This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An Explicit Watson–Ichino Formula with CM Newforms

Bin Guan Data Science Institute
Shandong University
Jinan
China
[email protected]
Abstract.

In this paper, we extend the work of Humphries–Khan [HK20] to establish an explicit version of Watson–Ichino formula for L(1/2,fadg)L(1/2,f\otimes\operatorname{ad}g), where ff is a Hecke–Maass form and gg is a CM newform.

Key words and phrases:
Watson–Ichino formula, CM form, LL-function

1. Introduction

The purpose of this paper is to establish an explicit Watson–Ichino formula for triple product LL-functions of a special class of Hecke–Maass forms. To begin with, let π1,π2,π3\pi_{1},\pi_{2},\pi_{3} be irreducible unitary cuspidal automorphic representations of GL2(𝔸)\operatorname{{GL}}_{2}(\mathbb{A}) with the product of their central characters trivial, where 𝔸\mathbb{A} is the adele ring over \mathbb{Q}. One can consider the (complete) triple product LL-function L(s,π1π2π3)L(s,\pi_{1}\otimes\pi_{2}\otimes\pi_{3}) associated to them, which was originally defined classically by Garrett [Gar87] and was generalized further by Piatetski–Shapiro and Rallis [PSR87] using an adelic approach.

Gross and Kudla [GK92] established an explicit identity relating central LL-values and period integrals (which are finite sums in their case), when the πi\pi_{i}’s correspond to cusp forms of a prime level and weight 22. Watson [Wat02] generalized this identity to higher levels and weights, and Ichino [Ich08] proved an adelic version of this period formula which works for all the cases. In this paper we study the case when the quaternion algebra in [Ich08] is GL2\operatorname{{GL}}_{2} and the étale cubic algebra is ××\mathbb{Q}\times\mathbb{Q}\times\mathbb{Q} over \mathbb{Q}. Then the Ichino’s formula can be reformulated (cf. [Col20]) as follows: for any φi=φi,vπi\varphi_{i}=\otimes\varphi_{i,v}\in\pi_{i}, i=1,2,3i=1,2,3,

|𝔸×GL2()\GL2(𝔸)φ1(g)φ2(g)φ3(g)𝑑g|2i=13𝔸×GL2()\GL2(𝔸)|φi(g)|2𝑑g=C23(π6)2L(12,π1π2π3)L(1,π1,Ad)L(1,π2,Ad)L(1,π3,Ad)vIv,\frac{\left|\int_{\mathbb{A}^{\times}\operatorname{{GL}}_{2}(\mathbb{Q})\backslash\operatorname{{GL}}_{2}(\mathbb{A})}\varphi_{1}(g)\varphi_{2}(g)\varphi_{3}(g)\ dg\right|^{2}}{\prod_{i=1}^{3}\int_{\mathbb{A}^{\times}\operatorname{{GL}}_{2}(\mathbb{Q})\backslash\operatorname{{GL}}_{2}(\mathbb{A})}|\varphi_{i}(g)|^{2}\ dg}=\frac{C}{2^{3}}\left(\frac{\pi}{6}\right)^{2}\frac{L(\frac{1}{2},\pi_{1}\otimes\pi_{2}\otimes\pi_{3})}{L(1,\pi_{1},\operatorname{Ad})L(1,\pi_{2},\operatorname{Ad})L(1,\pi_{3},\operatorname{Ad})}\prod_{v}I_{v}^{\prime},

where 𝔸×\mathbb{A}^{\times} is diagonally embedded in GL2(𝔸)\operatorname{{GL}}_{2}(\mathbb{A}) as its center, CC is defined so that dg=Cvdgvdg=C\prod_{v}dg_{v} is the Tamagawa measure on 𝔸×GL2()\GL2(𝔸)\mathbb{A}^{\times}\operatorname{{GL}}_{2}(\mathbb{Q})\backslash\operatorname{{GL}}_{2}(\mathbb{A}), L(s,πi,Ad)L(s,\pi_{i},\operatorname{Ad}) is the adjoint LL-function attached to πi\pi_{i}, and the local constants IvI_{v}^{\prime} are defined as in (2). Moreover, for v=p<v=p<\infty, Ip=vol(p×\GL2(p))I_{p}^{\prime}=\operatorname{vol}(\mathbb{Z}_{p}^{\times}\backslash\operatorname{{GL}}_{2}(\mathbb{Z}_{p})) when all πi,p\pi_{i,p} are unramified, and φi,pπi,p\varphi_{i,p}\in\pi_{i,p} are unit spherical vectors.

Many authors have derived several explicit versions of Watson–Ichino formula in various cases. For example Nelson [Nel11] extends Watson’s formula and relates

|Γ0(q)\ykf(z)|g(z)|2𝑑μ(z)|2 and L(12,fgg¯),\left|\int_{\Gamma_{0}(q)\backslash\mathcal{H}}y^{k}f(z)|g(z)|^{2}\ d\mu(z)\right|^{2}\quad\text{ and }\quad L(\tfrac{1}{2},f\otimes g\otimes\bar{g}),

where \mathcal{H} is the upper-half plane, ff is a Hecke–Maass form of level 11 and gg is a newform of square-free level qq (gg can be holomorphic of weight kk or a Maass form). In this case the triple product LL-function L(s,fgg¯)L(s,f\otimes g\otimes\bar{g}) can be factorized as L(s,f)L(s,fadg)L(s,f)L(s,f\otimes\operatorname{ad}g) by comparing Euler products. Recently Humphries and Khan [HK20] show an exact formula for L(1/2,fadg)L(1/2,f\otimes\operatorname{ad}g) (see (1)), where ff is a Hecke–Maass form and gg is a dihedral Maass newform (which associates to a Grössencharacter on (D)\mathbb{Q}(\sqrt{D}) where D1(mod4)D\equiv 1\pmod{4} is a positive squarefree fundamental discriminant). With this formula [HK20] unconditionally gives a proof of the Gaussian moments conjecture for the fourth moment of dihedral Maass newforms. This explicit Watson–Ichino formula also has some applications in studying quantum variance. Huang and Lester [HL23] give an asymptotic formula for the harmonic weighted quantum variance of the family of dihedral Maass forms on Γ0(D)\Gamma_{0}(D) with DD restricted by some congruence condition.

In this paper, we continue the work of Humphries–Khan [HK20] and Hu [Hu17] to establish Theorem 1.1, an explicit version of Ichino’s formula for L(1/2,fadg)L(1/2,f\otimes\operatorname{ad}g), where g=gΩg=g_{\Omega} is a CM newform and ff is a Hecke–Maass form. These explicit formulas will have, for example, an application to quantum variance for CM newforms following the idea of [HL23].

1.1. Main result

Let qq be a positive integer and L2(Γ0(q)\)L^{2}(\Gamma_{0}(q)\backslash\mathcal{H}) be the space of square-integrable functions on the upper-half plane f:f:\mathcal{H}\to\mathbb{C} such that f(γz)=f(z)f(\gamma z)=f(z) for all γΓ0(q)\gamma\in\Gamma_{0}(q). The inner product in this space is defined by

f,gq:=Γ0(q)\f(z)g(z)¯𝑑μ(z),where dμ(z)=y2dxdy,z=x+iy.\langle f,g\rangle_{q}:=\int_{\Gamma_{0}(q)\backslash\mathcal{H}}f(z)\overline{g(z)}\ d\mu(z),\quad\text{where }d\mu(z)=y^{-2}dx\ dy,\ z=x+iy.

But for functions such that f(γz)=(cz+d)kf(z)f(\gamma z)=(cz+d)^{k}f(z) with γ=(abcd)\gamma=\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right) (for example, holomorphic modular forms of weight kk), f,gq\langle f,g\rangle_{q} is defined to be the Petersson inner product whenever the integral converges:

f,gq:=Γ0(q)\ykf(z)g(z)¯𝑑μ(z).\langle f,g\rangle_{q}:=\int_{\Gamma_{0}(q)\backslash\mathcal{H}}y^{k}f(z)\overline{g(z)}\ d\mu(z).

Notice that ykf(z)g(z)¯y^{k}f(z)\overline{g(z)} is Γ0(q)\Gamma_{0}(q)-invariant in the latter case, and the convergency holds if the inner product is defined on cusp forms.

An integer DD is a fundamental discriminant if either D1D\neq 1, D1(mod4)D\equiv 1\pmod{4} and DD is squarefree, or 4D4\mid D, D42,3(mod4)\frac{D}{4}\equiv 2,3\pmod{4} and D4\frac{D}{4} is squarefree. For each DD there exists a quadratic extension E=(D)E=\mathbb{Q}(\sqrt{D}) of \mathbb{Q} such that EE has discriminant DD. One can also define a (quadratic) Dirichlet character modulo |D||D| by the Kronecker symbol χD(n):=(Dn)K\chi_{D}(n):=\left(\frac{D}{n}\right)_{K}.

For an imaginary quadratic extension E/E/\mathbb{Q} with negative fundamental discriminant D<0D<0, consider a Hecke character Ω\Omega on E×\𝔸E×E^{\times}\backslash\mathbb{A}_{E}^{\times} (its associated classical Grössencharacter is also denoted by Ω\Omega), whose restriction on 𝔸×\mathbb{A}^{\times} is trivial. Assume that it is unramified everywhere at finite places. At infinity we have Ω=(z/z¯)n\Omega_{\infty}=(z/\bar{z})^{n} for some nn\in\mathbb{Z}. Recall that, when n>0n>0 and Ω\Omega does not factor through the norm map NE:𝔸E×𝔸×N_{E}:\mathbb{A}_{E}^{\times}\to\mathbb{A}^{\times}, there is a cuspidal newform (cf. [Rib77] and [Iwa97, Theorem 12.5])

gΩ(z):=𝔞Ω(𝔞)(N𝔞)ne(zN𝔞)S2n+1(Γ0(|D|),χD)g_{\Omega}(z):=\sum_{\mathfrak{a}}\Omega(\mathfrak{a})(N\mathfrak{a})^{n}e(zN\mathfrak{a})\in S_{2n+1}^{*}(\Gamma_{0}(|D|),\chi_{D})

with complex multiplication of level |D||D|, weight 2n+12n+1 and nebentypus χD\chi_{D} such that L(s,gΩ)=L(s,Ω)L(s,g_{\Omega})=L(s,\Omega). Here the sum is over all integral ideals of EE, and N𝔞N\mathfrak{a} is the norm of 𝔞\mathfrak{a}.

All the LL-functions in this paper are complete without conductor, for example,

L(s,π):=L(s,π)Lfin(s,π)L(s,\pi):=L_{\infty}(s,\pi)L_{\operatorname{fin}}(s,\pi)

is defined as in [Ich08] (instead of the one in [HK20] that Λ(s,π):=q(π)s/2L(s,π)\Lambda(s,\pi):=q(\pi)^{s/2}L(s,\pi)).

We will prove the following explicit Watson–Ichino formula. See Theorem 2.1 for the more general statement.

Theorem 1.1.

Let q1q=|D|q_{1}\mid q=|D| with D<0D<0 a fundamental discriminant, 0(q1)\mathcal{B}_{0}^{*}(q_{1}) be the set of (normalized) Hecke–Maass newforms of weight 0 and level q1q_{1} with trivial nebentypus. For any CM newform g=gΩSk(Γ0(q),χD)g=g_{\Omega}\in S_{k}^{*}(\Gamma_{0}(q),\chi_{D}) and Hecke–Maass newform f0(q1)f\in\mathcal{B}_{0}^{*}(q_{1}) normalized such that the Petersson norms are g,gq=f,fq=1\langle g,g\rangle_{q}=\langle f,f\rangle_{q}=1, we have that, if 4q14\nmid q_{1} or 22 is a Type-2 supercuspidal prime for ff, then

|fg,gq|2=|f,yk|g|2q|2=L(12,f)L(12,fadg)L(1,adg)2L(1,Sym2f)νq18qq1νq=L(12,f)L(12,fadg)L(1,adg)2L(1,Sym2f)18q2pq,pq1(1+p1)1\begin{split}\left|\langle f\cdot g,g\rangle_{q}\right|^{2}=\left|\langle f,y^{k}|g|^{2}\rangle_{q}\right|^{2}&=\frac{L(\tfrac{1}{2},f)L(\tfrac{1}{2},f\otimes\operatorname{ad}g)}{L(1,\operatorname{ad}g)^{2}L(1,\operatorname{Sym}^{2}f)}\frac{\nu_{q_{1}}}{8qq_{1}\nu_{q}}\\ &=\frac{L(\tfrac{1}{2},f)L(\tfrac{1}{2},f\otimes\operatorname{ad}g)}{L(1,\operatorname{ad}g)^{2}L(1,\operatorname{Sym}^{2}f)}\frac{1}{8q^{2}}\prod_{p\mid q,\ p\nmid q_{1}}(1+p^{-1})^{-1}\end{split}

(notice that |yk/2g(z)||y^{k/2}g(z)| is Γ0(q)\Gamma_{0}(q)-invariant), where

νn:=[Γ0(1):Γ0(n)]=npn(1+p1);\nu_{n}:=[\Gamma_{0}(1):\Gamma_{0}(n)]=n\prod_{p\mid n}(1+p^{-1});

otherwise, when 4q14\mid q_{1} and 22 is a Type-1 supercuspidal prime for ff, |f,yk|g|2q|2\left|\langle f,y^{k}|g|^{2}\rangle_{q}\right|^{2} is L2(1,Sym2f)=23L_{2}(1,\operatorname{Sym}^{2}f)=\frac{2}{3} times above. For oldforms (ιwf)(z):=f(wz)(\iota_{w}f)(z):=f(wz) we have the same result for

ιw1f,yk|g|2qιw2f,yk|g|2q¯\langle\iota_{w_{1}}f,y^{k}|g|^{2}\rangle_{q}\overline{\langle\iota_{w_{2}}f,y^{k}|g|^{2}\rangle_{q}}

for any w1,w2qq1w_{1},w_{2}\mid\tfrac{q}{q_{1}}.

Remark 1.2.

Let D1(mod4)D\equiv 1\pmod{4} be a positive squarefree fundamental discriminant, and q1q=Dq_{1}\mid q=D. [HK20, Corollary 4.19] shows that, for any dihedral Maass newform g=gΩ0(Γ0(q),χD)g=g_{\Omega}\in\mathcal{B}_{0}^{*}(\Gamma_{0}(q),\chi_{D}) and Hecke–Maass newform f0(q1)f\in\mathcal{B}_{0}^{*}(q_{1}), and for any w1,w2qq1w_{1},w_{2}\mid\tfrac{q}{q_{1}},

(1) ιw1f,|g|2qιw2f,|g|2q¯=L(12,f)L(12,fadg)L(1,adg)2L(1,Sym2f)1+ϵf2νq18qq1νq.\langle\iota_{w_{1}}f,|g|^{2}\rangle_{q}\overline{\langle\iota_{w_{2}}f,|g|^{2}\rangle_{q}}=\frac{L(\tfrac{1}{2},f)L(\tfrac{1}{2},f\otimes\operatorname{ad}g)}{L(1,\operatorname{ad}g)^{2}L(1,\operatorname{Sym}^{2}f)}\frac{1+\epsilon_{f}}{2}\frac{\nu_{q_{1}}}{8qq_{1}\nu_{q}}.

Theorem 2.1 also leads to the fact that, the above identity holds when DD is any positive fundamental discriminant (either DD or D/4D/4 is squarefree) and q1q=Dq_{1}\mid q=D, 4q14\nmid q_{1} or 2 is not an “unramified” dihedral supercuspidal prime (i.e. not a Type-1 prime) for ff, except that νq/νq1=νq/q1\nu_{q}/\nu_{q_{1}}=\nu_{q/q_{1}} does not hold in this case. (If 4q14\mid q_{1} and 22 is “unramified supercuspidal” for ff then the result is multiplied by 23\frac{2}{3}.)

One may notice the extra condition does not show up in [HK20]. The reason is that they assumed DD (and therefore q1q_{1}) squarefree. Otherwise, if 4q14\mid q_{1}, that is to say, if πf,2\pi_{f,2} is supercuspidal (this is the only possible case because 16D16\nmid D), the local LL-factor Lp(1,Sym2f)L_{p}(1,\operatorname{Sym}^{2}f) at p=2p=2 depends on the “type” of πf,2\pi_{f,2}, which equals either 11 or 23\tfrac{2}{3}. More details can be found in Section 3.4.

Remark 1.3.

This explicit Watson–Ichino formula may have some potential applications, for example, in studying quantum variances, following the idea of Huang and Lester [HL23]. To study the distribution of L2L^{2}-mass for certain forms, for example, dihedral Maass forms or CM forms gΩg_{\Omega}, define

μΩ(ψ):=ψgΩ,gΩq=Γ0(q)\ykψ(z)|gΩ(z)|2𝑑μ(z)\mu_{\Omega}(\psi):=\langle\psi g_{\Omega},g_{\Omega}\rangle_{q}=\int_{\Gamma_{0}(q)\backslash\mathcal{H}}y^{k}\psi(z)|g_{\Omega}(z)|^{2}\ d\mu(z)

for any smooth test function ψ:Γ0(q)\\psi:\Gamma_{0}(q)\backslash\mathcal{H}\to\mathbb{C} with mean zero which decays rapidly in the cusp, where q=|D|q=|D| is the level of gΩg_{\Omega}, and kk the weight of gΩg_{\Omega}. The proposed quantum variance corresponding to these CM forms could be defined by a sum of the form

Q(ψ;K):=kK|μΩ(ψ)|2Q(\psi;K):=\sum_{k\leq K}|\mu_{\Omega}(\psi)|^{2}

as KK\to\infty. Theorem 1.1 gives an explicit formula to write the summands as the central values of certain LL-functions, when ψ\psi is a Hecke–Maass cuspidal form (old or new). It is possible to establish an asymptotic formula, which relates the (harmonic weighted) quantum variance of the family of CM forms on Γ0(|D|)\Gamma_{0}(|D|), to its “classical variance” V(ψ)V(\psi). See [LS04, HL23] for more details.

1.2. Organization of the paper

This paper is organized as follows. In Section 2 we fix notations and normalization, recall the Watson–Ichino formula in classical language and show how the local constants can be assembled into the global result.

By definition a CM form gg is associated with a Grössencharacter Ω\Omega of an imaginary quadratic extension E/E/\mathbb{Q} with discriminant D<0D<0. When DD is squarefree, the main result is nothing new comparing with Humphries–Khan’s version, except that the archimedean local constants are different (see Proposition 2.2), which has been calculated in [Wat02]. But when 4D4\mid D, the general case cannot be avoided when the levels of ff and gg are not squarefree. More precisely, for the new case when πf,v\pi_{f,v} is supercuspidal, inspired by the work of Hu [Hu16, Hu17], in Section 3.3 we will deal with the Kirillov model of πf,v\pi_{f,v} and calculate some special values of Whittaker function of a new vector. Finally, following ideas in [MV10, Hu16, HK20] we will calculate in Section 3 the local constants IvI_{v}^{\prime} (Propositions 2.3, 2.4, 2.5) for πf,v\pi_{f,v} special, spherical, and supercuspidal respectively, which completes the proof of the Main Theorem 2.1.

2. An explicit version of Watson–Ichino Formula

Let qq be a positive integer, q1qq_{1}\mid q and f0(q1)f\in\mathcal{B}_{0}^{*}(q_{1}) be a Hecke–Maass cuspidal newform or fSk(Γ0(q1))f\in S_{k}^{*}(\Gamma_{0}(q_{1})) a holomorphic cuspidal newform with trivial nebentypus. Define the adelic lift of ff by

φf(g):=((yk/2f)kg)(i)\varphi_{f}(g):=\big{(}(y^{k/2}f)\mid_{k}g_{\infty}\big{)}(i)

with g=γgk0g=\gamma g_{\infty}k_{0} given by the strong approximation where γGL2()\gamma\in\operatorname{{GL}}_{2}(\mathbb{Q}), g=(abcd)GL2+()g_{\infty}=(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix})\in\operatorname{{GL}}_{2}^{+}(\mathbb{R}), and k0K0(q1)k_{0}\in K_{0}(q_{1}). (When ff is a newform with nebentypus χf\chi_{f}, the adelic lift is defined to be the above φf(g)\varphi_{f}(g) times χ~f(k0)\tilde{\chi}_{f}(k_{0}), where χ~f\tilde{\chi}_{f} is the character of K0(q1)K_{0}(q_{1}) given by applying χf\chi_{f} to the lower-right entry.) Let πf=vπf,v\pi_{f}=\otimes_{v}\pi_{f,v} be the cuspidal automorphic representation of GL2()\operatorname{{GL}}_{2}(\mathbb{Q}) generated by φf\varphi_{f}.

