This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An explicit sub-Weyl bound for ζ(1/2+it)\zeta(1/2+it)

Dhir Patel and Andrew Yang
Abstract.

In this article we prove an explicit sub-Weyl bound for the Riemann zeta function ζ(s)\zeta(s) on the critical line s=1/2+its=1/2+it. In particular, we show that |ζ(1/2+it)|66.7t27/164|\zeta(1/2+it)|\leq 66.7\,t^{27/164} for t3t\geq 3. Combined, our results form the sharpest known bounds on ζ(1/2+it)\zeta(1/2+it) for texp(61)t\geq\exp(61).

Key words and phrases:
Van der Corput estimate, exponential sums, sub-Weyl bound, Riemann zeta function.
2010 Mathematics Subject Classification:
Primary 11L07, 11M06

1. Introduction

An important open problem in analytic number theory is the growth rate of the Riemann zeta-function ζ(s)\zeta(s) on the critical line s=1/2+its=1/2+it as tt\to\infty. The well-known Lindelöf Hypothesis asserts that ζ(1/2+it)ϵtϵ\zeta(1/2+it)\ll_{\epsilon}t^{\epsilon} for any ϵ>0\epsilon>0. Among the consequences of the hypothesis are many profound results for prime number distributions. Although the Lindelöf Hypothesis is currently unproven, much effort have been expended to bound the zeta-function on the critical line, culminating in the current best-known bound of ζ(1/2+it)ϵt13/84+ϵ\zeta(1/2+it)\ll_{\epsilon}t^{13/84+\epsilon} for any ϵ>0\epsilon>0, due to Bourgain [Bou16].

In this article we are concerned with explicit bounds on ζ(1/2+it)\zeta(1/2+it). Such explicit bounds have been used to derive zero-free regions [For02, MTY22, Yan23], zero-density estimates [KLN18] and bounds on the argument of ζ(s)\zeta(s) on the critical line [Tru14, HSW21]. Recently, these results have in turn been used to obtain explicit theorems about prime distributions [KL14, CH21, Bro+21, CHL22, CHJ22, JY22, FKS22, FKS22a], so there is substantial motivation to sharpen such bounds as much as possible. Nevertheless, known explicit bounds on ζ(1/2+it)\zeta(1/2+it) currently lag far behind the asymptotically sharpest-known results. Only two types of explicit subconvexity results are known — the first being the classical van der Corput estimate of the form |ζ(1/2+it)|At1/6logt|\zeta(1/2+it)|\leq At^{1/6}\log t for tt0t\geq t_{0} for some absolute constants AA and t0t_{0}. Such bounds are sometimes known as Weyl estimates because the exponent of 1/61/6 was first achieved via the Weyl–Littlewood–Hardy method. The sharpest estimate of this type is due to [HPY22], who built on the work of [CG04, Tru15, Hia16] to prove

|ζ(1/2+it)|0.618t1/6logt,t3.|\zeta(1/2+it)|\leq 0.618t^{1/6}\log t,\qquad t\geq 3. (1.1)

A second type of explicit bound, known sometimes as sub-Weyl estimates, was first made explicit by Patel [Pat21], who showed

|ζ(1/2+it)|307.098t27/164,t3.|\zeta(1/2+it)|\leq 307.098t^{27/164},\qquad t\geq 3. (1.2)

Note that 27/164=0.164<1/627/164=0.164\ldots<1/6. In particular, (1.2) is the best-known explicit bound for the zeta-function on the critical line for texp(281)t\geq\exp(281).

In this work we improve (1.2). Our main result is

Theorem 1.1.

For t3t\geq 3, we have

|ζ(1/2+it)|66.7t27/164.|\zeta(1/2+it)|\leq 66.7\,t^{27/164}.

Theorem 1.1 represents the sharpest known bound on ζ(1/2+it)\zeta(1/2+it) for texp(105)t\geq\exp(105). In §3.1 we show that still sharper bounds are possible for smaller tt. Together, our results form the best known bound for texp(61)t\geq\exp(61). Therefore, (1.1) remains sharper at t31012t\approx 3\cdot 10^{12}, the verification height of the Riemann Hypothesis [PT21]. This is significant since bounds for ζ(1/2+it)\zeta(1/2+it) near such values of tt are used in multiple explicit results [HSW21, KLN18, For02].

On the other hand, sharp bounds on ζ(1/2+it)\zeta(1/2+it) for larger values of tt are useful for deriving explicit zero-free regions [For02, MTY22, Yan23], for improved bounds on S(T)S(T) [Tru14, HSW21], for refinements to Turing’s method [Tru11, Tru16], and for asymptotically improved zero-density estimates [Tit86, Thm. 9.18]. For instance, following the method of [KLN18], we may use Theorem 1.1 to prove an explicit zero-density result of the form

N(σ,T)T10941(1σ)(logT)43σ,N(\sigma,T)\ll T^{\frac{109}{41}(1-\sigma)}(\log T)^{4-3\sigma},

where N(σ,T)N(\sigma,T) is the number of zeroes ρ=β+iγ\rho=\beta+i\gamma of ζ(s)\zeta(s) with σ<β<1\sigma<\beta<1 and 0<γ<T0<\gamma<T.

1.1. Approach and exponential sums

As with all existing explicit bounds on ζ(1/2+it)\zeta(1/2+it), Theorem 1.1 relies on upper bounds on particular types of exponential sums, obtained via van der Corput’s method of exponent pairs (for an exposition, see [GK91]). Roughly stated, let f(x)f(x) be a suitably well-defined and sufficiently smooth function satisfying f(x)yxσf^{\prime}(x)\approx yx^{-\sigma} for some y,σ>0y,\sigma>0. If e(x):=exp(2πix)e(x):=\exp(2\pi ix), 0k1/2l10\leq k\leq 1/2\leq l\leq 1 and

Sf(a,N):=a<na+Ne(f(n))(yNσ)kNl,0<Na,S_{f}(a,N):=\sum_{a<n\leq a+N}e(f(n))\ll\left(\frac{y}{N^{\sigma}}\right)^{k}N^{l},\qquad 0<N\leq a,

then (k,l)(k,l) is an exponent pair. For instance, from the trivial bound Sf(a,N)NS_{f}(a,N)\ll N we see that (0,1)(0,1) is an exponent pair. The motivation for studying exponent pairs is highlighted by the result that if (k,l)(k,l) is an exponent pair with k+2l3/2k+2l\geq 3/2, then

ζ(1/2+it)t(2k+2l1)/4logt,\zeta(1/2+it)\ll t^{(2k+2l-1)/4}\log t,

see e.g. Phillips [Phi33].

The van der Corput method estimates Sf(a,N)S_{f}(a,N) by iteratively transforming it into simpler exponential sums, via two processes. The AA process, also known as Weyl-differencing, expresses Sf(a,N)S_{f}(a,N) in terms of Sg(a,N)S_{g}(a,N), where g(x)g(x) is a function of lower order than f(x)f(x) (and is hence easier to control). By applying the AA process, we obtain that if (k,l)(k,l) is an exponent pair, then so is

A(k,l):=(k2k+2,k+l+12k+2).A(k,l):=\left(\frac{k}{2k+2},\frac{k+l+1}{2k+2}\right).

The BB process, also known as Poisson summation, expresses Sf(a,b)S_{f}(a,b) in terms of another exponential sum that is typically shorter. Using the BB process, if (k,l)(k,l) is an exponent pair, then so is

B(k,l):=(l12,k+12).B(k,l):=\left(l-\frac{1}{2},k+\frac{1}{2}\right).

Favourable exponential pairs and, by extension, good estimates of ζ(1/2+it)\zeta(1/2+it), can be obtained by beginning with the trivial (0,1)(0,1) exponent pair, then chaining together multiple applications of the AA and BB processes. The simplest van der Corput bound, such as (1.1), is obtained from the exponent pair AB(0,1)=(1/6,2/3)AB(0,1)=(1/6,2/3). On the other hand, bounds such as (1.2) and Theorem 1.1 can be obtained using ABA3B(0,1)=(11/82,57/82)ABA^{3}B(0,1)=(11/82,57/82).

1.2. Explicit exponent pairs

Both the AA and BB processes have been made explicit. For the AA process, we have the following lemma, due to [Yan23] which builds on the work of [CG04, PT15].

Lemma 1.2 ([Yan23] Lem. 2.3).

Let f(x)f(x) be real-valued and defined on (a,a+N](a,a+N], for some integers a,Na,N. For all integers q>0q>0, we have

(Sf(a,N))2(N1+q)(Nq+2qr=1q1(1rq)Sgr(a,Nr))(S_{f}(a,N))^{2}\leq\left(N-1+q\right)\left(\frac{N}{q}+\frac{2}{q}\sum_{r=1}^{q-1}\left(1-\frac{r}{q}\right)S_{g_{r}}(a,N-r)\right)

where gr(x):=f(x+r)f(x)g_{r}(x):=f(x+r)-f(x).

A general explicit version of the BB process was proved111We note here that in this general explicit version of BB process derived by Karatsuba and Korolev, one of the “lower” order term, K2K_{2}, in their assertion could grow larger than the main-term given by the sum, c(n)Z(n)\sum c(n)Z(n) if f′′f^{\prime\prime} is small. in Karatsuba and Korolev [KK07], which relied on controlling the first four derivatives of the phase function f(x)f(x). Patel [Pat21, Thm. 2.31] proved the following explicit Poisson summation formula, which only relied on the first three derivatives.

Lemma 1.3 ([Pat21] Thm. 2.31).

Let f(x)f(x) be three times differentiable. Let f(x)f^{\prime}(x) be decreasing in [a,b][a,b] and f(b)=αf^{\prime}(b)=\alpha, f(a)=βf^{\prime}(a)=\beta. Further, let xνx_{\nu} be defined by

f(xν)=ν,α<νβf^{\prime}(x_{\nu})=\nu,\qquad\alpha<\nu\leq\beta

Furthermore suppose that λ2|f′′(x)|h2λ2\lambda_{2}\leq|f^{\prime\prime}(x)|\leq h_{2}\lambda_{2} and |f′′′(x)|h3λ3|f^{\prime\prime\prime}(x)|\leq h_{3}\lambda_{3}. Then

|a<nbe(f(n))α<νβe(f(xν)νxν1/8)|f′′(xν)|1/2|40πλ21/2\displaystyle\left|\sum_{a<n\leq b}e(f(n))-\sum_{\alpha<\nu\leq\beta}\frac{e(f(x_{\nu})-\nu x_{\nu}-1/8)}{|f^{\prime\prime}(x_{\nu})|^{1/2}}\right|\leq\frac{40}{\sqrt{\pi}}\lambda_{2}^{-1/2}
+A1log(βα+4)+A2(ba)λ21/5λ31/5+A3.\displaystyle\qquad\qquad\qquad\qquad\qquad+A_{1}\log(\beta-\alpha+4)+A_{2}(b-a)\lambda_{2}^{1/5}\lambda_{3}^{1/5}+A_{3}.

where

A1=3+2h2π,A2=8(6π3)1/5h2h31/5,A3=1π(4γ+log2+π+207),A_{1}=\frac{3+2h_{2}}{\pi},\quad A_{2}=\frac{8}{(6\pi^{3})^{1/5}}h_{2}h_{3}^{1/5},\quad A_{3}=\frac{1}{\pi}\left(4\gamma+\log 2+\pi+\frac{20}{7}\right),

and γ=0.577\gamma=0.577\ldots is the Euler-Mascheroni constant.

In practical application of van der Corput’s method, we employ two tricks that frequently appear in the literature [CG04, PT15, Hia16, Pat21, HPY22, Yan23]. First, in the B(0,1)B(0,1) process it is often helpful to replace the Poisson summation step with a second-derivative test that uses the Kuzmin–Landau lemma. This substitution preserves the original goal of shortening the exponential sum under consideration, without generating problematic secondary error terms that typically arise when applying Poisson summation. Second, to minimise tedium we typically apply an AnBA^{n}B block as a single operation instead of n+1n+1 separate operations. The following lemma, due to [Yan23], incorporates both of these modifications, which we will make extensive use of in this work.

Lemma 1.4 (Explicit kkth derivative test).

