This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An improved explicit estimate for ζ(1/2+it)\zeta(1/2+it)

Ghaith A. Hiary, Dhir Patel and Andrew Yang
(Date: July 2022)
Abstract.

An explicit subconvex bound for the Riemann zeta function ζ(s)\zeta(s) on the critical line s=1/2+its=1/2+it is proved. Previous subconvex bounds relied on an incorrect version of the Kusmin–Landau lemma. After accounting for the needed correction in that lemma, we recover and improve the record explicit bound for |ζ(1/2+it)||\zeta(1/2+it)|.

1. Introduction

An important type of inequality in analytic number theory is upper bounds on the exponential sum S=|an<be2πif(n)|S=|\sum_{a\leq n<b}e^{2\pi if(n)}| for some smooth phase function ff. Suppose that ff^{\prime} is monotonic and θf1θ\theta\leq f^{\prime}\leq 1-\theta for some θ[0,1/2]\theta\in[0,1/2] and throughout [a,b)[a,b). One would like to derive inequalities of the form SA/θS\leq A/\theta, where AA is a constant. Among other applications, such results are used to derive explicit upper bounds for |ζ(1/2+it)||\zeta(1/2+it)|.

Kusmin [Kuz27, p. 239] writes that inequalities for SS were first introduced by Vinogradov in 1916. According to Landau [Lan28, p. 21], van der Corput was the first to prove a bound on SS depending only on θ\theta, independent of the length of the interval [a,b)[a,b). Using results in [Cor21, p. 58] and [Lan26, p. 221], which rely on the Poisson summation formula, it follows easily that A=4A=4 is admissible. Kusmin [Kuz27, p. 237] gave a geometric argument to improve this to A=1A=1. He then immediately noted that it follows from his proof that A=2/πA=2/\pi is also admissible. Landau [Lan28, p. 21] refined the Kusmin bound to Scot(πθ/2)S\leq\cot(\pi\theta/2) and constructed examples for which the equality S=cot(πθ/2)S=\cot(\pi\theta/2) holds.

In [CG04, Lemma 2], the bound S1/(πθ)+1S\leq 1/(\pi\theta)+1 was derived. Unfortunately, this bound misses an extra factor of 22, i.e. the leading constant in the bound should be 2/π2/\pi instead of 1/π1/\pi. This was recently pointed out by K. Ford and also discussed in a preprint by J. Arias de Reyna. Indeed, Kusmin [Kuz27, p. 237] and Landau [Lan28, p. 21] had shown that A=2/πA=2/\pi is sharp. Therefore, there is no hope of recovering the constant 1/π1/\pi in [CG04, Lemma 2] in the general case, but only in special (though important) cases such as when ff is linear.

The incorrect constant 1/π1/\pi has impacted all published explicit subconvex bounds on |ζ(1/2+it)||\zeta(1/2+it)|. In particular, the bound |ζ(1/2+it)|0.63t1/6logt|\zeta(1/2+it)|\leq 0.63t^{1/6}\log t in [Hia16, Theorem 1.1] is affected. This bound relied on an explicit BB process (from the method of exponent pairs) that is derived in [CG04, Lemma 3]. In turn, this explicit BB process relied on the version of the Kusmin–Landau lemma in [CG04, Lemma 2] from which the incorrect constant 1/π1/\pi arises. After accounting for the correct constant 2/π2/\pi in the Kusmin–Landau lemma, the constant 0.630.63 in [Hia16, Theorem 1.1] increases substantially to 0.770.77. In other words, the revised bound becomes |ζ(1/2+it)|0.77t1/6logt|\zeta(1/2+it)|\leq 0.77t^{1/6}\log t for t3t\geq 3.

Since the missing factor of 22 in [CG04, Lemma 3] is sizeable and the method of proof in [Hia16] is already optimized, our savings had to come in small quantities from multiple places.

We specialize the phase function to our specific application of bounding zeta, and derive better explicit BB and ABAB processes in lemmas 2.5 and 2.6, as well as a generalized Kusmin-Landau lemma in Lemma 2.3.

Moreover, we are exceedingly careful in treating boundary terms in the explicit AA and BB processes we derive. Boundary term may be all that arises in the intermediate region where tt is too large for the Riemann–Siegel–Lehman bound to be useful, but too small for the asymptotic savings from the AA and BB processes to be realized. This intermediate region (bottleneck region) is the subject of subsection 3.3.

Also, our treatment for large tt improves on [Hia16] in one important aspect that enables reducing the coefficient of t1/6logtt^{1/6}\log t considerably, as detailed at the end of subsection 3.4.

Put together, our main result is to recover and improve the constant 0.630.63.

Theorem 1.1.

For t3t\geq 3, we have

|ζ(1/2+it)|0.618t1/6logt.|\zeta(1/2+it)|\leq 0.618t^{1/6}\log t.

Note that if one employs the Riemann–Siegel–Lehman bound for any range of tt at all, then the leading constant cannot break 0.5410.541. The constant we obtain is not too far from this barrier.

1.1. Notation

Throughout this work let x\|x\| denote the distance to the integer nearest to xx, i.e. x=minn|xn|\|x\|=\min_{n\in\mathbb{Z}}|x-n|. We write e(x):=exp(2πix)e(x):=\exp(2\pi ix).

2. Required lemmas

Lemma 2.1.

If t200t\geq 200 and n1:=t/(2π)n_{1}:=\lfloor\sqrt{t/(2\pi)}\rfloor, then

|ζ(1/2+it)|2|n=1n1n1/2+it|+R(t)|\zeta(1/2+it)|\leq 2\left|\sum_{n=1}^{n_{1}}n^{-1/2+it}\right|+R(t)

where R(t):=1.48t1/4+0.127t3/4R(t):=1.48t^{-1/4}+0.127t^{-3/4}.

Proof.

One starts with the Riemann–Siegel formula, and applies the triangle inequality to the main sum and to the Gabcke remainder term, bounding the latter by R(t)R(t). See Lemma 2.1 in [Hia16]. ∎

Lemma 2.2 (Riemann-Siegel-Lehman bound).

If t200t\geq 200, then

|ζ(1/2+it)|4t1/4(2π)1/42.08.|\zeta(1/2+it)|\leq\frac{4t^{1/4}}{(2\pi)^{1/4}}-2.08.
Proof.

Follows from Lemma 2.1 on bounding the main sum for n>5n>5 by an integral and using monotonicity to bound R(t)R(t) for t200t\geq 200. See Lemma 2.3 in [Hia16]. ∎

Lemma 2.3 (Generalised Cheng-Graham lemma).

Let f(x)f(x) be a real-valued function with a monotonic and continuous derivative on [a,b)[a,b), satisfying

+U1f(x)+1V1,x[a,b),\ell+U^{-1}\leq f^{\prime}(x)\leq\ell+1-V^{-1},\qquad x\in[a,b),

for some U,V>1U,V>1 and some integer \ell. Then,

|an<be(f(n))|U+Vπ.\left|\sum_{a\leq n<b}e(f(n))\right|\leq\frac{U+V}{\pi}.
Proof.

The proof follows from a similar argument to Lemma 2.1 in Patel [Pat ̵p] and Kuzmin [Kuz27] and Landau [Lan28]. See Section 4 for details. This generalized lemma is essential to the cases considered at the end of the proof of Lemma 2.5. ∎

Lemma 2.4 (Weyl differencing).

Let f(n)f(n) be a real-valued function and LL and MM positive integers. Then

|n=N+1N+Le(f(n))|2(L+M1M)(L+2m=1M(1mM)|sm(L)|)\left|\sum_{n=N+1}^{N+L}e(f(n))\right|^{2}\leq\left(\frac{L+M-1}{M}\right)\left(L+2\sum_{m=1}^{M}\left(1-\frac{m}{M}\right)|s^{\prime}_{m}(L)|\right)

where if m<Lm<L, then

sm(L):=n=N+1N+Lme(f(r+m)f(r)),s_{m}^{\prime}(L):=\sum_{n=N+1}^{N+L-m}e(f(r+m)-f(r)),

and if mLm\geq L, then sm(L)=0s_{m}^{\prime}(L)=0.

Proof.

See Cheng and Graham [CG04, Lemma 5] and Platt and Trudgian [PT15]. Lemma 5 in [CG04] appears with maxL1L|sm(L1)|\max_{L_{1}\leq L}|s^{\prime}_{m}(L_{1})| instead of |sm(L)||s^{\prime}_{m}(L)|. It was pointed out in [Hia16], though, that one can remove the max\max by using the more precise form presented at the bottom of page 1273 in [CG04]. ∎

Lemma 2.5 (Improved second derivative test).

Let m,r,Km,r,K be positive integers, and let tt and K0K_{0} be a positive numbers. Suppose KK0>1K\geq K_{0}>1 and m<Km<K. Let

g(x):=t2πlog(1+mrK+x),W:=π(r+1)3K3t,λ:=(1+r)3r3.\displaystyle g(x):=\frac{t}{2\pi}\log\left(1+\frac{m}{rK+x}\right),\qquad W:=\frac{\pi(r+1)^{3}K^{3}}{t},\qquad\lambda:=\frac{(1+r)^{3}}{r^{3}}.

So, by construction,

mW|g′′(x)|mλW,(0xKm).\frac{m}{W}\leq|g^{\prime\prime}(x)|\leq\frac{m\lambda}{W},\qquad(0\leq x\leq K-m).

For each positive integer LKL\leq K, and each positive integer m<Lm<L,

|n=0L1me(g(n))|4μKπWm1/2+μKWm+4Wπm1/2+24π,\left|\sum_{n=0}^{L-1-m}e(g(n))\right|\leq\frac{4\mu K}{\sqrt{\pi W}}m^{1/2}+\frac{\mu K}{W}m+4\sqrt{\frac{W}{\pi}}m^{-1/2}+2-\frac{4}{\pi},

where

μ:=12λ2/3(1+1(1K01)λ1/3).\mu:=\frac{1}{2}\lambda^{2/3}\left(1+\frac{1}{(1-K_{0}^{-1})\lambda^{1/3}}\right).