For finite places v=pv=p, we know πf,p\pi_{f,p} is an unramified principal series representation if pq1p\nmid q_{1}, and a special representation (an unramified twist of the Steinberg representation) if pq1p\parallel q_{1}. When p2q1p^{2}\mid q_{1}, we recall a certain classification of such πf,p\pi_{f,p} (cf. [NPS14, Section 2.1.5]):

  • Type 1. πf,p\pi_{f,p} is an “unramified” supercuspidal representation, i.e. πf,pπf,pηp\pi_{f,p}\simeq\pi_{f,p}\otimes\eta_{p}, where ηp\eta_{p} is the unique nontrivial unramified quadratic character of p×\mathbb{Q}_{p}^{\times}. Equivalently πf,p\pi_{f,p} is a dihedral supercuspidal representation associated with an unramified quadratic field extension Ep/pE_{p}/\mathbb{Q}_{p} and a character of Ep×E_{p}^{\times} that is not trivial on the kernel of the norm map NEp/p:Ep×p×N_{E_{p}/\mathbb{Q}_{p}}:E_{p}^{\times}\to\mathbb{Q}_{p}^{\times}. In this case we call pp a Type-1 supercuspidal prime for ff. (Actually pp is called an unramified supercuspidal prime in some other papers, for example, [BM19]. The reason we rename it in this paper is that, to call it “unramified” one might confuse it with the spherical representation.)

  • Type 2. πf,p\pi_{f,p} is supercuspidal satisfying πf,p≄πf,pηp\pi_{f,p}\not\simeq\pi_{f,p}\otimes\eta_{p}, with ηp\eta_{p} above. Again in this case we call pp a Type-2 supercuspidal prime for ff.

  • Type 3, 4, 5. πf,p\pi_{f,p} is a ramified principal series, or a ramified twist of the Steinberg representation.

In this paper we focus on Type 1 and Type 2, i.e. πf,p\pi_{f,p} is supercuspidal whenever p2q1p^{2}\mid q_{1}. Actually Types 1 and 2 cover all possibilities in Theorem 1.1: when q1q=|D|q_{1}\mid q=|D| with DD a fundamental discriminant, the only possible pp such that p2q1p^{2}\mid q_{1} is p=2p=2; but the conductor exponent of πf,p\pi_{f,p} is 4\geq 4 for the other three types when p=2p=2 (because any character of 2×\mathbb{Q}_{2}^{\times} cannot have conductor exponent 11), while 1616 can never divide a fundamental discriminant DD.

Theorem 2.1.

Let qq be a positive integer, q1qq_{1}\mid q, and χ\chi be a primitive Dirichlet character modulo qq. Assume that f0(q1)f\in\mathcal{B}_{0}^{*}(q_{1}) is a Hecke–Maass newform satisfying that, the corresponding local automorphic representation πf,p\pi_{f,p} is supercuspidal whenever p2q1p^{2}\mid q_{1}. Then, for any newform gSk(q,χ)g\in S_{k}^{*}(q,\chi) or g0(q,χ)g\in\mathcal{B}_{0}^{*}(q,\chi) which is a Hecke eigenform, normalized such that g,gq=f,fq=1\langle g,g\rangle_{q}=\langle f,f\rangle_{q}=1, we have that,

|f,yk|g|2q|2=L(12,f)L(12,fadg)L(1,adg)2L(1,Sym2f)18q2𝒞p𝒞p,\left|\langle f,y^{k}|g|^{2}\rangle_{q}\right|^{2}=\frac{L(\tfrac{1}{2},f)L(\tfrac{1}{2},f\otimes\operatorname{ad}g)}{L(1,\operatorname{ad}g)^{2}L(1,\operatorname{Sym}^{2}f)}\frac{1}{8q^{2}}\cdot\mathcal{C}_{\infty}\prod_{p}\mathcal{C}_{p},

where

𝒞p={1if pq,(1+p1)1if pq,pq1,1if pq,pq1,(1+p1)1if pq,p2q1, p is a Type-1 supercuspidal prime for f,1if pq,p2q1, p is a Type-2 supercuspidal prime for f;\mathcal{C}_{p}=\begin{cases}1&\text{if }p\nmid q,\\ (1+p^{-1})^{-1}&\text{if }p\mid q,\ p\nmid q_{1},\\ 1&\text{if }p\mid q,\ p\parallel q_{1},\\ (1+p^{-1})^{-1}&\text{if }p\mid q,\ p^{2}\mid q_{1},\text{ $p$ is a Type-1 supercuspidal prime for $f$},\\ 1&\text{if }p\mid q,\ p^{2}\mid q_{1},\text{ $p$ is a Type-2 supercuspidal prime for $f$};\end{cases}

and 𝒞={1k>01+ϵf2k=0\mathcal{C}_{\infty}=\begin{cases}1&k>0\\ \tfrac{1+\epsilon_{f}}{2}&k=0\end{cases} with ϵf{±1}\epsilon_{f}\in\{\pm 1\} the parity of ff. For oldforms (ιwf)(z):=f(wz)(\iota_{w}f)(z):=f(wz) we have the same result, i.e.

ιw1f,yk|g|2qιw2f,yk|g|2q¯=L(12,f)L(12,fadg)L(1,adg)2L(1,Sym2f)18q2𝒞p𝒞p,\langle\iota_{w_{1}}f,y^{k}|g|^{2}\rangle_{q}\overline{\langle\iota_{w_{2}}f,y^{k}|g|^{2}\rangle_{q}}=\frac{L(\tfrac{1}{2},f)L(\tfrac{1}{2},f\otimes\operatorname{ad}g)}{L(1,\operatorname{ad}g)^{2}L(1,\operatorname{Sym}^{2}f)}\frac{1}{8q^{2}}\cdot\mathcal{C}_{\infty}\prod_{p}\mathcal{C}_{p},

for any w1,w2qq1w_{1},w_{2}\mid\tfrac{q}{q_{1}}, any normalized Hecke–Maass newform f0(q1)f\in\mathcal{B}_{0}^{*}(q_{1}), and any normalized Hecke newform gSk(q,χ)g\in S_{k}^{*}(q,\chi) or g0(q,χ)g\in\mathcal{B}_{0}^{*}(q,\chi).

Proof.

Using the notations in [HK20, Section 4.2], we denote by φ1,φ2,φ3\varphi_{1},\varphi_{2},\varphi_{3} the adelic lifts of g,g¯,ιwfg,\bar{g},\iota_{w}f respectively, and by πi\pi_{i} the cuspidal automorphic representation of GL2\operatorname{{GL}}_{2} generated by φi\varphi_{i} (i=1,2,3i=1,2,3). Here we have π2=π~1\pi_{2}=\tilde{\pi}_{1} (the contragredient). Let g~Sk(q,χ¯)\tilde{g}\in S_{k}^{*}(q,\bar{\chi}) or 0(q,χ¯)\mathcal{B}_{0}^{*}(q,\bar{\chi}) be a Hecke eigenform such that gg and g~¯\overline{\tilde{g}} are both associated to the same newform, and φ~1\tilde{\varphi}_{1} be the adelic lifts of g~\tilde{g} (and define φ~2,φ~3\tilde{\varphi}_{2},\tilde{\varphi}_{3} respectively).

We fix a GL(2,v)\operatorname{{GL}}(2,\mathbb{Q}_{v})-invariant bilinear local pairing ,\langle\cdot,\cdot\rangle on πi,vπ~i,v\pi_{i,v}\otimes\tilde{\pi}_{i,v} for each place vv and each i=1,2,3i=1,2,3, and use this to define a pairing ,\langle\cdot,\cdot\rangle on ΠvΠ~v\Pi_{v}\otimes\tilde{\Pi}_{v} (where Πv=π1,vπ2,vπ3,v\Pi_{v}=\pi_{1,v}\otimes\pi_{2,v}\otimes\pi_{3,v}) determined on simple tensors φv:=φ1,vφ2,vφ3,v\varphi_{v}:=\varphi_{1,v}\otimes\varphi_{2,v}\otimes\varphi_{3,v} and φ~v:=φ~1,vφ~2,vφ~3,v\tilde{\varphi}_{v}:=\tilde{\varphi}_{1,v}\otimes\tilde{\varphi}_{2,v}\otimes\tilde{\varphi}_{3,v} by

φv,φ~v:=φ1,v,φ~1,vφ2,v,φ~2,vφ3,v,φ~3,v.\langle\varphi_{v},\tilde{\varphi}_{v}\rangle:=\langle\varphi_{1,v},\tilde{\varphi}_{1,v}\rangle\langle\varphi_{2,v},\tilde{\varphi}_{2,v}\rangle\langle\varphi_{3,v},\tilde{\varphi}_{3,v}\rangle.

Note that this is unique up to nonzero scalar. Then we define

Iv(φvφ~v):=Z(Fv)\GL2(Fv)i=13πi,v(gv)φi,v,φ~i,vdgv,\displaystyle I_{v}(\varphi_{v}\otimes\tilde{\varphi}_{v}):=\int_{Z(F_{v})\backslash\operatorname{{GL}}_{2}(F_{v})}\prod_{i=1}^{3}\langle\pi_{i,v}(g_{v})\varphi_{i,v},\tilde{\varphi}_{i,v}\rangle\ dg_{v},
(2) Iv(φvφ~v):=L(1,π1,v,Ad)L(1,π2,v,Ad)L(1,π3,v,Ad)ζFv(2)2L(12,π1,vπ2,vπ3,v)Iv(φvφ~v)φv,φ~v.\displaystyle I^{\prime}_{v}(\varphi_{v}\otimes\tilde{\varphi}_{v}):=\frac{L(1,\pi_{1,v},\operatorname{Ad})L(1,\pi_{2,v},\operatorname{Ad})L(1,\pi_{3,v},\operatorname{Ad})}{\zeta_{F_{v}}(2)^{2}L(\tfrac{1}{2},\pi_{1,v}\otimes\pi_{2,v}\otimes\pi_{3,v})}\frac{I_{v}(\varphi_{v}\otimes\tilde{\varphi}_{v})}{\langle\varphi_{v},\tilde{\varphi}_{v}\rangle}.

We follow the normalization of local Haar measures in [HK20, Section 4.2]. That is, the Haar measure dgvdg_{v} on Z(Fv)\GL2(Fv)Z(F_{v})\backslash\operatorname{{GL}}_{2}(F_{v}) at any non-archimedean place is defined such that, under the decomposition of dgvdg_{v} induced by the Iwasawa decomposition, the maximal compact subgroup GL2(p)\operatorname{{GL}}_{2}(\mathbb{Z}_{p}) has volume 11; and the Haar measure at any real place is dgv:=dxv|yv|v1d×yvdkvdg_{v}:=dx_{v}\cdot|y_{v}|_{v}^{-1}d^{\times}y_{v}\cdot dk_{v} with gv=(yvxv01)kvg_{v}=(\begin{smallmatrix}y_{v}&x_{v}\\ 0&1\end{smallmatrix})k_{v}, kvKvk_{v}\in K_{v}, where dkvdk_{v} is the Haar measure on Kv=SO(2)K_{v}=SO(2) with volume 11.

The Watson–Ichino formula gives

(3) Γ0(q)\yk|g(z)|2(ιw1f)(z)𝑑μ(z)Γ0(q)\yk|g(z)|2(ιw2f)(z)𝑑μ(z)¯=𝒞8νqL(12,f)L(12,fadg)L(1,adg)2L(1,Sym2f)pqIp(φpφ~p),\int_{\Gamma_{0}(q)\backslash\mathcal{H}}y^{k}|g(z)|^{2}(\iota_{w_{1}}f)(z)\ d\mu(z)\overline{\int_{\Gamma_{0}(q)\backslash\mathcal{H}}y^{k}|g(z)|^{2}(\iota_{w_{2}}f)(z)\ d\mu(z)}\\ =\frac{\mathcal{C}_{\infty}}{8\nu_{q}}\frac{L(\tfrac{1}{2},f)L(\tfrac{1}{2},f\otimes\operatorname{ad}g)}{L(1,\operatorname{ad}g)^{2}L(1,\operatorname{Sym}^{2}f)}\prod_{p\mid q}I_{p}^{\prime}(\varphi_{p}\otimes\tilde{\varphi}_{p}),

where νq=qpq(1+p1)\nu_{q}=q\prod_{p\mid q}(1+p^{-1}). This formula differs with the one given in [HK20, Section 4.3], because the local constant at infinity becomes I(φφ~)=𝒞I^{\prime}_{\infty}(\varphi_{\infty}\otimes\tilde{\varphi}_{\infty})=\mathcal{C}_{\infty}, given by Proposition 2.2, and also because the LL-functions in [HK20] are defined with conductors.

Notice that (cf. [Wat02] or [LW12]) for pqp\mid q, the local component π1,p\pi_{1,p} of gg is a unitarizable ramified principal series representation ω1,pω2,p\omega_{1,p}\boxplus\omega_{2,p}, where the unitary characters ω1,p,ω2,p\omega_{1,p},\omega_{2,p} of p×\mathbb{Q}_{p}^{\times} have conductor exponents

c(ω1,p)=c((χ)p)=ordp(q)>0andc(ω2,p)=0;c(\omega_{1,p})=c((\chi)_{p})=\operatorname{ord}_{p}(q)>0\quad\text{and}\quad c(\omega_{2,p})=0;

and π2,p=π~1,p=ω2,p1ω1,p1\pi_{2,p}=\tilde{\pi}_{1,p}=\omega_{2,p}^{-1}\boxplus\omega_{1,p}^{-1}. (Here (χ)p(\chi)_{p} is the local component of the Hecke character corresponding to χ\chi.) Also, φ1,p,φ2,p,φ~1,p,φ~2,p\varphi_{1,p},\varphi_{2,p},\tilde{\varphi}_{1,p},\tilde{\varphi}_{2,p} are all local newforms in corresponding representations. However, in this paper, the assumption that qq might not be squarefree, leads to more cases for φpφ~p\varphi_{p}\otimes\tilde{\varphi}_{p} than those listed in the proof of [HK20, Corollary 4.19]. We list all the cases for π3,p\pi_{3,p} as follows.

  1. (i)

    When pq1p\parallel q_{1}, the local component π3,p\pi_{3,p} of ff is a special representation Stω3,p\operatorname{St}_{\omega_{3,p}}, where ω3,p\omega_{3,p} is either the trivial character or the unramified quadratic character of p×\mathbb{Q}_{p}^{\times}.

  2. (ii)

    When pq1p\nmid q_{1}, the local component π3,p\pi_{3,p} of ff is a unitarizable unramified principal series representation ω3,pω3,p1\omega_{3,p}\boxplus\omega_{3,p}^{-1}, where p1/2<|ω3,p(p)|<p1/2p^{-1/2}<|\omega_{3,p}(p)|<p^{1/2} and c(ω3,p)=0c(\omega_{3,p})=0.

  3. (iii)

    When p2q1p^{2}\mid q_{1}, under our assumption of this theorem, the local component π3,p\pi_{3,p} of ff is a supercuspidal representation with trivial central character and c(π3,p)=ordp(q1)c(\pi_{3,p})=\operatorname{ord}_{p}(q_{1}).

In all these cases φ3,p\varphi_{3,p} and φ~3,p\tilde{\varphi}_{3,p} are translates of local newforms by π3,p(w11001)\pi_{3,p}(\begin{smallmatrix}w_{1}^{-1}&0\\ 0&1\end{smallmatrix}) and π~3,p(w21001)\tilde{\pi}_{3,p}(\begin{smallmatrix}w_{2}^{-1}&0\\ 0&1\end{smallmatrix}) respectively. (When pw1p\nmid w_{1}, φ3,p\varphi_{3,p} is just the local newform; and so is it for w2w_{2} and φ~3,p\tilde{\varphi}_{3,p}.)

We respectively apply Propositions 2.3, 2.4, 2.5 with Fv=pF_{v}=\mathbb{Q}_{p}, qv=pq_{v}=p and mv=ordp(q)m_{v}=\operatorname{ord}_{p}(q) to give the local constants Ip(φpφ~p)I_{p}^{\prime}(\varphi_{p}\otimes\tilde{\varphi}_{p}). ∎

The following propositions determine all the local constants IvI_{v}^{\prime} we need in the above proof.

Proposition 2.2 ([Wat02, Theorem 3]).

For FvF_{v}\simeq\mathbb{R}, let k(πv)k(\pi_{v})\in\mathbb{Z} denote the weight of πv\pi_{v} and let ϵ{1,i,1,i}\epsilon\in\{1,i,-1,-i\} denote the local root number. Then

Iv(φvφ~v)={1if k(π1,v)=k(π2,v)>k(π3,v)=0,1+ϵ1ϵ2ϵ32if k(π1,v)=k(π2,v)=k(π3,v)=0.I_{v}^{\prime}(\varphi_{v}\otimes\tilde{\varphi}_{v})=\begin{cases}1&\text{if }k(\pi_{1,v})=-k(\pi_{2,v})>k(\pi_{3,v})=0,\\ \tfrac{1+\epsilon_{1}\epsilon_{2}\epsilon_{3}}{2}&\text{if }k(\pi_{1,v})=k(\pi_{2,v})=k(\pi_{3,v})=0.\end{cases}

Now let FvF_{v} be a nonarchimedean local field with uniformizer ϖv\varpi_{v} and cardinality qvq_{v} of the residue field. The proof of the followings can be found in the next section.

Proposition 2.3 (cf. [HK20, Proposition 4.16]).

Let π1,v=ω1,vω2,v\pi_{1,v}=\omega_{1,v}\boxplus\omega_{2,v} and π2,v=π~1,v=ω2,v1ω1,v1\pi_{2,v}=\tilde{\pi}_{1,v}=\omega_{2,v}^{-1}\boxplus\omega_{1,v}^{-1} be principal series representations of GL2(Fv)\operatorname{{GL}}_{2}(F_{v}) for which the characters ω1,v,ω2,v\omega_{1,v},\omega_{2,v} of Fv×F_{v}^{\times} have levels (i.e. conductor exponents) c(ω1,v)=mv>0c(\omega_{1,v})=m_{v}>0 and c(ω2,v)=0c(\omega_{2,v})=0, and let π3,v=Stω3,v\pi_{3,v}=\operatorname{St}_{\omega_{3,v}} be a special representation with c(ω3,v)=0c(\omega_{3,v})=0 and ω3,v2=𝟏\omega_{3,v}^{2}=\mathbf{1}. Suppose that π1,v,π2,v,π3,v\pi_{1,v},\pi_{2,v},\pi_{3,v} are irreducible and unitarizable, so that ω1,v,ω2,v,ω3,v\omega_{1,v},\omega_{2,v},\omega_{3,v} are unitary. Then if φ1,v,φ2,v,φ3,v,φ~1,v,φ~2,v,φ~3,v\varphi_{1,v},\varphi_{2,v},\varphi_{3,v},\tilde{\varphi}_{1,v},\tilde{\varphi}_{2,v},\tilde{\varphi}_{3,v} are all local newforms,

Iv(φvφ~v)=qvmv(1+qv1).I_{v}^{\prime}(\varphi_{v}\otimes\tilde{\varphi}_{v})=q_{v}^{-m_{v}}(1+q_{v}^{-1}).

This also holds if either or both φ3,v\varphi_{3,v} and φ~3,v\tilde{\varphi}_{3,v} are translates of local newforms by π3,v(ϖvl1001)\pi_{3,v}(\begin{smallmatrix}\varpi_{v}^{-l_{1}}&0\\ 0&1\end{smallmatrix}) and π~3,v(ϖvl2001)\tilde{\pi}_{3,v}(\begin{smallmatrix}\varpi_{v}^{-l_{2}}&0\\ 0&1\end{smallmatrix}) respectively, where 0l1,l2mv10\leq l_{1},l_{2}\leq m_{v}-1.

Proposition 2.4 (cf. [HK20, Proposition 4.17]).