Let a,Na,N be integers with N>0N>0. Let f(x)f(x) be equipped with k3k\geq 3 continuous derivatives, with f(k)f^{(k)} monotonic, and suppose that λk|f(k)(x)|hλk\lambda_{k}\leq|f^{(k)}(x)|\leq h\lambda_{k} for all x(a,a+N]x\in(a,a+N] and some λk>0\lambda_{k}>0 and h>1h>1. Then, for all η>0\eta>0, we have

Sf(a,N)Akh2/KNλk1/(2K2)+BkN12/Kλk1/(2K2)S_{f}(a,N)\leq A_{k}h^{2/K}N\lambda_{k}^{1/(2K-2)}+B_{k}N^{1-2/K}\lambda_{k}^{-1/(2K-2)}

where K=2k1K=2^{k-1}, and

A3:=1ηh+3215πη+λ01/3+13(η+λ01/3)λ01/3δ3,B3:=323π1/4η1/4δ3,A_{3}:=\sqrt{\frac{1}{\eta h}+\frac{32}{15\sqrt{\pi}}\sqrt{\eta+\lambda_{0}^{1/3}}+\frac{1}{3}\left(\eta+\lambda_{0}^{1/3}\right)\lambda_{0}^{1/3}}\delta_{3},\quad B_{3}:=\frac{\sqrt{32}}{\sqrt{3}\pi^{1/4}\eta^{1/4}}\delta_{3},
λ0:=(1η+32η1/2h15π)3δ3:=12+121+38π1/2η3/2.\lambda_{0}:=\left(\frac{1}{\eta}+\frac{32\eta^{1/2}h}{15\sqrt{\pi}}\right)^{-3}\qquad\delta_{3}:=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{1+\frac{3}{8}\pi^{1/2}\eta^{3/2}}}.

and Ak,BkA_{k},B_{k} for k4k\geq 4 are defined recusively via

Ak+1(η,h):=δk(h1/K+219/12(K1)(2K1)(4K3)Ak(η,h)1/2),A_{k+1}(\eta,h):=\delta_{k}\left(h^{-1/K}+\frac{2^{19/12}(K-1)}{\sqrt{(2K-1)(4K-3)}}A_{k}(\eta,h)^{1/2}\right), (1.3)
Bk+1(η):=δk23/2(K1)(2K3)(4K5)Bk(η)1/2,B_{k+1}(\eta):=\delta_{k}\frac{2^{3/2}(K-1)}{\sqrt{(2K-3)(4K-5)}}B_{k}(\eta)^{1/2}, (1.4)
δk:=1+2233712/K(9π1024η)1/K.\delta_{k}:=\sqrt{1+\frac{2}{2337^{1-2/K}}\left(\frac{9\pi}{1024}\eta\right)^{1/K}}. (1.5)
Proof.

Follows by combining [Yan23, Lem. 2.4] and [Yan23, Lem. 2.5]

1.3. Sources of improvement

We briefly review the main sources of improvement of Theorem 1.1 over (1.2), in case similar methods may be applied in other settings. Our first source of improvement originates from an interval-based argument as follows. An intermediary result in the argument of Patel [Pat21] produces a bound of the form

|ζ(1/2+it)|A(t0,t)t27/164,tt0|\zeta(1/2+it)|\leq A(t_{0},t)t^{27/164},\qquad t\geq t_{0}

where A(t0,t)A(t_{0},t) is a bounded function that is decreasing in t0t_{0} and increasing in tt. This immediately implies the bound |ζ(1/2+it)|A0t27/164|\zeta(1/2+it)|\leq A_{0}t^{27/164} for tt0t\geq t_{0}, where

A0:=limtA(t0,t).A_{0}:=\lim_{t\to\infty}A(t_{0},t).

However, in our application A0A_{0} is typically large unless we take t0t_{0} to be very large, which defeats the purpose of obtaining an explicit bound holding for all t3t\geq 3. Instead, we may proceed as follows. For t0<t1<<tn=t_{0}<t_{1}<\ldots<t_{n}=\infty, we apply

A(tj,t)A(tj,tj+1),tjttj+1A(t_{j},t)\leq A(t_{j},t_{j+1}),\qquad t_{j}\leq t\leq t_{j+1}

and so, for all tt0t\geq t_{0},

|ζ(1/2+it)|A1t27/164,A1:=max0jn1A(tj,tj+1).|\zeta(1/2+it)|\leq A_{1}t^{27/164},\qquad A_{1}:=\max_{0\leq j\leq n-1}A(t_{j},t_{j+1}).

The central idea is to choose the tjt_{j}’s so that A(tj,tj+1)A(t_{j},t_{j+1}) is never too large. For instance, we take tn1t_{n-1} to be sufficiently large so that

limtA(tn1,t)\lim_{t\to\infty}A(t_{n-1},t)

is of an acceptable size. For more details and computation, see §3.1.

A second source of improvement comes from using the improved kkth derivative test (Lemma 1.4) which makes use of the trivial bound to increase its sharpness. For details, see [Yan23, §2].

A third source of improvement arises from applying a sharpened version of the Poisson summation formula (i.e. using Lemma 2.3 in place of Lemma 1.3). In our application, the error terms introduced in estimating the stationary phase approximation to an exponential sum can be significant.

Lastly, in bounding long exponential sums, we make use of geometrically-sized intervals so that there are O(logt)O(\log t) subintervals instead of O(tA)O(t^{A}) subintervals, for some fixed A>0A>0. Since the method of proof is unable to detect cancellation between terms of two different subintervals, having less divisions is beneficial.

2. Improved Poisson summation formulae

In this section we prove a sharpened version of Lemma 1.3, which is useful since error terms arising from Poisson summation formulae are significant in our application. The main result of this section (Lemma 2.3) is an explicit van der Corput BB process.

We begin by recalling some useful results, starting with bounds on exponential integrals. If ff^{\prime} is continuous and |f(x)|λ1>0|f^{\prime}(x)|\geq\lambda_{1}>0 for αxβ\alpha\leq x\leq\beta, then by Rogers [Rog05, Lem. 3]

|αβe(f(x))𝑑x|1πλ1.\left|\int_{\alpha}^{\beta}e(f(x))\,dx\right|\leq\frac{1}{\pi\lambda_{1}}. (2.1)

In addition, a corollary of a result due to Kershner [Ker35, Ker38] is that if f′′f^{\prime\prime} is continuous and |f′′(x)|λ2>0|f^{\prime\prime}(x)|\geq\lambda_{2}>0 for αxβ\alpha\leq x\leq\beta, then

|αβe(f(x))𝑑x|1.343λ2.\left|\int_{\alpha}^{\beta}e(f(x))\,dx\right|\leq\frac{1.343}{\sqrt{\lambda_{2}}}. (2.2)

The constant 1.343 is sharp (up to rounding) and has an exact representation in terms of Fresnel integrals, however for our purposes the decimal approximation is sufficient.222Using an arbitrary-precision numerical integration package, we find that the variables μ0\mu_{0} and γ0\gamma_{0} appearing in the main result of [Ker35] appear to be μ0=0.7266\mu_{0}=-0.7266\ldots and γ0=3.3643\gamma_{0}=3.3643\ldots instead of the stated values μ0=0.725\mu_{0}=-0.725\ldots and γ0=3.327\gamma_{0}=3.327\ldots respectively. The same result was also proved with a constant of 42/π=3.1914\sqrt{2/\pi}=3.191\ldots in Titchmarsh [Tit86, Lem. 4.4] and 4/π=2.2564/\sqrt{\pi}=2.256\ldots in [Rog05, Eqn. (3)].

Throughout, we let ψ(x)\psi(x) denote the digamma function, defined as the logarithmic derivative of the gamma function, i.e. ψ(x)=Γ(x)/Γ(x)\psi(x)=\Gamma^{\prime}(x)/\Gamma(x). We briefly recall that for x>0x>0, we have

ψ(x)<logx12x.\psi(x)<\log x-\frac{1}{2x}. (2.3)

The digamma function has the following series representation, valid for all x>1x>-1 (see e.g. [AS13, §6.3.16])

ψ(1+x)=γ+n=1xn(n+x).\psi(1+x)=-\gamma+\sum_{n=1}^{\infty}\frac{x}{n(n+x)}. (2.4)

Finally, we recall the following upper bound on harmonic numbers. For x2x\geq 2, we have

nx1n=logx+γ{x}1/2x+O(18x2)logx+γ+932,\sum_{n\leq x}\frac{1}{n}=\log x+\gamma-\frac{\{x\}-1/2}{x}+O^{*}\left(\frac{1}{8x^{2}}\right)\leq\log x+\gamma+\frac{9}{32}, (2.5)

where, here and throughout, A=O(B)A=O^{*}(B) means |A|B|A|\leq B. The equality is due to [MV73] and the inequality follows from x2x\geq 2.

We begin by approximating an exponential sum with a sum of exponential integrals in Lemma 2.1 below, which makes explicit a result of van der Corput [Cor21]. As a small technical detail, the range of the second sum in the below lemma is typically taken to be (αη,β+η)(\alpha-\eta,\beta+\eta) for arbitrary η(0,1)\eta\in(0,1) — see e.g. [Tit86, Lem. 4.7]. In our presentation, we fix η=1/2\eta=1/2, which greatly simplifies the arguments that follow. This result may be compared to [Pat21, Lem. 2.26].

Lemma 2.1.

Let f(x)f(x) be real valued, with a continuous and steadily decreasing derivative f(x)f^{\prime}(x) in (a,b)(a,b), and let f(b)=α,f(a)=βf^{\prime}(b)=\alpha,f^{\prime}(a)=\beta. Then

|a<nbe(f(n))α12<m<β+12abe(f(x)mx)𝑑x|3πlog(βα+2)+4.\displaystyle\left|\sum_{a<n\leq b}e(f(n))-\sum_{\alpha-\frac{1}{2}<m<\beta+\frac{1}{2}}\int_{a}^{b}e(f(x)-mx)\,dx\right|\leq\frac{3}{\pi}\log(\beta-\alpha+2)+4.
Proof.

Assume without loss of generality that 12<α12-\frac{1}{2}<\alpha\leq\frac{1}{2}, for otherwise we may replace f(x)f(x) with f(x)kxf(x)-kx for a suitable integer kk. Using Euler–Maclaurin summation (see [Tit86, Eqn. (2.12)]), we have

a<nbe(f(n))=abe(f(x))𝑑x+2πiab(xx12)f(x)e(f(x))𝑑x+R(a,b)\sum_{a<n\leq b}e(f(n))=\int_{a}^{b}e(f(x))\,dx+2\pi i\int_{a}^{b}\left(x-\lfloor x\rfloor-\frac{1}{2}\right)f^{\prime}(x)e(f(x))\,dx+R(a,b) (2.6)

where

R(a,b)=(aa12)e(f(a))(bb12)e(f(b))R(a,b)=\left(a-\lfloor a\rfloor-\frac{1}{2}\right)e(f(a))-\left(b-\lfloor b\rfloor-\frac{1}{2}\right)e(f(b))

so that |R(a,b)|1|R(a,b)|\leq 1. Meanwhile, for all non-integer xx, we have

2πi(xx12)=2im=1sin2πmxm=m=1e(mx)e(mx)m2\pi i\left(x-\lfloor x\rfloor-\frac{1}{2}\right)=-2i\sum_{m=1}^{\infty}\frac{\sin 2\pi mx}{m}=\sum_{m=1}^{\infty}\frac{e(-mx)-e(mx)}{m}

so that

2πiab(xx12)f(x)e(f(x))𝑑x\displaystyle 2\pi i\int_{a}^{b}\left(x-\lfloor x\rfloor-\frac{1}{2}\right)f^{\prime}(x)e(f(x))\,dx
=m=11mabf(x)e(f(x)mx)𝑑xm=11mabf(x)e(f(x)+mx)𝑑x=S1S2,\displaystyle\qquad=\sum_{m=1}^{\infty}\frac{1}{m}\int_{a}^{b}f^{\prime}(x)e(f(x)-mx)\,dx-\sum_{m=1}^{\infty}\frac{1}{m}\int_{a}^{b}f^{\prime}(x)e(f(x)+mx)\,dx=S_{1}-S_{2},

say. We have

S1=m=11mabf(x)f(x)m(f(x)m)e(f(x)mx)𝑑x=12πim=11mabf(x)f(x)md(e(f(x)mx))S_{1}=\sum_{m=1}^{\infty}\frac{1}{m}\int_{a}^{b}\frac{f^{\prime}(x)}{f^{\prime}(x)-m}(f^{\prime}(x)-m)e(f(x)-mx)\,dx=\frac{1}{2\pi i}\sum_{m=1}^{\infty}\frac{1}{m}\int_{a}^{b}\frac{f^{\prime}(x)}{f^{\prime}(x)-m}\,d(e(f(x)-mx))

and similarly

S2=12πim=11mabf(x)f(x)+md(e(f(x)+mx)).S_{2}=\frac{1}{2\pi i}\sum_{m=1}^{\infty}\frac{1}{m}\int_{a}^{b}\frac{f^{\prime}(x)}{f^{\prime}(x)+m}\,d(e(f(x)+mx)).

By the second mean-value theorem, there exists c(a,b)c\in(a,b) such that

abf(x)f(x)+md(e(f(x)+mx))=f(a)f(a)+macd(e(f(x)+mx))+f(b)f(b)+mcbd(e(f(x)+mx)).\int_{a}^{b}\frac{f^{\prime}(x)}{f^{\prime}(x)+m}\,d\left(e(f(x)+mx)\right)=\frac{f^{\prime}(a)}{f^{\prime}(a)+m}\int_{a}^{c}\,d\left(e(f(x)+mx)\right)+\frac{f^{\prime}(b)}{f^{\prime}(b)+m}\int_{c}^{b}\,d\left(e(f(x)+mx)\right).

