This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An improved restriction estimate in 3\mathbb{R}^{3}

Hong Wang Hong Wang
Department of Mathematics
University of California, Los Angeles, USA
[email protected]
 and  Shukun Wu Shukun Wu
Department of Mathematics
California Institute of Technology, USA
[email protected]
Abstract.

We improve the LpLpL^{p}\rightarrow L^{p} restriction estimate in 3\mathbb{R}^{3} to the range p>3+3/14p>3+3/14, based on some Kakeya type incidence estimates and the refined decoupling theorem.

1. Introduction

Let f(ξ)f(\xi) be a function supported in the two-dimensional unit ball B2(0,1)B^{2}(0,1). Denote by EfEf be the extension operator

(1.1) Ef(x,x3)=3eixξex3|ξ|2f(ξ)𝑑ξ,Ef(x^{\prime},x_{3})=\int_{\mathbb{R}^{3}}e^{ix^{\prime}\cdot\xi}e^{x_{3}|\xi|^{2}}f(\xi)d\xi,

where x=(x,x3)3x=(x^{\prime},x_{3})\in\mathbb{R}^{3}. The following conjecture was made by Stein, which is known as (Stein’s) restriction conjecture (for paraboloid).

Conjecture 1.1 (Restriction conjecture in 3\mathbb{R}^{3}).

Suppose fLp(B2(0,1))f\in L^{p}(B^{2}(0,1)). Then for any p>3p>3,

(1.2) EfpCpfp.\|Ef\|_{p}\leq C_{p}\|f\|_{p}.

Conjecture (1.1) was first proved for p>4p>4 by Tomas and Stein. In 1991, by relating it to the Kakeya problem, Bourgain improved the range to p>3+7/8p>3+7/8 in the milestone work [Bou91]. In 2002, Tao [Tao03] improved (1.2) to p>3+1/3p>3+1/3 using a two-ends argument, which was introduced by Wolff [Wol01] a bit earlier. Then in 2010, Bourgain-Guth [BG11] further improved the range to p>3+5/17p>3+5/17 via a broad-narrow decomposition. More recently, Guth [Gut16] brought ideas from incidence geometry, the polynomial partitioning, and improved (1.2) to the range p>3+1/4p>3+1/4. The best known result so far was due to the first author [Wan22], showing (1.2) for p>3+3/13p>3+3/13 by combining the polynomial partitioning technique and the two-ends argument, and exploring a so-called broom structure.

We give another small improvement based on some Kakeya estimates and the refined decoupling theorem.

Theorem 1.2.

The restriction estimate (1.2) is true for p>3+3/14p>3+3/14.

Using an epsilon removal argument by Tao [Tao99], it suffices to prove that for any p>3+3/14p>3+3/14 and ε>0\varepsilon>0, there exists a constant CεC_{\varepsilon} such that the following holds: for R>1R>1,

(1.3) EfLp(BR)CεRεfp.\|Ef\|_{L^{p}(B_{R})}\leq C_{\varepsilon}R^{\varepsilon}\|f\|_{p}.

For any R1/2R^{-1/2}-ball θ\theta in B2(0,1)B^{2}(0,1), let fθ=f𝟏θf_{\theta}=f{\bf{1}}_{\theta}. In the paper we will prove

(1.4) EfLp(BR)CεRεf22/psupθfθLave212/p,\|Ef\|_{L^{p}(B_{R})}\leq C_{\varepsilon}R^{\varepsilon}\|f\|_{2}^{2/p}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{1-2/p},

where fθLave22=|θ|1fθ22\|f_{\theta}\|_{L^{2}_{ave}}^{2}=|\theta|^{-1}\|f_{\theta}\|_{2}^{2}. Note that (1.4) implies (1.3) by (restricted type) real interpolation, and hence Theorem 1.2.

Bourgain [Bou91] originates the idea of studying the restriction problem using wave packets. A wave packet serves as a building block for EfEf, and is essentially supported in a long thin tube. To this end, it is important to understand how different wave packets interact with each other. An effective tool to understand the interaction is the polynomial partitioning introduced by Guth [Gut16]. Broadly speaking, polynomial partitioning (iteration) allows one to partition the space into cells, so that in each cell EfEf contributes roughly the same, and there is a certain algebraic constraint among all the cells that controls their interaction via wave packets. In addition to this algebraic constraint, the oscillation of wave packets also plays an important role, which is usually handled by induction on scales.

The main idea of this paper is to apply a refined Wolff’s hairbrush estimate (at two different scales) to bound the number of tubes through each cell when the cells are relatively concentrated and apply the refined decoupling theorem ([GIOW20] and independently by Du and Zhang) when the cells are spread-out.

Let us briefly explain the refined Wolff’s hairbrush estimate. Let 𝒯\mathcal{T} be a set of δ\delta-tubes that has less than m1m\geq 1 tubes in each δ\delta-separated direction. A shading Y:𝒯3Y:\mathcal{T}\rightarrow\mathbb{R}^{3} is a map such that Y(T)TY(T)\subset T. Suppose |Y(T)|/|T|λ|Y(T)|/|T|\sim\lambda for each T𝒯T\in\mathcal{T}. The refined Wolff’s hairbrush estimate says that if the shading on each tube is “two-ends”, then for a typical point in Y(T)\bigcup Y(T), the multiplicity is λ1δ1/2m\lessapprox\lambda^{-1}\delta^{-1/2}m, improving upon Wolff’s original bound λ3/2δ1/2m.\lessapprox\lambda^{-3/2}\delta^{-1/2}m.

Our proof is based on the framework built in [Wan22]. Morally speaking, after polynomial partitioning, the cells are organized into a collection of fat surfaces SS, which is the r1/2r^{1/2}–neighborhood of a (low degree) algebraic surface intersecting a ball of radius rr, for some 1rR.1\leq r\leq R.

If rR1/2r\leq R^{1/2}, then it is already proved in [Wan22] that the restriction estimate holds for p>3.20p>3.20, which is better than what we currently prove.

If R1/2<r<R2/3R^{1/2}<r<R^{2/3}, then we observe that the wave packets of EfEf need to be “sticky”, otherwise we can obtain improved “broom estimate”. Here “sticky” means that the wave packets pointing in nearby directions (within an r1/2r^{-1/2}-directional cap) are contained in a small number of parallel Rr1/2Rr^{-1/2}-tubes. In this case, we apply the aforementioned refined hairbrush bound to the set of Rr1/2Rr^{-1/2}-tubes and conclude that the number of those tubes through each SS is small, which is an improvement over the polynomial Wolff axiom.

The case when rR2/3r\geq R^{2/3} is more involved. Roughly speaking, if the cells (who have a small diameter RO(δ)R^{O(\delta)}) are spread-out among many R1/2R^{1/2}-balls, then we apply refined decoupling estimate. Otherwise, we apply the bilinear restriction estimate locally and then use a square function to control all local contributions. The square function will further be estimated using the refined hairbrush bound.

Organization of the paper. The paper is organized as the following: Section 2 contains several technical results, for instance, pruning of wave packets, a refined Wolff’s hairbrush estimate. We also review the polynomial partitioning in this section. Section 3 and 4 contains some quantitative two-ends reductions. In Section 5 we deal with the case rR2/3r\leq R^{2/3} and the case rR2/3r\geq R^{2/3} is discussed in Section 6.

Acknowledgement. We would like to thank Larry Guth and Ruixiang Zhang for helpful discussions on Lemma 2.6. The second author would like to thank Xiaochun Li for discussions about Lemma 2.8, and would like to thank Nets Katz for discussions about Lemma 2.11.

Notations:

\bullet We normalize f2=1\|f\|_{2}=1 in the whole paper.

\bullet We use d(θ)d(\theta^{\prime}) to denote the diameter of a small ball θ\theta^{\prime} in 2\mathbb{R}^{2} (or a small cap θ\theta^{\prime} on the paraboloid). Sometimes when we say θ\theta^{\prime} is a “scale-rr” directional cap, we mean d(θ)=r1/2d(\theta^{\prime})=r^{-1/2}. Denote by Θ[r]\Theta[r] the collection of scale-rr directional caps. The letter θ\theta is reserved for R1/2R^{-1/2}-balls (scale-RR directional caps).

\bullet We write ABA\lessapprox B if ACβRβBA\leq C_{\beta}R^{\beta}B for all small β>0\beta>0.

\bullet We write A=Ω(B)A=\Omega(B) if AcBA\geq cB for some absolute constant c>0c>0.

\bullet Let Rel{=,,,,}\text{Rel}\in\{=,\sim,\leq,\lesssim,\lessapprox\} be a binary relation. To avoid abundant notations that handle rapidly decreasing terms, if a(R),ba(R),b are two real numbers, then in this paper a(R)Relba(R)~{}\text{Rel}~{}b may occasionally (when Schwartz tails appear) mean

(1.5) a(R)Rel(b+CηRη)for all R1 and η>0.a(R)~{}\text{Rel}~{}(b+C_{\eta}R^{-\eta})\;\;\text{for all $R\geq 1$ and $\eta>0$}.

\bullet For a set 𝒬\mathcal{Q} we define 𝒬=Q𝒬Q\bigcup_{\mathcal{Q}}=\bigcup_{Q\in\mathcal{Q}}Q.

\bullet Here are some numerical factors we will use in the paper: dd is a large constant depending on ε\varepsilon, δ=ε3\delta=\varepsilon^{3}, ε0=ε10\varepsilon_{0}=\varepsilon^{10}, ε0=ε15\varepsilon_{0}^{\prime}=\varepsilon^{15}.

2. Preliminary tools and lemmas

2.1. Wave packet and its pruning

The scale-RR wave packet decomposition is

(2.1) f=θfθ=θ(ψθf)=θ,v(ηv)(ψθf),f=\sum_{\theta}f_{\theta}=\sum_{\theta}(\psi_{\theta}f)=\sum_{\theta,v}(\eta_{v})^{\vee}\ast(\psi_{\theta}f),

where {θ}\{\theta\} is a collection of finitely overlapping R1/2R^{-1/2}-balls in B2(0,1)B^{2}(0,1) and ψθ\psi_{\theta} is a bump function associated to θ\theta; vR1+δ22v\in R^{\frac{1+\delta}{2}}\mathbb{Z}^{2} and {ηv}\{\eta_{v}\} is a smooth partition of unity of 2\mathbb{R}^{2} with compact Fourier support. Such wave packet decomposition can be found in [Wan22] Section 2 (see also [Gut16] Section 2).

Here is a key feature of wave packets: Given a function ff in n\mathbb{R}^{n}, if f^\widehat{f} is supported in on a unit ball, then |f|𝟏B|f|{\bf{1}}_{B} is essentially constant (in the sense of averaging) for any unit ball BnB\subset\mathbb{R}^{n}. That is, one would expect f𝟏Bpf𝟏B\|f{\bf{1}}_{B}\|_{p}\approx\|f{\bf{1}}_{B}\|_{\infty} for any 1p1\leq p\leq\infty (see for instance, [Wan22] Lemma 2.6, 2.7). This leads to the following observation: |Efθ𝟏T||Ef_{\theta}{\bf{1}}_{T}| is essentially constant on every scale-RR tube TT in the form

(2.2) T={x=(x,x3)BR:|x+2x3cθ+v|R1/2+δ},T=\{x=(x^{\prime},x_{3})\in B_{R}:|x^{\prime}+2x_{3}c_{\theta}+v|\leq R^{1/2+\delta}\},

where cθc_{\theta} is the center of θ\theta, and vv is any point in 2\mathbb{R}^{2} (for example, vR1+δ22v\in R^{\frac{1+\delta}{2}}\mathbb{Z}^{2}).

What follows is a pruning of scale-RR wave packets of the function ff. Let us introduce Oε(1)O_{\varepsilon}(1) scales:

(2.3) ρ1=R1/2+δ,ρ2=R1/2+2δ,,ρ=R\rho_{1}=R^{1/2+\delta},\rho_{2}=R^{1/2+2\delta},\ldots,\rho_{\ell}=R

with 1/(2δ)=Oε(1)\ell\sim 1/(2\delta)=O_{\varepsilon}(1). The pruning of ff will be proceeded from the smallest scale ρ1\rho_{1} to the biggest scale ρ\rho_{\ell}. First let us prune wave packets at the smallest scale ρ1=R1/2+δ\rho_{1}=R^{1/2+\delta}. By dyadic pigeonholing, we can find a dyadic number λ1\lambda_{1} so that

  1. (1)

    There is a corresponding scale-RR directional set Θλ1[R]\Theta_{\lambda_{1}}[R], and for each θΘλ1[R]\theta\in\Theta_{\lambda_{1}}[R], a scale-RR tube set 𝕋λ1,θ[R]\mathbb{T}_{\lambda_{1},\theta}[R]. Denote also 𝕋λ1[R]=θ𝕋λ1,θ[R]\mathbb{T}_{\lambda_{1}}[R]=\bigcup_{\theta}\mathbb{T}_{\lambda_{1},\theta}[R].

  2. (2)

    Uniformly for each θΘλ1[R]\theta\in\Theta_{\lambda_{1}}[R],

    (2.4) |𝕋λ1,θ[R]|λ1.|\mathbb{T}_{\lambda_{1},\theta}[R]|\sim\lambda_{1}.
  3. (3)

    For each T𝕋λ1[R]T\in\mathbb{T}_{\lambda_{1}}[R], fT2\|f_{T}\|_{2} are about the same up to a constant multiple.

  4. (4)

    The LpL^{p} norm of the sum of wave packets T𝕋λ1EfT\sum_{T\in\mathbb{T}_{\lambda_{1}}}Ef_{T} dominates the LpL^{p} norm of EfEf, in the sense that T𝕋λ1[R]EfTLp(BR)EfLp(BR)\|\sum_{T\in\mathbb{T}_{\lambda_{1}}[R]}Ef_{T}\|_{L^{p}(B_{R})}\gtrapprox\|Ef\|_{L^{p}(B_{R})}.

Define fρ1=T𝕋λ1[R]fTf_{\rho_{1}}=\sum_{T\in\mathbb{T}_{\lambda_{1}}[R]}f_{T} be the pruned function at the smallest scale ρ1\rho_{1}. This is the pruning at the first step.

Next, suppose there is a pruned function fρj1f_{\rho_{j-1}} at scale ρj1\rho_{j-1}, we would like to prune it at scale ρj\rho_{j}. By dyadic pigeonholing, there are dyadic numbers κ1=κ1(j),κ2=κ2(j)\kappa_{1}=\kappa_{1}(j),\kappa_{2}=\kappa_{2}(j), and a collection of ρj×ρj×R\rho_{j}\times\rho_{j}\times R fat tubes 𝒯~[ρj]\widetilde{\mathcal{T}}[\rho_{j}] so that

  1. (1)

    Any two T~1,T~2𝒯~[ρj]\widetilde{T}_{1},\widetilde{T}_{2}\in\widetilde{\mathcal{T}}[\rho_{j}] either are parallel, or make an angle ρj/R\gtrsim\rho_{j}/R.

  2. (2)

    Each T~𝒯~[ρj]\widetilde{T}\in\widetilde{\mathcal{T}}[\rho_{j}] contains κ1\sim\kappa_{1} many ρj1×ρj1×R\rho_{j-1}\times\rho_{j-1}\times R fat tubes in 𝒯~[ρj1]\widetilde{\mathcal{T}}[\rho_{j-1}].

  3. (3)

    For each directional cap θ\theta^{\prime} with d(θ)=ρj/R1+δd(\theta^{\prime})=\rho_{j}/R^{1+\delta}, there are either κ2\sim\kappa_{2} parallel ρj×ρj×R\rho_{j}\times\rho_{j}\times R fat tubes pointing to this direction, or no tubes at all.

  4. (4)

    The above two items imply that for any T~𝒯~[ρj]\widetilde{T}\in\widetilde{\mathcal{T}}[\rho_{j}] with direction θ\theta^{\prime},

    (2.5) TT~fT22κ21fθ22.\sum_{T\subset\widetilde{T}}\|f_{T}\|_{2}^{2}\lesssim\kappa_{2}^{-1}\|f_{\theta^{\prime}}\|_{2}^{2}.
  5. (5)

    TT~𝒯~[ρj]EfTLp(BR)EfLp(BR)\|\sum_{T\subset\bigcup_{\widetilde{T}\in\widetilde{\mathcal{T}}[\rho_{j}]}}Ef_{T}\|_{L^{p}(B_{R})}\gtrapprox\|Ef\|_{L^{p}(B_{R})}.

Define fρj=TT~𝒯~[ρj]fTf_{\rho_{j}}=\sum_{T\subset\bigcup_{\widetilde{T}\in\widetilde{\mathcal{T}}[\rho_{j}]}}f_{T} be the pruned function at scale ρj\rho_{j}. We remark that although the pruning at scale ρj\rho_{j} may destroy some uniform structure at scale ρj\rho_{j^{\prime}} with j<jj^{\prime}<j (for example, the fact that at scale ρj\rho_{j^{\prime}} there are κ2(j)\sim\kappa_{2}(j^{\prime}) parallel ρj×ρj×R\rho_{j^{\prime}}\times\rho_{j^{\prime}}\times R fat tubes may no longer be true. Instead, there will be κ2(j)\lesssim\kappa_{2}(j^{\prime}) parallel fat tubes), the upper bound estimate (2.5) still remains true for all j<jj^{\prime}<j, namely, TT~fT22κ2(j)1fθ22\sum_{T\subset\widetilde{T}}\|f_{T}\|_{2}^{2}\lesssim\kappa_{2}(j^{\prime})^{-1}\|f_{\theta^{\prime}}\|_{2}^{2} for every θ\theta^{\prime} with d(θ)=ρj/R1+δd(\theta^{\prime})=\rho_{j^{\prime}}/R^{1+\delta} and every fat tube T~𝒯~[ρj]\widetilde{T}\in\widetilde{\mathcal{T}}[\rho_{j^{\prime}}] that points to θ\theta^{\prime}.

The pruned function fρlf_{\rho_{l}} at the biggest scale ρ\rho_{\ell} is the one we will carefully study in the rest of the paper. For simplicity, we still denote f=fρlf=f_{\rho_{l}} by an abuse of notation. Let us emphasize some properties of the new ff:

  1. (1)

    For each scale ρj\rho_{j} in (2.3) the following is true: For each ρj/R1+δ\rho_{j}/R^{1+\delta} directional cap θ\theta^{\prime}, there are κ2\lesssim\kappa_{2} parallel ρj×ρj×R\rho_{j}\times\rho_{j}\times R fat tubes T~\widetilde{T}, each of which contains the same amount (up to a constant multiple) of thin tubes from 𝕋λ1[R]\mathbb{T}_{\lambda_{1}}[R], where 𝕋λ1[R]\mathbb{T}_{\lambda_{1}}[R] was defined near (2.4).

  2. (2)

    We have for each ρj/R1+δ\rho_{j}/R^{1+\delta} directional cap θ\theta^{\prime} and κ2=κ2(j)\kappa_{2}=\kappa_{2}(j),

    (2.6) TT~fT22κ21fθ22.\sum_{T\subset\widetilde{T}}\|f_{T}\|_{2}^{2}\lesssim\kappa_{2}^{-1}\|f_{\theta^{\prime}}\|_{2}^{2}.

2.2. Broad-narrow reduction

The broad-narrow reduction was introduced in [BG11]. Specifically, partition the unit ball B2(0,1)B^{2}(0,1) into cubes {τ}\{\tau\} such that d(τ)=K1d(\tau)=K^{-1}, where KK is a large number but is also small compared to RR, for example, K=(logR)100ε100K=(\log R)^{100\varepsilon^{-100}}. Here is the formal definition of broadness (2-broad).

Definition 2.1 ([Gut16]).

Given A1A\geq 1 and any x3x\in\mathbb{R}^{3}, we define BrAEf(x){\rm{Br}}_{A}Ef(x) as the [A]+1[A]+1 largest number in {|Efτ(x)|}τ\{|Ef_{\tau}(x)|\}_{\tau}. That is,

(2.7) BrAEf(x):=minτ1,,τAmaxττk,1k[A]|Efτ(x)|.{\rm{Br}}_{A}Ef(x):=\min_{\tau_{1},\ldots,\tau_{A}}\max_{\begin{subarray}{c}\tau\not=\tau_{k},\\ 1\leq k\leq[A]\end{subarray}}|Ef_{\tau}(x)|.

Eventually we will choose AKεA\leq K^{\varepsilon}. Roughly speaking, the broad-narrow reduction allows us to focus on those points x3x\in\mathbb{R}^{3} where considerably many {Efτ(x)}τ\{Ef_{\tau}(x)\}_{\tau} make major contribution to Ef(x)Ef(x). A similar definition is given in [Wan22] Section 2.2. After the broad-narrow reduction (see for instance [Gut16]), we only need to consider the BLp\textup{BL}^{p}-norm EfBLp(BR)p:=BrAEfLp(BR)p\|Ef\|_{\textup{BL}^{p}(B_{R})}^{p}:=\|{\rm{Br}}_{A}Ef\|_{L^{p}(B_{R})}^{p}.

Remark 2.2.

The BLp\textup{BL}^{p}-norm given here is slightly different from the one in [Wan22], but for our purpose they are the same. Some properties of the BLp\textup{BL}^{p}-norm can be found in [Wan22] Section 2.

2.3. Polynomial partitioning

Let us recall the polynomial partitioning introduced in [Gut16]. One can use Corollary 1.7 in [Gut16] with a given degree dd to partition the measure μEf(BR)=EfBLp(BR)p\mu_{Ef}(B_{R})=\|Ef\|_{\textup{BL}^{p}(B_{R})}^{p}. The outcomes are

  1. (1)

    A polynomial PP of degree d\sim d.

  2. (2)

    A collection of disjoint cells 𝒰={U}\mathcal{U}=\{U\} with |𝒰|d3|\mathcal{U}|\sim d^{3} such that

    (2.8) BRZ(Q)=U𝒰U.B_{R}\setminus Z(Q)=\bigcup_{U\in\mathcal{U}}U.
  3. (3)

    μEf(U)=EfBLp(U)p\mu_{Ef}(U)=\|Ef\|_{\textup{BL}^{p}(U)}^{p} are about the same up to a constant multiple for all U𝒰U\in\mathcal{U}.

  4. (4)

    We can refined the polynomial partitioning a little bit to get an extra information on each U𝒰U\in\mathcal{U}: UU is contained in an Rd1Rd^{-1}-ball in BRB_{R}. This refinement was obtained in [Wan22].

Now we introduce a wall WW, which is a thin neighborhood of the variety Z(Q)Z(Q):

(2.9) W:=NR1/2+δ(Z(Q)).W:=N_{R^{1/2+\delta}}(Z(Q)).

Define for each U𝒰U\in\mathcal{U} a smaller cell O=UWO=U\setminus W and let 𝒪={O}\mathcal{O}=\{O\}. One advantage for looking at the smaller cell OO is that any tube of dimensions R1/2+δ×R1/2+δ×RR^{1/2+\delta}\times R^{1/2+\delta}\times R can only intersect at most O(d)O(d) cells in 𝒪\mathcal{O}.

The decomposition above leads to a partition

(2.10) BR=W(O𝒪O)B_{R}=W\bigsqcup\Big{(}\bigsqcup_{O\in\mathcal{O}}O\Big{)}

and hence an estimate

(2.11) EfBLp(BR)pO𝒪EfBLp(O)p+EfBLp(W)p.\|Ef\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim\sum_{O\in\mathcal{O}}\|Ef\|_{\textup{BL}^{p}(O)}^{p}+\|Ef\|_{\textup{BL}^{p}(W)}^{p}.

If the first term in (2.11) dominates, then we say “we are in the cellular case”. Let fOf_{O} be the sum of wave packets that intersect OO. A crucial fact is

(2.12) EfO(x)=Ef(x),xO.Ef_{O}(x)=Ef(x),\hskip 14.22636ptx\in O.

This yields, supposing that we are in the cellular case,

(2.13) EfBLp(BR)pO𝒪EfOBLp(O)p.\|Ef\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim\sum_{O\in\mathcal{O}}\|Ef_{O}\|_{\textup{BL}^{p}(O)}^{p}.

If the second term in (2.11) dominates, then we say “we are in the algebraic case”. In this case we will divide wave packets into a transversal part and a tangential part. Introduce a collection of R1δR^{1-\delta}-balls BB in BRB_{R}. For each BB, we define SS as the portion of the wall inside BB:

(2.14) S=WB,S=W\cap B,

and call it an “algebraic fat surface”. Then we define a tangential function fSf_{S} and a transverse function fS,transf_{S,trans} for each BB. Roughly speaking, the tangential function fSf_{S} contains all the wave packets fTf_{T} that the RR-tube TT is R1/2+2δR^{-1/2+2\delta}-tangent to Z(Q)Z(Q) at each point of Z(Q)BZ(Q)\cap B, and the transverse function fS,transf_{S,trans} contains all the remaining wave packet. Here is the formal definition of tangential tubes:

Definition 2.3 ([Gut16], Definition 3.3).

The collection of tangential tubes 𝕋S\mathbb{T}_{S} is the set of tubes TT obeying the following two conditions:

  1. \bullet

    TST\cap S\not=\varnothing.

  2. \bullet

    If zz is any non-singular point of Z(P)Z(P) lying in 2B10T2B\cap 10T, then

    (2.15) |Angle(v(T),TzZ(P))|R1/2+2δ.|{\rm Angle}(v(T),T_{z}Z(P))|\leq R^{-1/2+2\delta}.

Hence inside SS we have

(2.16) f=fS+fS,trans,f=f_{S}+f_{S,trans},

which gives that for xSx\in S,

(2.17) Ef(x)=EfS,trans(x)+EfS(x).Ef(x)=Ef_{S,trans}(x)+Ef_{S}(x).

One can iteratively use the polynomial partitioning above for either cellular case and algebraic case to obtain a “tree” structure.111We do not break the algebraic case into transverse case and tangent case when performing the iteration. This is different from the iteration (induction) given in [Gut16]. Each node of this tree is either a cellular cell or an algebraic cell. Note that in either cellular or algebraic case, the diameter of each resulting cell is strictly decreasing (decrease by either 1/d1/d or RδR^{-\delta}). The iteration will stop when the diameter of each cell is smaller than RδR^{\delta}. A cell that appears the last step of the iteration is called a “leaf”. Here is a summary of this iteration:

Lemma 2.4 ([Wan22] Lemma 3.3).

For a function ff supported in B2(0,1)B^{2}(0,1), there is a tree structure 𝒪tree\mathcal{O}_{\text{tree}} of height JlogR/loglogRJ\lesssim\log R/\log\log R satisfying the followings:

  1. (1)

    The root of the tree 𝒪tree\mathcal{O}_{\text{tree}} is O0=BRO_{0}=B_{R}.

  2. (2)

    For each 0jJ10\leq j\leq J-1, the children of a node OjO_{j} of depth jj are some subsets Oj+1O_{j+1} of OjO_{j}, and each Oj+1O_{j+1} lies in a ball BOj+1B_{O_{j+1}} of radius Rj+1Rj/dR_{j+1}\leq R_{j}/d. The radius Rj+1R_{j+1} is called the scale of Oj+1O_{j+1}, and the radii Rj+1R_{j+1} are the same for all Oj+1O_{j+1} of depth j+1j+1. Moreover, there is a collection of Rj+1R_{j+1}-tubes 𝕋Oj+1\mathbb{T}_{O_{j+1}} associated to each Oj+1O_{j+1}.

  3. (3)

    There is a number nδ2n\leq\delta^{-2} and indices 0=j0<j1<<jnJ0=j_{0}<j_{1}<\cdots<j_{n}\leq J such that each node OjtO_{j_{t}} of depth jt,1tnj_{t},1\leq t\leq n is a portion of a fat Rjt1R_{j_{t}-1}-surface, and Rjt=Rjt11δR_{j_{t}}=R_{j_{t}-1}^{1-\delta}. Here by a fat rr-surface we mean a thin neighborhood Nr1/2+δZSBSN_{r^{1/2+\delta}}Z_{S}\cap B_{S}, where ZSZ_{S} is a union of smooth algebraic surfaces with degZSd\deg Z_{S}\leq d, and BSB_{S} is an r1δr^{1-\delta}-ball. To emphasis that OjtO_{j_{t}} is a portion of a fat surface, we denote St=OjtS_{t}=O_{j_{t}} and let 𝒮t\mathcal{S}_{t} be the collection of all StS_{t}.

  4. (4)

    The sets {NRjt11/2+δ(St)}St𝒮t\{N_{R_{j_{t}-1}^{1/2+\delta}}(S_{t})\}_{S_{t}\in\mathcal{S}_{t}} are finitely overlapping.

  5. (5)

    Let T(j)=max{t:jtj}T(j)=\max\{t:j_{t}\leq j\}. For each 1jJ1\leq j\leq J we have

    (2.18) EfBLp(Oj)pd3(jT(j))EfBLp(BR)p\|Ef\|_{\textup{BL}^{p}(O_{j})}^{p}\lesssim d^{-3(j-T(j))}\|Ef\|_{\textup{BL}^{p}(B_{R})}^{p}

    as well as

    (2.19) EfBLp(BR)p2j(logR)T(j)Oj𝒪treeEfBLp(Oj)p,\|Ef\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim 2^{j}(\log R)^{T(j)}\sum_{O_{j}\in\mathcal{O}_{\text{tree}}}\|Ef\|_{\textup{BL}^{p}(O_{j})}^{p},

    where the sum Oj𝒪tree\sum_{O_{j}\in\mathcal{O}_{\text{tree}}} is over all nodes in the tree 𝒪tree\mathcal{O}_{\text{tree}} of depth jj.

  6. (6)

    If jjtj\not=j_{t}, then for each node Oj1O_{j-1} of depth j1j-1, a Rj1R_{j-1}-tube T𝕋Oj1T\in\mathbb{T}_{O_{j-1}} intersects d\lesssim d children OjO_{j} of Oj1O_{j-1}.