Let π1,v=ω1,vω2,v\pi_{1,v}=\omega_{1,v}\boxplus\omega_{2,v}, π2,v=π~1,v=ω2,v1ω1,v1\pi_{2,v}=\tilde{\pi}_{1,v}=\omega_{2,v}^{-1}\boxplus\omega_{1,v}^{-1}, and π3,v=ω3,vω3,v1\pi_{3,v}=\omega_{3,v}\boxplus\omega_{3,v}^{-1} be principal series representations of GL2(Fv)\operatorname{{GL}}_{2}(F_{v}) with c(ω1,v)=mv>0c(\omega_{1,v})=m_{v}>0 and c(ω2,v)=c(ω3,v)=0c(\omega_{2,v})=c(\omega_{3,v})=0. Suppose that π1,v,π2,v,π3,v\pi_{1,v},\pi_{2,v},\pi_{3,v} are irreducible and unitarizable, so that ω1,v,ω2,v,ω3,v\omega_{1,v},\omega_{2,v},\omega_{3,v} are unitary while q1/2<|ω3,v(ϖv)|<q1/2q^{-1/2}<|\omega_{3,v}(\varpi_{v})|<q^{1/2}. Then if φ1,v,φ2,v,φ3,v,φ~1,v,φ~2,v,φ~3,v\varphi_{1,v},\varphi_{2,v},\varphi_{3,v},\tilde{\varphi}_{1,v},\tilde{\varphi}_{2,v},\tilde{\varphi}_{3,v} are all local newforms,

Iv(φvφ~v)=qvmv.I_{v}^{\prime}(\varphi_{v}\otimes\tilde{\varphi}_{v})=q_{v}^{-m_{v}}.

This also holds if either or both φ3,v\varphi_{3,v} and φ~3,v\tilde{\varphi}_{3,v} are translates of local newforms by π3,v(ϖvl1001)\pi_{3,v}(\begin{smallmatrix}\varpi_{v}^{-l_{1}}&0\\ 0&1\end{smallmatrix}) and π~3,v(ϖvl2001)\tilde{\pi}_{3,v}(\begin{smallmatrix}\varpi_{v}^{-l_{2}}&0\\ 0&1\end{smallmatrix}) respectively, where 0l1,l2mv0\leq l_{1},l_{2}\leq m_{v}.

Proposition 2.5.

Let π1,v=ω1,vω2,v\pi_{1,v}=\omega_{1,v}\boxplus\omega_{2,v}, π2,v=π~1,v=ω2,v1ω1,v1\pi_{2,v}=\tilde{\pi}_{1,v}=\omega_{2,v}^{-1}\boxplus\omega_{1,v}^{-1} be as above, and π3,v\pi_{3,v} be a supercuspidal representation of GL2(Fv)\operatorname{{GL}}_{2}(F_{v}) with c(π3,v)=cvmvc(\pi_{3,v})=c_{v}\leq m_{v}. Suppose that π1,v,π2,v,π3,v\pi_{1,v},\pi_{2,v},\pi_{3,v} are irreducible and unitarizable, so that ω1,v,ω2,v,ω3,v\omega_{1,v},\omega_{2,v},\omega_{3,v} are unitary. Then if φ1,v,φ2,v,φ3,v,φ~1,v,φ~2,v,φ~3,v\varphi_{1,v},\varphi_{2,v},\varphi_{3,v},\tilde{\varphi}_{1,v},\tilde{\varphi}_{2,v},\tilde{\varphi}_{3,v} are all local newforms,

Iv(φvφ~v)={qvmv(1+qv1)if π3,v≄π3,vηv,qvmvif π3,vπ3,vηv,I_{v}^{\prime}(\varphi_{v}\otimes\tilde{\varphi}_{v})=\begin{cases}q_{v}^{-m_{v}}(1+q_{v}^{-1})&\text{if }\pi_{3,v}\not\simeq\pi_{3,v}\otimes\eta_{v},\\ q_{v}^{-m_{v}}&\text{if }\pi_{3,v}\simeq\pi_{3,v}\otimes\eta_{v},\end{cases}

where ηv\eta_{v} is the (nontrivial) unramified quadratic character of Fv×F_{v}^{\times}. This also holds if either or both φ3,v\varphi_{3,v} and φ~3,v\tilde{\varphi}_{3,v} are translates of local newforms by π3,v(ϖvl1001)\pi_{3,v}(\begin{smallmatrix}\varpi_{v}^{-l_{1}}&0\\ 0&1\end{smallmatrix}) and π~3,v(ϖvl2001)\tilde{\pi}_{3,v}(\begin{smallmatrix}\varpi_{v}^{-l_{2}}&0\\ 0&1\end{smallmatrix}) respectively, where 0l1,l2mvcv0\leq l_{1},l_{2}\leq m_{v}-c_{v}.

3. Local calculation in the Watson–Ichino Formula

Let FF (in this section we drop all the subscripts vv) be a nonarchimedean local field with ring of integers 𝒪F\mathcal{O}_{F}, uniformizer ϖ\varpi, and maximal ideal 𝔭=ϖ𝒪F\mathfrak{p}=\varpi\mathcal{O}_{F}. Let q:=N(𝔭)=|ϖ|1q:=N(\mathfrak{p})=|\varpi|^{-1}, where the norm |||\cdot| is such that |x|=qv(x)|x|=q^{-v(x)} for xϖv(x)𝒪F×x\in\varpi^{v(x)}\mathcal{O}_{F}^{\times}.

Let G:=GL2(F)G:=\operatorname{{GL}}_{2}(F), K:=GL2(𝒪F)K:=\operatorname{{GL}}_{2}(\mathcal{O}_{F}) and define the congruence subgroup

K1(𝔭m):={kK:k(01)(mod𝔭m)}K_{1}(\mathfrak{p}^{m}):=\left\{k\in K:k\equiv\begin{pmatrix}*&*\\ 0&1\end{pmatrix}\pmod{\mathfrak{p}^{m}}\right\}

for any nonnegative integer mm. We normalize the additive Haar measure dxdx on FF, the multiplicative Haar measure d×x:=ζF(1)|x|1dxd^{\times}x:=\zeta_{F}(1)|x|^{-1}dx on F×F^{\times}, and the Haar measure dkdk on KK so that

vol(𝒪F;dx)=1,vol(𝒪F×;d×x)=1,vol(K;dk)=1,\operatorname{vol}(\mathcal{O}_{F};dx)=1,\quad\operatorname{vol}(\mathcal{O}_{F}^{\times};d^{\times}x)=1,\quad\operatorname{vol}(K;dk)=1,

with ζF(s):=(1qs)1\zeta_{F}(s):=(1-q^{-s})^{-1}. Denote by ZZ the center of GG, by AA the diagonal subgroup with lower diagonal entry equal to 11, and by NN the usual upper triangular unipotent subgroup of GG. Denote by B:=ZANB:=ZAN the usual Borel subgroup of GG. For t,yF×t,y\in F^{\times} and xFx\in F, we set

w:=(0110),z(t):=(t00t),a(y):=(y001),n(x):=(1x01).w:=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix},\quad z(t):=\begin{pmatrix}t&0\\ 0&t\end{pmatrix},\quad a(y):=\begin{pmatrix}y&0\\ 0&1\end{pmatrix},\quad n(x):=\begin{pmatrix}1&x\\ 0&1\end{pmatrix}.

3.1. Whittaker models

Let (π,Vπ)(\pi,V_{\pi}) be an irreducible admissible smooth representation of GG. Let c(π)c(\pi) be the level (or the conductor exponent) of π\pi, which is the smallest nonnegative integer such that πK1(𝔭c(π))0\pi^{K_{1}(\mathfrak{p}^{c(\pi)})}\neq 0. In this case the invariant space is 11-dimensional, and we call a nontrivial vector in this subspace a newform in π\pi. In this section φπiπi\varphi_{\pi_{i}}\in\pi_{i} and φ~πiπ~i\tilde{\varphi}_{\pi_{i}}\in\tilde{\pi}_{i} are newforms unless otherwise specified.

Fix a nontrivial continuous additive character ψ\psi of FF. Assume that ψ\psi is unramified in this paper, i.e. the smallest integer c(ψ)c(\psi) such that ψ\psi is trivial on 𝔭c(ψ)\mathfrak{p}^{c(\psi)} is 0. Let 𝒲(ψ)\mathcal{W}(\psi) be the space of all smooth Whittaker functions, i.e. all smooth functions W(g)W(g) on GG satisfying

W(n(x)g)=ψ(x)W(g) for all n(x)N.W(n(x)g)=\psi(x)W(g)\quad\text{ for all }n(x)\in N.

If π\pi is generic, i.e. there is a nontrivial intertwining map Vπ𝒲(ψ)V_{\pi}\to\mathcal{W}(\psi), we denote the image by 𝒲(π,ψ)\mathcal{W}(\pi,\psi) and call it the Whittaker model of π\pi.

For generic irreducible unitarizable representations π1,π2,π3\pi_{1},\pi_{2},\pi_{3} with π1\pi_{1} a principal series representation, and for φ1\varphi_{1} in the induced model of π1\pi_{1}, W2𝒲(π2,ψ¯)W_{2}\in\mathcal{W}(\pi_{2},\bar{\psi}), and W3𝒲(π3,ψ)W_{3}\in\mathcal{W}(\pi_{3},\psi), we define the local Rankin–Selberg integral by

RS(φ1,W2,W3):=ζF(1)1/2KF×φ1(a(y)k)W2(a(y)k)W3(a(y)k)d×y|y|𝑑k.\ell_{\mathrm{RS}}(\varphi_{1},W_{2},W_{3}):=\zeta_{F}(1)^{1/2}\int_{K}\int_{F^{\times}}\varphi_{1}(a(y)k)W_{2}(a(y)k)W_{3}(a(y)k)\ \frac{d^{\times}y}{|y|}\ dk.

Michel and Venkatesh [MV10] show a result that relates RS\ell_{\mathrm{RS}} and the local constants I(φφ~)I(\varphi\otimes\tilde{\varphi}) in the Watson–Ichino formula.

Lemma 3.1 ([MV10, Lemma 3.4.2], [HK20, Lemma 5.2]).

For g,hGg,h\in G, φ=φπ1φπ2π3(g)φπ3\varphi=\varphi_{\pi_{1}}\otimes\varphi_{\pi_{2}}\otimes\pi_{3}(g)\varphi_{\pi_{3}} and φ~=φ~π1φ~π2π~3(h)φ~π3\tilde{\varphi}=\tilde{\varphi}_{\pi_{1}}\otimes\tilde{\varphi}_{\pi_{2}}\otimes\tilde{\pi}_{3}(h)\tilde{\varphi}_{\pi_{3}} with φπ1,φπ2,φπ3,φ~π1,φ~π2,φ~π3\varphi_{\pi_{1}},\varphi_{\pi_{2}},\varphi_{\pi_{3}},\tilde{\varphi}_{\pi_{1}},\tilde{\varphi}_{\pi_{2}},\tilde{\varphi}_{\pi_{3}} newforms, we have

I(φφ~)=RS(φπ1,Wπ2,π3(g)Wπ3)RS(φ~π1,W~π2,π~3(h)W~π3)I(\varphi\otimes\tilde{\varphi})=\ell_{\mathrm{RS}}(\varphi_{\pi_{1}},W_{\pi_{2}},\pi_{3}(g)W_{\pi_{3}})\ell_{\mathrm{RS}}(\tilde{\varphi}_{\pi_{1}},\widetilde{W}_{\pi_{2}},\tilde{\pi}_{3}(h)\widetilde{W}_{\pi_{3}})

whenever π2\pi_{2} is tempered.

Notice that both φπ\varphi_{\pi} and WπW_{\pi} are K1(𝔭c(π))K_{1}(\mathfrak{p}^{c(\pi)})-invariant. The following lemma, together with Lemma 3.14, reduces the calculation of local constants to determining the values of these functions at

g=(y001)(10ϖj1)for 0jc(π).g=\begin{pmatrix}y&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\quad\text{for }0\leq j\leq c(\pi).
Lemma 3.2 (cf. [Hu16, Lemma 2.2]).

Fix an integer m0m\geq 0. For any left (BK)(B\cap K)-invariant and right K1(𝔭m)K_{1}(\mathfrak{p}^{m})-invariant function Θ:K\Theta:K\to\mathbb{C}, if integrable, we have

KΘ(k)𝑑k=j=0mAjΘ((10ϖj1)),where Aj=ζF(2)ζF(1){1,if j=0,qjζF(1)1,if 0<j<m,qm,if j=m.\int_{K}\Theta(k)\ dk=\sum_{j=0}^{m}A_{j}\Theta\left(\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right),\quad\text{where }A_{j}=\frac{\zeta_{F}(2)}{\zeta_{F}(1)}\cdot\begin{cases}1,&\text{if }j=0,\\ q^{-j}\zeta_{F}(1)^{-1},&\text{if }0<j<m,\\ q^{-m},&\text{if }j=m.\end{cases}
Proof.

By the same way of proving [Hu16, Lemma 2.2], one can also show that, for any right K1(𝔭m)K_{1}(\mathfrak{p}^{m})-invariant function Θ:G=GL2(F)\Theta:G=\operatorname{{GL}}_{2}(F)\to\mathbb{C}, if integrable, we have

(4) GΘ(g)𝑑g=j=0mAjBΘ(b(10ϖj1))𝑑b,\int_{G}\Theta(g)\ dg=\sum_{j=0}^{m}A_{j}\int_{B}\Theta\left(b\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\ db,

with AjA_{j} defined as in the above lemma, where dgdg is the normalized Haar measure on GG such that KK has volume 11, and dbdb is the left Haar measure on BB such that BKB\cap K has volume 11. Lemma 3.2 is a direct corollary of the above formula. ∎

Remark 3.3.

The generalization in [HK20, Lemma 5.18] of (4), which says that Lemma 3.2 holds for any right K1(𝔭m)K_{1}(\mathfrak{p}^{m})-invariant function, is wrong. In fact, {(10ϖj1):0jm}\{(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix}):0\leq j\leq m\} is not a complete coset representatives for K/K1(𝔭m)K/K_{1}(\mathfrak{p}^{m}); one can show that [K:K1(𝔭m)]=ζF(2)1q2m[K:K_{1}(\mathfrak{p}^{m})]=\zeta_{F}(2)^{-1}q^{2m} for m1m\geq 1. Luckily, the functions they integrate in Section 5.3 of [HK20] are actually left (BK)(B\cap K)-invariant, so their calculations work well. See Lemma 3.14 for more details.

We are interested in the following cases: π1=ω1ω2\pi_{1}=\omega_{1}\boxplus\omega_{2}, π2=ω21ω11\pi_{2}=\omega_{2}^{-1}\boxplus\omega_{1}^{-1} are principal series representations with ω1,ω2\omega_{1},\omega_{2} both unitary, c(ω1)=c(χD)c(\omega_{1})=c(\chi_{D}) and c(ω2)=0c(\omega_{2})=0, so that c(π1)=c(π2)=c(χD)c(\pi_{1})=c(\pi_{2})=c(\chi_{D}); and π3\pi_{3} is one of the following cases:

  • a special representation Stω3\operatorname{St}_{\omega_{3}} with ω3\omega_{3} unitary and unramified and ω32=𝟏\omega_{3}^{2}=\mathbf{1}, or

  • a principal series representation ω3ω31\omega_{3}\boxplus\omega_{3}^{-1} with q1/2|ω3(ϖ)|<q1/2q^{-1/2}\leq|\omega_{3}(\varpi)|<q^{1/2} and c(ω3)=0c(\omega_{3})=0 so that c(π3)=0c(\pi_{3})=0, or

  • a supercuspidal representation with trivial central character and c(π3)c(χD)c(\pi_{3})\leq c(\chi_{D}).

In particular, the central character of Π=π1π2π3\Pi=\pi_{1}\otimes\pi_{2}\otimes\pi_{3} is trivial, so Π\Pi is self dual and Π¯Π~\overline{\Pi}\simeq\widetilde{\Pi}. One can take the newforms φ~πi\tilde{\varphi}_{\pi_{i}} so that φ~π1φ~π2φ~π3=φ¯π1φ¯π2φ¯π3\tilde{\varphi}_{\pi_{1}}\otimes\tilde{\varphi}_{\pi_{2}}\otimes\tilde{\varphi}_{\pi_{3}}=\bar{\varphi}_{\pi_{1}}\otimes\bar{\varphi}_{\pi_{2}}\otimes\bar{\varphi}_{\pi_{3}} in both the induced and Whittaker models.

Next we will calculate the values of Whittaker functions case by case.

3.2. Whittaker functions for induced representations

For a principal series representation π=ωω\pi=\omega\boxplus\omega^{\prime} or a special representation π=Stω\pi=\operatorname{St}_{\omega}, and given a vector φπ\varphi_{\pi} in the induced model of π\pi, denote by

Wπ(g):=ζF(2)1/2ζF(1)Fφπ(wn(x)g)ψ1(x)𝑑xW_{\pi}(g):=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\int_{F}\varphi_{\pi}(w\cdot n(x)\cdot g)\psi^{-1}(x)\ dx

the corresponding element in the Whittaker model 𝒲(π,ψ)\mathcal{W}(\pi,\psi). (This differs with the definition in [HK20] by an inverse of ψ\psi, so that W(n(x)g)=ψ(x)W(g)W(n(x)g)=\psi(x)W(g) holds.) Here the normalization of WπW_{\pi} follows [MV10, Section 3.2.1] so that the map φπWπ\varphi_{\pi}\mapsto W_{\pi} is isometric, where the invariant bilinear pairings on ππ~\pi\otimes\tilde{\pi} on the induced model and the Whittaker model are defined respectively by

φπ,φ~π:=Kφπ(k)φ~π(k)𝑑k,Wπ,W~π:=F×Wπ(a(y))W~π(a(y))d×y\langle\varphi_{\pi},\tilde{\varphi}_{\pi}\rangle:=\int_{K}\varphi_{\pi}(k)\tilde{\varphi}_{\pi}(k)\ dk,\quad\langle W_{\pi},\widetilde{W}_{\pi}\rangle:=\int_{F^{\times}}W_{\pi}(a(y))\widetilde{W}_{\pi}(a(y))\ d^{\times}y

with dkdk the Haar measure on KK such that vol(K)=1\operatorname{vol}(K)=1.

For π1=ω1ω2\pi_{1}=\omega_{1}\boxplus\omega_{2}, π2=ω21ω11\pi_{2}=\omega_{2}^{-1}\boxplus\omega_{1}^{-1} with c(ω1)=m>0c(\omega_{1})=m>0 and c(ω2)=0c(\omega_{2})=0, we recall the following results.

Lemma 3.4 ([Sch02]).

The newform in the induced model of π1\pi_{1} is given by

φπ1(g)={ω1(a)ω2(d)|ad|1/2if g(ab0d)(1011)K1(𝔭m),0if g(ab0d)(10ϖj1)K1(𝔭m) for some 0<jm.\varphi_{\pi_{1}}(g)=\begin{cases}\omega_{1}(a)\omega_{2}(d)\left|\dfrac{a}{d}\right|^{1/2}&\text{if }g\in\begin{pmatrix}a&b\\ 0&d\end{pmatrix}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}K_{1}(\mathfrak{p}^{m}),\\ 0&\text{if }g\in\begin{pmatrix}a&b\\ 0&d\end{pmatrix}\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}K_{1}(\mathfrak{p}^{m})\text{ for some }0<j\leq m.\end{cases}

Its corresponding Whittaker function has Wπ3(1001)=ζF(2)1/2ζF(1)W_{\pi_{3}}(\begin{smallmatrix}1&0\\ 0&1\end{smallmatrix})=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}; for any yF×y\in F^{\times},

Wπ1(a(y))=ζF(2)1/2ζF(1){ω2(y)|y|1/2if v(y)0,0if v(y)<0;W_{\pi_{1}}(a(y))=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\cdot\begin{cases}\omega_{2}(y)|y|^{1/2}&\text{if }v(y)\geq 0,\\ 0&\text{if }v(y)<0;\end{cases}

by taking complex conjugates (so that W2𝒲(π2,ψ¯)W_{2}\in\mathcal{W}(\pi_{2},\bar{\psi})) we have

Wπ2(a(y))=ζF(2)1/2ζF(1){ω21(y)|y|1/2if v(y)0,0if v(y)<0.W_{\pi_{2}}(a(y))=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\cdot\begin{cases}\omega_{2}^{-1}(y)|y|^{1/2}&\text{if }v(y)\geq 0,\\ 0&\text{if }v(y)<0.\end{cases}

Now we work on the values of Wπ1(a(y)(10ϖj1))W_{\pi_{1}}\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) for 0j<m0\leq j<m, here c(ω1)=m>0c(\omega_{1})=m>0, c(ω2)=0c(\omega_{2})=0.