However

|abd(e(f(x)+mx))|=|e(f(b)+mb)e(f(a)+ma)|2\left|\int_{a}^{b}\,d\left(e(f(x)+mx)\right)\right|=\left|e(f(b)+mb)-e(f(a)+ma)\right|\leq 2

so

|abf(x)f(x)+md[e(f(x)+mx)]|2|f(a)f(a)+m|+2|f(b)f(b)+m|=2|α||m+α|+2|β||m+β|.\left|\int_{a}^{b}\frac{f^{\prime}(x)}{f^{\prime}(x)+m}\,d\left[e(f(x)+mx)\right]\right|\leq 2\left|\frac{f^{\prime}(a)}{f^{\prime}(a)+m}\right|+2\left|\frac{f^{\prime}(b)}{f^{\prime}(b)+m}\right|=\frac{2|\alpha|}{|m+\alpha|}+\frac{2|\beta|}{|m+\beta|}.

Therefore,

π|S2|m=1(|α|m|α+m|+|β|m|β+m|)\pi|S_{2}|\leq\sum_{m=1}^{\infty}\left(\frac{|\alpha|}{m|\alpha+m|}+\frac{|\beta|}{m|\beta+m|}\right)

First, since βα>1/2\beta\geq\alpha>-1/2, we have β+m>0\beta+m>0 and

m=1|β|m|β+m|=|m=1βm(β+m)|\displaystyle\sum_{m=1}^{\infty}\frac{|\beta|}{m|\beta+m|}=\left|\sum_{m=1}^{\infty}\frac{\beta}{m(\beta+m)}\right| max{(ψ(1/2)+γ),ψ(β+1)+γ}\displaystyle\leq\max\{-(\psi(1/2)+\gamma),\psi(\beta+1)+\gamma\}
<log(β+1)+3log2,\displaystyle<\log(\beta+1)+3\log 2, (2.7)

where the first inequality follows from (2.4) for β0\beta\geq 0 and via a separate evaluation for 1/2<β<0-1/2<\beta<0. Similarly, since |α|1/2|\alpha|\leq 1/2,

m=1|α|m|α+m|max{(ψ(1/2)+γ),ψ(α+1)+γ}2log2\sum_{m=1}^{\infty}\frac{|\alpha|}{m|\alpha+m|}\leq\max\{-(\psi(1/2)+\gamma),\psi(\alpha+1)+\gamma\}\leq 2\log 2

hence

|S2|log(β+1)+5log2π.|S_{2}|\leq\frac{\log(\beta+1)+5\log 2}{\pi}. (2.8)

Now consider S1S_{1}. Let M:=max{1,β+1/2}M:=\max\{1,\beta+1/2\} and

S1=1m<M+mM=S11+S12.S_{1}=\sum_{1\leq m<M}+\sum_{m\geq M}=S_{11}+S_{12}. (2.9)

We have

π|S12|mM(|α|m(mα)+|β|m(mβ)).\pi|S_{12}|\leq\sum_{m\geq M}\left(\frac{|\alpha|}{m(m-\alpha)}+\frac{|\beta|}{m(m-\beta)}\right).

If n=mβn=\lfloor m-\beta\rfloor, then m(mβ)n(n+β)m(m-\beta)\geq n(n+\beta). Furthermore note that n1n\geq 1 for all mM+1m\geq M+1, and that there is one integer in [M,M+1)[M,M+1), say m0m_{0}. Therefore, since β>1/2\beta>-1/2 and by (2.7),

mM|β|m(mβ)|β|m0(m0β)+n=1|β|n(n+β)\sum_{m\geq M}\frac{|\beta|}{m(m-\beta)}\leq\frac{|\beta|}{m_{0}(m_{0}-\beta)}+\sum_{n=1}^{\infty}\frac{|\beta|}{n(n+\beta)} (2.10)

If β<0\beta<0, then m0(m0β)M(Mβ)>1m_{0}(m_{0}-\beta)\geq M(M-\beta)>1, and hence the first term on the RHS is at most 1/21/2. Meanwhile using the same argument as (2.7), the sum on the RHS is bounded by ψ(1/2)γ=2log2-\psi(1/2)-\gamma=2\log 2. On the other hand if β0\beta\geq 0, then by the same argument used in (2.7)

mM|β|m(mβ)β12(β+12)+ψ(β+1)+γlog(β+1)+γ+2.\sum_{m\geq M}\frac{|\beta|}{m(m-\beta)}\leq\frac{\beta}{\frac{1}{2}(\beta+\frac{1}{2})}+\psi(\beta+1)+\gamma\leq\log(\beta+1)+\gamma+2.

In either case the RHS of (2.10) is at most log(β+1)+1/2+3log2\log(\beta+1)+1/2+3\log 2. Similarly, writing n=mαn^{\prime}=\lfloor m-\alpha\rfloor, so that n1n^{\prime}\geq 1 for all mM+1m\geq M+1 (since βα\beta\geq\alpha), and using |α|1/2|\alpha|\leq 1/2,

mM|α|m(mα)\displaystyle\sum_{m\geq M}\frac{|\alpha|}{m(m-\alpha)} |α|m0(m0α)+n=1|α|n(n+α)\displaystyle\leq\frac{|\alpha|}{m_{0}(m_{0}-\alpha)}+\sum_{n^{\prime}=1}^{\infty}\frac{|\alpha|}{n^{\prime}(n^{\prime}+\alpha)}
max{1/2+2log2,1+ψ(α+1)+γ}1/2+2log2.\displaystyle\leq\max\{1/2+2\log 2,1+\psi(\alpha+1)+\gamma\}\leq 1/2+2\log 2.

Thus

|S12|log(β+1)+1+5log2π.|S_{12}|\leq\frac{\log(\beta+1)+1+5\log 2}{\pi}. (2.11)

We now divide our argument into the following two cases.

Case 1: β1/2\beta\leq 1/2

Then, M=1M=1 and S11S_{11} is an empty sum. Then, we have (vacuously)

|S11m<β+1/2abe(f(x)mx)𝑑x|=|S12|,\left|S_{1}-\sum_{1\leq m<\beta+1/2}\int_{a}^{b}e(f(x)-mx)\,dx\right|=|S_{12}|, (2.12)

since the sum on the LHS is empty.

Case 2: β>1/2\beta>1/2

Then, M=β+1/2M=\beta+1/2 and we let

S11=S3+1m<β+1/2abe(f(x)mx)𝑑x,S_{11}=S_{3}+\sum_{1\leq m<\beta+1/2}\int_{a}^{b}e(f(x)-mx)\,dx, (2.13)

where

S3\displaystyle S_{3} :=1m<β+1/21mab(f(x)m)e(f(x)mx)𝑑x\displaystyle:=\sum_{1\leq m<\beta+1/2}\frac{1}{m}\int_{a}^{b}(f^{\prime}(x)-m)e(f(x)-mx)\,dx
=|1m<β+1/212πmie(f(x)mx)|ab.\displaystyle=\left|\sum_{1\leq m<\beta+1/2}\frac{1}{2\pi mi}e(f(x)-mx)\right|_{a}^{b}.

Therefore,

|S3|1π1m<β+1/21m<1π(log(β+1)+γ+932),|S_{3}|\leq\frac{1}{\pi}\sum_{1\leq m<\beta+1/2}\frac{1}{m}<\frac{1}{\pi}\left(\log(\beta+1)+\gamma+\frac{9}{32}\right),

where in the last inequality we have used (2.5) if β+1/22\beta+1/2\geq 2, and a direct evaluation if β+1/2<2\beta+1/2<2. It follows that in this case, from combining (2.9) and (2.13), that

|S11m<β+1/2abe(f(x)mx)𝑑x||S3|+|S12|\left|S_{1}-\sum_{1\leq m<\beta+1/2}\int_{a}^{b}e(f(x)-mx)\,dx\right|\leq|S_{3}|+|S_{12}| (2.14)

Therefore, in either case, by collecting (2.6), (2.8), (2.11), (2.12) and (2.14) we have

a<nbe(f(n))\displaystyle\sum_{a<n\leq b}e(f(n)) =0m<β+1/2abe(f(x)mx)𝑑x+R1\displaystyle=\sum_{0\leq m<\beta+1/2}\int_{a}^{b}e(f(x)-mx)\,dx+R_{1}

where

|R1|\displaystyle|R_{1}| |S2|+|S12|+|S3|+1\displaystyle\leq|S_{2}|+|S_{12}|+|S_{3}|+1
log(β+1)+5log2π+log(β+1)+1+5log2π\displaystyle\leq\frac{\log(\beta+1)+5\log 2}{\pi}+\frac{\log(\beta+1)+1+5\log 2}{\pi}
+1π(log(β+1)+γ+932)+1\displaystyle\qquad\qquad+\frac{1}{\pi}\left(\log(\beta+1)+\gamma+\frac{9}{32}\right)+1
<3πlog(β+1)+4.\displaystyle<\frac{3}{\pi}\log(\beta+1)+4.

To complete the argument we note that the assumption that 1/2<α1/2-1/2<\alpha\leq 1/2 implies that β+1<βα+2\beta+1<\beta-\alpha+2,333This inequality can be readily sharpened (the constant of 2 is chosen for cosmetic purposes). In any case, for our application the constant term makes no difference to the final result. and that sums over [0,β+1/2)[0,\beta+1/2) are equivalent to sums over (α1/2,β+1/2)(\alpha-1/2,\beta+1/2). ∎

Next, we require a lemma related to the principle of stationary phase, which approximates an exponential integral. The traditional presentation of this result (see e.g. [Tit86, Lem. 4.6]) has a main error term of size O(λ24/5λ31/5)O(\lambda_{2}^{-4/5}\lambda_{3}^{1/5}), where λ2\lambda_{2}, λ3\lambda_{3} are respectively the orders of the second and third derivative of the phase function. In the following lemma, we make explicit an argument of Phillips [Phi33] to bound this error term to O(λ21λ31/3)O(\lambda_{2}^{-1}\lambda_{3}^{1/3}), which is smaller in our application. We also record that Heath-Brown [HB83] has shown that under suitable conditions, the main error term may be removed completely. However, since the error term is already of an acceptable size, we do not pursue such an optimisation here.

Lemma 2.2.

Let f(x)f(x) be real and three times differentiable, satisfying f′′<0f^{\prime\prime}<0,

0<λ2|f′′(x)|h2λ2,|f′′′(x)|h3λ3,x(a,b).0<\lambda_{2}\leq|f^{\prime\prime}(x)|\leq h_{2}\lambda_{2},\qquad|f^{\prime\prime\prime}(x)|\leq h_{3}\lambda_{3},\qquad x\in(a,b).

Furthermore, suppose f(c)=0f^{\prime}(c)=0 for some c[a,b]c\in[a,b]. Then,

|abe(f(x))𝑑xe(f(c)1/8)|f′′(c)|1/2|\displaystyle\left|\int_{a}^{b}e(f(x))\,dx-\frac{e(f(c)-1/8)}{|f^{\prime\prime}(c)|^{1/2}}\right| 232/3π2/3h31/3λ21λ31/3+1π(1|f(a)|+1|f(b)|).\displaystyle\leq\frac{2\cdot 3^{2/3}}{\pi^{2/3}}h_{3}^{1/3}\lambda_{2}^{-1}\lambda_{3}^{1/3}+\frac{1}{\pi}\left(\frac{1}{|f^{\prime}(a)|}+\frac{1}{|f^{\prime}(b)|}\right).
Proof.