  7. (7)

    Denote by 𝒪leaf\mathcal{O}_{leaf} the collection of leaves in the tree 𝒪tree\mathcal{O}_{tree}. Then all sets in 𝒪leaf\mathcal{O}_{leaf} are disjoint.

The algebraic cases in the iteration are very important to us. Note that for a leaf O𝒪leafO^{\prime}\in\mathcal{O}_{leaf}, there are nn unique algebraic fat surfaces S1,S2,,SnS_{1},S_{2},\ldots,S_{n}, so that OO^{\prime} is within a containing chain

(2.20) OSnSn1S1BR.O^{\prime}\subset S_{n}\subset S_{n-1}\subset\cdots\subset S_{1}\subset B_{R}.

Besides the outcomes from Lemma 2.4, we are in particular interested in some pointwise estimates similar to (2.12) and (2.17). Note that for any 1jn1\leq j\leq n and any ancestor OjO_{j} of SjS_{j} that SjOjSj1S_{j}\subset O_{j}\subset S_{j-1}, by (2.12) one has

(2.21) EfOj(x)=EfSj1,trans(x),xOj.Ef_{O_{j}}(x)=Ef_{S_{j-1},trans}(x),\hskip 14.22636ptx\in O_{j}.

Here we use the convention S0=BRS_{0}=B_{R} and fS0=ff_{S_{0}}=f.

We know that fOjf_{O_{j}} is essentially a sum of scale-rjr_{j} (rjr_{j} is the scale of OjO_{j}) wave packets, which are determined by tubes from, say 𝕋Oj\mathbb{T}_{O_{j}}. The dimensions of the tubes in 𝕋Oj\mathbb{T}_{O_{j}} are roughly rj1/2×rj1/2×rjr_{j}^{1/2}\times r_{j}^{1/2}\times r_{j}. For any subcollection 𝕋𝕋Oj\mathbb{T}\subset\mathbb{T}_{O_{j}}, define f𝕋f^{\mathbb{T}} as the function concentrated on wave packets from 𝕋\mathbb{T}. Recall (2.17). The pointwise equality (2.21) further yields that

(2.22) EfOj𝕋(x)=Ef𝕋(x)(l=1j1EfSl𝕋(x)),xOj.Ef_{O_{j}}^{\mathbb{T}}(x)=Ef^{\mathbb{T}}(x)-\Big{(}\sum_{l=1}^{j-1}Ef_{S_{l}}^{\mathbb{T}}(x)\Big{)},\hskip 14.22636ptx\in O_{j}.

If all EfSl𝕋(x)Ef_{S_{l}}^{\mathbb{T}}(x) are small, then similar to (2.12) we also have EfOj𝕋(x)Ef𝕋(x)Ef_{O_{j}}^{\mathbb{T}}(x)\sim Ef^{\mathbb{T}}(x). To find out when EfSl𝕋(x)Ef_{S_{l}}^{\mathbb{T}}(x) are small, we want to compare EfSl𝕋Ef_{S_{l}}^{\mathbb{T}} with EfSlEf_{S_{l}}. It is hard to get something meaningful for general 𝕋\mathbb{T}, while if 𝕋\mathbb{T} is either a collection of transverse tubes or a collection of tangent tubes with respect to an algebraic fat surface S~\widetilde{S}, it was showed in [Wan22] Lemma 10.2 that

(2.23) |EfSl𝕋(x)||EfSl(x)||Ef_{S_{l}}^{\mathbb{T}}(x)|\lesssim|Ef_{S_{l}}(x)|

for any xOjS~x\in O_{j}\cap\widetilde{S}.

This crucial fact gives that for any fat surface StS_{t} and BKStB_{K}\subset S_{t} (see Definition 2.1 for KK), if EfSlBLp(BK)RΩ(δ)EfStBLp(BK)\|Ef_{S_{l}}\|_{\textup{BL}^{p}(B_{K})}\lessapprox R^{-\Omega(\delta)}\|Ef_{S_{t}}\|_{\textup{BL}^{p}(B_{K})} for all 1l<t1\leq l<t, then

(2.24) EfStBLp(BK)Ef𝕋StBLp(BK),\|Ef_{S_{t}}\|_{\textup{BL}^{p}(B_{K})}\sim\|Ef^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(B_{K})},

where 𝕋St\mathbb{T}_{S_{t}} is the collection of tangent tube corresponding to the algebraic fat surface StS_{t} (note that EfSt=EfSt𝕋StEf_{S_{t}}=Ef_{S_{t}}^{\mathbb{T}_{S_{t}}} and see also Lemma 3.10 in [Wan22]). We remark that (2.23) and (2.24) also hold for ff replaced by gg, where gg is a function similar to ff that will be given later in (4.6).

Remark 2.5.

The notations here are slightly different from the notations in [Wan22] (in particular, Lemma 3.7 in [Wan22]). We continue to use fSf_{S} to denote the tangential function one obtained for the fat surface SS in polynomial partitioning iteration. While f𝕋Sf^{\mathbb{T}_{S}} means fΠSf_{\Pi_{S}} in [Wan22], which essentially refers to restricting the original function ff to the wave packets from 𝕋S\mathbb{T}_{S}.

We know by definition that tubes from 𝕋S\mathbb{T}_{S} are contained in the fat surface SS with some scale rr. While more is true because we are looking at the broad norm BLp(S)\textup{BL}^{p}(S) on SS. Roughly speaking, the following lemma allows us to assume that tubes in 𝕋S\mathbb{T}_{S} are contained in the r1/2+O(δ)r^{1/2+O(\delta)}-neighborhood of rO(δ)r^{O(\delta)} planes.

Lemma 2.6.

There exist a collection of rO(δ)\lesssim r^{O(\delta)} planes 𝒫\mathcal{P} so that if we let 𝕋S,𝒫𝕋S\mathbb{T}_{S,\mathcal{P}}\subset\mathbb{T}_{S} be the subcollection that each rr-tube T𝕋S,𝒫T\in\mathbb{T}_{S,\mathcal{P}} is contained in the r1/2+O(δ)r^{1/2+O(\delta)}-neighborhood of some planes in 𝒫\mathcal{P}, then

(2.25) Ef𝕋SBLp(S)Ef𝕋S,𝒫BLp(S).\|Ef^{\mathbb{T}_{S}}\|_{\textup{BL}^{p}(S)}\lesssim\|Ef^{\mathbb{T}_{S,\mathcal{P}}}\|_{\textup{BL}^{p}(S)}.
Proof.

Recall that SSZ=Nr1/2+δ(ZS)BSS\subset S_{Z}=N_{r^{1/2+\delta}}(Z_{S})\cap B_{S}, where ZSZ_{S} is a finite union of transverse complete intersections, each of which has degree at most dd, and BSB_{S} is an r1δr^{1-\delta}-ball containing SS. Partition SS into finitely overlapping r1/2+δr^{1/2+\delta}-balls 𝐪={q}{\bf q}=\{q\}. Denote by 𝕋S,q\mathbb{T}_{S,q} the subcollection of tubes in 𝕋S\mathbb{T}_{S} that intersects qq:

(2.26) 𝕋S,q={T𝕋S,5Tq}.\mathbb{T}_{S,q}=\{T^{\prime}\in\mathbb{T}_{S},5T^{\prime}\cap q\not=\varnothing\}.

By Definition 2.3, there is a plane ZqZ_{q} so that tubes in 𝕋S,q\mathbb{T}_{S,q} are all contained in a fat plane Pq:=Nr1/2+2δ(Zq)P_{q}:=N_{r^{1/2+2\delta}}(Z_{q}). We are interested in the intersection SZPqS_{Z}\cap P_{q}. Our (heuristic) goal is to prove the following dichotomy: either Ef𝕋SBLp(q)=0\|Ef^{\mathbb{T}_{S}}\|_{\textup{BL}^{p}(q)}=0, or |SZPq|K|Nr1/2+δ(Zq)BS|r5/2δ|S_{Z}\cap P_{q}|\gtrsim_{K}|N_{r^{1/2+\delta}}(Z_{q})\cap B_{S}|\sim r^{5/2-\delta} (see Definition 2.7 for KK). Note that the latter case cannot happen for too many almost distinct PqP_{q}. Otherwise it would violate |SZ|dr5/2δ|S_{Z}|\lesssim dr^{5/2-\delta}, which is given by Wongkew’s theorem.

Let zZqqz\in Z_{q}\cap q be a point. After rotation and translation, let us assume that zz is the origin and ZqZ_{q} is the vertical plane Σ={x1=0}\Sigma=\{x_{1}=0\}. The following set parameterizes a r1/2+δr^{1/2+\delta}-tube whose center is 𝐚{\bf a} and direction is 𝐝{\bf d}:

T𝐚,𝐝={(𝐱,t)2×[0,cr1δ]:|𝐱𝐚t𝐝|r1/2+δ},(𝐚,𝐝)[0,r1/2+δ]2×[0,4]2.T_{{\bf a},{\bf d}}=\{({\bf x},t)\in\mathbb{R}^{2}\times[0,cr^{1-\delta}]:|{\bf x}-{\bf a}-t{\bf d}|\leq r^{1/2+\delta}\},\,\,({\bf a},{\bf d})\in[0,r^{1/2+\delta}]^{2}\times[0,4]^{2}.

Here cc is a small absolute number (for example, cc=1/100). By some appropriate rigid transform, we can assume that all tubes from 𝕋S\mathbb{T}_{S} have a parameterization T𝐚,𝐝T_{{\bf a},{\bf d}}. Consider the set (Nr1/2+3δ(Σ)[0,4]2N_{r^{-1/2+3\delta}}(\Sigma)\cap[0,4]^{2} is roughly a 1×r1/2+3δ1\times r^{-1/2+3\delta}-tube in 2\mathbb{R}^{2})

(2.27) LS:={(𝐚,𝐝)[0,r1/2+δ]2×(Nr1/2+3δ(Σ)[0,4]2):(0,0)T𝐚,𝐝SZ}.L_{S}:=\{({\bf a},{\bf d})\in[0,r^{1/2+\delta}]^{2}\times(N_{r^{-1/2+3\delta}}(\Sigma)\cap[0,4]^{2}):(0,0)\in T_{{\bf a},{\bf d}}\subset S_{Z}\}.

This set basically contains the union of tubes in SZS_{Z} that intersect (0,0)(0,0) and is R1/2+2δR^{-1/2+2\delta}-tangent to the vertical plane Σ\Sigma (LSL_{S} is morally SZPqS_{Z}\cap P_{q}).

Denote Ξ1,Ξ2\Xi_{1},\Xi_{2} the parameter spaces

(2.28) Ξ1=[0,r1/2+δ]2×(Nr1/2+3δ(Σ)[0,4]2),Ξ2=2×[0,cr1δ].\Xi_{1}=[0,r^{1/2+\delta}]^{2}\times(N_{r^{-1/2+3\delta}}(\Sigma)\cap[0,4]^{2}),\hskip 8.5359pt\Xi_{2}=\mathbb{R}^{2}\times[0,cr^{1-\delta}].

We claim that LSL_{S} is semialgebraic with complexity at most Od(1)O_{d}(1). In fact, if consider the following two sets

(2.29) Y1={(𝐚,𝐝,𝐱,t)Ξ1×Ξ2:(𝐱,t)SZ,(𝐱,t)T𝐚,𝐝}Y_{1}=\{({\bf a},{\bf d},{\bf x},t)\in\Xi_{1}\times\Xi_{2}:({\bf x},t)\not\in S_{Z},({\bf x},t)\in T_{{\bf a},{\bf d}}\}

and

(2.30) Y2={(𝐚,𝐝,𝐱,t)Ξ1×Ξ2:(0,0)T𝐚,𝐝},Y_{2}=\{({\bf a},{\bf d},{\bf x},t)\in\Xi_{1}\times\Xi_{2}:(0,0)\not\in T_{{\bf a},{\bf d}}\},

then LSL_{S} is the complement of Π(𝐚,𝐝)(Y1Y2)\Pi_{({\bf a},{\bf d})}(Y_{1}\cup Y_{2}) in Ξ1\Xi_{1}, where Π(𝐚,𝐝)\Pi_{({\bf a},{\bf d})} is the projection (𝐚,𝐝,𝐱,t)(𝐚,𝐝)({\bf a},{\bf d},{\bf x},t)\mapsto({\bf a},{\bf d}). By Tarski’s projection theorem (see [KR18]), Π(𝐚,𝐝)(Y1Y2)\Pi_{({\bf a},{\bf d})}(Y_{1}\cup Y_{2}) has complexity Od(1)O_{d}(1), hence so is LSL_{S}.

Let I=[0,4]I=[0,4] be the interval that parameterizes directions in the vertical plane Σ\Sigma. Consider the projection P2:(𝐚,𝐝)𝐝P_{2}:({\bf a},{\bf d})\mapsto{\bf d} and P1:[0,4]2IP_{1}:[0,4]^{2}\to I, P1((x1,x2))=x2P_{1}((x_{1},x_{2}))=x_{2}. Let P=P1P2P=P_{1}\circ P_{2}. By Tarski’s projection theorem again, the projection P(LS)P(L_{S}) is a semialgebraic set of complexity Od(1)O_{d}(1). Hence P(LS)P(L_{S}) is a union of Od(1)O_{d}(1) disjoint intervals {Ij}\{I_{j}\} (a point is an interval of length zero). Notice that if RR is large enough, then the “broad number” AA (see Definition 2.1) is much larger than the number of intervals {Ij}\{I_{j}\}.

Suppose Ef𝕋SBLp(q)0\|Ef^{\mathbb{T}_{S}}\|_{\textup{BL}^{p}(q)}\not=0. Then by the definition of BLp\textup{BL}^{p}-norm (Definition 2.1) we know that there are at least AA tubes coming from K1K^{-1}-separate directions that intersect qq, hence the origin. Since AA is larger the the number of intervals {Ij}\{I_{j}\}, there is at least one interval IjI_{j} with |Ij|K1|I_{j}|\geq K^{-1}. The pull back P1(Ij)LSPqP^{-1}(I_{j})\subset L_{S}\cap P_{q} is a union of r1/2+δ×r1/2+δ×r1δr^{1/2+\delta}\times r^{1/2+\delta}\times r^{1-\delta}-tubes rooted at qq, each of which is r1/2+2δr^{-1/2+2\delta}-tangent to the vertical plane. Hence

(2.31) r5/23δ|P1(Ij)||LSPq|.r^{5/2-3\delta}\lesssim|P^{-1}(I_{j})|\leq|L_{S}\cap P_{q}|.

Now we claim that there exists r5δr^{5\delta} planes 𝒫\mathcal{P}, each of which is some plane PqP_{q}, so that q𝐪LSPq\bigcup_{q\in{\bf q}}L_{S}\cap P_{q} is contained in the union P𝒫Nr1/2+100δ(P)\bigcup_{P\in\mathcal{P}}N_{r^{1/2+100\delta}}(P). Note that this is enough to prove our lemma.

Suppose on the contrary that q𝐪LSPq\bigcup_{q\in{\bf q}}L_{S}\cap P_{q} cannot be covered by less than r5δr^{5\delta} fat planes Nr1/2+100δ(P)N_{r^{1/2+100\delta}}(P) where P𝒫P\in\mathcal{P}. Let |𝒫|r5δ|\mathcal{P}|\sim r^{5\delta}. In particular, it means that for P,P𝒫P,P\in\mathcal{P}, (P,P)>r1/2+90δ\measuredangle(P,P^{\prime})>r^{-1/2+90\delta}. Hence

(2.32) |LS||P𝒫LSP|\displaystyle|L_{S}|\geq\Big{|}\bigcup_{P\in\mathcal{P}}L_{S}\cap P\Big{|} P𝒫|LSP|P,P|PP|\displaystyle\geq\sum_{P\in\mathcal{P}}|L_{S}\cap P|-\sum_{P,P^{\prime}}|P\cap P^{\prime}|
r5/23δ|𝒫|r1/280δ|𝒫|2r5/2+δ.\displaystyle\gtrsim r^{5/2-3\delta}|\mathcal{P}|-r^{1/2-80\delta}|\mathcal{P}|^{2}\geq r^{5/2+\delta}.

However, Wongkew’s theorem gives |LS|dr5/2δ|L_{S}|\lesssim dr^{5/2-\delta}, yielding a contradiction. ∎

2.4. Broom

As mentioned in the previous subsection, we obtain a tree after running the polynomial partitioning iteration for EfBLp(BR)p\|Ef\|_{\textup{BL}^{p}(B_{R})}^{p}. Also we have

(2.33) EfBLp(BR)pRO(δ)O𝒪leafEfBLp(O)p.\|Ef\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim R^{O(\delta)}\sum_{O^{\prime}\in\mathcal{O}_{leaf}}\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p}.

In [Wan22], a relation “\sim” between R1ε0R^{1-\varepsilon_{0}}-balls (ε0=ε10\varepsilon_{0}=\varepsilon^{10}) and RR-tubes was introduced to make use of the broom structure. Roughly speaking, a scale-RR tube TT is related to an R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k} if the wave packet EfTEf_{T} is associated to a significant amount of fat algebraic surfaces inside BkB_{k}. The formal definition of the relation is given in [Wan22] Section 6. Using this relation, for fixed BkB_{k}, we can define a related function fkf_{k}^{\sim}, which is the sum all the wave packets fTf_{T} that TT is related to BkB_{k}, and similarly for a unrelated function fk≁f_{k}^{\not\sim}. In other words, for a fixed ball BkB_{k} if we define (recall (2.4))

(2.34) 𝕋k[R]={T𝕋λ1[R]:T is related to Bk}\mathbb{T}_{k}^{\sim}[R]=\{T\in\mathbb{T}_{\lambda_{1}}[R]:T\text{ is related to }B_{k}\}

as well as

(2.35) 𝕋k≁[R]={T𝕋λ1[R]:T is not related to Bk},\mathbb{T}_{k}^{\not\sim}[R]=\{T\in\mathbb{T}_{\lambda_{1}}[R]:T\text{ is not related to }B_{k}\},

then

(2.36) fk=T𝕋k[R]fT,fk≁=T𝕋k≁[R]fT.f_{k}^{\sim}=\sum_{T\in\mathbb{T}_{k}^{\sim}[R]}f_{T},\hskip 14.22636ptf_{k}^{\not\sim}=\sum_{T\in\mathbb{T}_{k}^{\not\sim}[R]}f_{T}.

There is a broom estimate (2.37) for the unrelated function fk≁f_{k}^{\not\sim}, which roughly says that the RR-tubes rooted at a fat surface are only a small portion of all the RR-tubes with similar directions. Indeed, suppose StS_{t} is fat surface at scale Rjt=rR2/3R_{j_{t}}=r\leq R^{2/3} (see Lemma 2.4 for StS_{t} and RjtR_{j_{t}}) and 𝕋St,θ[r]𝕋St[r]\mathbb{T}_{S_{t},\theta^{\prime}}[r]\subset\mathbb{T}_{S_{t}}[r] is the collection of rr-tubes inside 𝕋St[r]\mathbb{T}_{S_{t}}[r] with direction θΘ[r]\theta^{\prime}\in\Theta[r]. Then

(2.37) E(fk≁)𝕋St,θL2(BSt)2RO(ε0)(rR)(rR)1/2EfθL2(T~St)2,\|E(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t},\theta^{\prime}}}\|_{L^{2}(B_{S_{t}})}^{2}\lesssim R^{O(\varepsilon_{0})}\Big{(}\frac{r}{R}\Big{)}\cdot\Big{(}\frac{r}{R}\Big{)}^{1/2}\|Ef_{\theta^{\prime}}\|_{L^{2}(\widetilde{T}_{S_{t}})}^{2},

where T~St\widetilde{T}_{S_{t}} is an R/r1/2×R/r1/2×RR/r^{1/2}\times R/r^{1/2}\times R fat tube containing StS_{t}, pointing to the direction θ\theta^{\prime}, and BStB_{S_{t}} is the rr-ball containing StS_{t} that we obtained from the polynomial partitioning iteration. One can compare (2.37) with the broom estimate (7.12) in [Wan22]. Note that compared to the right hand side of (7.12) in [Wan22], the right hand side of (2.37) is integrated in a smaller region T~St\widetilde{T}_{S_{t}}. This extra information is in fact given readily from the proof of Lemma 7.2 in [Wan22], since those RR-tubes TT associated to 𝕋St,θ\mathbb{T}_{S_{t},\theta^{\prime}} (that is, TTT\supset T^{\prime} for some T𝕋St,θT^{\prime}\in\mathbb{T}_{S_{t},\theta^{\prime}}, and the directional cap of TT is contained in θ\theta^{\prime}) are all contained in T~St\widetilde{T}_{S_{t}}.

Recall the wave packet pruning in Section 2.1. Suppose rR2/3r\leq R^{2/3} and suppose R/r1/2ρjR/r^{1/2}\leq\rho_{j} but R/r1/2ρj1R/r^{1/2}\geq\rho_{j-1} for some scale ρj\rho_{j} in (2.3). Then as a consequence of (2.6) and (2.37),

(2.38) E(fk≁)𝕋St,θL2(BSt)2RO(ε0+δ)(rR)3/2κ2(j)1Efθ22.\|E(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t},\theta^{\prime}}}\|_{L^{2}(B_{S_{t}})}^{2}\lesssim R^{O(\varepsilon_{0}+\delta)}\Big{(}\frac{r}{R}\Big{)}^{3/2}\kappa_{2}(j)^{-1}\|Ef_{\theta^{\prime}}\|_{2}^{2}.

Comparing (2.38) to (7.12) in [Wan22], there is an extra gain κ2(j)1\kappa_{2}(j)^{-1}.

Remark 2.7.

Let 𝕋k[R]𝕋k≁[R]\mathbb{T}_{k}^{\prime}[R]\subset\mathbb{T}_{k}^{\not\sim}[R] and fk=T𝕋k[R]fTf_{k}^{\prime}=\sum_{T\in\mathbb{T}_{k}^{\prime}[R]}f_{T}. We remark that fkf_{k}^{\prime}, the sum of a subcollection of unrelated wave packets, still satisfies the broom estimates (2.37) and (2.38) (with fk≁f_{k}^{\not\sim} replaced by fkf_{k}^{\prime}). Indeed, the broom estimate (2.37) follows from the ingredient: Suppose (fk≁)𝕋St,θ(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t},\theta^{\prime}}} is concentrated on \mathcal{B}, a broom rooted at StS_{t} containing bb scale-RR wave packets (see Definition 5.4 in [Wan22] for a broom). Then inside T~ST\widetilde{T}_{S_{T}} there are at least b2b^{2} scale-RR wave packets in 𝕋λ1[R]\mathbb{T}_{\lambda_{1}}[R] (recall (2.4)). Hence by Lemma 5.10 in [Wan22] we have (2.37).

Now since 𝕋k[R]𝕋k≁[R]\mathbb{T}_{k}^{\prime}[R]\subset\mathbb{T}_{k}^{\not\sim}[R], (fk)𝕋St,θ(f_{k}^{\prime})^{\mathbb{T}_{S_{t},\theta^{\prime}}} is concentrated on a smaller broom \mathcal{B}^{\prime}\subset\mathcal{B}. Thus by Lemma 5.10 in [Wan22] again we have the broom estimate (2.37) with fk≁f_{k}^{\not\sim} replaced by fkf_{k}^{\prime}. Similar reasoning also applies for (2.38).

In Section 3, we will introduce a new relation “𝐧\sim_{{\bf n}}” among the RR-tubes TT and the R1ε0R^{1-\varepsilon_{0}}-balls BkB_{k} based on some Kakeya structures. Eventually for each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k}, we will define an “ultimate” unrelated function—the sum of wave packets fTf_{T} that T≁BkT\not\sim B_{k} as well as T≁𝐧BkT\not\sim_{{\bf n}}B_{k}. This unrelated function enjoys both the broom estimate (2.38) (see Remark 2.7) and some additional Kakeya estimates.

2.5. A “planar” bilinear estimate

The main result in this subsection (Lemma 2.8) is essentially two-dimensional. While for our later purpose, we instead state it under the three-dimensional setting.

Suppose that ΓB3(0,1)\Gamma\subset B^{3}(0,1) is a truncated planar C2C^{2} curve with positive two-dimensional second fundamental form. Suppose also that Γ1,Γ2Γ\Gamma_{1},\Gamma_{2}\subset\Gamma are two sub-curves with dist(Γ1,Γ2)1{\rm dist}(\Gamma_{1},\Gamma_{2})\sim 1. Let RρR1/21R\gg\rho\gg R^{1/2}\gg 1 be two large numbers. The classical bilinear theory says that if g1g_{1}, g2g_{2} are two functions whose Fourier transforms are supported in NR1(Γ1)N_{R^{-1}}(\Gamma_{1}), NR1(Γ2)N_{R^{-1}}(\Gamma_{2}) respectively, then (see also (2.44))

(2.39) S|g1g2|2R2ρ1g122g222,\int_{S}|g_{1}g_{2}|^{2}\lesssim R^{-2}\rho^{-1}\|g_{1}\|_{2}^{2}\|g_{2}\|_{2}^{2},

where S=Nρ(P)BRS=N_{\rho}(P)\cap B_{R} with the plane PP being parallel to the planar curve Γ\Gamma.

Lemma 2.8.

Let g1,g2g_{1},g_{2} be defined at the beginning of this subsection, and let 𝒬\mathcal{Q} be a collection of disjoint ρ\rho-balls contained in SS (SS was introduced below (2.39)) with R1/2ρRR^{1/2}\leq\rho\leq R. Let F:𝒬+F:\mathcal{Q}\rightarrow\mathbb{R}^{+} be that F(Q)F(Q) are about the same up to a factor of RδR^{\delta} for all Q𝒬Q\in\mathcal{Q}, and that F(Q)Q|g1g2|p/2F(Q)\leq\int_{Q}|g_{1}g_{2}|^{p/2}. In addition, the decomposition of g1,g2g_{1},g_{2} in (2.42) satisfy the uniform-incidence assumption (2.43). Then

(2.40) Q𝒬F(Q)RO(δ)ρ3pRp/2|𝒬|1p/2min{|𝒬|p/4,ηp/2}g12p/2g22p/2.\sum_{Q\in\mathcal{Q}}F(Q)\lesssim R^{O(\delta)}\rho^{3-p}R^{-p/2}|\mathcal{Q}|^{1-p/2}\min\{|\mathcal{Q}|^{p/4},\eta^{p/2}\}\|g_{1}\|_{2}^{p/2}\|g_{2}\|_{2}^{p/2}.
Proof.

By Hölder’s inequality and the bilinear estimate (2.39) one has

(2.41) Q𝒬Q|g1g2|p/2\displaystyle\int_{\cup_{Q\in\mathcal{Q}}Q}|g_{1}g_{2}|^{p/2} (ρ3|𝒬|)1p/4(Q𝒬Q|g1g2|2)p/4\displaystyle\lesssim(\rho^{3}|\mathcal{Q}|)^{1-p/4}\Big{(}\int_{\cup_{Q\in\mathcal{Q}}Q}|g_{1}g_{2}|^{2}\Big{)}^{p/4}
ρ3pRp/2|𝒬|1p/4g12p/2g22p/2.\displaystyle\lesssim\rho^{3-p}R^{-p/2}|\mathcal{Q}|^{1-p/4}\|g_{1}\|_{2}^{p/2}\|g_{2}\|_{2}^{p/2}.

Estimate (2.41) is indeed sharp, unless there are some additional assumptions on the set Q𝒬Q\bigcup_{Q\in\mathcal{Q}}Q and the functions g1,g2g_{1},g_{2}.

Decompose g1,g2g_{1},g_{2} as (such decomposition can be viewed as a scale-ρ1×ρ1×R1\rho^{-1}\times\rho^{-1}\times R^{-1} wave packet decomposition of g1g_{1} and g2g_{2}. See also Section 2.1)

(2.42) g1=T𝕋1g1,T,g2=T𝕋2g2,T,g_{1}=\sum_{T\in\mathbb{T}_{1}}g_{1,T},\hskip 14.22636ptg_{2}=\sum_{T\in\mathbb{T}_{2}}g_{2,T},

where 𝕋j\mathbb{T}_{j} is a collection planar ρ×ρ×R\rho\times\rho\times R-tubes contained in S=Nρ(P)BRS=N_{\rho}(P)\cap B_{R}, and gj,T^\widehat{g_{j,T}} is supported in a ρ1×ρ1×R1\rho^{-1}\times\rho^{-1}\times R^{-1}-cap, whose shortest direction is the same as the longest direction of TT.

Suppose every T𝕋1𝕋2T\in\mathbb{T}_{1}\cup\mathbb{T}_{2} satisfies the following uniform-incidence assumption

(2.43) |{Q𝒬:QT}|η.|\{Q\in\mathcal{Q}:Q\cap T\}|\sim\eta.

Then for each Q𝒬Q\in\mathcal{Q}, by Hölder’s inequality and the Córdoba-Fefferman L4L^{4} orthogonality,

(2.44) Q|g1g2|p/2\displaystyle\int_{Q}|g_{1}g_{2}|^{p/2} ρ33p/4(Q|g1g2|2)p/4\displaystyle\lesssim\rho^{3-3p/4}\Big{(}\int_{Q}|g_{1}g_{2}|^{2}\Big{)}^{p/4}
ρ33p/4(T1𝕋1T2𝕋22Q|g1,Tg2,T|2)p/4\displaystyle\lesssim\rho^{3-3p/4}\Big{(}\sum_{T_{1}\in\mathbb{T}_{1}}\sum_{T_{2}\in\mathbb{T}_{2}}\int_{2Q}|g_{1,T}g_{2,T}|^{2}\Big{)}^{p/4}
ρ3pRp/2(T1𝕋1,T12QT2𝕋2,T22Qg1,T22g2,T22)p/4.\displaystyle\lesssim\rho^{3-p}R^{-p/2}\Big{(}\sum_{\begin{subarray}{c}T_{1}\in\mathbb{T}_{1},\\ T_{1}\cap 2Q\not=\varnothing\end{subarray}}\sum_{\begin{subarray}{c}T_{2}\in\mathbb{T}_{2},\\ T_{2}\cap 2Q\not=\varnothing\end{subarray}}\|g_{1,T}\|_{2}^{2}\|g_{2,T}\|_{2}^{2}\Big{)}^{p/4}.

