x_{j},\xi_{j},s_{0}) be defined as in Section 3.4. With sufficiently small s0>0s_{0}>0, we can assume K1,K2,K3,K4K_{1},K_{2},K_{3},K_{4} intersect 4-transversally at qq, see Definition 2. By Lemma 1, in 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})} we must have Kij,KijkK_{ij},K_{ijk} and qq contained in MoM^{{o}}, if s0>0s_{0}>0 is small enough. We consider distorted waves uju_{j} associated with (xj,ξj)j=14(x_{j},\xi_{j})_{j=1}^{4} such that

ujIμ(Λ(xj,ξj,s0)),j=1,2,3,4u_{j}\in I^{\mu}(\Lambda(x_{j},\xi_{j},s_{0})),\quad j=1,2,3,4

solves the linearized wave problem in MM, i.e., cujC(M)\square_{c}u_{j}\in C^{\infty}(M), with the principal symbol nonvanishing along γxj,ξj(+)\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+}). Let fj=uj|Mf_{j}=u_{j}|_{\partial M} and we consider the Dirichlet data f=j=14ϵjfjf=\sum_{j=1}^{4}\epsilon_{j}f_{j} for the semilinear boundary value problem (1). Suppose vjv_{j} solves (9). It follows that vjv_{j} is equal to uju_{j} module C(M)C^{\infty}(M). We define

𝒰(4)=ϵ1ϵ2ϵ3ϵ4u|ϵ1=ϵ2=ϵ3=ϵ4=0,\displaystyle\operatorname{\mathcal{U}^{(4)}}=\partial_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}\partial_{\epsilon_{4}}u|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=\epsilon_{4}=0},

and combine (3.6), (19) to have

(32) 𝒰(4)=(i,j,k,l)Σ(4)𝒜4ijkl=(i,j,k,l)Σ(4)\displaystyle\operatorname{\mathcal{U}^{(4)}}=\sum_{(i,j,k,l)\in\Sigma(4)}\mathcal{A}_{4}^{ijkl}=\sum_{(i,j,k,l)\in\Sigma(4)} Qgbvp(2β2t2(viA3jkl)+β2t2(A2ijA2kl)+\displaystyle Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}A_{3}^{jkl})+\beta_{2}\partial_{t}^{2}(A_{2}^{ij}A_{2}^{kl})+
+3β3t2(vivjA2kl)+β4t2(vivjvkvl)).\displaystyle\quad\quad\quad+3\beta_{3}\partial_{t}^{2}(v_{i}v_{j}A_{2}^{kl})+\beta_{4}\partial_{t}^{2}(v_{i}v_{j}v_{k}v_{l})).

Note that 𝒰(4)\mathcal{U}^{(4)} is not the fourth order linearization of ΛF\Lambda_{F} but they are related by

(33) ϵ1ϵ2ϵ3ϵ4ΛF(f)|ϵ1=ϵ2=ϵ3=ϵ4=0=ν,𝒰(4)|M.\displaystyle\partial_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}{\epsilon_{4}}\Lambda_{F}(f)|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=\epsilon_{4}=0}=\langle\nu,\nabla\mathcal{U}^{(4)}\rangle|_{\partial M}.

The following proposition describes the singularities of 𝒰(4)\operatorname{\mathcal{U}^{(4)}} and those of the linearized DN map.

Proposition 6.

Suppose K1,K2,K3,K4K_{1},K_{2},K_{3},K_{4} intersect 4-transversally at a point q𝒩(x,ξ)q\in{\mathcal{N}(\vec{x},\vec{\xi})} and s0>0s_{0}>0 is sufficiently small. Let Γ(x,ξ)\Gamma({\vec{x},\vec{\xi}}) be defined in (12). Suppose (y,η)LM,+M(y,\eta)\in L^{*}_{\partial M,+}M is a covector lying along the forward null-bicharacteristic. If (y,η)(y,\eta) is in 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})} and away from Γ(x,ξ)\Gamma({\vec{x},\vec{\xi}}), then we have

σp(𝒰(4))(y,η)=2(2π)3σp(Qg)(y,η,q,ζ)(ζ0)2𝒞(ζ(1),ζ(2),ζ(3),ζ(4))(j=14σp(vj)(q,ζ(j))),\displaystyle{{\sigma_{p}}}(\mathcal{U}^{(4)})(y,\eta)=2(2\pi)^{-3}{{\sigma_{p}}}({Q}_{g})(y,\eta,q,\zeta)(\zeta_{0})^{2}\mathcal{C}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})(\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)})),

where 𝒞=𝒞(ζ(1),ζ(2),ζ(3),ζ(4))\mathcal{C}=\mathcal{C}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)}) is defined in (42). Let (y|,η|)(y_{|},\eta_{|}) be the projection of (y,η)(y,\eta) on the boundary. Moreover, we have

σp(ϵ1ϵ2ϵ3ϵ4Λ(f)|ϵ1=ϵ2=ϵ3=ϵ4=0)(y|,η|)=ιν,ηgσp()(y|,η|,y,η)σp(𝒰(4))(y,η).{{\sigma_{p}}}({\partial_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}\partial_{\epsilon_{4}}\Lambda(f)|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=\epsilon_{4}=0}})(y_{|},\eta_{|})=\iota\langle\nu,\eta\rangle_{g}{\sigma_{p}}(\mathcal{R})(y_{|},\eta_{|},y,\eta){{\sigma_{p}}}(\mathcal{U}^{(4)})(y,\eta).
Proof.

There are four different of terms for 𝒰(4)\operatorname{\mathcal{U}^{(4)}}, see (32). We denote them by 𝒰j(4)\mathcal{U}^{(4)}_{j}, for j=1,,4j=1,\ldots,4, and analyze each of them. Then we compute the principal symbol of ν,𝒰j(4)|M\langle\nu,\nabla\mathcal{U}_{j}^{(4)}\rangle|_{\partial M} in 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})}, following the same arguments in [61, Section 5]. We write down these arguments below for completeness.

In the following, let (q,ζ(m))Λm(q,\zeta^{(m)})\in\Lambda_{m} with m=i,j,k,lm=i,j,k,l and (q,ζ)Λq(q,\zeta)\in\Lambda_{q} with ζ=ζ(i)+ζ(j)+ζ(k)+ζ(l)\zeta={\zeta^{(i)}}+{\zeta^{(j)}}+{\zeta^{(k)}}+{\zeta^{(l)}}. The transversal intersection implies the decomposition of ζ\zeta is unique.

First, we consider

𝒰1(4)=(i,j,k,l)Σ(4)Qgbvp(2β2t2(viA3jkl)).\mathcal{U}^{(4)}_{1}=\sum_{(i,j,k,l)\in\Sigma(4)}Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}A_{3}^{jkl})).

With the decomposition of A3ijk=w0+w1+w2+w3A_{3}^{ijk}=w_{0}+w_{1}+w_{2}+w_{3} given in (21), we analyze the singularities of 2β2t2(viwk)2\beta_{2}\partial_{t}^{2}(v_{i}w_{k}) for 0k30\leq k\leq 3 in the following and then apply the solution operator QgbvpQ_{g}^{\text{bvp}} to each of them. Here we replace the notation w~j{\widetilde{w}}_{j} by wjw_{j} in the decomposition.

Since w0I3μ+2(Λijk)w_{0}\in I^{3\mu+2}(\Lambda_{ijk}), by [43, Lemma 3.10] and [63, Lemma 4.1], one can write 2β2t2(viw0)=w0,1+w0,22\beta_{2}\partial_{t}^{2}(v_{i}w_{0})=w_{0,1}+w_{0,2}, where

w0,1I4μ+5(Λq),WF(w0,2)Λl(ϵ)Λijk(ϵ).w_{0,1}\in I^{4\mu+5}(\Lambda_{q}),\quad{\text{$\operatorname{WF}$}}(w_{0,2})\subset\Lambda_{l}(\epsilon)\cup\Lambda_{ijk}(\epsilon).

The leading term w0,1w_{0,1} has the principal symbol

σp(w0,1)(q,ζ)=(2π)3𝒞1(ζ(i),ζ(j),ζ(k),ζ(l))(j=14σp(vj)(q,ζ(j))),\displaystyle{{\sigma_{p}}}(w_{0,1})(q,\zeta)=(2\pi)^{-3}\mathcal{C}_{1}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})(\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)})),

at (q,ζ)Λq(q,\zeta)\in\Lambda_{q}, where by (30) we have

(34) 𝒞1(ζ(i),ζ(j),ζ(k),ζ(l))=2β2(ζ0)2(ζ0(i)+ζ0(j)+ζ0(k))2|ζ(i)+ζ(j)+ζ(k)|g2(2(ζ0(j)+ζ0(k))2|ζ(j)+ζ(k)|g2β22β3).\displaystyle\mathcal{C}_{1}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})=-\frac{2\beta_{2}(\zeta_{0})^{2}(\zeta_{0}^{(i)}+\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(j)}}+{\zeta^{(k)}}|^{2}_{g^{*}}}(2\frac{(\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}}\beta^{2}_{2}-\beta_{3}).

Then we apply QgbvpQ_{g}^{\text{bvp}} to w0,1w_{0,1} and Proposition 4 with its corollary implies

WFb(Qgbvp(w0,1))πb(ΛqΛqb)𝒢int.\displaystyle{\text{$\operatorname{WF}$}}_{b}(Q_{g}^{\text{bvp}}(w_{0,1}))\subset\pi_{b}(\Lambda_{q}\cup\Lambda_{q}^{b})\subset\mathcal{G}^{\mathrm{int}}\cup\mathcal{H}.

To find the principal symbol, we decompose it as Qgbvp(w0,1)=uinc+urefQ_{g}^{\text{bvp}}(w_{0,1})=u^{\text{inc}}+u^{\text{ref}} as before, where uincu^{\text{inc}} is the incident wave before the reflection and urefu^{\text{ref}} is the reflected one. For more details, see the proof of Proposition 5. Similarly, we have

wincI4μ+72,12(Λq,Λqg).w^{\text{inc}}\in I^{4\mu+\frac{7}{2},-\frac{1}{2}}(\Lambda_{q},\Lambda_{q}^{g}).

If (y,η)TM(y,\eta)\in\partial T^{*}{M} lies along the forward null-bicharacteristic starting at (q,ζ)(q,\zeta), then it belongs to Λqb\Lambda_{q}^{b} and is the first point where Λqb\Lambda_{q}^{b} touches the boundary. The same argument shows that

σp(Qgbvp(w0,1))(y,η)=2(2π)3σp(Qg)(y,η,q,ζ)𝒞1(ζ(i),ζ(j),ζ(k),ζ(l))j=14σp(vj)(q,ζ(j)).\displaystyle{{\sigma_{p}}}(Q_{g}^{\text{bvp}}(w_{0,1}))(y,\eta)=2(2\pi)^{-3}{{\sigma_{p}}}(Q_{g})(y,\eta,q,\zeta)\mathcal{C}_{1}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)}).

when (y,η)(y,\eta) is away from Γ(x,ξ)\Gamma({\vec{x},\vec{\xi}}).

For Qgbvp(w0,2)Q_{g}^{\text{bvp}}(w_{0,2}), away from j=14J+(γxj,ξj(tjb))\bigcup_{j=1}^{4}J^{+}(\gamma_{x_{j},\xi_{j}}(t_{j}^{b})), the flow out of Λl(ϵ)\Lambda_{l}(\epsilon) under the broken bicharacteristic arcs is a neighborhood of Λl\Lambda_{l}, and it tends to Λl\Lambda_{l} when ϵ\epsilon goes to zero. Similarly, the flow out of Λijk(ϵ)\Lambda_{ijk}(\epsilon) under the broken bicharacteristic arcs tends to Λijkb\Lambda_{ijk}^{b} as ϵ\epsilon goes to 0.

For Qgbvp(2β2t2(viw1))Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}w_{1})), we use [61, Lemma 6] to show its boundary wave front set tends to a subset of πb(ΛiΛjklΛjklb)\pi_{b}(\Lambda_{i}\cup\Lambda_{jkl}\cup\Lambda_{jkl}^{b}), as ϵ\epsilon goes to zero. Here it suffices for us to verify the intersection of WF(vi){\text{$\operatorname{WF}$}}(v_{i}) and WF(w1){\text{$\operatorname{WF}$}}(w_{1}) is in TMoT^{*}M^{{o}}, by Lemma 1. For Qgbvp(2β2t2(viw2))Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}w_{2})), the same argument in [61, Lemma 6] with Lemma 1 works and its boundary wave front set tends to a subset of πb(Λ(1)ΛjklΛjklb)\pi_{b}(\Lambda^{(1)}\cup\Lambda_{jkl}\cup\Lambda_{jkl}^{b}), as ϵ\epsilon goes to zero. For Qgbvp(2β2t2(viw3))Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}w_{3})), we use the same argument as in [43, Propostion 3.11] to conclude its boundary wave front set tends to a subset of πb(Λ(1)ΛjklΛjklb)\pi_{b}(\Lambda^{(1)}\cup\Lambda_{jkl}\cup\Lambda_{jkl}^{b}) as ϵ\epsilon goes to zero.