If mLm\geq L or L=1L=1, then the sum on the left-side is zero and the bound still holds.

Proof.

See Section 5. ∎

Remark.

We have g(x)=f(x+m)f(x)g(x)=f(x+m)-f(x), where f(x)f(x) is defined in Lemma 2.6. Thus, g(x)g(x) is the phase function that arises after we apply the Weyl differencing from Lemma 2.4 to a contiguous portion of the main sum in Lemma 2.2.

Lemma 2.6 (Improved third derivative test).

Let rr and KK be positive integers, and let tt and K0K_{0} be positive numbers. Suppose KK0>1K\geq K_{0}>1. Let

f(x):=t2πlog(rK+x).\displaystyle f(x):=\frac{t}{2\pi}\log\left(rK+x\right).

Furthermore let WW and λ\lambda be as defined in Lemma 2.5, so that

1W|f′′′(x)|λW.\frac{1}{W}\leq|f^{\prime\prime\prime}(x)|\leq\frac{\lambda}{W}.

For each positive integer LKL\leq K, each integer NN, and any η>0\eta>0,

|n=N+1N+Le(f(n))|2(KW1/3+η)(αK+βW2/3)\left|\sum_{n=N+1}^{N+L}e(f(n))\right|^{2}\leq\left(\frac{K}{W^{1/3}}+\eta\right)(\alpha K+\beta W^{2/3})

where

α:=1η+ημ3W1/3+μ3W2/3+32μ15πη+W1/3,\alpha:=\frac{1}{\eta}+\frac{\eta\mu}{3W^{1/3}}+\frac{\mu}{3W^{2/3}}+\frac{32\mu}{15\sqrt{\pi}}\sqrt{\eta+W^{-1/3}},
β:=323πη+(24π)1W1/3.\beta:=\frac{32}{3\sqrt{\pi\eta}}+\left(2-\frac{4}{\pi}\right)\frac{1}{W^{1/3}}.

Here, μ\mu is defined as in Lemma 2.5.

Proof.

See Section 6. ∎

Remark.

Versions of these derivative tests for a general phase function, as well as several other derivative tests, can be found in [Pat ̵p].

3. Proof of Theorem 1

We divide the proof into four regions.

3.1. Proof for 3t<2003\leq t<200

In this range we rely on the interval-arithmetic computations carried out in Hiary [Hia16], which established

|ζ(1/2+it)|0.595t1/6logt|\zeta(1/2+it)|\leq 0.595t^{1/6}\log t

for 3t<2003\leq t<200.

3.2. Proof for 200t<5.5107200\leq t<5.5\cdot 10^{7}

For this region we use the Riemann-Siegel-Lehman formula combined with the triangle inequality. Firstly, in preparation for using Lemma 2.2, we note

4t1/4(2π)1/42.08<0.592t1/6logt,200t107.\frac{4t^{1/4}}{(2\pi)^{1/4}}-2.08<0.592t^{1/6}\log t,\qquad 200\leq t\leq 10^{7}.

This can be seen by verifying that the difference of the two sides is unimodal (monotonically increasing then monotonically decreasing), and so it suffices to check that the difference is positive at the endpoints 200200 and 10710^{7}. Hence, our main theorem follows from Lemma 2.2 for that range of tt.

Assume now that 107t<5.510710^{7}\leq t<5.5\cdot 10^{7}. We follow a similar argument to Lemma 2.3 in [Hia16]. By Lemma 2.1,

|ζ(1/2+it)|2|n=1n1n1/2+it|+1.48t01/4+0.127t03/4,tt0|\zeta(1/2+it)|\leq 2\left|\sum_{n=1}^{n_{1}}n^{-1/2+it}\right|+1.48t_{0}^{-1/4}+0.127t_{0}^{-3/4},\qquad t\geq t_{0}

where n1=t/(2π)n_{1}=\lfloor\sqrt{t/(2\pi)}\rfloor and, in this subsection, t0=107t_{0}=10^{7}. Next, we observe that if hh is a real-valued function such that h′′(x)>0h^{\prime\prime}(x)>0 for a1/2xb+1/2a-1/2\leq x\leq b+1/2, then by Jensen’s inequality

n=abh(n)=n=abh(n12n+12xdx)n=abn12n+12h(x)dx=a12b+12h(x)dx.\sum_{n=a}^{b}h(n)=\sum_{n=a}^{b}h\left(\int_{n-\frac{1}{2}}^{n+\frac{1}{2}}x\text{d}x\right)\leq\sum_{n=a}^{b}\int_{n-\frac{1}{2}}^{n+\frac{1}{2}}h(x)\text{d}x=\int_{a-\frac{1}{2}}^{b+\frac{1}{2}}h(x)\text{d}x. (3.1)

Therefore, using h(x)=x1/2h(x)=x^{-1/2} and the fact that n1t0/(2π)=1261n_{1}\geq\lfloor\sqrt{t_{0}/(2\pi)}\rfloor=1261,

|n=1n1n1/2+it|\displaystyle\left|\sum_{n=1}^{n_{1}}n^{-1/2+it}\right| n=112611n+1260.5n1+12dxx\displaystyle\leq\sum_{n=1}^{1261}\frac{1}{\sqrt{n}}+\int_{1260.5}^{n_{1}+\frac{1}{2}}\frac{\text{d}x}{\sqrt{x}}
69.575+2n121260.5+1n1n1n1+12dx\displaystyle\leq 69.575+2\sqrt{n_{1}}-2\sqrt{1260.5}+\frac{1}{\sqrt{n_{1}}}\int_{n_{1}}^{n_{1}+\frac{1}{2}}\text{d}x
2n1+1212611.432\displaystyle\leq 2\sqrt{n_{1}}+\frac{1}{2\sqrt{1261}}-1.432
=2t1/4(2π)1/41.417.\displaystyle=\frac{2t^{1/4}}{(2\pi)^{1/4}}-1.417.

However, 1.48t01/4+0.127t03/40.0271.48t_{0}^{-1/4}+0.127t_{0}^{-3/4}\leq 0.027, so

|ζ(1/2+it)|4t1/4(2π)1/42.8070.618t1/6logt|\zeta(1/2+it)|\leq\frac{4t^{1/4}}{(2\pi)^{1/4}}-2.807\leq 0.618t^{1/6}\log t

for 107t<5.510710^{7}\leq t<5.5\cdot 10^{7}. One need verify the last inequality at the endpoints 10710^{7} and 5.51075.5\cdot 10^{7} since the difference of the two sides is monotonic in between.

3.3. Proof for 5.5107t<10125.5\cdot 10^{7}\leq t<10^{12}

In this range of tt we use the following modified third-derivative test in Lemma 2.6.

Throughout this subsection, let r0>1r_{0}>1 be an integer and 13<ϕ<12\frac{1}{3}<\phi<\frac{1}{2} be a constant, both to be chosen later. Furthermore, let

K:=tϕ,n1:=t/2π,R:=n1/K.K:=\lceil t^{\phi}\rceil,\qquad n_{1}:=\lfloor\sqrt{t/2\pi}\rfloor,\qquad R:=\lfloor n_{1}/K\rfloor.

Also, let t05.5107t_{0}\geq 5.5\cdot 10^{7}, to be chosen later, and suppose tt0t\geq t_{0}. By Lemma 2.1, we have

|ζ(1/2+it)|\displaystyle|\zeta(1/2+it)| T1+T2,\displaystyle\leq T_{1}+T_{2},

where

T1\displaystyle T_{1} :=21n<r0K1n+1.48t01/4+0.127t03/4,\displaystyle:=2\sum_{1\leq n<r_{0}K}\frac{1}{\sqrt{n}}+1.48t_{0}^{-1/4}+0.127t_{0}^{-3/4},
T2\displaystyle T_{2} :=2r=r0R1|rKn<(r+1)Keitlognn|+2|RKnn1eitlognn|.\displaystyle:=2\sum_{r=r_{0}}^{R-1}\left|\sum_{rK\leq n<(r+1)K}\frac{e^{it\log n}}{\sqrt{n}}\right|+2\left|\sum_{RK\leq n\leq n_{1}}\frac{e^{it\log n}}{\sqrt{n}}\right|.

Define

Iϕ(r0,t0):=2n=1r0t0ϕ11n4r0t0ϕ1.I_{\phi}(r_{0},t_{0}):=2\sum_{n=1}^{\lceil r_{0}t_{0}^{\phi}\rceil-1}\frac{1}{\sqrt{n}}-4\sqrt{\lceil r_{0}t_{0}^{\phi}\rceil-1}.

Then, noting that Ktϕ+1K\leq t^{\phi}+1, and following the arguments in Hiary [Hia16],

T1\displaystyle T_{1} 4r0K+Iϕ(r0,t0)+1.48t01/4+0.127t03/4\displaystyle\leq 4\sqrt{r_{0}K}+I_{\phi}(r_{0},t_{0})+1.48t_{0}^{-1/4}+0.127t_{0}^{-3/4}
4r0(1+t0ϕ)tϕ/2+Iϕ(r0,t0)+1.48t01/4+0.127t03/4,\displaystyle\leq 4\sqrt{r_{0}\left(1+t_{0}^{-\phi}\right)}t^{\phi/2}+I_{\phi}(r_{0},t_{0})+1.48t_{0}^{-1/4}+0.127t_{0}^{-3/4}, (3.2)

for all tt0t\geq t_{0}. Meanwhile, by partial summation,

r=r0R1|rKn<(r+1)Keitlognn|r=r0R11rKmaxΔK|k=0Δ1eitlog(rK+k)|.\displaystyle\sum_{r=r_{0}}^{R-1}\left|\sum_{rK\leq n<(r+1)K}\frac{e^{it\log n}}{\sqrt{n}}\right|\leq\sum_{r=r_{0}}^{R-1}\frac{1}{\sqrt{rK}}\max_{\Delta\leq K}\left|\sum_{k=0}^{\Delta-1}e^{it\log(rK+k)}\right|. (3.3)

So, since n1(R+1)Kn_{1}\leq(R+1)K,

|RKnn1eitlognn|1RKmaxΔK|k=0Δ1eitlog(RK+k)|,\left|\sum_{RK\leq n\leq n_{1}}\frac{e^{it\log n}}{\sqrt{n}}\right|\leq\frac{1}{\sqrt{RK}}\max_{\Delta\leq K}\left|\sum_{k=0}^{\Delta-1}e^{it\log(RK+k)}\right|, (3.4)

it follows

T22r=r0R1rKmaxΔK|k=0Δ1eitlog(rK+k)|.T_{2}\leq 2\sum_{r=r_{0}}^{R}\frac{1}{\sqrt{rK}}\max_{\Delta\leq K}\left|\sum_{k=0}^{\Delta-1}e^{it\log(rK+k)}\right|.