Note that from the uniform-incidence assumption (2.43),

(2.45) Q𝒬(T1𝕋1,T12QT2𝕋2,T22Qg1,T22g2,T22)1/2\displaystyle\sum_{Q\in\mathcal{Q}}\Big{(}\sum_{\begin{subarray}{c}T_{1}\in\mathbb{T}_{1},\\ T_{1}\cap 2Q\not=\varnothing\end{subarray}}\sum_{\begin{subarray}{c}T_{2}\in\mathbb{T}_{2},\\ T_{2}\cap 2Q\not=\varnothing\end{subarray}}\|g_{1,T}\|_{2}^{2}\|g_{2,T}\|_{2}^{2}\Big{)}^{1/2}
\displaystyle\leq (Q𝒬T1𝕋1,T12Qg1,T22)1/2(Q𝒬T2𝕋2,T22Qg2,T22)1/2ηg12g22.\displaystyle\,\Big{(}\sum_{Q\in\mathcal{Q}}\sum_{\begin{subarray}{c}T_{1}\in\mathbb{T}_{1},\\ T_{1}\cap 2Q\not=\varnothing\end{subarray}}\|g_{1,T}\|_{2}^{2}\Big{)}^{1/2}\Big{(}\sum_{Q\in\mathcal{Q}}\sum_{\begin{subarray}{c}T_{2}\in\mathbb{T}_{2},\\ T_{2}\cap 2Q\not=\varnothing\end{subarray}}\|g_{2,T}\|_{2}^{2}\Big{)}^{1/2}\lesssim\eta\|g_{1}\|_{2}\|g_{2}\|_{2}.

Now we will make use of the assumption that F(Q)F(Q) are about the same up to a factor RδR^{\delta}. Indeed, by pigeonholing in (2.45), there is a particular QQ so that

(2.46) (T1𝕋1,T12QT2𝕋2,T22Qg1,T22g2,T22)1/2RO(δ)|𝒬|1ηg12g22.\Big{(}\sum_{\begin{subarray}{c}T_{1}\in\mathbb{T}_{1},\\ T_{1}\cap 2Q\not=\varnothing\end{subarray}}\sum_{\begin{subarray}{c}T_{2}\in\mathbb{T}_{2},\\ T_{2}\cap 2Q\not=\varnothing\end{subarray}}\|g_{1,T}\|_{2}^{2}\|g_{2,T}\|_{2}^{2}\Big{)}^{1/2}\lesssim R^{O(\delta)}|\mathcal{Q}|^{-1}\eta\|g_{1}\|_{2}\|g_{2}\|_{2}.

Plug it back to (2.44) with this particular QQ so that

(2.47) Q𝒬F(Q)\displaystyle\sum_{Q\in\mathcal{Q}}F(Q) RO(δ)|𝒬|Q|g1g2|p/2\displaystyle\lesssim R^{O(\delta)}|\mathcal{Q}|\int_{Q}|g_{1}g_{2}|^{p/2}
RO(δ)ρ3pRp/2|𝒬|(T1𝕋1,T12QT2𝕋2,T22Qg1,T22g2,T22)p/4\displaystyle\lesssim R^{O(\delta)}\rho^{3-p}R^{-p/2}|\mathcal{Q}|\Big{(}\sum_{\begin{subarray}{c}T_{1}\in\mathbb{T}_{1},\\ T_{1}\cap 2Q\not=\varnothing\end{subarray}}\sum_{\begin{subarray}{c}T_{2}\in\mathbb{T}_{2},\\ T_{2}\cap 2Q\not=\varnothing\end{subarray}}\|g_{1,T}\|_{2}^{2}\|g_{2,T}\|_{2}^{2}\Big{)}^{p/4}
RO(δ)ρ3pRp/2(|𝒬|1p/2ηp/2)g12p/2g22p/2.\displaystyle\lesssim R^{O(\delta)}\rho^{3-p}R^{-p/2}(|\mathcal{Q}|^{1-p/2}\eta^{p/2})\|g_{1}\|_{2}^{p/2}\|g_{2}\|_{2}^{p/2}.

We can conclude the proof by combining (2.41) and (2.47). ∎

2.6. A refined Wolff’s hairbrush result

In [Wol95], Wolff used a geometric structure called “hairbrush” to obtain the 5/2 bound for the three-dimensional Kakeya maximal conjecture. Roughly speaking, suppose 𝒯{\mathcal{T}} is a collection of δ×δ×1\delta\times\delta\times 1 tubes with δ\delta-separated directions, and suppose for each tube T𝒯T\in{\mathcal{T}} there is an associated shading Y(T)TY(T)\subset T with a uniform density assumption |Y(T)|/|T|λ|Y(T)|/|T|\sim\lambda where δλ1\delta\ll\lambda\ll 1. Then for any ε>0\varepsilon>0,

(2.48) |T𝒯Y(T)|cεδε+1/2λ5/2(δ2|𝒯|).\Big{|}\bigcup_{T\in{\mathcal{T}}}Y(T)\Big{|}\geq c_{\varepsilon}\delta^{\varepsilon+1/2}\lambda^{5/2}(\delta^{2}|{\mathcal{T}}|).

While a careful analysis suggests that (2.48) is sharp only if for each tube T𝒯T\in{\mathcal{T}}, the shading Y(T)Y(T) is concentrated on one end of TT. Thus, the union T𝒯Y(T)\bigcup_{T\in{\mathcal{T}}}Y(T) can be a much larger set if the shading Y(T)Y(T) satisfies some two-ends condition (see Figure 1).

Figure 1. quantitative two-ends
Definition 2.9 (quantitative two-ends at scale ϵ\epsilon^{\prime}).

Let 𝒯{\mathcal{T}} be a collection of δ×δ×1\delta\times\delta\times 1 tubes in 3\mathbb{R}^{3}. Each T𝒯T\in{\mathcal{T}} has shading Y(T)TY(T)\subset T. Suppose we can partition TT into δϵ\delta^{-\epsilon} many δϵ\delta^{\epsilon}-segments TjT_{j}. We say Y(T)Y(T) is quantitative two-ends at scale ϵ\epsilon^{\prime} (ϵ>ϵ>ϵ100>0\epsilon>\epsilon^{\prime}>\epsilon^{100}>0) if

  1. (1)

    For those Y(Tj)Y(T_{j})\not=\varnothing, |Y(Tj)||Y(T_{j})| are about the same up to a constant multiple.

  2. (2)

    For each TT, the number nonempty segments Y(Tj)Y(T_{j}) is bounded below by δϵ\delta^{-\epsilon^{\prime}}.

Remark 2.10.

If Y(T)Y(T) is quantitative two-ends at scale ϵ\epsilon^{\prime} and Y(T)Y(T)Y^{\prime}(T)\subset Y(T) is a subset satisfying |Y(T)||Y(T)||Y^{\prime}(T)|\gtrapprox|Y(T)|, then there is a subset of Y(T)Y^{\prime}(T) that is also quantitative two-ends at a smaller scale ϵ/2\epsilon^{\prime}/2. This is because by pigeonholing we can find δϵ\gtrapprox\delta^{-\epsilon^{\prime}} segments TjT_{j} so that |Y(Tj)||Y^{\prime}(T_{j})| are about the same up to a constant multiple, and their sum is |Y(T)|\gtrapprox|Y(T)|. We will use this observation in the proof of next Lemma.

Lemma 2.11.

Suppose that 𝒯{\mathcal{T}} is a collection of δ×δ×1\delta\times\delta\times 1 tube in 3\mathbb{R}^{3} pointing in δ\delta-separated directions, and there are m\lesssim m parallel tubes in each direction. Suppose also there is a λ<1\lambda<1 so that for each T𝒯T\in{\mathcal{T}}, there is a shading Y(T)TY(T)\subset T satisfying |Y(T)|λ|T||Y(T)|\sim\lambda|T|. Moreover, the shading Y(T)Y(T) is quantitative two-ends at scale ϵ\epsilon^{\prime} for some ϵ>0\epsilon^{\prime}>0. Define A=T𝒯Y(T)A=\bigcup_{T\in{\mathcal{T}}}Y(T). Then |A|δ1/2m1λT|Y(T)|δ1/2m1λ2(δ2|𝒯|)|A|\gtrapprox\delta^{1/2}m^{-1}\lambda\sum_{T}|Y(T)|\sim\delta^{1/2}m^{-1}\lambda^{2}(\delta^{2}|{\mathcal{T}}|).

As a direct corollary, note that by dyadic pigeonholing, there exists a dyadic number μ1\mu\geq 1 and a subset AμAA_{\mu}\subset A so that

  1. (1)

    Every point in AμA_{\mu} intersects μ\sim\mu many Y(T)Y(T).

  2. (2)

    T|Y(T)|μ|Aμ|T|Y(T)|λ(δ2|𝒯|)\sum_{T}|Y(T)|\geq\mu|A_{\mu}|\gtrapprox\sum_{T}|Y(T)|\sim\lambda(\delta^{2}|{\mathcal{T}}|).

Also note that one can apply the bound |A|δ1/2m1λ2(δ2|𝒯|)|A|\gtrapprox\delta^{1/2}m^{-1}\lambda^{2}(\delta^{2}|{\mathcal{T}}|) to obtain |Aμ|δ1/2m1λ2(δ2|𝒯|)|A_{\mu}|\gtrapprox\delta^{1/2}m^{-1}\lambda^{2}(\delta^{2}|{\mathcal{T}}|) by (2) and some dyadic pigeonholing. Hence we also have

  1. (i)

    μλδ1/2m\mu\lambda\lessapprox\delta^{-1/2}m.

  2. (ii)

    If we let AμAA_{\mu^{\prime}}\subset A be the subset so that every point in AμA_{\mu^{\prime}} intersects μ\sim\mu^{\prime} many Y(T)Y(T), then |Aμ|μ|Aμ|/μ|A_{\mu^{\prime}}|\lessapprox\mu|A_{\mu}|/\mu^{\prime}.

Proof.

Recall that A=T𝒯Y(T)A=\bigcup_{T\in{\mathcal{T}}}Y(T). What follows is a “quantitative broad-narrow” reduction on every point pAp\in A. Define for each pAp\in A a set of tubes

(2.49) 𝒯(p)={T𝒯:pY(T)},{\mathcal{T}}(p)=\{T\in{\mathcal{T}}:p\in Y(T)\},

and for any directional cap σ𝕊2\sigma\subset\mathbb{S}^{2} a subset

(2.50) 𝒯σ(p)={T𝒯(p):the direction of T belongs to σ}.{\mathcal{T}}_{\sigma}(p)=\{T\in{\mathcal{T}}(p):\text{the direction of }T\text{ belongs to }\sigma\}.
Lemma 2.12.

Let K0=e(logδ1)1/2K_{0}=e^{(\log\delta^{-1})^{1/2}} and K1=(logρ1)ε10K_{1}=(\log\rho^{-1})^{\varepsilon^{-10}}. Suppose |𝒯(p)|δε/2|{\mathcal{T}}(p)|\geq\delta^{-\varepsilon/2}. Then there are a scale ρ\rho with δρ1\delta\leq\rho\leq 1, a directional cap σ𝕊2\sigma\subset\mathbb{S}^{2} with d(σ)ρd(\sigma)\sim\rho, a collection of directional caps Ω\Omega with |Ω|K1|\Omega|\geq K_{1}, so that |𝒯ω(p)||{\mathcal{T}}_{\omega}(p)| are about the same up to a constant multiple for ωΩ\omega\in\Omega. Moreover, ωσ\omega\subset\sigma, d(ω)ρ/K0d(\omega)\sim\rho/K_{0} for any ωΩ\omega\in\Omega, ωΩ|𝒯ω(p)||𝒯σ(p)|\sum_{\omega\in\Omega}|{\mathcal{T}}_{\omega}(p)|\gtrapprox|{\mathcal{T}}_{\sigma}(p)|, and

(2.51) |𝒯σ(p)||𝒯(p)|.|{\mathcal{T}}_{\sigma}(p)|\gtrapprox|{\mathcal{T}}(p)|.
Proof.

The proof is quite standard. We will prove the lemma by an iterative argument. First partition 𝕊2\mathbb{S}^{2} into K02\sim K_{0}^{2} many 1/K01/K_{0}-caps ω1\omega_{1}. By pigeonholing there is a subcollection Ω1\Omega_{1} so that |𝒯ω1(p)||{\mathcal{T}}_{\omega_{1}}(p)| are about the same up to a constant multiple for ω1Ω1\omega_{1}\in\Omega_{1}, and

(2.52) ω1Ω1|𝒯ω1(p)|(logδ1)1|𝒯(p)|.\sum_{\omega_{1}\in\Omega_{1}}|{\mathcal{T}}_{\omega_{1}}(p)|\gtrsim(\log\delta^{-1})^{-1}|{\mathcal{T}}(p)|.

If |Ω1|K1|\Omega_{1}|\geq K_{1}, then we stop. Otherwise, pick any ω1Ω1\omega_{1}\in\Omega_{1}, partition it into K02\sim K_{0}^{2} many 1/K021/K_{0}^{2}-caps ω2\omega_{2} and repeat the argument above. At the mm-th step of the iteration (if the iteration does not stop at step mm), we have a collection of caps Ωm\Omega_{m} and a 1/K0m11/K_{0}^{m-1} cap ωm1Ωm1\omega_{m-1}\in\Omega_{m-1} with d(ωm1)1/K0m1d(\omega_{m-1})\sim 1/K_{0}^{m-1} so that for every ωmΩm\omega_{m}\in\Omega_{m}, d(ωm)1/K0md(\omega_{m})\sim 1/K_{0}^{m} and ωmωm1\omega_{m}\subset\omega_{m-1}, as well as

(2.53) ωmΩm|𝒯ωm(p)|(logδ1)m|𝒯(p)|.\sum_{\omega_{m}\in\Omega_{m}}|{\mathcal{T}}_{\omega_{m}}(p)|\gtrsim(\log\delta^{-1})^{-m}|{\mathcal{T}}(p)|.

Since |𝒯(p)|δε/2|{\mathcal{T}}(p)|\geq\delta^{-\varepsilon/2}, the iteration will eventually stop at some step n(logδ1)1/2n\lesssim(\log\delta^{-1})^{1/2} with 1/K0nδ1/K_{0}^{n}\geq\delta. Denote by σ=ωn1\sigma=\omega_{n-1}, ρ=1/K0n1\rho=1/K_{0}^{n-1}, and Ω=Ωn\Omega=\Omega_{n} so that |Ω|K1|\Omega|\geq K_{1}. To see (2.51) holds, note that |𝒯(p)|(logδ1)(logδ1)1/2|𝒯σ(p)||𝒯σ(p)||{\mathcal{T}}(p)|\lesssim(\log\delta^{-1})^{(\log\delta^{-1})^{1/2}}|{\mathcal{T}}_{\sigma}(p)|\lessapprox|{\mathcal{T}}_{\sigma}(p)|. ∎

For any point pAp\in A with |𝒯(p)|ρε/2|{\mathcal{T}}(p)|\geq\rho^{-\varepsilon/2}, by Lemma 2.12 define

(2.54) (p)=r and σ(p)=σ.\measuredangle(p)=r\text{ and }\sigma(p)=\sigma.

If we already have |A|δ1/4m1λ2(δ2|𝒯|)|A|\gtrapprox\delta^{1/4}m^{-1}\lambda^{2}(\delta^{2}|{\mathcal{T}}|) then there is nothing to prove. Otherwise, for those pAp\in A with |𝒯(p)|δε/2|{\mathcal{T}}(p)|\geq\delta^{-\varepsilon/2}, define

(2.55) Aρ={pA:(p)=ρ}.A_{\rho}=\{p\in A:\measuredangle(p)=\rho\}.

Note that the number of possible choices of dyadic ρ\rho is logδ1\lesssim\log\delta^{-1}. By Lemma 2.12 and a pigeonholing on the dyadic numbers δρ1\delta\leq\rho\leq 1, there exists a ρ\rho so that

(2.56) pAρ|𝒯σ(p)(p)|pAρ|𝒯(p)|T𝒯|Y(T)|.\sum_{p\in A_{\rho}}|{\mathcal{T}}_{\sigma(p)}(p)|\gtrapprox\sum_{p\in A_{\rho}}|{\mathcal{T}}(p)|\gtrapprox\sum_{T\in{\mathcal{T}}}|Y(T)|.

Define a new shading

(2.57) Yρ(T)={pY(T)Aρ:T𝒯σ(p)(p)}.Y_{\rho}(T)=\{p\in Y(T)\cap A_{\rho}:T\in{\mathcal{T}}_{\sigma(p)}(p)\}.
Remark 2.13.

Every point pAρp\in A_{\rho} is now quantitative ρ/K0\rho/K_{0}-broad with respect to the shading YρY_{\rho}. That is, the set 𝒯ρ(p)={T𝒯:pYρ(T)}{\mathcal{T}}_{\rho}(p)=\{T\in{\mathcal{T}}:p\in Y_{\rho}(T)\} can be partition into K1\geq K_{1} subcollections {𝒯ρ,ω(p)}ω\{{\mathcal{T}}_{\rho,\omega}(p)\}_{\omega} so that |𝒯ρ,ω(p)||{\mathcal{T}}_{\rho,\omega}(p)| are about the same, and for most pairs (ω,ω)(\omega,\omega^{\prime}), tubes in 𝒯ρ,ω{\mathcal{T}}_{\rho,\omega} and 𝒯ρ,ω{\mathcal{T}}_{\rho,\omega^{\prime}} are ρ/K0\rho/K_{0}-transverse. The quantitative lower bound K1\geq K_{1} is crucial, since it implies that if 𝒯ρ(p)𝒯ρ(p){\mathcal{T}}_{\rho}^{\prime}(p)\subset{\mathcal{T}}_{\rho}(p) is a subset that contains a fraction (logρ1)100\gtrsim(\log\rho^{-1})^{-100} tubes in 𝒯ρ(p){\mathcal{T}}_{\rho}(p), then most pairs of tubes in 𝒯ρ(p){\mathcal{T}}_{\rho}^{\prime}(p) are still ρ/K0\rho/K_{0}-transverse.

Let Σ\Sigma be a collection of finitely overlapping ρ\rho-caps of 𝕊2\mathbb{S}^{2}. For each σΣ\sigma\in\Sigma, let 𝒯¯σ\bar{\mathcal{T}}_{\sigma} be a collection of parallel ρ\rho-tubes pointing to the directional cap σ\sigma that forms a finitely overlapping cover of the unit ball. Denote by 𝒯¯=σΣ𝒯¯σ\bar{\mathcal{T}}=\bigcup_{\sigma\in\Sigma}\bar{\mathcal{T}}_{\sigma}. For any T¯𝒯¯\bar{T}\in\bar{\mathcal{T}}, let

(2.58) 𝒯(T¯)={T𝒯:TT¯}.{\mathcal{T}}(\bar{T})=\{T\in{\mathcal{T}}:T\subset\bar{T}\}.

Note that for each pAρp\in A_{\rho} there is a T¯𝒯¯\bar{T}\in\bar{\mathcal{T}} depending on pp so that

(2.59) 𝒯ρ(p)=𝒯σ(p)(p)={T𝒯:pYρ(T)}={T𝒯(T¯):pYρ(T)}.{\mathcal{T}}_{\rho}(p)={\mathcal{T}}_{\sigma(p)}(p)=\{T\in{\mathcal{T}}:p\in Y_{\rho}(T)\}=\{T\in{\mathcal{T}}(\bar{T}):p\in Y_{\rho}(T)\}.

Hence by Lemma 2.12 and pigeonholing again there is a subset 𝒯ρ𝒯{\mathcal{T}}_{\rho}\subset{\mathcal{T}} with |𝒯ρ|(logρ1)2|𝒯||{\mathcal{T}}_{\rho}|\gtrsim(\log\rho^{-1})^{-2}|{\mathcal{T}}| so that

  1. (1)

    |Yρ(T)|λ|T||Y_{\rho}(T)|\gtrapprox\lambda|T| for all T𝒯ρT\in{\mathcal{T}}_{\rho}.

  2. (2)

    T𝒯ρ|Yρ(T)|(logρ1)2pAρ|𝒯σ(p)(p)|=(logρ1)2pAρ|𝒯ρ(p)|\sum_{T\in{\mathcal{T}}_{\rho}}|Y_{\rho}(T)|\gtrsim(\log\rho^{-1})^{-2}\sum_{p\in A_{\rho}}|{\mathcal{T}}_{\sigma(p)}(p)|=(\log\rho^{-1})^{-2}\sum_{p\in A_{\rho}}|{\mathcal{T}}_{\rho}(p)|.

  3. (3)

    For each T¯𝒯¯\bar{T}\in\bar{\mathcal{T}}, either 𝒯ρ(T¯)={\mathcal{T}}_{\rho}(\bar{T})=\varnothing or |𝒯ρ(T¯)|(logρ1)2|𝒯(T¯)||{\mathcal{T}}_{\rho}(\bar{T})|\gtrsim(\log\rho^{-1})^{-2}|{\mathcal{T}}(\bar{T})|, where 𝒯ρ(T¯){\mathcal{T}}_{\rho}(\bar{T}) is defined as

    (2.60) 𝒯ρ(T¯)={T𝒯ρ:TT¯}.{\mathcal{T}}_{\rho}(\bar{T})=\{T\in{\mathcal{T}}_{\rho}:T\subset\bar{T}\}.

Denote by

(2.61) Aρ(T¯)=T𝒯ρ(T¯)Yρ(T).A_{\rho}(\bar{T})=\bigcup_{T\in{\mathcal{T}}_{\rho}(\bar{T})}Y_{\rho}(T).

By the definition of AρA_{\rho} we know

(2.62) T¯𝒯¯|Aρ(T¯)||Aρ|.\sum_{\bar{T}\in\bar{\mathcal{T}}}|A_{\rho}(\bar{T})|\lessapprox|A_{\rho}|.

Hence to prove the lemma, it suffices to prove that for any T¯𝒯¯\bar{T}\in\bar{\mathcal{T}}

(2.63) |Aρ(T¯)|δ1/2m1λ2(δ2|𝒯ρ(T¯)|).|A_{\rho}(\bar{T})|\gtrapprox\delta^{1/2}m^{-1}\lambda^{2}(\delta^{2}|{\mathcal{T}}_{\rho}(\bar{T})|).

Let us fix a T¯𝒯¯\bar{T}\in\bar{\mathcal{T}} from now on.

For each pAρ(T¯)p\in A_{\rho}(\bar{T}), recall 𝒯ρ(p)={T𝒯(T¯):pYρ(T)}{\mathcal{T}}_{\rho}(p)=\{T\in{\mathcal{T}}(\bar{T}):p\in Y_{\rho}(T)\} in (2.59). Since |𝒯ρ(T¯)|(logρ1)2|𝒯(T¯)||{\mathcal{T}}_{\rho}(\bar{T})|\gtrsim(\log\rho^{-1})^{-2}|{\mathcal{T}}(\bar{T})|, by pigeonholing there are a dyadic number ν>1\nu>1 and a subset A(T¯)Aρ(T¯)A^{\prime}(\bar{T})\subset A_{\rho}(\bar{T}) with

(2.64) A(T¯)|𝒯(p)|𝑑p(logρ1)2T𝒯ρ(T¯)|Yρ(T)|(logρ1)4pAr|𝒯ρ(p)|.\int_{A^{\prime}(\bar{T})}|{\mathcal{T}}^{\prime}(p)|dp\gtrsim(\log\rho^{-1})^{-2}\sum_{T\in{\mathcal{T}}_{\rho}(\bar{T})}|Y_{\rho}(T)|\gtrapprox(\log\rho^{-1})^{-4}\sum_{p\in A_{r}}|{\mathcal{T}}_{\rho}(p)|.

so that for all pA(T¯)p\in A^{\prime}(\bar{T}), |𝒯(p)|ν(logρ1)4|𝒯ρ(p)||{\mathcal{T}}^{\prime}(p)|\sim\nu\gtrsim(\log\rho^{-1})^{-4}|{\mathcal{T}}_{\rho}(p)|. Note that by Remark 2.13, every point in A(T¯)A^{\prime}(\bar{T}) is still quantitative ρ\rho-broad with respect to the shading YρY_{\rho}. Define a new shading

(2.65) Y(T)=Yρ(T)A(T¯).Y^{\prime}(T)=Y_{\rho}(T)\cap A^{\prime}(\bar{T}).

By pigeonholing there is a subset 𝒯(T¯)𝒯ρ(T¯){\mathcal{T}}^{\prime}(\bar{T})\subset{\mathcal{T}}_{\rho}(\bar{T}) with |𝒯(T¯)||𝒯ρ(T¯)||{\mathcal{T}}^{\prime}(\bar{T})|\gtrapprox|{\mathcal{T}}_{\rho}(\bar{T})| so that |Y(T)|λ|T||Y^{\prime}(T)|\gtrapprox\lambda|T| for all T𝒯(T¯)T\in{\mathcal{T}}^{\prime}(\bar{T}).

Thus, on one hand

(2.66) ν|Aρ(T¯)|ν|A(T¯)|T𝒯(T¯)|Y(T)|λ(δ2|𝒯ρ(T¯)|).\nu|A_{\rho}(\bar{T})|\gtrsim\nu|A^{\prime}(\bar{T})|\gtrapprox\sum_{T\in{\mathcal{T}}^{\prime}(\bar{T})}|Y(T)|\approx\lambda(\delta^{2}|{\mathcal{T}}_{\rho}(\bar{T})|).

On the other hand, pick any T𝒯(T¯)T\in{\mathcal{T}}^{\prime}(\bar{T}). Since every point in Y(T)Y^{\prime}(T) is quantitative ρ/K0\rho/K_{0}-broad with respect to the shading YρY_{\rho}, and note that Yρ(T)Y_{\rho}(T) is quantitative two-ends (see Remark 2.10) for every tube T𝒯ρ(T¯)T\in{\mathcal{T}}_{\rho}(\bar{T}). By Wolff’s hairbrush argument and the two-dimensional X-ray estimate, we get

(2.67) |Aρ(T¯)|λ3νδm1ρ1.|A_{\rho}(\bar{T})|\gtrapprox\lambda^{3}\nu\delta m^{-1}\rho^{-1}.

Since ρ<1\rho<1 and since δ2|𝒯ρ(T¯)|m\delta^{2}|{\mathcal{T}}_{\rho}(\bar{T})|\lesssim m by assumption, the above two estimates imply

(2.68) |Aρ(T¯)|δ1/2m1λ2(δ2|𝒯ρ(T¯)|),|A_{\rho}(\bar{T})|\gtrapprox\delta^{1/2}m^{-1}\lambda^{2}(\delta^{2}|{\mathcal{T}}_{\rho}(\bar{T})|),

which is what we need in (2.63). ∎

3. Quantitative two-ends reductions

In this section we conduct two quantitative two-ends reductions to the tube set 𝕋λ1[R]\mathbb{T}_{\lambda_{1}}[R] (see (2.4)). The two reductions will be applied to two different methods of bounding O𝒪leafEfBLp(O)p\sum_{O^{\prime}\in\mathcal{O}_{leaf}}\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p}, respectively. Before elaborating on the reductions, let us briefly demonstrate our two methods. Along the way we will recognize the need of the two-ends reductions—it strengthens some Kakeya estimates.

3.1. Brief outline for the two methods

The first method deals with the case R1/2rR2/3R^{1/2}\leq r\leq R^{2/3}. Suppose that for each scale-rr fat surface St𝒮tS_{t}\in\mathcal{S}_{t} (see Lemma 2.4 for 𝒮t\mathcal{S}_{t}), there are σ1\sim\sigma_{1} scale-rr directional caps that contribute to 𝕋St\mathbb{T}_{S_{t}}. Hence by L2L^{2} orthogonality (see (2.36) for fk≁f_{k}^{\not\sim})

(3.1) (fk≁)𝕋St22σ1supθ,d(θ)=r1/2(fk≁)𝕋St,θ22.\|(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t}}}\|_{2}^{2}\lesssim\sigma_{1}\sup_{\theta^{\prime},\,d(\theta^{\prime})=r^{{}^{-1/2}}}\|(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t},\theta^{\prime}}}\|_{2}^{2}.

Each rr-tube T𝕋StT^{\prime}\in\mathbb{T}_{S_{t}} is associated to an R/r1/2×R/r1/2×RR/r^{1/2}\times R/r^{1/2}\times R-tube T~T\widetilde{T}\supset T^{\prime} that has the same direction as TT^{\prime}. Note that only those scale-RR wave packets EfTEf_{T} with TT~T\subset\widetilde{T} make contribution to the scale-rr wave packet EfTEf_{T^{\prime}} (see Lemma 7.1 in [Gut18]). Denote 𝒯~\widetilde{\mathcal{T}} as the collection of the fat tubes so that each T~𝒯~\widetilde{T}\in\widetilde{\mathcal{T}} is associated to at least one rr-tube TSt𝒮t𝕋StT^{\prime}\in\bigcup_{S_{t}\in\mathcal{S}_{t}}\mathbb{T}_{S_{t}} such that EfT0Ef_{T^{\prime}}\not=0. Suppose R/r1/2ρjR/r^{1/2}\leq\rho_{j} but R/r1/2ρj1R/r^{1/2}\geq\rho_{j-1} for some scale ρj\rho_{j} in (2.3). Then from the wave packet pruning in Section 2.1 we know that 𝒯~\widetilde{\mathcal{T}} contains RO(δ)κ2(j)\lesssim R^{O(\delta)}\kappa_{2}(j) parallel tubes. Recall the broom estimate (2.38)

(3.2) (fk≁)𝕋St,θ22RO(δ)κ2(j)1r1/2R1/2fθ22.\|(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t},\theta^{\prime}}}\|_{2}^{2}\lesssim R^{O(\delta)}\kappa_{2}(j)^{-1}r^{1/2}R^{-1/2}\|f_{\theta^{\prime}}\|_{2}^{2}.