We emphasize that all the analysis above happens in the set 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})} with sufficiently small s0>0s_{0}>0. To summarize, the distribution Qgbvp(2β2t2(vi(w1+w2+w3)))Q_{g}^{\text{bvp}}(2\beta_{2}\partial_{t}^{2}(v_{i}(w_{1}+w_{2}+w_{3}))) does not have new singularities other than those in

πb(Λ(1)Λ(2)Λ(3)Λ(3),b).\pi_{b}(\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)}\cup\Lambda^{(3),b}).

Therefore, away from Γ(x,ξ)\Gamma({\vec{x},\vec{\xi}}), one has

(35) σp(𝒰1(4))(y,η)\displaystyle{{\sigma_{p}}}(\mathcal{U}_{1}^{(4)})(y,\eta)
=\displaystyle= (i,j,k,l)Σ(4)2(2π)3σp(Qg)(y,η,q,ζ)𝒞1(ζ(i),ζ(j),ζ(k),ζ(l))j=14σp(vj)(q,ζ(j)).\displaystyle\sum_{(i,j,k,l)\in\Sigma(4)}2(2\pi)^{-3}{{\sigma_{p}}}(Q_{g})(y,\eta,q,\zeta)\mathcal{C}_{1}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)}).

Next, recall 𝒰2(4)=Qgbvp(β2t2(A2ijA2kl))\mathcal{U}^{(4)}_{2}=Q_{g}^{\text{bvp}}(\beta_{2}\partial_{t}^{2}(A_{2}^{ij}A_{2}^{kl})). Away from j=14J+(γxj,ξj(tjb))\bigcup_{j=1}^{4}J^{+}(\gamma_{x_{j},\xi_{j}}(t_{j}^{b})), we have

A2ijIμ+1,μ(Λij,Λi)+Iμ+1,μ(Λij,Λj).A_{2}^{ij}\in I^{\mu+1,\mu}(\Lambda_{ij},\Lambda_{i})+I^{\mu+1,\mu}(\Lambda_{ij},\Lambda_{j}).

The same analysis as in [39, 43, 63] applies to β2t2(A2ijA2kl)\beta_{2}\partial_{t}^{2}(A_{2}^{ij}A_{2}^{kl}). Indeed, by [43, Lemma 3.8], one has

β2t2(A2ijA2kl)=w0+w1+w2,\beta_{2}\partial_{t}^{2}(A_{2}^{ij}A_{2}^{kl})=w_{0}+w_{1}+w_{2},

where

w0I4μ+5(Λq),WF(w1)Λ(1)Λ(2)Λ(3),WF(w2)Λ(1)(ϵ).\displaystyle w_{0}\in I^{4\mu+5}(\Lambda_{q}),\quad{\text{$\operatorname{WF}$}}(w_{1})\subset\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)},\quad{\text{$\operatorname{WF}$}}(w_{2})\subset\Lambda^{(1)}(\epsilon).

The principal symbol of w0w_{0} is

σp(w0)(q,ζ)=(2π)3𝒞2(ζ(i),ζ(j),ζ(k),ζ(l))j=14σp(vj)(q,ζ(j)),{{\sigma_{p}}}(w_{0})(q,\zeta)=(2\pi)^{-3}\mathcal{C}_{2}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)}),

with

(36) 𝒞2(ζ(i),ζ(j),ζ(k),ζ(l))\displaystyle\mathcal{C}_{2}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)}) =β23(ζ0)2(ζ0(i)+ζ0(j))2|ζ(i)+ζ(j)|g2(ζ0(k)+ζ0(l))2|ζ(k)+ζ(l)|g2.\displaystyle=-\beta_{2}^{3}(\zeta_{0})^{2}\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(j)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(j)}}|^{2}_{g^{*}}}\frac{(\zeta_{0}^{(k)}+\zeta_{0}^{(l)})^{2}}{|{\zeta^{(k)}}+{\zeta^{(l)}}|^{2}_{g^{*}}}.

The same argument as before show that

WFb(Qgbvp(w0))πb(ΛqΛqb),WFb(Qgbvp(w1))πb(Λ(1)Λ(2)Λ(3)Λ(3),b),\displaystyle{\text{$\operatorname{WF}$}}_{b}(Q_{g}^{\text{bvp}}(w_{0}))\subset\pi_{b}(\Lambda_{q}\cup\Lambda_{q}^{b}),\quad{\text{$\operatorname{WF}$}}_{b}(Q_{g}^{\text{bvp}}(w_{1}))\subset\pi_{b}(\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)}\cup\Lambda^{(3),b}),

and Qgbvp(w2)Q_{g}^{\text{bvp}}(w_{2}) tends to a subset of πb(Λ(1))\pi_{b}(\Lambda^{(1)}) when ϵ\epsilon goes to zero. To find the principal symbol of the leading term Qgbvp(w0)Q_{g}^{\text{bvp}}(w_{0}), we decompose it as Qg(w0)=uinc+urefQ_{g}(w_{0})=u^{\text{inc}}+u^{\text{ref}} as before. Then the same argument shows that if (y,η)TM(y,\eta)\in\partial T^{*}{M} is away from Γ(x,ξ)\Gamma({\vec{x},\vec{\xi}}) and lies along the forward null-bicharacteristic starting from (q,ζ)(q,\zeta), then we have

(37) σp(𝒰2(4))(y,η)\displaystyle{{\sigma_{p}}}(\mathcal{U}_{2}^{(4)})(y,\eta)
=\displaystyle= (i,j,k,l)Σ(4)2(2π)3σp(Qg)(y,η,q,ζ)𝒞2(ζ(i),ζ(j),ζ(k),ζ(l))j=14σp(vj)(q,ζ(j)).\displaystyle\sum_{(i,j,k,l)\in\Sigma(4)}2(2\pi)^{-3}{{\sigma_{p}}}(Q_{g})(y,\eta,q,\zeta)\mathcal{C}_{2}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)}).

Third, recall 𝒰3(4)=Qgbvp(3β3t2(vivjA2kl))\mathcal{U}^{(4)}_{3}=Q_{g}^{\text{bvp}}(3\beta_{3}\partial_{t}^{2}(v_{i}v_{j}A_{2}^{kl})). By the proof of [43, Proposition 3.11], see also [43, Lemma 3.6, Lemma 3.10], one has

3β3t2(vivjA2kl)=w0+w1+w2,3\beta_{3}\partial_{t}^{2}(v_{i}v_{j}A_{2}^{kl})=w_{0}+w_{1}+w_{2},

where

w0I4μ+5(Λq),WF(w1)Λ(1)Λ(2)Λ(3),WF(w2)Λ(1)(ϵ)Λ(3)(ϵ).\displaystyle w_{0}\in I^{4\mu+5}(\Lambda_{q}),\quad{\text{$\operatorname{WF}$}}(w_{1})\subset\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)},\quad{\text{$\operatorname{WF}$}}(w_{2})\subset\Lambda^{(1)}(\epsilon)\cup\Lambda^{(3)}(\epsilon).

The principal symbol for the leading term w0w_{0} is

σp(w0)(q,ζ)=(2π)3𝒞3(ζ(i),ζ(j),ζ(k),ζ(l))j=14σp(vj)(q,ζ(j)),{{\sigma_{p}}}(w_{0})(q,\zeta)=(2\pi)^{-3}\mathcal{C}_{3}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)}),

with

(38) 𝒞3(ζ(i),ζ(j),ζ(k),ζ(l))\displaystyle\mathcal{C}_{3}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)}) =3β3β2(ζ0)2(ζ0(k)+ζ0(l))2|ζ(k)+ζ(l)|g2.\displaystyle=3\beta_{3}\beta_{2}(\zeta_{0})^{2}\frac{(\zeta_{0}^{(k)}+\zeta_{0}^{(l)})^{2}}{|{\zeta^{(k)}}+{\zeta^{(l)}}|^{2}_{g^{*}}}.

The same argument shows that if (y,η)TM(y,\eta)\in\partial T^{*}M is away from Γ(x,ξ)\Gamma({\vec{x},\vec{\xi}}) and lies along the forward null-bicharacteristic starting from (q,ζ)(q,\zeta), then we have

(39) σp(𝒰3(4))(y,η)\displaystyle{{\sigma_{p}}}(\mathcal{U}_{3}^{(4)})(y,\eta)
=\displaystyle= (i,j,k,l)Σ(4)2(2π)3σp(Qg)(y,η,q,ζ)𝒞3(ζ(i),ζ(j),ζ(k),ζ(l))j=14σp(vj)(q,ζ(j)).\displaystyle\sum_{(i,j,k,l)\in\Sigma(4)}2(2\pi)^{-3}{{\sigma_{p}}}(Q_{g})(y,\eta,q,\zeta)\mathcal{C}_{3}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)}).

where (y|,η|)(y_{|},\eta_{|}) is the projection of (y,η)(y,\eta).

Fourth, recall 𝒰4(4)=Qgbvp(β4t2(vivjvkvl))\mathcal{U}^{(4)}_{4}=Q_{g}^{\text{bvp}}(\beta_{4}\partial_{t}^{2}(v_{i}v_{j}v_{k}v_{l})). By [43, Lemma 3.8], we write

β4t2(vivjvkvl)=w0+w1+w2,\beta_{4}\partial_{t}^{2}(v_{i}v_{j}v_{k}v_{l})=w_{0}+w_{1}+w_{2},

where

w0I4μ+5(Λq),WF(w1)Λ(1)Λ(2)Λ(3),WF(w2)Λ(1)(ϵ).\displaystyle w_{0}\in I^{4\mu+5}(\Lambda_{q}),\quad{\text{$\operatorname{WF}$}}(w_{1})\subset\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)},\quad{\text{$\operatorname{WF}$}}(w_{2})\subset\Lambda^{(1)}(\epsilon).

In this case, the principal symbol for the leading term w0w_{0} is

σp(w0)(q,ζ)=(2π)3𝒞4(ζ(i),ζ(j),ζ(k),ζ(l))j=14σp(vj)(q,ζ(j)).{{\sigma_{p}}}(w_{0})(q,\zeta)=(2\pi)^{-3}\mathcal{C}_{4}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)}).

with

(40) 𝒞4(ζ(i),ζ(j),ζ(k),ζ(l))\displaystyle\mathcal{C}_{4}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)}) =β4(ζ0)2.\displaystyle=-\beta_{4}(\zeta_{0})^{2}.

The same argument shows that if (y,η)TM(y,\eta)\in\partial T^{*}M is away from Γ(x,ξ)\Gamma({\vec{x},\vec{\xi}}) and lies along the forward null-bicharacteristic starting from (q,ζ)(q,\zeta), then we have

(41) σp(𝒰4(4))(y,η)\displaystyle{{\sigma_{p}}}(\mathcal{U}_{4}^{(4)})(y,\eta)
=\displaystyle= (i,j,k,l)Σ(4)2(2π)3σp(Qg)(y,η,q,ζ)𝒞4(ζ(i),ζ(j),ζ(k),ζ(l))j=14σp(vj)(q,ζ(j)).\displaystyle\sum_{(i,j,k,l)\in\Sigma(4)}2(2\pi)^{-3}{{\sigma_{p}}}(Q_{g})(y,\eta,q,\zeta)\mathcal{C}_{4}(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)}).

where (y|,η|)(y_{|},\eta_{|}) is the projection of (y,η)(y,\eta).

Thus, from the analysis above, we combine (35), (37), (39), (41) to have

σp(𝒰(4))(y,η)\displaystyle{{\sigma_{p}}}(\mathcal{U}^{(4)})(y,\eta)
=\displaystyle= 2(2π)3σp(Qg)(y,η,q,ζ)(ζ0)2𝒞(ζ(1),ζ(2),ζ(3),ζ(4))(j=14σp(vj)(q,ζ(j))),\displaystyle 2(2\pi)^{-3}{{\sigma_{p}}}({Q}_{g})(y,\eta,q,\zeta)(\zeta_{0})^{2}\mathcal{C}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})(\prod_{j=1}^{4}{{\sigma_{p}}}(v_{j})(q,\zeta^{(j)})),

where

(42) 𝒞(ζ(1),ζ(2),ζ(3),ζ(4))=(i,j,k,l)Σ(4)(ζ0)2(𝒞1+𝒞2+𝒞3+𝒞4)(ζ(i),ζ(j),ζ(k),ζ(l))\displaystyle\mathcal{C}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})=\sum_{(i,j,k,l)\in\Sigma(4)}(\zeta_{0})^{-2}(\mathcal{C}_{1}+\mathcal{C}_{2}+\mathcal{C}_{3}+\mathcal{C}_{4})(\zeta^{(i)},\zeta^{(j)},\zeta^{(k)},\zeta^{(l)})
=\displaystyle= (i,j,k,l)Σ(4)(4(ζ0(i)+ζ0(j)+ζ0(k))2|ζ(i)+ζ(j)+ζ(k)|g2+(ζ0(i)+ζ0(l))2|ζ(i)+ζ(l)|g2)(ζ0(j)+ζ0(k))2|ζ(j)+ζ(k)|g2β23+\displaystyle\sum_{(i,j,k,l)\in\Sigma(4)}-(4\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(j)}}+{\zeta^{(k)}}|^{2}_{g^{*}}}+\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(l)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(l)}}|^{2}_{g^{*}}})\frac{(\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}}\beta_{2}^{3}+
+(3(ζ0(k)+ζ0(l))2|ζ(k)+ζ(l)|g2+2(ζ0(i)+ζ0(j)+ζ0(k))2|ζ(i)+ζ(j)+ζ(k)|g2)β2β3β4\displaystyle\quad\quad\quad+(3\frac{(\zeta_{0}^{(k)}+\zeta_{0}^{(l)})^{2}}{|{\zeta^{(k)}}+{\zeta^{(l)}}|^{2}_{g^{*}}}+2\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(j)}}+{\zeta^{(k)}}|^{2}_{g^{*}}})\beta_{2}\beta_{3}-\beta_{4}

with 𝒞j\mathcal{C}_{j} defined in (34), (36), (38), (40) for m=1,2,3,4m=1,2,3,4. By (33), we have

σp(ϵ1ϵ2ϵ3ϵ4Λ(f)|ϵ1=ϵ2=ϵ3=ϵ4=0)(y|,η|)=ιν,ηgσp()(y|,η|,y,η)σp(𝒰(4))(y,η).{{\sigma_{p}}}({\partial_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}\partial_{\epsilon_{4}}\Lambda(f)|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=\epsilon_{4}=0}})(y_{|},\eta_{|})=\iota\langle\nu,\eta\rangle_{g}{\sigma_{p}}(\mathcal{R})(y_{|},\eta_{|},y,\eta){{\sigma_{p}}}(\mathcal{U}^{(4)})(y,\eta).