Lemma 3.5 (cf. [Hu17, HK20]).

We have that

Wπ1(a(y)(1011))=ζF(2)1/2ζF(1){ω1(y)|y|1/2ψ(y)ϵ(1,ω1ω21,ψ1)if v(y)m,0if v(y)<m.W_{\pi_{1}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\begin{cases}\omega_{1}(y)|y|^{1/2}\psi(y)\epsilon(1,\omega_{1}\omega_{2}^{-1},\psi^{-1})&\text{if }v(y)\geq-m,\\ 0&\text{if }v(y)<-m.\end{cases}
Wπ2(a(y)(1011))=ζF(2)1/2ζF(1){ω11(y)|y|1/2ψ(y)ϵ(1,ω11ω2,ψ)if v(y)m,0if v(y)<m.W_{\pi_{2}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\begin{cases}\omega_{1}^{-1}(y)|y|^{1/2}\psi(-y)\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)&\text{if }v(y)\geq-m,\\ 0&\text{if }v(y)<-m.\end{cases}

(Recall that our definition of WπW_{\pi} differs by an inverse with that in [HK20].) And for 0<j<m0<j<m,

Wπ1(a(y)(10ϖj1))=ζF(2)1/2ζF(1){ω2(y)|y|1/2𝒪Fω11ω2(1+xϖj)ψ(xy)𝑑xif v(y)=jm,0if v(y)jm.W_{\pi_{1}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\begin{cases}\omega_{2}(y)|y|^{1/2}\int_{\mathcal{O}_{F}}\omega_{1}^{-1}\omega_{2}(1+x\varpi^{j})\psi(-xy)\ dx&\text{if }v(y)=j-m,\\ 0&\text{if }v(y)\neq j-m.\end{cases}
Wπ2(a(y)(10ϖj1))=ζF(2)1/2ζF(1){ω21(y)|y|1/2𝒪Fω1ω21(1+xϖj)ψ(xy)𝑑xif v(y)=jm,0if v(y)jm.W_{\pi_{2}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\begin{cases}\omega_{2}^{-1}(y)|y|^{1/2}\int_{\mathcal{O}_{F}}\omega_{1}\omega_{2}^{-1}(1+x\varpi^{j})\psi(xy)\ dx&\text{if }v(y)=j-m,\\ 0&\text{if }v(y)\neq j-m.\end{cases}
Proof.

Let

g=wn(x)a(y)(10ϖj1)=(ϖj1y+xϖjx).g=w\cdot n(x)\cdot a(y)\cdot\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}=\begin{pmatrix}-\varpi^{j}&-1\\ y+x\varpi^{j}&x\end{pmatrix}.

When j=0j=0,

(5) g=(11y+xx)={(yx+y1yx+y0y+x)(1011)(1yx+y01)if v(x+y)v(y),(yϖrx+y10x)(10ϖr1)(x+yxϖr001)if v(x+yy)=r>0.g=\begin{pmatrix}-1&-1\\ y+x&x\end{pmatrix}=\begin{cases}\begin{pmatrix}\frac{y}{x+y}&-1-\frac{y}{x+y}\\ 0&y+x\end{pmatrix}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\begin{pmatrix}1&-\frac{y}{x+y}\\ 0&1\end{pmatrix}&\text{if }v(x+y)\leq v(y),\\ \begin{pmatrix}\frac{y\varpi^{r}}{x+y}&-1\\ 0&x\end{pmatrix}\begin{pmatrix}1&0\\ \varpi^{r}&1\end{pmatrix}\begin{pmatrix}\frac{x+y}{x\varpi^{r}}&0\\ 0&1\end{pmatrix}&\text{if }v(\frac{x+y}{y})=r>0.\end{cases}

Notice that v(x+yy)=rv(\tfrac{x+y}{y})=r if and only if xy(1+ϖr𝒪F×)x\in y(-1+\varpi^{r}\mathcal{O}_{F}^{\times}), and hence v(x+yy)>0v(\tfrac{x+y}{y})>0 if and only if xy(1+ϖ𝒪F)x\in y(-1+\varpi\mathcal{O}_{F}). In particular v(x+yy)>0v(\tfrac{x+y}{y})>0 implies xy,x+yxϖr𝒪F×\tfrac{x}{y},\tfrac{x+y}{x\varpi^{r}}\in\mathcal{O}_{F}^{\times}. The calculation of Wπ1(a(y)(1011))W_{\pi_{1}}\left(a(y)(\begin{smallmatrix}1&0\\ 1&1\end{smallmatrix})\right) and Wπ2W_{\pi_{2}} follows that in [HK20, Lemma 5.12].

When 0<j<m0<j<m, let r=v(yx+ϖj)r=v(\tfrac{y}{x}+\varpi^{j}). We have that

(6) g={(yy+xϖjyy+xϖjϖj0y+xϖj)(1011)(1xy+xϖj101)if r0,(yϖry+xϖj10x)(10ϖr1)((yx+ϖj)ϖr001)if r>0.g=\begin{cases}\begin{pmatrix}\frac{y}{y+x\varpi^{j}}&-\frac{y}{y+x\varpi^{j}}-\varpi^{j}\\ 0&y+x\varpi^{j}\end{pmatrix}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\begin{pmatrix}1&\frac{x}{y+x\varpi^{j}}-1\\ 0&1\end{pmatrix}&\text{if }r\leq 0,\\ \begin{pmatrix}\frac{y\varpi^{r}}{y+x\varpi^{j}}&-1\\ 0&x\end{pmatrix}\begin{pmatrix}1&0\\ \varpi^{r}&1\end{pmatrix}\begin{pmatrix}(\frac{y}{x}+\varpi^{j})\varpi^{-r}&0\\ 0&1\end{pmatrix}&\text{if }r>0.\end{cases}

By the definition of WπW_{\pi},

Wπ1(a(y)(10ϖj1))\displaystyle W_{\pi_{1}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right) =ζF(2)1/2ζF(1)v(x)v(y)ω1(yy+xϖj)ω2(y+xϖj)|y(y+xϖj)2|1/2ψ(x)𝑑x\displaystyle=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\int_{v(x)\geq v(y)}\omega_{1}(\frac{y}{y+x\varpi^{j}})\omega_{2}(y+x\varpi^{j})\left|\frac{y}{(y+x\varpi^{j})^{2}}\right|^{1/2}\psi(-x)\ dx
=ζF(2)1/2ζF(1)ω1(y)|y|1/2v(x)v(y)ω11ω2(y+xϖj)ψ(x)𝑑x.\displaystyle=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\omega_{1}(y)|y|^{-1/2}\int_{v(x)\geq v(y)}\omega_{1}^{-1}\omega_{2}(y+x\varpi^{j})\psi(-x)\ dx.

For j>0j>0 define Uj=1+𝔭jU_{j}=1+\mathfrak{p}^{j}. Let x=(u1)yϖjx=(u-1)y\varpi^{-j}. We have y+xϖj=yuy+x\varpi^{j}=yu and

r0v(yu)v((u1)yϖj)v(u1u)ju1UjuUj,r\leq 0\Leftrightarrow v(yu)\leq v((u-1)y\varpi^{-j})\Leftrightarrow v(\tfrac{u-1}{u})\geq j\Leftrightarrow u^{-1}\in U_{j}\Leftrightarrow u\in U_{j},

and then

Wπ1(a(y)(10ϖj1))\displaystyle W_{\pi_{1}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right) =ζF(2)1/2ζF(1)ω1(y)|y|1/2Ujω11ω2(yu)ψ((u1)yϖj)|yϖj|𝑑u\displaystyle=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\omega_{1}(y)|y|^{-1/2}\int_{U_{j}}\omega_{1}^{-1}\omega_{2}(yu)\psi(-(u-1)y\varpi^{-j})|y\varpi^{-j}|\ du
=ζF(2)1/2ζF(1)ω2(y)|y|1/2ψ(yϖj)qjUjω11ω2(u)ψ(yϖju)𝑑u.\displaystyle=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\omega_{2}(y)|y|^{1/2}\psi(y\varpi^{-j})q^{j}\int_{U_{j}}\omega_{1}^{-1}\omega_{2}(u)\psi(-y\varpi^{-j}u)\ du.

By the following lemma, Wπ1(a(y)(10ϖj1))=0W_{\pi_{1}}\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right)=0 unless v(y)=jmv(y)=j-m, in which case

Wπ1(a(y)(10ϖj1))\displaystyle W_{\pi_{1}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right) =ζF(2)1/2ζF(1)ω2(y)q(jm)/2ψ(yϖj)qjqmbUj/Umω11ω2(b)ψ(byϖj)\displaystyle=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\omega_{2}(y)q^{-(j-m)/2}\psi(y\varpi^{-j})q^{j}q^{-m}\sum_{b\in U_{j}/U_{m}}\omega_{1}^{-1}\omega_{2}(b)\psi(-by\varpi^{-j})
=ζF(2)1/2ζF(1)ω2(y)|y|1/2ψ(yϖj)bUj/Umω11ω2(b)ψ(byϖj).\displaystyle=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\omega_{2}(y)|y|^{-1/2}\psi(y\varpi^{-j})\sum_{b\in U_{j}/U_{m}}\omega_{1}^{-1}\omega_{2}(b)\psi(-by\varpi^{-j}).

Lemma 3.6.

Let ψ\psi be an unramified additive character of FF and ω\omega a ramified character of F×F^{\times} with level c(ω)c(\omega). For a positive integer jj let Uj=1+𝔭jU_{j}=1+\mathfrak{p}^{j} be a subgroup of 𝒪F×\mathcal{O}_{F}^{\times}. Then for 0<j<c(ω)0<j<c(\omega),

Ujω(u)ψ(au)𝑑u={qc(ω)bUj/Uc(ω)ω(b)ψ(ab)if v(a)=c(ω),0if v(a)c(ω).\int_{U_{j}}\omega(u)\psi(au)\ du=\begin{cases}q^{-c(\omega)}\sum\limits_{b\in U_{j}/U_{c(\omega)}}\omega(b)\psi(ab)&\text{if }v(a)=-c(\omega),\\ 0&\text{if }v(a)\neq-c(\omega).\end{cases}
Proof.

We follow the proof of [Sch02, Lemma 1.1.1]. Write u=buu=bu^{\prime} for bUj/Urb\in U_{j}/U_{r} and uUru^{\prime}\in U_{r}. Then

Ujω(u)ψ(au)𝑑u=bUj/Urω(b)Urω(u)ψ(abu)𝑑u.\int_{U_{j}}\omega(u)\psi(au)\ du=\sum_{b\in U_{j}/U_{r}}\omega(b)\int_{U_{r}}\omega(u^{\prime})\psi(abu^{\prime})\ du^{\prime}.

If v(a)c(ω)v(a)\leq-c(\omega), we take r=c(ω)r=c(\omega) and then ω(u)=1\omega(u)=1. The inner integral becomes

Urψ(abu)𝑑u=ψ(ab)𝔭rψ(abz)𝑑z.\int_{U_{r}}\psi(abu^{\prime})\ du^{\prime}=\psi(ab)\int_{\mathfrak{p}^{r}}\psi(abz)\ dz.

It vanishes when v(a)<c(ω)v(a)<-c(\omega). And when v(a)=c(ω)v(a)=-c(\omega) it equals ψ(ab)𝔭r𝑑z=qc(ω)ψ(ab)\psi(ab)\int_{\mathfrak{p}^{r}}\ dz=q^{-c(\omega)}\psi(ab).

If v(a)>c(ω)v(a)>-c(\omega), we take r=c(ω)1r=c(\omega)-1 and then ψ(ab(u1))=1\psi(ab(u^{\prime}-1))=1 because that ψ\psi is unramified. The inner integral becomes

Urω(u)ψ(ab)ψ(ab(u1))𝑑u=ψ(ab)Urω(u)𝑑u=0\int_{U_{r}}\omega(u^{\prime})\psi(ab)\psi(ab(u^{\prime}-1))\ du^{\prime}=\psi(ab)\int_{U_{r}}\omega(u^{\prime})\ du^{\prime}=0

To study the values of newforms in π3\pi_{3} we have the following lemma.

Lemma 3.7 ([Sch02, HK20]).
  • For π3=Stω3\pi_{3}=\operatorname{St}_{\omega_{3}} with ω3\omega_{3} unitary and unramified, the newform in the induced model is

    φπ3(g)={ω3(ad)|ad|if g=(ab0d)(1011)k,kK1(𝔭),qω3(ad)|ad|if g=(ab0d)k,kK1(𝔭).\varphi_{\pi_{3}}(g)=\begin{cases}\omega_{3}(ad)\left|\dfrac{a}{d}\right|&\text{if }g=\begin{pmatrix}a&b\\ 0&d\end{pmatrix}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}k,\ k\in K_{1}(\mathfrak{p}),\\ -q\ \omega_{3}(ad)\left|\dfrac{a}{d}\right|&\text{if }g=\begin{pmatrix}a&b\\ 0&d\end{pmatrix}k,\ k\in K_{1}(\mathfrak{p}).\end{cases}

    Its corresponding Whittaker function has Wπ3(1001)=ζF(2)1/2W_{\pi_{3}}(\begin{smallmatrix}1&0\\ 0&1\end{smallmatrix})=\zeta_{F}(2)^{-1/2}; and for any yF×y\in F^{\times},

    Wπ3(a(y))=ζF(2)1/2{ω3(y)|y|if v(y)0,0if v(y)<0;W_{\pi_{3}}(a(y))=\zeta_{F}(2)^{-1/2}\cdot\begin{cases}\omega_{3}(y)|y|&\text{if }v(y)\geq 0,\\ 0&\text{if }v(y)<0;\end{cases}
    Wπ3(a(y)(1011))=ζF(2)1/2{q1ψ(y)ω3(y)|y|if v(y)1,0if v(y)<1.W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)=-\zeta_{F}(2)^{-1/2}\cdot\begin{cases}q^{-1}\psi(y)\omega_{3}(y)|y|&\text{if }v(y)\geq-1,\\ 0&\text{if }v(y)<-1.\end{cases}
  • For π3=ω3ω31\pi_{3}=\omega_{3}\boxplus\omega_{3}^{-1} with ω3\omega_{3} unitary and unramified, the newform in the induced model is

    φπ3(g)=ω3(ad)|ad|1/2for g=(ab0d)k,kK;\varphi_{\pi_{3}}(g)=\omega_{3}\left(\frac{a}{d}\right)\left|\dfrac{a}{d}\right|^{1/2}\quad\text{for }g=\begin{pmatrix}a&b\\ 0&d\end{pmatrix}k,\ k\in K;
    Wπ3(1001)=ζF(2)1/2ζF(1)L(1,ω32);W_{\pi_{3}}\begin{pmatrix}1&0\\ 0&1\end{pmatrix}=\dfrac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)L(1,\omega_{3}^{2})};

    and for any yF×y\in F^{\times},

    Wπ3(a(y))=ζF(2)1/2ζF(1)L(1,ω32){|y|1/2i,i0i+i=v(y)ω3(ϖi)ω31(ϖi)if v(y)0,0if v(y)<0.W_{\pi_{3}}(a(y))=\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)L(1,\omega_{3}^{2})}\cdot\begin{cases}|y|^{1/2}\sum\limits_{\begin{subarray}{c}i,i^{\prime}\geq 0\\ i+i^{\prime}=v(y)\end{subarray}}\omega_{3}(\varpi^{i})\omega_{3}^{-1}(\varpi^{i^{\prime}})&\text{if }v(y)\geq 0,\\ 0&\text{if }v(y)<0.\end{cases}

Notice that (π3(ϖl001)Wπ3)\left(\pi_{3}(\begin{smallmatrix}\varpi^{-l}&0\\ 0&1\end{smallmatrix})W_{\pi_{3}}\right) is K1(𝔭c(π3)+l)K_{1}(\mathfrak{p}^{c(\pi_{3})+l})-invariant. To study the oldforms we need the values of

(π3(ϖl001)Wπ3)(a(y)(10ϖj1))for 1lc(χD)c(π3), 0jc(π3)+l.\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\quad\text{for }1\leq l\leq c(\chi_{D})-c(\pi_{3}),\ 0\leq j\leq c(\pi_{3})+l.

Actually, in this paper, only the case when j=0j=0 is necessary (see Section 3.5).

Lemma 3.8.

Let l,j0l,j\geq 0 be two integers.

  • For π3=Stω3\pi_{3}=\operatorname{St}_{\omega_{3}}, if jlj\leq l, (π3(ϖl001)Wπ3)(a(y)(10ϖj1))\left(\pi_{3}(\begin{smallmatrix}\varpi^{-l}&0\\ 0&1\end{smallmatrix})W_{\pi_{3}}\right)\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) is equal to

    ζF(2)1/2{ψ(yϖj)ω3(yϖl)|yϖl2j+1|if v(y)2jl10if v(y)<2jl1;-\zeta_{F}(2)^{-1/2}\cdot\begin{cases}\psi(y\varpi^{-j})\omega_{3}(y\varpi^{-l})|y\varpi^{l-2j+1}|&\text{if }v(y)\geq 2j-l-1\\ 0&\text{if }v(y)<2j-l-1;\end{cases}

    if j>lj>l, it is equal to

    ζF(2)1/2{ω3(yϖl)|yϖl|if v(y)l0if v(y)<l.\zeta_{F}(2)^{-1/2}\cdot\begin{cases}\omega_{3}(y\varpi^{-l})|y\varpi^{-l}|&\text{if }v(y)\geq l\\ 0&\text{if }v(y)<l.\end{cases}
  • For π3=ω3ω31\pi_{3}=\omega_{3}\boxplus\omega_{3}^{-1}, if jlj\leq l, (π3(ϖl001)Wπ3)(a(y)(10ϖj1))\left(\pi_{3}(\begin{smallmatrix}\varpi^{-l}&0\\ 0&1\end{smallmatrix})W_{\pi_{3}}\right)\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) is equal to

    ζF(2)1/2ζF(1)L(1,ω32){ψ(yϖj)|yϖl2j|1/2i,i0i+i=v(y)+l2jω3(ϖi)ω31(ϖi)if v(y)2jl0if v(y)<2jl;\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)L(1,\omega_{3}^{2})}\cdot\begin{cases}\psi(y\varpi^{-j})|y\varpi^{l-2j}|^{1/2}\sum\limits_{\begin{subarray}{c}i,i^{\prime}\geq 0\\ i+i^{\prime}=v(y)+l-2j\end{subarray}}\omega_{3}(\varpi^{i})\omega_{3}^{-1}(\varpi^{i^{\prime}})&\text{if }v(y)\geq 2j-l\\ 0&\text{if }v(y)<2j-l;\end{cases}

    if j>lj>l, it is equal to

    ζF(2)1/2ζF(1)L(1,ω32){|yϖl|1/2i,i0i+i=v(y)lω3(ϖi)ω31(ϖi)if v(y)l0if v(y)<l.\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)L(1,\omega_{3}^{2})}\cdot\begin{cases}|y\varpi^{-l}|^{1/2}\sum\limits_{\begin{subarray}{c}i,i^{\prime}\geq 0\\ i+i^{\prime}=v(y)-l\end{subarray}}\omega_{3}(\varpi^{i})\omega_{3}^{-1}(\varpi^{i^{\prime}})&\text{if }v(y)\geq l\\ 0&\text{if }v(y)<l.\end{cases}

Recall that [HK20, Lemma 5.17] calculates the spherical case π3=ω3ω31\pi_{3}=\omega_{3}\boxplus\omega_{3}^{-1} for l=1l=1, j=0j=0.

Proof.

One can verify that

a(y)(10ϖj1)(ϖl001)=(yϖl0ϖjl1)=a(yϖl)(10ϖjl1).a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}=\begin{pmatrix}y\varpi^{-l}&0\\ \varpi^{j-l}&1\end{pmatrix}=a(y\varpi^{-l})\begin{pmatrix}1&0\\ \varpi^{j-l}&1\end{pmatrix}.