A crucial observation here is that there is a Kakeya type constraint between σ1\sigma_{1} and κ2(j)\kappa_{2}(j). Indeed, suppose further that each R/r1/2R/r^{1/2}-ball in T~\widetilde{T} contains at least one fat surface St𝒮tS_{t}\in\mathcal{S}_{t}. Then each R/r1/2R/r^{1/2}-ball in the set T~𝒯~T~\bigcup_{\widetilde{T}\in\widetilde{\mathcal{T}}}\widetilde{T} intersects σ1\gtrsim\sigma_{1} fat tubes in 𝒯~\widetilde{\mathcal{T}}. Hence by Wolff’s 5/2-maximal Kakeya estimate and the triangle inequality we have222There is in fact a stronger “X-ray” estimate when κ2(j)\kappa_{2}(j) is big. But it is not useful to us here since κ2(j)\kappa_{2}(j) can be as small as 11.

(3.3) σ1κ2(j)1r1/4.\sigma_{1}\kappa_{2}(j)^{-1}\lessapprox r^{1/4}.

Plugging this back to (3.1) and (3.2) one gets a refinement

(3.4) (fk≁)𝕋St22RO(δ)r3/4R1/2fθ22,\|(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t}}}\|_{2}^{2}\lesssim R^{O(\delta)}r^{3/4}R^{-1/2}\|f_{\theta^{\prime}}\|_{2}^{2},

which is stronger than (fk≁)𝕋St22rR1/2fθ22\|(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t}}}\|_{2}^{2}\lessapprox rR^{-1/2}\|f_{\theta^{\prime}}\|_{2}^{2} that only uses the polynomial Wolff axiom (i.e. σ1r1/2\sigma_{1}\lesssim r^{1/2}) and the broom estimate.

However, it is not always true that each R/r1/2R/r^{1/2}-ball in T~\widetilde{T} contains a fat surface St𝒮tS_{t}\in\mathcal{S}_{t}. To deal with this issue, define a shading Y(T~)T~Y(\widetilde{T})\subset\widetilde{T} as the union of R/r1/2R/r^{1/2}-balls in T~\widetilde{T} that contains at least an St𝒮tS_{t}\in\mathcal{S}_{t} (see Definition 3.5). After pigeonholing and possibly refining 𝒯~\widetilde{\mathcal{T}}, we may assume |Y(T~)|λ|T~||Y(\widetilde{T})|\sim\lambda|\widetilde{T}| for some uniform constant λ1\lambda\leq 1 for all fat tubes T~𝒯~\widetilde{T}\in\widetilde{\mathcal{T}}. Again, by Wolff’s 5/2-maximal Kakeya estimate and the triangle inequality we have

(3.5) σ1κ2(j)1λ3/2r1/4.\sigma_{1}\kappa_{2}(j)^{-1}\lessapprox\lambda^{-3/2}r^{1/4}.

The above estimate can be strengthened into, by Lemma 2.11,

(3.6) σ1κ2(j)1λ1r1/4,\sigma_{1}\kappa_{2}(j)^{-1}\lessapprox\lambda^{-1}r^{1/4},

if the shading Y(T~)Y(\widetilde{T}) is quantitative two-ends (see Definition 2.9). Plugging this back to (3.1) and (3.2) one gets a refinement

(3.7) (fk≁)𝕋St22RO(δ)λ1r3/4R1/2fθ22,\|(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t}}}\|_{2}^{2}\lesssim R^{O(\delta)}\lambda^{-1}r^{3/4}R^{-1/2}\|f_{\theta^{\prime}}\|_{2}^{2},

which is stronger than (fk≁)𝕋St22rR1/2fθ22\|(f_{k}^{\not\sim})^{\mathbb{T}_{S_{t}}}\|_{2}^{2}\lessapprox rR^{-1/2}\|f_{\theta^{\prime}}\|_{2}^{2} when λr1/4\lambda\geq r^{-1/4}.

The second method deals with the case rR2/3r\geq R^{2/3}. Unlike the first method, in the second method we focus on RR-tubes and R1/2R^{1/2}-balls. While it is essentially the same reason why we need the quantitative two-ends reduction—it strengthens some Kakeya estimate (see (3.5) and (3.6)).

3.2. Sorting for leaves

Recall in Lemma 2.4 that there are a collection of leaves 𝒪leaf\mathcal{O}_{leaf}, and nn collections of fat surfaces {𝒮t}1tn\{\mathcal{S}_{t}\}_{1\leq t\leq n}, each of which corresponds to a scale rt:=Rjtr_{t}:=R_{j_{t}}. In this subsection we would like to sort and find a 1\gtrapprox 1 fraction of O𝒪leafO^{\prime}\in\mathcal{O}_{leaf} that are distributed regularly in St𝒮tS_{t}\in\mathcal{S}_{t}, rtR1/2r_{t}\geq R^{1/2}. This can be considered as a preparation for the two-ends reduction.

Let 1m1m21\leq m_{1}\leq m_{2} be two natural numbers with rm1R2/3r_{m_{1}}\geq R^{2/3}, rm2R1/2r_{m_{2}}\geq R^{1/2} and rm1+1R2/3r_{m_{1}+1}\leq R^{2/3}, rm2+1R1/2r_{m_{2}+1}\leq R^{1/2}. We will first sort the leaves from the biggest scale r1r_{1} to scale rm1r_{m_{1}}, and then from scale rm1+1r_{m_{1}+1} to scale rm2r_{m_{2}}.

3.2.1. First sorting

The sorting deals with the case rtR2/3r_{t}\geq R^{2/3} and will be given in an iterative manner. Let r0=Rr_{0}=R and let 𝒪leaf,0=𝒪leaf\mathcal{O}_{leaf,0}=\mathcal{O}_{leaf}. Starting from scale r1r_{1}, suppose we have obtained a collection of leaves 𝒪leaf,t1\mathcal{O}_{leaf,t-1} at scale rt1r_{t-1}. Now we sort 𝒪leaf,t1\mathcal{O}_{leaf,t-1} with respect to 𝒮t\mathcal{S}_{t} to obtain a refinement 𝒪leaf,t𝒪leaf,t1\mathcal{O}_{leaf,t}\subset\mathcal{O}_{leaf,t-1} with |𝒪leaf,t||𝒪leaf,t1||\mathcal{O}_{leaf,t}|\gtrapprox|\mathcal{O}_{leaf,t-1}|.

By pigeonholing, choose a set 𝐪t\mathbf{q}_{t} of rt1/2r_{t}^{1/2}–cubes such that

  1. (1)

    each q𝐪tq\in\mathbf{q}_{t} contains about the same number of leaves in 𝒪leaf,t1\mathcal{O}_{leaf,t-1},

  2. (2)

    q𝐪tq\bigcup_{q\in\mathbf{q}_{t}}q contains at least a (logR)1(\log R)^{-1}-fraction of leaves in 𝒪leaf,t1.\mathcal{O}_{leaf,t-1}.

Let 𝒬\mathcal{Q} denote a set of finitely overlapping R1/2R^{1/2}–cubes covering BRB_{R}. Since each q𝐪tq\in{\bf q}_{t} contains about the same amount of leaves in 𝒪leaf,t1\mathcal{O}_{leaf,t-1}, by pigeonholing again, we can discard some cubes in 𝐪t{\bf q}_{t} to have either StQ=S_{t}\cap Q=\varnothing or StQS_{t}\cap Q contains about the same number of cubes q𝐪tq\in{\bf q}_{t} for all nonempty StQS_{t}\cap Q. Moreover, we still have that q𝐪tq\bigcup_{q\in\mathbf{q}_{t}}q contains at least a (logR)O(1)(\log R)^{-O(1)}-fraction of leaves in 𝒪leaf,t1\mathcal{O}_{leaf,t-1}.

Now there exists an injection (up to a constant factor)

(3.8) 𝐪t𝐪t×𝒮t×𝒬:q(q,St,Q) where qStQ.\mathbf{q}_{t}\rightarrow\mathbf{q}_{t}\times\mathcal{S}_{t}\times\mathcal{Q}:q\mapsto(q,S_{t},Q)\text{ where }q\subset S_{t}\cap Q.

Each triple (q,St,Q)(q,S_{t},Q) is associated with a unique triple of parameters (λ2,λ3,λ6)(\lambda_{2},\lambda_{3},\lambda_{6}) depending implicitly on tt, where

  1. (1)

    λ2\lambda_{2} means the number of q𝐪tq^{\prime}\in\mathbf{q}_{t} such that qStQq^{\prime}\subset S_{t}\cap Q. Write 𝐪St,Q:={q𝐪t:qStQ}\mathbf{q}_{S_{t},Q}:=\{q^{\prime}\in\mathbf{q}_{t}:q^{\prime}\subset S_{t}\cap Q\}, then

    (3.9) |𝐪St,Q|λ2.|{\bf q}_{S_{t},Q}|\sim\lambda_{2}.
  2. (2)

    λ6\lambda_{6} means the number of Q𝒬Q^{\prime}\in\mathcal{Q} such that |𝐪St,Q|λ2|\mathbf{q}_{S_{t},Q^{\prime}}|\sim\lambda_{2} is about λ6\lambda_{6}. For a fixed StS_{t}, let 𝒬St\mathcal{Q}_{S_{t}} denote the set of such QQ^{\prime}, then

    (3.10) |𝒬St|λ6.|\mathcal{Q}_{S_{t}}|\sim\lambda_{6}.
  3. (3)

    λ3\lambda_{3} means the number of St𝒮tS_{t}^{\prime}\in\mathcal{S}_{t} such that |𝐪St,Q|λ2|\mathbf{q}_{S_{t}^{\prime},Q}|\sim\lambda_{2}. For a fixed QQ, let 𝒮t(Q)\mathcal{S}_{t}(Q) denote the set of such StS_{t}^{\prime}, then

    (3.11) |𝒮t(Q)|λ3.|\mathcal{S}_{t}(Q)|\sim\lambda_{3}.

We remark that the number λ2\lambda_{2} is uniform for all triples (q,St,Q)(q,S_{t},Q). This follows from the definition of 𝐪t{\bf q}_{t} (see above (3.8)).

Since each qq is associated with a unique triple (q,St,Q)(q,S_{t},Q), it is also associated with a unique triple of parameters (λ2,λ3,λ6)(\lambda_{2},\lambda_{3},\lambda_{6}). By pigeonholing, there exists a uniform triple (λ2,λ3,λ6)(\lambda_{2},\lambda_{3},\lambda_{6}) such that the qq’s that are associated with it consist of at least a (logR)3(\log R)^{-3}-fraction of the original set 𝐪t\mathbf{q}_{t}. Note that if (q,St,Q)(q,S_{t},Q) is chosen, so is (q,St,Q)(q^{\prime},S_{t},Q) for other q𝐪tq^{\prime}\in\mathbf{q}_{t} and qStQq^{\prime}\subset S_{t}\cap Q, namely, StQS_{t}\cap Q is considered as a whole when doing pigeonholing. Denote by

  1. (1)

    𝒮t\mathcal{S}_{t}^{\prime} the collection of fat surfaces StS_{t} that |𝒬St|λ6|\mathcal{Q}_{S_{t}}|\sim\lambda_{6},

  2. (2)

    𝐪St{\bf q}_{S_{t}} the set of q𝐪tq\in\mathbf{q}_{t} contained in StS_{t},

  3. (3)

    𝒬\mathcal{Q}^{\prime} the collection of R1/2R^{1/2}-cubes QQ that |𝒮t(Q)|λ3|\mathcal{S}_{t}(Q)|\sim\lambda_{3}.

Then we have |𝐪St|λ2λ6|{\bf q}_{S_{t}}|\sim\lambda_{2}\lambda_{6} and

(3.12) λ2λ3|𝒬||𝐪t|λ2λ6|𝒮t|.\lambda_{2}\lambda_{3}|\mathcal{Q}^{\prime}|\approx|{\bf q}_{t}|\approx\lambda_{2}\lambda_{6}|\mathcal{S}_{t}^{\prime}|.

Let 𝐪t={q𝐪t:qSt𝒮t𝐪St}{\bf q}_{t}^{\prime}=\{q\in{\bf q}_{t}:q\in\bigcup_{S_{t}\in\mathcal{S}_{t}^{\prime}}{\bf q}_{S_{t}}\}, so |𝐪t||𝐪t||{\bf q}_{t}^{\prime}|\gtrapprox|{\bf q}_{t}|. By (3.12) and pigeonholing again there is a λ3\lambda_{3}^{\prime} and a collection of R1/2R^{1/2}-balls 𝒬λ3\mathcal{Q}_{\lambda_{3}^{\prime}} so that |𝒮t(Q)|λ3|\mathcal{S}_{t}^{\prime}(Q)|\sim\lambda_{3}^{\prime} for any Q𝒬λ3Q\in\mathcal{Q}_{\lambda_{3}^{\prime}}, and the set {q𝐪t:qQ𝒬λ3Q}\{q\in{\bf q}_{t}^{\prime}:q\subset\bigcup_{Q\in\mathcal{Q}_{\lambda_{3}^{\prime}}}Q\} contains a fraction 1\gtrapprox 1 of rt1/2r^{1/2}_{t}-cubes in 𝐪t{\bf q}_{t}^{\prime}. To ease notations, still denote this fraction of rt1/2r^{1/2}_{t}-cubes by 𝐪t{\bf q}_{t}, and denote 𝒮t\mathcal{S}_{t} by 𝒮t\mathcal{S}_{t}^{\prime}, λ3\lambda_{3} by λ3\lambda_{3}^{\prime}. Hence we have

(3.13) λ3|𝒬λ3|λ6|𝒮t|.\lambda_{3}|\mathcal{Q}_{\lambda_{3}}|\approx\lambda_{6}|\mathcal{S}_{t}|.

Let 𝒪leaf,t\mathcal{O}_{leaf,t} denote the set of leaves in 𝒪leaf,t1\mathcal{O}_{leaf,t-1} that each O𝒪leaf,tO\in\mathcal{O}_{leaf,t} is contained in some q𝐪tq\in\mathbf{q}_{t}. Since each q𝐪tq\in\mathbf{q}_{t} contains about the same number of leaves in 𝒪leaf,t1\mathcal{O}_{leaf,t-1}, we get

|𝒪leaf,t||𝒪leaf,t1|.|\mathcal{O}_{leaf,t}|\gtrapprox|\mathcal{O}_{leaf,t-1}|.

Since StS_{t} is supported in Nrt1/2+δ(ZSt)BStN_{r_{t}^{1/2+\delta}}(Z_{S_{t}})\cap B_{S_{t}} for some variety ZStZ_{S_{t}} with degree at most dd and some ball BStB_{S_{t}} of radius rtr_{t}, by Wongkew’s theorem (see [Gut16] Theorem 4.7) one can bound the Lebesgue measure of StS_{t} from above as |St|drt5/2|S_{t}|\lesssim dr_{t}^{5/2}, yielding

(3.14) |𝐪St|rt.|{\bf q}_{S_{t}}|\lessapprox r_{t}.
StS_{t}StS_{t}^{\prime}qq^{\prime}qqQQSt,StS_{t},S_{t}^{\prime}: fat r1/2r^{1/2}-surfaces;    QQ: R1/2R^{1/2}-ball;    q,qq,q^{\prime}: r1/2r^{1/2}-cubes.Every leaf OO^{\prime} is contained in some r1/2r^{1/2}-ball qq.
Figure 2. Relations between different geometric objects

This finishes the sorting for leaves at the scale rtr_{t}. We remark that now each Q𝒬λ3Q\in\mathcal{Q}_{\lambda_{3}} contains about the same amount of leaves in 𝒪leaf,t\mathcal{O}_{leaf,t}.

Lemma 3.1.

Let rtR2/3r_{t}\geq R^{2/3} and 𝒪leaf𝒪leaf,t\mathcal{O}_{leaf}\subset\mathcal{O}_{leaf,t} be a subset with |𝒪leaf|Rδ/2|𝒪leaf,t||\mathcal{O}_{leaf}|\gtrapprox R^{-\delta/2}|\mathcal{O}_{leaf,t}|. Then there exists subsets 𝐪t𝐪t,𝒮t𝒮t\mathbf{q}_{t}^{\prime}\subset\mathbf{q}_{t},\mathcal{S}_{t}^{\prime}\subset\mathcal{S}_{t} and parameters λ2,λ3,λ6\lambda_{2}^{\prime},\lambda_{3}^{\prime},\lambda_{6}^{\prime} satisfying Subsection 3.2.1 with λj\lambda_{j}^{\prime} in the place of λj\lambda_{j}, j=2,3,6j=2,3,6 and |λj|R4δ|λj||\lambda_{j}^{\prime}|\gtrsim R^{-4\delta}|\lambda_{j}|. In addition, each q𝐪tq\in\mathbf{q}_{t}^{\prime} contains about the same number of leaves in 𝒪leaf\mathcal{O}_{leaf} (up to a factor of RδR^{\delta}) and |𝒪leaf||𝒪leaf||\mathcal{O}_{leaf}^{\prime}|\gtrapprox|\mathcal{O}_{leaf}| where 𝒪leaf𝒪leaf\mathcal{O}_{leaf}^{\prime}\subset\mathcal{O}_{leaf} is the set of leaves that each of which is contained in some q𝐪tq\in{\bf q}_{t}^{\prime}.

Proof.

Since |𝒪leaf|Rδ/2|𝒪leaf,t||\mathcal{O}_{leaf}|\gtrapprox R^{-\delta/2}|\mathcal{O}_{leaf,t}|, and each q𝐪tq\in\mathbf{q}_{t} in Subsection 3.2.1 contains about the same number of leaves in 𝒪leaf,t\mathcal{O}_{leaf,t}, we can discard the rt1/2r_{t}^{1/2}–cubes from 𝐪t\mathbf{q}_{t} that contains a less than RδR^{-\delta}-fraction of the original cells.

Now each q𝐪tq\in\mathbf{q}_{t} contains about the same number of leaves in 𝒪leaf\mathcal{O}_{leaf} and |𝒪leaf||𝒪leaf||\mathcal{O}_{leaf}^{\prime}|\gtrapprox|\mathcal{O}_{leaf}| where 𝒪leaf𝒪leaf\mathcal{O}_{leaf}^{\prime}\subset\mathcal{O}_{leaf} is the set of leaves in q𝐪tq\in\mathbf{q}_{t}.

Proceed as in Subsection 3.2.1 and find a subset 𝐪t𝐪t\mathbf{q}_{t}^{\prime}\subset\mathbf{q}_{t} satisfying same the uniform property and contains a significant fraction of the leaves and for each q𝐪tq\in\mathbf{q}_{t}^{\prime}, qq is uniquely associated with a triple (q,St,Q)𝐪t×𝒮t×𝒬(q,S_{t},Q)\in\mathbf{q}_{t}^{\prime}\times\mathcal{S}_{t}^{\prime}\times\mathcal{Q}^{\prime} and a triple of parameters (λ2,λ3,λ6)(\lambda_{2}^{\prime},\lambda_{3}^{\prime},\lambda_{6}^{\prime}), where 𝒮t𝒮t\mathcal{S}_{t}^{\prime}\subset\mathcal{S}_{t} and 𝒬𝒬\mathcal{Q}^{\prime}\subset\mathcal{Q}. If λ2R4δλ2\lambda_{2}^{\prime}\leq R^{-4\delta}\lambda_{2}, then |𝒪leaf|R2δ|𝒪leaf,t||\mathcal{O}_{leaf}^{\prime}|\lessapprox R^{-2\delta}|\mathcal{O}_{leaf,t}|, which is a contradiction. Same reason applies to λ3,λ6\lambda_{3},\lambda_{6}. ∎

3.2.2. Second sorting

The second sorting will also be given in an iterative manner, and is simpler than the first one. From the first sorting we know that there is a collection of leaves 𝒪leaf,m1\mathcal{O}_{leaf,m_{1}} at scale rm1r_{m_{1}}. Starting from the scale rm1+1r_{m_{1}+1}, suppose we have obtained a collection of leaves 𝒪leaf,t1\mathcal{O}_{leaf,t-1} from scale rt1r_{t-1}. Now we sort 𝒪leaf,t1\mathcal{O}_{leaf,t-1} at scale rtr_{t} to obtain a refinement 𝒪leaf,t𝒪leaf,t1\mathcal{O}_{leaf,t}\subset\mathcal{O}_{leaf,t-1} with |𝒪leaf,t||𝒪leaf,t1||\mathcal{O}_{leaf,t}|\gtrapprox|\mathcal{O}_{leaf,t-1}|.

By pigeonholing, we can find (t)\mathcal{B}(t), a collection finitely overlapping R/rt1/2R/r_{t}^{1/2}-balls in BRB_{R}, so that each B(t)B\in\mathcal{B}(t) contains about the same amount of leaves in 𝒪leaf,t1\mathcal{O}_{leaf,t-1} up to a constant multiple, and the set 𝒪leaf,t:={O𝒪leaf,t1:OB for some B(t)}\mathcal{O}_{leaf,t}:=\{O^{\prime}\in\mathcal{O}_{leaf,t-1}:O^{\prime}\subset B\text{ for some }B\in\mathcal{B}(t)\} satisfies |𝒪leaf,t||𝒪leaf,t1||\mathcal{O}_{leaf,t}|\gtrapprox|\mathcal{O}_{leaf,t-1}|. This finishes the sorting for leaves at the scale rtr_{t}.

Finally, to ease the notation we set 𝒪leaf=𝒪leaf,m2\mathcal{O}_{leaf}=\mathcal{O}_{leaf,m_{2}}. This finishes our sorting of leaves.

3.3. The quantitative two-ends reductions

We will realize the reductions by defining a new relation 𝐧\sim_{{\bf n}} (the relation \sim mentioned in Section 2.4 is recognized as the old relation) between the RR-tubes TT and the R1ε0R^{1-\varepsilon_{0}}-balls BkB_{k} (recall ε0=ε10\varepsilon_{0}=\varepsilon^{10}, and see Section 2.4 for BkB_{k}). Recall from the previous subsection (see also Lemma 2.4) that there are nn collections of fat surfaces {𝒮t}1tn\{\mathcal{S}_{t}\}_{1\leq t\leq n}, each of which corresponds to a scale rt:=Rjtr_{t}:=R_{j_{t}}, and there are two natural numbers 1m1m21\leq m_{1}\leq m_{2} that rm1R2/3r_{m_{1}}\geq R^{2/3}, rm2R1/2r_{m_{2}}\geq R^{1/2} while rm1+1R2/3r_{m_{1}+1}\leq R^{2/3}, rm2R1/2r_{m_{2}}\leq R^{1/2}.

3.3.1. First type of related tubes

Suppose at first 1tm11\leq t\leq m_{1}. For each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k}, let us define a collection of related tubes, which is a subset of 𝕋λ1[R]\mathbb{T}_{\lambda_{1}}[R] (see (2.4) for 𝕋λ1[R]\mathbb{T}_{\lambda_{1}}[R]). To do so, we would like to define a shading Y(T)TY(T)\subset T for each T𝕋λ1[R]T\in\mathbb{T}_{\lambda_{1}}[R]. Recall that in the first sorting (Section 3.2.1) there is a collection of R1/2R^{1/2}-balls 𝒬λ3=𝒬λ3(t)\mathcal{Q}_{\lambda_{3}}=\mathcal{Q}_{\lambda_{3}}(t).

Definition 3.2.

For each RR-tube T𝕋λ1[R]T\in\mathbb{T}_{\lambda_{1}}[R], define a shading Y(T)Y(T) as the union of all the R1/2R^{1/2}-balls QTQ\subset T that Q𝒬λ3Q\in\mathcal{Q}_{\lambda_{3}}. Namely,

(3.15) Y(T)=Q𝒬λ3TQ.Y(T)=\bigcup_{Q\in\mathcal{Q}_{\lambda_{3}}}T\cap Q.

For each T𝕋λ1[R]T\in\mathbb{T}_{\lambda_{1}}[R], partition it into Rε0R^{\varepsilon_{0}} many R1ε0R^{1-\varepsilon_{0}}-segments {Tj}\{T_{j}\}. We sort the segments according to |Y(Tj)||Y(T_{j})|. That is, let Jαt=Jαt(T)J_{\alpha}^{t}=J_{\alpha}^{t}(T) be the collection of jj such that |Y(Tj)|α|Y(T_{j})|\sim\alpha. Define a new shading (YαY_{\alpha} implicitly depends on tt)

(3.16) Yα(T)=jJαtY(Tj).Y_{\alpha}(T)=\bigcup_{j\in J_{\alpha}^{t}}Y(T_{j}).

For each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k}, define 𝕋k={T𝕋λ1[R]:Y(T)Bk}\mathbb{T}_{k}=\{T\in\mathbb{T}_{\lambda_{1}}[R]:Y(T)\cap B_{k}\not=\varnothing\}. Then we can partition 𝕋k\mathbb{T}_{k} as

(3.17) 𝕋k=α,λ𝕋k,α,λ(t)\mathbb{T}_{k}=\bigsqcup_{\alpha,\lambda}\mathbb{T}_{k,\alpha,\lambda}(t)

so that for all T𝕋k,α,λT\in\mathbb{T}_{k,\alpha,\lambda}

(3.18) |Yα(T)|λ|T|,|Y_{\alpha}(T)|\sim\lambda|T|,

and hence |Jαt(T)||J_{\alpha}^{t}(T)| are about the same up to a constant multiple. We remark that for Q𝒬λ3Q\in\mathcal{Q}_{\lambda_{3}}, QYα(T)=QTQ\cap Y_{\alpha}(T)=Q\cap T when T𝕋k,α,λT\in\mathbb{T}_{k,\alpha,\lambda} and QBkQ\subset B_{k}

Recall ε0=ε15\varepsilon_{0}^{\prime}=\varepsilon^{15}. We will distinguish two cases: |Jαt(T)|Rε0|J_{\alpha}^{t}(T)|\leq R^{\varepsilon_{0}^{\prime}} and |Jαt(T)|Rε0|J_{\alpha}^{t}(T)|\geq R^{\varepsilon_{0}^{\prime}}. For each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k}, define the collection of related tubes and non-related tubes (𝐧\sim_{{\bf n}} stands for “new relation”)

(3.19) 𝕋k𝐧(t)={T𝕋k:|Jαt(T)|Rε0},𝕋k≁𝐧(t)=𝕋k𝕋k𝐧(t).\mathbb{T}^{\sim_{{\bf n}}}_{k}(t)=\{T\in\mathbb{T}_{k}:|J_{\alpha}^{t}(T)|\leq R^{\varepsilon_{0}^{\prime}}\},\hskip 14.22636pt\mathbb{T}^{\not\sim_{{\bf n}}}_{k}(t)=\mathbb{T}_{k}\setminus\mathbb{T}^{\sim_{{\bf n}}}_{k}(t).

Hence any related tube Tk𝕋k𝐧(t)T\in\bigcup_{k}\mathbb{T}^{\sim_{{\bf n}}}_{k}(t) belongs to Rε0\lesssim R^{\varepsilon_{0}^{\prime}} sets {𝕋k𝐧(t)}k\{\mathbb{T}^{\sim_{{\bf n}}}_{k}(t)\}_{k}, and thus is related to Rε0\lesssim R^{\varepsilon_{0}^{\prime}} balls BkB_{k}. Recall (3.17) and notice that for a fixed pair (α,λ)(\alpha,\lambda), either 𝕋k,α,λ(t)𝕋k(t)\mathbb{T}_{k,\alpha,\lambda}(t)\subset\mathbb{T}^{\sim}_{k}(t) or 𝕋k,α,λ(t)𝕋k≁𝐧(t)\mathbb{T}_{k,\alpha,\lambda}(t)\subset\mathbb{T}^{\not\sim_{{\bf n}}}_{k}(t). Define

(3.20) 𝕋k,α,λ≁𝐧(t)=𝕋k,α,λ(t)𝕋k≁𝐧(t).\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t)=\mathbb{T}_{k,\alpha,\lambda}(t)\cap\mathbb{T}^{\not\sim_{{\bf n}}}_{k}(t).

Since |Jαt(T)|Rε0|J_{\alpha}^{t}(T)|\geq R^{\varepsilon_{0}^{\prime}} for any Tk𝕋k,α,λ≁𝐧(t)T\in\bigcup_{k}\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t), we have that Yα(T)Y_{\alpha}(T) is quantitative two-ends at scale ε0\varepsilon_{0}^{\prime} (see Definition 2.9). What follows is a useful incidence estimate among the R1/2R^{1/2}-balls in 𝒬λ3\mathcal{Q}_{\lambda_{3}} and the RR-tubes in 𝕋k,α,λ≁𝐧(t)\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t).

Lemma 3.3.

Fix a pair (α,λ)(\alpha,\lambda). Denote by ν(Q)\nu(Q) the number of shading {Yα(T):Tk𝕋k,α,λ≁𝐧}\{Y_{\alpha}(T):T\in\bigcup_{k}\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}\} intersects QQ. Then, recalling |Yα(T)|λ|T||Y_{\alpha}(T)|\sim\lambda|T| and Θλ1[R]\Theta_{\lambda_{1}}[R] near (2.4), we clearly have

(3.21) Q𝒬λ3R3/2ν(Q)=Tk𝕋k,α,λ≁𝐧|Yα(T)|λλ1R2|Θλ1[R]|.\sum_{Q\in\mathcal{Q}_{\lambda_{3}}}R^{3/2}\nu(Q)=\sum_{T\in\bigcup_{k}\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}}|Y_{\alpha}(T)|\lesssim\lambda\lambda_{1}R^{2}|\Theta_{\lambda_{1}}[R]|.