6. The recovery of lower order nonlinear terms

For k=1,2k=1,2, let p(k)p^{(k)} solve the boundary value problem (1) with nonlinear terms F(k)F^{(k)} that have the expansion in (3), i.e.,

F(k)(x,p(k))=m=1+βm+1(k)(x)t2(p(k)),k=1,2,F^{(k)}(x,p^{(k)})=\sum_{m=1}^{+\infty}\beta^{(k)}_{m+1}(x)\partial_{t}^{2}(p^{(k)}),\quad k=1,2,

and satisfy the assumption (A). We suppose

ΛF(1)(f)=ΛF(2)(f),\Lambda_{F^{(1)}}(f)=\Lambda_{F^{(2)}}(f),

for small boundary data ff supported in (0,T)×Ω(0,T)\times\partial\Omega. In this section, we consider the recovery of β2(k),β3(k),β4(k)\beta^{(k)}_{2},\beta^{(k)}_{3},\beta^{(k)}_{4} at points in the suitable larger set

𝕎=y,y+(0,T)×ΩI(y,y+)Mo.\mathbb{W}=\bigcup_{y^{-},y^{+}\in(0,T)\times\partial\Omega}I(y^{-},y^{+})\cap M^{{o}}.

from the fourth order linearization of the DN map. For convenience, we denote them by lower order nonlinear terms.

Let q𝕎q\in\mathbb{W} be fixed. We denote by

N±(ζo,ς)={ζLq,±M:ζζo<ς}N^{\pm}(\zeta^{o},\varsigma)=\{\zeta\in L_{q}^{*,\pm}M:\|\zeta-\zeta^{o}\|<\varsigma\}

a conic neighborhood of a fixed covector ζoLq,±M\zeta^{o}\in L_{q}^{*,\pm}M with small parameter ς>0\varsigma>0. Similarly, we denote the ς\varsigma-neighborhood for a fixed lightlike vector wLq±Mw\in L^{\pm}_{q}M by N±(w,ς)N^{\pm}(w,\varsigma). First, we show that with ζ^(1)LqM{\hat{\zeta}}^{(1)}\in L^{*}_{q}M given, one can perturb ζ^(1){\hat{\zeta}}^{(1)} a little bit to choose lightlike vectors ζ^(2),ζ^(3),ζ^(4)\hat{\zeta}^{(2)},\hat{\zeta}^{(3)},\hat{\zeta}^{(4)} such that ζ^(j),j=1,2,3,4\hat{\zeta}^{(j)},j=1,2,3,4 are linearly independent and are corresponding to null geodesic segments without cut points. For convenience, we form the lemma below based on the proof of [39, Lemma 3.5].

Lemma 3.

Let q𝕎q\in\mathbb{W} and ζ^(1)Lq,+M\hat{\zeta}^{(1)}\in L^{*,+}_{q}M. Suppose there is (x1,ξ1)L+V(x_{1},\xi_{1})\in L^{+}V with (q,ζ^(1))=(γx1,ξ1(s1),(γ˙x1,ξ1(s1))b)(q,\hat{\zeta}^{(1)})=(\gamma_{x_{1},\xi_{1}}(s_{1}),(\dot{\gamma}_{x_{1},\xi_{1}}(s_{1}))^{b}) and 0<s1<ρ(x1,ξ1)0<s_{1}<\rho(x_{1},\xi_{1}). Then we can find ς>0\varsigma>0 such that for any ζ^(2)N+(ζ^(1),ς)\hat{\zeta}^{(2)}\in N^{+}(\hat{\zeta}^{(1)},\varsigma), there exists a vector (x2,ξ2)L+V(x_{2},\xi_{2})\in L^{+}V with (q,ζ^(2))=(γx2,ξ2(s2),(γ˙x2,ξ2(s2))b)(q,\hat{\zeta}^{(2)})=(\gamma_{x_{2},\xi_{2}}(s_{2}),(\dot{\gamma}_{x_{2},\xi_{2}}(s_{2}))^{b}) and 0<s2<ρ(x2,ξ2)0<s_{2}<\rho(x_{2},\xi_{2}). Moreover, one has (x1,ξ1)(x_{1},\xi_{1}) and (x2,ξ2)(x_{2},\xi_{2}) are causally independent.

Proof.

First set w1=(ζ^(1))#w_{1}=(\hat{\zeta}^{(1)})^{\#}. Note that the geodesic γq,w1(s)=γx1,ξ1(s1s)\gamma_{q,-w_{1}}(s)=\gamma_{x_{1},\xi_{1}}(s_{1}-s) have no cut points for s[0,s1]s\in[0,s_{1}], which implies s1<ρ(q,w1)s_{1}<\rho(q,-w_{1}).

We consider all the null geodesics γq,w(s)\gamma_{q,-w}(s) that emanate from qq in the lightlike direction of ww, where wN+(w1,ς)w\in N^{+}(w_{1},\varsigma) with ς\varsigma to be specified later. By [8, Theorem 9.33], the cut locus function ρ(q,w1)\rho(q,-w_{1}) is lower semi-continuous on a globally hyperbolic Lorentzian manifold. It follows that there is ς>0\varsigma>0 such that s1<ρ(q,w)s_{1}<\rho(q,-w) for any wN+(w1,ς)w\in N^{+}(w_{1},\varsigma). Next, to find (x2,ξ2)L+V(x_{2},\xi_{2})\in L^{+}V for such (q,w)(q,w), let γq,w(sx)\gamma_{q,-w}(s_{x}) be the intersection points of γq,w\gamma_{q,-w} with the Cauchy surface {xM:t(x)=t(x1)}\{x\in M:\textbf{t}(x)=\textbf{t}(x_{1})\}, where t is the time function on (M,g)(M,g). Indeed, the first cut point comes at or before the first conjugate point along γq,w1(s)\gamma_{q,-w_{1}}(s). This implies the exponential map is a local diffeomorphism near s1w1LqM-s_{1}w_{1}\in L^{-}_{q}M, which maps a small neighborhood of s1w1-s_{1}w_{1} to a small neighborhood of x1x_{1}. For ww close enough to w1w_{1}, there exist sx<s1+ϵ<ρ(q,w)s_{x}<s_{1}+\epsilon<\rho(q,-w) and x2=γq,w(sx)Vx_{2}=\gamma_{q,-w}(s_{x})\in V with t(x2)=t(x1)\textbf{t}(x_{2})=\textbf{t}(x_{1}), for sufficiently small ϵ>0\epsilon>0. Here t is the time function. This proves the statement. ∎

Now we claim that for any fixed q𝕎q\in\mathbb{W} and sufficiently small s0>0s_{0}>0 one can find

(xj,ξj)j=14L+V,ζΛq(Λ(1)Λ(2)Λ(3)),(y,η)LM,+M(x_{j},\xi_{j})_{j=1}^{4}\subset L^{+}V,\quad\zeta\in\Lambda_{q}\setminus(\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)}),\quad(y,\eta)\in L^{*}_{\partial M,+}M

such that

  • (a)

    (xj,ξj)j=14(x_{j},\xi_{j})_{j=1}^{4} intersect regularly at qq and are causally independent, see (10),

  • (b)

    each γxj,ξj(+)\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+}) hits M\partial M exactly once and transversally before it passes qq,

  • (c)

    (y,η)LM,+M(y,\eta)\in L^{*}_{\partial M,+}M lies in the bicharacteristic from (q,ζ)(q,\zeta) and additionally there are no cut points along γq,ζ#\gamma_{q,\zeta^{\#}} from qq to yy.

Indeed, by [39, Lemma 3.1], first we pick ζ\zeta and ζ^(1)\hat{\zeta}^{(1)} in Lq,+ML^{*,+}_{q}M such that there exist (x1,ξ1)L+V(x_{1},\xi_{1})\in L^{+}V and (y^,ζ^)L,+V(\hat{y},\hat{\zeta})\in L^{*,+}V with

(q,ζ^(1))=(γx1,ξ1(sq),(γ˙x1,ξ1(sq))b),(y^,η^)=(γq,ζ#(s^),(γ˙q,ζ#(s^))b),(q,\hat{\zeta}^{(1)})=(\gamma_{x_{1},\xi_{1}}({s_{q}}),(\dot{\gamma}_{x_{1},\xi_{1}}(s_{q}))^{b}),\quad(\hat{y},\hat{\eta})=(\gamma_{q,\zeta^{\#}}(\hat{s}),(\dot{\gamma}_{q,\zeta^{\#}}(\hat{s}))^{b}),

for some 0<sq<ρ(x1,ξ1)0<s_{q}<\rho(x_{1},\xi_{1}) and 0<s^<ρ(q,ζ)0<\hat{s}<\rho(q,\zeta). Next by Lemma 3, one can find such three more covectors ζ^(j)\hat{\zeta}^{(j)} with (xj,ξj)(x_{j},\xi_{j}) for j=2,3,4j=2,3,4 at qq such that (xj,ξj)j=14(x_{j},\xi_{j})_{j=1}^{4} satisfy the condition (a). To have (b), we can always replace (xj,ξj)(x_{j},\xi_{j}) by (γxj,ξj(sj),γ˙xj,ξj(sj))(\gamma_{x_{j},\xi_{j}}(s_{j}),\dot{\gamma}_{x_{j},\xi_{j}}(s_{j})) for some sj>0s_{j}>0 if necessary. Then by [28, Lemma 2.4], the null geodesic γxj,ξj(s)\gamma_{x_{j},\xi_{j}}(s) always hit M\partial M transversally before it passes qq. To have (c), recall we have found ζLq,+M\zeta\in L_{q}^{*,+}M with (y^,η^)=(γq,ζ#(s^),(γ˙q,ζ#(s^))b)L,+V(\hat{y},\hat{\eta})=(\gamma_{q,\zeta^{\#}}(\hat{s}),(\dot{\gamma}_{q,\zeta^{\#}}(\hat{s}))^{b})\in L^{*,+}V for some 0<s^<ρ(q,ζ)0<\hat{s}<\rho(q,\zeta). We define

sy=inf{s>0:γq,ζ(s)M},(y,η)=(γq,ζ(sy),(γ˙q,ζ(sy)b).s_{y}=\inf\{s>0:\gamma_{q,\zeta}(s)\in\partial M\},\quad(y,\eta)=(\gamma_{q,\zeta}(s_{y}),(\dot{\gamma}_{q,\zeta}(s_{y})^{b}).

Note that sy<sy^<ρ(q,ζ)s_{y}<s_{\hat{y}}<\rho(q,\zeta). In addition, the null geodesic γq,ζ(s)\gamma_{q,\zeta}(s) hit M\partial M transversally at yy. Thus, (y,η)LM,+M(y,\eta)\in L^{*}_{\partial M,+}M and (c) is true for (y,η)(y,\eta).