Since Wπ3W_{\pi_{3}} is K1(𝔭)K_{1}(\mathfrak{p})-invariant in both cases, we have

(π3(ϖl001)Wπ3)(a(y)(10ϖj1))=Wπ3(a(yϖl))when j>l.\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)=W_{\pi_{3}}\big{(}a(y\varpi^{-l})\big{)}\quad\text{when $j>l$}.

When jlj\leq l we have the following Iwasawa decomposition

(7) (10ϖjl1)=(ϖlj1ϖlj0ϖjl)(1011)(1ϖlj101),\begin{pmatrix}1&0\\ \varpi^{j-l}&1\end{pmatrix}=\begin{pmatrix}\varpi^{l-j}&1-\varpi^{l-j}\\ 0&\varpi^{j-l}\end{pmatrix}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\begin{pmatrix}1&\varpi^{l-j}-1\\ 0&1\end{pmatrix},

and then

(y001)(10ϖj1)(ϖl001)\displaystyle\begin{pmatrix}y&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix} =(yϖjyϖlyϖj0ϖjl)(1011)(1ϖlj101)\displaystyle=\begin{pmatrix}y\varpi^{-j}&y\varpi^{-l}-y\varpi^{-j}\\ 0&\varpi^{j-l}\end{pmatrix}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\begin{pmatrix}1&\varpi^{l-j}-1\\ 0&1\end{pmatrix}
z(ϖjl)n(yϖjyϖl2j)a(yϖl2j)(1011)K1(𝔭).\displaystyle\in z(\varpi^{j-l})\cdot n(y\varpi^{-j}-y\varpi^{l-2j})\cdot a(y\varpi^{l-2j})\cdot\begin{pmatrix}1&0\\ 1&1\end{pmatrix}K_{1}(\mathfrak{p}).

By the proposition of Whittaker model Wπ3(n(x)g)=ψ(x)Wπ3(g)W_{\pi_{3}}(n(x)g)=\psi(x)W_{\pi_{3}}(g) we have

(π3(ϖl001)Wπ3)(a(y)(10ϖj1))=ωπ3(ϖjl)ψ(yϖj)ψ1(yϖl2j)Wπ3(a(yϖl2j)(1011))when jl,\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\\ =\omega_{\pi_{3}}(\varpi^{j-l})\psi(y\varpi^{-j})\psi^{-1}(y\varpi^{l-2j})W_{\pi_{3}}\left(a(y\varpi^{l-2j})\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\quad\text{when $j\leq l$},

where ωπ3\omega_{\pi_{3}} is the central character for π3\pi_{3}.

At last one can show Lemma 3.8 from Lemma 3.7, noticing that the central character of Stω3\operatorname{St}_{\omega_{3}} is ω32\omega_{3}^{2}, and that ψ1(yϖl2j)=1\psi^{-1}(y\varpi^{l-2j})=1 when v(y)2jlv(y)\geq 2j-l.

3.3. Whittaker functions for supercuspidal representations

For a supercuspidal representation π\pi of G=GL2(F)G=\operatorname{{GL}}_{2}(F), given the fixed additive character ψ\psi, the Kirillov model of π\pi is a unique realization on the space of Schwartz functions φπ𝒮(F×)\varphi_{\pi}\in\mathcal{S}(F^{\times}) such that

(8) (π(ab0d)φπ)(x)=ωπ(d)ψ(bd1x)φπ(ad1x),\left(\pi\begin{pmatrix}a&b\\ 0&d\end{pmatrix}\varphi_{\pi}\right)(x)=\omega_{\pi}(d)\psi(bd^{-1}x)\varphi_{\pi}(ad^{-1}x),

where ωπ\omega_{\pi} is the central character for π\pi (which is trivial in this paper). The Whittaker function WπW_{\pi} corresponding to φπ\varphi_{\pi} satisfies

φπ(y)=Wπ(a(y)),Wπ(g)=(π(g)φπ)(1),and φπ,φ~π=Wπ,W~π,\varphi_{\pi}(y)=W_{\pi}(a(y)),\quad W_{\pi}(g)=\left(\pi(g)\varphi_{\pi}\right)(1),\quad\text{and }\langle\varphi_{\pi},\tilde{\varphi}_{\pi}\rangle=\langle W_{\pi},\widetilde{W}_{\pi}\rangle,

where the invariant bilinear pairing on ππ~\pi\otimes\tilde{\pi} on the Kirillov model is given by

φπ,φ~π:=F×φπ(y)φ~π(y)d×y.\langle\varphi_{\pi},\tilde{\varphi}_{\pi}\rangle:=\int_{F^{\times}}\varphi_{\pi}(y)\tilde{\varphi}_{\pi}(y)\ d^{\times}y.

In particular we have Wπ(a(y)g)=(π(g)φπ)(y)W_{\pi}(a(y)g)=\left(\pi(g)\varphi_{\pi}\right)(y) for yF×y\in F^{\times} and Wπ(n(x)g)=ψ(x)W(g)W_{\pi}(n(x)g)=\psi(x)W(g) for xFx\in F.

For any function φ𝒮(F×)\varphi\in\mathcal{S}(F^{\times}) in the Kirillov model of π\pi which is supported only at ϖr𝒪F×\varpi^{r}\mathcal{O}_{F}^{\times}, φ(ϖrx)\varphi(\varpi^{r}x) can be written as a linear combination of characters on 𝒪F×\mathcal{O}_{F}^{\times} by Fourier inversion:

(9) φ(ϖrx)=ν𝒪F×^aν(φ)ν(x),where aν(φ):=𝒪F×φ(ϖrx)ν1(x)d×x.\varphi(\varpi^{r}x)=\sum_{\nu\in\widehat{\mathcal{O}_{F}^{\times}}}a_{\nu}(\varphi)\nu(x),\quad\text{where }a_{\nu}(\varphi):=\int_{\mathcal{O}_{F}^{\times}}\varphi(\varpi^{r}x)\nu^{-1}(x)\ d^{\times}x.

We say that φ\varphi contains level nn components if aν(φ)0a_{\nu}(\varphi)\neq 0 for some level nn character ν\nu (and that it is of level nn if it consists of only level nn components). Obviously φ\varphi contains level nn components if and only if

ϖr𝒪F×φ(x)ν(ϖrx)d×x0\int_{\varpi^{r}\mathcal{O}_{F}^{\times}}\varphi(x)\nu(\varpi^{-r}x)\ d^{\times}x\neq 0

for some level nn character ν\nu.

Lemma 3.9.

Let φ(x)𝒮(F×)\varphi(x)\in\mathcal{S}(F^{\times}) be any function supported only at ϖr𝒪F×\varpi^{r}\mathcal{O}_{F}^{\times}. We have

ϖr𝒪F×φ(x)ψ(bx)d×x0\int_{\varpi^{r}\mathcal{O}_{F}^{\times}}\varphi(x)\psi(bx)\ d^{\times}x\neq 0

only if φ\varphi has some level rv(b)-r-v(b) (and also level 0 if v(b)+r1v(b)+r\geq-1) components. In general, if φ(x)\varphi(x) is of level nn, then φ(x)ψ(bx)\varphi(x)\psi(bx) consists

  • of only level nn components if v(b)>rmax{n,1}v(b)>-r-\max\{n,1\},

  • of only level rv(b)-r-v(b) components if v(b)<rmax{n,1}v(b)<-r-\max\{n,1\}, and

  • of all level max{n,1}\leq\max\{n,1\} components if v(b)=rmax{n,1}v(b)=-r-\max\{n,1\}.

Proof.

It is sufficient to show the lemma for φ(x)=χ(ϖrx)𝟏ϖr𝒪F×(x)\varphi(x)=\chi(\varpi^{-r}x)\mathbf{1}_{\varpi^{r}\mathcal{O}_{F}^{\times}}(x) where χ\chi is any level nn character and 𝟏ϖr𝒪F×\mathbf{1}_{\varpi^{r}\mathcal{O}_{F}^{\times}} is the characteristic function of ϖr𝒪F×\varpi^{r}\mathcal{O}_{F}^{\times}. [Sch02, Lemma 1.1.1] shows that,

(10) ϖm𝒪F×ψ(x)𝑑x={qmζF(1)1if m0,1if m=1,0if m2;\int_{\varpi^{m}\mathcal{O}_{F}^{\times}}\psi(x)\ dx=\begin{cases}q^{-m}\zeta_{F}(1)^{-1}&\text{if }m\geq 0,\\ -1&\text{if }m=-1,\\ 0&\text{if }m\leq-2;\end{cases}

and for any ramified character ω\omega of F×F^{\times},

(11) ϖr𝒪F×ω1(x)ψ(x)|x|s𝑑x={ϵ(s,ω,ψ)if r=c(ω),0otherwise.\int_{\varpi^{r}\mathcal{O}_{F}^{\times}}\omega^{-1}(x)\psi(x)|x|^{-s}\ dx=\begin{cases}\epsilon(s,\omega,\psi)&\text{if }r=-c(\omega),\\ 0&\text{otherwise.}\end{cases}

Then, for any character ν\nu of 𝒪F×\mathcal{O}_{F}^{\times} (we extend χ,ν\chi,\nu to be characters on F×F^{\times} by defining χ(ϖ)=ν(ϖ)=1\chi(\varpi)=\nu(\varpi)=1),

(12) ϖr𝒪F×φ(x)ψ(bx)ν(ϖrx)d×x=ϖr𝒪F×(χν)(ϖrx)ψ(bx)d×x\displaystyle\ \int_{\varpi^{r}\mathcal{O}_{F}^{\times}}\varphi(x)\psi(bx)\nu(\varpi^{-r}x)\ d^{\times}x=\int_{\varpi^{r}\mathcal{O}_{F}^{\times}}(\chi\nu)(\varpi^{-r}x)\psi(bx)\ d^{\times}x
=\displaystyle= ζF(1)χν(bϖr)1|bϖr|1bϖr𝒪F×χν(x)ψ(x)𝑑x\displaystyle\ \zeta_{F}(1)\chi\nu(b\varpi^{r})^{-1}|b\varpi^{r}|^{-1}\int_{b\varpi^{r}\mathcal{O}_{F}^{\times}}\chi\nu(x)\psi(x)\ dx
=\displaystyle= {1if c(χν)=0,v(b)+r0,1q1if c(χν)=0,v(b)+r=1,ζF(1)χν(bϖr)1ϵ(1,χ1ν1,ψ)if c(χν)1,v(b)+r=c(χν),0otherwise.\displaystyle\ \begin{cases}1&\text{if }c(\chi\nu)=0,\ v(b)+r\geq 0,\\ -\frac{1}{q-1}&\text{if }c(\chi\nu)=0,\ v(b)+r=-1,\\ \zeta_{F}(1)\chi\nu(b\varpi^{r})^{-1}\epsilon(1,\chi^{-1}\nu^{-1},\psi)&\text{if }c(\chi\nu)\geq 1,\ v(b)+r=-c(\chi\nu),\\ 0&\text{otherwise.}\end{cases}

This completes the proof, noticing that c(χν)max{c(χ),c(ν)}c(\chi\nu)\leq\max\{c(\chi),c(\nu)\} and that inequality holds only if c(χ)=c(ν)c(\chi)=c(\nu).

The Bruhat decomposition says that G=BBwNG=B\cup BwN, where w=(0110)w=(\begin{smallmatrix}0&-1\\ 1&0\end{smallmatrix}) and B=ZANB=ZAN is the upper triangular Borel subgroup of G=GL2(F)G=\operatorname{{GL}}_{2}(F). Then the action π(g),gG\pi(g),g\in G in the Kirillov model can be expressed purely in terms of π(w)\pi(w) and π|B\pi|_{B}. We recall a fact that shows the operator π(w)\pi(w) on some multiplicative characters.

Fact 3.10 ([JL70], [BH06, Theorem 37.3] and [Hu16, Proposition A.1]).

Let π\pi a supercuspidal representation with trivial central character. Assume that it has conductor 𝔭c(π)\mathfrak{p}^{c(\pi)}. Let ν\nu be a multiplicative character of 𝒪F×\mathcal{O}_{F}^{\times} with level c(ν)c(\nu). The action of w=(0110)w=(\begin{smallmatrix}0&-1\\ 1&0\end{smallmatrix}) in the Kirillov model of π\pi satisfies

(13) π(w)(ν(ϖr)𝟏ϖr𝒪F×)=Cνν1(ϖr)𝟏ϖr𝒪F×\pi(w)(\nu(\varpi^{-r}\cdot)\mathbf{1}_{\varpi^{r}\mathcal{O}_{F}^{\times}})=C_{\nu}\nu^{-1}(\varpi^{-r^{\prime}}\cdot)\mathbf{1}_{\varpi^{r^{\prime}}\mathcal{O}_{F}^{\times}}

where Cν=ϵ(12,πν1,ψ)C_{\nu}=\epsilon(\tfrac{1}{2},\pi\otimes\nu^{-1},\psi) is independent of rr and r=rmax{c(π),2c(ν)}r^{\prime}=-r-\max\{c(\pi),2c(\nu)\} (except when the residue field of FF is of characteristic 22 and c(π)=2c(ν)4c(\pi)=2c(\nu)\geq 4). In particular

(14) π(w)𝟏ϖr𝒪F×=C𝟏𝟏ϖrc(π)𝒪F×,where C𝟏=ϵ(12,π,ψ)=±1.\pi(w)\mathbf{1}_{\varpi^{r}\mathcal{O}_{F}^{\times}}=C_{\mathbf{1}}\mathbf{1}_{\varpi^{-r-c(\pi)}\mathcal{O}_{F}^{\times}},\quad\text{where }C_{\mathbf{1}}=\epsilon(\tfrac{1}{2},\pi,\psi)=\pm 1.

Next we recall a lemma about the new vector in a supercuspidal representation π3\pi_{3} and the values of its corresponding Whittaker function.

Lemma 3.11 ([Hu16, Lemma 5.10], [Hu17, Corollary 2.18]).

For a supercuspidal representation π3\pi_{3} with trivial central character, the new vector in the Kirillov model is φπ3=𝟏𝒪F×\varphi_{\pi_{3}}=\mathbf{1}_{\mathcal{O}_{F}^{\times}}, the characteristic function of 𝒪F×\mathcal{O}_{F}^{\times}. Its corresponding Whittaker function Wπ3W_{\pi_{3}} satisfies:

  • Wπ3(a(y))=𝟏𝒪F×(y)W_{\pi_{3}}(a(y))=\mathbf{1}_{\mathcal{O}_{F}^{\times}}(y) for any yF×y\in F^{\times}; and therefore φπ3,φ~π3=Wπ3,W~π3=1\langle\varphi_{\pi_{3}},\tilde{\varphi}_{\pi_{3}}\rangle=\langle W_{\pi_{3}},\widetilde{W}_{\pi_{3}}\rangle=1.

  • For 0j<c(π3)0\leq j<c(\pi_{3}), Wπ3(a(y)(10ϖj1))W_{\pi_{3}}\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) is supported only at v(y)=min{0,2jc(π3)}v(y)=\min\{0,2j-c(\pi_{3})\}, and it consists of only level c(π3)jc(\pi_{3})-j (and also level 0 if j=c(π3)1j=c(\pi_{3})-1) components; the exception happens when the residue field of FF is of characteristic 22 (the central character is assumed to be trivial in this paper), c(π3)4c(\pi_{3})\geq 4 is an even number and j=c(π3)/2j=c(\pi_{3})/2, in which case Wπ3(a(y)(10ϖc(π3)/21))W_{\pi_{3}}\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{c(\pi_{3})/2}&1\end{smallmatrix})\right) is supported at v(y)0v(y)\geq 0, consisting of level c(π3)/2c(\pi_{3})/2 components.

  • Moreover we have

    v(y)=min{0,2jc(π3)}Wπ3(a(y)(10ϖj1))d×y={1if jc(π3),1q1if j=c(π3)1,0otherwise;\int_{v(y)=\min\{0,2j-c(\pi_{3})\}}W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\ d^{\times}y=\begin{cases}1&\text{if }j\geq c(\pi_{3}),\\ -\frac{1}{q-1}&\text{if }j=c(\pi_{3})-1,\\ 0&\text{otherwise};\end{cases}
    v(y)=min{0,2jc(π3)}Wπ3(a(y)(10ϖj1))ψ(ϖjy)d×y={C𝟏if j=0,1q1C𝟏if j=1,0otherwise,\int_{v(y)=\min\{0,2j-c(\pi_{3})\}}W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\psi(-\varpi^{-j}y)\ d^{\times}y=\begin{cases}C_{\mathbf{1}}&\text{if }j=0,\\ -\frac{1}{q-1}C_{\mathbf{1}}&\text{if }j=1,\\ 0&\text{otherwise},\end{cases}

    where C𝟏=ϵ(12,π3,ψ)=±1C_{\mathbf{1}}=\epsilon(\tfrac{1}{2},\pi_{3},\psi)=\pm 1.

Next we generalize the above lemma.

Lemma 3.12.

With assumptions and notations in the above lemma,

  • for jc(π3)j\geq c(\pi_{3}),

    𝒪F×Wπ3(a(y)(10ϖj1))ψ(by)d×y={1if b𝒪F,1q1if bϖ1𝒪F×,0otherwise;\int_{\mathcal{O}_{F}^{\times}}W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\psi(by)\ d^{\times}y=\begin{cases}1&\text{if }b\in\mathcal{O}_{F},\\ -\frac{1}{q-1}&\text{if }b\in\varpi^{-1}\mathcal{O}_{F}^{\times},\\ 0&\text{otherwise;}\end{cases}
  • for 0j<c(π3)0\leq j<c(\pi_{3}), in general,

    v(y)=min{0,2jc(π3)}Wπ3(a(y)(10ϖj1))ψ(by)d×y\int_{v(y)=\min\{0,2j-c(\pi_{3})\}}W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\psi(by)\ d^{\times}y

    vanishes unless v(b)=min{j,c(π3)j}v(b)=-\min\{j,c(\pi_{3})-j\} (or bϖ1𝒪Fb\in\varpi^{-1}\mathcal{O}_{F} when j=c(π3)1j=c(\pi_{3})-1); in the exceptional case when the residue field of FF is of characteristic 22, c(π3)4c(\pi_{3})\geq 4 is even and j=c(π3)/2j=c(\pi_{3})/2, the integral v(y)=rWπ3(a(y)(10ϖj1))ψ(by)d×y\int_{v(y)=r}W_{\pi_{3}}\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right)\psi(by)\ d^{\times}y vanishes unless r0r\geq 0 and v(b)=rc(π3)/2v(b)=-r-c(\pi_{3})/2;

  • in particular for j=0j=0,

    ϖc(π3)𝒪F×Wπ3(a(y)(1011))ψ(by)d×y={C𝟏if b1+ϖc(π3)𝒪F,C𝟏q1if b1+ϖc(π3)1𝒪F×,0otherwise,\int_{\varpi^{-c(\pi_{3})}\mathcal{O}_{F}^{\times}}W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\psi(by)\ d^{\times}y=\begin{cases}C_{\mathbf{1}}&\text{if }b\in-1+\varpi^{c(\pi_{3})}\mathcal{O}_{F},\\ -\frac{C_{\mathbf{1}}}{q-1}&\text{if }b\in-1+\varpi^{c(\pi_{3})-1}\mathcal{O}_{F}^{\times},\\ 0&\text{otherwise,}\end{cases}

    where C𝟏=ϵ(12,π3,ψ)=±1C_{\mathbf{1}}=\epsilon(\tfrac{1}{2},\pi_{3},\psi)=\pm 1.

Proof.

When b=0b=0 or b=ϖjb=-\varpi^{-j} the lemma is [Hu16, Lemma 5.10(2)(3)].

Recall that

Wπ(a(y)(10ϖj1))=(π(10ϖj1)φπ)(y).W_{\pi}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)=\left(\pi\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\varphi_{\pi}\right)(y).