Suppose first that c[a+δ,bδ]c\in[a+\delta,b-\delta], for some fixed δ>0\delta>0 to be chosen later. Let

abe(f(x))𝑑x=acδ+cδc+δ+c+δb=I1+I2+I3,\int_{a}^{b}e(f(x))\,dx=\int_{a}^{c-\delta}+\int_{c-\delta}^{c+\delta}+\int_{c+\delta}^{b}=I_{1}+I_{2}+I_{3}, (2.15)

say. Since f′′<0f^{\prime\prime}<0, for all x[a,cδ]x\in[a,c-\delta] we have by the mean-value theorem

f(x)f(cδ)=f(c)δf′′(ξ)δλ2f^{\prime}(x)\geq f^{\prime}(c-\delta)=f^{\prime}(c)-\delta f^{\prime\prime}(\xi)\geq\delta\lambda_{2}

for some ξ[cδ,c]\xi\in[c-\delta,c]. Similarly, |f(x)|δλ2|f^{\prime}(x)|\geq\delta\lambda_{2} for all x[c+δ,b]x\in[c+\delta,b]. Via (2.1), we have

|I1|,|I3|1πδλ2.|I_{1}|,|I_{3}|\leq\frac{1}{\pi\delta\lambda_{2}}. (2.16)

Let

g(x):=f(x+c)f(c)12x2f′′(c)g(x):=f(x+c)-f(c)-\frac{1}{2}x^{2}f^{\prime\prime}(c)

so that, for all xx there exists some ξ(c,x+c)\xi\in(c,x+c) such that

g(x)=f(c)+xf(c)+x22f′′(c)+x36f′′′(ξ)f(c)x22f′′(c)x36h3λ3.g(x)=f(c)+xf^{\prime}(c)+\frac{x^{2}}{2}f^{\prime\prime}(c)+\frac{x^{3}}{6}f^{\prime\prime\prime}(\xi)-f(c)-\frac{x^{2}}{2}f^{\prime\prime}(c)\leq\frac{x^{3}}{6}h_{3}\lambda_{3}. (2.17)

Hence

cδc+δe(f(x))𝑑x\displaystyle\int_{c-\delta}^{c+\delta}e(f(x))\,dx =e(f(c))cδc+δe((xc)22f′′(c))e(f(x)f(c)(xc)22f′′(c))𝑑x\displaystyle=e(f(c))\int_{c-\delta}^{c+\delta}e\left(\frac{(x-c)^{2}}{2}f^{\prime\prime}(c)\right)e\left(f(x)-f(c)-\frac{(x-c)^{2}}{2}f^{\prime\prime}(c)\right)\,dx
=e(f(c))δδe(x22f′′(c))𝑑x+e(f(c))δδe(x22f′′(c))(e(g(x))1)𝑑x.\displaystyle=e(f(c))\int_{-\delta}^{\delta}e\left(\frac{x^{2}}{2}f^{\prime\prime}(c)\right)\,dx+e(f(c))\int_{-\delta}^{\delta}e\left(\frac{x^{2}}{2}f^{\prime\prime}(c)\right)\left(e(g(x))-1\right)\,dx. (2.18)

However,

δδe(x22f′′(c))𝑑x\displaystyle\int_{-\delta}^{\delta}e\left(\frac{x^{2}}{2}f^{\prime\prime}(c)\right)\,dx =1|πf′′(c)|1/20πδ2|f′′(c)|eiuu𝑑u\displaystyle=\frac{1}{|\pi f^{\prime\prime}(c)|^{1/2}}\int_{0}^{\pi\delta^{2}|f^{\prime\prime}(c)|}\frac{e^{-iu}}{\sqrt{u}}\,du
=1|πf′′(c)|1/2(0eiuu𝑑uπδ2|f′′(c)|eiuu𝑑u)\displaystyle=\frac{1}{|\pi f^{\prime\prime}(c)|^{1/2}}\left(\int_{0}^{\infty}\frac{e^{-iu}}{\sqrt{u}}\,du-\int_{\pi\delta^{2}|f^{\prime\prime}(c)|}^{\infty}\frac{e^{-iu}}{\sqrt{u}}\,du\right)
=e(1/8)|πf′′(c)|1/2+O(1πδ|f′′(c)|)\displaystyle=\frac{e(-1/8)}{|\pi f^{\prime\prime}(c)|^{1/2}}+O^{*}\left(\frac{1}{\pi\delta|f^{\prime\prime}(c)|}\right)

so that

|e(f(c))δδe(x22f′′(c))𝑑xe(f(c)1/8)|f′′(c)|1/2|1πδλ2.\left|e(f(c))\int_{-\delta}^{\delta}e\left(\frac{x^{2}}{2}f^{\prime\prime}(c)\right)\,dx-\frac{e(f(c)-1/8)}{|f^{\prime\prime}(c)|^{1/2}}\right|\leq\frac{1}{\pi\delta\lambda_{2}}. (2.19)

We will now bound the modulus of

I:=δδe(x22f′′(c))(e(g(x))1)𝑑x.I:=\int_{-\delta}^{\delta}e\left(\frac{x^{2}}{2}f^{\prime\prime}(c)\right)\left(e(g(x))-1\right)\,dx.

First, suppose that δh/(λ2δ)\delta\leq h/(\lambda_{2}\delta) for some arbitrary constant h>0h>0 to be chosen later. Then via the trivial bound, we have

|I|δδ|e(g(x))1|𝑑x4δ4hδλ2.|I|\leq\int_{-\delta}^{\delta}|e(g(x))-1|\,dx\leq 4\delta\leq\frac{4h}{\delta\lambda_{2}}. (2.20)

Assume now that δ>h/(λ2δ)\delta>h/(\lambda_{2}\delta). Then

I=δh/(λ2δ)+h/(λ2δ)h/(λ2δ)+h/(λ2δ)δ=I4+I5+I6,I=\int_{-\delta}^{-h/(\lambda_{2}\delta)}+\int_{-h/(\lambda_{2}\delta)}^{h/(\lambda_{2}\delta)}+\int_{h/(\lambda_{2}\delta)}^{\delta}=I_{4}+I_{5}+I_{6},

say. First, consider I5I_{5}. Using the trivial bound, we have

|I5|h/(λ2δ)h/(λ2δ)|e(g(x))1|𝑑x4hδλ2.|I_{5}|\leq\int_{-h/(\lambda_{2}\delta)}^{h/(\lambda_{2}\delta)}|e(g(x))-1|\,dx\leq\frac{4h}{\delta\lambda_{2}}. (2.21)

Next, consider I6I_{6}. Letting λ=f′′(c)/2\lambda=f^{\prime\prime}(c)/2, and integrating by parts, we have

I6\displaystyle I_{6} =h/(λ2δ)δe(λx2)(e(g(x))1)𝑑x=h/(λ2δ)δ4πiλxe2πiλx2e(g(x))14πiλx𝑑x\displaystyle=\int_{h/(\lambda_{2}\delta)}^{\delta}e(\lambda x^{2})(e(g(x))-1)\,dx=\int_{h/(\lambda_{2}\delta)}^{\delta}4\pi i\lambda xe^{2\pi i\lambda x^{2}}\frac{e(g(x))-1}{4\pi i\lambda x}\,dx
=[e(λx2)e(g(x))14πiλx]h/(λ2δ)δh/(λ2δ)δe(λx2)ddx(e(g(x))14πiλx)𝑑x\displaystyle=\left[e(\lambda x^{2})\frac{e(g(x))-1}{4\pi i\lambda x}\right]_{h/(\lambda_{2}\delta)}^{\delta}-\int_{h/(\lambda_{2}\delta)}^{\delta}e(\lambda x^{2})\frac{\,d}{\,dx}\left(\frac{e(g(x))-1}{4\pi i\lambda x}\right)\,dx (2.22)

However,

ddx(e2πig(x)1x)=2πixg(x)e(g(x))(e(g(x))1)x2\frac{\,d}{\,dx}\left(\frac{e^{2\pi ig(x)}-1}{x}\right)=\frac{2\pi ixg^{\prime}(x)e(g(x))-(e(g(x))-1)}{x^{2}}

and for some ξ(c,x+c)\xi\in(c,x+c), we have

g(x)=f(x+c)xf′′(c)=(f(c)+xf′′(c)+x22f′′′(ξ))xf′′(c)x22h3λ3.g^{\prime}(x)=f^{\prime}(x+c)-xf^{\prime\prime}(c)=\left(f^{\prime}(c)+xf^{\prime\prime}(c)+\frac{x^{2}}{2}f^{\prime\prime\prime}(\xi)\right)-xf^{\prime\prime}(c)\leq\frac{x^{2}}{2}h_{3}\lambda_{3}. (2.23)

Furthermore, we use the identity

e(x)=02πxieit𝑑t+1e(x)=\int_{0}^{2\pi x}ie^{it}\,dt+1

to obtain using (2.17) that

|e(g(x))1|=|02πg(x)ieit𝑑t|2πg(x)π3x3h3λ3.|e(g(x))-1|=\left|\int_{0}^{2\pi g(x)}ie^{it}\,dt\right|\leq 2\pi g(x)\leq\frac{\pi}{3}x^{3}h_{3}\lambda_{3}. (2.24)

This implies that, by combining (2.23) and (2.24),

|2πixg(x)e(g(x))(e(g(x))1)|2πx32h3λ3+π3x3h3λ3=4π3x3h3λ3,\left|2\pi ixg^{\prime}(x)e(g(x))-(e(g(x))-1)\right|\leq 2\pi\frac{x^{3}}{2}h_{3}\lambda_{3}+\frac{\pi}{3}x^{3}h_{3}\lambda_{3}=\frac{4\pi}{3}x^{3}h_{3}\lambda_{3},

and thus

|h/(λ2δ)δe(λx2)ddx(e(g(x))14πiλx)𝑑x|h3λ33|λ|h/(λ2δ)δx𝑑x=h3λ36|λ|(δ2h2(δλ2)2).\left|\int_{h/(\lambda_{2}\delta)}^{\delta}e(\lambda x^{2})\frac{\,d}{\,dx}\left(\frac{e(g(x))-1}{4\pi i\lambda x}\right)\,dx\right|\leq\frac{h_{3}\lambda_{3}}{3|\lambda|}\int_{h/(\lambda_{2}\delta)}^{\delta}x\,dx=\frac{h_{3}\lambda_{3}}{6|\lambda|}\left(\delta^{2}-\frac{h^{2}}{(\delta\lambda_{2})^{2}}\right). (2.25)

Meanwhile, once again using (2.24), and the triangle inequality,

|[e(λx2)e(g(x))14πiλx]h/(λ2δ)δ|h3λ312|λ|(δ2+h2(δλ2)2),\left|\left[e(\lambda x^{2})\frac{e(g(x))-1}{4\pi i\lambda x}\right]_{h/(\lambda_{2}\delta)}^{\delta}\right|\leq\frac{h_{3}\lambda_{3}}{12|\lambda|}\left(\delta^{2}+\frac{h^{2}}{(\delta\lambda_{2})^{2}}\right), (2.26)

and so, collecting (2.22), (2.25) and (2.26), and using |λ|=|f′′(c)|/2λ2/2|\lambda|=|f^{\prime\prime}(c)|/2\geq\lambda_{2}/2,

|I6|h3λ34|λ|δ2h3λ3h212(δλ2)2<h32λ3λ2δ2.|I_{6}|\leq\frac{h_{3}\lambda_{3}}{4|\lambda|}\delta^{2}-\frac{h_{3}\lambda_{3}h^{2}}{12(\delta\lambda_{2})^{2}}<\frac{h_{3}}{2}\frac{\lambda_{3}}{\lambda_{2}}\delta^{2}. (2.27)

We bound I4I_{4} in the same way. Therefore, collecting (2.21) and (2.27) we find

|I|h3λ3δ2λ2+4hδλ2,|I|\leq\frac{h_{3}\lambda_{3}\delta^{2}}{\lambda_{2}}+\frac{4h}{\delta\lambda_{2}}, (2.28)

in the case where δ>h/(λ2δ)\delta>h/(\lambda_{2}\delta). However, since the bound (2.28) is strictly greater than (2.20), we conclude (2.28) in fact holds for all δ>0\delta>0. Combining this with (2.16), (2.18), (2.19), we find that

|abe(f(x))𝑑xe(f(c)1/8)|f′′(c)|1/2|h3λ3δ2λ2+(4h+3π)1λ2δ.\left|\int_{a}^{b}e(f(x))\,dx-\frac{e(f(c)-1/8)}{|f^{\prime\prime}(c)|^{1/2}}\right|\leq\frac{h_{3}\lambda_{3}\delta^{2}}{\lambda_{2}}+\left(4h+\frac{3}{\pi}\right)\frac{1}{\lambda_{2}\delta}.

However, since h>0h>0 is arbitrary, we take the limit as h0+h\to 0^{+} and choose

δ=(3πh3)1/3λ31/3\delta=\left(\frac{3}{\pi h_{3}}\right)^{1/3}\lambda_{3}^{-1/3}

to balance the two terms on the RHS. This choice gives

|abe(f(x))𝑑xe(f(c)1/8)|f′′(c)|1/2|232/3π2/3h31/3λ21λ31/3.\left|\int_{a}^{b}e(f(x))\,dx-\frac{e(f(c)-1/8)}{|f^{\prime\prime}(c)|^{1/2}}\right|\leq\frac{2\cdot 3^{2/3}}{\pi^{2/3}}h_{3}^{1/3}\lambda_{2}^{-1}\lambda_{3}^{-1/3}. (2.29)

If c+δ>bc+\delta>b, then we instead bound I3I_{3} using

|I3|=|bc+δe(f(x))𝑑x|1π|f(b)|,|I_{3}|=\left|\int_{b}^{c+\delta}e(f(x))\,dx\right|\leq\frac{1}{\pi|f^{\prime}(b)|}, (2.30)

which follows from (2.1) since for all x[b,c+δ]x\in[b,c+\delta], we have 0=f(c)>f(b)f(x)0=f^{\prime}(c)>f^{\prime}(b)\geq f^{\prime}(x), as b>cb>c and f′′<0f^{\prime\prime}<0. Similarly, if cδ<ac-\delta<a, we instead bound I1I_{1} using

|I1|=|cδae(f(x))𝑑x|1π|f(a)|.|I_{1}|=\left|\int_{c-\delta}^{a}e(f(x))\,dx\right|\leq\frac{1}{\pi|f^{\prime}(a)|}. (2.31)

The desired result follows from combining (2.29), (2.30) and (2.31). ∎

Lemma 2.3 (Improved Poisson summation formula).