Moreover, we show in Lemma 3 that with ζ^(1)\hat{\zeta}^{(1)} given, we have freedom to choose (xj,ξj),j=2,3,4(x_{j},\xi_{j}),j=2,3,4, as long as they are from sufficiently small perturbations of ζ^(1)\hat{\zeta}^{(1)}. In Lemma 4 below, we would like to choose special (xj,ξj),j=2,3,4(x_{j},\xi_{j}),j=2,3,4 such that we can determine the lower order nonlinear terms from a nondegenerate linear system. Before that, with the construction above, we can apply Proposition 6 to have

𝒞(1)(ζ(1),ζ(2),ζ(3),ζ(4))=𝒞(2)(ζ(1),ζ(2),ζ(3),ζ(4)),\mathcal{C}^{(1)}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})=\mathcal{C}^{(2)}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)}),

where 𝒞(k)\mathcal{C}^{(k)} is defined in (42) with βj\beta_{j} replaced by βj(k)\beta^{(k)}_{j} for j=2,3,4j=2,3,4. In the following, we use the notations

C(ζ(1),ζ(2),ζ(3),ζ(4))\displaystyle C(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)}) =(i,j,k,l)Σ(4)(4(ζ0(i)+ζ0(j)+ζ0(k))2|ζ(i)+ζ(j)+ζ(k)|g2+(ζ0(i)+ζ0(l))2|ζ(i)+ζ(l)|g2)(ζ0(j)+ζ0(k))2|ζ(j)+ζ(k)|g2,\displaystyle=\sum_{(i,j,k,l)\in\Sigma(4)}(4\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(j)}}+{\zeta^{(k)}}|^{2}_{g^{*}}}+\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(l)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(l)}}|^{2}_{g^{*}}})\frac{(\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}},
D(ζ(1),ζ(2),ζ(3),ζ(4))\displaystyle D(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)}) =(i,j,k,l)Σ(4)(3(ζ0(k)+ζ0(l))2|ζ(k)+ζ(l)|g2+2(ζ0(i)+ζ0(j)+ζ0(k))2|ζ(i)+ζ(j)+ζ(k)|g2).\displaystyle=\sum_{(i,j,k,l)\in\Sigma(4)}(3\frac{(\zeta_{0}^{(k)}+\zeta_{0}^{(l)})^{2}}{|{\zeta^{(k)}}+{\zeta^{(l)}}|^{2}_{g^{*}}}+2\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(j)}}+{\zeta^{(k)}}|^{2}_{g^{*}}}).

The above analysis shows that from the fourth order linearization of the DN map, one has

C(β2(1))3+Dβ2(1)β3(1)β4(1)=C(β2(2))3+Dβ2(2)β3(2)β4(2),-C(\beta^{(1)}_{2})^{3}+D\beta^{(1)}_{2}\beta^{(1)}_{3}-\beta^{(1)}_{4}=-C(\beta^{(2)}_{2})^{3}+D\beta^{(2)}_{2}\beta^{(2)}_{3}-\beta^{(2)}_{4},

where we write CC and DD to denote C(ζ(1),ζ(2),ζ(3),ζ(4)),D(ζ(1)C(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)}),D(\zeta^{(1)} and ζ(2),ζ(3),ζ(4))\zeta^{(2)},\zeta^{(3)},\zeta^{(4)}).

Lemma 4.

For fixed q𝕎q\in\mathbb{W} and ζ,ζ^(1)Lq,+M\zeta,\hat{\zeta}^{(1)}\in L^{*,+}_{q}M, we can find three different sets of nonzero lightlike covectors

(ζ(1),k,ζ(2),k,ζ(3),k,ζ(4),k),k=1,2,3,(\zeta^{(1),k},\zeta^{(2),k},\zeta^{(3),k},\zeta^{(4),k}),\quad k=1,2,3,

such that ζ=j=14ζ(j),k\zeta=\sum_{j=1}^{4}\zeta^{(j),k} with ζ(1)=αjζ^(1)\zeta^{(1)}=\alpha_{j}\hat{\zeta}^{(1)} for some αj\alpha_{j} and the vectors

(C(ζ(1),k,ζ(2),k,ζ(3),k,ζ(4),k),D(ζ(1),k,ζ(2),k,ζ(3),k,ζ(4),k),1),k=1,2,3,(-C(\zeta^{(1),k},\zeta^{(2),k},\zeta^{(3),k},\zeta^{(4),k}),D(\zeta^{(1),k},\zeta^{(2),k},\zeta^{(3),k},\zeta^{(4),k}),-1),\ \quad k=1,2,3,

are linearly independent.

This implies that we can solve (β2(1))3(β2(2))3,β2(1)β3(1)β2(2)β3(2),β4(1)β4(2)(\beta^{(1)}_{2})^{3}-(\beta^{(2)}_{2})^{3},\beta^{(1)}_{2}\beta^{(1)}_{3}-\beta^{(2)}_{2}\beta^{(2)}_{3},\beta^{(1)}_{4}-\beta^{(2)}_{4} from a nondegenerate 3×33\times 3 linear system.

Proof.

We choose local coordinates x=(x0,x1,x2,x3)x=(x^{0},x^{1},x^{2},x^{3}) at qq such that gg coincides with the Mankowski metric. By rotating the coordinate system in the spatial variable, without loss of generality, we can assume

ζ=(1,0,cosφ,sinφ),ζ^(1)=(1,1,0,0),\zeta=(-1,0,\cos\varphi,\sin\varphi),\quad{\hat{\zeta}}^{(1)}=(-1,1,0,0),

where φ[0,2π)\varphi\in[0,2\pi). For θ0\theta\neq 0 sufficiently small, we choose

ζ^(2)\displaystyle\hat{\zeta}^{(2)} =(1,cosθ,sinθsinφ,sinθcosφ),\displaystyle=(-1,\cos\theta,\sin\theta\sin\varphi,-\sin\theta\cos\varphi),
ζ^(3)\displaystyle\hat{\zeta}^{(3)} =(1,cosθ,sinθsinφ,sinθcosφ),\displaystyle=(-1,\cos\theta,-\sin\theta\sin\varphi,\sin\theta\cos\varphi),
ζ^(4)\displaystyle\hat{\zeta}^{(4)} =(1,cosθ,sinθcosφ,sinθsinφ).\displaystyle=(-1,\cos\theta,\sin\theta\cos\varphi,\sin\theta\sin\varphi).

Then we have ζ=j=14ζ(j)\zeta=\sum_{j=1}^{4}\zeta^{(j)}, where we set ζ(j)=αjζ^(j)\zeta^{(j)}=\alpha_{j}\hat{\zeta}^{(j)} with

α1=cosθcosθ1,α2=α3=(cosθ1)+sinθ2(cosθ1)sinθ,α4=1sinθ.\displaystyle\alpha_{1}=\frac{\cos\theta}{\cos\theta-1},\quad\alpha_{2}=\alpha_{3}=-\frac{(\cos\theta-1)+\sin\theta}{2(\cos\theta-1)\sin\theta},\quad\alpha_{4}=\frac{1}{\sin\theta}.

One can compute

α1α2=2cosθcos(θ/2)cos(θ/2)sin(θ/2),α1α4=cosθcos(θ/2)sin(θ/2),α2α4=cos(θ/2)sin(θ/2)2sin(θ/2).\displaystyle\frac{\alpha_{1}}{\alpha_{2}}=\frac{-2\cos\theta\cos(\theta/2)}{\cos({\theta}/{2})-\sin({\theta}/{2})},\quad\frac{\alpha_{1}}{\alpha_{4}}=\frac{\cos\theta\cos(\theta/2)}{-\sin({\theta}/{2})},\quad\frac{\alpha_{2}}{\alpha_{4}}=\frac{\cos({\theta}/{2})-\sin({\theta}/{2})}{2\sin({\theta}/{2})}.

Note ζ0(j)=αj,j=1,2,3,4\zeta_{0}^{(j)}=-\alpha_{j},j=1,2,3,4. We compute

|ζ(k)+ζ(l)|g2=2ζ(k),ζ(l)g=2αkαlζ^(k),ζ^(l)g,|{\zeta^{(k)}}+{\zeta^{(l)}}|^{2}_{g^{*}}=2\langle{\zeta^{(k)}},{\zeta^{(l)}}\rangle_{g^{*}}=2\alpha_{k}\alpha_{l}\langle\hat{\zeta}^{(k)},\hat{\zeta}^{(l)}\rangle_{g^{*}},

which implies

|ζ(1)+ζ(2)|g2=2α1α2(cosθ1),\displaystyle|\zeta^{(1)}+\zeta^{(2)}|^{2}_{g^{*}}=2\alpha_{1}\alpha_{2}(\cos\theta-1), |ζ(1)+ζ(3)|g2=2α1α3(cosθ1),\displaystyle|\zeta^{(1)}+\zeta^{(3)}|^{2}_{g^{*}}=2\alpha_{1}\alpha_{3}(\cos\theta-1),
|ζ(1)+ζ(4)|g2=2α1α4(cosθ1),\displaystyle|\zeta^{(1)}+\zeta^{(4)}|^{2}_{g^{*}}=2\alpha_{1}\alpha_{4}(\cos\theta-1), |ζ(2)+ζ(3)|g2=4α2α3sin2θ,\displaystyle|\zeta^{(2)}+\zeta^{(3)}|^{2}_{g^{*}}=-4\alpha_{2}\alpha_{3}\sin^{2}\theta,
|ζ(2)+ζ(4)|g2=2α2α4sin2θ,\displaystyle|\zeta^{(2)}+\zeta^{(4)}|^{2}_{g^{*}}=-2\alpha_{2}\alpha_{4}\sin^{2}\theta, |ζ(3)+ζ(4)|g2=2α3α4sin2θ,\displaystyle|\zeta^{(3)}+\zeta^{(4)}|^{2}_{g^{*}}=-2\alpha_{3}\alpha_{4}\sin^{2}\theta,

It follows that

S12(ζ0(1)+ζ0(2))2|ζ(1)+ζ(2)|g2=(α1+α2)22α1α2(cosθ1)12(cosθ1)I1,\displaystyle S_{12}\equiv\frac{(\zeta_{0}^{(1)}+\zeta_{0}^{(2)})^{2}}{|\zeta^{(1)}+\zeta^{(2)}|^{2}_{g^{*}}}=\frac{(\alpha_{1}+\alpha_{2})^{2}}{2\alpha_{1}\alpha_{2}(\cos\theta-1)}\equiv\frac{1}{2(\cos\theta-1)}I_{1},
S13(ζ0(1)+ζ0(3))2|ζ(1)+ζ(3)|g2=(α1+α3)22α1α3(cosθ1)12(cosθ1)I1,\displaystyle S_{13}\equiv\frac{(\zeta_{0}^{(1)}+\zeta_{0}^{(3)})^{2}}{|\zeta^{(1)}+\zeta^{(3)}|^{2}_{g^{*}}}=\frac{(\alpha_{1}+\alpha_{3})^{2}}{2\alpha_{1}\alpha_{3}(\cos\theta-1)}\equiv\frac{1}{2(\cos\theta-1)}I_{1},
S14(ζ0(1)+ζ0(4))2|ζ(1)+ζ(4)|g2=(α1+α4)22α1α4(cosθ1)12(cosθ1)I3,\displaystyle S_{14}\equiv\frac{(\zeta_{0}^{(1)}+\zeta_{0}^{(4)})^{2}}{|\zeta^{(1)}+\zeta^{(4)}|^{2}_{g^{*}}}=\frac{(\alpha_{1}+\alpha_{4})^{2}}{2\alpha_{1}\alpha_{4}(\cos\theta-1)}\equiv\frac{1}{2(\cos\theta-1)}I_{3},
S23(ζ0(2)+ζ0(3))2|ζ(2)+ζ(3)|g2=(α2+α3)24α2α3sin2θ=1sin2θ,\displaystyle S_{23}\equiv\frac{(\zeta_{0}^{(2)}+\zeta_{0}^{(3)})^{2}}{|\zeta^{(2)}+\zeta^{(3)}|^{2}_{g^{*}}}=\frac{(\alpha_{2}+\alpha_{3})^{2}}{-4\alpha_{2}\alpha_{3}\sin^{2}\theta}=-\frac{1}{\sin^{2}\theta},
S24(ζ0(2)+ζ0(4))2|ζ(2)+ζ(4)|g2=(α2+α4)22α2α4sin2θ12sin2θI2,\displaystyle S_{24}\equiv\frac{(\zeta_{0}^{(2)}+\zeta_{0}^{(4)})^{2}}{|\zeta^{(2)}+\zeta^{(4)}|^{2}_{g^{*}}}=\frac{(\alpha_{2}+\alpha_{4})^{2}}{-2\alpha_{2}\alpha_{4}\sin^{2}\theta}\equiv-\frac{1}{2\sin^{2}\theta}I_{2},
S34(ζ0(3)+ζ0(4))2|ζ(3)+ζ(4)|g2=(α3+α4)22α3α4sin2θ12sin2θI2,\displaystyle S_{34}\equiv\frac{(\zeta_{0}^{(3)}+\zeta_{0}^{(4)})^{2}}{|\zeta^{(3)}+\zeta^{(4)}|^{2}_{g^{*}}}=\frac{(\alpha_{3}+\alpha_{4})^{2}}{-2\alpha_{3}\alpha_{4}\sin^{2}\theta}\equiv-\frac{1}{2\sin^{2}\theta}I_{2},

where we write s=sin(θ/2)s=\sin({\theta}/{2}) and compute

I1\displaystyle I_{1} =(α1+α2)2α1α2=12cosθ+(2cos(θ/2)+12cos(θ/2)cosθ)s+2s2,\displaystyle=\frac{(\alpha_{1}+\alpha_{2})^{2}}{\alpha_{1}\alpha_{2}}=-\frac{1}{2\cos\theta}+(-2\cos({\theta}/{2})+\frac{1}{2\cos({\theta}/{2})\cos\theta})s+2s^{2},
I2\displaystyle I_{2} =(α2+α4)2α2α4=(cos(θ/2)2)1s+32+2cos(θ/2)s+2s2+(4sin(θ/2)cos(θ/2))s3,\displaystyle=\frac{(\alpha_{2}+\alpha_{4})^{2}}{\alpha_{2}\alpha_{4}}=(\frac{\cos({\theta}/{2})}{2})\frac{1}{s}+\frac{3}{2}+2\cos({\theta}/{2})s+2s^{2}+(-\frac{4}{\sin({\theta}/{2})-\cos({\theta}/{2})})s^{3},
I3\displaystyle I_{3} =(α1+α4)2α1α4=(cos(θ/2)cosθ)1s+2+(1cos(θ/2)cosθ)s.\displaystyle=\frac{(\alpha_{1}+\alpha_{4})^{2}}{\alpha_{1}\alpha_{4}}=(-\cos({\theta}/{2})\cos\theta)\frac{1}{s}+2+(-\frac{1}{\cos({\theta}/{2})\cos\theta})s.