When jc(π3)j\geq c(\pi_{3}), Wπ3(a(y)(10ϖj1))=𝟏𝒪F×(y)W_{\pi_{3}}\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right)=\mathbf{1}_{\mathcal{O}_{F}^{\times}}(y) is simply the new vector. The integral is equal to

(15) 𝒪F×ψ(by)d×y=ζF(1)|b|1b𝒪F×ψ(y)𝑑y={1if v(b)0,1q1if v(b)=1,0if v(b)2\int_{\mathcal{O}_{F}^{\times}}\psi(by)\ d^{\times}y=\zeta_{F}(1)|b|^{-1}\int_{b\mathcal{O}_{F}^{\times}}\psi(y)\ dy=\begin{cases}1&\text{if }v(b)\geq 0,\\ -\frac{1}{q-1}&\text{if }v(b)=-1,\\ 0&\text{if }v(b)\leq-2\end{cases}

(see (10) for the last step).

When 0j<c(π3)0\leq j<c(\pi_{3}), Lemma 3.11 shows that, in the general case, Wπ3(a(y)(10ϖj1))W_{\pi_{3}}\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) is supported only at v(y)=r=min{0,2jc(π3)}v(y)=r^{\prime}=\min\{0,2j-c(\pi_{3})\}, consists of only level c(π3)jc(\pi_{3})-j (and also level 0 if j=c(π3)1j=c(\pi_{3})-1) components. Then we apply Lemma 3.9 and see that, the integral we study vanishes unless v(b)=min{j,c(π3)j}v(b)=-\min\{j,c(\pi_{3})-j\} (or v(b)1v(b)\geq-1 when jc(π3)1j\geq c(\pi_{3})-1). One can study the exceptional case using the same argument.

Recall that for any φ𝒮(F×)\varphi\in\mathcal{S}(F^{\times}) in the Kirillov model of π\pi we have by (8) that

(π(1b01)φ)(x)=ψ(bx)φ(x).\left(\pi\begin{pmatrix}1&b\\ 0&1\end{pmatrix}\varphi\right)(x)=\psi(bx)\varphi(x).

Then we can write

Wπ3(a(y)(10ϖj1))ψ(by)=(π(1b01)(π(10ϖj1)𝟏𝒪F×))(y)=(π(1+bϖjbϖj1)𝟏𝒪F×)(y).\begin{split}W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\psi(by)&=\left(\pi\begin{pmatrix}1&b\\ 0&1\end{pmatrix}\left(\pi\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\mathbf{1}_{\mathcal{O}_{F}^{\times}}\right)\right)(y)\\ &=\left(\pi\begin{pmatrix}1+b\varpi^{j}&b\\ \varpi^{j}&1\end{pmatrix}\mathbf{1}_{\mathcal{O}_{F}^{\times}}\right)(y).\end{split}

In particular when j=0j=0 (and v(b)=0v(b)=0) we can decompose the matrix as

(1+bb11)=(11+b01)w(1101).\begin{pmatrix}1+b&b\\ 1&1\end{pmatrix}=\begin{pmatrix}1&1+b\\ 0&1\end{pmatrix}w\begin{pmatrix}1&1\\ 0&1\end{pmatrix}.

Recall that (13) gives the action of w=(0110)w=(\begin{smallmatrix}0&-1\\ 1&0\end{smallmatrix}) in the Kirillov model. Then one can show that

Wπ3(a(y)(1011))ψ(by)=(π3((11+b01)w(1101))𝟏𝒪F×)(y)=(π(11+b01)(π3(w)𝟏𝒪F×))(y)=(π(11+b01)(C𝟏𝟏ϖc(π3)𝒪F×))(y)=C𝟏ψ((1+b)y)𝟏ϖc(π3)𝒪F×(y).\begin{split}&\ W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\psi(by)=\left(\pi_{3}(\begin{pmatrix}1&1+b\\ 0&1\end{pmatrix}w\begin{pmatrix}1&1\\ 0&1\end{pmatrix})\mathbf{1}_{\mathcal{O}_{F}^{\times}}\right)(y)\\ =&\ \left(\pi\begin{pmatrix}1&1+b\\ 0&1\end{pmatrix}(\pi_{3}(w)\mathbf{1}_{\mathcal{O}_{F}^{\times}})\right)(y)=\left(\pi\begin{pmatrix}1&1+b\\ 0&1\end{pmatrix}(C_{\mathbf{1}}\mathbf{1}_{\varpi^{-c(\pi_{3})}\mathcal{O}_{F}^{\times}})\right)(y)\\ =&\ C_{\mathbf{1}}\psi((1+b)y)\mathbf{1}_{\varpi^{-c(\pi_{3})}\mathcal{O}_{F}^{\times}}(y).\end{split}

By (15) we have

v(y)=c(π3)Wπ3(a(y)(1011))ψ(by)d×y=C𝟏ϖc(π3)𝒪F×ψ((1+b)y)d×y={C𝟏if v(1+b)c(π3),C𝟏q1if v(1+b)=c(π3)1,0if v(1+b)c(π3)2.\int_{v(y)=-c(\pi_{3})}W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\psi(by)\ d^{\times}y\\ =C_{\mathbf{1}}\int_{\varpi^{-c(\pi_{3})}\mathcal{O}_{F}^{\times}}\psi((1+b)y)\ d^{\times}y=\begin{cases}C_{\mathbf{1}}&\text{if }v(1+b)\geq c(\pi_{3}),\\ -\frac{C_{\mathbf{1}}}{q-1}&\text{if }v(1+b)=c(\pi_{3})-1,\\ 0&\text{if }v(1+b)\leq c(\pi_{3})-2.\end{cases}

To study the oldforms we need the values of (π3(ϖl001)Wπ3)(a(y)(10ϖj1))\left(\pi_{3}(\begin{smallmatrix}\varpi^{-l}&0\\ 0&1\end{smallmatrix})W_{\pi_{3}}\right)\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) for 1lc(χD)c(π3)1\leq l\leq c(\chi_{D})-c(\pi_{3}).

Lemma 3.13.

With assumptions and notations in the above lemma, for an integer l0l\geq 0,

  • if jc(π3)+lj\geq c(\pi_{3})+l, then

    (π3(ϖl001)Wπ3)(a(y)(10ϖj1))=𝟏ϖl𝒪F×(y)\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)=\mathbf{1}_{\varpi^{l}\mathcal{O}_{F}^{\times}}(y)

    and

    v(y)=l(π3(ϖl001)Wπ3)(a(y)(10ϖj1))ψ(by)d×y={1if bϖl𝒪F,1q1if bϖl1𝒪F×,0otherwise.\int_{v(y)=l}\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\psi(by)\ d^{\times}y=\begin{cases}1&\text{if }b\in\varpi^{-l}\mathcal{O}_{F},\\ -\frac{1}{q-1}&\text{if }b\in\varpi^{-l-1}\mathcal{O}_{F}^{\times},\\ 0&\text{otherwise.}\end{cases}
  • if 0jl0\leq j\leq l, (π3(ϖl001)Wπ3)(a(y)(10ϖj1))\left(\pi_{3}(\begin{smallmatrix}\varpi^{-l}&0\\ 0&1\end{smallmatrix})W_{\pi_{3}}\right)\left(a(y)(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) is supported only at v(y)=2jlc(π3)v(y)=2j-l-c(\pi_{3}), and

    v(y)=2jlc(π3)(π3(ϖl001)Wπ3)(a(y)(10ϖj1))ψ(by)d×y\int_{v(y)=2j-l-c(\pi_{3})}\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\psi(by)\ d^{\times}y

    is equal to

    {C𝟏if bϖj+ϖc(π3)+l2j𝒪F,C𝟏q1if bϖj+ϖc(π3)+l2j1𝒪F×,0otherwise\begin{cases}C_{\mathbf{1}}&\text{if }b\in-\varpi^{-j}+\varpi^{c(\pi_{3})+l-2j}\mathcal{O}_{F},\\ -\frac{C_{\mathbf{1}}}{q-1}&\text{if }b\in-\varpi^{-j}+\varpi^{c(\pi_{3})+l-2j-1}\mathcal{O}_{F}^{\times},\\ 0&\text{otherwise}\end{cases}

    where C𝟏=ϵ(12,π3,ψ)=±1C_{\mathbf{1}}=\epsilon(\tfrac{1}{2},\pi_{3},\psi)=\pm 1.

Proof.

When j>lj>l we have

(10ϖj1)(ϖl001)=(ϖl0ϖjl1)=(ϖl001)(10ϖjl1).\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}=\begin{pmatrix}\varpi^{-l}&0\\ \varpi^{j-l}&1\end{pmatrix}=\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&0\\ \varpi^{j-l}&1\end{pmatrix}.

If jlc(π3)j-l\geq c(\pi_{3}) we have

(π3(ϖl001)Wπ3)(a(y)(10ϖj1))=π3(ϖl001)𝟏𝒪F×(y)=𝟏ϖl𝒪F×(y)\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)=\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}\mathbf{1}_{\mathcal{O}_{F}^{\times}}(y)=\mathbf{1}_{\varpi^{l}\mathcal{O}_{F}^{\times}}(y)

and

v(y)=l(π3(ϖl001)Wπ3)(a(y)(10ϖj1))ψ(by)d×y=v(y)=lψ(by)d×y={1if v(b)l,1q1if v(b)=l1,0if v(b)l2.\int_{v(y)=l}\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\psi(by)\ d^{\times}y\\ =\int_{v(y)=l}\psi(by)\ d^{\times}y=\begin{cases}1&\text{if }v(b)\geq-l,\\ -\frac{1}{q-1}&\text{if }v(b)=-l-1,\\ 0&\text{if }v(b)\leq-l-2.\end{cases}

When jlj\leq l, by (7) we have the Iwasawa decomposition

(10ϖj1)(ϖl001)=(ϖjϖlϖj0ϖjl)(1011)(1ϖlj101).\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}=\begin{pmatrix}\varpi^{-j}&\varpi^{-l}-\varpi^{-j}\\ 0&\varpi^{j-l}\end{pmatrix}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\begin{pmatrix}1&\varpi^{l-j}-1\\ 0&1\end{pmatrix}.

And by (8) we have

(π3(ϖl001)Wπ3)(a(y)(10ϖj1))=π3((ϖjϖlϖj0ϖjl)(1011)(1ϖlj101))𝟏𝒪F×(y)=π3(ϖjϖlϖj0ϖjl)(π3(1011)𝟏𝒪F×)(y)=ψ((ϖlϖj)ϖljy)(π3(1011)𝟏𝒪F×)(ϖl2jy)=Wπ3(a(ϖl2jy)(1011))ψ((ϖjϖl2j)y).\begin{split}&\ \left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\\ =&\ \pi_{3}(\begin{pmatrix}\varpi^{-j}&\varpi^{-l}-\varpi^{-j}\\ 0&\varpi^{j-l}\end{pmatrix}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\begin{pmatrix}1&\varpi^{l-j}-1\\ 0&1\end{pmatrix})\mathbf{1}_{\mathcal{O}_{F}^{\times}}(y)\\ =&\ \pi_{3}\begin{pmatrix}\varpi^{-j}&\varpi^{-l}-\varpi^{-j}\\ 0&\varpi^{j-l}\end{pmatrix}(\pi_{3}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\mathbf{1}_{\mathcal{O}_{F}^{\times}})(y)\\ =&\ \psi((\varpi^{-l}-\varpi^{-j})\varpi^{l-j}y)(\pi_{3}\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\mathbf{1}_{\mathcal{O}_{F}^{\times}})(\varpi^{l-2j}y)\\ =&\ W_{\pi_{3}}\left(a(\varpi^{l-2j}y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\psi((\varpi^{-j}-\varpi^{l-2j})y).\end{split}

By Lemma 3.11 it is supported only at v(y)=2jlc(π3)v(y)=2j-l-c(\pi_{3}), and

v(y)=2jlc(π3)(π3(ϖl001)Wπ3)(a(y)(10ϖj1))ψ(by)d×y=v(y)=2jlc(π3)Wπ3(a(ϖl2jy)(1011))ψ((ϖjϖl2j+b)y)d×y=v(y)=c(π3)Wπ3(a(y)(1011))ψ((ϖjl1+bϖ2jl)y)d×y={C𝟏if bϖj+ϖc(π3)+l2j𝒪F,C𝟏q1if bϖj+ϖc(π3)+l2j1𝒪F×,0otherwise\begin{split}&\ \int_{v(y)=2j-l-c(\pi_{3})}\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\psi(by)\ d^{\times}y\\ =&\ \int_{v(y)=2j-l-c(\pi_{3})}W_{\pi_{3}}\left(a(\varpi^{l-2j}y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\psi((\varpi^{-j}-\varpi^{l-2j}+b)y)\ d^{\times}y\\ =&\ \int_{v(y^{\prime})=-c(\pi_{3})}W_{\pi_{3}}\left(a(y^{\prime})\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\psi((\varpi^{j-l}-1+b\varpi^{2j-l})y^{\prime})\ d^{\times}y^{\prime}\\ =&\ \begin{cases}C_{\mathbf{1}}&\text{if }b\in-\varpi^{-j}+\varpi^{c(\pi_{3})+l-2j}\mathcal{O}_{F},\\ -\frac{C_{\mathbf{1}}}{q-1}&\text{if }b\in-\varpi^{-j}+\varpi^{c(\pi_{3})+l-2j-1}\mathcal{O}_{F}^{\times},\\ 0&\text{otherwise}\end{cases}\end{split}

by Lemma 3.12. ∎

3.4. The adjoint lift of a supercuspidal representation

A supercuspidal representation π\pi of G=GL2(F)G=\operatorname{{GL}}_{2}(F) is called unramified (i.e. of Type-1 as we have defined in Section 2) if ππη\pi\simeq\pi\otimes\eta for some unramified character η𝟏\eta\neq\mathbf{1} of F×F^{\times}. (By comparing central characters one can see that η\eta is quadratic.) Let η\eta be the (nontrivial) unramified quadratic character of F×F^{\times}. [GJ78, Corollary 1.3] gives the LL-factor of the adjoint lift of a supercuspidal representation:

L(s,π,Ad)={1if π≄πη,(1+qs)1if ππη.L(s,\pi,\operatorname{Ad})=\begin{cases}1&\text{if }\pi\not\simeq\pi\otimes\eta,\\ (1+q^{-s})^{-1}&\text{if }\pi\simeq\pi\otimes\eta.\end{cases}

In the case when the residue field of FF has characteristic p=2p=2, the “unramification” of a supercuspidal representation π\pi is actually equivalent to its “dihedralness”. Recall that π\pi is called dihedral (cf. [Bum97, Theorem 4.8.6]) if it is associated with a quadratic field extension E/FE/F and a character of E×E^{\times} that is not trivial on the kernel of the norm map NE/FN_{E/F} from E×E^{\times} to F×F^{\times}. (One can also find the construction in [BH06, Section 19].) The Tame Parametrization Theorem (cf. [BH06, Section 20.1]) says that every supercuspidal representation π\pi of GL2(F)\operatorname{{GL}}_{2}(F) is dihedral if the residue characteristic of FF is an odd prime; but when the residue characteristic is p=2p=2, only the unramified ones have such correspondence: π\pi is supercuspidal and unramified if and only if it is “unramified” dihedral, i.e. it is associated with an unramified quadratic field extension E/FE/F. (The equivalence of “unramified supercuspidal” and “unramified dihedral” is also true when p2p\neq 2, cf. [BH06, Section 20.3].) This explains the assumption of the Maass form ff in Theorem 1.1.

3.5. Local constants in the Watson–Ichino formula

To apply Lemma 3.2 to the calculation of the local Rankin–Selberg integral RS\ell_{\mathrm{RS}}, we need the following result.

Lemma 3.14.

Fix an unramified additive character ψ\psi of FF. Let π1=ω1ω2\pi_{1}=\omega_{1}\boxplus\omega_{2}, π2=ω21ω11\pi_{2}=\omega_{2}^{-1}\boxplus\omega_{1}^{-1} be principal series representations of G=GL2(F)G=\operatorname{{GL}}_{2}(F) with ω1,ω2\omega_{1},\omega_{2} both unitary, c(ω1)=m>0c(\omega_{1})=m>0 and c(ω2)=0c(\omega_{2})=0. Let π3\pi_{3} be a generic representation of GG with trivial central character and c(π3)mc(\pi_{3})\leq m. Then, for φ1\varphi_{1} in the induced model of π1\pi_{1}, W2𝒲(π2,ψ¯)W_{2}\in\mathcal{W}(\pi_{2},\bar{\psi}) and W3𝒲(π3,ψ)W_{3}\in\mathcal{W}(\pi_{3},\psi), the function Θ:K\Theta:K\to\mathbb{C} defined by

Θ(k):=F×φ1(a(y)k)W2(a(y)k)W3(a(y)k)d×y|y|\Theta(k):=\int_{F^{\times}}\varphi_{1}(a(y)k)W_{2}(a(y)k)W_{3}(a(y)k)\ \frac{d^{\times}y}{|y|}

is left (BK)(B\cap K)-invariant and right K1(𝔭m)K_{1}(\mathfrak{p}^{m})-invariant.

Proof.

Any bBKb\in B\cap K can be decomposed as b=z(t)a(y)n(x)b=z(t)a(y^{\prime})n(x) with t,y𝒪F×t,y^{\prime}\in\mathcal{O}_{F}^{\times} and x𝒪Fx\in\mathcal{O}_{F}, and we have that

a(y)bk=(y1)(tt)(y1)(1x1)k=(tt)(yyyyx1)k=z(t)n(yyx)a(yy)k.a(y)bk=\begin{pmatrix}y&\\ &1\end{pmatrix}\begin{pmatrix}t&\\ &t\end{pmatrix}\begin{pmatrix}y^{\prime}&\\ &1\end{pmatrix}\begin{pmatrix}1&x\\ &1\end{pmatrix}k\\ =\begin{pmatrix}t&\\ &t\end{pmatrix}\begin{pmatrix}yy^{\prime}&yy^{\prime}x\\ &1\end{pmatrix}k=z(t)n(yy^{\prime}x)a(yy^{\prime})k.

Recall that, the action of z(t)=(t00t)z(t)=(\begin{smallmatrix}t&0\\ 0&t\end{smallmatrix}) is given by the central character:

φ1(z(t)g)=ω1ω2(t)φ1(g),W2(z(t)g)=ω21ω11(t)W2(g),W3(z(t)g)=W3(g);\varphi_{1}(z(t)g)=\omega_{1}\omega_{2}(t)\varphi_{1}(g),\quad W_{2}(z(t)g)=\omega_{2}^{-1}\omega_{1}^{-1}(t)W_{2}(g),\quad W_{3}(z(t)g)=W_{3}(g);

and the action of n(x)=(1x01)n(x)=(\begin{smallmatrix}1&x\\ 0&1\end{smallmatrix}) is given by proposition of induced model or Whittaker model respectively:

φ1(n(x)g)=φ1(g),W2(n(x)g)=ψ¯(x)W2(g),W3(n(x)g)=ψ(x)W3(g).\varphi_{1}(n(x)g)=\varphi_{1}(g),\quad W_{2}(n(x)g)=\bar{\psi}(x)W_{2}(g),\quad W_{3}(n(x)g)=\psi(x)W_{3}(g).

Therefore

φ1(a(y)bk)\displaystyle\varphi_{1}\big{(}a(y)bk\big{)} =ω1ω2(t)\displaystyle=\omega_{1}\omega_{2}(t) φ1(a(yy)k),\displaystyle\varphi_{1}(a(yy^{\prime})k),
W2(a(y)bk)\displaystyle W_{2}\big{(}a(y)bk\big{)} =ω21ω11(t)\displaystyle=\omega_{2}^{-1}\omega_{1}^{-1}(t) ψ¯(yyx)\displaystyle\!\!\!\!\!\bar{\psi}(yy^{\prime}x) W2(a(yy)k),\displaystyle W_{2}(a(yy^{\prime})k),
W3(a(y)bk)\displaystyle W_{3}\big{(}a(y)bk\big{)} =\displaystyle= ψ(yyx)\displaystyle\!\!\!\!\!\psi(yy^{\prime}x) W3(a(yy)k);\displaystyle W_{3}(a(yy^{\prime})k);

and hence

Θ(bk)=F×φ1(a(yy)k)W2(a(yy)k)W3(a(yy)k)d×y|y|=|y|Θ(k)=Θ(k)\Theta(bk)=\int_{F^{\times}}\varphi_{1}(a(yy^{\prime})k)W_{2}(a(yy^{\prime})k)W_{3}(a(yy^{\prime})k)\ \frac{d^{\times}y}{|y|}=|y^{\prime}|\Theta(k)=\Theta(k)

for any bBKb\in B\cap K, with |y|=1|y^{\prime}|=1 since y𝒪F×y^{\prime}\in\mathcal{O}_{F}^{\times}.