More importantly, there is a subset 𝒬λ3,λ𝒬λ3\mathcal{Q}_{\lambda_{3},\lambda}\subset\mathcal{Q}_{\lambda_{3}} with

(3.22) |𝒬λ3𝒬λ3,λ|RΩ(δ)|𝒬λ3||\mathcal{Q}_{\lambda_{3}}\setminus\mathcal{Q}_{\lambda_{3},\lambda}|\lessapprox R^{-\Omega(\delta)}|\mathcal{Q}_{\lambda_{3}}|

so that ν(Q)RO(δ)R1/4λ1λ1\nu(Q)\lesssim R^{O(\delta)}R^{1/4}\lambda^{-1}\lambda_{1} whenever Q𝒬λ3,λQ\in\mathcal{Q}_{\lambda_{3},\lambda}.

Proof.

Note that by (2.4), k𝕋k,α,λ≁𝐧\bigcup_{k}\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda} contains λ1\lesssim\lambda_{1} parallel tubes. After rescaling, apply Lemma 2.11 with 𝒯=k𝕋k,α,λ≁𝐧{\mathcal{T}}=\bigcup_{k}\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}, m=λ1m=\lambda_{1}, Y=YαY=Y_{\alpha}, and A=T𝒯Yα(T)A=\bigcup_{T\in{\mathcal{T}}}Y_{\alpha}(T) (which is a subset of Q𝒬λ3Q\bigcup_{Q\in\mathcal{Q}_{\lambda_{3}}}Q). Thus, there is a dyadic number

(3.23) μR1/4λ1λ1\mu\lessapprox R^{1/4}\lambda^{-1}\lambda_{1}

and a set AμAA_{\mu}\subset A, such that for any other dyadic number μ\mu^{\prime}, the set AμA_{\mu^{\prime}} satisfies |Aμ|μ|Aμ|/μ|A_{\mu^{\prime}}|\lesssim\mu|A_{\mu}|/\mu^{\prime}. Summing up all dyadic μRO(δ)μ\mu^{\prime}\geq R^{O(\delta)}\mu one has

(3.24) |μRO(δ)μAμ|RΩ(δ)|Aμ|RΩ(δ)|A|.\Big{|}\bigcup_{\mu^{\prime}\gtrapprox R^{O(\delta)}\mu}A_{\mu^{\prime}}\Big{|}\lessapprox R^{-\Omega(\delta)}|A_{\mu}|\lessapprox R^{-\Omega(\delta)}|A|.

Since μRO(δ)μAμ\bigcup_{\mu^{\prime}\gtrapprox R^{O(\delta)}\mu}A_{\mu^{\prime}} is a subset of Q𝒬λ3Q\bigcup_{Q\in\mathcal{Q}_{\lambda_{3}}}Q, there is a subset 𝒬λ3,λ𝒬λ3\mathcal{Q}_{\lambda_{3},\lambda}\subset\mathcal{Q}_{\lambda_{3}} with

(3.25) |𝒬λ3𝒬λ3,λ|RΩ(δ)|𝒬λ3|,|\mathcal{Q}_{\lambda_{3}}\setminus\mathcal{Q}_{\lambda_{3},\lambda}|\lessapprox R^{-\Omega(\delta)}|\mathcal{Q}_{\lambda_{3}}|,

so that each Q𝒬λ3,λQ\in\mathcal{Q}_{\lambda_{3},\lambda} intersects ν(Q)RO(δ)R1/4λ1λ1\nu(Q)\lesssim R^{O(\delta)}R^{1/4}\lambda^{-1}\lambda_{1} shadings Yα(T)Y_{\alpha}(T). ∎

Since for each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k} and each T𝕋k,α,λ≁𝐧T\in\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda} we have for Q𝒬λ3Q\in\mathcal{Q}_{\lambda_{3}}, QYα(T)=QTQ\cap Y_{\alpha}(T)=Q\cap T when QBkQ\subset B_{k}. A direct corollary of Lemma 3.3 is the following.

Corollary 3.4.

Fix a pair (α,λ)(\alpha,\lambda). For each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k}, let 𝒬λ3k={Q𝒬λ3:QBk}\mathcal{Q}_{\lambda_{3}}^{k}=\{Q\in\mathcal{Q}_{\lambda_{3}}:Q\cap B_{k}\not=\varnothing\}. Suppose |𝒬λ3k|RO(δ2)|𝒬λ3||\mathcal{Q}_{\lambda_{3}}^{k}|\geq R^{-O(\delta^{2})}|\mathcal{Q}_{\lambda_{3}}|. Then there is a subset 𝒬λ3,λk𝒬λ3k𝒬λ3,λ\mathcal{Q}_{\lambda_{3},\lambda}^{k}\subset\mathcal{Q}_{\lambda_{3}}^{k}\cap\mathcal{Q}_{\lambda_{3},\lambda} with

(3.26) |𝒬λ3k𝒬λ3,λk|RΩ(δ)|𝒬λ3k||\mathcal{Q}_{\lambda_{3}}^{k}\setminus\mathcal{Q}_{\lambda_{3},\lambda}^{k}|\lessapprox R^{-\Omega(\delta)}|\mathcal{Q}_{\lambda_{3}}^{k}|

so that each Q𝒬λ3,λkQ\in\mathcal{Q}_{\lambda_{3},\lambda}^{k} intersects RO(δ)R1/4λ1λ1\lesssim R^{O(\delta)}R^{1/4}\lambda^{-1}\lambda_{1} tubes T𝕋k,α,λ≁𝐧T\in\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}.

3.3.2. Second type of related tubes

Suppose m1+1tm2m_{1}+1\leq t\leq m_{2}. In this case, we focus on those R/rt1/2R/r_{t}^{1/2}-balls in (t)\mathcal{B}(t) (see Section 3.2.2, the second sorting of leaves) and those fat tubes T~𝒯~(t)\widetilde{T}\in\widetilde{\mathcal{T}}(t), where 𝒯~(t)\widetilde{\mathcal{T}}(t) is a collection of R/rt1/2×R/rt1/2×RR/r_{t}^{1/2}\times R/r_{t}^{1/2}\times R-tubes that each T~𝒯~(t)\widetilde{T}\in\widetilde{\mathcal{T}}(t) contains at least one RR-tube TT that (fρl)T0(f_{\rho_{l}})_{T}\not=0 (see Section 2.1 for the step-ρl\rho_{l} function fρlf_{\rho_{l}}), and that any two fat tubes in 𝒯~(t)\widetilde{\mathcal{T}}(t) either are parallel, or make an angle rt1/2\gtrsim r_{t}^{-1/2}. Let ρj\rho_{j} be that ρjR/rt1/2ρj1\rho_{j}\geq R/r_{t}^{1/2}\geq\rho_{j-1} (see (2.3) for ρj\rho_{j}), so there are at most RO(δ)κ2(j)R^{O(\delta)}\kappa_{2}(j) parallel tubes in 𝒯~(t)\widetilde{\mathcal{T}}(t) (see above (2.6)).

Similar to Definition 3.2, we define a shading Y(T~)T~Y(\widetilde{T})\subset\widetilde{T} on each fat tube T~𝒯~(t)\widetilde{T}\in\widetilde{\mathcal{T}}(t) via the R/r1/2R/r^{1/2}-balls in (t)\mathcal{B}(t).

Definition 3.5.

For each fat tube T~𝒯~(t)\widetilde{T}\in\widetilde{\mathcal{T}}(t), define a shading Y(T~)Y(\widetilde{T}) as the union of all the R/rt1/2R/r_{t}^{1/2}-balls in (t)\mathcal{B}(t) that also intersect T~\widetilde{T}. Namely,

(3.27) Y(T~)=B(t)T~B.Y(\widetilde{T})=\bigcup_{B\in\mathcal{B}(t)}\widetilde{T}\cap B.

Recall ε0=ε10\varepsilon_{0}=\varepsilon^{10} and ε0=ε15\varepsilon_{0}^{\prime}=\varepsilon^{15}. For each T~𝒯~(t)\widetilde{T}\in\widetilde{\mathcal{T}}(t), we similarly partition it into Rε0R^{\varepsilon_{0}} many R1ε0R^{1-\varepsilon_{0}}-segments {T~j}\{\widetilde{T}_{j}\}. We sort the segments according to |Y(T~j)||Y(\widetilde{T}_{j})|: Let JαtJ_{\alpha}^{t} be the collection of jj such that |Y(T~j)|α|Y(\widetilde{T}_{j})|\sim\alpha. Define a new shading

(3.28) Yα(T~)=jJαtY(T~j).Y_{\alpha}(\widetilde{T})=\bigcup_{j\in J_{\alpha}^{t}}Y(\widetilde{T}_{j}).

For each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k}, define 𝒯~k(t)={T~𝒯~(t):Y(T~)Bk}\widetilde{\mathcal{T}}_{k}(t)=\{\widetilde{T}\in\widetilde{\mathcal{T}}(t):Y(\widetilde{T})\cap B_{k}\not=\varnothing\}. Then we can partition it as

(3.29) 𝒯~k(t)=α,λ𝒯~k,α,λ(t)\widetilde{\mathcal{T}}_{k}(t)=\bigsqcup_{\alpha,\lambda}\widetilde{\mathcal{T}}_{k,\alpha,\lambda}(t)

so that for all T~𝒯~k,α,λ(t)\widetilde{T}\in\widetilde{\mathcal{T}}_{k,\alpha,\lambda}(t)

(3.30) |Yα(T~)|λ|T~|,|Y_{\alpha}(\widetilde{T})|\sim\lambda|\widetilde{T}|,

and hence the mass |Jαt(T~)||J_{\alpha}^{t}(\widetilde{T})| are about the same up to a constant multiple. Note that for B(t)B\in\mathcal{B}(t), BYα(T~)=BT~B\cap Y_{\alpha}(\widetilde{T})=B\cap\widetilde{T} when T~𝒯~k(t)\widetilde{T}\in\widetilde{\mathcal{T}}_{k}(t) and BBkB\subset B_{k}

We similarly distinguish two cases: |Jαt(T~)|Rε0|J_{\alpha}^{t}(\widetilde{T})|\leq R^{\varepsilon_{0}^{\prime}} and |Jαt(T~)|Rε0|J_{\alpha}^{t}(\widetilde{T})|\geq R^{\varepsilon_{0}^{\prime}}. For each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k}, define the collection of related tubes and non-related tubes

(3.31) 𝒯~k𝐧(t)={T~𝒯~:|Jαt(T~)|Rε0},𝒯~k≁𝐧(t)=𝒯~k(t)𝒯~k𝐧(t).\widetilde{\mathcal{T}}^{\sim_{{\bf n}}}_{k}(t)=\{\widetilde{T}\in\widetilde{\mathcal{T}}:|J_{\alpha}^{t}(\widetilde{T})|\leq R^{\varepsilon_{0}^{\prime}}\},\hskip 14.22636pt\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k}(t)=\widetilde{\mathcal{T}}_{k}(t)\setminus\widetilde{\mathcal{T}}^{\sim_{{\bf n}}}_{k}(t).

Hence any related tube T~𝒯~𝐧(t)\widetilde{T}\in\widetilde{\mathcal{T}}^{\sim_{{\bf n}}}(t) is related to Rε0\lesssim R^{\varepsilon_{0}^{\prime}} balls BkB_{k}. Now for each BkB_{k} define a collection of related RR-tubes

(3.32) 𝕋k𝐧(t)={T𝕋λ1[R]:TT~ for some T~𝒯~k𝐧(t)}\mathbb{T}^{\sim_{{\bf n}}}_{k}(t)=\{T\in\mathbb{T}_{\lambda_{1}}[R]:T\subset\widetilde{T}\text{ for some }\widetilde{T}\in\widetilde{\mathcal{T}}^{\sim_{{\bf n}}}_{k}(t)\}

as well as a collection of non-related RR-tubes

(3.33) 𝕋k≁𝐧(t)={T𝕋λ1[R]:TT~ for some T~𝒯~k≁𝐧(t)}.\mathbb{T}^{\not\sim_{{\bf n}}}_{k}(t)=\{T\in\mathbb{T}_{\lambda_{1}}[R]:T\subset\widetilde{T}\text{ for some }\widetilde{T}\in\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k}(t)\}.

Recall (3.29). Fix a pair (α,λ)(\alpha,\lambda), define

(3.34) 𝒯~k,α,λ≁𝐧(t)=𝒯~k,α,λ(t)𝒯~k≁𝐧(t)\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t)=\widetilde{\mathcal{T}}_{k,\alpha,\lambda}(t)\cap\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k}(t)

as well as

(3.35) 𝕋k,α,λ≁𝐧(t)={T𝕋λ1[R]:TT~ for some T~𝒯~k,α,λ≁𝐧(t)}.\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t)=\{T\in\mathbb{T}_{\lambda_{1}}[R]:T\subset\widetilde{T}\text{ for some }\widetilde{T}\in\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t)\}.

Note that for each fat tube T~k𝒯~k,α,λ≁𝐧(t)\widetilde{T}\in\bigcup_{k}\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t), by definition |Jαt(T~)|Rε0|J_{\alpha}^{t}(\widetilde{T})|\geq R^{\varepsilon_{0}^{\prime}} and |Yα(T~)|λ|T~||Y_{\alpha}(\widetilde{T})|\sim\lambda|\widetilde{T}|. What follows is an incidence estimate among the R/rt1/2R/r_{t}^{1/2}-balls in (t)\mathcal{B}(t) and the fat tubes in k𝒯~k,α,λ≁𝐧(t)\bigcup_{k}\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t).

Lemma 3.6.

Fix a pair (α,λ)(\alpha,\lambda). There is a subset λ(t)(t)\mathcal{B}_{\lambda}(t)\subset\mathcal{B}(t) with

(3.36) |(t)λ(t)|RΩ(δ)|(t)||\mathcal{B}(t)\setminus\mathcal{B}_{\lambda}(t)|\lessapprox R^{-\Omega(\delta)}|\mathcal{B}(t)|

so that each R/rt1/2R/r_{t}^{1/2}-ball Bλ(t)B\in\mathcal{B}_{\lambda}(t) intersects RO(δ)rt1/4λ1κ2(j)\lesssim R^{O(\delta)}r_{t}^{1/4}\lambda^{-1}\kappa_{2}(j) shadings Yα(T~)Y_{\alpha}(\widetilde{T}) with T~k𝒯~k,α,λ≁𝐧(t)\widetilde{T}\in\bigcup_{k}\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t).

The proof of Lemma 3.6 is similar to the one of Lemma 3.3. One just needs to notice that k𝒯~k,α,λ≁𝐧(t)\bigcup_{k}\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t) contains RO(δ)κ2(j)\lesssim R^{O(\delta)}\kappa_{2}(j) parallel fat tubes (see the beginning of Section 3.3.2). We omit details.

Similar to Corollary 3.4, we have a corollary of Lemma 3.6.

Corollary 3.7.

Fix a pair (α,λ)(\alpha,\lambda). For each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k}, let k(t)={B(t):BBk}\mathcal{B}^{k}(t)=\{B\in\mathcal{B}(t):B\cap B_{k}\not=\varnothing\}. Suppose |k(t)|RO(δ2)|(t)||\mathcal{B}^{k}(t)|\geq R^{-O(\delta^{2})}|\mathcal{B}(t)|. Then there is a subset λk(t)k(t)λ(t)\mathcal{B}_{\lambda}^{k}(t)\subset\mathcal{B}^{k}(t)\cap\mathcal{B}_{\lambda}(t) with

(3.37) |k(t)λk(t)|RΩ(δ)|k(t)||\mathcal{B}^{k}(t)\setminus\mathcal{B}_{\lambda}^{k}(t)|\lessapprox R^{-\Omega(\delta)}|\mathcal{B}^{k}(t)|

so that each R/rt1/2R/r_{t}^{1/2}-ball Bλ(t)B\in\mathcal{B}_{\lambda}(t) intersects RO(δ)rt1/4λ1κ2(j)\lesssim R^{O(\delta)}r_{t}^{1/4}\lambda^{-1}\kappa_{2}(j) fat tubes T~𝒯~k,α,λ≁𝐧(t)\widetilde{T}\in\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t) (see Section 2.1 for κ2(j)\kappa_{2}(j)). Also, since Yα(T~)Bk=T~BkY_{\alpha}(\widetilde{T})\cap B_{k}=\widetilde{T}\cap B_{k}, every T~𝒯~k,α,λ≁𝐧(t)\widetilde{T}\in\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t) intersects λrt1/2\lesssim\lambda r_{t}^{1/2} balls in λk(t)\mathcal{B}_{\lambda}^{k}(t).

At this point we finish defining the new related tubes at all scales r1,,rm2r_{1},\ldots,r_{m_{2}}. Recall the old relation \sim in Section 2.4. Define for each R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k} the ultimate related tubes and non-related tubes as (recall (2.34) and (2.35))

(3.38) 𝕋k𝐧=𝕋k(t=1m2𝕋k𝐧(t)),𝕋k≁𝐧=(t=1m2𝕋k≁𝐧(t))𝕋k≁,\mathbb{T}^{\sim_{{\bf n}}}_{k}=\mathbb{T}_{k}^{\sim}\cup\Big{(}\bigcup_{t=1}^{m_{2}}\mathbb{T}^{\sim_{{\bf n}}}_{k}(t)\Big{)},\hskip 14.22636pt\mathbb{T}^{\not\sim_{{\bf n}}}_{k}=\Big{(}\bigcap_{t=1}^{m_{2}}\mathbb{T}^{\not\sim_{{\bf n}}}_{k}(t)\Big{)}\cap\mathbb{T}_{k}^{\not\sim},

so that each Tk𝕋k𝐧T\in\bigcup_{k}\mathbb{T}^{\sim_{{\bf n}}}_{k} belongs to Rε0\lesssim R^{\varepsilon_{0}^{\prime}} collections {𝕋k𝐧}k\{\mathbb{T}^{\sim_{{\bf n}}}_{k}\}_{k}. From these we can define a related function and a non-related function

(3.39) fk𝐧=𝟏BkT𝕋k𝐧fT,fk≁𝐧=𝟏BkT𝕋k≁𝐧fT=𝟏Bkfkfk𝐧,f^{\sim_{{\bf n}}}_{k}={\bf{1}}_{B_{k}}\sum_{T\in\mathbb{T}^{\sim_{{\bf n}}}_{k}}f_{T},\hskip 14.22636ptf^{\not\sim_{{\bf n}}}_{k}={\bf{1}}_{B_{k}}\sum_{T\in\mathbb{T}^{\not\sim_{{\bf n}}}_{k}}f_{T}={\bf{1}}_{B_{k}}f_{k}-f^{\sim_{{\bf n}}}_{k},

where fk=T𝕋kfTf_{k}=\sum_{T\in\mathbb{T}_{k}}f_{T} (see above (3.17) for 𝕋k\mathbb{T}_{k}). We remark that the unrelated function fk≁𝐧f^{\not\sim_{{\bf n}}}_{k} still enjoys the broom estimate (2.38) (see Remark 2.7).

3.4. Handling the related function

Recall Lemma 2.4 that EfBLp(O)p\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p} are about the same for all O𝒪leafO^{\prime}\in\mathcal{O}_{leaf}. Suppose there is a fraction 1\gtrapprox 1 of O𝒪leafO^{\prime}\in\mathcal{O}_{leaf} that EfBLp(O)pkEfk𝐧BLp(O)p\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p}\lesssim\sum_{k}\|Ef^{\sim_{{\bf n}}}_{k}\|_{\textup{BL}^{p}(O^{\prime})}^{p}. Then we can conclude our main estimate (1.4) by induction on scales.

Lemma 3.8.

Suppose (1.4) is true for scales R/2\leq R/2. Then

(3.40) BkEfk𝐧Lp(Bk)pCεpR(1ε0)pε+2ε0f22supθfθLave2p2.\sum_{B_{k}}\|Ef^{\sim_{{\bf n}}}_{k}\|_{L^{p}(B_{k})}^{p}\leq C_{\varepsilon}^{p}R^{(1-\varepsilon_{0})p\varepsilon+2\varepsilon_{0}^{\prime}}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}.

Therefore, from (2.19) and the fact that there is a fraction 1\gtrapprox 1 of O𝒪leafO^{\prime}\in\mathcal{O}_{leaf} that EfBLp(O)pkEfk𝐧BLp(O)p\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p}\lesssim\sum_{k}\|Ef^{\sim_{{\bf n}}}_{k}\|_{\textup{BL}^{p}(O^{\prime})}^{p}, one has

(3.41) EfBLp(BR)p\displaystyle\|Ef\|_{\textup{BL}^{p}(B_{R})}^{p}\lessapprox CεpR(1ε0)pε+2ε0f22supθfθLave2p2\displaystyle\,C_{\varepsilon}^{p}R^{(1-\varepsilon_{0})p\varepsilon+2\varepsilon_{0}^{\prime}}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}
(3.42) \displaystyle\leq Rpεf22supθfθLave2p2,\displaystyle\,R^{p\varepsilon}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2},

which closes the induction and hence yields (1.4).

Proof.

Using the induction hypothesis (1.4) at scale R1ε0R^{1-\varepsilon_{0}} we have

(3.43) Efk𝐧Lp(Bk)pCεpR(1ε0)pεfk𝐧22supθ(fk𝐧)θLave2p2.\|Ef^{\sim_{{\bf n}}}_{k}\|_{L^{p}(B_{k})}^{p}\leq C_{\varepsilon}^{p}R^{(1-\varepsilon_{0})p\varepsilon}\|f^{\sim_{{\bf n}}}_{k}\|_{2}^{2}\sup_{\theta}\|(f^{\sim_{{\bf n}}}_{k})_{\theta}\|_{L^{2}_{ave}}^{p-2}.

Note that each Tk𝕋k𝐧T\in\bigcup_{k}\mathbb{T}^{\sim_{{\bf n}}}_{k} belongs to Rε0\lesssim R^{\varepsilon_{0}^{\prime}} collections {𝕋k𝐧}k\{\mathbb{T}^{\sim_{{\bf n}}}_{k}\}_{k}. Hence, after summing up all BkB_{k} one has by Plancherel

(3.44) BkEfk𝐧Lp(Bk)pCεpR(1ε0)pεBkfk𝐧22supθ(fk𝐧)θLave2p2\displaystyle\sum_{B_{k}}\|Ef^{\sim_{{\bf n}}}_{k}\|_{L^{p}(B_{k})}^{p}\leq C_{\varepsilon}^{p}R^{(1-\varepsilon_{0})p\varepsilon}\sum_{B_{k}}\|f^{\sim_{{\bf n}}}_{k}\|_{2}^{2}\sup_{\theta}\|(f^{\sim_{{\bf n}}}_{k})_{\theta}\|_{L^{2}_{ave}}^{p-2}
\displaystyle\leq CCεpR(1ε0)pε+ε0f22supθfθLave2p2CεpR(1ε0)pε+2ε0f22supθfθLave2p2.\displaystyle\,CC_{\varepsilon}^{p}R^{(1-\varepsilon_{0})p\varepsilon+\varepsilon_{0}^{\prime}}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}\leq C_{\varepsilon}^{p}R^{(1-\varepsilon_{0})p\varepsilon+2\varepsilon_{0}^{\prime}}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}.

This is what we desire. ∎

Suppose instead there is a fraction 1\gtrapprox 1 of O𝒪leafO^{\prime}\in\mathcal{O}_{leaf} that EfBLp(O)pkEfk≁𝐧BLp(O)p\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p}\lesssim\sum_{k}\|Ef^{\not\sim_{{\bf n}}}_{k}\|_{\textup{BL}^{p}(O^{\prime})}^{p}. We will handle this case in the rest of the paper.

4. Finding the correct scale

From the end of last section, we know that there is a fraction 1\gtrapprox 1 of O𝒪leafO^{\prime}\in\mathcal{O}_{leaf} that EfBLp(O)pkEfk≁𝐧BLp(O)p\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p}\lesssim\sum_{k}\|Ef^{\not\sim_{{\bf n}}}_{k}\|_{\textup{BL}^{p}(O^{\prime})}^{p}. By pigeonholing, there is an R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k} (which we fix from now on) and a subset 𝒪leaf,k≁𝒪leaf\mathcal{O}_{leaf,k}^{\not\sim}\subset\mathcal{O}_{leaf} so that

  1. (1)

    |𝒪leaf,k≁|R10ε0|𝒪leaf||\mathcal{O}_{leaf,k}^{\not\sim}|\gtrapprox R^{-10\varepsilon_{0}}|\mathcal{O}_{leaf}|.

  2. (2)

    Efk≁𝐧BLp(O)\|Ef^{\not\sim_{{\bf n}}}_{k}\|_{\textup{BL}^{p}(O^{\prime})} are about the same up to constant multiple for all O𝒪leaf,k≁O^{\prime}\in\mathcal{O}_{leaf,k}^{\not\sim}.

  3. (3)

    It holds that

    (4.1) O𝒪leafEfBLp(O)pR10ε0O𝒪leaf,k≁Efk≁𝐧BLp(O)p.\sum_{O^{\prime}\in\mathcal{O}_{leaf}}\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p}\lessapprox R^{10\varepsilon_{0}}\sum_{O^{\prime}\in\mathcal{O}_{leaf,k}^{\not\sim}}\|Ef^{\not\sim_{{\bf n}}}_{k}\|_{\textup{BL}^{p}(O^{\prime})}^{p}.

Recall (3.39) that fk≁𝐧f^{\not\sim_{{\bf n}}}_{k} is a sum of wave packets fTf_{T} for T𝕋k≁𝐧T\in\mathbb{T}^{\not\sim_{{\bf n}}}_{k}, where

(4.2) 𝕋k≁𝐧j=1m2𝕋k≁𝐧(j)𝕋k≁𝐧(t)\mathbb{T}^{\not\sim_{{\bf n}}}_{k}\subset\bigcap_{j=1}^{m_{2}}\mathbb{T}^{\not\sim_{{\bf n}}}_{k}(j)\subset\mathbb{T}^{\not\sim_{{\bf n}}}_{k}(t)

for any tt. Hence from (3.17), (3.20), (3.34), and (3.35), we know that at every scale rtr_{t} there is a partition

(4.3) 𝕋k≁𝐧=α,λ𝕋k,α,λ,t≁𝐧\mathbb{T}^{\not\sim_{{\bf n}}}_{k}=\bigsqcup_{\alpha,\lambda}\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda,t}

with 𝕋k,α,λ,t≁𝐧𝕋k,α,λ≁𝐧(t)\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda,t}\subset\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t) (see (3.20)). We would like to consider the generators of the algebra created by the sets {𝕋k,α,λ,t≁𝐧}α,λ,t\{\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda,t}\}_{\alpha,\lambda,t}. To do so, define two vectors α=(α(1),,α(m2))\vec{\alpha}=(\alpha(1),\ldots,\alpha(m_{2})), λ=(λ(1),,λ(m2))\vec{\lambda}=(\lambda(1),\ldots,\lambda(m_{2})), and the set

(4.4) 𝕋k,α,λ≁𝐧=t𝕋k,α(t),λ(t),t≁𝐧.\mathbb{T}_{k,\vec{\alpha},\vec{\lambda}}^{\not\sim_{{\bf n}}}=\bigcap_{t}\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha(t),\lambda(t),t}.

Then the sets {𝕋k,α,λ≁𝐧}α,λ\{\mathbb{T}_{k,\vec{\alpha},\vec{\lambda}}^{\not\sim_{{\bf n}}}\}_{\vec{\alpha},\vec{\lambda}} form a disjoint union of 𝕋k≁𝐧\mathbb{T}^{\not\sim_{{\bf n}}}_{k}. Since the number of choices for (α,λ)(\vec{\alpha},\vec{\lambda}) is bounded above by (logR)O(n2)=(logR)O(ε10)(\log R)^{O(n^{2})}=(\log R)^{O(\varepsilon^{-10})}, by pigeonholing there are a pair (α,λ)(\vec{\alpha},\vec{\lambda}) and a subset 𝒪leaf,k,α,λ≁𝒪leaf,k≁\mathcal{O}_{leaf,k,\vec{\alpha},\vec{\lambda}}^{\not\sim}\subset\mathcal{O}_{leaf,k}^{\not\sim} with |𝒪leaf,k,α,λ≁||𝒪leaf,k≁||\mathcal{O}_{leaf,k,\vec{\alpha},\vec{\lambda}}^{\not\sim}|\gtrapprox|\mathcal{O}_{leaf,k}^{\not\sim}| so that the function fk,α,λ≁𝐧=T𝕋k,α,λ≁𝐧fTf^{\not\sim_{{\bf n}}}_{k,\vec{\alpha},\vec{\lambda}}=\sum_{T\in\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\vec{\alpha},\vec{\lambda}}}f_{T} satiafies

(4.5) O𝒪leafEfBLp(O)pRO(δ)O𝒪leaf,k,α,λ≁Efk,α,λ≁𝐧BLp(O)p,\sum_{O^{\prime}\in\mathcal{O}_{leaf}}\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p}\lesssim R^{O(\delta)}\sum_{O^{\prime}\in\mathcal{O}_{leaf,k,\vec{\alpha},\vec{\lambda}}^{\not\sim}}\|Ef^{\not\sim_{{\bf n}}}_{k,\vec{\alpha},\vec{\lambda}}\|_{\textup{BL}^{p}(O^{\prime})}^{p},

and that Efk,α,λ≁𝐧BLp(O)\|Ef^{\not\sim_{{\bf n}}}_{k,\vec{\alpha},\vec{\lambda}}\|_{\textup{BL}^{p}(O^{\prime})} are about the same for all O𝒪leaf,k,α,λ≁(t)O^{\prime}\in\mathcal{O}_{leaf,k,\vec{\alpha},\vec{\lambda}}^{\not\sim}(t) up to a constant multiple.