Here we expand each term according to the order of ss, in order to analyze its behavior near θ=0\theta=0. If we further write

cosθ=12s2,1cosθ=1+2s2+4s4+𝒪(s6),\displaystyle\cos\theta=1-2s^{2},\quad\frac{1}{\cos\theta}=1+2s^{2}+4s^{4}+\mathcal{O}(s^{6}),
cos(θ/2)=112s218s4+𝒪(s6),1cos(θ/2)=1+s22+38s4+𝒪(s6),\displaystyle\cos({\theta}/{2})=1-\frac{1}{2}s^{2}-\frac{1}{8}s^{4}+\mathcal{O}(s^{6}),\quad\frac{1}{\cos({\theta}/{2})}=1+\frac{s^{2}}{2}+\frac{3}{8}s^{4}+\mathcal{O}(s^{6}),
cos(θ/2)cosθ=152s2+𝒪(s4),1cos(θ/2)cosθ=1+52s2+𝒪(s4),\displaystyle{\cos({\theta}/{2})\cos\theta}=1-\frac{5}{2}s^{2}+\mathcal{O}(s^{4}),\quad\frac{1}{\cos({\theta}/{2})\cos\theta}=1+\frac{5}{2}s^{2}+\mathcal{O}(s^{4}),

then using Mathematica codes, we have

I1=1232s+s2+94s32s4+𝒪(s5),\displaystyle I_{1}=-\frac{1}{2}-\frac{3}{2}s+s^{2}+\frac{9}{4}s^{3}-2s^{4}+\mathcal{O}(s^{5}),
I2=12s+32+74s+2s2+4716s3+4s4+𝒪(s5),\displaystyle I_{2}=\frac{1}{2s}+\frac{3}{2}+\frac{7}{4}s+2s^{2}+\frac{47}{16}s^{3}+4s^{4}+\mathcal{O}(s^{5}),
I3=1s+2+32s278s3+𝒪(s5).\displaystyle I_{3}=-\frac{1}{s}+2+\frac{3}{2}s-\frac{27}{8}s^{3}+\mathcal{O}(s^{5}).

Plugging it back, we have

S12=S13=18s2+38s14916s+12s2+𝒪(s3),\displaystyle S_{12}=S_{13}=\frac{1}{8s^{2}}+\frac{3}{8s}-\frac{1}{4}-\frac{9}{16}s+\frac{1}{2}s^{2}+\mathcal{O}(s^{3}),
S23=14s21414s2+𝒪(s4),\displaystyle S_{23}=-\frac{1}{4s^{2}}-\frac{1}{4}-\frac{1}{4}s^{2}+\mathcal{O}(s^{4}),
S24=S34=116s3316s2932s83128s+𝒪(s2),\displaystyle S_{24}=S_{34}=-\frac{1}{16s^{3}}-\frac{3}{16s^{2}}-\frac{9}{32s}-\frac{83}{128}s+\mathcal{O}(s^{2}),
S14=14s312s238s+2732s+𝒪(s3).\displaystyle S_{14}=\frac{1}{4s^{3}}-\frac{1}{2s^{2}}-\frac{3}{8s}+\frac{27}{32}s+\mathcal{O}(s^{3}).

It follows that

D1(ζ(1),ζ(2),ζ(3),ζ(4))=(i,j,k,l)Σ(4)3(ζ0(k)+ζ0(l))2|ζ(k)+ζ(l)|g2\displaystyle D_{1}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})=\sum_{(i,j,k,l)\in\Sigma(4)}3\frac{(\zeta_{0}^{(k)}+\zeta_{0}^{(l)})^{2}}{|{\zeta^{(k)}}+{\zeta^{(l)}}|^{2}_{g^{*}}}
=3×4(S12×2+S14+S23+S24×2)=32s3212s294s+𝒪(1).\displaystyle=3\times 4(S_{12}\times 2+S_{14}+S_{23}+S_{24}\times 2)=\frac{3}{2s^{3}}-\frac{21}{2s^{2}}-\frac{9}{4s}+\mathcal{O}(1).

Since for (i,j,k,l)Σ(4)(i,j,k,l)\in\Sigma(4) we have

|ζ(j)+ζ(k)+ζ(l)|g2=|ζζ(i)|g2=2αiζ,ζ^(i)g,|{\zeta^{(j)}}+{\zeta^{(k)}}+{\zeta^{(l)}}|^{2}_{g^{*}}=|\zeta-{\zeta^{(i)}}|^{2}_{g^{*}}=-2\alpha_{i}\langle\zeta,\hat{\zeta}^{(i)}\rangle_{g^{*}},

then

|ζ(1)+ζ(2)+ζ(3)|g2=2α4(sinθ1),\displaystyle|\zeta^{(1)}+\zeta^{(2)}+\zeta^{(3)}|^{2}_{g^{*}}=-2\alpha_{4}(\sin\theta-1), |ζ(1)+ζ(2)+ζ(4)|g2=2α3,\displaystyle|\zeta^{(1)}+\zeta^{(2)}+\zeta^{(4)}|^{2}_{g^{*}}=2\alpha_{3},
|ζ(1)+ζ(3)+ζ(4)|g2=2α2,\displaystyle|\zeta^{(1)}+\zeta^{(3)}+\zeta^{(4)}|^{2}_{g^{*}}=2\alpha_{2}, |ζ(2)+ζ(3)+ζ(4)|g2=2α1.\displaystyle|\zeta^{(2)}+\zeta^{(3)}+\zeta^{(4)}|^{2}_{g^{*}}=2\alpha_{1}.

We compute

R123(ζ0(1)+ζ0(2)+ζ0(3))2|ζ(1)+ζ(2)+ζ(3)|g2=(1α4)22α4(sinθ1)=1sinθ2sinθ=12+14cos(θ/2)s,\displaystyle R_{123}\equiv\frac{(\zeta_{0}^{(1)}+\zeta_{0}^{(2)}+\zeta_{0}^{(3)})^{2}}{|\zeta^{(1)}+\zeta^{(2)}+\zeta^{(3)}|^{2}_{g^{*}}}=\frac{(1-\alpha_{4})^{2}}{-2\alpha_{4}(\sin\theta-1)}=\frac{1-\sin\theta}{2\sin\theta}=-\frac{1}{2}+\frac{1}{4\cos({\theta}/{2})}s,
R124(ζ0(1)+ζ0(2)+ζ0(4))2|ζ(1)+ζ(2)+ζ(4)|g2=(1α3)22α3=14(1sinθ+1cosθ1)1(cosθ1)sinθ(cosθ1)+sinθ\displaystyle R_{124}\equiv\frac{(\zeta_{0}^{(1)}+\zeta_{0}^{(2)}+\zeta_{0}^{(4)})^{2}}{|\zeta^{(1)}+\zeta^{(2)}+\zeta^{(4)}|^{2}_{g^{*}}}=\frac{(1-\alpha_{3})^{2}}{2\alpha_{3}}=-\frac{1}{4}(\frac{1}{\sin\theta}+\frac{1}{\cos\theta-1})-1-\frac{(\cos\theta-1)\sin\theta}{(\cos\theta-1)+\sin\theta}
=18s218cos(θ/2)1s1+(1+1cosθ)s2+(2cos(θ/2)cosθ)s3,\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=\frac{1}{8s^{2}}-\frac{1}{8\cos({\theta}/{2})}\frac{1}{s}-1+(1+\frac{1}{\cos\theta})s^{2}+(\frac{2\cos({\theta}/{2})}{\cos\theta})s^{3},
R134(ζ0(1)+ζ0(3)+ζ0(4))2|ζ(1)+ζ(3)+ζ(4)|g2=(1α2)22α2=R124,\displaystyle R_{134}\equiv\frac{(\zeta_{0}^{(1)}+\zeta_{0}^{(3)}+\zeta_{0}^{(4)})^{2}}{|\zeta^{(1)}+\zeta^{(3)}+\zeta^{(4)}|^{2}_{g^{*}}}=\frac{(1-\alpha_{2})^{2}}{2\alpha_{2}}=R_{124},
R234(ζ0(2)+ζ0(3)+ζ0(4))2|ζ(2)+ζ(3)+ζ(4)|g2=(1α1)22α1=12cosθ(cosθ1)=14cosθ1s2.\displaystyle R_{234}\equiv\frac{(\zeta_{0}^{(2)}+\zeta_{0}^{(3)}+\zeta_{0}^{(4)})^{2}}{|\zeta^{(2)}+\zeta^{(3)}+\zeta^{(4)}|^{2}_{g^{*}}}=\frac{(1-\alpha_{1})^{2}}{2\alpha_{1}}=\frac{1}{2\cos\theta(\cos\theta-1)}=-\frac{1}{4\cos\theta}\frac{1}{s^{2}}.

This implies that

R123=R134=14s12+18s+𝒪(s3),\displaystyle R_{123}=R_{134}=\frac{1}{4s}-\frac{1}{2}+\frac{1}{8}s+\mathcal{O}(s^{3}),
R124=18s218s1116s+2s2+𝒪(s3),\displaystyle R_{124}=\frac{1}{8s^{2}}-\frac{1}{8s}-1-\frac{1}{16}s+2s^{2}+\mathcal{O}(s^{3}),
R234=14s212s2+𝒪(s3).\displaystyle R_{234}=-\frac{1}{4s^{2}}-\frac{1}{2}-s^{2}+\mathcal{O}(s^{3}).

Then we have

D2(ζ(1),ζ(2),ζ(3),ζ(4))\displaystyle D_{2}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)}) =(i,j,k,l)Σ(4)2(ζ0(i)+ζ0(j)+ζ0(k))2|ζ(i)+ζ(j)+ζ(k)|g2=36+𝒪(s).\displaystyle=\sum_{(i,j,k,l)\in\Sigma(4)}2\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(j)}}+{\zeta^{(k)}}|^{2}_{g^{*}}}=-36+\mathcal{O}({s}).

Thus, one has

d(θ)\displaystyle d(\theta) D(ζ(1),ζ(2),ζ(3),ζ(4))=D1(ζ(1),ζ(2),ζ(3),ζ(4))+D2(ζ(1),ζ(2),ζ(3),ζ(4))\displaystyle\equiv D(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})=D_{1}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})+D_{2}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})
(43) =32s3212s294s+𝒪(1).\displaystyle=\frac{3}{2s^{3}}-\frac{21}{2s^{2}}-\frac{9}{4s}+\mathcal{O}(1).

Next, we compute

C2(ζ(1),ζ(2),ζ(3),ζ(4))=(i,j,k,l)Σ(4)(ζ0(i)+ζ0(l))2|ζ(i)+ζ(l)|g2(ζ0(j)+ζ0(k))2|ζ(j)+ζ(k)|g2\displaystyle C_{2}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})=\sum_{(i,j,k,l)\in\Sigma(4)}\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(l)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(l)}}|^{2}_{g^{*}}}\frac{(\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}}
=\displaystyle= 8(S12S34×2+S14S23)=58s5+14s41916s314s219564s+𝒪(1).\displaystyle 8(S_{12}S_{34}\times 2+S_{14}S_{23})=-\frac{5}{8s^{5}}+\frac{1}{4s^{4}}-\frac{19}{16s^{3}}-\frac{1}{4s^{2}}-\frac{195}{64s}+\mathcal{O}(1).