We apply Lemma 2.6 with K0:=t0ϕ>1K_{0}:=t_{0}^{\phi}>1 to obtain for any η>0\eta>0,

T2\displaystyle T_{2} 2r=r0R1rK(KW1/3+η)(αK+βW2/3)\displaystyle\leq 2\sum_{r=r_{0}}^{R}\frac{1}{\sqrt{rK}}\sqrt{\left(\frac{K}{W^{1/3}}+\eta\right)(\alpha K+\beta W^{2/3})} (3.5)
=2t1/6π1/6r=r0R1r(r+1)α+ηαW1/3K+βW2/3K+ηβWK2,\displaystyle=\frac{2t^{1/6}}{\pi^{1/6}}\sum_{r=r_{0}}^{R}\frac{1}{\sqrt{r(r+1)}}\sqrt{\alpha+\frac{\eta\alpha W^{1/3}}{K}+\frac{\beta W^{2/3}}{K}+\frac{\eta\beta W}{K^{2}}}, (3.6)

where WW, λ\lambda, α\alpha, β\beta, and μ\mu are defined in Lemma 2.6.

Using the same trick with the Jensen inequality as in the previous section, we observe that

r=r0R1r(r+1)\displaystyle\sum_{r=r_{0}}^{R}\frac{1}{\sqrt{r(r+1)}} r=r0Rr12r+12dxx(x+1)=r012R+12dxx(x+1)=[2sinh1x]r012R+12\displaystyle\leq\sum_{r=r_{0}}^{R}\int_{r-\frac{1}{2}}^{r+\frac{1}{2}}\frac{\text{d}x}{\sqrt{x(x+1)}}=\int_{r_{0}-\frac{1}{2}}^{R+\frac{1}{2}}\frac{\text{d}x}{\sqrt{x(x+1)}}=\left[2\sinh^{-1}\sqrt{x}\right]_{r_{0}-\frac{1}{2}}^{R+\frac{1}{2}}
=2sinh1R+122sinh1r012\displaystyle=2\sinh^{-1}\sqrt{R+\frac{1}{2}}-2\sinh^{-1}\sqrt{r_{0}-\frac{1}{2}} (3.7)

where the inequality follows from using h(x)=1/x(x+1)h(x)=1/\sqrt{x(x+1)} in (3.1). In addition,

2sinh1x=logx+2log(1+1+1x)2\sinh^{-1}\sqrt{x}=\log x+2\log\left(1+\sqrt{1+\frac{1}{x}}\right) (3.8)

for x0x\geq 0, and

RR0:=t0/2π1t0ϕ+11,R\geq R_{0}:=\left\lceil\frac{\sqrt{t_{0}/2\pi}-1}{t_{0}^{\phi}+1}-1\right\rceil,

hence

2sinh1R+12\displaystyle 2\sinh^{-1}\sqrt{R+\frac{1}{2}} =logR+log(1+12R)+2log(1+1+1R+12)\displaystyle=\log R+\log\left(1+\frac{1}{2R}\right)+2\log\left(1+\sqrt{1+\frac{1}{R+\frac{1}{2}}}\right)
logR+J(R0),\displaystyle\leq\log R+J(R_{0}),

where

J(R0):=log(1+12R0)+2log(1+1+1R0+12).J(R_{0}):=\log\left(1+\frac{1}{2R_{0}}\right)+2\log\left(1+\sqrt{1+\frac{1}{R_{0}+\frac{1}{2}}}\right).

Next, let

ρ:=12π1/6(1+1R).\rho:=\frac{1}{\sqrt{2}\pi^{1/6}}\left(1+\frac{1}{R}\right).

Since Rt1/2ϕ/2πR\leq t^{1/2-\phi}/\sqrt{2\pi} and Ktϕ+1K\leq t^{\phi}+1, we have

W1/3=π1/3(r+1)Kt1/3π1/3(R+1)(tϕ+1)t1/3ρt1/6(1+1tϕ)W^{1/3}=\frac{\pi^{1/3}(r+1)K}{t^{1/3}}\leq\frac{\pi^{1/3}(R+1)(t^{\phi}+1)}{t^{1/3}}\leq\rho t^{1/6}\left(1+\frac{1}{t^{\phi}}\right) (3.9)

and

W1/3K=π1/3(r+1)KKt1/3π1/3Rt1/3(1+1R)ρt1/6ϕ.\frac{W^{1/3}}{K}=\frac{\pi^{1/3}(r+1)K}{Kt^{1/3}}\leq\frac{\pi^{1/3}R}{t^{1/3}}\left(1+\frac{1}{R}\right)\leq\rho t^{1/6-\phi}. (3.10)

Therefore,

ηαW1/3Kηαρtϕ1/6,βW2/3K=βW1/3W1/3Kβρ2(1+tϕ)tϕ1/3,ηβWK2=ηβW1/3(W1/3K)2ηβρ3(1+tϕ)2t2ϕ1/2.\begin{split}&\frac{\eta\alpha W^{1/3}}{K}\leq\frac{\eta\alpha\rho}{t^{\phi-1/6}},\\ &\frac{\beta W^{2/3}}{K}=\beta W^{1/3}\frac{W^{1/3}}{K}\leq\frac{\beta\rho^{2}\left(1+t^{-\phi}\right)}{t^{\phi-1/3}},\\ &\frac{\eta\beta W}{K^{2}}=\eta\beta W^{1/3}\left(\frac{W^{1/3}}{K}\right)^{2}\leq\frac{\eta\beta\rho^{3}(1+t^{-\phi})^{2}}{t^{2\phi-1/2}}.\end{split} (3.11)

We apply the above inequalities to (3.6), together with the inequality

ρ0:=12π1/6(1+1R0)ρ,\rho_{0}:=\frac{1}{\sqrt{2}\pi^{1/6}}\left(1+\frac{1}{R_{0}}\right)\geq\rho,

to obtain

T22t1/6π1/6r=r0R1r(r+1)α+ηαρ0tϕ1/6+βρ02(1+tϕ)tϕ1/3+ηβρ03(1+tϕ)2t2ϕ1/2T_{2}\leq\frac{2t^{1/6}}{\pi^{1/6}}\sum_{r=r_{0}}^{R}\frac{1}{\sqrt{r(r+1)}}\sqrt{\alpha+\frac{\eta\alpha\rho_{0}}{t^{\phi-1/6}}+\frac{\beta\rho_{0}^{2}\left(1+t^{-\phi}\right)}{t^{\phi-1/3}}+\frac{\eta\beta\rho_{0}^{3}(1+t^{-\phi})^{2}}{t^{2\phi-1/2}}} (3.12)

We observe since λ\lambda is monotonically decreasing with rr, μ\mu is decreasing with rr. Since, in addition, WW is monotonically increasing with rr, α\alpha and β\beta are both decreasing with rr. Denoting the values of WW, α\alpha and β\beta at r=r0r=r_{0} by W0W_{0}, α0\alpha_{0} and β0\beta_{0}, we see that WW0W\geq W_{0}, αα0\alpha\leq\alpha_{0} and ββ0\beta\leq\beta_{0}. Therefore, using (3.7) and the subsequent estimates, we obtain

T2\displaystyle T_{2} 2t1/6π1/6[(12ϕ)logtlog2π+J(R0)2sinh1r012]κϕ\displaystyle\leq\frac{2t^{1/6}}{\pi^{1/6}}\left[\,\left(\frac{1}{2}-\phi\right)\log t-\log\sqrt{2\pi}+J(R_{0})-2\sinh^{-1}\sqrt{r_{0}-\frac{1}{2}}\,\,\right]\kappa_{\phi} (3.13)

where, as we also have ϕ>1/3\phi>1/3 and tt0t\geq t_{0}, κϕ\kappa_{\phi} may be taken to be

κϕ:=α0+ηα0ρ0t0ϕ1/6+β0ρ02(1+t0ϕ)t0ϕ1/3+ηβ0ρ03(1+t0ϕ)2t02ϕ1/2.\kappa_{\phi}:=\sqrt{\alpha_{0}+\frac{\eta\alpha_{0}\rho_{0}}{t_{0}^{\phi-1/6}}+\frac{\beta_{0}\rho_{0}^{2}\left(1+t_{0}^{-\phi}\right)}{t_{0}^{\phi-1/3}}+\frac{\eta\beta_{0}\rho_{0}^{3}(1+t_{0}^{-\phi})^{2}}{t_{0}^{2\phi-1/2}}}. (3.14)