To ease notation, we set

(4.6) g=fk,α,λ≁𝐧,𝕋g[R]:=𝕋k,α,λ≁𝐧,𝒪leafg=𝒪leaf,k,α,λ≁g=f^{\not\sim_{{\bf n}}}_{k,\vec{\alpha},\vec{\lambda}},\hskip 14.22636pt\mathbb{T}_{g}[R]:=\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\vec{\alpha},\vec{\lambda}},\hskip 14.22636pt\mathcal{O}_{leaf}^{g}=\mathcal{O}_{leaf,k,\vec{\alpha},\vec{\lambda}}^{\not\sim}

in the rest of the paper for simplicity. Hence g=T𝕋g[R]fTg=\sum_{T\in\mathbb{T}_{g}[R]}f_{T}, EgBLp(O)\|Eg\|_{\textup{BL}^{p}(O^{\prime})} are about the same up to a constant multiple for all O𝒪leafgO^{\prime}\in\mathcal{O}_{leaf}^{g},

(4.7) O𝒪leafEfBLp(O)pRO(δ)O𝒪leafgEgBLp(O)p,\sum_{O^{\prime}\in\mathcal{O}_{leaf}}\|Ef\|_{\textup{BL}^{p}(O^{\prime})}^{p}\lesssim R^{O(\delta)}\sum_{O^{\prime}\in\mathcal{O}_{leaf}^{g}}\|Eg\|_{\textup{BL}^{p}(O^{\prime})}^{p},

and also

(4.8) |𝒪leafg|RO(ε0)|𝒪leaf|.|\mathcal{O}_{leaf}^{g}|\gtrapprox R^{-O(\varepsilon_{0})}|\mathcal{O}_{leaf}|.

We remark that the leaves in 𝒪leafg\mathcal{O}_{leaf}^{g} are all contained in the R1ε0R^{1-\varepsilon_{0}}-ball BkB_{k}.

We plug the new function EgEg back to the tree structure 𝒪tree\mathcal{O}_{tree} obtained in Lemma 2.4, and want to find the scale that the tangent case dominates. The following lemma is an analogy of Lemma 3.9 in [Wan22]. Its proof is also similar, so the detail is omitted.

Lemma 4.1.

Recall the tree structure obtained in Lemma 2.4. For the function EgEg in (4.6), either of the following happens:

  1. (1)

    There are 2Rε0\geq 2R^{-\varepsilon_{0}}-fraction of leaves O𝒪leafgO^{\prime}\in\mathcal{O}_{leaf}^{g} so that

    (4.9) EgBLp(O)Rε0EgOBLp(O),\|Eg\|_{\textup{BL}^{p}(O^{\prime})}\leq R^{\varepsilon_{0}}\|Eg_{O^{\prime}}\|_{\textup{BL}^{p}(O^{\prime})},

    which corresponds to the case that the polynomial partitioning iteration does not stop before reaching the smallest scale RδR^{\delta}.

  2. (2)

    We can choose the smallest integer tt, 1tn1\leq t\leq n (see Lemma 2.4 for nn), so that there is a subset 𝒪leafg(t)𝒪leafg\mathcal{O}_{leaf}^{g}(t)\subset\mathcal{O}_{leaf}^{g} with

    (4.10) |𝒪leafg(t)|2Rjt1ε0|𝒪leafg|,|\mathcal{O}_{leaf}^{g}(t)|\geq 2R_{j_{t-1}}^{-\varepsilon_{0}}|\mathcal{O}_{leaf}^{g}|,

    and for each O𝒪leafg(t)O^{\prime}\in\mathcal{O}_{leaf}^{g}(t),

    (4.11) EgBLp(O)Rjt1ε0EgStBLp(O),\|Eg\|_{\textup{BL}^{p}(O^{\prime})}\leq R_{j_{t-1}}^{\varepsilon_{0}}\|Eg_{S_{t}}\|_{\textup{BL}^{p}(O^{\prime})},

    while for all 1l<t1\leq l<t,

    (4.12) EgBLp(O)Rjl1ε0EgSlBLp(O).\|Eg\|_{\textup{BL}^{p}(O^{\prime})}\geq R_{j_{l-1}}^{\varepsilon_{0}}\|Eg_{S_{l}}\|_{\textup{BL}^{p}(O^{\prime})}.

If the second case holds, then there are a degree D=djtD=d^{j_{t}}, a collection of scale-tt fat surfaces, which we still denote by 𝒮t\mathcal{S}_{t}, so that each St𝒮tS_{t}\in\mathcal{S}_{t} contains about the same amount of leaves in 𝒪leafg(t)\mathcal{O}^{g}_{leaf}(t), and (by (2.18) and (2.19))

(4.13) |𝒮t|RO(δ)D3,|\mathcal{S}_{t}|\gtrapprox R^{-O(\delta)}D^{3},

and that the set {O𝒪leafg(t):OSt𝒮tSt}\{O\in\mathcal{O}^{g}_{leaf}(t):O\subset\bigcup_{S_{t}\in\mathcal{S}_{t}}S_{t}\} contains a fraction 1\gtrapprox 1 leaves in 𝒪leafg(t)\mathcal{O}^{g}_{leaf}(t). Still denote this fraction of leaves by 𝒪leafg(t)\mathcal{O}^{g}_{leaf}(t). In addition, from Lemma 2.4 item (6) we have

(4.14) St𝒮tgSt22Dg22.\sum_{S_{t}\in\mathcal{S}_{t}}\|g_{S_{t}}\|_{2}^{2}\lesssim D\|g\|_{2}^{2}.

If the first case in Lemma 4.1 holds, then similar to Lemma 4.1 in [Wan22], one can prove (1.4) for p>3p>3. Therefore, let us assume that the second case in lemma 4.1 is true, so we are given a tt and a corresponding scale rtr_{t}.

Remark 4.2.

Since EgBLp(O)\|Eg\|_{\textup{BL}^{p}(O^{\prime})} are about the same (see the beginning of this section), without loss of generality let us assume EgStBLp(O)\|Eg_{S_{t}}\|_{\textup{BL}^{p}(O^{\prime})} are also about the same up to a constant multiple for all O𝒪leafg(t)O^{\prime}\in\mathcal{O}_{leaf}^{g}(t).

Recall in (2.20) that each leaf OO^{\prime} is within a containing chain OSnSn1S1BRO^{\prime}\subset S_{n}\subset S_{n-1}\subset\cdots\subset S_{1}\subset B_{R}. Similar to (2.21) and (2.22), we have for SjOjSj1S_{j}\subset O_{j}\subset S_{j-1},

(4.15) EgOj(x)=EgSj1,trans(x),xOj,Eg_{O_{j}}(x)=Eg_{S_{j-1},trans}(x),\hskip 14.22636ptx\in O_{j},

and hence for any subcollection 𝕋𝕋Oj\mathbb{T}\subset\mathbb{T}_{O_{j}},

(4.16) EgOj𝕋(x)=Eg𝕋(x)(l=1j1EgSl𝕋(x)),xOj.Eg_{O_{j}}^{\mathbb{T}}(x)=Eg^{\mathbb{T}}(x)-\Big{(}\sum_{l=1}^{j-1}Eg_{S_{l}}^{\mathbb{T}}(x)\Big{)},\hskip 14.22636ptx\in O_{j}.

For the StS_{t} we have

(4.17) EgSt=Eg𝕋St(l=1j1EgSl𝕋St).Eg_{S_{t}}=Eg^{\mathbb{T}_{S_{t}}}-\Big{(}\sum_{l=1}^{j-1}Eg_{S_{l}}^{\mathbb{T}_{S_{t}}}\Big{)}.

Note that (2.23) still holds when ff is replaced by gg. Hence the contribution from EgSl𝕋StEg_{S_{l}}^{\mathbb{T}_{S_{t}}} is also dominated by the contribution from EgSlEg_{S_{l}}, which is negligible since step tt is the first step that tangential case dominates (see (4.12)). Thus, for each leaf O𝒪leafg(t)O^{\prime}\in\mathcal{O}_{leaf}^{g}(t), one has similar to (2.24) that

(4.18) EgStBLp(O)Eg𝕋StBLp(O).\|Eg_{S_{t}}\|_{\textup{BL}^{p}(O^{\prime})}\sim\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(O^{\prime})}.

This leads to, by an abuse on notation EgBLp(BR)p=O𝒪leafg(t)EgBLp(O)p\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}=\sum_{O^{\prime}\in\mathcal{O}_{leaf}^{g}(t)}\|Eg\|_{\textup{BL}^{p}(O^{\prime})}^{p},

(4.19) EgBLp(BR)p\displaystyle\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p} RO(δ)StO𝒪leafg(t),OStEgStBLp(O)p\displaystyle\lesssim R^{O({\delta})}\sum_{S_{t}}\sum_{\begin{subarray}{c}O^{\prime}\in\mathcal{O}_{leaf}^{g}(t),\\ O^{\prime}\subset S_{t}\end{subarray}}\|Eg_{S_{t}}\|_{\textup{BL}^{p}(O^{\prime})}^{p}
(4.20) RO(δ)StO𝒪leafg(t),OStEg𝕋StBLp(O)p.\displaystyle\sim R^{O({\delta})}\sum_{S_{t}}\sum_{\begin{subarray}{c}O^{\prime}\in\mathcal{O}_{leaf}^{g}(t),\\ O^{\prime}\subset S_{t}\end{subarray}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(O^{\prime})}^{p}.

The step tt corresponds to a scale rt=Rjt1r_{t}=R_{j_{t}-1}, which we denote by rr in the rest of the paper for brevity. If rR1/2r\leq R^{1/2} then by Lemma 7.5 in [Wan22] we know that (1.4) is true when p>3.2=48/15p>3.2=48/15 (see also Remark 2.7). Hence, let us assume rR1/2r\geq R^{1/2} from now on. By Lemma 2.4 item (4), we know that the fat surfaces in 𝒮t\mathcal{S}_{t} are essentially r1/2+δr^{1/2+\delta}-separated. Let us put this into a lemma for later use.

Lemma 4.3.

The sets {Nr1/2+δ(St)}St𝒮t\{N_{r^{1/2+\delta}}(S_{t})\}_{S_{t}\in\mathcal{S}_{t}} are finitely overlapping.

Note that by (4.4), (4.6), the set 𝕋g[R]\mathbb{T}_{g}[R] is contained in 𝕋k,α,λ≁𝐧(t)\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t) for some α,λ\alpha,\lambda (see (3.20), (3.35) for 𝕋k,α,λ≁𝐧(t)\mathbb{T}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t)). The following two lemmas are the consequences of the two-ends reduction in Section 3. We remark that from the sorting of leaves (Section 3.2) and from (4.8), the assumptions |𝒬λ3k|RO(δ2)|𝒬λ3||\mathcal{Q}_{\lambda_{3}}^{k}|\geq R^{-O(\delta^{2})}|\mathcal{Q}_{\lambda_{3}}| and |k(t)|RO(δ2)|(t)||\mathcal{B}^{k}(t)|\geq R^{-O(\delta^{2})}|\mathcal{B}(t)| in Corollary 3.4 and Corollary 3.7 respectively hold readily.

Lemma 4.4.

Suppose R1/2r=rtR2/3R^{1/2}\leq r=r_{t}\leq R^{2/3}. Let ρj\rho_{j} be that ρjR/r1/2ρj1\rho_{j}\geq R/r^{1/2}\geq\rho_{j-1} (see (2.3) for ρj\rho_{j}). Then from Section 3.3.2 (Corollary 3.7 in particular) we have

  1. (1)

    Two dyadic numbers α,λ\alpha,\lambda.

  2. (2)

    A collection of R/r1/2×R/r1/2×RR/r^{1/2}\times R/r^{1/2}\times R-tubes 𝒯~k,α,λ≁𝐧(t)\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t) so that each RR-tube in 𝕋g[R]\mathbb{T}_{g}[R] (see (4.6) for 𝕋g[R]\mathbb{T}_{g}[R]) is contained in some fat tube T~𝒯~k,α,λ≁𝐧(t)\widetilde{T}\in\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t).

  3. (3)

    A collection of R/r1/2R/r^{1/2}-balls λk(t)\mathcal{B}_{\lambda}^{k}(t) so that each ball Bλk(t)B\in\mathcal{B}_{\lambda}^{k}(t) intersects RO(δ)r1/4λ1κ2(j)\lesssim R^{O(\delta)}r^{1/4}\lambda^{-1}\kappa_{2}(j) tubes T~𝒯~k,α,λ≁𝐧(t)\widetilde{T}\in\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t), and |k(t)λk(t)|RΩ(δ)|k(t)||\mathcal{B}^{k}(t)\setminus\mathcal{B}_{\lambda}^{k}(t)|\lessapprox R^{-\Omega(\delta)}|\mathcal{B}^{k}(t)|.

  4. (4)

    Every leaf in 𝒪leafg\mathcal{O}_{leaf}^{g} is contained in some of Bk(t)B\in\mathcal{B}^{k}(t).

  5. (5)

    Every T𝕋g[R]T\in\mathbb{T}_{g}[R] intersects λr1/2\lesssim\lambda r^{1/2} balls in λk(t)\mathcal{B}_{\lambda}^{k}(t).

Note that each Bk(t)B\in\mathcal{B}^{k}(t) contains about the same amount of leaves in 𝒪leaf\mathcal{O}_{leaf} (see Section 3.2.2). As a consequence of (3), (4), and |𝒪leafg(t)|RO(ε0)|𝒪leafg|RO(ε0)|𝒪leaf||\mathcal{O}_{leaf}^{g}(t)|\gtrsim R^{-O(\varepsilon_{0})}|\mathcal{O}_{leaf}^{g}|\gtrapprox R^{-O(\varepsilon_{0})}|\mathcal{O}_{leaf}| from Lemma 4.1 and (4.8) respectively, the set {O𝒪leafg:OB for some Bλk(t)}\{O^{\prime}\in\mathcal{O}_{leaf}^{g}:O^{\prime}\subset B\text{ for some }B\in\mathcal{B}_{\lambda}^{k}(t)\} contains a fraction 1\gtrapprox 1 of leaves in 𝒪leafg(t)\mathcal{O}_{leaf}^{g}(t). Hence, if still denote this fraction of leaves by 𝒪leafg(t)\mathcal{O}_{leaf}^{g}(t), then we have

  1. (6)

    Every leaf in 𝒪leafg(t)\mathcal{O}_{leaf}^{g}(t) is contained in some of Bλk(t)B\in\mathcal{B}^{k}_{\lambda}(t).

Lemma 4.5.

Suppose Rr=rtR2/3R\geq r=r_{t}\geq R^{2/3}. Let ρj\rho_{j} be that ρjR/r1/2ρj1\rho_{j}\geq R/r^{1/2}\geq\rho_{j-1} (see (2.3) for ρj\rho_{j}). We have from Section 3.2.1, Section 3.3.1 (Corollar 3.4 in particular) and Lemma 4.1 that

  1. (1)

    Three dyadic numbers λ2,λ3,λ6\lambda_{2},\lambda_{3},\lambda_{6}.

  2. (2)

    A collection of scale-rr fat surfaces 𝒮t\mathcal{S}_{t} and a collection of R1/2R^{1/2}-balls 𝒬λ3\mathcal{Q}_{\lambda_{3}} so that by Lemma 3.1, Lemma 4.1 ((4.13) in particular), every St𝒮tS_{t}\in\mathcal{S}_{t} is contained in BkB_{k} (see above (4.1) for BkB_{k}), and λ6|𝒮t|RO(δ)λ3|𝒬λ3|\lambda_{6}|\mathcal{S}_{t}|\approx R^{O(\delta)}\lambda_{3}|\mathcal{Q}_{\lambda_{3}}|.

  3. (3)

    A set of r1/2r^{1/2}-cubes 𝐪t{\bf q}_{t}. For every Q𝒬λ3,St𝒮tQ\in\mathcal{Q}_{\lambda_{3}},S_{t}\in\mathcal{S}_{t}, a set of r1/2r^{1/2}-cubes 𝐪St,Q={q𝐪t:qStQ}{\bf q}_{S_{t},Q}=\{q\in{\bf q}_{t}:q\subset S_{t}\cap Q\} with |𝐪St,Q|λ2|{\bf q}_{S_{t},Q}|\sim\lambda_{2} so that any leaf in 𝒪leafg\mathcal{O}_{leaf}^{g} contained in QStQ\cap S_{t} is contained by some q𝐪St,Qq\in{\bf q}_{S_{t},Q}. Also, |𝒮t(Q)|λ3|\mathcal{S}_{t}(Q)|\sim\lambda_{3} (see (3.11)) and the set 𝐪St={q𝐪t:qSt}{\bf q}_{S_{t}}=\{q\in{\bf q}_{t}:q\subset S_{t}\} has cardinality λ2λ6\lesssim\lambda_{2}\lambda_{6}.

  4. (4)

    A set 𝒬λ3k={Q𝒬λ3:QBk}\mathcal{Q}_{\lambda_{3}}^{k}=\{Q\in\mathcal{Q}_{\lambda_{3}}:Q\subset B_{k}\}. Since |𝒬λ3k|RO(δ2)|𝒬λ3||\mathcal{Q}_{\lambda_{3}}^{k}|\geq R^{-O(\delta^{2})}|\mathcal{Q}_{\lambda_{3}}| (mentioned above Lemma 4.4), we still have λ6|𝒮t|RO(δ)λ3|𝒬λ3k|\lambda_{6}|\mathcal{S}_{t}|\approx R^{O(\delta)}\lambda_{3}|\mathcal{Q}_{\lambda_{3}}^{k}|.

  5. (5)

    Two dyadic numbers α,λ\alpha,\lambda, a subset 𝒬λ3,λk\mathcal{Q}_{\lambda_{3},\lambda}^{k} with |𝒬λ3k𝒬λ3,λk|RΩ(δ)|𝒬λ3k||\mathcal{Q}_{\lambda_{3}}^{k}\setminus\mathcal{Q}_{\lambda_{3},\lambda}^{k}|\lessapprox R^{-\Omega(\delta)}|\mathcal{Q}_{\lambda_{3}}^{k}|, so that each Q𝒬λ3,λkQ\in\mathcal{Q}_{\lambda_{3},\lambda}^{k} intersects RO(δ)R1/4λ1λ1\lessapprox R^{O(\delta)}R^{1/4}\lambda^{-1}\lambda_{1} tubes in 𝕋g[R]\mathbb{T}_{g}[R]. Moreover, an L1L^{1} estimate (3.21).

  6. (6)

    Every leaf in 𝒪leafg\mathcal{O}_{leaf}^{g} is contained in some Q𝒬λ3kQ\in\mathcal{Q}_{\lambda_{3}}^{k}.

Note that each Q𝒬λ3kQ\in\mathcal{Q}_{\lambda_{3}}^{k} contains about the same amount of leaves in 𝒪leaf\mathcal{O}_{leaf} (see Section 3.2.1). As a consequence of (5), (6), and |𝒪leafg(t)|RO(ε0)|𝒪leafg|RO(ε0)|𝒪leaf||\mathcal{O}_{leaf}^{g}(t)|\gtrsim R^{-O(\varepsilon_{0})}|\mathcal{O}_{leaf}^{g}|\gtrapprox R^{-O(\varepsilon_{0})}|\mathcal{O}_{leaf}| from Lemma 4.1 and (4.8) respectively, the set {O𝒪leafg:OQ for some Q𝒬λ3,λk}\{O^{\prime}\in\mathcal{O}_{leaf}^{g}:O^{\prime}\subset Q\text{ for some }Q\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}\} contains a fraction RO(ε0)\gtrapprox R^{-O(\varepsilon_{0})} of leaves in 𝒪leafg(t)\mathcal{O}_{leaf}^{g}(t). Hence, if still denote this fraction of leaves by 𝒪leafg(t)\mathcal{O}_{leaf}^{g}(t), then we have

  1. (7)

    Every leaf in 𝒪leafg(t)\mathcal{O}_{leaf}^{g}(t) is contained in some of Q𝒬λ3,λkQ\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}.

In addition, since again each Q𝒬λ3kQ\in\mathcal{Q}_{\lambda_{3}}^{k} contains about the same amount of leaves in 𝒪leaf\mathcal{O}_{leaf}, by pigeonholing we can find a subset 𝒬¯λ3,λk𝒬λ3,λk\bar{\mathcal{Q}}_{\lambda_{3},\lambda}^{k}\subset\mathcal{Q}_{\lambda_{3},\lambda}^{k} so that

  1. (8)

    |𝒬¯λ3,λk|RO(δ)|𝒬λ3,λk||\bar{\mathcal{Q}}_{\lambda_{3},\lambda}^{k}|\gtrapprox R^{-O(\delta)}|\mathcal{Q}_{\lambda_{3},\lambda}^{k}|, and the set {O𝒪leafg(t):OQ for some Q𝒬¯λ3,λk}\{O^{\prime}\in\mathcal{O}_{leaf}^{g}(t):O^{\prime}\subset Q\text{ for some }Q\in\bar{\mathcal{Q}}_{\lambda_{3},\lambda}^{k}\} contains a fraction RO(ε0)\gtrapprox R^{-O(\varepsilon_{0})} of leaves in 𝒪leafg(t)\mathcal{O}_{leaf}^{g}(t), and each Q𝒬¯λ3,λkQ\in\bar{\mathcal{Q}}_{\lambda_{3},\lambda}^{k} intersects μRO(δ)R1/4λ1λ1\sim\mu\lessapprox R^{O(\delta)}R^{1/4}\lambda^{-1}\lambda_{1} tubes in 𝕋g[R]\mathbb{T}_{g}[R] (see item (5)). Moreover, by (3.21) we have μ|𝒬λ3,λk|RO(ε0)μ|𝒬¯λ3,λk|RO(ε0)λλ1R3/2\mu|\mathcal{Q}_{\lambda_{3},\lambda}^{k}|\lessapprox R^{O(\varepsilon_{0})}\mu|\bar{\mathcal{Q}}_{\lambda_{3},\lambda}^{k}|\lessapprox R^{O(\varepsilon_{0})}\lambda\lambda_{1}R^{3/2}.

5. First method

The first method will handle the case R1/2rR2/3R^{1/2}\leq r\leq R^{2/3}. Recall Lemma 4.1 ((4.13) in particular) that each St𝒮tS_{t}\in\mathcal{S}_{t} contains about the same amount of leaves in 𝒪leafg(t)\mathcal{O}_{leaf}^{g}(t). We have from (4.19)

(5.1) EgBLp(BR)p\displaystyle\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p} RO(δ)St𝒮tO𝒪leafg(t),OStEgStBLp(O)p\displaystyle\lesssim R^{O(\delta)}\sum_{S_{t}\in\mathcal{S}_{t}}\sum_{\begin{subarray}{c}O^{\prime}\in\mathcal{O}_{leaf}^{g}(t),\\ O^{\prime}\subset S_{t}\end{subarray}}\|Eg_{S_{t}}\|_{\textup{BL}^{p}(O^{\prime})}^{p}
(5.2) RO(δ)St𝒮tO𝒪leafg(t),OStEg𝕋StBLp(O)p.\displaystyle\sim R^{O(\delta)}\sum_{S_{t}\in\mathcal{S}_{t}}\sum_{\begin{subarray}{c}O^{\prime}\in\mathcal{O}_{leaf}^{g}(t),\\ O^{\prime}\subset S_{t}\end{subarray}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(O^{\prime})}^{p}.

5.1. Some more preparations

Cover each cell St𝒮tS_{t}\in\mathcal{S}_{t} with non-overlapping r1/2r^{1/2}-cubes qq, and let 𝐪St{\bf q}_{S_{t}} be the collection of all these cubes. Similar to (3.14),

(5.3) |𝐪St|r.|{\bf q}_{S_{t}}|\lessapprox r.

Note that by Lemma 4.3, the collections {𝐪St}St\{{\bf q}_{S_{t}}\}_{S_{t}} are finitely overlapped. Write

(5.4) EgBLp(BR)p\displaystyle\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p} RO(δ)St𝒮tq𝐪StO𝒪leafg(t),OqEgStBLp(O)p\displaystyle\lesssim R^{O(\delta)}\sum_{S_{t}\in\mathcal{S}_{t}}\sum_{q\in{\bf q}_{S_{t}}}\sum_{\begin{subarray}{c}O^{\prime}\in\mathcal{O}_{leaf}^{g}(t),\\ O^{\prime}\subset q\end{subarray}}\|Eg_{S_{t}}\|_{\textup{BL}^{p}(O^{\prime})}^{p}
(5.5) RO(δ)St𝒮tq𝐪StO𝒪leafg(t),OqEg𝕋StBLp(O)p.\displaystyle\sim R^{O(\delta)}\sum_{S_{t}\in\mathcal{S}_{t}}\sum_{q\in{\bf q}_{S_{t}}}\sum_{\begin{subarray}{c}O^{\prime}\in\mathcal{O}_{leaf}^{g}(t),\\ O^{\prime}\subset q\end{subarray}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(O^{\prime})}^{p}.

By dyadic pigeonholing, we can find a dyadic number η1\eta_{1}, a subset 𝐪St1𝐪St{\bf q}_{S_{t}}^{1}\subset{\bf q}_{S_{t}}, a subset 𝒮t1𝒮t\mathcal{S}_{t}^{1}\subset\mathcal{S}_{t}, and a subset 𝒪leafg(1)𝒪leafg(t)\mathcal{O}_{leaf}^{g(1)}\subset\mathcal{O}_{leaf}^{g}(t) so that

  1. (1)

    For all St𝒮t1S_{t}\in\mathcal{S}_{t}^{1}

    (5.6) |𝐪St1|η1.|{\bf q}_{S_{t}}^{1}|\sim\eta_{1}.
  2. (2)

    Each O𝒪leafg(1)O^{\prime}\in\mathcal{O}_{leaf}^{g(1)} is contained by some r1/2r^{1/2}-cube in some 𝐪St1{\bf q}_{S_{t}}^{1}, and each q𝐪St1q\in{\bf q}_{S_{t}}^{1} contains about the same amount of leaves in 𝒪leafg(1)\mathcal{O}_{leaf}^{g(1)} up to a constant multiple for St𝒮t1S_{t}\in\mathcal{S}_{t}^{1}.

  3. (3)

    It holds that

    (5.7) |𝒪leafg(1)||𝒪leafg|.|\mathcal{O}_{leaf}^{g(1)}|\gtrapprox|\mathcal{O}_{leaf}^{g}|.

Hence we also have

(5.8) |𝒮t1||𝒮t|.|\mathcal{S}_{t}^{1}|\gtrapprox|\mathcal{S}_{t}|.

Recall Lemma 4.4. Since each RR-tube T𝕋g[R]T\in\mathbb{T}_{g}[R] is contained by some fat tube T~𝒯~k,α,λ≁𝐧(t)\widetilde{T}\in\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t), we know that each rr-tube T𝕋StT^{\prime}\in\mathbb{T}_{S_{t}} with gT0g_{T^{\prime}}\not=0 is associated to one (and at least one) fat tube T~𝒯~k,α,λ≁𝐧(t)\widetilde{T}\in\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t) (see also Lemma 7.1 in [Gut18]). Thus, after deleting those T𝕋StT^{\prime}\in\mathbb{T}_{S_{t}} with gT=0g_{T^{\prime}}=0, for an StS_{t} and for some R/r1/2R/r^{1/2}-ball Bλk(t)B\in\mathcal{B}_{\lambda}^{k}(t) that StBS_{t}\subset B, the number of scale-rr directional caps in 𝕋St\mathbb{T}_{S_{t}} is bounded above by the number of tubes in 𝒯~k,α,λ≁𝐧(t)\widetilde{\mathcal{T}}^{\not\sim_{{\bf n}}}_{k,\alpha,\lambda}(t) intersecting BB, which is RO(δ)r1/4λ1κ2(j)\lessapprox R^{O(\delta)}r^{1/4}\lambda^{-1}\kappa_{2}(j) by Lemma 4.4.

By the polynomial Wolff axiom, there is another upper bound for the number of scale-rr directional caps in 𝕋St\mathbb{T}_{S_{t}}, which is RO(δ)r1/2R^{O(\delta)}r^{1/2}. This follows from Lemma 4.9 in [Gut16] (see also Lemma 2.6). Therefore, compared to (7.26) in [Wan22], we obtain the following refinement: for every StBS_{t}\subset B where Bλk(t)B\in\mathcal{B}_{\lambda}^{k}(t), one has

(5.9) Eg𝕋StL2(BSt)2RO(δ)min{r1/4λ1κ2(j),r1/2}supθΘ[r]Eg𝕋St,θL2(BSt)2,\|Eg^{\mathbb{T}_{S_{t}}}\|_{L^{2}(B_{S_{t}})}^{2}\lessapprox R^{O(\delta)}\min\{r^{1/4}\lambda^{-1}\kappa_{2}(j),r^{1/2}\}\sup_{\theta^{\prime}\in\Theta[r]}\|Eg^{\mathbb{T}_{{S_{t}},\theta^{\prime}}}\|_{L^{2}(B_{S_{t}})}^{2},

where BStB_{S_{t}} is the rr-ball containing St{S_{t}}. Combining it with the broom estimate (2.38) (see also Remark 2.7) and the fact that κ2(j)1\kappa_{2}(j)\geq 1,

(5.10) Eg𝕋StL2(BSt)2\displaystyle\|Eg^{\mathbb{T}_{S_{t}}}\|_{L^{2}(B_{S_{t}})}^{2} RO(ε0)(rR)3/2min{r1/4λ1,r1/2}supθΘ[r]Efθ22\displaystyle\lessapprox R^{O(\varepsilon_{0})}\Big{(}\frac{r}{R}\Big{)}^{3/2}\min\{r^{1/4}\lambda^{-1},r^{1/2}\}\sup_{\theta^{\prime}\in\Theta[r]}\|Ef_{\theta^{\prime}}\|_{2}^{2}
RO(ε0)(rR)1/2min{r1/4λ1,r1/2}supθfθLave22.\displaystyle\lesssim R^{O(\varepsilon_{0})}\Big{(}\frac{r}{R}\Big{)}^{1/2}\min\{r^{1/4}\lambda^{-1},r^{1/2}\}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{2}.