At last the assumptions on the conductors of these three representations imply the right K1(𝔭m)K_{1}(\mathfrak{p}^{m})-invariance of φ1,W2,W3\varphi_{1},W_{2},W_{3}, and thus of Θ(k)\Theta(k). ∎

The above lemma still holds if πi,\pi_{i}, i=1,2,3i=1,2,3, are all generic with level c(πi)mc(\pi_{i})\leq m, and with central character ωπi\omega_{\pi_{i}} such that ωπ1ωπ2ωπ3=𝟏\omega_{\pi_{1}}\omega_{\pi_{2}}\omega_{\pi_{3}}=\mathbf{1}.

By the definition of RS\ell_{\mathrm{RS}} together with Lemma 3.2 and Lemma 3.14, RS(φπ1,Wπ2,Wπ3)\ell_{\mathrm{RS}}(\varphi_{\pi_{1}},W_{\pi_{2}},W_{\pi_{3}}) is equal to

ζF(1)1/2j=0mAjF×φπ1(a(y)(10ϖj1))Wπ2(a(y)(10ϖj1))Wπ3(a(y)(10ϖj1))d×y|y|.\zeta_{F}(1)^{1/2}\sum_{j=0}^{m}A_{j}\int_{F^{\times}}\varphi_{\pi_{1}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)W_{\pi_{2}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\ \frac{d^{\times}y}{|y|}.

Recall that, by Lemma 3.4, the new vector in the induced model of π1=ω1ω2\pi_{1}=\omega_{1}\boxplus\omega_{2}, where c(ω1)=m>c(ω2)=0c(\omega_{1})=m>c(\omega_{2})=0, satisfies

φπ1(a(y)(10ϖj1))={ω1(y)|y|1/2if j=0,0if 0<jm.\varphi_{\pi_{1}}\left(a(y)\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)=\begin{cases}\omega_{1}(y)|y|^{1/2}&\text{if }j=0,\\ 0&\text{if }0<j\leq m.\end{cases}

This means we only need to work on the case with j=0j=0. The integral becomes

RS(φπ1,Wπ2,Wπ3)=ζF(1)1/2ζF(2)ζF(1)F×ω1(y)|y|1/2Wπ2(a(y)(1011))Wπ3(a(y)(1011))d×y|y|.\ell_{\mathrm{RS}}(\varphi_{\pi_{1}},W_{\pi_{2}},W_{\pi_{3}})=\zeta_{F}(1)^{1/2}\frac{\zeta_{F}(2)}{\zeta_{F}(1)}\int_{F^{\times}}\omega_{1}(y)|y|^{1/2}W_{\pi_{2}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\ \frac{d^{\times}y}{|y|}.

By Lemma 3.5 we have

RS(φπ1,Wπ2,Wπ3)\displaystyle\ \ell_{\mathrm{RS}}(\varphi_{\pi_{1}},W_{\pi_{2}},W_{\pi_{3}})
=\displaystyle= ζF(2)ζF(1)1/2rmv(y)=rω1(y)|y|1/2\displaystyle\ \frac{\zeta_{F}(2)}{\zeta_{F}(1)^{1/2}}\sum_{r\geq-m}\int_{v(y)=r}\omega_{1}(y)|y|^{1/2}
ζF(2)1/2ζF(1)ω11(y)|y|1/2ψ(y)ϵ(1,ω11ω2,ψ)Wπ3(a(y)(1011))d×y|y|\displaystyle\qquad\qquad\qquad\qquad\qquad\cdot\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\omega_{1}^{-1}(y)|y|^{1/2}\psi(-y)\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\ \frac{d^{\times}y}{|y|}
=\displaystyle= ζF(2)3/2ζF(1)3/2ϵ(1,ω11ω2,ψ)rmv(y)=rψ(y)Wπ3(a(y)(1011))d×y.\displaystyle\ \frac{\zeta_{F}(2)^{3/2}}{\zeta_{F}(1)^{3/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)\sum_{r\geq-m}\int_{v(y)=r}\psi(-y)W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\ d^{\times}y.

To study oldforms one only need to replace Wπ3W_{\pi_{3}} with π3(ϖl001)Wπ3\pi_{3}(\begin{smallmatrix}\varpi^{-l}&0\\ 0&1\end{smallmatrix})W_{\pi_{3}} for l1l\geq 1.

3.5.1. Proof of Proposition 2.3

For 0lm10\leq l\leq m-1 (so the result works for both newforms and oldforms) and π3=Stω3\pi_{3}=\operatorname{St}_{\omega_{3}} with ω32=𝟏\omega_{3}^{2}=\mathbf{1}, Lemmas 3.7 and 3.8 show that

(π3(ϖl001)Wπ3)(a(y)(1011))=ζF(2)1/2{q1ψ(y)ω3(yϖl)|yϖl|if v(y)l10if v(y)l2.\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)=-\zeta_{F}(2)^{-1/2}\cdot\begin{cases}q^{-1}\psi(y)\omega_{3}(y\varpi^{-l})|y\varpi^{l}|&\text{if }v(y)\geq-l-1\\ 0&\text{if }v(y)\leq-l-2.\end{cases}

Therefore

RS(φπ1,Wπ2,π3(ϖl001)Wπ3)\displaystyle\ \ell_{\mathrm{RS}}(\varphi_{\pi_{1}},W_{\pi_{2}},\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}})
=\displaystyle= ζF(2)3/2ζF(1)3/2ϵ(1,ω11ω2,ψ)rl1v(y)=rψ(y)ζF(2)1/2(q1)ψ(y)ω3(yϖl)|yϖl|d×y\displaystyle\ \frac{\zeta_{F}(2)^{3/2}}{\zeta_{F}(1)^{3/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)\sum_{r\geq-l-1}\int_{v(y)=r}\psi(-y)\zeta_{F}(2)^{-1/2}(-q^{-1})\psi(y)\omega_{3}(y\varpi^{-l})|y\varpi^{l}|\ d^{\times}y
=\displaystyle= q1ζF(2)ζF(1)3/2ϵ(1,ω11ω2,ψ)ω3(ϖ2l)r1v(y)=rω3(y)|y|d×y(y=yϖl)\displaystyle\ -q^{-1}\frac{\zeta_{F}(2)}{\zeta_{F}(1)^{3/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)\omega_{3}(\varpi^{-2l})\sum_{r^{\prime}\geq-1}\int_{v(y^{\prime})=r^{\prime}}\omega_{3}(y^{\prime})|y^{\prime}|\ d^{\times}y^{\prime}\quad(y^{\prime}=y\varpi^{l})
=\displaystyle= q1ζF(2)ζF(1)3/2ϵ(1,ω11ω2,ψ)ω3(ϖ2l)r1𝒪F×ω3(ϖru)qrd×u\displaystyle\ -q^{-1}\frac{\zeta_{F}(2)}{\zeta_{F}(1)^{3/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)\omega_{3}(\varpi^{-2l})\sum_{r\geq-1}\int_{\mathcal{O}_{F}^{\times}}\omega_{3}(\varpi^{r}u)q^{-r}\ d^{\times}u
=\displaystyle= q1ζF(2)ζF(1)3/2ϵ(1,ω11ω2,ψ)ω3(ϖ2l)r1ω3(ϖ)rqr\displaystyle\ -q^{-1}\frac{\zeta_{F}(2)}{\zeta_{F}(1)^{3/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)\omega_{3}(\varpi^{-2l})\sum_{r\geq-1}\omega_{3}(\varpi)^{r}q^{-r}
=\displaystyle= ζF(2)ζF(1)3/2ϵ(1,ω11ω2,ψ)L(1,ω3)ω3(ϖ2l1), for 0lm1.\displaystyle\ -\frac{\zeta_{F}(2)}{\zeta_{F}(1)^{3/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)L(1,\omega_{3})\omega_{3}(\varpi^{-2l-1}),\quad\text{ for }0\leq l\leq m-1.

By (11) one has

|ϵ(1,ω11ω2,ψ)|=|ϵ(12,ω11ω2,ψ)qc(ω11ω2)/2|=qm/2.|\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)|=|\epsilon(\tfrac{1}{2},\omega_{1}^{-1}\omega_{2},\psi)q^{-c(\omega_{1}^{-1}\omega_{2})/2}|=q^{-m/2}.

So the numerator in the local constant is

I(φφ~)=qmζF(2)2ζF(1)3L(1,ω3)2.I(\varphi\otimes\tilde{\varphi})=q^{-m}\frac{\zeta_{F}(2)^{2}}{\zeta_{F}(1)^{3}}L(1,\omega_{3})^{2}.

The denominator in I(φφ~)I^{\prime}(\varphi\otimes\tilde{\varphi}) is given by

φ,φ~=Wπ1,W~π1Wπ2,W~π2Wπ3,W~π3.\langle\varphi,\tilde{\varphi}\rangle=\langle W_{\pi_{1}},\widetilde{W}_{\pi_{1}}\rangle\langle W_{\pi_{2}},\widetilde{W}_{\pi_{2}}\rangle\langle W_{\pi_{3}},\widetilde{W}_{\pi_{3}}\rangle.

By definition we have

Wπ1,W~π1=v(y)0|ζF(2)1/2ζF(1)ω2(y)|y|1/2|2d×y=ζF(2)ζF(1)2𝒪F|y|d×y=ζF(2)ζF(1),\langle W_{\pi_{1}},\widetilde{W}_{\pi_{1}}\rangle=\int_{v(y)\geq 0}\left|\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)}\omega_{2}(y)|y|^{1/2}\right|^{2}\ d^{\times}y=\frac{\zeta_{F}(2)}{\zeta_{F}(1)^{2}}\int_{\mathcal{O}_{F}}|y|\ d^{\times}y=\frac{\zeta_{F}(2)}{\zeta_{F}(1)},

and hence Wπ1,W~π1=Wπ2,W~π2=ζF(2)/ζF(1)\langle W_{\pi_{1}},\widetilde{W}_{\pi_{1}}\rangle=\langle W_{\pi_{2}},\widetilde{W}_{\pi_{2}}\rangle=\zeta_{F}(2)/\zeta_{F}(1); also

Wπ3,W~π3=v(y)0|ζF(2)1/2ω3(y)|y||2d×y=1ζF(2)𝒪F|y|2d×y=1.\langle W_{\pi_{3}},\widetilde{W}_{\pi_{3}}\rangle=\int_{v(y)\geq 0}\left|\zeta_{F}(2)^{-1/2}\omega_{3}(y)|y|\right|^{2}\ d^{\times}y=\frac{1}{\zeta_{F}(2)}\int_{\mathcal{O}_{F}}|y|^{2}\ d^{\times}y=1.

We get that

I(φφ~)φ,φ~=qmζF(2)2ζF(1)3L(1,ω3)2(ζF(2)ζF(1))21=qmL(1,ω3)2ζF(1).\frac{I(\varphi\otimes\tilde{\varphi})}{\langle\varphi,\tilde{\varphi}\rangle}=\frac{q^{-m}\frac{\zeta_{F}(2)^{2}}{\zeta_{F}(1)^{3}}L(1,\omega_{3})^{2}}{\left(\frac{\zeta_{F}(2)}{\zeta_{F}(1)}\right)^{2}\cdot 1}=q^{-m}\frac{L(1,\omega_{3})^{2}}{\zeta_{F}(1)}.

The local LL-factors are defined in the same way as in [HK20]: in this case

L(s,π1π2π3)=L(s+12,ω3)2,\displaystyle L(s,\pi_{1}\otimes\pi_{2}\otimes\pi_{3})=L(s+\tfrac{1}{2},\omega_{3})^{2},
L(s,π1,Ad)=L(s,π2,Ad)=ζF(s),L(s,π3,Ad)=ζF(s+1).\displaystyle L(s,\pi_{1},\operatorname{Ad})=L(s,\pi_{2},\operatorname{Ad})=\zeta_{F}(s),\quad L(s,\pi_{3},\operatorname{Ad})=\zeta_{F}(s+1).

We can simplify that

I(φφ~)=qmζF(1)ζF(2)=qm(1+q1).I^{\prime}(\varphi\otimes\tilde{\varphi})=q^{-m}\frac{\zeta_{F}(1)}{\zeta_{F}(2)}=q^{-m}(1+q^{-1}).

3.5.2. Proof of Proposition 2.4

For π3=ω3ω31\pi_{3}=\omega_{3}\boxplus\omega_{3}^{-1} and 0lm0\leq l\leq m, we have shown that

(π3(ϖl001)Wπ3)(a(y)(1011))=ζF(2)1/2ζF(1)L(1,ω32){ψ(y)|ϖly|1/2i+i=v(y)+lω3(ϖi)ω31(ϖi)if v(y)l,0if v(y)<l.\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\\ =\frac{\zeta_{F}(2)^{1/2}}{\zeta_{F}(1)L(1,\omega_{3}^{2})}\begin{cases}\psi(y)|\varpi^{l}y|^{1/2}\sum\limits_{i+i^{\prime}=v(y)+l}\omega_{3}(\varpi^{i})\omega_{3}^{-1}(\varpi^{i^{\prime}})&\text{if }v(y)\geq-l,\\ 0&\text{if }v(y)<-l.\end{cases}

Then

RS(φπ1,Wπ2,π3(ϖl001)Wπ3)\displaystyle\ \ell_{\mathrm{RS}}(\varphi_{\pi_{1}},W_{\pi_{2}},\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}})
=\displaystyle= ζF(2)3/2ζF(1)3/2ϵ(1,ω11ω2,ψ)rmv(y)=rψ(y)(π3(ϖl001)Wπ3)(a(y)(1011))d×y\displaystyle\ \frac{\zeta_{F}(2)^{3/2}}{\zeta_{F}(1)^{3/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)\sum_{r\geq-m}\int_{v(y)=r}\psi(-y)\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\ d^{\times}y
=\displaystyle= ζF(2)2ζF(1)5/2ϵ(1,ω11ω2,ψ)rlv(y)=rL(1,ω32)1|ϖly|1/2i+i=v(y)+lω3(ϖi)ω31(ϖi)d×y\displaystyle\ \frac{\zeta_{F}(2)^{2}}{\zeta_{F}(1)^{5/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)\sum_{r\geq-l}\int_{v(y)=r}L(1,\omega_{3}^{2})^{-1}|\varpi^{l}y|^{1/2}\sum_{i+i^{\prime}=v(y)+l}\omega_{3}(\varpi^{i})\omega_{3}^{-1}(\varpi^{i^{\prime}})\ d^{\times}y
=\displaystyle= ζF(2)2ζF(1)5/2ϵ(1,ω11ω2,ψ)L(1,ω32)1r0v(y)=r|y|1/2i+i=rω3(ϖi)ω31(ϖi)d×y(y=yϖl)\displaystyle\ \frac{\zeta_{F}(2)^{2}}{\zeta_{F}(1)^{5/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)L(1,\omega_{3}^{2})^{-1}\sum_{r^{\prime}\geq 0}\int_{v(y^{\prime})=r^{\prime}}|y^{\prime}|^{1/2}\sum_{i+i^{\prime}=r^{\prime}}\omega_{3}(\varpi^{i})\omega_{3}^{-1}(\varpi^{i^{\prime}})\ d^{\times}y^{\prime}\quad(y^{\prime}=y\varpi^{l})
=\displaystyle= ζF(2)2ζF(1)5/2ϵ(1,ω11ω2,ψ)L(1,ω32)1r0qr/2i+i=rω3(ϖi)ω31(ϖi)\displaystyle\ \frac{\zeta_{F}(2)^{2}}{\zeta_{F}(1)^{5/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)L(1,\omega_{3}^{2})^{-1}\sum_{r^{\prime}\geq 0}q^{-r^{\prime}/2}\sum_{i+i^{\prime}=r^{\prime}}\omega_{3}(\varpi^{i})\omega_{3}^{-1}(\varpi^{i^{\prime}})
=\displaystyle= ζF(2)2ζF(1)5/2ϵ(1,ω11ω2,ψ)L(1,ω32)1i0i0ω3(ϖi)qi/2ω31(ϖi)qi/2\displaystyle\ \frac{\zeta_{F}(2)^{2}}{\zeta_{F}(1)^{5/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)L(1,\omega_{3}^{2})^{-1}\sum_{i\geq 0}\sum_{i^{\prime}\geq 0}\omega_{3}(\varpi^{i})q^{-i/2}\omega_{3}^{-1}(\varpi^{i^{\prime}})q^{-i^{\prime}/2}
=\displaystyle= ζF(2)2ζF(1)5/2ϵ(1,ω11ω2,ψ)L(1,ω32)1(1ω3(ϖ)q1/2)1(1ω31(ϖ)q1/2)1\displaystyle\ \frac{\zeta_{F}(2)^{2}}{\zeta_{F}(1)^{5/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)L(1,\omega_{3}^{2})^{-1}(1-\omega_{3}(\varpi)q^{1/2})^{-1}(1-\omega_{3}^{-1}(\varpi)q^{1/2})^{-1}
=\displaystyle= ζF(2)2ζF(1)5/2ϵ(1,ω11ω2,ψ)L(1,ω32)1L(12,ω3)L(12,ω31).\displaystyle\ \frac{\zeta_{F}(2)^{2}}{\zeta_{F}(1)^{5/2}}\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi)L(1,\omega_{3}^{2})^{-1}L(\tfrac{1}{2},\omega_{3})L(\tfrac{1}{2},\omega_{3}^{-1}).

We now get the numerator

I(φφ~)=qmζF(2)4ζF(1)5L(1,ω32)1L(1,ω32)1L(12,ω3)2L(12,ω31)2.I(\varphi\otimes\tilde{\varphi})=q^{-m}\frac{\zeta_{F}(2)^{4}}{\zeta_{F}(1)^{5}}L(1,\omega_{3}^{2})^{-1}L(1,\omega_{3}^{-2})^{-1}L(\tfrac{1}{2},\omega_{3})^{2}L(\tfrac{1}{2},\omega_{3}^{-1})^{2}.

For the denominator, the normalization of newform φπ3\varphi_{\pi_{3}} implies φπ3,φ~π3=1\langle\varphi_{\pi_{3}},\tilde{\varphi}_{\pi_{3}}\rangle=1. Then

Wπ3,W~π3=1.\langle W_{\pi_{3}},\widetilde{W}_{\pi_{3}}\rangle=1.

Recall that

Wπ1,W~π1=Wπ2,W~π2=ζF(2)ζF(1);\langle W_{\pi_{1}},\widetilde{W}_{\pi_{1}}\rangle=\langle W_{\pi_{2}},\widetilde{W}_{\pi_{2}}\rangle=\frac{\zeta_{F}(2)}{\zeta_{F}(1)};

therefore

I(φφ~)φ,φ~=qmζF(2)2L(12,ω3)2L(12,ω31)2ζF(1)3L(1,ω32)L(1,ω32).\frac{I(\varphi\otimes\tilde{\varphi})}{\langle\varphi,\tilde{\varphi}\rangle}=q^{-m}\frac{\zeta_{F}(2)^{2}L(\tfrac{1}{2},\omega_{3})^{2}L(\tfrac{1}{2},\omega_{3}^{-1})^{2}}{\zeta_{F}(1)^{3}L(1,\omega_{3}^{2})L(1,\omega_{3}^{-2})}.

Recall that the local LL-factors are given by

L(s,π1π2π3)=L(s,ω3)2L(s,ω31)2,L(s,\pi_{1}\otimes\pi_{2}\otimes\pi_{3})=L(s,\omega_{3})^{2}L(s,\omega_{3}^{-1})^{2},
L(s,π1,Ad)=L(s,π2,Ad)=ζF(s),L(s,\pi_{1},\operatorname{Ad})=L(s,\pi_{2},\operatorname{Ad})=\zeta_{F}(s),
L(s,π3,Ad)=ζF(s)L(s,ω32)L(s,ω32).L(s,\pi_{3},\operatorname{Ad})=\zeta_{F}(s)L(s,\omega_{3}^{2})L(s,\omega_{3}^{-2}).