Let f(x)f(x) be three times differentiable. Let f(x)f^{\prime}(x) be decreasing in [a,b][a,b] and f(b)=αf^{\prime}(b)=\alpha, f(a)=βf^{\prime}(a)=\beta. For all integer ν(α,β]\nu\in(\alpha,\beta], let xνx_{\nu} be defined by f(xν)=νf^{\prime}(x_{\nu})=\nu. Furthermore suppose that λ2|f′′(x)|h2λ2\lambda_{2}\leq|f^{\prime\prime}(x)|\leq h_{2}\lambda_{2} and |f′′′(x)|h3λ3|f^{\prime\prime\prime}(x)|\leq h_{3}\lambda_{3}. Then

|a<nbe(f(n))α<νβe(f(xν)νxν1/8)|f′′(xν)|1/2|\displaystyle\left|\sum_{a<n\leq b}e(f(n))-\sum_{\alpha<\nu\leq\beta}\frac{e(f(x_{\nu})-\nu x_{\nu}-1/8)}{|f^{\prime\prime}(x_{\nu})|^{1/2}}\right|
4.686λ2+232/3π2/3h2h31/3(ba)λ31/3+5πlog(βα+2)+6.\displaystyle\qquad\qquad\qquad\qquad\leq\frac{4.686}{\sqrt{\lambda_{2}}}+\frac{2\cdot 3^{2/3}}{\pi^{2/3}}h_{2}h_{3}^{1/3}(b-a)\lambda_{3}^{1/3}+\frac{5}{\pi}\log(\beta-\alpha+2)+6.
Proof.

We use Lemma 2.2 to obtain

α+12<ν<β12abe(f(x)νx)𝑑x=α+12<ν<β12e(f(xν)νxν1/8)|f′′(xν)|1/2\displaystyle\sum_{\alpha+\frac{1}{2}<\nu<\beta-\frac{1}{2}}\int_{a}^{b}e(f(x)-\nu x)\,dx=\sum_{\alpha+\frac{1}{2}<\nu<\beta-\frac{1}{2}}\frac{e(f(x_{\nu})-\nu x_{\nu}-1/8)}{|f^{\prime\prime}(x_{\nu})|^{1/2}}
+α+12<ν<β12232/3π2/3h31/3λ21λ31/3+α+12<ν<β121π(1|f(a)ν|+1|f(b)ν|)\displaystyle\qquad+\sum_{\alpha+\frac{1}{2}<\nu<\beta-\frac{1}{2}}\frac{2\cdot 3^{2/3}}{\pi^{2/3}}h_{3}^{1/3}\lambda_{2}^{-1}\lambda_{3}^{1/3}+\sum_{\alpha+\frac{1}{2}<\nu<\beta-\frac{1}{2}}\frac{1}{\pi}\left(\frac{1}{|f^{\prime}(a)-\nu|}+\frac{1}{|f^{\prime}(b)-\nu|}\right)
=S1+S2+S3.\displaystyle\qquad\qquad\qquad\qquad=S_{1}+S_{2}+S_{3}. (2.32)

Since there is at most one integer each in the intervals (α,α+12](\alpha,\alpha+\frac{1}{2}] and [β12,β][\beta-\frac{1}{2},\beta], and |f′′(xν)|1/2λ21/2|f^{\prime\prime}(x_{\nu})|^{1/2}\geq\lambda_{2}^{1/2}, we have

S1=α<νβe(f(xν)νxν1/8)|f′′(xν)|1/2+O(2λ2).S_{1}=\sum_{\alpha<\nu\leq\beta}\frac{e(f(x_{\nu})-\nu x_{\nu}-1/8)}{|f^{\prime\prime}(x_{\nu})|^{1/2}}+O^{*}\left(\frac{2}{\sqrt{\lambda_{2}}}\right). (2.33)

Next, since |f′′(x)|h2λ2|f^{\prime\prime}(x)|\leq h_{2}\lambda_{2}, we have βα=f(a)f(b)(ba)h2λ2\beta-\alpha=f^{\prime}(a)-f^{\prime}(b)\leq(b-a)h_{2}\lambda_{2},

|S2|<232/3π2/3h31/3(βα)λ21λ31/3232/3π2/3h2h31/3(ba)λ31/3.\displaystyle|S_{2}|<\frac{2\cdot 3^{2/3}}{\pi^{2/3}}h_{3}^{1/3}(\beta-\alpha)\lambda_{2}^{-1}\lambda_{3}^{1/3}\leq\frac{2\cdot 3^{2/3}}{\pi^{2/3}}h_{2}h_{3}^{1/3}(b-a)\lambda_{3}^{1/3}. (2.34)

Finally, consider S3S_{3}. For all aνba\leq\nu\leq b, we have |f(a)ν|=βν|f^{\prime}(a)-\nu|=\beta-\nu and |f(b)ν|=να|f^{\prime}(b)-\nu|=\nu-\alpha. Furthermore, the kkth smallest integer in the interval (α+1/2,β+1/2)(\alpha+1/2,\beta+1/2) is bounded below by α+k1/2\alpha+k-1/2. Therefore,

α+12<ν<β121να<1n<βα121n12\displaystyle\sum_{\alpha+\frac{1}{2}<\nu<\beta-\frac{1}{2}}\frac{1}{\nu-\alpha}<\sum_{1\leq n<\beta-\alpha-\frac{1}{2}}\frac{1}{n-\frac{1}{2}} <ψ(βα)ψ(1/2)\displaystyle<\psi(\beta-\alpha)-\psi(1/2)

where ψ(x)\psi(x) is the digamma function. Similarly

α+12<ν<β121βν<ψ(βα)ψ(1/2).\sum_{\alpha+\frac{1}{2}<\nu<\beta-\frac{1}{2}}\frac{1}{\beta-\nu}<\psi(\beta-\alpha)-\psi(1/2).

Therefore, using ψ(x)logx\psi(x)\leq\log x for x>0x>0,

|S3|2πψ(βα)2πψ(1/2)<2πlog(βα)+2.|S_{3}|\leq\frac{2}{\pi}\psi(\beta-\alpha)-\frac{2}{\pi}\psi(1/2)<\frac{2}{\pi}\log(\beta-\alpha)+2. (2.35)

Finally, since the intervals (α1/2,α+1/2](\alpha-1/2,\alpha+1/2] and [β1/2,β+1/2)[\beta-1/2,\beta+1/2) contain at most one integer each, and using (2.2),

α+12<ν<β12abe(f(x)νx)𝑑x=α12<ν<β+12abe(f(x)νx)𝑑x+O(2.686λ2).\sum_{\alpha+\frac{1}{2}<\nu<\beta-\frac{1}{2}}\int_{a}^{b}e(f(x)-\nu x)\,dx=\sum_{\alpha-\frac{1}{2}<\nu<\beta+\frac{1}{2}}\int_{a}^{b}e(f(x)-\nu x)\,dx+O^{*}\left(\frac{2.686}{\sqrt{\lambda_{2}}}\right). (2.36)

The desired result follows upon applying Lemma 2.1 and collecting (2.32), (2.33), (2.34), (2.35) and (2.36). ∎

3. Proof of Theorem 1.1

This section contains the proof of our main result. We derive an upper bound on ζ(1/2+it)\zeta(1/2+it) using the Riemann–Siegel formula, which allows us to express ζ(1/2+it)\zeta(1/2+it) in terms of an exponential sum of length O(t1/2)O(t^{1/2}). This enables us to readily apply the techniques of the previous sections to produce a non-trivial estimate of ζ(1/2+it)\zeta(1/2+it). The main ingredients this step are the explicit AA, BB and AkB(0,1)A^{k}B(0,1) processes, given by Lemma 1.2, 2.3 and 1.4 respectively.

To begin, we recall the following result, due to Hiary [Hia16], which is a consequence of the Riemann–Siegel formula.

Lemma 3.1.

For all t200t\geq 200,

|ζ(1/2+it)|2|1nt/(2π)n1/2it|+1.48t1/4+0.127t3/4|\zeta(1/2+it)|\leq 2\left|\sum_{1\leq n\leq\lfloor\sqrt{t/(2\pi)}\rfloor}n^{-1/2-it}\right|+1.48t^{-1/4}+0.127t^{-3/4} (3.1)
Proof.

See Hiary [Hia16, Lem. 2.1] and also Gabcke [Gab79]. ∎

We use a similar approach as [Tit86, Thm. 5.18] to evaluate the main sum on the RHS of (3.1). We divide the sum into three subsums and bound each individually. Firstly, for nt27/82n\ll t^{27/82}, we use the triangle inequality and the trivial bound. Secondly, for t27/82nt7/17t^{27/82}\ll n\ll t^{7/17} we use Lemma 1.4 with k=4k=4. Lastly, for t7/17nt1/2t^{7/17}\ll n\ll t^{1/2}, we use the ABA3B(0,1)ABA^{3}B(0,1) process (Lemma 3.4 below).

We remark that the last subsum, taken over t7/17nt1/2t^{7/17}\ll n\ll t^{1/2}, is by far the most significant. In fact, the second sum can be bounded to be t19/119\ll t^{19/119} which is o(t27/164)o(t^{27/164}). Additionally, we have the freedom make the first subsum as small as we please, by appropriately choosing the boundary between the first and second subsums. Therefore, in what follows we will expend the most effort in bounding the third subsum.

To begin, let h1,h2>1h_{1},h_{2}>1, and θ1\theta_{1}, θ2\theta_{2}, θ3>0\theta_{3}>0 be scaling parameters to be chosen later. Define

ak:=h1kt2π,k=0,1,,Ka_{k}:=\left\lfloor h_{1}^{-k}\sqrt{\frac{t}{2\pi}}\right\rfloor,\qquad k=0,1,\ldots,K (3.2)

where

K:=K(t)=334logtlog(θ22π)logh1.K:=K(t)=\left\lceil\frac{\frac{3}{34}\log t-\log(\theta_{2}\sqrt{2\pi})}{\log h_{1}}\right\rceil. (3.3)

Note that this choice of KK guarantees that

aKh1Kt2πθ2t7/17.a_{K}\leq h_{1}^{-K}\sqrt{\frac{t}{2\pi}}\leq\theta_{2}t^{7/17}. (3.4)

Similarly, let

ar=h2rθ2t7/17,r=0,1,R,a^{\prime}_{r}=\left\lfloor h_{2}^{-r}\theta_{2}t^{7/17}\right\rfloor,\qquad r=0,1,\ldots R, (3.5)
R:=R(t)=1151394logtlog(θ3/θ2)logh2R:=R(t)=\left\lceil\frac{\frac{115}{1394}\log t-\log(\theta_{3}/\theta_{2})}{\log h_{2}}\right\rceil (3.6)

so that a0aKa_{0}^{\prime}\leq a_{K}. These parameters are chosen so that aRθ3t27/82a_{R}^{\prime}\leq\theta_{3}t^{27/82}.

We thus divide

1nt/(2π)n1/2it=1naR+aR<naK+aK<nt/(2π)=S1+S2+S3,\begin{split}\sum_{1\leq n\leq\lfloor\sqrt{t/(2\pi)}\rfloor}n^{-1/2-it}&=\sum_{1\leq n\leq a^{\prime}_{R}}+\sum_{a^{\prime}_{R}<n\leq a_{K}}+\sum_{a_{K}<n\leq\lfloor\sqrt{t/(2\pi)}\rfloor}\\ &=S_{1}+S_{2}+S_{3},\end{split} (3.7)

say. The next few lemmas are used to bound each of the three subsums.

Lemma 3.2.

For tt0t\geq t_{0} and θ3>0\theta_{3}>0, we have

|S1|C0t27/1642,C0:=2θ3(1+12t027/82).|S_{1}|\leq C_{0}t^{27/164}-\sqrt{2},\qquad C_{0}:=2\sqrt{\theta_{3}\left(1+\frac{1}{2t_{0}^{27/82}}\right)}.
Proof.