Explicitly, combining with (3.2), yields

|ζ(1/2+it)|a1t1/6logt+a2t1/6+a3tϕ/2+a4,tt0,|\zeta(1/2+it)|\leq a_{1}t^{1/6}\log t+a_{2}t^{1/6}+a_{3}t^{\phi/2}+a_{4},\qquad t\geq t_{0},

where,

a1:=12ϕπ1/6κϕ,a2:=2π1/6[log2πJ(R0)+2sinh1r012]κϕ,a3:=4r0(1+t0ϕ),a4:=Iϕ(r0,t0)+1.48t01/4+0.127t03/4.\begin{split}a_{1}&:=\frac{1-2\phi}{\pi^{1/6}}\kappa_{\phi},\\ a_{2}&:=-\frac{2}{\pi^{1/6}}\left[\log\sqrt{2\pi}-J(R_{0})+2\sinh^{-1}\sqrt{r_{0}-\frac{1}{2}}\right]\kappa_{\phi},\\ a_{3}&:=4\sqrt{r_{0}\left(1+t_{0}^{-\phi}\right)},\\ a_{4}&:=I_{\phi}(r_{0},t_{0})+1.48t_{0}^{-1/4}+0.127t_{0}^{-3/4}.\end{split} (3.15)

We choose ϕ=0.3414\phi=0.3414, η=1.8\eta=1.8, r0=4r_{0}=4 and t0=5.5107t_{0}=5.5\cdot 10^{7}. This choice of r0r_{0} is valid since it satisfies r0R0r_{0}\leq R_{0}. Also, in view of the chosen values for t0t_{0} and ϕ\phi, the inequality W0π(r0+1)3K03/t0W_{0}\geq\pi(r_{0}+1)^{3}\lceil K_{0}\rceil^{3}/t_{0}, for tt0t\geq t_{0}, is valid. We use this inequality to simplify the bounds for α0\alpha_{0} and β0\beta_{0}, considering they are both monotonically decreasing with W0W_{0}. Together, we obtain

|ζ(1/2+it)|\displaystyle|\zeta(1/2+it)| 0.59289t1/6logt8.0314t1/6+8.0092t0.17072.8796,t5.5107\displaystyle\leq 0.59289t^{1/6}\log t-8.0314t^{1/6}+8.0092t^{0.1707}-2.8796,\qquad t\geq 5.5\cdot 10^{7}
0.618t1/6logt,for 5.5107t<108.\displaystyle\leq 0.618t^{1/6}\log t,\qquad\text{for }5.5\cdot 10^{7}\leq t<10^{8}.

Similarly, choosing ϕ=0.3414\phi=0.3414, η=1.8\eta=1.8, r0=4r_{0}=4 and t0=108t_{0}=10^{8}, we obtain

|ζ(1/2+it)|\displaystyle|\zeta(1/2+it)| 0.58589t1/6logt8.0115t1/6+8.0075t0.17072.8843,t108\displaystyle\leq 0.58589t^{1/6}\log t-8.0115t^{1/6}+8.0075t^{0.1707}-2.8843,\qquad t\geq 10^{8}
0.618t1/6logt,for 108t<8.51010.\displaystyle\leq 0.618t^{1/6}\log t,\qquad\text{for }10^{8}\leq t<8.5\cdot 10^{10}.

Finally, choosing ϕ=0.3414\phi=0.3414, η=1.8\eta=1.8, r0=4r_{0}=4 and t0=8.51010t_{0}=8.5\cdot 10^{10}, we obtain

|ζ(1/2+it)|\displaystyle|\zeta(1/2+it)| 0.55305t1/6logt7.8629t1/6+8.0008t0.17072.9111,t8.51010\displaystyle\leq 0.55305t^{1/6}\log t-7.8629t^{1/6}+8.0008t^{0.1707}-2.9111,\qquad t\geq 8.5\cdot 10^{10}
0.618t1/6logt,for 8.51010t<1012,\displaystyle\leq 0.618t^{1/6}\log t,\qquad\text{for }8.5\cdot 10^{10}\leq t<10^{12},

hence the desired result holds for 5.5107t<10125.5\cdot 10^{7}\leq t<10^{12}.

3.4. Proof for t1012t\geq 10^{12}

For the region t1012t\geq 10^{12} we use a similar method as the previous subsection, but with ϕ=1/3\phi=1/3. Analogously to before, let K=t1/3K=\lceil t^{1/3}\rceil, n1=t/2πn_{1}=\lfloor\sqrt{t/2\pi}\rfloor, R=n1/KR=\lfloor n_{1}/K\rfloor and, this time, let t0=1012t_{0}=10^{12}. Suppose tt0t\geq t_{0}.

We bound T2T_{2} differently, by splitting the square root in (3.6) as follows. Let

r:=α+ηαW1/3K+βW2/3K+ηβWK2,\mathscr{B}_{r}:=\alpha+\frac{\eta\alpha W^{1/3}}{K}+\frac{\beta W^{2/3}}{K}+\frac{\eta\beta W}{K^{2}}, (3.16)

so that, recalling (3.6), we have

T22t1/6π1/6r=r0Rrr(r+1).T_{2}\leq\frac{2t^{1/6}}{\pi^{1/6}}\sum_{r=r_{0}}^{R}\sqrt{\frac{\mathscr{B}_{r}}{r(r+1)}}. (3.17)

Substituting ϕ=1/3\phi=1/3 into (3.11), and noting that tt0t\geq t_{0} and ρρ0\rho\leq\rho_{0}, we deduce

ηαW1/3Kηαt01/6ρ0,ηβWK2ηβt01/6ρ03(1+t01/3)2.\frac{\eta\alpha W^{1/3}}{K}\leq\eta\alpha t_{0}^{-1/6}\rho_{0},\qquad\frac{\eta\beta W}{K^{2}}\leq\eta\beta t_{0}^{-1/6}\rho_{0}^{3}(1+t_{0}^{-1/3})^{2}. (3.18)

Next, using the definition of WW, and since Kt1/3+1K\leq t^{1/3}+1, rr0r\geq r_{0} and tt0t\geq t_{0},

1r(r+1)βW2/3K=βr(r+1)π2/3(r+1)2Kt2/3βπ2/3(1+r01)(1+t01/3)t1/3.\frac{1}{r(r+1)}\frac{\beta W^{2/3}}{K}=\frac{\beta}{r(r+1)}\frac{\pi^{2/3}(r+1)^{2}K}{t^{2/3}}\leq\frac{\beta\pi^{2/3}(1+r_{0}^{-1})(1+t_{0}^{-1/3})}{t^{1/3}}. (3.19)

Furthermore, using x+yx+y\sqrt{x+y}\leq\sqrt{x}+\sqrt{y}, valid for any nonnegative numbers xx and yy, and combining (3.16), (3.18) and (3.19), as well as the observation αα0\alpha\leq\alpha_{0} and ββ0\beta\leq\beta_{0} which follows by the same reasoning as in subsection 3.3, we thus see

rr(r+1)\displaystyle\sqrt{\frac{\mathscr{B}_{r}}{r(r+1)}} 1r(r+1)(α+ηαW1/3K+ηβWK2)+1r(r+1)βW2/3K\displaystyle\leq\sqrt{\frac{1}{r(r+1)}\left(\alpha+\frac{\eta\alpha W^{1/3}}{K}+\frac{\eta\beta W}{K^{2}}\right)}+\sqrt{\frac{1}{r(r+1)}\frac{\beta W^{2/3}}{K}}
κ0r(r+1)+1t1/6β0π2/3(1+r01)(1+t01/3),\displaystyle\leq\frac{\kappa^{\prime}_{0}}{\sqrt{r(r+1)}}+\frac{1}{t^{1/6}}\sqrt{\beta_{0}\pi^{2/3}(1+r_{0}^{-1})(1+t_{0}^{-1/3})}, (3.20)

where

κ0:=α0+ηα0t01/6ρ0+ηβ0t01/6ρ03(1+t01/3)2.\kappa^{\prime}_{0}:=\sqrt{\alpha_{0}+\eta\alpha_{0}t_{0}^{-1/6}\rho_{0}+\eta\beta_{0}t_{0}^{-1/6}\rho_{0}^{3}(1+t_{0}^{-1/3})^{2}}.

We execute the sum over rr using (3.7) and (3.8). To bound the resulting terms, we appeal to the estimate

R+12t0/2π1t01/3+11+1239.5,R+\frac{1}{2}\geq\left\lceil\frac{\sqrt{t_{0}/2\pi}-1}{t_{0}^{1/3}+1}-1\right\rceil+\frac{1}{2}\geq 39.5,

valid for tt0t\geq t_{0}, and implying that

2sinh1R+12=log(R+12)+2log(1+1+139.5)logR+1.412,2\sinh^{-1}\sqrt{R+\frac{1}{2}}=\log\left(R+\frac{1}{2}\right)+2\log\left(1+\sqrt{1+\frac{1}{39.5}}\right)\leq\log R+1.412, (3.21)

in that range of tt. Note, in addition, that Rt1/6/2πR\leq t^{1/6}/\sqrt{2\pi}. Therefore, combined with (3.21) we obtain

r=r0R1r(r+1)16logt+ω0\sum_{r=r_{0}}^{R}\frac{1}{\sqrt{r(r+1)}}\leq\frac{1}{6}\log t+\omega_{0} (3.22)

where

ω0:=log2π+1.4122sinh1r01/2.\omega_{0}:=-\log\sqrt{2\pi}+1.412-2\sinh^{-1}\sqrt{r_{0}-1/2}. (3.23)

Using this together with (3.20), it follows on recalling (3.17) that

T22t1/6π1/6(logt6+ω0)κ0+2t1/6π1/3β0(1+r01)(1+t01/3),\begin{split}T_{2}&\leq\frac{2t^{1/6}}{\pi^{1/6}}\left(\frac{\log t}{6}+\omega_{0}\right)\kappa_{0}^{\prime}+\frac{\sqrt{2}t^{1/6}}{\pi^{1/3}}\sqrt{\beta_{0}(1+r_{0}^{-1})(1+t_{0}^{-1/3})},\end{split} (3.24)

for tt0t\geq t_{0}.