We have

C1(ζ(1),ζ(2),ζ(3),ζ(4))=(i,j,k,l)Σ(4)4(ζ0(i)+ζ0(j)+ζ0(k))2|ζ(i)+ζ(j)+ζ(k)|g2(ζ0(j)+ζ0(k))2|ζ(j)+ζ(k)|g2=C11+C12+C13,\displaystyle C_{1}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})=\sum_{(i,j,k,l)\in\Sigma(4)}4\frac{(\zeta_{0}^{(i)}+\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|{\zeta^{(i)}}+{\zeta^{(j)}}+{\zeta^{(k)}}|^{2}_{g^{*}}}\frac{(\zeta_{0}^{(j)}+\zeta_{0}^{(k)})^{2}}{|\zeta^{(j)}+\zeta^{(k)}|^{2}_{g^{*}}}=C_{11}+C_{12}+C_{13},

where

C11=4×2R123(S12×2+S23)=32s292s+𝒪(1),\displaystyle C_{11}=4\times 2R_{123}(S_{12}\times 2+S_{23})=\frac{3}{2s^{2}}-\frac{9}{2s}+\mathcal{O}(1),

and

C12=4×2R234(S24×2+S23)=14s5+54s4+138s3+194s2+18732s+𝒪(1),\displaystyle C_{12}=4\times 2R_{234}(S_{24}\times 2+S_{23})=\frac{1}{4s^{5}}+\frac{5}{4s^{4}}+\frac{13}{8s^{3}}+\frac{19}{4s^{2}}+\frac{187}{32s}+\mathcal{O}(1),

and

C13=4×4R124(S12+S24+S14)=34s532s43916s3+8s2+74964s+𝒪(1).\displaystyle C_{13}=4\times 4R_{124}(S_{12}+S_{24}+S_{14})=\frac{3}{4s^{5}}-\frac{3}{2s^{4}}-\frac{39}{16s^{3}}+\frac{8}{s^{2}}+\frac{749}{64s}+\mathcal{O}(1).

It follows that

C1(ζ(1),ζ(2),ζ(3),ζ(4))=58s514s41316s3+574s2+83564s+𝒪(1).\displaystyle C_{1}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})=\frac{5}{8s^{5}}-\frac{1}{4s^{4}}-\frac{13}{16s^{3}}+\frac{57}{4s^{2}}+\frac{835}{64s}+\mathcal{O}(1).

Then we have

(44) c(θ)C(ζ(1),ζ(2),ζ(3),ζ(4))=2s3+14s2+10s+𝒪(1).\displaystyle c(\theta)\equiv C(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)},\zeta^{(4)})=-\frac{2}{s^{3}}+\frac{14}{s^{2}}+\frac{10}{s}+\mathcal{O}(1).

Combining (44) and (6), we have

(45) c(θ)+43d(θ)=7s+𝒪(1).\displaystyle c(\theta)+\frac{4}{3}d(\theta)=\frac{7}{s}+\mathcal{O}(1).

We claim that there exist sufficiently small θ1,θ2,θ3>0\theta_{1},\theta_{2},\theta_{3}>0 such that

(c(θj),d(θj),1),j=1,2,3,(c(\theta_{j}),-d(\theta_{j}),1),\quad j=1,2,3,

are linearly independent. Indeed, we define

g(θ)c(θ)+43d(θ).g(\theta)\equiv c(\theta)+\frac{4}{3}d(\theta).

The analysis above shows that g(θ)=7/s+𝒪(1)g(\theta)={7}/{s}+\mathcal{O}(1) for s=sin(θ/2)s=\sin({\theta}/{2}) small enough. In the following, we would like to find θj,j=1,2,3\theta_{j},j=1,2,3 in a small neighborhood of θ=0\theta=0, such that the determinant does not vanish, i.e.,

det[c(θ1)d(θ1)1c(θ2)d(θ2)1c(θ3)d(θ3)1]0\displaystyle\det\left[{\begin{array}[]{ccc}c(\theta_{1})&d(\theta_{1})&1\\ c(\theta_{2})&d(\theta_{2})&1\\ c(\theta_{3})&d(\theta_{3})&1\end{array}}\right]\neq 0

For simplification, we write g(θj)=gjg(\theta_{j})=g_{j} and d(θj)=djd(\theta_{j})=d_{j} for j=1,2,3j=1,2,3. We compute

det[c(θ1)d(θ1)1c(θ2)d(θ2)1c(θ3)d(θ3)1]=det[g1d11g2d21g3d31]\displaystyle\det\left[{\begin{array}[]{ccc}c(\theta_{1})&d(\theta_{1})&1\\ c(\theta_{2})&d(\theta_{2})&1\\ c(\theta_{3})&d(\theta_{3})&1\end{array}}\right]=\det\left[{\begin{array}[]{ccc}g_{1}&d_{1}&1\\ g_{2}&d_{2}&1\\ g_{3}&d_{3}&1\end{array}}\right]
=(g2d3g3d2)(g1d3g3d1)+(g1d2g2d1)\displaystyle=(g_{2}d_{3}-g_{3}d_{2})-(g_{1}d_{3}-g_{3}d_{1})+(g_{1}d_{2}-g_{2}d_{1})
=(g2g3)(d2d1)+(g1g2)(d2d3).\displaystyle=(g_{2}-g_{3})(d_{2}-d_{1})+(g_{1}-g_{2})(d_{2}-d_{3}).

We choose sufficiently small θ1\theta_{1} with sinθ2=rsinθ1,sinθ3=r2sinθ1\sin\theta_{2}=r\sin\theta_{1},\sin\theta_{3}={r^{2}}\sin\theta_{1} for small parameter 0<r<10<r<1. Recall s=sin(θ1/2)s=\sin(\theta_{1}/2). By (6) and (45), one has

d2=32sin3(θ2/2)+𝒪(1sin2(θ2/2))=32s3r3+𝒪(1s2r2),\displaystyle d_{2}=-\frac{3}{2\sin^{3}(\theta_{2}/2)}+\mathcal{O}(\frac{1}{\sin^{2}(\theta_{2}/2)})=-\frac{3}{2s^{3}r^{3}}+\mathcal{O}(\frac{1}{s^{2}r^{2}}),
d3=32sin3(θ3/2)+𝒪(1sin2(θ3/2))=32s3r6+𝒪(1s2r4),\displaystyle d_{3}=-\frac{3}{2\sin^{3}(\theta_{3}/2)}+\mathcal{O}(\frac{1}{\sin^{2}(\theta_{3}/2)})=-\frac{3}{2s^{3}r^{6}}+\mathcal{O}(\frac{1}{s^{2}r^{4}}),
g2=7sin(θ2/2)+𝒪(1)=7sr+𝒪(1),g3=7sin(θ3/2)+𝒪(1)=7sr2+𝒪(1).\displaystyle g_{2}=\frac{7}{\sin(\theta_{2}/2)}+\mathcal{O}(1)=\frac{7}{sr}+\mathcal{O}(1),\quad g_{3}=\frac{7}{\sin(\theta_{3}/2)}+\mathcal{O}(1)=\frac{7}{sr^{2}}+\mathcal{O}(1).

This implies that

d2d1=32s3r3+𝒪(1s2r2+1s3),\displaystyle d_{2}-d_{1}=-\frac{3}{2s^{3}r^{3}}+\mathcal{O}(\frac{1}{s^{2}r^{2}}+\frac{1}{s^{3}}),\quad d2d3=32s3r6+𝒪(1s2r4+1t3),\displaystyle d_{2}-d_{3}=-\frac{3}{2s^{3}r^{6}}+\mathcal{O}(\frac{1}{s^{2}r^{4}}+\frac{1}{t^{3}}),
g2g3=7sr2+𝒪(1sr),\displaystyle g_{2}-g_{3}=-\frac{7}{sr^{2}}+\mathcal{O}(\frac{1}{sr}),\quad g1g2=7sr+𝒪(1s).\displaystyle g_{1}-g_{2}=-\frac{7}{sr}+\mathcal{O}(\frac{1}{s}).

Thus, we have

(g2g3)(d3d1)+(g1g2)(d2d3)=212s4r7+𝒪(1s4r6)0.\displaystyle(g_{2}-g_{3})(d_{3}-d_{1})+(g_{1}-g_{2})(d_{2}-d_{3})=\frac{21}{2s^{4}r^{7}}+\mathcal{O}(\frac{1}{s^{4}r^{6}})\neq 0.

for sufficiently small ss and rr. This proves the desired result. ∎

Thus, combining Lemma 3, Lemma 4, and Proposition 6, we can choose three different sets

(ζ(1),j,ζ(2),j,ζ(3),j,ζ(4),j),k=1,2,3,(\zeta^{(1),j},\zeta^{(2),j},\zeta^{(3),j},\zeta^{(4),j}),\quad k=1,2,3,

such that from

C(j)((β2(1))3(β2(2))3)+D(j)(β2(1)β3(1)β2(2)β3(2))(β4(1)β4(2))=0,j=1,2,3,-C^{(j)}((\beta^{(1)}_{2})^{3}-(\beta^{(2)}_{2})^{3})+D^{(j)}(\beta^{(1)}_{2}\beta^{(1)}_{3}-\beta^{(2)}_{2}\beta^{(2)}_{3})-(\beta^{(1)}_{4}-\beta^{(2)}_{4})=0,\quad j=1,2,3,

we can conclude that

(β2(1))3(β2(2))3=β2(1)β3(1)β2(2)β3(2)=β4(1)β4(2)=0.(\beta^{(1)}_{2})^{3}-(\beta^{(2)}_{2})^{3}=\beta^{(1)}_{2}\beta^{(1)}_{3}-\beta^{(2)}_{2}\beta^{(2)}_{3}=\beta^{(1)}_{4}-\beta^{(2)}_{4}=0.

Here we write C(j)=C(ζ(1),j,ζ(2),j,ζ(3),j,ζ(4),j)C^{(j)}=C(\zeta^{(1),j},\zeta^{(2),j},\zeta^{(3),j},\zeta^{(4),j}) and D(j)=D(ζ(1),j,ζ(2),j,ζ(3),j,ζ(4),j)D^{(j)}=D(\zeta^{(1),j},\zeta^{(2),j},\zeta^{(3),j},\zeta^{(4),j}). It follows that

β2(1)=β2(2),β4(1)=β4(2)\beta^{(1)}_{2}=\beta^{(2)}_{2},\quad\beta^{(1)}_{4}=\beta^{(2)}_{4}

at qq. In the case that β2(1)=β2(2)\beta^{(1)}_{2}=\beta^{(2)}_{2} does not vanish, we conclude that β3(1)=β3(2)\beta^{(1)}_{3}=\beta^{(2)}_{3}. Otherwise, if β2(1)(q)=β2(2)(q)=0\beta^{(1)}_{2}(q)=\beta^{(2)}_{2}(q)=0, one can use the third order linearization

ϵ1ϵ2ϵ3ΛF(f)|ϵ1=ϵ2=ϵ3=0=ν,𝒰(3)|M\partial_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}\Lambda_{F}(f)|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=0}=\langle\nu,\nabla\mathcal{U}^{(3)}\rangle|_{\partial M}

to show that β3(1)=β3(2)\beta^{(1)}_{3}=\beta^{(2)}_{3}. More explicitly, by Proposition 5 and a similar construction of ζ(1),ζ(2),ζ(3)\zeta^{(1)},\zeta^{(2)},\zeta^{(3)} in [30], we have

𝒬(1)(ζ(1),ζ(2),ζ(3))=𝒬(2)(ζ(1),ζ(2),ζ(3))β3(1)=β3(2).\mathcal{Q}^{(1)}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)})=\mathcal{Q}^{(2)}(\zeta^{(1)},\zeta^{(2)},\zeta^{(3)})\quad\Rightarrow\quad\beta^{(1)}_{3}=\beta^{(2)}_{3}.

In both cases, we have

βi(1)=βi(2), for i=2,3,4,\beta^{(1)}_{i}=\beta^{(2)}_{i},\quad\text{ for }i=2,3,4,

at any q𝕎q\in\mathbb{W}.

7. Piriou Conormal distributions

In the following, we introduce Piriou Conormal distributions. In Section 8, we determine βN\beta_{N} at each q𝕎q\in\mathbb{W} from the singularities of the NNth order linearization of the DN map by using this special class of conormal distributions.

Let KK be a submanifold of MM with codim(K)=1\operatorname{codim}(K)=1. We follow [49] to define the class of conormal distributions that vanish to certain order at KK. Note the order of conormal distributions in [49] is the same as that of symbols and we shift it by n4+N2-\frac{n}{4}+\frac{N}{2} following the definition in [32].

Definition 4.

Let m<1m<-1 and k(m)k(m)\in\mathbb{N} such that m2k(m)<m1-m-2\leq k(m)<-m-1. We say ůmn4+12(K)u\in\mathring{\mathcal{I}}^{m-\frac{n}{4}+\frac{1}{2}}(K) if umn4+12(K)u\in\mathcal{I}^{m-\frac{n}{4}+\frac{1}{2}}(K) vanishing to order k(m)+1k(m)+1 at KK.

By [49, Propostion 2.3 and 2.4], a distribution ům(K)u\in\mathring{\mathcal{I}}^{m}(K) if and only if there exists hCh\in C^{\infty} vanishing to order k(m)k(m) such that u=hvu=hv with v̊m+k(m)(K)v\in\mathring{\mathcal{I}}^{m+k(m)}(K), for m<1m<-1. Additionally, by [6], for any umn4+12(K)u\in\mathcal{I}^{m-\frac{n}{4}+\frac{1}{2}}(K) with compact support, by subtracting a compactly supported smooth function whose derivatives at KK up to order k(m)+1k(m)+1 coincide with those of uu, one can modify uu such that ůmn4+12(K)u\in\mathring{\mathcal{I}}^{m-\frac{n}{4}+\frac{1}{2}}(K). This can be done since we can show that uu is continuous up to order k(m)+1k(m)+1 at KK, for m<1m<-1.

Lemma 5 ([6, Proposition 2.4]).