Recall that aRθ3t27/82a_{R}^{\prime}\leq\theta_{3}t^{27/82}, so that, by the triangle inequality and the trivial bound,

|1naRn1/2it|n=1aR1n\displaystyle\left|\sum_{1\leq n\leq a^{\prime}_{R}}n^{-1/2-it}\right|\leq\sum_{n=1}^{a^{\prime}_{R}}\frac{1}{\sqrt{n}} 1/2aR+1/2dxx1/21/2θ3t27/82+1/2dxx1/2\displaystyle\leq\int_{1/2}^{a^{\prime}_{R}+1/2}\frac{\,dx}{x^{1/2}}\leq\int_{1/2}^{\theta_{3}t^{27/82}+1/2}\frac{\,dx}{x^{1/2}}
2θ3t27/82+122C0t27/1642,\displaystyle\leq 2\sqrt{\theta_{3}t^{27/82}+\frac{1}{2}}-\sqrt{2}\leq C_{0}t^{27/164}-\sqrt{2},

for all tt0t\geq t_{0}. Here, the second inequality follows from the convexity of x1/2x^{-1/2} and Jensen’s inequality, since

n1/2=(n1/2n+1/2x𝑑x)1/2n1/2n+1/2dxx1/2.n^{-1/2}=\left(\int_{n-1/2}^{n+1/2}x\,dx\right)^{-1/2}\leq\int_{n-1/2}^{n+1/2}\frac{\,dx}{x^{1/2}}.

Lemma 3.3.

Suppose 0<t0tt10<t_{0}\leq t\leq t_{1}, h2>1h_{2}>1 and η2,θ2,θ3>0\eta_{2},\theta_{2},\theta_{3}>0. Then

|S2|D3t19/119+D4t71/476.|S_{2}|\leq D_{3}t^{19/119}+D_{4}t^{71/476}.

where

h3:=h21h2θ2t027/82,h_{3}:=\frac{h_{2}}{1-\frac{h_{2}}{\theta_{2}}t_{0}^{-27/82}},
D3:=31/14π1/14A4(η2,h3)h35/7(h31)θ23/141h23R(t1)/14h23/141,D_{3}:=\frac{3^{1/14}}{\pi^{1/14}}A_{4}(\eta_{2},h_{3})h_{3}^{5/7}(h_{3}-1)\theta_{2}^{3/14}\frac{1-h_{2}^{-3R(t_{1})/14}}{h_{2}^{3/14}-1},
D4:=π1/1431/14B4(η2)h32/7(h31)3/4θ215/281h215R(t1)/28h215/281.D_{4}:=\frac{\pi^{1/14}}{3^{1/14}}B_{4}(\eta_{2})h_{3}^{2/7}(h_{3}-1)^{3/4}\theta_{2}^{15/28}\frac{1-h_{2}^{-15R(t_{1})/28}}{h_{2}^{15/28}-1}.
Proof.

With ara^{\prime}_{r} as defined in (3.5), we have

arar+1h2rθ2t7/17h2(r+1)θ2t7/171h3.\frac{a_{r}^{\prime}}{a^{\prime}_{r+1}}\leq\frac{h_{2}^{-r}\theta_{2}t^{7/17}}{h_{2}^{-(r+1)}\theta_{2}t^{7/17}-1}\leq h_{3}.

since

h2(r+1)θ2t7/17\displaystyle h_{2}^{-(r+1)}\theta_{2}t^{7/17} h2(1151394logtlog(θ3/θ2))/logh21θ2t7/17\displaystyle\geq h_{2}^{-(\frac{115}{1394}\log t-\log(\theta_{3}/\theta_{2}))/\log h_{2}-1}\theta_{2}t^{7/17}
=θ2h2t115/1394θ3θ2θ2t7/17θ3h2t027/82\displaystyle=\frac{\theta_{2}}{h_{2}}t^{-115/1394}\frac{\theta_{3}}{\theta_{2}}\theta_{2}t^{7/17}\geq\frac{\theta_{3}}{h_{2}}t_{0}^{27/82}

Applying Lemma 1.4 with k=4k=4, h=h34h=h_{3}^{4}, a=ara=a^{\prime}_{r}, b=ar1h3ab=a^{\prime}_{r-1}\leq h_{3}a and

f(x)=t2πlogx,λ4=3tπ(h3ar)4,f(x)=-\frac{t}{2\pi}\log x,\qquad\lambda_{4}=\frac{3t}{\pi(h_{3}a^{\prime}_{r})^{4}},

we obtain, for any η2>0\eta_{2}>0,

Sf(ar,ar1ar)\displaystyle S_{f}(a_{r}^{\prime},a_{r-1}^{\prime}-a_{r}^{\prime}) A4(η2,h34)h3(h31)ar(3tπ(h3ar)4)1/14\displaystyle\leq A_{4}(\eta_{2},h_{3}^{4})h_{3}(h_{3}-1)a^{\prime}_{r}\left(\frac{3t}{\pi(h_{3}a_{r}^{\prime})^{4}}\right)^{1/14}
+B4(η2)(h31)3/4ar3/4(3tπ(h3ar)4)1/14\displaystyle\qquad\qquad+B_{4}(\eta_{2})(h_{3}-1)^{3/4}{a^{\prime}_{r}}^{3/4}\left(\frac{3t}{\pi(h_{3}a^{\prime}_{r})^{4}}\right)^{-1/14}
=D1ar5/7t1/14+D2ar29/28t1/14\displaystyle=D_{1}a_{r}^{\prime 5/7}t^{1/14}+D_{2}a_{r}^{\prime 29/28}t^{-1/14}

where

D1(h3):=31/14π1/14A4h35/7(h31),D2(h3):=π1/1431/14B4h32/7(h31)3/4.D_{1}(h_{3}):=\frac{3^{1/14}}{\pi^{1/14}}A_{4}h_{3}^{5/7}(h_{3}-1),\qquad D_{2}(h_{3}):=\frac{\pi^{1/14}}{3^{1/14}}B_{4}h_{3}^{2/7}(h_{3}-1)^{3/4}.

Next, by partial summation

|ar<nar1n1/2it|\displaystyle\left|\sum_{a^{\prime}_{r}<n\leq a^{\prime}_{r-1}}n^{-1/2-it}\right| ar1/2maxL(ar,ar1]Sf(ar,Lar)\displaystyle\leq{a^{\prime}_{r}}^{-1/2}\max_{L\in(a^{\prime}_{r},a^{\prime}_{r-1}]}S_{f}(a_{r}^{\prime},L-a_{r}^{\prime})
D1(h3)ar3/14t1/14+D2(h3)ar15/28t1/14\displaystyle\leq D_{1}(h_{3}){a^{\prime}_{r}}^{3/14}t^{1/14}+D_{2}(h_{3}){a^{\prime}_{r}}^{15/28}t^{-1/14}

so that, combined with

arh2rθ2t7/17,a^{\prime}_{r}\leq h_{2}^{-r}\theta_{2}t^{7/17},

we obtain

|aR<na0n1/2it|\displaystyle\left|\sum_{a^{\prime}_{R}<n\leq a^{\prime}_{0}}n^{-1/2-it}\right| r=1R|ar<nar1n1/2it|\displaystyle\leq\sum_{r=1}^{R}\left|\sum_{a^{\prime}_{r}<n\leq a^{\prime}_{r-1}}n^{-1/2-it}\right|
D1t1/14r=1R(h2rθ2t7/17)3/14+D2t1/14r=1R(h2rθ2t7/17)15/28\displaystyle\leq D_{1}t^{1/14}\sum_{r=1}^{R}\left(h_{2}^{-r}\theta_{2}t^{7/17}\right)^{3/14}+D_{2}t^{-1/14}\sum_{r=1}^{R}\left(h_{2}^{-r}\theta_{2}t^{7/17}\right)^{15/28}
=D1θ23/14t19/119r=1Rh23r/14+D2θ215/28t71/476r=1Rh215r/28\displaystyle=D_{1}\theta_{2}^{3/14}t^{19/119}\sum_{r=1}^{R}h_{2}^{-3r/14}+D_{2}\theta_{2}^{15/28}t^{71/476}\sum_{r=1}^{R}h_{2}^{-15r/28}
=D1θ23/141h23R/14h23/141t19/119+D2θ215/281h215R/28h215/281t71/476.\displaystyle=D_{1}\theta_{2}^{3/14}\frac{1-h_{2}^{-3R/14}}{h_{2}^{3/14}-1}t^{19/119}+D_{2}\theta_{2}^{15/28}\frac{1-h_{2}^{-15R/28}}{h_{2}^{15/28}-1}t^{71/476}.

The result follows from R(t)R(t1)R(t)\leq R(t_{1}). ∎

Lemma 3.4.

Let tt0>0t\geq t_{0}>0 and θ1,θ2,η1>0\theta_{1},\theta_{2},\eta_{1}>0, 1<h21<h\leq 2 be arbitrary constants. Suppose a,ba,b satisfy θ2t7/17<a<bha\theta_{2}t^{7/17}<a<b\leq ha and q0:=θ1θ27/17t065/6972q_{0}:=\theta_{1}\theta_{2}^{7/17}t_{0}^{65/697}\geq 2. Then

|a<nbnit|\displaystyle\left|\sum_{a<n\leq b}n^{-it}\right| C1(h)a23/41t11/82+C2(h)a147/328t61/328\displaystyle\leq C_{1}(h)a^{23/41}t^{11/82}+C_{2}(h)a^{147/328}t^{61/328}
+E1(h)a169/164t15/82+E2(h)a59/123t5/41+E3(h)a1/2.\displaystyle\qquad\qquad+E_{1}(h)a^{169/164}t^{-15/82}+E_{2}(h)a^{59/123}t^{5/41}+E_{3}(h)a^{1/2}.

where

C1(h):=α(θ11(h1)1q01+0.4750θ111/30A5(η1,765452107264h9)h21/8(h1))1/2,C_{1}(h):=\alpha\left(\frac{\theta_{1}^{-1}(h-1)}{1-q_{0}^{-1}}+0.4750\,\theta_{1}^{11/30}A_{5}\left(\eta_{1},\frac{76545\sqrt{2}}{107264}h^{9}\right)h^{21/8}(h-1)\right)^{1/2},
C2(h):=α(0.2531θ161/120B5(η1)h3/2(h1)7/8)1/2,C_{2}(h):=\alpha\left(0.2531\,\theta_{1}^{61/120}B_{5}(\eta_{1})h^{3/2}(h-1)^{7/8}\right)^{1/2},
E1(h):=α(12.496π)1/2h3/4(θ11θ2t0100/697)1/4,E_{1}(h):=\alpha(12.496\sqrt{\pi})^{1/2}h^{3/4}\left(\theta_{1}-\frac{1}{\theta_{2}t_{0}^{100/697}}\right)^{-1/4},
E2(h):=α(914θ11/3(4.465(h1)1/3π4/3θ21/3t07/51+6πh3(h1)))1/2,E_{2}(h):=\alpha\left(\frac{9}{14}\theta_{1}^{1/3}\left(\frac{4.465(h-1)^{1/3}}{\pi^{4/3}\theta_{2}^{1/3}t_{0}^{7/51}}+\frac{6}{\pi}h^{3}(h-1)\right)\right)^{1/2},
E3(h):=α(6+5πlog2)1/2,α=h1+θ1θ25/41t0222/697,E_{3}(h):=\alpha\left(6+\frac{5}{\pi}\log 2\right)^{1/2},\qquad\alpha=\sqrt{h-1+\frac{\theta_{1}}{\theta_{2}^{5/41}t_{0}^{222/697}}},

and A5,B5A_{5},B_{5} are functions defined in Lemma 1.4.

Proof.

Let

f(x):=t2πlogx,axb,f(x):=-\frac{t}{2\pi}\log x,\qquad a\leq x\leq b,

so that

a<nbnit=Sf(a,ba).\sum_{a<n\leq b}n^{-it}=S_{f}(a,b-a).

Also, let

gr(x):=f(x+r)f(x)=t2πlog(1+rx),axbr,g_{r}(x):=f(x+r)-f(x)=-\frac{t}{2\pi}\log\left(1+\frac{r}{x}\right),\qquad a\leq x\leq b-r,
β:=gr(a),α:=gr(br).\beta:=g_{r}^{\prime}(a),\qquad\alpha:=g_{r}^{\prime}(b-r).

Note that since bhab\leq ha, we have βhα\beta\leq h\alpha. Furthermore, let xνx_{\nu} be such that gr(xν)=νg^{\prime}_{r}(x_{\nu})=\nu, i.e.

xν:=12r2+2trπνr2.x_{\nu}:=\frac{1}{2}\sqrt{r^{2}+\frac{2tr}{\pi\nu}}-\frac{r}{2}.

Finally, define

ϕr(ν):=gr(xν)νxν.\phi_{r}(\nu):=g_{r}(x_{\nu})-\nu x_{\nu}.