As for T1T_{1}, we bound it the same way as in (3.2) but with ϕ=1/3\phi=1/3, which gives

T14r0(1+t01/3)t1/6+I13(r0,t0)+1.48t01/4+0.127t03/4.T_{1}\leq 4\sqrt{r_{0}\left(1+t_{0}^{-1/3}\right)}t^{1/6}+I_{\frac{1}{3}}(r_{0},t_{0})+1.48t_{0}^{-1/4}+0.127t_{0}^{-3/4}. (3.25)

for all tt0t\geq t_{0}.

Finally, combining (3.24) and (3.25), we arrive at

|ζ(1/2+it)|b1t1/6logt+b2t1/6+b3,for all tt0,|\zeta(1/2+it)|\leq b_{1}t^{1/6}\log t+b_{2}t^{1/6}+b_{3},\qquad\text{for all }t\geq t_{0},

where

b1:=κ03π1/6,b2:=4r0(1+t01/3)+2π1/6ω0κ0+2π1/3β0(1+r01)(1+t01/3),b3:=I13(r0,t0)+1.48t01/4+0.127t03/4.\begin{split}b_{1}&:=\frac{\kappa^{\prime}_{0}}{3\pi^{1/6}},\\ b_{2}&:=4\sqrt{r_{0}\left(1+t_{0}^{-1/3}\right)}+\frac{2}{\pi^{1/6}}\omega_{0}\kappa^{\prime}_{0}+\frac{\sqrt{2}}{\pi^{1/3}}\sqrt{\beta_{0}(1+r_{0}^{-1})(1+t_{0}^{-1/3})},\\ b_{3}&:=I_{\frac{1}{3}}(r_{0},t_{0})+1.48t_{0}^{-1/4}+0.127t_{0}^{-3/4}.\end{split}

Choosing r0=4r_{0}=4 and η=1.6\eta=1.6, and using the inequality W0π(r0+1)3W_{0}\geq\pi(r_{0}+1)^{3} to remove remaining dependence of α0\alpha_{0} and β0\beta_{0} on tt, yields

|ζ(1/2+it)|\displaystyle|\zeta(1/2+it)| 0.478013t1/6logt+3.853165t1/62.914229\displaystyle\leq 0.478013t^{1/6}\log t+3.853165t^{1/6}-2.914229
0.618t1/6logt,(tt0),\displaystyle\leq 0.618t^{1/6}\log t,\qquad(t\geq t_{0}),

as required.

We point out one of main reasons for the improvement over [Hia16] obtained in this subsection. After we invoke the explicit ABAB process from Lemma 2.6 to arrive at (3.5), we pay greater attention to the cross term (K/W1/3)(βW2/3)=βKW1/3(K/W^{1/3})(\beta W^{2/3})=\beta KW^{1/3}. Specifically, we arrange for this cross term to contribute to the coefficient of t1/6t^{1/6} in the overall bound in (3.24), rather than to the coefficient of t1/6logtt^{1/6}\log t, as done in [Hia16]. This saves a factor of logt\log t from the contribution of this term, which is a considerable saving.

4. Proof of Lemma 2.3

The proof proceeds similarly to Lemma 2 in [CG04] and Lemma 2.1 in Patel [Pat ̵p], with only a few differences. We include the complete proof here for convenience.

Let ff be a function satisfying the conditions of Lemma 2.3, that is, ff has a continuous and monotonic derivative on [a,b)[a,b) and

+U1f(x)+1V1,x[a,b).\ell+U^{-1}\leq f^{\prime}(x)\leq\ell+1-V^{-1},\qquad x\in[a,b). (4.1)

for some U,V>1U,V>1 and some integer \ell. We may assume that =0\ell=0, i.e. that U1f(x)1V1U^{-1}\leq f^{\prime}(x)\leq 1-V^{-1}, since

|e(n)an<be(f(n))|=|an<be(f(n)n)|.\left|e(-\ell n)\sum_{a\leq n<b}e(f(n))\right|=\left|\sum_{a\leq n<b}e(f(n)-\ell n)\right|.

We may also assume that f(x)f^{\prime}(x) is increasing, since we may replace f(x)f(x) with f(x)-f(x) without changing the magnitude of the sum.

Now, define g(x):=f(x+1)f(x)g(x):=f(x+1)-f(x). Since by assumption f(x)f^{\prime}(x) is increasing in xx over x[a,b)x\in[a,b), g(x)=f(x+1)f(x)0g^{\prime}(x)=f^{\prime}(x+1)-f^{\prime}(x)\geq 0 over x[a,b1)x\in[a,b-1). Therefore, g(x)g(x) is increasing in xx over that interval. Furthermore, by the mean-value theorem, g(x)=(x+1x)f(ξ)=f(ξ)g(x)=(x+1-x)f^{\prime}(\xi)=f^{\prime}(\xi) for some ξ(x,x+1)\xi\in(x,x+1). Therefore,

U1f(x)f(ξ)=g(x)f(x+1)1V1,U^{-1}\leq f^{\prime}(x)\leq f^{\prime}(\xi)=g(x)\leq f^{\prime}(x+1)\leq 1-V^{-1}, (4.2)

for every x[a,b1)x\in[a,b-1). Thus, for instance, 0<g(x)<10<g(x)<1 over x[a,b1)x\in[a,b-1).

Next, let

G(n):=11e(g(n))=1+icot(πg(n))2,G(n):=\frac{1}{1-e(g(n))}=\frac{1+i\cot(\pi g(n))}{2}, (4.3)

so that

G(n)[e(f(n))e(f(n+1))]=e(f(n))e(f(n+1))1e(g(n))=e(f(n))[1e(g(n))]1e(g(n))=e(f(n)),\begin{split}G(n)\left[e(f(n))-e(f(n+1))\right]&=\frac{e(f(n))-e(f(n+1))}{1-e(g(n))}\\ &=\frac{e(f(n))[1-e(g(n))]}{1-e(g(n))}\\ &=e(f(n)),\end{split} (4.4)

and also

G(n)G(n1)=cot(πg(n1))cot(πg(n))2i.G(n)-G(n-1)=\frac{\cot(\pi g(n-1))-\cot(\pi g(n))}{2i}. (4.5)

Let L=aL=\lceil a\rceil. If bb is not an integer, let M=bM=\lfloor b\rfloor. If bb is an integer, let M=b1M=b-1. In either cases, the summation over n[a,b)n\in[a,b) is the same as the summation over n[L,M]n\in[L,M], and g(x)g^{\prime}(x) is increasing in x[L,M1]x\in[L,M-1].

Suppose that M=LM=L, so there is only one term in the sum. Then, by the trivial bound, we have

|an<be(f(n))|1U+Vπ.\left|\sum_{a\leq n<b}e(f(n))\right|\leq 1\leq\frac{U+V}{\pi}. (4.6)

Here we use the fact that the condition (4.1) implies that U11V1U^{-1}\leq 1-V^{-1}, so by the inequality of harmonic and arithmetic means,

U+V4U1+V14.U+V\geq\frac{4}{U^{-1}+V^{-1}}\geq 4. (4.7)

Therefore, the result of the lemma follows when M=LM=L.

Next, suppose ML1M-L\geq 1. By (4.4), and after a few rearrangements,

|n=LMe(f(n))|\displaystyle\left|\sum_{n=L}^{M}e(f(n))\right| =|n=LM1G(n)[e(f(n))e(f(n+1))]+e(f(M))|\displaystyle=\left|\sum_{n=L}^{M-1}G(n)[e(f(n))-e(f(n+1))]+e(f(M))\right|
=|n=L+1M1e(f(n))(G(n)G(n1))\displaystyle=\Bigg{|}\sum_{n=L+1}^{M-1}e(f(n))(G(n)-G(n-1))
+e(f(L))G(L)+e(f(M))(1G(M1))|\displaystyle\qquad\qquad+e(f(L))G(L)+e(f(M))(1-G(M-1))\Bigg{|}
|e(f(L))G(L)|+|e(f(M))(1G(M1))|\displaystyle\leq\left|e(f(L))G(L)\right|+|e(f(M))(1-G(M-1))|
+n=L+1M1|e(f(n))(G(n)G(n1))|\displaystyle\qquad\qquad+\sum_{n=L+1}^{M-1}\left|e(f(n))(G(n)-G(n-1))\right|
=|G(L)|+|1G(M1)|+n=L+1M1|G(n)G(n1)|.\displaystyle=|G(L)|+|1-G(M-1)|+\sum_{n=L+1}^{M-1}|G(n)-G(n-1)|.