Estimate (5.10) works well when λ\lambda is big. While when λ\lambda is small, we need another argument.

Now for a fixed St𝒮t1S_{t}\in\mathcal{S}_{t}^{1}, let us focus on

(5.11) EgStBLp(St)pEg𝕋StBLp(St)p,\|Eg_{S_{t}}\|_{\textup{BL}^{p}(S_{t}^{\prime})}^{p}\sim\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(S_{t}^{\prime})}^{p},

where (see (5.6) for 𝐪St1{\bf q}_{S_{t}}^{1})

(5.12) St=q𝐪St1q.S_{t}^{\prime}=\bigcup_{q\in{\bf q}_{S_{t}}^{1}}q.

What follows is another dyadic pigeonholing. Note that the function Eg𝕋StEg^{\mathbb{T}_{S_{t}}} is a sum of wave packets at scale rr inside the rr-ball containing the cell St{S_{t}}. A heuristic understanding for Eg𝕋StEg^{\mathbb{T}_{S_{t}}} is that if denoting 𝕋St=θΘ[r]𝕋St,θ[r]\mathbb{T}_{S_{t}}=\bigcup_{\theta^{\prime}\in\Theta[r]}\mathbb{T}_{{S_{t}},\theta^{\prime}}[r], then inside St{S_{t}}

(5.13) Eg𝕋StθΘ[r]T𝕋St,θ[r]Egθ𝟏T.Eg^{\mathbb{T}_{S_{t}}}\approx\sum_{\theta^{\prime}\in\Theta[r]}\sum_{T^{\prime}\in\mathbb{T}_{{S_{t}},\theta^{\prime}}[r]}Eg_{\theta^{\prime}}{\bf{1}}_{T^{\prime}}.

For each T𝕋StT^{\prime}\in\mathbb{T}_{S_{t}} define

(5.14) T(𝐪St1)=|{q𝐪St1:qT}|.T^{\prime}({\bf q}_{{S_{t}}}^{1})=|\{q\in{\bf q}_{{S_{t}}}^{1}:q\cap T^{\prime}\not=\varnothing\}|.

We would like to use pigeonholing to find a fraction 1\approx 1 of fat surfaces St𝒮t1S_{t}\in\mathcal{S}_{t}^{1}, so that for all tubes T𝕋StT^{\prime}\in\mathbb{T}_{S_{t}} the quantities T(𝐪St1)T^{\prime}({\bf q}_{{S_{t}}}^{1}) are about the same up to a constant multiple. To do so, for each dyadic number η2[1,Cr1/2]\eta_{2}\in[1,Cr^{1/2}], we partition the collection 𝕋St\mathbb{T}_{S_{t}} as

(5.15) 𝕋St=η2𝕋St,η2,\mathbb{T}_{S_{t}}=\bigsqcup_{\eta_{2}}\mathbb{T}_{{S_{t}},\eta_{2}},

where 𝕋St,η2\mathbb{T}_{{S_{t}},\eta_{2}} is a subcollection defined as

(5.16) 𝕋St,η2={T𝕋St:T(𝐪St1)η2}.\mathbb{T}_{{S_{t}},\eta_{2}}=\{T^{\prime}\in\mathbb{T}_{S_{t}}:T^{\prime}({\bf q}_{S_{t}}^{1})\sim\eta_{2}\}.

Using this partition, we can write

(5.17) Eg𝕋St=η2Eg𝕋St,η2Eg^{\mathbb{T}_{S_{t}}}=\sum_{\eta_{2}}Eg^{\mathbb{T}_{S_{t}},\eta_{2}}

where g𝕋St,η2g^{\mathbb{T}_{S_{t}},\eta_{2}} is the sum of wave packets from 𝕋St,η2\mathbb{T}_{S_{t},\eta_{2}}. Hence

(5.18) Eg𝕋StBLp(q)pη2Eg𝕋St,η2BLp(q)p.\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(q)}^{p}\lessapprox\sum_{\eta_{2}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{\textup{BL}^{p}(q)}^{p}.

By pigeonholing on η2\eta_{2} and dyadic pigeonholing on the value Eg𝕋O,η2BLp(q)p\|Eg^{\mathbb{T}_{O},\eta_{2}}\|_{\textup{BL}^{p}(q)}^{p}, we can choose a uniform η2\eta_{2} such that for a fraction 1\gtrapprox 1 of fat surfaces St𝒮t1S_{t}\in\mathcal{S}_{t}^{1} and a fraction 1\gtrapprox 1 of r1/2r^{1/2}-balls q𝐪St1q\in{\bf q}_{S_{t}}^{1},

  1. (1)

    Eg𝕋StBLp(q)pEg𝕋St,η2BLp(q)p\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(q)}^{p}\lessapprox\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{\textup{BL}^{p}(q)}^{p}.

  2. (2)

    For all qq appearing in the first item, Eg𝕋O,η2BLp(q)p\|Eg^{\mathbb{T}_{O},\eta_{2}}\|_{\textup{BL}^{p}(q)}^{p} are about the same up to a constant multiple.

Recall that we have made some uniform assumptions on |𝐪St1||{\bf q}_{S_{t}}^{1}| and the number of leaves in each r1/2r^{1/2}-cube in 𝐪St1{\bf q}_{S_{t}}^{1}. (see (5.6) and the statement below it). To avoid extra notations, let us assume the above is true for all St𝒮t1{S_{t}}\in\mathcal{S}_{t}^{1} and all q𝐪St1q\in{\bf q}_{{S_{t}}}^{1}, without loss of generality.

Now by Lemma 2.6 and Lemma 2.8, and the fact that broad-norm is essentially dominated by bilinear norm, one has (see (5.6), (5.16) for η1,η2\eta_{1},\eta_{2} and (5.12) for StS_{t}^{\prime})

(5.19) Eg𝕋StBLp(St)p\displaystyle\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}({S_{t}^{\prime}})}^{p} q𝐪St1Eg𝕋St,η2BLp(q)p\displaystyle\lesssim\sum_{q\in{\bf q}_{S_{t}}^{1}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{\textup{BL}^{p}(q)}^{p}
RO(δ)r3/2pη11p/2min{η1p/4,η2p/2}Eg𝕋St,η2L2(BSt)p.\displaystyle\lessapprox R^{O(\delta)}r^{3/2-p}\eta_{1}^{1-p/2}\min\{\eta_{1}^{p/4},\eta_{2}^{p/2}\}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{L^{2}(B_{S_{t}})}^{p}.

Here BStB_{S_{t}} is the rr-ball containing St{S_{t}}. Summing up all cells St𝒮t1S_{t}\in\mathcal{S}_{t}^{1} we get

(5.20) St𝒮t1Eg𝕋St,η2BLp(St)pRO(δ)r3/2pη11p/2min{η1p/4,η2p/2}St𝒮t1Eg𝕋St,η2L2(BSt)p.\displaystyle\sum_{S_{t}\in\mathcal{S}_{t}^{1}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{\textup{BL}^{p}({S_{t}^{\prime}})}^{p}\lessapprox R^{O(\delta)}r^{3/2-p}\eta_{1}^{1-p/2}\!\min\{\eta_{1}^{p/4},\eta_{2}^{p/2}\}\!\!\!\sum_{{S_{t}}\in\mathcal{S}_{t}^{1}}\!\!\!\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{L^{2}(B_{S_{t}})}^{p}.

We also would like to give an upper bound for St𝒮t1Eg𝕋St,η2L2(BSt)2\sum_{S_{t}\in\mathcal{S}_{t}^{1}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{L^{2}(B_{S_{t}})}^{2}. From Lemma 4.4 we know that each St𝒮t1{S_{t}}\in\mathcal{S}_{t}^{1} is contained in some Bλk(t)B\in\mathcal{B}_{\lambda}^{k}(t). Write

(5.21) St𝒮t1Eg𝕋St,η2L2(BSt)2Bλk(t)St𝒮t1,StBEg𝕋St,η2L2(BSt)2.\sum_{S_{t}\in\mathcal{S}_{t}^{1}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{L^{2}(B_{S_{t}})}^{2}\lesssim\sum_{B\in\mathcal{B}_{\lambda}^{k}(t)}\sum_{\begin{subarray}{c}{S_{t}}\in\mathcal{S}_{t}^{1},\\ {S_{t}}\subset B\end{subarray}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{L^{2}(B_{S_{t}})}^{2}.

Notice that by our definition of 𝕋St,η2\mathbb{T}_{{S_{t}},\eta_{2}} in (5.16), any rr-tube belongs to at most r1/2η21r^{1/2}\eta_{2}^{-1} distinct collections {𝕋St,η2}St\{\mathbb{T}_{{S_{t}},\eta_{2}}\}_{S_{t}}. By L2L^{2}-orthogonality, for each Rr1/2Rr^{-1/2}-ball Bλk(t)B\in\mathcal{B}_{\lambda}^{k}(t) we have

(5.22) St𝒮t1,StBEg𝕋St,η2L2(BSt)2\displaystyle\sum_{\begin{subarray}{c}S_{t}\in\mathcal{S}_{t}^{1},\\ S_{t}\subset B\end{subarray}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{L^{2}(B_{S_{t}})}^{2} r1/2η21Eg𝕋St,η2L2(B)2\displaystyle\lesssim r^{1/2}\eta_{2}^{-1}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{L^{2}(B)}^{2}
(5.23) r1/2η21T𝕋g[R]EfTL2(B)2.\displaystyle\lesssim r^{1/2}\eta_{2}^{-1}\sum_{T\in\mathbb{T}_{g}[R]}\|Ef_{T}\|_{L^{2}(B)}^{2}.

Since each T𝕋g[R]T\in\mathbb{T}_{g}[R] intersects at most λr1/2\lambda r^{1/2} balls in λk(t)\mathcal{B}_{\lambda}^{k}(t) (see Lemma 4.4), we can sum up all Bλk(t)B\in\mathcal{B}_{\lambda}^{k}(t) and get

(5.24) St𝒮t1Eg𝕋St,η2L2(BSt)2r1/2η21λEf22.\sum_{{S_{t}}\in\mathcal{S}_{t}^{1}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{L^{2}(B_{S_{t}})}^{2}\lesssim r^{1/2}\eta_{2}^{-1}\lambda\|Ef\|_{2}^{2}.

This suggests a gain when λ\lambda is small.

5.2. Wrap up

Finally, let us wrap up all the information we get so far. We are going to estimate EgBLp(BR)\|Eg\|_{\textup{BL}^{p}(B_{R})} in three ways. from (4.13) and (5.8) we know that |𝒮t1|RO(δ)|𝒮t|RO(δ)D3|\mathcal{S}_{t}^{1}|\gtrapprox R^{-O(\delta)}|\mathcal{S}_{t}|\gtrapprox R^{-O(\delta)}D^{3}.

5.2.1. Case 1.

Recall (5.20), (5.24) and (5.10) (recall also (5.12)). Since 𝕋St,η2𝕋St\mathbb{T}_{{S_{t}},\eta_{2}}\subset\mathbb{T}_{S_{t}} (see (5.16) for 𝕋St,η2\mathbb{T}_{{S_{t}},\eta_{2}}), we have Eg𝕋St,η2L2(BSt)2Eg𝕋StL2(BSt)2\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{{L^{2}(B_{S_{t}})}}^{2}\lesssim\|Eg^{\mathbb{T}_{S_{t}}}\|_{{L^{2}(B_{S_{t}})}}^{2}. Hence

St𝒮t1Eg𝕋St,η2BLp(St)pRO(δ)r3/2pη11p/2min{η1p/4,η2p/2}St𝒮t1Eg𝕋St,η2L2(BSt)p\displaystyle\sum_{{S_{t}}\in\mathcal{S}_{t}^{1}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{\textup{BL}^{p}({S_{t}^{\prime}})}^{p}\lessapprox R^{O(\delta)}r^{3/2-p}\eta_{1}^{1-p/2}\min\{\eta_{1}^{p/4},\eta_{2}^{p/2}\}\!\!\!\sum_{{S_{t}}\in\mathcal{S}_{t}^{1}}\!\!\!\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{L^{2}(B_{S_{t}})}^{p}
RO(δ)r3/2pη11p/2min{η1p/4,η2p/2}St𝒮t1Eg𝕋St,η2L2(BSt)2supStEg𝕋St,η2L2(BSt)p2\displaystyle\lessapprox R^{O(\delta)}r^{3/2-p}\eta_{1}^{1-p/2}\min\{\eta_{1}^{p/4},\eta_{2}^{p/2}\}\!\!\sum_{{S_{t}}\in\mathcal{S}_{t}^{1}}\!\!\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{{L^{2}(B_{S_{t}})}}^{2}\sup_{{S_{t}}}\|Eg^{\mathbb{T}_{S_{t}},\eta_{2}}\|_{{L^{2}(B_{S_{t}})}}^{p-2}
RO(δ)C1(R,r,η)f22supθfθLave2p2,\displaystyle\lesssim R^{O(\delta)}C_{1}(R,r,\vec{\eta})\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2},

where, by (5.10) and (5.24) and Plancherel,

(5.25) C1(R,r,η)=\displaystyle C_{1}(R,r,\vec{\eta})= r3/2pη11p/2min{η1p/4,η2p/2}r1/2η21λR\displaystyle\,r^{3/2-p}\eta_{1}^{1-p/2}\min\{\eta_{1}^{p/4},\eta_{2}^{p/2}\}\cdot r^{1/2}\eta_{2}^{-1}\lambda R
((rR)1/2min{r1/4λ1,r1/2})p22.\displaystyle\cdot\Big{(}\Big{(}\frac{r}{R}\Big{)}^{1/2}\min\{r^{1/4}\lambda^{-1},r^{1/2}\}\Big{)}^{\frac{p-2}{2}}.

Noticing min{η1p/4,η2p/2}η1p24η2\min\{\eta_{1}^{p/4},\eta_{2}^{p/2}\}\leq\eta_{1}^{\frac{p-2}{4}}\eta_{2}, we can simplify and reorder the terms in C1(R,r,η)C_{1}(R,r,\vec{\eta}) to get

(5.26) C1(R,r,η)=Rr2pλη12p4min{r34λ1R12,rR12}p22.C_{1}(R,r,\vec{\eta})=Rr^{2-p}\lambda\eta_{1}^{\frac{2-p}{4}}\cdot\min\{r^{\frac{3}{4}}\lambda^{-1}R^{-\frac{1}{2}},rR^{-\frac{1}{2}}\}^{\frac{p-2}{2}}.

It follows from (5.4) and (5.18) that

(5.27) EgBLp(BR)pRO(δ)C1(R,r,η)f22supθfθLave2p2.\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim R^{O(\delta)}C_{1}(R,r,\vec{\eta})\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}.

5.2.2. Case 2.

Recall the definition of EgStEg_{S_{t}} in (4.17) (see also (4.19)). By Hölder’s inequality (a similar argument is given in (2.41))

(5.28) EgStBLp(St)pRO(δ)r3/2pη11p/4EgStL2(BSt)p,\|Eg_{S_{t}}\|_{\textup{BL}^{p}(S_{t}^{\prime})}^{p}\lessapprox R^{O(\delta)}r^{3/2-p}\eta_{1}^{1-p/4}\|Eg_{S_{t}}\|_{L^{2}(B_{S_{t}})}^{p},

which yields (see (5.12) for StS_{t}^{\prime}), by the fact that EgSt22rgSt22\|Eg_{S_{t}}\|_{2}^{2}\lesssim r\|g_{S_{t}}\|_{2}^{2},

(5.29) EgStBLp(St)2RO(δ)r3/p1η12/p1/2gSt22.\|Eg_{S_{t}}\|_{\textup{BL}^{p}({S_{t}^{\prime}})}^{2}\lessapprox R^{O(\delta)}r^{3/p-1}\eta_{1}^{2/p-1/2}\|g_{S_{t}}\|_{2}^{2}.

The second comes from combining (5.20) and (5.29). Note that

(5.30) EgStBLp(St)pEgStBLp(St)2Eg𝕋StBLp(St)p2.\|Eg_{S_{t}}\|_{\textup{BL}^{p}(S_{t}^{\prime})}^{p}\lesssim\|Eg_{S_{t}}\|_{\textup{BL}^{p}(S_{t}^{\prime})}^{2}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(S_{t}^{\prime})}^{p-2}.

By (5.19) (with min{η1p/4,η2p/2}η1p/4\min\{\eta_{1}^{p/4},\eta_{2}^{p/2}\}\leq\eta_{1}^{p/4}) and (5.29) one has

(5.31) St𝒮t1EgStBLp(St)pRO(δ)r52p2η14p4St𝒮t1gSt22Eg𝕋StL2(BSt)p2.\sum_{{S_{t}}\in\mathcal{S}_{t}^{1}}\|Eg_{S_{t}}\|_{\textup{BL}^{p}(S_{t}^{\prime})}^{p}\lessapprox R^{O(\delta)}r^{\frac{5-2p}{2}}\eta_{1}^{\frac{4-p}{4}}\sum_{{S_{t}}\in\mathcal{S}_{t}^{1}}\|g_{S_{t}}\|_{2}^{2}\|Eg^{\mathbb{T}_{S_{t}}}\|_{L^{2}(B_{S_{t}})}^{p-2}.

From (4.14), (5.1), and (5.10) we thus have

(5.32) EgBLp(BR)pRO(δ)C2(R,r,η)f22supθfθLave2p2,\displaystyle\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lessapprox R^{O(\delta)}C_{2}(R,r,\vec{\eta})\|f\|_{2}^{2}\sup_{\theta^{\prime}}\|f_{\theta^{\prime}}\|_{L^{2}_{ave}}^{p-2},

where

(5.33) C2(R,r,η)=\displaystyle C_{2}(R,r,\vec{\eta})= Dr52p2η14p4min{r34λ1R12,rR12}p22.\displaystyle Dr^{\frac{5-2p}{2}}\eta_{1}^{\frac{4-p}{4}}\cdot\min\{r^{\frac{3}{4}}\lambda^{-1}R^{-\frac{1}{2}},rR^{-\frac{1}{2}}\}^{\frac{p-2}{2}}.

5.2.3. Case 3.

One one hand, from (4.14), (5.28), and pigeonholing on StS_{t} we have (one could compare it with (7.38) in [Wan22])

(5.34) EgBLp(BR)pRO(δ)StEgStBLp(St)pRO(δ)D3pr3p2η14p4f2p.\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim R^{O(\delta)}\sum_{S_{t}}\|Eg_{S_{t}}\|_{\textup{BL}^{p}({S_{t}^{\prime}})}^{p}\lessapprox R^{O(\delta)}D^{3-p}r^{\frac{3-p}{2}}\eta_{1}^{\frac{4-p}{4}}\|f\|_{2}^{p}.

On the other hand, note that (5.28) is also true if EgStEg_{S_{t}} is replaced by Eg𝕋StEg^{\mathbb{T}_{S_{t}}}. Thus, from (4.14), (5.28), (5.30), and the broom estimate (2.37) we have (one could compare it with (7.32) in [Wan22])

(5.35) EgBLp(BR)p\displaystyle\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p} RO(δ)StEgStBLp(St)2supStEg𝕋StBLp(St)p2\displaystyle\,\lesssim R^{O(\delta)}\sum_{S_{t}}\|Eg_{S_{t}}\|_{\textup{BL}^{p}({S_{t}^{\prime}})}^{2}\sup_{S_{t}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}({S_{t}^{\prime}})}^{p-2}
RO(δ)DR2p4r3p2η14p4f22supθfθLave2p2.\displaystyle\,\lesssim R^{O(\delta)}DR^{\frac{2-p}{4}}r^{\frac{3-p}{2}}\eta_{1}^{\frac{4-p}{4}}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}.

Combining the above two estimates we finally get

(5.36) EgBLp(BR)pRO(δ)C3(R,r,η)f22supθfθLave2p2,\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim R^{O(\delta)}C_{3}(R,r,\vec{\eta})\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2},

where

(5.37) C3(R,r,η)=min{D3p,DR2p4}r3p2η14p4.C_{3}(R,r,\vec{\eta})=\min\{D^{3-p},DR^{\frac{2-p}{4}}\}r^{\frac{3-p}{2}}\eta_{1}^{\frac{4-p}{4}}.

5.3. Numerology

Recall (5.26), (5.33) and (5.37). One wants to find the smallest pp so that the minimum of the following system is bounded above by O(1)O(1)

(5.38) {Rr2pλη12p4min{r34λ1R12,rR12}p22Dr52p2η14p4min{r34λ1R12,rR12}p22min{D3p,DR2p4}r3p2η14p4\begin{cases}Rr^{2-p}\lambda\eta_{1}^{\frac{2-p}{4}}\cdot\min\{r^{\frac{3}{4}}\lambda^{-1}R^{-\frac{1}{2}},rR^{-\frac{1}{2}}\}^{\frac{p-2}{2}}\\[8.61108pt] Dr^{\frac{5-2p}{2}}\eta_{1}^{\frac{4-p}{4}}\cdot\min\{r^{\frac{3}{4}}\lambda^{-1}R^{-\frac{1}{2}},rR^{-\frac{1}{2}}\}^{\frac{p-2}{2}}\\[8.61108pt] \min\{D^{3-p},DR^{\frac{2-p}{4}}\}r^{\frac{3-p}{2}}\eta_{1}^{\frac{4-p}{4}}\end{cases}

Simplify (5.38) by multiplying the first two terms and by using

(5.39) min{r34λ1R12,rR12}p2(r34λ1R12)(rR12)p3\min\{r^{\frac{3}{4}}\lambda^{-1}R^{-\frac{1}{2}},rR^{-\frac{1}{2}}\}^{p-2}\leq(r^{\frac{3}{4}}\lambda^{-1}R^{-\frac{1}{2}})(rR^{-\frac{1}{2}})^{p-3}

so that we could get rid of the factor λ\lambda and have

(5.40) {I=DR4p2r94p4η13p2II=min{D3p,DR2p4}r3p2η14p4\begin{cases}I=DR^{\frac{4-p}{2}}r^{\frac{9-4p}{4}}\eta_{1}^{\frac{3-p}{2}}\\[8.61108pt] II=\min\{D^{3-p},DR^{\frac{2-p}{4}}\}r^{\frac{3-p}{2}}\eta_{1}^{\frac{4-p}{4}}\end{cases}

Now by using min{D3p,DR2p4}(D3p)t(DR2p4)1t\min\{D^{3-p},DR^{\frac{2-p}{4}}\}\leq(D^{3-p})^{t}(DR^{\frac{2-p}{4}})^{1-t} with t=3p5(6p15)(p2)t=\frac{3p-5}{(6p-15)(p-2)} and η1r\eta_{1}\lesssim r (see (5.3) and (5.6)), one gets

(5.41) I×II6p15103pR14p4512p40,I\times II^{\frac{6p-15}{10-3p}}\lesssim R^{\frac{14p-45}{12p-40}},

which is bounded above by 1 when 10/3>p>45/1410/3>p>45/14.

In conclusion, we have when logr/logR2/3\log r/\log R\leq 2/3 and p>45/14p>45/14,

(5.42) EgBLp(BR)pRO(δ)f22supθfθLave2p2.\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim R^{O(\delta)}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}.

6. Second method

The second method will handle the case rR2/3r\geq R^{2/3} (r=rtr=r_{t}). Roughly speaking, we will use a square function estimate if each “admissible” R1/2R^{1/2}-ball is “associated to” a lot of fat surfaces StS_{t}. Otherwise, we use the refined decoupling theorem.

Recall Section 3.2.1 and Lemma 4.5. Since |𝒪leafg(t)|RO(ε0)|𝒪leaf||\mathcal{O}_{leaf}^{g}(t)|\gtrapprox R^{-O(\varepsilon_{0})}|\mathcal{O}_{leaf}| (see (4.8) and (4.10)), let us assume without loss of generality that each q𝐪Stq\in{\bf q}_{S_{t}} contains about the same amount of leaves in 𝒬leafg(t)\mathcal{Q}_{leaf}^{g}(t) up to a constant multiple (see also Lemma 3.1). As a result, O𝒪leafg,Oq,q𝐪St,QEgBLp(O)p\sum_{O\in\mathcal{O}_{leaf}^{g},\,O^{\prime}\subset q,\,q\in{\bf q}_{S_{t},Q}}\|Eg\|_{\textup{BL}^{p}(O^{\prime})}^{p} are about the same up to a constant multiple for all St𝒮t,Q𝒬λ3,λkS_{t}\in\mathcal{S}_{t},Q\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}. Note that by Lemma 3.1, after further refinement, the parameters λj\lambda_{j} change by at most a factor of R4δR^{4\delta}.

Go back to (4.19). Write

(6.1) EgBLp(BR)p\displaystyle\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p} RO(δ)St𝒮tq𝐪StO𝒪leafg(t),OqEgStBLp(O)p\displaystyle\lesssim R^{O(\delta)}\sum_{S_{t}\in\mathcal{S}_{t}}\sum_{q\in{\bf q}_{S_{t}}}\sum_{\begin{subarray}{c}O^{\prime}\in\mathcal{O}_{leaf}^{g}(t),\\ O^{\prime}\subset q\end{subarray}}\|Eg_{S_{t}}\|_{\textup{BL}^{p}(O^{\prime})}^{p}
RO(δ)St𝒮tq𝐪StO𝒪leafg(t),OqEg𝕋StBLp(O)p.\displaystyle\sim R^{O(\delta)}\sum_{S_{t}\in\mathcal{S}_{t}}\sum_{q\in{\bf q}_{S_{t}}}\sum_{\begin{subarray}{c}O^{\prime}\in\mathcal{O}_{leaf}^{g}(t),\\ O^{\prime}\subset q\end{subarray}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(O^{\prime})}^{p}.

6.1. Case one

By Lemma 4.5 (item (7) in particular), we have from (6.1) that

(6.2) EgBLp(BR)pRO(δ)Q𝒬λ3,λkSt𝒮t(Q)q𝐪St,QEg𝕋StBLp(q)p.\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lessapprox R^{O(\delta)}\sum_{Q\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}}\sum_{S_{t}\in\mathcal{S}_{t}(Q)}\sum_{q\in{\bf q}_{S_{t},Q}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(q)}^{p}.

For a fixed Q𝒬λ3,λkQ\in\mathcal{Q}_{\lambda_{3},\lambda}^{k} and a fixed St𝒮t(Q)S_{t}\in\mathcal{S}_{t}(Q), let us focus on

(6.3) q𝐪St,QEg𝕋StBLp(q)p.\sum_{q\in{\bf q}_{S_{t},Q}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(q)}^{p}.

What follows is another dyadic pigeonholing similar to the one near (5.16). For each dyadic number λ5[1,C(R/r)1/2]\lambda_{5}\in[1,C(R/r)^{1/2}], we partition the collection 𝕋St\mathbb{T}_{S_{t}} as

(6.4) 𝕋St=λ5𝕋St,λ5,\mathbb{T}_{S_{t}}=\bigsqcup_{\lambda_{5}}\mathbb{T}_{{S_{t}},\lambda_{5}},

where 𝕋St,λ5\mathbb{T}_{{S_{t}},\lambda_{5}} is a subcollection defined as (see Lemma 4.5 for 𝐪St,Q{\bf q}_{S_{t},Q})

(6.5) 𝕋St,λ5=𝕋St,λ5(Q)={T𝕋St:T(𝐪St,Q)λ5}\mathbb{T}_{{S_{t}},\lambda_{5}}=\mathbb{T}_{{S_{t}},\lambda_{5}}(Q)=\{T^{\prime}\in\mathbb{T}_{S_{t}}:T^{\prime}({\bf q}_{S_{t},Q})\sim\lambda_{5}\}

and T(𝐪St,Q)T^{\prime}({\bf q}_{S_{t},Q}) is defined as

(6.6) T(𝐪St,Q)=|{q𝐪St,Q:q(TQ)}|.T^{\prime}({\bf q}_{S_{t},Q})=|\{q\in{\bf q}_{S_{t},Q}:q\cap(T^{\prime}\cap Q)\not=\varnothing\}|.

Using this partition, inside QQ we can write

(6.7) Eg𝕋St=λ5Eg𝕋St,λ5.Eg^{\mathbb{T}_{S_{t}}}=\sum_{\lambda_{5}}Eg^{\mathbb{T}_{{S_{t}},\lambda_{5}}}.

Since there are at most O(logR)O(\log R) choices of λ5\lambda_{5}, one gets

(6.8) Eg𝕋StBLp(q)pλ5Eg𝕋St,λ5BLp(q)p.\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(q)}^{p}\lessapprox\sum_{\lambda_{5}}\|Eg^{\mathbb{T}_{{S_{t}},\lambda_{5}}}\|_{\textup{BL}^{p}(q)}^{p}.

By dyadic pigeonholing, we can choose a uniform λ5\lambda_{5} such that for a fraction 1\gtrapprox 1 of St𝒮tS_{t}\in\mathcal{S}_{t}, Q𝒬λ3,λkQ\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}, and q𝐪St,Qq\in{\bf q}_{S_{t},Q}, Eg𝕋StBLp(q)pEg𝕋St,λ5BLp(q)p\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(q)}^{p}\lessapprox\|Eg^{\mathbb{T}_{S_{t},\lambda_{5}}}\|_{\textup{BL}^{p}(q)}^{p}.

By pigeonholing again, for a 1\gtrapprox 1 fraction of the remaining 𝒮t\mathcal{S}_{t} and 𝒬λ3,λk\mathcal{Q}^{k}_{\lambda_{3},\lambda}, the quantity Eg𝕋St,λ5L2(Q)\|Eg^{\mathbb{T}_{S_{t},\lambda_{5}}}\|_{L^{2}(Q)} are about the same. We restrict our attention on those StS_{t} and QQ. Recall that by Lemma 3.1, after further refinement (see also the uniform assumption above (6.1)), the parameters λj\lambda_{j} change by at most a factor of R4δR^{4\delta}.