3.0.1. Applying the A3B(0,1)A^{3}B(0,1) process

We begin by considering the exponential sum

Sϕr(α,βα)=α<nβe(ϕr(n)),S_{\phi_{r}}(\alpha,\beta-\alpha)=\sum_{\alpha<n\leq\beta}e(\phi_{r}(n)),

which is an intermediary sum encountered prior to applying the final ABAB process. We bound this sum using the 55th derivative test, which corresponds to the A3B(0,1)A^{3}B(0,1) process. Via a direct computation, we have

|ϕr(5)(ν)|\displaystyle|\phi_{r}^{(5)}(\nu)| =3tr2πν9/2(πrν+2t)7/2(8π3r3ν3+36π2r2tν2+60πrνt2+35t3)\displaystyle=\frac{3t\sqrt{r}}{2\sqrt{\pi}\nu^{9/2}(\pi r\nu+2t)^{7/2}}\left(8\pi^{3}r^{3}\nu^{3}+36\pi^{2}r^{2}t\nu^{2}+60\pi r\nu t^{2}+35t^{3}\right)
=32π(x+2)7/2(8x3+36x2+60x+35)(tr)1/2ν9/2\displaystyle=\frac{3}{2\sqrt{\pi}(x+2)^{7/2}}\left(8x^{3}+36x^{2}+60x+35\right)\frac{(tr)^{1/2}}{\nu^{9/2}} (3.8)

where x:=πrν/tx:=\pi r\nu/t. For all ανβ\alpha\leq\nu\leq\beta, we have x(0,1/4]x\in(0,1/4], since

πrβt=πrgr(a)t=12r2a(a+r)14\frac{\pi r\beta}{t}=\frac{\pi rg_{r}^{\prime}(a)}{t}=\frac{1}{2}\frac{r^{2}}{a(a+r)}\leq\frac{1}{4}

as h2h\leq 2 implies rar\leq a, and x2/(a(a+x))x^{2}/(a(a+x)) is increasing for x>0x>0.444In fact a much sharper inequality can be applied here, since we ultimately take r=o(a)r=o(a). However, such optimisations do not appear to affect the final result. Therefore,

670421878x3+36x2+60x+35(x+2)7/23582.\frac{6704}{2187}\leq\frac{8x^{3}+36x^{2}+60x+35}{(x+2)^{7/2}}\leq\frac{35}{8\sqrt{2}}. (3.9)

Furthermore,

tr2πa2tr2πa(a+r)=gr(a)=βνα=gr(br)=tr2πb(br)tr2πh2a2\frac{tr}{2\pi a^{2}}\geq\frac{tr}{2\pi a(a+r)}=g_{r}^{\prime}(a)=\beta\geq\nu\geq\alpha=g_{r}^{\prime}(b-r)=\frac{tr}{2\pi b(b-r)}\geq\frac{tr}{2\pi h^{2}a^{2}}

so that

(2π)9/2a9t4r4(tr)1/2ν9/2(2π)9/2h9a9t4r4.(2\pi)^{9/2}\frac{a^{9}}{t^{4}r^{4}}\leq\frac{(tr)^{1/2}}{\nu^{9/2}}\leq(2\pi)^{9/2}h^{9}\frac{a^{9}}{t^{4}r^{4}}. (3.10)

Combining (3.8), (3.9) and (3.10), for ν[α,β]\nu\in[\alpha,\beta], we have

λ5|ϕr(5)(ν)|h5λ5\lambda_{5}\leq|\phi_{r}^{(5)}(\nu)|\leq h_{5}\lambda_{5} (3.11)

where

λ5=536322π4729a9t4r4,h5:=765452107264h9.\lambda_{5}=\frac{53632\sqrt{2}\pi^{4}}{729}\frac{a^{9}}{t^{4}r^{4}},\qquad h_{5}:=\frac{76545\sqrt{2}}{107264}h^{9}.

Meanwhile, by the mean-value theorem we have βα(bar)g′′(ξ)\beta-\alpha\leq(b-a-r)g^{\prime\prime}(\xi) for some ξ[a,br]\xi\in[a,b-r], and so by directly computing g′′(x)g^{\prime\prime}(x) we have

βα<a(h1)tr2π2a+ra2(a+r)2h1πtra2\beta-\alpha<a(h-1)\frac{tr}{2\pi}\frac{2a+r}{a^{2}(a+r)^{2}}\leq\frac{h-1}{\pi}\frac{tr}{a^{2}} (3.12)

We apply Lemma 1.4 with k=5k=5, f=ϕrf=\phi_{r}, N=baN=b-a and h=h5h=h_{5} to obtain, using (3.11) and (3.12),

|Sϕr(α,βα)|A5(η1,h5)h51/8(βα)λ51/30+B5(η1)(βα)7/8λ51/30<c1a17/10(tr)13/15+c2a41/20(tr)121/120\begin{split}|S_{\phi_{r}}(\alpha,\beta-\alpha)|&\leq A_{5}(\eta_{1},h_{5})h_{5}^{1/8}(\beta-\alpha)\lambda_{5}^{1/30}+B_{5}(\eta_{1})(\beta-\alpha)^{7/8}\lambda_{5}^{-1/30}\\ &<c_{1}a^{-17/10}(tr)^{13/15}+c_{2}a^{-41/20}(tr)^{121/120}\end{split} (3.13)

for any η1>0\eta_{1}>0, where

c1=A5(η1,h5)b1h9/8(h1),c2=B5(η1)b2(h1)7/8c_{1}=A_{5}(\eta_{1},h_{5})b_{1}h^{9/8}(h-1),\qquad c_{2}=B_{5}(\eta_{1})b_{2}(h-1)^{7/8}

and

b1:=1π(536322π4729)1/30(765452107264)1/8,b_{1}:=\frac{1}{\pi}\left(\frac{53632\sqrt{2}\pi^{4}}{729}\right)^{1/30}\left(\frac{76545\sqrt{2}}{107264}\right)^{1/8},
b2:=1π7/8(729536322π4)1/30.b_{2}:=\frac{1}{\pi^{7/8}}\left(\frac{729}{53632\sqrt{2}\pi^{4}}\right)^{1/30}.

Note that the leading term of (3.13) corresponds to the A3B(0,1)=(1/30,13/15)A^{3}B(0,1)=(1/30,13/15) exponent pair.

3.0.2. Applying the BB process

Equipped with a bound for SϕrS_{\phi_{r}}, we apply the BB process (Lemma 2.2) with f=gf=g. The end result of this subsection is an explicit BA3B(0,1)=(11/30,8/15)BA^{3}B(0,1)=(11/30,8/15) exponent pair. To do this we first require a few intermediary results. To begin, note that

gr′′(xν)gr′′(br)=tr2π2brb2(br)2trπ1(br/2)3>trπb3trπh3a3.g_{r}^{\prime\prime}(x_{\nu})\geq g_{r}^{\prime\prime}(b-r)=\frac{tr}{2\pi}\frac{2b-r}{b^{2}(b-r)^{2}}\geq\frac{tr}{\pi}\frac{1}{(b-r/2)^{3}}>\frac{tr}{\pi b^{3}}\geq\frac{tr}{\pi h^{3}a^{3}}.

Here, the second inequality follows from the arithmetic-geometric means inequality. Therefore, by partial summation and using (3.13),

|α<νβe(ϕr(ν))|gr′′(xν)|1/2|π1/2h3/2a3/2(tr)1/2maxα<LβSϕr(α,L)c3a1/5(tr)11/30+c4a11/20(tr)61/120\begin{split}\left|\sum_{\alpha<\nu\leq\beta}\frac{e(\phi_{r}(\nu))}{|g_{r}^{\prime\prime}(x_{\nu})|^{1/2}}\right|&\leq\pi^{1/2}h^{3/2}\frac{a^{3/2}}{(tr)^{1/2}}\max_{\alpha<L\leq\beta}S_{\phi_{r}}(\lfloor\alpha\rfloor,L)\\ &\leq c_{3}a^{-1/5}(tr)^{11/30}+c_{4}a^{-11/20}(tr)^{61/120}\end{split} (3.14)

where

c3=b1π1/2A5h21/8(h1),c4=b2π1/2B5h3/2(h1)7/8.c_{3}=b_{1}\pi^{1/2}A_{5}h^{21/8}(h-1),\qquad c_{4}=b_{2}\pi^{1/2}B_{5}h^{3/2}(h-1)^{7/8}.

Additionally, note that

trπh3a3|gr′′(x)|=tr(2x+r)2πx2(x+r)2trπa3,\frac{tr}{\pi h^{3}a^{3}}\leq|g_{r}^{\prime\prime}(x)|=\frac{tr(2x+r)}{2\pi x^{2}(x+r)^{2}}\leq\frac{tr}{\pi a^{3}},

and thus

λ2|gr′′(x)|<h2λ2,λ2:=trπh3a3,h2:=h3.\lambda_{2}\leq|g_{r}^{\prime\prime}(x)|<h_{2}\lambda_{2},\qquad\lambda_{2}:=\frac{tr}{\pi h^{3}a^{3}},\qquad h_{2}:=h^{3}. (3.15)

Similarly,

|gr′′′(x)|=trπ3x2+3xr+r2x3(x+r)3[3trπh4a4,3trπa4],|g_{r}^{\prime\prime\prime}(x)|=\frac{tr}{\pi}\frac{3x^{2}+3xr+r^{2}}{x^{3}(x+r)^{3}}\in\left[\frac{3tr}{\pi h^{4}a^{4}},\frac{3tr}{\pi a^{4}}\right],
λ3|gr′′′(x)|h3λ3,λ3:=3trπh4a4,h3:=h4.\lambda_{3}\leq|g_{r}^{\prime\prime\prime}(x)|\leq h_{3}\lambda_{3},\qquad\lambda_{3}:=\frac{3tr}{\pi h^{4}a^{4}},\qquad h_{3}:=h^{4}. (3.16)

Applying Lemma 2.2 and using (3.14), (3.15) and (3.16), we finally obtain

|Sgr(a,bra)|c3a1/5(tr)11/30+c4a11/20(tr)61/120+E|S_{g_{r}}(a,b-r-a)|\leq c_{3}a^{-1/5}(tr)^{11/30}+c_{4}a^{-11/20}(tr)^{61/120}+E (3.17)

where, from Lemma 2.3, the error term EE satisfies

|E|\displaystyle|E| 4.686λ21/2+5πlog(βα+2)+232/3π2/3h2h31/3(ba)λ31/3+6.\displaystyle\leq 4.686\lambda_{2}^{-1/2}+\frac{5}{\pi}\log(\beta-\alpha+2)+\frac{2\cdot 3^{2/3}}{\pi^{2/3}}h_{2}h_{3}^{1/3}(b-a)\lambda_{3}^{1/3}+6.

Setting

T1\displaystyle T_{1} =4.686λ21/2,T2=5πlog(βα+2),\displaystyle=4.686\lambda_{2}^{-1/2},\qquad T_{2}=\frac{5}{\pi}\log(\beta-\alpha+2),
T3\displaystyle T_{3} =232/3π2/3h2h31/3(ba)λ31/3,T4=6,\displaystyle=\frac{2\cdot 3^{2/3}}{\pi^{2/3}}h_{2}h_{3}^{1/3}(b-a)\lambda_{3}^{1/3},\qquad T_{4}=6,

and substituting (3.15) and (3.16), we have

T1=4.686πh3/2a3/2(tr)1/2,T36πh3(h1)(tr)1/3a1/3.T_{1}=4.686\sqrt{\pi}h^{3/2}\frac{a^{3/2}}{(tr)^{1/2}},\qquad T_{3}\leq\frac{6}{\pi}h^{3}(h-1)\frac{(tr)^{1/3}}{a^{1/3}}. (3.18)

Furthermore, since log(2+x)log2+0.893x1/3\log(2+x)\leq\log 2+0.893x^{1/3} for all x>0x>0, we have, using (3.12),

log(2+βα)log2+0.893(βα)1/3log2+0.893a1/3(h1πtra)1/3.\log(2+\beta-\alpha)\leq\log 2+0.893(\beta-\alpha)^{1/3}\leq\log 2+\frac{0.893}{a^{1/3}}\left(\frac{h-1}{\pi}\frac{tr}{a}\right)^{1/3}.

This implies, from aθ2t7/17θ2t07/17a\geq\theta_{2}t^{7/17}\geq\theta_{2}t_{0}^{7/17}, that

T25π(log2+0.893θ21/3t07/51(h1π)1/3(tr)1/3a1/3).T_{2}\leq\frac{5}{\pi}\left(\log 2+\frac{0.893}{\theta_{2}^{1/3}t_{0}^{7/51}}\left(\frac{h-1}{\pi}\right)^{1/3}\frac{(tr)^{1/3}}{a^{1/3}}\right). (3.19)

Combining (3.17), (3.18) and (3.19), we have

|Sgr(a,bra)|c3a1/5(tr)11/30+c4a11/20(tr)61/120+E4a3/2(tr)1/2+E5(tr)1/3a1/3+E6,\begin{split}|S_{g_{r}}(a,b-r-a)|&\leq c_{3}a^{-1/5}(tr)^{11/30}+c_{4}a^{-11/20}(tr)^{61/120}\\ &\qquad\qquad\qquad+E_{4}\frac{a^{3/2}}{(tr)^{1/2}}+E_{5}\frac{(tr)^{1/3}}{a^{1/3}}+E_{6},\end{split} (3.20)

where

E4:=4.686πh3/2,E5:=0.893θ21/3t07/515π(h1π)1/3+6πh3(h1),E_{4}:=4.686\sqrt{\pi}h^{3/2},\qquad E_{5}:=\frac{0.893}{\theta_{2}^{1/3}t_{0}^{7/51}}\frac{5}{\pi}\left(\frac{h-1}{\pi}\right)^{1/3}+\frac{6}{\pi}h^{3}(h-1),
E6:=6+5πlog2.E_{6}:=6+\frac{5}{\pi}\log 2.