Note that if ML=1M-L=1, then the last sum is empty and should be interpreted as equal to 0. Now, since g(x)g(x) is increasing in x[L,M1]x\in[L,M-1], cot(πg(x))\cot(\pi g(x)) is decreasing in xx over the same interval. Hence, by (4.5),

|G(n)G(n1)|=cot(πg(n1))cot(πg(n))2,|G(n)-G(n-1)|=\frac{\cot(\pi g(n-1))-\cot(\pi g(n))}{2},

for L+1nM1L+1\leq n\leq M-1. Therefore,

|n=LMe(f(n))|\displaystyle\left|\sum_{n=L}^{M}e(f(n))\right| =n=L+1M112(cot(πg(n1))cot(πg(n)))+|12+i2cot(πg(L))|\displaystyle=\sum_{n=L+1}^{M-1}\frac{1}{2}\left(\cot(\pi g(n-1))-\cot(\pi g(n))\right)+\left|\frac{1}{2}+\frac{i}{2}\cot(\pi g(L))\right|
+|12i2cot(πg(M1))|\displaystyle\qquad\qquad+\left|\frac{1}{2}-\frac{i}{2}\cot(\pi g(M-1))\right| (4.8)
=12cot(πg(L))12cot(πg(M1))+121sin(πg(L))+121sin(πg(M1))\displaystyle=\frac{1}{2}\cot(\pi g(L))-\frac{1}{2}\cot(\pi g(M-1))+\frac{1}{2}\frac{1}{\sin(\pi g(L))}+\frac{1}{2}\frac{1}{\sin(\pi g(M-1))} (4.9)
=12cot(π2g(L))+12tan(π2g(M1))\displaystyle=\frac{1}{2}\cot\left(\frac{\pi}{2}g(L)\right)+\frac{1}{2}\tan\left(\frac{\pi}{2}g(M-1)\right) (4.10)
12cot(π2U)+12tan(π2(11V))\displaystyle\leq\frac{1}{2}\cot\left(\frac{\pi}{2U}\right)+\frac{1}{2}\tan\left(\frac{\pi}{2}\left(1-\frac{1}{V}\right)\right) (4.11)
Uπ+Vπ,\displaystyle\leq\frac{U}{\pi}+\frac{V}{\pi},

as required. Going from (4.9) to (4.10), we combined the various terms using the formulas (1+cos(πx))/sin(πx)=cot(πx/2)(1+\cos(\pi x))/\sin(\pi x)=\cot(\pi x/2) and (1cos(πx))/sin(πx)=tan(πx/2)(1-\cos(\pi x))/\sin(\pi x)=\tan(\pi x/2), valid for 0<x<10<x<1. In (4.11) we used the monotonicity of cot(πx)\cot(\pi x) and tan(πx)\tan(\pi x) over 0<x<1/20<x<1/2. In the last line we used the inequalities cot(πx)<1/(πx)\cot(\pi x)<1/(\pi x) and tan(πx/2)<2/(π(1x))\tan(\pi x/2)<2/(\pi(1-x)), valid for 0<x<10<x<1. Lastly, we note that passing from (4.8) to (4.9) presents no difficulty if ML=1M-L=1 since cot(πg(L))cot(πg(M1))=0\cot(\pi g(L))-\cot(\pi g(M-1))=0 in this case.

5. Proof of Lemma 2.5

We divide the summation interval into about 2k2k suitable subintervals, chosen so that we may apply the generalized Cheng–Graham Lemma 2.3 on about half of the subintervals and the trivial bound on the remaining half. The special form of gg allows a sharper bound on kk, so that in the definition of μ\mu in Lemma 2.5 the contribution of λ\lambda can be reduced to λ2/3\lambda^{2/3}. Moreover, we adjust the definition of the boundary subintervals (determined by C0C_{0} and CkC_{k} below) to further reduce the number of sub-intervals in the sum. Recall that rr is a positive integer, λ=(r+1)3/r3\lambda=(r+1)^{3}/r^{3}, and KK0>1K\geq K_{0}>1 where KK is an integer. We will use the following elementary inequality.

rKrK+K1=rr+(11/K)(1K1)1rr+11(1K01)λ1/3.\frac{rK}{rK+K-1}=\frac{r}{r+(1-1/K)}\leq\left(1-K^{-1}\right)^{-1}\frac{r}{r+1}\leq\frac{1}{(1-K_{0}^{-1})\lambda^{1/3}}. (5.1)

Let us recall that W=π(r+1)3K3/tW=\pi(r+1)^{3}K^{3}/t and the phase function g(x)=f(x+m)f(x)g(x)=f(x+m)-f(x) where f(x)=t2πlog(rK+x)f(x)=\frac{t}{2\pi}\log(rK+x). We compute, for m<LKm<L\leq K,

g(L1m)g(0)\displaystyle g^{\prime}(L-1-m)-g^{\prime}(0) g(K1m)g(0)\displaystyle\leq g^{\prime}(K-1-m)-g^{\prime}(0)
=t2πr3K3m(rK(K1m)rK+K1m)(rKrK+m)(1+rKrK+K1)\displaystyle=\frac{t}{2\pi r^{3}K^{3}}\cdot m\cdot\left(\frac{rK(K-1-m)}{rK+K-1-m}\right)\left(\frac{rK}{rK+m}\right)\left(1+\frac{rK}{rK+K-1}\right)
λ2WmKλ1/31(1+1(1K01)λ1/3),\displaystyle\leq\frac{\lambda}{2W}\cdot m\cdot K\lambda^{-1/3}\cdot 1\cdot\left(1+\frac{1}{(1-K_{0}^{-1})\lambda^{1/3}}\right),

where in the first line we used that gg^{\prime} is monotonically increasing, and in the last line we used the inequality (5.1), as well as the observation

rK(K1m)rK+K1mrKKrK+K=Kλ1/3.\frac{rK(K-1-m)}{rK+K-1-m}\leq\frac{rK\cdot K}{rK+K}=K\lambda^{-1/3}.

This observation follows since for any real number α\alpha the expression αy/(α+y)\alpha y/(\alpha+y) is positive for positive α\alpha and yy, as we have with α=rK\alpha=rK and y[K1m,K]y\in[K-1-m,K], and is increasing in yy away from the possible discontinuity at y=αy=-\alpha. Therefore, by definition of μ\mu, we obtain

g(L1m)g(0)mKWμ.g^{\prime}(L-1-m)-g^{\prime}(0)\leq\frac{mK}{W}\mu. (5.2)

We next define

C0:=g(0),Ck:=g(L1m),C_{0}:=\lfloor g^{\prime}(0)\rfloor,\qquad C_{k}:=\lfloor g^{\prime}(L-1-m)\rfloor,

and let {g(0)}=ϵ1\{g^{\prime}(0)\}=\epsilon_{1} and {g(L1m)}=ϵ2\{g^{\prime}(L-1-m)\}=\epsilon_{2}, where {x}\{x\} denotes the fractional part of xx. Let Δ\Delta be a number such that 0<Δ<1/20<\Delta<1/2, to be chosen later, and let

Cj\displaystyle C_{j} :=Cj1+1,\displaystyle:=C_{j-1}+1, 1jk1,\displaystyle 1\leq j\leq k-1,
xj\displaystyle x_{j} :=max{(g)1(CjΔ),0},\displaystyle:=\max\{(g^{\prime})^{-1}(C_{j}-\Delta),0\}, 1jk,\displaystyle 1\leq j\leq k,
yj\displaystyle y_{j} :=min{(g)1(Cj+Δ),L1m},\displaystyle:=\min\{(g^{\prime})^{-1}(C_{j}+\Delta),L-1-m\}, 0jk.\displaystyle 0\leq j\leq k.

So that

k=CkC0=g(L1m)ϵ2(g(0)ϵ1)mKWμ+ϵ1ϵ2,k=C_{k}-C_{0}=g^{\prime}(L-1-m)-\epsilon_{2}-(g^{\prime}(0)-\epsilon_{1})\leq\frac{mK}{W}\mu+\epsilon_{1}-\epsilon_{2}, (5.3)

where we used (5.2) in the last inequality. Furthermore, since both gg^{\prime} and (g)1(g^{\prime})^{-1} are increasing, we have, for 1jk1\leq j\leq k,

yjxj\displaystyle y_{j}-x_{j} =min{(g)1(Cj+Δ),L1m}max{(g)1(CjΔ),0}\displaystyle=\min\{(g^{\prime})^{-1}(C_{j}+\Delta),L-1-m\}-\max\{(g^{\prime})^{-1}(C_{j}-\Delta),0\}
=(g)1(min{Cj+Δ,g(L1m)})(g)1(max{CjΔ,g(0)})\displaystyle=(g^{\prime})^{-1}(\min\{C_{j}+\Delta,g^{\prime}(L-1-m)\})-(g^{\prime})^{-1}(\max\{C_{j}-\Delta,g^{\prime}(0)\})
2Δ|((g)1)(νj)|,\displaystyle\leq 2\Delta|((g^{\prime})^{-1})^{\prime}(\nu_{j})|,

for some νj\nu_{j} satisfying

max{CjΔ,g(0)}νjmin{Cj+Δ,g(L1m)}.\max\{C_{j}-\Delta,g^{\prime}(0)\}\leq\nu_{j}\leq\min\{C_{j}+\Delta,g^{\prime}(L-1-m)\}.

However this implies that ξj:=(g)1(νj)[0,L1m]\xi_{j}:=(g^{\prime})^{-1}(\nu_{j})\in[0,L-1-m] and hence

yjxj2Δ|((g)1)(νj)|=2Δ|g′′(ξj)|2WΔm.y_{j}-x_{j}\leq 2\Delta|((g^{\prime})^{-1})^{\prime}(\nu_{j})|=\frac{2\Delta}{|g^{\prime\prime}(\xi_{j})|}\leq\frac{2W\Delta}{m}. (5.4)

Next, we observe that 0x1<y1<x2<y2<<xk<ykLm10\leq x_{1}<y_{1}<x_{2}<y_{2}<\cdots<x_{k}<y_{k}\leq L-m-1, so the xjx_{j} and yjy_{j} interlace. We treat the intervals [x1,y1),[x2,y2),,[xk,yk)[x_{1},y_{1}),[x_{2},y_{2}),\ldots,[x_{k},y_{k}) using the trivial bound, and the intervals [y1,x2),[y2,x3),,[yk1,xk)[y_{1},x_{2}),[y_{2},x_{3}),\ldots,[y_{k-1},x_{k}) using the Kusmin–Landau lemma. As for the boundary intervals [0,x1)[0,x_{1}) and [yk,Lm1][y_{k},L-m-1], they will require more careful analysis and a separate treatment.

By the triangle inequality, we have for any real numbers aa and bb such that aba\leq b,

|anbe(g(n))|ba+1.\left|\sum_{a\leq n\leq b}e(g(n))\right|\leq b-a+1.