Now by Lemma 2.6 and Lemma 2.8 (in fact we only use (2.47)), and the fact that broad-norm is essentially dominated by bilinear norm, one has

(6.9) q𝐪St,QEg𝕋StBLp(q)pRO(δ)r3/2p/2Rp/4λ21p/2λ5p/2Eg𝕋St,λ5L2(Q)p.\sum_{q\in{\bf q}_{S_{t},Q}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(q)}^{p}\lessapprox R^{O(\delta)}r^{3/2-p/2}R^{-p/4}\lambda_{2}^{1-p/2}\lambda_{5}^{p/2}\|Eg^{\mathbb{T}_{{S_{t}},\lambda_{5}}}\|_{L^{2}(Q)}^{p}.

Here λ2\lambda_{2} is given in Lemma 4.5 (|𝐪St,Q|λ2|{\bf q}_{S_{t},Q}|\sim\lambda_{2}), and λ5\lambda_{5} is defined in (6.5). Summing up all Q𝒬λ3,λkQ\in\mathcal{Q}_{\lambda_{3},\lambda}^{k} and all O𝒮t(Q)O\in\mathcal{S}_{t}(Q), we get via (6.2) that

(6.10) EgBLp(BR)pRO(δ)\displaystyle\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lessapprox R^{O(\delta)} r3/2p/2Rp/4λ21p/2λ5p/2\displaystyle r^{3/2-p/2}R^{-p/4}\lambda_{2}^{1-p/2}\lambda_{5}^{p/2}
Q𝒬λ3,λkSt𝒮t(Q)Eg𝕋St,λ5L2(Q)p.\displaystyle\cdot\sum_{Q\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}}\sum_{S_{t}\in\mathcal{S}_{t}(Q)}\|Eg^{\mathbb{T}_{S_{t},\lambda_{5}}}\|_{L^{2}(Q)}^{p}.

Since Eg𝕋St,λ5L2(Q)\|Eg^{\mathbb{T}_{{S_{t}},\lambda_{5}}}\|_{L^{2}(Q)} are about the same for all St,QS_{t},Q and since |𝒮t(Q)|λ3|\mathcal{S}_{t}(Q)|\sim\lambda_{3} (see (3.11) and Lemma 4.5), we further have

(6.11) EgBLp(BR)p\displaystyle\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p} r3/2p/2Rp/4λ21p/2λ5p/2\displaystyle\lessapprox r^{3/2-p/2}R^{-p/4}\lambda_{2}^{1-p/2}\lambda_{5}^{p/2}
(λ3|𝒬λ3,λk|)1p/2(Q𝒬λ3,λkSt𝒮t(Q)Eg𝕋St,λ5L2(Q)2)p/2.\displaystyle\cdot(\lambda_{3}|\mathcal{Q}_{\lambda_{3},\lambda}^{k}|)^{1-p/2}\Big{(}\sum_{Q\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}}\sum_{S_{t}\in\mathcal{S}_{t}(Q)}\|Eg^{\mathbb{T}_{S_{t},\lambda_{5}}}\|_{L^{2}(Q)}^{2}\Big{)}^{p/2}.

Next, we would like to bound Q𝒬λ3,λkSt𝒮t(Q)Eg𝕋St,λ5L2(Q)2\sum_{Q\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}}\sum_{S_{t}\in\mathcal{S}_{t}(Q)}\|Eg^{\mathbb{T}_{{S_{t}},\lambda_{5}}}\|_{L^{2}(Q)}^{2}. For a fixed R1/2R^{1/2}-cube Q𝒬λ3,λkQ\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}, here is useful observation: Each rr-tube TT^{\prime} can belong to at most (Rr1)1/2λ51(Rr^{-1})^{1/2}\lambda_{5}^{-1} many {𝕋St,λ5}St𝒮t(Q)\{\mathbb{T}_{{S_{t}},\lambda_{5}}\}_{{S_{t}}\in\mathcal{S}_{t}(Q)}. This is because on one hand if T𝕋St,λ5T^{\prime}\in\mathbb{T}_{{S_{t}},\lambda_{5}}, then TT^{\prime} intersects at least λ5\lambda_{5} many r1/2r^{1/2}-cubes in StQ{S_{t}}\cap Q (equivalently, in 𝐪St,Q{\bf q}_{S_{t},Q}). While on the other hand each TT^{\prime} can intersect at most (Rr1)1/2(Rr^{-1})^{1/2} distinct r1/2r^{1/2}-cubes in QQ.

This leads to

(6.12) St𝒮t(Q)Eg𝕋O,λ5L2(Q)2\displaystyle\sum_{S_{t}\in\mathcal{S}_{t}(Q)}\|Eg^{\mathbb{T}_{O,\lambda_{5}}}\|_{L^{2}(Q)}^{2}\lesssim St𝒮t(Q)θΘ[r]T𝕋St,λ5,θ[r]Q|Egθ|2𝟏T\displaystyle\sum_{S_{t}\in\mathcal{S}_{t}(Q)}\sum_{\theta^{\prime}\in\Theta[r]}\sum_{T^{\prime}\in\mathbb{T}_{S_{t},\lambda_{5},\theta^{\prime}}[r]}\int_{Q}|Eg_{\theta^{\prime}}|^{2}{\bf{1}}_{T^{\prime}}
\displaystyle\lesssim (Rr1)1/2λ51θΘ[r]Q|Egθ|2.\displaystyle(Rr^{-1})^{1/2}\lambda_{5}^{-1}\sum_{\theta\in\Theta[r]}\int_{Q}|Eg_{\theta^{\prime}}|^{2}.

Thus, after summing over Q𝒬λ3,λkQ\in\mathcal{Q}_{\lambda_{3},\lambda}^{k} we have

Q𝒬λ3,λkSt𝒮t(Q)Eg𝕋St,λ5L2(Q)2\displaystyle\sum_{Q\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}}\sum_{S_{t}\in\mathcal{S}_{t}(Q)}\|Eg^{\mathbb{T}_{S_{t},\lambda_{5}}}\|_{L^{2}(Q)}^{2}\lessapprox (Rr1)1/2λ51\displaystyle\,(Rr^{-1})^{1/2}\lambda_{5}^{-1}
(6.13) Q𝒬λ3,λkθΘ[r]Q|Egθ|2.\displaystyle\cdot\sum_{Q\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}}\sum_{\theta^{\prime}\in\Theta[r]}\int_{Q}|Eg_{\theta^{\prime}}|^{2}.

Inside each QQ, invoke the L2L^{2} orthogonality so that

(6.14) (6.13)Q𝒬λ3,λkT𝕋g[R]Q|EfT|2,\eqref{R-half-reduction-1}\lesssim\sum_{Q\in\mathcal{Q}_{\lambda_{3},\lambda}^{k}}\sum_{T\in\mathbb{T}_{g}[R]}\int_{Q}|Ef_{T}|^{2},

which, via Hölder’s inequality, is bounded above by

(6.15) (|Q||𝒬λ3,λk|)12/p(𝒬λ3,λk(T𝕋g[R]|EfT|2)p/2)2/p.(|Q|\cdot|\mathcal{Q}_{\lambda_{3},\lambda}^{k}|)^{1-2/p}\Big{(}\int_{\bigcup_{\mathcal{Q}_{\lambda_{3},\lambda}^{k}}}\Big{(}\sum_{T\in\mathbb{T}_{g}[R]}|Ef_{T}|^{2}\Big{)}^{p/2}\Big{)}^{2/p}.

Therefore, combine the above calculations with (6.11) so that

(6.16) Eg\displaystyle\|Eg BLp(BR)pr3/2p/2Rp/4λ21p/2λ31p/2(Rr1)p/4R3(p2)4\displaystyle\|_{\textup{BL}^{p}(B_{R})}^{p}\lessapprox r^{3/2-p/2}R^{-p/4}\lambda_{2}^{1-p/2}\lambda_{3}^{1-p/2}(Rr^{-1})^{p/4}R^{\frac{3(p-2)}{4}}
(6.17) 𝒬λ3,λk(T𝕋g[R]|EfT|2)p/2.\displaystyle\cdot\int_{\bigcup_{\mathcal{Q}_{\lambda_{3},\lambda}^{k}}}\Big{(}\sum_{T\in\mathbb{T}_{g}[R]}|Ef_{T}|^{2}\Big{)}^{p/2}.

To bound (6.17), notice that for each R1/2R^{-1/2}-cap θ\theta (see (2.4) for λ1\lambda_{1})

(6.18) λ1EfT22T𝕋λ1,θEfT22RT𝕋λ1,θfT22Rfθ22supθfθLave22.\lambda_{1}\|Ef_{T}\|_{2}^{2}\sim\sum_{T\in\mathbb{T}_{\lambda_{1},\theta}}\|Ef_{T}\|_{2}^{2}\lesssim R\sum_{T\in\mathbb{T}_{\lambda_{1},\theta}}\|f_{T}\|_{2}^{2}\lesssim R\|f_{\theta}\|_{2}^{2}\lesssim\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{2}.

Since we already assume above (2.4) that fT2\|f_{T}\|_{2} are all about the same, so by (6.18)

(6.19) EfT2EfT22/|T|fθ24/psupθfθLave224/pR2/pR2λ1,\|Ef_{T}\|_{\infty}^{2}\lesssim\|Ef_{T}\|_{2}^{2}/|T|\lesssim\frac{\|f_{\theta}\|_{2}^{4/p}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{2-4/p}R^{2/p}}{R^{2}\lambda_{1}},

giving the reduction

(6.20) 𝒬λ3,λk(T𝕋g[R]|EfT|2)p/2\displaystyle\int_{\bigcup_{\mathcal{Q}_{\lambda_{3},\lambda}^{k}}}\Big{(}\sum_{T\in\mathbb{T}_{g}[R]}|Ef_{T}|^{2}\Big{)}^{p/2}
fθ22supθfθLave2p2Rp1λ1p/2𝒬λ3,λk(T𝕋g[R]𝟏T)p/2.\displaystyle\lesssim\frac{\|f_{\theta}\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}}{R^{p-1}\lambda_{1}^{p/2}}\int_{\bigcup_{\mathcal{Q}_{\lambda_{3},\lambda}^{k}}}\Big{(}\sum_{T\in\mathbb{T}_{g}[R]}{\bf{1}}_{T}\Big{)}^{p/2}.

Finally, recall Lemma 4.5 that each Q𝒬λ3,λkQ\in\mathcal{Q}_{\lambda_{3},\lambda}^{k} intersects RO(δ)R1/4λ1λ1\lessapprox R^{O(\delta)}R^{1/4}\lambda^{-1}\lambda_{1} tubes T𝕋g[R]T\in\mathbb{T}_{g}[R] and recall (3.21) (see (4.6) again). Hence

(6.21) 𝒬λ3,λk(T𝕋g[R]𝟏T)p/2R11/4+p/8λ2p/2λ1p/2(|Θλ1[R]|/R).\int_{\bigcup_{\mathcal{Q}_{\lambda_{3},\lambda}^{k}}}\Big{(}\sum_{T\in\mathbb{T}_{g}[R]}{\bf{1}}_{T}\Big{)}^{p/2}\lesssim R^{11/4+p/8}\lambda^{2-p/2}\lambda_{1}^{p/2}(|\Theta_{\lambda_{1}}[R]|/R).

Plug this back to (6.20) so that

(6.22) 𝒬λ3,λk(T𝕋g[R]|EfT|2)p/2Rp28R3pλ2p/2f22supθfθLave2p2,\displaystyle\int_{\bigcup_{\mathcal{Q}_{\lambda_{3},\lambda}^{k}}}\Big{(}\sum_{T\in\mathbb{T}_{g}[R]}|Ef_{T}|^{2}\Big{)}^{p/2}\lesssim R^{\frac{p-2}{8}}R^{3-p}\lambda^{2-p/2}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2},

which, together with (6.16), yields our first estimate

(6.23) EgBLp(BR)pRO(δ)C4(R,r,λ)f22supθfθLave2p2,\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lessapprox R^{O(\delta)}C_{4}(R,r,\vec{\lambda})\|f\|_{2}^{2}\sup_{\theta^{\prime}}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2},

where the quantity C4(R,r,λ)C_{4}(R,r,\vec{\lambda}) is given as

(6.24) C4(R,r,λ)=\displaystyle C_{4}(R,r,\vec{\lambda})= r3/2p/2Rp/4λ21p/2λ31p/2(Rr1)p/4R3(p2)4Rp28R3pλ4p2.\displaystyle r^{3/2-p/2}R^{-p/4}\lambda_{2}^{1-p/2}\lambda_{3}^{1-p/2}(Rr^{-1})^{p/4}R^{\frac{3(p-2)}{4}}R^{\frac{p-2}{8}}R^{3-p}\lambda^{\frac{4-p}{2}}.

The first estimate (6.23) works well when λ3\lambda_{3} is large (recall (3.11) that λ3\lambda_{3} denotes the number of fat surfaces StS_{t} associated to an R1/2R^{1/2}-ball). While if λ3\lambda_{3} is small, we need another estimate.

6.2. Case two

Our second estimate uses the refined decoupling in [GIOW20] (see [BD15] for the original Bourgain-Demeter decoupling theorem).

Theorem 6.1 ([GIOW20] Theorem 4.2).

Let 2p42\leq p\leq 4. Suppose hh is a sum of scale-RR wave packets h=T𝕎fTh=\sum_{T\in\mathbb{W}}f_{T} so that EfTL2(BR)2\|Ef_{T}\|_{L^{2}(B_{R})}^{2} are about the same up to a constant multiple. Let YY be a union of R1/2R^{1/2}-balls in BRB_{R} such that each R1/2R^{1/2}-ball QYQ\subset Y intersects to at most MM tubes from T𝕎T\in\mathbb{W}. Then there exists βεε\beta\ll\varepsilon^{\prime}\ll\varepsilon (for example, ε=β1/2ε0\varepsilon^{\prime}=\beta^{1/2}\ll\varepsilon_{0}) so that

(6.25) EhLp(Y)Rε(M|𝕎|)121p(T𝕎EfTp2)1/2.\|Eh\|_{L^{p}(Y)}\leq R^{\varepsilon^{\prime}}\Big{(}\frac{M}{|\mathbb{W}|}\Big{)}^{\frac{1}{2}-\frac{1}{p}}\Big{(}\sum_{T\in\mathbb{W}}\|Ef_{T}\|_{p}^{2}\Big{)}^{1/2}.

We know from Lemma 4.5 item (8) and (4.19)

(6.26) EgBLp(BR)pRO(δ)Q𝒬¯λ3,λkEgLp(Q)p.\displaystyle\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim R^{O(\delta)}\sum_{Q\in\bar{\mathcal{Q}}_{\lambda_{3},\lambda}^{k}}\|Eg\|_{L^{p}(Q)}^{p}.

Also, again from Lemma 4.5 item (8) we know that for each Q𝒬¯λ3,λkQ\in\bar{\mathcal{Q}}_{\lambda_{3},\lambda}^{k}, there are at most μRO(δ)R1/4λ1λ1\sim\mu\lessapprox R^{O(\delta)}R^{1/4}\lambda^{-1}\lambda_{1} many RR-tubes in 𝕋g[R]\mathbb{T}_{g}[R] that intersect it. Hence by the refined decoupling (6.25) one has (recall (2.4) for the definition of λ1\lambda_{1})

(6.27) Q𝒬¯λ3,λkEgLp(Q)pRO(δ)(μλ11|Θλ1[R]|1)p/21(TEfTp2)p/2.\sum_{Q\in\bar{\mathcal{Q}}_{\lambda_{3},\lambda}^{k}}\|Eg\|_{L^{p}(Q)}^{p}\lesssim R^{O(\delta)}(\mu\lambda_{1}^{-1}|\Theta_{\lambda_{1}}[R]|^{-1})^{p/2-1}\Big{(}\sum_{T}\|Ef_{T}\|_{p}^{2}\Big{)}^{p/2}.

By Bernstein’s inequality and Plancherel,

(6.28) (TEfTp2)p/2R2p(TEfT22)p/2R2p/2(TfT22)p/2,\Big{(}\sum_{T}\|Ef_{T}\|_{p}^{2}\Big{)}^{p/2}\lesssim R^{2-p}\Big{(}\sum_{T}\|Ef_{T}\|_{2}^{2}\Big{)}^{p/2}\lesssim R^{2-p/2}\Big{(}\sum_{T}\|f_{T}\|_{2}^{2}\Big{)}^{p/2},

which is bounded above by

(6.29) R3p|Θλ1[R]|(p2)/2f22supθfθLave2p2.R^{3-p}|\Theta_{\lambda_{1}}^{\prime}[R]|^{(p-2)/2}\|f\|_{2}^{2}\sup_{\theta^{\prime}}\|f_{\theta^{\prime}}\|_{L^{2}_{ave}}^{p-2}.

Thus, the above calculations give

(6.30) EgBLp(BR)pRO(δ)C5(R,r,λ)f22supθfθLave2p2,\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lessapprox R^{O(\delta)}C_{5}(R,r,\vec{\lambda})\|f\|_{2}^{2}\sup_{\theta^{\prime}}\|f_{\theta^{\prime}}\|_{L^{2}_{ave}}^{p-2},

where the quantity C5(R,r,λ)C_{5}(R,r,\vec{\lambda}) has the expression

(6.31) C5(R,r,λ)=(μλ11)p/21R3p.C_{5}(R,r,\vec{\lambda})=(\mu\lambda_{1}^{-1})^{p/2-1}R^{3-p}.

6.3. Case three

Our third and final estimate use the information on 𝐪St{\bf q}_{S_{t}} (see Lemma 4.5, in particular, |𝐪St|λ2λ6|{\bf q}_{S_{t}}|\lesssim\lambda_{2}\lambda_{6}). On one hand, for each fat surface StS_{t}, by Lemma 2.6, Lemma 2.8 (only (2.41)), and the fact that broad-norm is essentially dominated by bilinear norm, one has

(6.32) q𝐪StEg𝕋StBLp(q)p(λ2λ6)1p/4r3p2rp/2Eg𝕋StL2(BSt)p.\sum_{q\in{\bf q}_{S_{t}}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(q)}^{p}\lesssim(\lambda_{2}\lambda_{6})^{1-p/4}r^{\frac{3-p}{2}}r^{-p/2}\|Eg^{\mathbb{T}_{S_{t}}}\|_{L^{2}(B_{S_{t}})}^{p}.

Here we use the estimate |𝐪St|λ2λ6|{\bf q}_{S_{t}}|\lesssim\lambda_{2}\lambda_{6}, which is given in the line below (3.10). Note that by definition the function g𝕋Stg^{\mathbb{T}_{S_{t}}} is a sum of all tangential wave packets intersecting StS_{t}, so we cannot use (4.14) to sum up g𝕋St22\|g^{\mathbb{T}_{S_{t}}}\|_{2}^{2} for all fat surfaces StS_{t}.

On the other hand, we similarly have (see (6.1))

(6.33) q𝐪StEg𝕋StBLp(q)pq𝐪StEgStBLp(q)p(λ2λ6)1p/4r3p2gSt2p.\sum_{q\in{\bf q}_{S_{t}}}\|Eg^{\mathbb{T}_{S_{t}}}\|_{\textup{BL}^{p}(q)}^{p}\sim\sum_{q\in{\bf q}_{S_{t}}}\|Eg_{S_{t}}\|_{\textup{BL}^{p}(q)}^{p}\lesssim(\lambda_{2}\lambda_{6})^{1-p/4}r^{\frac{3-p}{2}}\|g_{S_{t}}\|_{2}^{p}.

Recall (6.1). Summing up all St𝒮tS_{t}\in\mathcal{S}_{t} and by the broom estimate (2.38) (see also Remark 2.7, and notice κ2(j)1\kappa_{2}(j)\geq 1) we have similar to (5.35) that

(6.34) EgBLp(BR)pRO(ε0)D(λ2λ6)1p/4r3p2Rp24f22supθfθLave2(θ)p2.\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lessapprox R^{O(\varepsilon_{0})}D(\lambda_{2}\lambda_{6})^{1-p/4}r^{\frac{3-p}{2}}R^{-\frac{p-2}{4}}\|f\|_{2}^{2}\cdot\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}(\theta)}^{p-2}.

Also, by pigeonholing on St𝒮tS_{t}\in\mathcal{S}_{t}, (4.14), and (6.1), we have similar to (5.34) that

(6.35) EgBLp(BR)pRO(δ)D3p(λ2λ6)1p/4r3p2f2p.\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lessapprox R^{O(\delta)}D^{3-p}(\lambda_{2}\lambda_{6})^{1-p/4}r^{\frac{3-p}{2}}\|f\|_{2}^{p}.

6.4. Numerology

Finally, combining and simplifying (6.23), (6.30), (6.34), (6.35), one hopes to find the smallest pp such that the minimum the following equations

(6.36) {(Rr)3p62λ22p2λ32p2R3pRp28λ4p2(μλ11)p22R3pD3pr3p2λ24p4λ64p4DRp24r3p2λ24p4λ64p4\begin{cases}\Big{(}\dfrac{R}{r}\Big{)}^{\frac{3p-6}{2}}\lambda_{2}^{\frac{2-p}{2}}\lambda_{3}^{\frac{2-p}{2}}R^{3-p}R^{\frac{p-2}{8}}\lambda^{\frac{4-p}{2}}\\[8.61108pt] (\mu\lambda_{1}^{-1})^{\frac{p-2}{2}}R^{3-p}\\[8.61108pt] D^{3-p}r^{\frac{3-p}{2}}\lambda_{2}^{\frac{4-p}{4}}\lambda_{6}^{\frac{4-p}{4}}\\[8.61108pt] DR^{-\frac{p-2}{4}}r^{\frac{3-p}{2}}\lambda_{2}^{\frac{4-p}{4}}\lambda_{6}^{\frac{4-p}{4}}\end{cases}

is bounded above by 11. Recall also the relations

  1. (1)

    λ6|𝒮t|RO(δ)λ3|𝒬λ3k|λ6|𝒮t|\lambda_{6}|\mathcal{S}_{t}|\lessapprox R^{O(\delta)}\lambda_{3}|\mathcal{Q}_{\lambda_{3}}^{k}|\lesssim\lambda_{6}|\mathcal{S}_{t}| (see Lemma 4.5).

  2. (2)

    |𝒮t|RO(δ)D3|\mathcal{S}_{t}|\gtrapprox R^{-O(\delta)}D^{3} (see Lemma 4.5 and (4.13)).

  3. (3)

    |𝒬λ3k||𝒬λ3,λk|RO(δ)λλ1R3/2μ1|\mathcal{Q}_{\lambda_{3}}^{k}|\lessapprox|\mathcal{Q}_{\lambda_{3},\lambda}^{k}|\lessapprox R^{O(\delta)}\lambda\lambda_{1}R^{3/2}\mu^{-1} and μRO(δ)λ1λ1R1/4\mu\lessapprox R^{O(\delta)}\lambda^{-1}\lambda_{1}R^{1/4} (see Lemma 4.5 item (8)), yielding λ6D3λ31RO(δ)λλ1R3/2μ1\lambda_{6}D^{3}\lambda_{3}^{-1}\lessapprox R^{O(\delta)}\lambda\lambda_{1}R^{3/2}\mu^{-1}.

Use the estimate μRO(δ)λ1λ1R1/4\mu\lessapprox R^{O(\delta)}\lambda^{-1}\lambda_{1}R^{1/4} to rewrite the first term of system (6.36):

(6.37) {(Rr)3p64λ22p2λ32p2λ2p2R3pRp8μ1λ1(μλ11)p22R3pD3pr3p2λ24p4λ64p4DRp24r3p2λ24p4λ64p4\begin{cases}\Big{(}\dfrac{R}{r}\Big{)}^{\frac{3p-6}{4}}\lambda_{2}^{\frac{2-p}{2}}\lambda_{3}^{\frac{2-p}{2}}\lambda^{\frac{2-p}{2}}R^{3-p}R^{\frac{p}{8}}\mu^{-1}\lambda_{1}\\[8.61108pt] (\mu\lambda_{1}^{-1})^{\frac{p-2}{2}}R^{3-p}\\[8.61108pt] D^{3-p}r^{\frac{3-p}{2}}\lambda_{2}^{\frac{4-p}{4}}\lambda_{6}^{\frac{4-p}{4}}\\[8.61108pt] DR^{-\frac{p-2}{4}}r^{\frac{3-p}{2}}\lambda_{2}^{\frac{4-p}{4}}\lambda_{6}^{\frac{4-p}{4}}\end{cases}

Combining the first two equations to get rid of λ3,λ,μ,λ1\lambda_{3},\lambda,\mu,\lambda_{1} (multiply the first one with the pp2\frac{p}{p-2} power of the second one, then use λ6D3λ31RO(δ)λλ1R3/2μ1\lambda_{6}D^{3}\lambda_{3}^{-1}\lessapprox R^{O(\delta)}\lambda\lambda_{1}R^{3/2}\mu^{-1}), one gets

(6.38) {I=(Rr)3p64λ22p2λ62p2D63p2R9p2+38p248p16II=D3pr3p2λ24p4λ64p4III=DRp24r3p2λ24p4λ64p4\begin{cases}I=\Big{(}\dfrac{R}{r}\Big{)}^{\frac{3p-6}{4}}\lambda_{2}^{\frac{2-p}{2}}\lambda_{6}^{\frac{2-p}{2}}D^{\frac{6-3p}{2}}R^{\frac{-9p^{2}+38p-24}{8p-16}}\\[8.61108pt] II=D^{3-p}r^{\frac{3-p}{2}}\lambda_{2}^{\frac{4-p}{4}}\lambda_{6}^{\frac{4-p}{4}}\\[8.61108pt] III=DR^{-\frac{p-2}{4}}r^{\frac{3-p}{2}}\lambda_{2}^{\frac{4-p}{4}}\lambda_{6}^{\frac{4-p}{4}}\end{cases}

Calculate I×(IIIp4(p2)II1p4(p2))2(p2)4pI\times(III^{\frac{p}{4(p-2)}}II^{1-\frac{p}{4(p-2)}})^{\frac{2(p-2)}{4-p}} to obtain

(6.39) Rp311p2+26p4p2+24p32rp2+2p4p+16R^{\frac{p^{3}-11p^{2}+26p}{-4p^{2}+24p-32}}r^{\frac{-p^{2}+2p}{-4p+16}}

One gets that when logr/logR2/3\log r/\log R\geq 2/3 the above is bounded by 1 if p>3.213p>3.213. Combining the result in (5.42) we have

(6.40) EgBLp(BR)pRO(δ)f22supθfθLave2p2\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim R^{O(\delta)}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}

if p>45/14p>45/14. This proves our main estimate 1.4.

Remark 6.2.

The first method in Section 5 does not work very well when rr is much bigger than R2/3R^{2/3}. It mainly is because in this case, we have to focus on rr-balls and r×r×Rr\times r\times R tubes instead of R/r1/2R/r^{1/2}-balls and R/r1/2×R/r1/2×RR/r^{1/2}\times R/r^{1/2}\times R-tubes. A (bad) consequence is that we cannot get (3.3), (3.4) from (3.1), (3.2), since each r×r×Rr\times r\times R tube may contains a lot of R/r1/2×R/r1/2×RR/r^{1/2}\times R/r^{1/2}\times R-tube, each of which is a target fat tube in the broom estimate (2.37).

While for rr near R2/3R^{2/3} our first method still shows some strength. In particular, when r=R2/3r=R^{2/3} one can optimize the system (5.38) to obtain the range p>3.2p>3.2. On the other hand, our second method gives a better range of pp when rr is larger. If we optimize these two methods for rR2/3r\geq R^{2/3}, we can indeed have

(6.41) EgBLp(BR)pRO(δ)f22supθfθLave2p2\|Eg\|_{\textup{BL}^{p}(B_{R})}^{p}\lesssim R^{O(\delta)}\|f\|_{2}^{2}\sup_{\theta}\|f_{\theta}\|_{L^{2}_{ave}}^{p-2}

when p>3.21p>3.21 and rR2/3r\geq R^{2/3}.

References

  • [BD15] Jean Bourgain and Ciprian Demeter. The proof of the l2l^{2} decoupling conjecture. Ann. of Math. (2), 182(1):351–389, 2015.
  • [BG11] Jean Bourgain and Larry Guth. Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal., 21(6):1239–1295, 2011.
  • [Bou91] Jean Bourgain. Besicovitch type maximal operators and applications to Fourier analysis. Geom. Funct. Anal., 1(2):147–187, 1991.
  • [GIOW20] Larry Guth, Alex Iosevich, Yumeng Ou, and Hong Wang. On Falconer’s distance set problem in the plane. Invent. Math., 219(3):779–830, 2020.
  • [Gut16] Larry Guth. A restriction estimate using polynomial partitioning. J. Amer. Math. Soc., 29(2):371–413, 2016.
  • [Gut18] Larry Guth. Restriction estimates using polynomial partitioning II. Acta Math., 221(1):81–142, 2018.
  • [KR18] Nets Hawk Katz and Keith M. Rogers. On the polynomial Wolff axioms. Geom. Funct. Anal., 28(6):1706–1716, 2018.
  • [Tao99] Terence Tao. The Bochner-Riesz conjecture implies the restriction conjecture. Duke Math. J., 96(2):363–375, 1999.
  • [Tao03] Terence Tao. A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal., 13(6):1359–1384, 2003.
  • [Wan22] Hong Wang. A restriction estimate in 3{\mathbb{R}^{3}} using brooms. Duke Mathematical Journal, 171(8):1749 – 1822, 2022.
  • [Wol95] Thomas Wolff. An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoamericana, 11(3):651–674, 1995.
  • [Wol01] Thomas Wolff. A sharp bilinear cone restriction estimate. Ann. of Math. (2), 153(3):661–698, 2001.