Let m<1m<-1 and umn4+12(K)u\in\mathcal{I}^{m-\frac{n}{4}+\frac{1}{2}}(K). Then there exists eCe\in C^{\infty} such that u=v+eu=v+e with v̊mn4+12(K)v\in\mathring{\mathcal{I}}^{m-\frac{n}{4}+\frac{1}{2}}(K).

Moreover, we have the following lemma, see [49, Theorem 2.1] and also [6, Proposition 2.5].

Lemma 6.

Let mm\in\mathbb{N} with m2m\geq 2. Suppose v1̊μ(Λ1)v_{1}\in\mathring{\mathcal{I}}^{\mu}(\Lambda_{1}). Then

v1m̊μ+(m1)(μ+32)(Λ1),v_{1}^{m}\in\mathring{\mathcal{I}}^{\mu+(m-1)(\mu+\frac{3}{2})}(\Lambda_{1}),

with the principal symbol given by mm-fold fiberwise convolution

σp(v1m)=(2π)(m1)σp(v1)σp(v1)m.\displaystyle{\sigma_{p}}(v_{1}^{m})=(2\pi)^{-(m-1)}\underbrace{{{\sigma_{p}}}(v_{1})\ast\ldots\ast{{\sigma_{p}}}(v_{1})}_{m}.

Now we can prove the following lemma about v1mv2v3v4v_{1}^{m}v_{2}v_{3}v_{4}.

Lemma 7.

Let mm\in\mathbb{N} with m2m\geq 2. Suppose K1,K2,K3,K4K_{1},K_{2},K_{3},K_{4} intersect 4-transversally at a point q𝒩(x,ξ)q\in{\mathcal{N}(\vec{x},\vec{\xi})}. Suppose v1̊μ(Λ1)v_{1}\in\mathring{\mathcal{I}}^{\mu}(\Lambda_{1}) and vjμ(Λj)v_{j}\in\mathcal{I}^{\mu}(\Lambda_{j}) for j=2,3,4j=2,3,4. Let Ξ4Λ(1)Λ(2)Λ(3)\Xi_{4}\coloneqq\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)}. Then microlocally away from Ξ4\Xi_{4}, we have

v1mv2v3v44μ+3+(m1)(μ+32)(Λq).v_{1}^{m}v_{2}v_{3}v_{4}\in\mathcal{I}^{4\mu+3+(m-1)(\mu+\frac{3}{2})}(\Lambda_{q}).

Moreover, for (q,ζ)ΛqΞ4(q,\zeta)\in\Lambda_{q}\setminus\Xi_{4}, the principal symbol is given by

(46) σp(v1mv2v3v4)(q,ζ)=(2π)3σp(v1m)(q,ζ(1))j=24σp(vj)(q,ζ(j)),\displaystyle{\sigma_{p}}(v_{1}^{m}v_{2}v_{3}v_{4})(q,\zeta)=(2\pi)^{-3}{\sigma_{p}}(v_{1}^{m})(q,\zeta^{(1)})\prod_{j=2}^{4}{\sigma_{p}}(v_{j})(q,{\zeta^{(j)}}),

where the decomposition ζ=j=14ζ(j)\zeta=\sum_{j=1}^{4}{\zeta^{(j)}} with ζ(j)Λj{\zeta^{(j)}}\in\Lambda_{j} is unique. Note that σp(v1m){\sigma_{p}}(v_{1}^{m}) is given by the mm-fold fiberwise convolution in Lemma 6.

Proof.

By Lemma 6, we have

v1m̊μ+(m1)(μ+32)(M;Λ1){v}_{1}^{m}\in\mathring{\mathcal{I}}^{\mu+(m-1)(\mu+\frac{3}{2})}(M;\Lambda_{1})

with σp(v1m){\sigma_{p}}(v_{1}^{m}) given by the mm-fold fiberwise convolution. Then by [43, Lemma 3.3 and Lemma 3.8], we have

v1mv2v3v44μ+3+(m1)(μ+32)(M;Λq){v}_{1}^{m}v_{2}v_{3}v_{4}\in\mathcal{I}^{4\mu+3+(m-1)(\mu+\frac{3}{2})}(M;\Lambda_{q})

microlocally away Ξ4\Xi_{4} and the principal symbol given in (46). ∎

Combining Lemma 7 with the same arguments in Section 4 and Section 5, we have the following lemma.

Lemma 8.

Suppose K1,K2,K3,K4K_{1},K_{2},K_{3},K_{4} intersect 4-transversally at a point q𝒩(x,ξ)q\in{\mathcal{N}(\vec{x},\vec{\xi})}. Let Γ(x,ξ)\Gamma({\vec{x},\vec{\xi}}) be defined in (12). Let v1̊μ(Λ1)v_{1}\in\mathring{\mathcal{I}}^{\mu}(\Lambda_{1}) and vjμ(Λj)v_{j}\in\mathcal{I}^{\mu}(\Lambda_{j}) for j=2,3,4j=2,3,4. Suppose (y,η)LM,+M(y,\eta)\in L^{*}_{\partial M,+}M is a covector lying along the forward null-bicharacteristic of c\square_{c} starting at (q,ζ)Λq(q,\zeta)\in\Lambda_{q}. If (y,η)(y,\eta) is contained in 𝒩(x,ξ)(x,ξ){\mathcal{N}(\vec{x},\vec{\xi})}\cap{{\mathcal{R}}(\vec{x},\vec{\xi})} and away from Γ(x,ξ)\Gamma({\vec{x},\vec{\xi}}), then with sufficiently small s0>0s_{0}>0 we have

σp(Qgbvp(t2(v1mv2v3v4)))(y,η)\displaystyle{{\sigma_{p}}}(Q^{\mathrm{bvp}}_{g}(\partial_{t}^{2}({v}_{1}^{m}v_{2}v_{3}v_{4})))(y,\eta)
=\displaystyle= 2(2π)(m+1)σp(Qg)(y,η,q,ζ)(ζ0)2σp(v1m)(q,ζ(1))j=24σp(vj)(q,ζ(j)),\displaystyle-2(2\pi)^{-(m+1)}{{\sigma_{p}}}({Q}_{g})(y,\eta,q,\zeta)(\zeta_{0})^{2}{\sigma_{p}}(v_{1}^{m})(q,\zeta^{(1)})\prod_{j=2}^{4}{\sigma_{p}}(v_{j})(q,{\zeta^{(j)}}),

where the decomposition ζ=j=14\zeta=\sum_{j=1}^{4} with ζ(j)Λj{\zeta^{(j)}}\in\Lambda_{j} is unique. Note the homogeneous term σp(v1m){\sigma_{p}}(v_{1}^{m}) is given by the mm-fold fiberwise convolution in Lemma 6.

8. Recovery of the higher order nonlinearity

For k=1,2k=1,2, let p(k)p^{(k)} solve the boundary value problem (1) with nonlinear terms F(k)F^{(k)} that satisfies the expansion in (3), i.e.,

F(k)(x,p(k),tp(k),t2p(k))=m=1+βm+1(k)(x)t2((p(k))m+1),k=1,2,F^{(k)}(x,p^{(k)},\partial_{t}p^{(k)},\partial^{2}_{t}p^{(k)})=\sum_{m=1}^{+\infty}\beta^{(k)}_{m+1}(x)\partial_{t}^{2}((p^{(k)})^{m+1}),\quad k=1,2,

Suppose

ΛF(1)(1)(f)=ΛF(2)(2)(f),\Lambda^{(1)}_{F^{(1)}}(f)=\Lambda^{(2)}_{F^{(2)}}(f),

for small boundary data ff supported in (0,T)×Ω(0,T)\times\partial\Omega. In this section, we consider the recovery of βm(k),m5\beta^{(k)}_{m},m\geq 5 in the suitable larger set

𝕎=y,y+(0,T)×ΩI(y,y+)Mo\mathbb{W}=\bigcup_{y^{-},y^{+}\in(0,T)\times\partial\Omega}I(y^{-},y^{+})\cap M^{{o}}

from the mm-th order linearization of the DN map. For convenience, we denote them by higher order nonlinear terms. The analysis in Section 6 shows one can recover β2(k),β3(k),β4(k)\beta^{(k)}_{2},\beta^{(k)}_{3},\beta^{(k)}_{4} from the fourth order linearization.

For fixed q𝕎q\in\mathbb{W}, we consider the same construction as in Section 6, i.e.,

(x,ξ)j=14L+V,ζΛq(Λ(1)Λ(2)Λ(3)),(y,η)LM,+M(\vec{x},\vec{\xi})_{j=1}^{4}\subset L^{+}V,\quad\zeta\in\Lambda_{q}\setminus(\Lambda^{(1)}\cup\Lambda^{(2)}\cup\Lambda^{(3)}),\quad(y,\eta)\in L^{*}_{\partial M,+}M

such that

  • (a)

    (x,ξ)j=14(\vec{x},\vec{\xi})_{j=1}^{4} intersect regularly at qq and are causally independent, see (10),

  • (b)

    each γxj,ξj(+)\gamma_{x_{j},\xi_{j}}(\mathbb{R}_{+}) hits M\partial M exactly once and transversally before it passes qq,

  • (c)

    (y,η)LM,+M(y,\eta)\in L^{*}_{\partial M,+}M lies in the bicharacteristic from (q,ζ)(q,\zeta) and additionally there are no cut points along γq,ζ#\gamma_{q,\zeta^{\#}} from qq to yy.

For (x,ξ)j=14(\vec{x},\vec{\xi})_{j=1}^{4} satisfying the conditions above, we construct Σj,Kj,Λj,vj,fj,f\Sigma_{j},K_{j},\Lambda_{j},v_{j},f_{j},f and define

𝒰(N,k)=ϵ1N3ϵ2ϵ3ϵ4p(k)|ϵ1=ϵ2=ϵ3=ϵ4=0,k=1,2,\displaystyle\mathcal{U}^{(N,k)}=\partial^{N-3}_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}\partial_{\epsilon_{4}}p^{(k)}|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=\epsilon_{4}=0},\quad k=1,2,

where p(k)p^{(k)} solves the boundary value problem (1). In particular, we choose v1̊μ(Λ1)v_{1}\in\mathring{\mathcal{I}}^{\mu}(\Lambda_{1}) as in Section 7. We write

𝒰(N,k)=𝒰N(N,k)+𝒬N(β2(k),β3(k),,βN1(k)),\mathcal{U}^{(N,k)}=\mathcal{U}^{(N,k)}_{N}+\mathcal{Q}_{N}(\beta^{(k)}_{2},\beta^{(k)}_{3},\ldots,\beta^{(k)}_{N_{1}}),

where

𝒰N(N,k)=ϵ1N3ϵ2ϵ3ϵ4(Qgbvp(βNt2(vN)))|ϵ1=ϵ2=ϵ3=ϵ4=0,\mathcal{U}^{(N,k)}_{N}=\partial^{N-3}_{\epsilon_{1}}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}\partial_{\epsilon_{4}}({Q^{\mathrm{bvp}}_{g}}(\beta_{N}\partial_{t}^{2}(v^{N})))|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=\epsilon_{4}=0},

and 𝒬N(β2(k),β3(k),,βN1(k))\mathcal{Q}_{N}(\beta^{(k)}_{2},\beta^{(k)}_{3},\ldots,\beta^{(k)}_{N_{1}}) contains the terms involved with β2(k),,βN1(k)\beta^{(k)}_{2},\ldots,\beta^{(k)}_{N-1}, see Section 3.6.

We note that one has

ϵ1N3ϵ2ϵ3ϵ4ΛF(k)(k)(f)|ϵ1=ϵ2=ϵ3=ϵ4=0=ν,𝒰(N,k)|(0,T)×Ω,k=1,2.\partial_{\epsilon_{1}}^{N-3}\partial_{\epsilon_{2}}\partial_{\epsilon_{3}}\partial_{\epsilon_{4}}\Lambda^{(k)}_{F^{(k)}}(f)|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=\epsilon_{4}=0}=\langle\nu,\nabla\mathcal{U}^{(N,k)}\rangle|_{(0,T)\times\partial\Omega},\quad k=1,2.

In the following we use an induction procedure to determine βN(k)\beta^{(k)}_{N}. Assuming βj(k)\beta^{(k)}_{j} has been determined for j<Nj<N, we subtract the contribution of 𝒬N(β2(k),β3(k),,βN1(k))\mathcal{Q}_{N}(\beta^{(k)}_{2},\beta^{(k)}_{3},\ldots,\beta^{(k)}_{N-1}) to obtain that

(47) ν,𝒰N(N,1)|(0,T)×Ω=ν,𝒰N(N,2)|(0,T)×Ω.\displaystyle\langle\nu,\nabla\mathcal{U}^{(N,1)}_{N}\rangle|_{(0,T)\times\partial\Omega}=\langle\nu,\nabla\mathcal{U}^{(N,2)}_{N}\rangle|_{(0,T)\times\partial\Omega}.

For k=1,2k=1,2, we compute

𝒰N(N,k)=N(N1)(N2)Qgbvp(βN(k)t2(v1N3v2v3v4)).\mathcal{U}^{(N,k)}_{N}=N(N-1)(N-2){Q^{\mathrm{bvp}}_{g}}(\beta^{(k)}_{N}\partial_{t}^{2}(v_{1}^{N-3}v_{2}v_{3}v_{4})).