Hence, applying (5.4),

|xjn<yje(g(n))|yjxj+12WΔm+1.\displaystyle\left|\sum_{x_{j}\leq n<y_{j}}e(g(n))\right|\leq y_{j}-x_{j}+1\leq\frac{2W\Delta}{m}+1. (5.5)

As for the complementary intervals [yj,xj+1)[y_{j},x_{j+1}), we have, by construction, g(x)Δ\|g^{\prime}(x)\|\geq\Delta for all x[yj,xj+1)x\in[y_{j},x_{j+1}). So by Lemma 2.3, for j=1,k1j=1,\ldots k-1,

|yjn<xj+1e(g(n))|2πΔ.\displaystyle\left|\sum_{y_{j}\leq n<x_{j+1}}e(g(n))\right|\leq\frac{2}{\pi\Delta}. (5.6)

It remains to consider the boundary intervals, starting with [0,x1)[0,x_{1}). Let

S0:=|0n<x1e(g(n))|.S_{0}:=\left|\sum_{0\leq n<x_{1}}e(g(n))\right|.

We consider the following three cases.

Case 1: ϵ1(1Δ,1]\epsilon_{1}\in(1-\Delta,1]

Since ϵ1>1Δ\epsilon_{1}>1-\Delta and (g)1(g^{\prime})^{-1} is increasing,

(g)1(C1Δ)<(g)1(g(0)+ϵ1)=(g)1(g(0))=0,(g^{\prime})^{-1}(C_{1}-\Delta)<(g^{\prime})^{-1}(\lfloor g^{\prime}(0)\rfloor+\epsilon_{1})=(g^{\prime})^{-1}(g^{\prime}(0))=0,

hence x1=0x_{1}=0 and thus S0=0S_{0}=0.

Case 2: ϵ1[0,Δ)\epsilon_{1}\in[0,\Delta)

Since ϵ1<Δ\epsilon_{1}<\Delta,

y0=(g)1(g(0)+Δ)>(g)1(g(0))=0.y_{0}=(g^{\prime})^{-1}(\lfloor g^{\prime}(0)\rfloor+\Delta)>(g^{\prime})^{-1}(g^{\prime}(0))=0.

Therefore, g(n)Δ\|g^{\prime}(n)\|\geq\Delta for n[y0,x1)n\in[y_{0},x_{1}), so by Lemma 2.3 and on using the trivial bound to estimate the subsum over [0,y0)[0,y_{0}) we obtain

S0|0n<y0e(g(n))|+|y0n<x1e(g(n))|W(Δϵ1)m+1+2πΔ.S_{0}\leq\left|\sum_{0\leq n<y_{0}}e(g(n))\right|+\left|\sum_{y_{0}\leq n<x_{1}}e(g(n))\right|\leq\frac{W(\Delta-\epsilon_{1})}{m}+1+\frac{2}{\pi\Delta}.

Here, we also used the analog of (5.4) to bound the length of the first subsum.

Case 3: ϵ1[Δ,1Δ]\epsilon_{1}\in[\Delta,1-\Delta]

In this case, y00x1y_{0}\leq 0\leq x_{1} and +ϵ1g(n)+1Δ\ell+\epsilon_{1}\leq g^{\prime}(n)\leq\ell+1-\Delta for all n[0,x1)n\in[0,x_{1}), where =C0\ell=C_{0}. So by Lemma 2.3,

S01π(1ϵ1+1Δ).S_{0}\leq\frac{1}{\pi}\left(\frac{1}{\epsilon_{1}}+\frac{1}{\Delta}\right).

Combining the three cases, we conclude that

S01πΔ+h(ϵ1),S_{0}\leq\frac{1}{\pi\Delta}+h(\epsilon_{1}),

where

h(ϵ):={W(Δϵ)m+1+1πΔif ϵ[0,Δ)1πϵif ϵ[Δ,1Δ]1πΔif ϵ(1Δ,1]h(\epsilon):=\begin{cases}\displaystyle\frac{W(\Delta-\epsilon)}{m}+1+\frac{1}{\pi\Delta}&\text{if }\epsilon\in[0,\Delta)\\ \displaystyle\frac{1}{\pi\epsilon}&\text{if }\epsilon\in[\Delta,1-\Delta]\\ \displaystyle-\frac{1}{\pi\Delta}&\text{if }\epsilon\in(1-\Delta,1]\end{cases} (5.7)

Similarly, the sum corresponding to the other boundary interval [yk,L1m][y_{k},L-1-m] satisfies

Sk:=|yknL1me(g(n))|1πΔ+h(1ϵ2).S_{k}:=\left|\sum_{y_{k}\leq n\leq L-1-m}e(g(n))\right|\leq\frac{1}{\pi\Delta}+h(1-\epsilon_{2}). (5.8)

The only difference in the treatment of SkS_{k} is that if ϵ2[Δ,1Δ]\epsilon_{2}\in[\Delta,1-\Delta], then we use a slightly modified version of Lemma 2.3 that holds for sums over the closed interval [a,b][a,b] instead of [a,b)[a,b). This is easy to produce since the bound from that lemma is independent of the length of summation.

Together with (5.5) and (5.6), and using (5.3) to bound the sums over kk, we obtain

|0nL1me(g(n))|\displaystyle\left|\sum_{0\leq n\leq L-1-m}e(g(n))\right| S0+j=1k|xjn<yje(g(n))|+j=1k1|yjn<xj+1e(g(n))|+Sk\displaystyle\leq S_{0}+\sum_{j=1}^{k}\left|\sum_{x_{j}\leq n<y_{j}}e(g(n))\right|+\sum_{j=1}^{k-1}\left|\sum_{y_{j}\leq n<x_{j+1}}e(g(n))\right|+S_{k}
2kWΔm+k+2(k1)πΔ+1πΔ+h(ϵ1)+1πΔ+h(1ϵ2)\displaystyle\leq\frac{2kW\Delta}{m}+k+\frac{2(k-1)}{\pi\Delta}+\frac{1}{\pi\Delta}+h(\epsilon_{1})+\frac{1}{\pi\Delta}+h(1-\epsilon_{2})
2(mKμW+ϵ1ϵ2)(1πΔ+WΔm+12)+h(ϵ1)+h(1ϵ2).\displaystyle\leq 2\left(\frac{mK\mu}{W}+\epsilon_{1}-\epsilon_{2}\right)\left(\frac{1}{\pi\Delta}+\frac{W\Delta}{m}+\frac{1}{2}\right)+h(\epsilon_{1})+h(1-\epsilon_{2}).

To balance the first two terms in the second factor, we choose

Δ=mπW.\Delta=\sqrt{\frac{m}{\pi W}}. (5.9)

Note that if this choice of Δ\Delta is 1/2\geq 1/2, then the bound we are trying to prove in Lemma 2.5 follows anyway since the contribution of the first term of the bound will already be 4μKΔ2μKK4\mu K\Delta\geq 2\mu K\geq K, which is no better than the trivial bound. Therefore, we may assume that our choice of Δ\Delta satisfies Δ<1/2\Delta<1/2. Also, with our choice of Δ\Delta we have

WΔm=1πΔ.\frac{W\Delta}{m}=\frac{1}{\pi\Delta}. (5.10)

Put together, on defining

H(ϵ):=(4πΔ+1)ϵ+h(ϵ),H(\epsilon):=\left(\frac{4}{\pi\Delta}+1\right)\epsilon+h(\epsilon), (5.11)

and using (5.10) to simplify in the second line next, we arrive at

|0nL1me(g(n))|\displaystyle\left|\sum_{0\leq n\leq L-1-m}e(g(n))\right| 2(mKμW+ϵ1ϵ2)(2πΔ+12)+h(ϵ1)+h(1ϵ2)\displaystyle\leq 2\left(\frac{mK\mu}{W}+\epsilon_{1}-\epsilon_{2}\right)\left(\frac{2}{\pi\Delta}+\frac{1}{2}\right)+h(\epsilon_{1})+h(1-\epsilon_{2})
=4KμπWm1/2+μKWm4πΔ1+H(ϵ1)+H(1ϵ2).\displaystyle=\frac{4K\mu}{\sqrt{\pi W}}m^{1/2}+\frac{\mu K}{W}m-\frac{4}{\pi\Delta}-1+H(\epsilon_{1})+H(1-\epsilon_{2}). (5.12)

We will show that for ϵ[0,1]\epsilon\in[0,1],

H(ϵ)4πΔ2π+32.H(\epsilon)\leq\frac{4}{\pi\Delta}-\frac{2}{\pi}+\frac{3}{2}. (5.13)

Substituting this bound back into (5.12), the lemma follows. We prove the inequality (5.13) by considering three cases.

Case 1: ϵ[0,Δ)\epsilon\in[0,\Delta)

Then recalling (5.7) and using (5.10),

H(ϵ)=(4πΔ+1)ϵ+W(Δϵ)m+1+1πΔ=(1+4πWmWm)ϵ+1+2πΔ.H(\epsilon)=\left(\frac{4}{\pi\Delta}+1\right)\epsilon+\frac{W(\Delta-\epsilon)}{m}+1+\frac{1}{\pi\Delta}=\left(1+\frac{4}{\sqrt{\pi}}\sqrt{\frac{W}{m}}-\frac{W}{m}\right)\epsilon+1+\frac{2}{\pi\Delta}.

Noting that 1+4xπx21+4π1+\frac{4x}{\sqrt{\pi}}-x^{2}\leq 1+\frac{4}{\pi} for all xx, we have, since 0ϵ<Δ<1/20\leq\epsilon<\Delta<1/2,

H(ϵ)<(1+4π)Δ+1+2πΔ32+2π+2πΔ<4πΔ2π+32.H(\epsilon)<\left(1+\frac{4}{\pi}\right)\Delta+1+\frac{2}{\pi\Delta}\leq\frac{3}{2}+\frac{2}{\pi}+\frac{2}{\pi\Delta}<\frac{4}{\pi\Delta}-\frac{2}{\pi}+\frac{3}{2}. (5.14)

So the claimed bound on H(ϵ)H(\epsilon) in (5.13) follows in this case.

Case 2: ϵ[Δ,1Δ]\epsilon\in[\Delta,1-\Delta]

Then,

H(ϵ)=(4πΔ+1)ϵ+1πϵ.H(\epsilon)=\left(\frac{4}{\pi\Delta}+1\right)\epsilon+\frac{1}{\pi\epsilon}.