One can simplify that

I(φφ~)=qm.I^{\prime}(\varphi\otimes\tilde{\varphi})=q^{-m}.

3.5.3. Proof of Proposition 2.5

For π3\pi_{3} supercuspidal (with 2c(π3)c(χD)=m2\leq c(\pi_{3})\leq c(\chi_{D})=m), Wπ3(a(y)(1011))W_{\pi_{3}}\left(a(y)(\begin{smallmatrix}1&0\\ 1&1\end{smallmatrix})\right) is supported only at v(y)=c(π3)v(y)=-c(\pi_{3}). By Lemma 3.12 we see

v(y)=c(π3)Wπ3(a(y)(1011))ψ(y)d×y=C𝟏,\int_{v(y)=-c(\pi_{3})}W_{\pi_{3}}\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\psi(-y)\ d^{\times}y=C_{\mathbf{1}},

where C𝟏=ϵ(12,π3,ψ)=±1C_{\mathbf{1}}=\epsilon(\tfrac{1}{2},\pi_{3},\psi)=\pm 1. Moreover, for the oldforms, we have shown in Lemma 3.13 that (π3(ϖl001)Wπ3)(a(y)(1011))\left(\pi_{3}(\begin{smallmatrix}\varpi^{-l}&0\\ 0&1\end{smallmatrix})W_{\pi_{3}}\right)\left(a(y)(\begin{smallmatrix}1&0\\ 1&1\end{smallmatrix})\right) is supported only at v(y)=lc(π3)v(y)=-l-c(\pi_{3}), and for l0l\geq 0 we also have

v(y)=lc(π3)(π3(ϖl001)Wπ3)(a(y)(1011))ψ(y)d×y=C𝟏.\int_{v(y)=-l-c(\pi_{3})}\left(\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}}\right)\left(a(y)\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)\psi(-y)\ d^{\times}y=C_{\mathbf{1}}.

So in both cases we have

RS(φπ1,Wπ2,π3(ϖl001)Wπ3)=ζF(2)3/2ζF(1)3/2ϵ(1,ω11ω2,ψ1)(±1).\ell_{\mathrm{RS}}(\varphi_{\pi_{1}},W_{\pi_{2}},\pi_{3}\begin{pmatrix}\varpi^{-l}&0\\ 0&1\end{pmatrix}W_{\pi_{3}})=\frac{\zeta_{F}(2)^{3/2}}{\zeta_{F}(1)^{3/2}}\cdot\epsilon(1,\omega_{1}^{-1}\omega_{2},\psi^{-1})\cdot(\pm 1).

The numerator is

I(φφ~)=qmζF(2)3ζF(1)3.I(\varphi\otimes\tilde{\varphi})=q^{-m}\frac{\zeta_{F}(2)^{3}}{\zeta_{F}(1)^{3}}.

For the denominator, recall that

Wπ1,W~π1=Wπ2,W~π2=ζF(2)ζF(1),Wπ3,W~π3=1;\langle W_{\pi_{1}},\widetilde{W}_{\pi_{1}}\rangle=\langle W_{\pi_{2}},\widetilde{W}_{\pi_{2}}\rangle=\frac{\zeta_{F}(2)}{\zeta_{F}(1)},\quad\langle W_{\pi_{3}},\widetilde{W}_{\pi_{3}}\rangle=1;

and hence

(16) I(φφ~)φ,φ~=qmζF(2)ζF(1).\frac{I(\varphi\otimes\tilde{\varphi})}{\langle\varphi,\tilde{\varphi}\rangle}=q^{-m}\frac{\zeta_{F}(2)}{\zeta_{F}(1)}.

The local L-factors are given by

L(s,π1π2π3)=1;L(s,π1,Ad)=L(s,π2,Ad)=ζF(s);L(s,\pi_{1}\otimes\pi_{2}\otimes\pi_{3})=1;\quad L(s,\pi_{1},\operatorname{Ad})=L(s,\pi_{2},\operatorname{Ad})=\zeta_{F}(s);

let η\eta be the (nontrivial) unramified quadratic character of F×F^{\times}. By [GJ78, Corollary 1.3] we know

L(s,π3,Ad)={1if π3≄π3η,(1+qs)1if π3π3η.L(s,\pi_{3},\operatorname{Ad})=\begin{cases}1&\text{if }\pi_{3}\not\simeq\pi_{3}\otimes\eta,\\ (1+q^{-s})^{-1}&\text{if }\pi_{3}\simeq\pi_{3}\otimes\eta.\end{cases}

One can simplify that

I(φφ~)=qm(1+q1)L(1,π3,Ad)={qm(1+q1)if π3≄π3η,qmif π3π3η.I^{\prime}(\varphi\otimes\tilde{\varphi})=q^{-m}(1+q^{-1})L(1,\pi_{3},\operatorname{Ad})=\begin{cases}q^{-m}(1+q^{-1})&\text{if }\pi_{3}\not\simeq\pi_{3}\otimes\eta,\\ q^{-m}&\text{if }\pi_{3}\simeq\pi_{3}\otimes\eta.\end{cases}

3.5.4. Direct calculation by matrix coefficients

One can also calculate the local constants by the methods used in [Hu17], which is to calculate directly the matrix coefficients: by definition,

I(φφ~)φ,φ~=Z(F)\GL2(F)Φπ1(g)Φπ2(g)Φπ3(g)𝑑g,\frac{I(\varphi\otimes\tilde{\varphi})}{\langle\varphi,\tilde{\varphi}\rangle}=\int_{Z(F)\backslash\operatorname{{GL}}_{2}(F)}\Phi_{\pi_{1}}(g)\Phi_{\pi_{2}}(g)\Phi_{\pi_{3}}(g)\ dg,

where Φπ\Phi_{\pi} denotes the normalized matrix coefficient

Φπ(g)=1Wπ,W~πF×Wπ(a(y)g)W~π(a(y))d×y.\Phi_{\pi}(g)=\frac{1}{\langle W_{\pi},\widetilde{W}_{\pi}\rangle}\int_{F^{\times}}W_{\pi}\left(a(y)g\right)\widetilde{W}_{\pi}(a(y))\ d^{\times}y.

We consider the case when π3\pi_{3} is supercuspidal for example. Let b=(yx01)=n(x)a(y)b=(\begin{smallmatrix}y&x\\ 0&1\end{smallmatrix})=n(x)a(y) for some yF×y\in F^{\times}, xFx\in F. For π1,π2\pi_{1},\pi_{2}, one can generalize the results in [HK20] and show that

  • Φπ1(b)\Phi_{\pi_{1}}(b) is equal to

    {ω2(y)|y|1/2v(y)0,v(x)0ω2(y)|y|1/2v(y)0,v(x)v(y)0otherwise.\begin{cases}\omega_{2}(y)|y|^{1/2}&v(y)\geq 0,\ v(x)\geq 0\\ \omega_{2}(y)|y|^{-1/2}&v(y)\leq 0,\ v(x)\geq v(y)\\ 0&\text{otherwise}.\end{cases}
  • Φπ1(b(1011))\Phi_{\pi_{1}}(b(\begin{smallmatrix}1&0\\ 1&1\end{smallmatrix})) is equal to

    {ω1(y)|y|1/2ω11ω2(x+y)|x+y|1if v(x+y)min{m,v(y)}0otherwise.\begin{cases}\omega_{1}(y)|y|^{1/2}\omega_{1}^{-1}\omega_{2}(x+y)|x+y|^{-1}&\text{if }v(x+y)\leq\min\{-m,v(y)\}\\ 0&\text{otherwise}.\end{cases}
  • For 0<j<m0<j<m, Φπ1(b(10ϖj1))\Phi_{\pi_{1}}(b(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})) is equal to

    {ω2(y)|y|1/2ω11ω2(1+xϖj/y)if v(y)jm,v(x)v(y)+mj1,0otherwise.\begin{cases}\omega_{2}(y)|y|^{-1/2}\omega_{1}^{-1}\omega_{2}(1+x\varpi^{j}/y)&\text{if }v(y)\leq j-m,\ v(x)\geq v(y)+m-j-1,\\ 0&\text{otherwise.}\end{cases}

And Φπ2\Phi_{\pi_{2}} is the complex conjugation of Φπ1\Phi_{\pi_{1}}. For π3\pi_{3} supercuspidal, [Hu17, Proposition 2.19] shows:

  • Φπ3(b)\Phi_{\pi_{3}}(b) is supported on v(y)=0v(y)=0 and v(x)l1v(x)\geq-l-1;

    Φπ3(b)={1if v(y)=0,v(x)l,1q1if v(y)=0,v(x)=l1;\Phi_{\pi_{3}}(b)=\begin{cases}1&\text{if }v(y)=0,\ v(x)\geq-l,\\ -\frac{1}{q-1}&\text{if }v(y)=0,\ v(x)=-l-1;\end{cases}
  • for j=c(π3)+l1j=c(\pi_{3})+l-1, Φπ3(b(10ϖj1))\Phi_{\pi_{3}}\left(b(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) is supported on v(y)=0v(y)=0, v(x)l1v(x)\geq-l-1, and

    Φπ3(b(10ϖc(π3)+l11))=1q1if v(x)l;\Phi_{\pi_{3}}\left(b\begin{pmatrix}1&0\\ \varpi^{c(\pi_{3})+l-1}&1\end{pmatrix}\right)=-\frac{1}{q-1}\quad\text{if }v(x)\geq-l;
    v(x)=l1Φπ3(b(10ϖc(π3)+l11))𝑑x=qlq1if v(x)l;\int_{v(x)=-l-1}\Phi_{\pi_{3}}\left(b\begin{pmatrix}1&0\\ \varpi^{c(\pi_{3})+l-1}&1\end{pmatrix}\right)\ dx=\frac{q^{l}}{q-1}\quad\text{if }v(x)\geq-l;
  • for c(π3)<4c(\pi_{3})<4 and 0j<c(π3)+l10\leq j<c(\pi_{3})+l-1, Φπ3(b(10ϖj1))\Phi_{\pi_{3}}\left(b(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) is supported on v(y)=min{0,2jc(π3)2l}v(y)=\min\{0,2j-c(\pi_{3})-2l\}, v(x)=jc2lv(x)=j-c-2l; it is of level c(π3)+ljc(\pi_{3})+l-j as a function in yy.

Since WπW_{\pi} is right K1(𝔭m)K_{1}(\mathfrak{p}^{m})-invariant, [Hu16, Lemma 2.2] implies that I(φφ~)/φ,φ~I(\varphi\otimes\tilde{\varphi})/\langle\varphi,\tilde{\varphi}\rangle is equal to

j=0mAjZ(F)\B(F)i=13Φπi(b(10ϖj1))db,Aj=ζF(2)ζF(1){1if j=0qjζF(1)1if 0<j<mqmif j=m,\sum_{j=0}^{m}A_{j}\int_{Z(F)\backslash B(F)}\prod_{i=1}^{3}\Phi_{\pi_{i}}\left(b\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)\ db,\quad A_{j}=\frac{\zeta_{F}(2)}{\zeta_{F}(1)}\cdot\begin{cases}1&\text{if }j=0\\ q^{-j}\zeta_{F}(1)^{-1}&\text{if }0<j<m\\ q^{-m}&\text{if }j=m,\end{cases}

where b=n(x)a(y)b=n(x)a(y) and db=|y|1d×ydxdb=|y|^{-1}d^{\times}y\ dx. Here

i=13Φπi(b)={|y|Φπ3v(y)0,v(x)0|y|1Φπ3v(y)0,v(x)v(y)0otherwise={1v(y)=0,v(x)00otherwise.\begin{split}\prod_{i=1}^{3}\Phi_{\pi_{i}}\left(b\right)&=\begin{cases}|y|\Phi_{\pi_{3}}&v(y)\geq 0,\ v(x)\geq 0\\ |y|^{-1}\Phi_{\pi_{3}}&v(y)\leq 0,\ v(x)\geq v(y)\\ 0&\text{otherwise}\end{cases}\\ &=\begin{cases}1&v(y)=0,\ v(x)\geq 0\\ 0&\text{otherwise}.\end{cases}\end{split}

So

Z(F)\B(F)i=13Φπi(b)db=v(y)=0d×y|y|v(x)0𝑑x=1.\int_{Z(F)\backslash B(F)}\prod_{i=1}^{3}\Phi_{\pi_{i}}\left(b\right)\ db=\int_{v(y)=0}\frac{d^{\times}y}{|y|}\int_{v(x)\geq 0}dx=1.

Next we show that all other terms (when 0j<m0\leq j<m) vanish. For j=0j=0,

i=13Φπi(b(1011))={|y||x+y|2Φπ3if v(x+y)min{m,v(y)},0otherwise,\prod_{i=1}^{3}\Phi_{\pi_{i}}\left(b\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)=\begin{cases}\dfrac{|y|}{|x+y|^{2}}\Phi_{\pi_{3}}&\text{if }v(x+y)\leq\min\{-m,v(y)\},\\ 0&\text{otherwise},\end{cases}

with

Φπ3(b(1011))={C𝟏if v(y)=c2l,xy+ϖl𝒪F,C𝟏q1if v(y)=c2l,xy+ϖl1𝒪F×,0otherwise\Phi_{\pi_{3}}\left(b\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)=\begin{cases}C_{\mathbf{1}}&\text{if }v(y)=-c-2l,\ x\in-y+\varpi^{-l}\mathcal{O}_{F},\\ -\frac{C_{\mathbf{1}}}{q-1}&\text{if }v(y)=-c-2l,\ x\in-y+\varpi^{-l-1}\mathcal{O}_{F}^{\times},\\ 0&\text{otherwise}\end{cases}

is supported only on v(y)=c2lv(y)=-c-2l, v(x+y)l1v(x+y)\geq-l-1 (so v(x+y)v(y)v(x+y)\leq v(y) cannot happen). Therefore

i=13Φπi(b(1011))=0.\prod_{i=1}^{3}\Phi_{\pi_{i}}\left(b\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right)=0.

For c+l1j<mc+l-1\leq j<m, Φπ3(b(10ϖj1))\Phi_{\pi_{3}}\left(b(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) is supported on v(y)=0v(y)=0. Since jm<0j-m<0,

i=13Φπi(b(10ϖj1))=0.\prod_{i=1}^{3}\Phi_{\pi_{i}}\left(b\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)=0.

For 0<j<c+l10<j<c+l-1,

v(y)jm(which is <0)v(y)=min{0,2jc2l}}2jc2ljmjc+2lm,\left.\begin{array}[]{r}v(y)\leq j-m\ (\text{which is }<0)\\ v(y)=\min\{0,2j-c-2l\}\end{array}\right\}\Rightarrow 2j-c-2l\leq j-m\Rightarrow j\leq c+2l-m,

which is possible only if l>12(mc)l>\tfrac{1}{2}(m-c) (recall that 0lmc0\leq l\leq m-c). Under this assumption Φπ3(b(10ϖj1))\Phi_{\pi_{3}}\left(b(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) is supported on

v(y)=2jc2l,v(x)=jc2l;v(y)=2j-c-2l,\quad v(x)=j-c-2l;

but in this case v(x)v(y)+mj1v(x)\geq v(y)+m-j-1 does not hold. That means, on the support of Φπ3(b(10ϖj1))\Phi_{\pi_{3}}\left(b(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right), Φπ1(b(10ϖj1))\Phi_{\pi_{1}}\left(b(\begin{smallmatrix}1&0\\ \varpi^{j}&1\end{smallmatrix})\right) vanishes. So again

i=13Φπi(b(10ϖj1))=0.\prod_{i=1}^{3}\Phi_{\pi_{i}}\left(b\begin{pmatrix}1&0\\ \varpi^{j}&1\end{pmatrix}\right)=0.

In conclusion

I(φφ~)φ,φ~=ζF(2)ζF(1)qmZ(F)\B(F)i=13Φπi(b)db=qmζF(2)ζF(1).\frac{I(\varphi\otimes\tilde{\varphi})}{\langle\varphi,\tilde{\varphi}\rangle}=\frac{\zeta_{F}(2)}{\zeta_{F}(1)}q^{-m}\int_{Z(F)\backslash B(F)}\prod_{i=1}^{3}\Phi_{\pi_{i}}\left(b\right)\ db=q^{-m}\frac{\zeta_{F}(2)}{\zeta_{F}(1)}.

One can continue from (16) and complete the proof.

Acknowledgements

The author would like to thank Bingrong Huang for suggesting this problem, and to thank Zihao Wang and Hongbo Yin for helpful discussions. The author also thanks the anonymous referees for making helpful comments on an earlier version which led to improvement of the exposition. This research was completed while the author was supported by the National Key Research and Development Program of China (No. 2021YFA1000700).

References

  • [BH06] Colin J. Bushnell and Guy Henniart. The local Langlands conjecture for GL(2)\rm GL(2), volume 335 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
  • [BM19] Debargha Banerjee and Tathagata Mandal. Supercuspidal ramifications and traces of adjoint lifts. J. Number Theory, 201:292–321, 2019.
  • [Bum97] Daniel Bump. Automorphic forms and representations, volume 55 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
  • [Col20] Dan J. Collins. Anticyclotomic pp-adic LL-functions and Ichino’s formula. Ann. Math. Qué., 44(1):27–89, 2020.
  • [Gar87] Paul B. Garrett. Decomposition of Eisenstein series: Rankin triple products. Ann. of Math. (2), 125(2):209–235, 1987.
  • [GJ78] Stephen Gelbart and Hervé Jacquet. A relation between automorphic representations of GL(2){\rm GL}(2) and GL(3){\rm GL}(3). Ann. Sci. École Norm. Sup. (4), 11(4):471–542, 1978.
  • [GK92] Benedict H. Gross and Stephen S. Kudla. Heights and the central critical values of triple product LL-functions. Compositio Math., 81(2):143–209, 1992.
  • [HK20] Peter Humphries and Rizwanur Khan. On the random wave conjecture for dihedral Maaß forms. Geom. Funct. Anal., 30(1):34–125, 2020.
  • [HL23] Bingrong Huang and Stephen Lester. Quantum variance for dihedral Maass forms. Trans. Amer. Math. Soc., 376(1):643–695, 2023.
  • [Hu16] Yueke Hu. Cuspidal part of an Eisenstein series restricted to an index 2 subfield. Res. Number Theory, 2:Paper No. 33, 61, 2016.
  • [Hu17] Yueke Hu. Triple product formula and the subconvexity bound of triple product LL-function in level aspect. Amer. J. Math., 139(1):215–259, 2017.
  • [Ich08] Atsushi Ichino. Trilinear forms and the central values of triple product LL-functions. Duke Math. J., 145(2):281–307, 2008.
  • [Iwa97] Henryk Iwaniec. Topics in classical automorphic forms, volume 17 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997.
  • [JL70] Hervé Jacquet and Robert P. Langlands. Automorphic forms on GL(2){\rm GL}(2). Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin-New York, 1970.
  • [LS04] Wenzhi Luo and Peter Sarnak. Quantum variance for Hecke eigenforms. Ann. Sci. École Norm. Sup. (4), 37(5):769–799, 2004.
  • [LW12] David Loeffler and Jared Weinstein. On the computation of local components of a newform. Math. Comp., 81(278):1179–1200, 2012.
  • [MV10] Philippe Michel and Akshay Venkatesh. The subconvexity problem for GL2{\rm GL}_{2}. Publ. Math. Inst. Hautes Études Sci., (111):171–271, 2010.
  • [Nel11] Paul D. Nelson. Equidistribution of cusp forms in the level aspect. Duke Math. J., 160(3):467–501, 2011.
  • [NPS14] Paul D. Nelson, Ameya Pitale, and Abhishek Saha. Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels. J. Amer. Math. Soc., 27(1):147–191, 2014.
  • [PSR87] Ilya Piatetski-Shapiro and Stephen Rallis. Rankin triple LL functions. Compositio Math., 64(1):31–115, 1987.
  • [Rib77] Kenneth A. Ribet. Galois representations attached to eigenforms with Nebentypus. In Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pages 17–51. Lecture Notes in Math., Vol. 601, 1977.
  • [Sch02] Ralf Schmidt. Some remarks on local newforms for GL(2)\rm GL(2). J. Ramanujan Math. Soc., 17(2):115–147, 2002.
  • [Wat02] Thomas C. Watson. Rankin triple products and quantum chaos. PhD thesis, Princeton University, 2002.