By Lemma 8, it has the principal symbol

(48) 2N(N1)(N2)(2π)(m+1)σp(Qg)(y,η,q,ζ)\displaystyle-2N(N-1)(N-2)(2\pi)^{-(m+1)}{{\sigma_{p}}}({Q}_{g})(y,\eta,q,\zeta)
×(ζ0)2βN(k)σp(v1m)(q,ζ(1))j=24σp(vj)(q,ζ(j)),\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\times(\zeta_{0})^{2}\beta^{(k)}_{N}{\sigma_{p}}(v_{1}^{m})(q,\zeta^{(1)})\prod_{j=2}^{4}{\sigma_{p}}(v_{j})(q,{\zeta^{(j)}}),

at (y,η)(y,\eta), where (y,η)(y,\eta) is chosen as above. We note that

σp(ν,𝒰NN,k|M)(y|,η|)=ιν,ηgσp()(y|,η|,y,η)σp(𝒰NN,k)(y,η),k=1,2,\displaystyle{\sigma_{p}}(\langle\nu,\nabla\mathcal{U}^{N,k}_{N}\rangle|_{\partial M})(y_{|},\eta_{|})=\iota\langle\nu,\eta\rangle_{g}{\sigma_{p}}(\mathcal{R})(y_{|},\eta_{|},y,\eta){\sigma_{p}}(\mathcal{U}^{N,k}_{N})(y,\eta),\quad k=1,2,

where (y|,η|)(y_{|},\eta_{|}) is the projection of (y,η)(y,\eta) on the boundary. Therefore, combining equations (47) and (48), at any q𝕎q\in\mathbb{W} we must have βN(1)=βN(2).\beta^{(1)}_{N}=\beta^{(2)}_{N}.

This section with Section 6 proves Theorem 1.3. Then by Proposition 2, we have Theorem 1.1.

Acknowledgment

We would like to thank Katya Krupchyk for mentioning the paper [35]. The research of G.U. is partially supported by NSF, a Walker Professorship at UW, a Si-Yuan Professorship at IAS, HKUST, and a Simons Fellowship. Part of this research was performed while G.U. and Y.Z. were visiting the Institute for Pure and Applied Mathematics (IPAM), which is supported by the National Science Foundation (Grant No. DMS-1925919). Y.Z. was also partially supported by a Simons Travel Grant.

References

  • [1] Sebastian Acosta, Gunther Uhlmann, and Jian Zhai. Nonlinear ultrasound imaging modeled by a Westervelt equation. to appear SIAM J. Appl. Math. arXiv:2105.05423.
  • [2] Arash Anvari, Flemming Forsberg, and Anthony E. Samir. A primer on the physical principles of tissue harmonic imaging. RadioGraphics, 35(7):1955–1964, 2015.
  • [3] Jean-François Aubry and Mickael Tanter. MR-guided transcranial focused ultrasound. In Advances in Experimental Medicine and Biology, pages 97–111. Springer International Publishing, 2016.
  • [4] Tracey Balehowsky, Antti Kujanpää, Matti Lassas, and Tony Liimatainen. An inverse problem for the relativistic Boltzmann equation. arXiv:2011.09312, 2020.
  • [5] Antônio Sá Barreto and Plamen Stefanov. Recovery of a cubic non-linearity in the wave equation in the weakly non-linear regime. To appear in Communications in Mathematical Physics, arXiv:2102.06323, 2021.
  • [6] Antônio Sá Barreto and Yiran Wang. Singularities generated by the triple interaction of semilinear conormal waves. Analysis & PDE, 14(1):135–170, 2021.
  • [7] Antônio Sá Barreto, Gunther Uhlmann, and Yiran Wang. Inverse scattering for critical semilinear wave equations. To appear in Pure and Applied Analysis, arXiv:2003.03822, 2020.
  • [8] John Beem. Global Lorentzian Geometry, Second Edition. CRC Press, London, 2017.
  • [9] M. I. Belishev. An approach to multidimensional inverse problems for the wave equation. Dokl. Akad. Nauk SSSR, 297(3):524–527, 1987.
  • [10] Christian Bär, Nicolas Ginoux, and Frank Pfäffle. Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society Publishing House, 2007.
  • [11] Xi Chen, Matti Lassas, Lauri Oksanen, and Gabriel P Paternain. Detection of Hermitian connections in wave equations with cubic non-linearity. Journal of the European Mathematical Society, 2021.
  • [12] Xi Chen, Matti Lassas, Lauri Oksanen, and Gabriel P. Paternain. Inverse problem for the Yang–Mills equations. Communications in Mathematical Physics, 384(2):1187–1225, 2021.
  • [13] Constantine M. Dafermos and William J. Hrusa. Energy methods for quasilinear hyperbolic initial-boundary value problems. applications to elastodynamics. Archive for Rational Mechanics and Analysis, 87(3):267–292, 1985.
  • [14] Maarten de Hoop, Gunther Uhlmann, and András Vasy. Diffraction from conormal singularities. Annales Scientifiques de l'École Normale Supérieure, 48(2):351–408, 2015.
  • [15] Maarten de Hoop, Gunther Uhlmann, and Yiran Wang. Nonlinear interaction of waves in elastodynamics and an inverse problem. Mathematische Annalen, 376(1-2):765–795, 2019.
  • [16] Maarten de Hoop, Gunther Uhlmann, and Yiran Wang. Nonlinear responses from the interaction of two progressing waves at an interface. Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 36(2):347–363, 2019.
  • [17] L. Demi and M.D. Verweij. Nonlinear acoustics. In Comprehensive Biomedical Physics, pages 387–399. Elsevier, 2014.
  • [18] M. Demi. The basics of ultrasound. In Comprehensive Biomedical Physics, pages 297–322. Elsevier, 2014.
  • [19] J. J. Duistermaat. Fourier Integral Operators. Springer Basel AG, 2010.
  • [20] Gaynor et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics, 135(5):816–825, 2015.
  • [21] Jens Eyding, Christian Fung, Wolf-Dirk Niesen, and Christos Krogias. Twenty years of cerebral ultrasound perfusion imaging—is the best yet to come? Journal of Clinical Medicine, 9(3):816, 2020.
  • [22] Amy Fang, Kiona Y. Allen, Bradley S. Marino, and Ken M. Brady. Neurologic outcomes after heart surgery. Pediatric Anesthesia, 29(11):1086–1093, 2019.
  • [23] Ali Feizmohammadi and Lauri Oksanen. Recovery of zeroth order coefficients in non-linear wave equations. Journal of the Institute of Mathematics of Jussieu, pages 1–27, 2020.
  • [24] Allan Greenleaf and Gunther Uhlmann. Estimates for singular Radon transforms and pseudodifferential operators with singular symbols. Journal of Functional Analysis, 89(1):202–232, 1990.
  • [25] Allan Greenleaf and Gunther Uhlmann. Recovering singularities of a potential from singularities of scattering data. Communications in Mathematical Physics, 157(3):549–572, 1993.
  • [26] J. U. Harrer. Second harmonic imaging: a new ultrasound technique to assess human brain tumour perfusion. Journal of Neurology, Neurosurgery & Psychiatry, 74(3):333–342, 2003.
  • [27] W. R. Hedrick and Linda Metzger. Tissue harmonic imaging. Journal of Diagnostic Medical Sonography, 21(3):183–189, 2005.
  • [28] Peter Hintz and Gunther Uhlmann. Reconstruction of Lorentzian manifolds from boundary light observation sets. International Mathematics Research Notices, 2019(22):6949–6987, 2017.
  • [29] Peter Hintz, Gunther Uhlmann, and Jian Zhai. The Dirichlet-to-Neumann map for a semilinear wave equation on Lorentzian manifolds. arXiv:2103.08110, 2021.
  • [30] Peter Hintz, Gunther Uhlmann, and Jian Zhai. An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds. International Mathematics Research Notices, arXiv:2005.10447, 2021.
  • [31] Lars Hörmander. The Analysis of Linear Partial Differential Operators I. Springer Berlin Heidelberg, 2003.
  • [32] Lars Hörmander. The Analysis of Linear Partial Differential Operators III. Classics in Mathematics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the 1994 edition.
  • [33] Lars Hörmander. The Analysis of Linear Partial Differential Operators IV. Springer Berlin Heidelberg, 2009.
  • [34] VF Humphrey. Non-linear propagation for medical imaging. WCU, 2003:73–80, 2003.
  • [35] Barbara Kaltenbacher and William Rundell. Determining the nonlinearity in an acoustic wave equation. Mathematical Methods in the Applied Sciences, 2021.
  • [36] Barbara Kaltenbacher and William Rundell. On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements. Inverse Problems & Imaging, 15(5):865–891, 2021.
  • [37] Yaroslav Kurylev, Matti Lassas, Lauri Oksanen, and Gunther Uhlmann. Inverse problem for Einstein-scalar field equations. To appear in Duke Mathematical Journal, arXiv:1406.4776, 2014.
  • [38] Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann. Inverse problems in spacetime I: Inverse problems for Einstein equations - extended preprint version. arXiv:1405.4503, 2014.
  • [39] Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann. Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations. Inventiones Mathematicae, 212(3):781–857, 2018.
  • [40] Ru-Yu Lai, Gunther Uhlmann, and Yang Yang. Reconstruction of the collision kernel in the nonlinear Boltzmann equation. SIAM Journal on Mathematical Analysis, 53(1):1049–1069, 2021.
  • [41] Matti Lassas. Inverse problems for linear and non-linear hyperbolic equations. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, pages 3751–3771. World Scientific, 2018.
  • [42] Matti Lassas, Gunther Uhlmann, and Yiran Wang. Determination of vacuum space-times from the Einstein-Maxwell equations. arXiv:1703.10704, 2017.
  • [43] Matti Lassas, Gunther Uhlmann, and Yiran Wang. Inverse problems for semilinear wave equations on Lorentzian manifolds. Communications in Mathematical Physics, 360(2):555–609, 2018.
  • [44] Gilles Lebeau. Propagation des ondes dans les variétés à coins. Annales Scientifiques de l’École Normale Supérieure, 30(4):429–497, 1997.
  • [45] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. II. Communications on Pure and Applied Mathematics, 35(2):129–168, 1982.
  • [46] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. I. Communications on Pure and Applied Mathematics, 31(5):593–617, 1978.
  • [47] R. B. Melrose and G. A. Uhlmann. Lagrangian intersection and the Cauchy problem. Communications on Pure and Applied Mathematics, 32(4):483–519, 1979.
  • [48] Richard B Melrose. The Atiyah-Patodi-Singer index theorem. 1992.
  • [49] Alain Piriou. Calcul symbolique non linéaire pour une onde conormale simple. Annales de l’institut Fourier, 38(4):173–187, 1988.
  • [50] G. Soldati. Biomedical applications of ultrasound. In Comprehensive Biomedical Physics, pages 401–436. Elsevier, 2014.
  • [51] Plamen Stefanov, Gunther Uhlmann, and Andras Vasy. Boundary rigidity with partial data. J. Amer. Math. Soc., 29(2):299–332, 2016.
  • [52] Thomas L. Szabo. Nonlinear acoustics and imaging. In Diagnostic Ultrasound Imaging: Inside Out, pages 501–563. Elsevier, 2014.
  • [53] Michael E. Taylor. Reflection of singularities of solutions to systems of differential equations. Communications on Pure and Applied Mathematics, 28(4):457–478, 1975.
  • [54] Gail ter Haar. HIFU tissue ablation: Concept and devices. In Advances in Experimental Medicine and Biology, pages 3–20. Springer International Publishing, 2016.
  • [55] James D. Thomas and David N. Rubin. Tissue harmonic imaging: Why does it work? Journal of the American Society of Echocardiography, 11(8):803–808, 1998.
  • [56] Leo Tzou. Determining Riemannian manifolds from nonlinear wave observations at a single point. arXiv:2102.01841, 2021.
  • [57] Frank Uhlig. On the block-decomposability of 1-parameter matrix flows and static matrices. Numerical Algorithms, (2):529–549, 2022.
  • [58] Gunther Uhlmann and Yiran Wang. Determination of space-time structures from gravitational perturbations. Communications on Pure and Applied Mathematics, 73(6):1315–1367, 2020.
  • [59] Gunther Uhlmann and Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 41(1):455–469, 2021.
  • [60] Gunther Uhlmann and Jian Zhai. On an inverse boundary value problem for a nonlinear elastic wave equation. Journal de Mathématiques Pures et Appliquées, 153:114–136, 2021.
  • [61] Gunther Uhlmann and Yang Zhang. Inverse boundary value problems for wave equations with quadratic nonlinearities. Journal of Differential Equations, 309:558–607, 2022.
  • [62] András Vasy. Propagation of singularities for the wave equation on manifolds with corners. Annals of Mathematics, 168(3):749–812, 2008.
  • [63] Yiran Wang and Ting Zhou. Inverse problems for quadratic derivative nonlinear wave equations. Communications in Partial Differential Equations, 44(11):1140–1158, 2019.
  • [64] Andrew G Webb. Introduction to biomedical imaging. John Wiley & Sons, 2017.