We observe that HH is convex over x>0x>0 since H′′(x)>0H^{\prime\prime}(x)>0. So,

H(ϵ)max{H(Δ),H(1Δ)}.H(\epsilon)\leq\max\{H(\Delta),H(1-\Delta)\}. (5.15)

On the other hand, since Δ<1/2\Delta<1/2,

H(Δ)=4π+Δ+1πΔ<4π+12+(4πΔ6π)<4πΔ2π+12.H(\Delta)=\frac{4}{\pi}+\Delta+\frac{1}{\pi\Delta}<\frac{4}{\pi}+\frac{1}{2}+\left(\frac{4}{\pi\Delta}-\frac{6}{\pi}\right)<\frac{4}{\pi\Delta}-\frac{2}{\pi}+\frac{1}{2}. (5.16)

Also,

H(1Δ)\displaystyle H(1-\Delta) =4(1Δ)πΔ+1Δ+1π(1Δ).\displaystyle=\frac{4(1-\Delta)}{\pi\Delta}+1-\Delta+\frac{1}{\pi(1-\Delta)}.

Since x+1πxx+\frac{1}{\pi x} is convex for x>0x>0 and 1Δ(1/2,1)1-\Delta\in(1/2,1), we have

1Δ+1π(1Δ)max(12+2π,1+1π)=1+1π.1-\Delta+\frac{1}{\pi(1-\Delta)}\leq\max\left(\frac{1}{2}+\frac{2}{\pi},1+\frac{1}{\pi}\right)=1+\frac{1}{\pi}.

Hence,

H(1Δ)4πΔ3π+1.H(1-\Delta)\leq\frac{4}{\pi\Delta}-\frac{3}{\pi}+1. (5.17)

Combining (5.16) and (5.17), and using that 2/π+1/2-2/\pi+1/2 and 3/π+1-3/\pi+1 are both <2/π+3/2<-2/\pi+3/2, the claim follows in this case as well.

Case 3: ϵ(1Δ,1]\epsilon\in(1-\Delta,1]

Then, using Δ<1/2\Delta<1/2,

H(ϵ)=(4πΔ+1)ϵ1πΔ<4πΔ+12π<4πΔ2π+32,H(\epsilon)=\left(\frac{4}{\pi\Delta}+1\right)\epsilon-\frac{1}{\pi\Delta}<\frac{4}{\pi\Delta}+1-\frac{2}{\pi}<\frac{4}{\pi\Delta}-\frac{2}{\pi}+\frac{3}{2}, (5.18)

as claimed.

6. Proof of Lemma 2.6

In this lemma we propagate the improvements from Lemma 2.5 through to the third derivative test. The approach remains the same as Hiary [Hia16]. We first apply Weyl differencing from Lemma 2.4 to the given exponential, then we estimate the differenced sums sm(K)s^{\prime}_{m}(K). By Lemma 2.5, we have

|sm(K)|\displaystyle\left|s^{\prime}_{m}(K)\right| 4KμπWm1/2+μKWm+4Wπm1/24π+2\displaystyle\leq\frac{4K\mu}{\sqrt{\pi W}}m^{1/2}+\frac{\mu K}{W}m+4\sqrt{\frac{W}{\pi}}m^{-1/2}-\frac{4}{\pi}+2

where μ\mu is as defined in Lemma 2.5. We apply the inequalities

m=1M(1mM)m415M3/2,m=1M(1mM)1m43M,\sum_{m=1}^{M}\left(1-\frac{m}{M}\right)\sqrt{m}\leq\frac{4}{15}M^{3/2},\qquad\sum_{m=1}^{M}\left(1-\frac{m}{M}\right)\frac{1}{\sqrt{m}}\leq\frac{4}{3}\sqrt{M},
m=1M(1mM)12M,m=1M(1mM)m16M2,\sum_{m=1}^{M}\left(1-\frac{m}{M}\right)\leq\frac{1}{2}M,\qquad\sum_{m=1}^{M}\left(1-\frac{m}{M}\right)m\leq\frac{1}{6}M^{2},

which appear after [CG04, Lemma 7], which gives

m=1M(1mM)|sm(K)|\displaystyle\sum_{m=1}^{M}\left(1-\frac{m}{M}\right)|s^{\prime}_{m}(K)| 16μK15πWM3/2+μK6WM2+163WπM1/2+12(24π)M.\displaystyle\leq\frac{16\mu K}{15\sqrt{\pi W}}M^{3/2}+\frac{\mu K}{6W}M^{2}+\frac{16}{3}\sqrt{\frac{W}{\pi}}M^{1/2}+\frac{1}{2}\left(2-\frac{4}{\pi}\right)M.

Upon choosing M=ηW1/3M=\lceil\eta W^{1/3}\rceil, for some η>0\eta>0, we have ηW1/3MηW1/3+1\eta W^{1/3}\leq M\leq\eta W^{1/3}+1 and

2Mm=1M(1mM)|sm(K)|\displaystyle\frac{2}{M}\sum_{m=1}^{M}\left(1-\frac{m}{M}\right)|s^{\prime}_{m}(K)|
32μK15πWM1/2+μK3WM+323WπM1/2+(24π)\displaystyle\qquad\qquad\leq\frac{32\mu K}{15\sqrt{\pi W}}M^{1/2}+\frac{\mu K}{3W}M+\frac{32}{3}\sqrt{\frac{W}{\pi}}M^{-1/2}+\left(2-\frac{4}{\pi}\right)
32μK15πWηW1/3+1+μK3W(ηW1/3+1)+323Wπ1ηW1/3+(24π)\displaystyle\qquad\qquad\leq\frac{32\mu K}{15\sqrt{\pi W}}\sqrt{\eta W^{1/3}+1}+\frac{\mu K}{3W}(\eta W^{1/3}+1)+\frac{32}{3}\sqrt{\frac{W}{\pi}}\frac{1}{\sqrt{\eta W^{1/3}}}+\left(2-\frac{4}{\pi}\right)
=KW1/3[ημ3W1/3+μ3W2/3+32μ15πη+W1/3]\displaystyle\qquad\qquad=\frac{K}{W^{1/3}}\left[\frac{\eta\mu}{3W^{1/3}}+\frac{\mu}{3W^{2/3}}+\frac{32\mu}{15\sqrt{\pi}}\sqrt{\eta+W^{-1/3}}\right]
+W1/3[323πη+(24π)W1/3]\displaystyle\qquad\qquad\qquad\qquad+W^{1/3}\left[\frac{32}{3\sqrt{\pi\eta}}+\left(2-\frac{4}{\pi}\right)W^{-1/3}\right]

Substituting into Lemma 2.4, we obtain the desired result.

7. Concluding remarks

It appears difficult to substantially improve the constant 0.6180.618 in Theorem 1.1 without resorting to a large-scale numerical computation. Such a numerical computation would probably need to be extensive enough to allow us to, both, avoid using the Riemann–Siegel-Lehman bound and increase the threshold value of t0t_{0} where we start applying explicit van der Corput lemmas.

We briefly describe two theoretical approaches that may achieve modest improvements. Firstly, in Lemma 2.5 we used the inequality Δ<1/2\Delta<1/2, but this can be replaced with a sharper inequality. This change will ultimately lower the constant term appearing in the main bound of Lemma 2.5.

Secondly, our application of the third derivative test in (3.4) may be inefficient on the last piece in the main sum subdivision. This last piece contains n1RK+1n_{1}-RK+1 terms, yet we always bound it as though it contains KK terms. This could be wasteful if n1RK+1n_{1}-RK+1 is much smaller than KK. More careful treatment of this boundary piece may produce savings for certain ranges of tt in the “intermediate” region, i.e. in the region 5.5107t<10125.5\cdot 10^{7}\leq t<10^{12}.

Lastly, the context of this work highlights the sensitivity of explicit estimates in number theory to errors (even minor ones) that could compound quickly, and points to the need for a more automated approach in the future to verify explicit theoretical results. Overall, the incorrect explicit Kusmin–Landau lemma affected all the published subconvex explicit estimates on zeta, as well as other important explicit estimates in number theory. For example, the explicit ABAB process derived in [Hia16, Lemma 1.2] was impacted, and in turn, as mentioned earlier, the constant 0.630.63 in the main theorem there was also impacted. Our work restores the 0.630.63 constant and improves it. Therefore, we leave intact several works that have subsequently used the bound in [Hia16, Theorem 1.1].

References

  • [CG04] Yuanyou F. Cheng and Sidney W. Graham “Explicit Estimates for the Riemann Zeta Function” In Rocky Mountain Journal of Mathematics 34.4, 2004
  • [Cor21] J.G. van der Corput “Zahlentheoretische Abschätzungen” In Mathematische Annalen 84, 1921, pp. 53–79
  • [Hia16] Ghaith A. Hiary “An explicit van der Corput estimate for ζ(1/2+it)\zeta(1/2+it) In Indagationes Mathematicae 27.2, 2016, pp. 524–533
  • [Kuz27] R. Kuzmin “Sur quelques inégalités trigonométriques” In Soc. Phys.-Math. Léningrade 1, 1927, pp. 233–239
  • [Lan28] E. Landau “Üeber eine trigonometrische Summe” In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1928, pp. 21–24
  • [Lan26] Edmund Landau “Die Winogradowsche Methode zum Beweise des Waring-Hilbert-Kamkeschen Satzes” In Acta Mathematica 48.3-4 Institut Mittag-Leffler, 1926, pp. 217 –253
  • [Pat ̵p] Dhir Patel “An explicit upper bound for |ζ(1+it)||\zeta(1+it)| In Indagationes Mathematicae, in press
  • [PT15] D. J. Platt and T. S. Trudgian “An improved explicit bound on |ζ(1/2+it)||\zeta(1/2+it)| In Journal of Number Theory 147, 2015, pp. 842–851