3.0.3. Applying the AA process

To complete the proof we apply the AA process once more to obtain the exponent pair ABA3B(0,1)=(11/82,57/82)ABA^{3}B(0,1)=(11/82,57/82). To do so we rely on the following inequality, which can be found in e.g. [Pat21]:

r=1q(1rq)rsq1+s(1+s)(2+s),1<s1,\sum_{r=1}^{q}\left(1-\frac{r}{q}\right)r^{s}\leq\frac{q^{1+s}}{(1+s)(2+s)},\qquad-1<s\leq 1, (3.21)

for all integers q1q\geq 1. Applying this formula, and using (3.20), we obtain

2qr=1q1(1rq)|Sgr(a,bra)|\displaystyle\frac{2}{q}\sum_{r=1}^{q-1}\left(1-\frac{r}{q}\right)\left|S_{g_{r}}(a,b-r-a)\right| 18002911c3a1/5(qt)11/30+2880054481c4a11/20(qt)61/120\displaystyle\leq\frac{1800}{2911}c_{3}a^{-1/5}(qt)^{11/30}+\frac{28800}{54481}c_{4}a^{-11/20}(qt)^{61/120}
+83E4a3/2(tq)1/2+914E5(tq)1/3a1/3+E6.\displaystyle\qquad\qquad+\frac{8}{3}E_{4}\frac{a^{3/2}}{(tq)^{1/2}}+\frac{9}{14}E_{5}\frac{(tq)^{1/3}}{a^{1/3}}+E_{6}.

We use this in Lemma 1.2, together with ba(h1)ab-a\leq(h-1)a, to obtain

|Sf(a,ba)|2(h1+qa)((h1)a2q+18002911c3a4/5(qt)11/30+2880054481c4a9/20(qt)61/120+83E4a5/2(tq)1/2+914E5a2/3(tq)1/3+E6a).\begin{split}\left|S_{f}(a,b-a)\right|^{2}&\leq\left(h-1+\frac{q}{a}\right)\Bigg{(}\frac{(h-1)a^{2}}{q}+\frac{1800}{2911}c_{3}a^{4/5}(qt)^{11/30}\\ &\quad+\frac{28800}{54481}c_{4}a^{9/20}(qt)^{61/120}+\frac{8}{3}E_{4}\frac{a^{5/2}}{(tq)^{1/2}}+\frac{9}{14}E_{5}a^{2/3}(tq)^{1/3}+E_{6}a\Bigg{)}.\end{split} (3.22)

We choose q=θ1a36/41t11/41q=\lfloor\theta_{1}a^{36/41}t^{-11/41}\rfloor for some θ1>0\theta_{1}>0 to be chosen later, so that

θ1a36/41t11/411qθ1a36/41t11/41.\theta_{1}a^{36/41}t^{-11/41}-1\leq q\leq\theta_{1}a^{36/41}t^{-11/41}.

Now, with q0q_{0} defined in the lemma statement, we have

q0=θ1θ27/17t065/697θ1a36/41t11/41q+1q_{0}=\theta_{1}\theta_{2}^{7/17}t_{0}^{65/697}\leq\theta_{1}a^{36/41}t^{-11/41}\leq q+1

and hence by assumption, q1q\geq 1. Observe that the following inequalities hold

a2qa2θ1a36/41t11/411θ111q01a46/41t11/41,\frac{a^{2}}{q}\leq\frac{a^{2}}{\theta_{1}a^{36/41}t^{-11/41}-1}\leq\frac{\theta_{1}^{-1}}{1-q_{0}^{-1}}\cdot a^{46/41}t^{11/41},
qaθ1a36/41t11/41aθ1(θ2t7/17)5/41t11/41θ1θ25/41t0222/697,\frac{q}{a}\leq\frac{\theta_{1}a^{36/41}t^{-11/41}}{a}\leq\frac{\theta_{1}}{(\theta_{2}t^{7/17})^{5/41}t^{11/41}}\leq\frac{\theta_{1}}{\theta_{2}^{5/41}t_{0}^{222/697}},
a5/2(qt)1/21(θ1a36/41t11/411)1/2a5/2t1/2\displaystyle\frac{a^{5/2}}{(qt)^{1/2}}\leq\frac{1}{(\theta_{1}a^{36/41}t^{-11/41}-1)^{1/2}}a^{5/2}t^{-1/2} (θ1a36/41t11/41)1/2a169/82t15/41\displaystyle\leq\left(\theta_{1}-a^{-36/41}t^{11/41}\right)^{-1/2}a^{169/82}t^{-15/41}
(θ11θ2t0100/697)1/2a169/82t15/41,\displaystyle\leq\left(\theta_{1}-\frac{1}{\theta_{2}t_{0}^{100/697}}\right)^{-1/2}a^{169/82}t^{-15/41},
a2/3(tq)1/3θ11/3a118/123t10/41.a^{2/3}(tq)^{1/3}\leq\theta_{1}^{1/3}a^{118/123}t^{10/41}.

Using the above inequalities, we obtain

|Sf(a,ba)|2(h1+θ1θ25/41t0222/697)((θ11(h1)1q01+18002911θ111/30c3)a46/41t11/41\displaystyle|S_{f}(a,b-a)|^{2}\leq\left(h-1+\frac{\theta_{1}}{\theta_{2}^{5/41}t_{0}^{222/697}}\right)\bigg{(}\left(\frac{\theta_{1}^{-1}(h-1)}{1-q_{0}^{-1}}+\frac{1800}{2911}\theta_{1}^{11/30}c_{3}\right)a^{46/41}t^{11/41}
+(2880054481θ161/120c4)a147/164t61/164+83E4(θ11θ2t0100/697)1/2a169/82t15/41\displaystyle+\left(\frac{28800}{54481}\theta_{1}^{61/120}c_{4}\right)a^{147/164}t^{61/164}+\frac{8}{3}E_{4}\left(\theta_{1}-\frac{1}{\theta_{2}t_{0}^{100/697}}\right)^{-1/2}a^{169/82}t^{-15/41}
+914θ11/3a118/123t10/41+E6a)\displaystyle+\frac{9}{14}\theta_{1}^{1/3}a^{118/123}t^{10/41}+E_{6}a\bigg{)}

Taking square roots of both sides, applying x1++xnx1++xn\sqrt{x_{1}+\cdots+x_{n}}\leq\sqrt{x_{1}}+\cdots+\sqrt{x_{n}}, and substituting the values of c3c_{3}, c4c_{4}, E4E_{4}, E5E_{5} and E6E_{6}, the desired result follows. ∎

Lemma 3.5.

Let 100t0tt1100\leq t_{0}\leq t\leq t_{1}, h>1h>1 and θ1,θ2,θ3,η1>0\theta_{1},\theta_{2},\theta_{3},\eta_{1}>0 be constants jointly satisfying the conditions of Lemma 3.4. Furthermore assume that h0:=h/(1θ1t07/17)(1,2]h_{0}:=h/(1-\theta_{1}t_{0}^{-7/17})\in(1,2]. Then

|S3|C4(t0,t1,h,η1,θ1,θ2,θ3)t27/164|S_{3}|\leq C_{4}(t_{0},t_{1},h,\eta_{1},\theta_{1},\theta_{2},\theta_{3})t^{27/164}

where

C4:=C1(h0)μ1(582)+C2(h0)μ2(17328)h17K(t1)/328t03/656+E1(h0)μ1(87164)t027/328+E2(h0)μ2(5246)h5K(t1)/246t013/246+E3(h0)K(t1)t027/164,\begin{split}C_{4}&:=C_{1}(h_{0})\mu_{1}\left(\frac{5}{82}\right)+C_{2}(h_{0})\mu_{2}\left(\frac{17}{328}\right)h^{17K(t_{1})/328}t_{0}^{-3/656}\\ &+E_{1}(h_{0})\mu_{1}\left(\frac{87}{164}\right)t_{0}^{-27/328}+E_{2}(h_{0})\mu_{2}\left(\frac{5}{246}\right)h^{5K(t_{1})/246}t_{0}^{-13/246}+E_{3}(h_{0})K(t_{1})t_{0}^{-27/164},\end{split} (3.23)
μ1(α):=1(2π)α/21hαK(t1)hα1,μ2(α):=μ1(α)(1hθ2t07/17)α\mu_{1}(\alpha):=\frac{1}{(2\pi)^{\alpha/2}}\frac{1-h^{-\alpha K(t_{1})}}{h^{\alpha}-1},\qquad\mu_{2}(\alpha):=\mu_{1}(\alpha)\left(1-\frac{h}{\theta_{2}t_{0}^{7/17}}\right)^{-\alpha} (3.24)

and C1C_{1}, C2C_{2}, E1E_{1}, E2E_{2} and E3E_{3} are as defined in Lemma 3.4. Furthermore, for all tt0t\geq t_{0},

|S3|C5(t0,h,η1,θ1,θ2,θ3)t27/164|S_{3}|\leq C_{5}(t_{0},h,\eta_{1},\theta_{1},\theta_{2},\theta_{3})t^{27/164}

where

C5:=C1(h0)μ3(582)+C2(h0)μ4(17328)+E1(h0)μ3(87164)t027/328+E2(h0)μ4(5246)t0427/8364+E3(h0)(334logt0log(θ22π)logh+1)t027/164,\begin{split}C_{5}&:=C_{1}(h_{0})\mu_{3}\left(\frac{5}{82}\right)+C_{2}(h_{0})\mu_{4}\left(\frac{17}{328}\right)+E_{1}(h_{0})\mu_{3}\left(\frac{87}{164}\right)t_{0}^{-27/328}\\ &\quad+E_{2}(h_{0})\mu_{4}\left(\frac{5}{246}\right)t_{0}^{-427/8364}+E_{3}(h_{0})\left(\frac{\frac{3}{34}\log t_{0}-\log(\theta_{2}\sqrt{2\pi})}{\log h}+1\right)t_{0}^{-27/164},\end{split} (3.25)
μ3(α):=1(2π)α/2(hα1),μ4(α):=(1hθ2t07/17)α(h/θ2)α2πt03/341hα.\mu_{3}(\alpha):=\frac{1}{(2\pi)^{\alpha/2}(h^{\alpha}-1)},\qquad\mu_{4}(\alpha):=\left(1-\frac{h}{\theta_{2}t_{0}^{7/17}}\right)^{-\alpha}\frac{\left(h/\theta_{2}\right)^{\alpha}-\sqrt{2\pi}t_{0}^{-3/34}}{1-h^{-\alpha}}. (3.26)
Proof.

With aka_{k} as defined in (3.2), we have

h(k1)t2πhkt2π1h(11aK1)<h0,\frac{h^{-(k-1)}\sqrt{\frac{t}{2\pi}}}{h^{-k}\sqrt{\frac{t}{2\pi}}-1}\leq h\left(\frac{1}{1-a_{K}^{-1}}\right)<h_{0},

say. Therefore, we may apply Lemma 3.4, with h=h0h=h_{0}, a=aka=a_{k}, b=ak1b=a_{k-1} and t0tt_{0}\leq t to obtain, via partial summation,

|ak<nak1n1/2it|\displaystyle\left|\sum_{a_{k}<n\leq a_{k-1}}n^{-1/2-it}\right| ak1/2maxak<Lak1Sf(ak,Lak)\displaystyle\leq a_{k}^{-1/2}\max_{a_{k}<L\leq a_{k-1}}S_{f}(a_{k},L-a_{k})
C1a5/82t11/82+C2a17/328t61/328+E1a87/164t15/82\displaystyle\leq C_{1}a^{5/82}t^{11/82}+C_{2}a^{-17/328}t^{61/328}+E_{1}a^{87/164}t^{-15/82}
+E2a5/246t5/41+E3,\displaystyle\qquad\qquad+E_{2}a^{-5/246}t^{5/41}+E_{3},

and thus

|S3|k=1K|ak<nak1n1/2it|C1t11/82k=1Kak5/82+C2t61/328k=1Kak17/328+E1t15/82k=1Kak87/164+E2t5/41k=1Kak5/246+E3K.\begin{split}|S_{3}|&\leq\sum_{k=1}^{K}\left|\sum_{a_{k}<n\leq a_{k-1}}n^{-1/2-it}\right|\leq C_{1}t^{11/82}\sum_{k=1}^{K}a_{k}^{5/82}+C_{2}t^{61/328}\sum_{k=1}^{K}a_{k}^{-17/328}\\ &\qquad\qquad\qquad\qquad+E_{1}t^{-15/82}\sum_{k=1}^{K}a_{k}^{87/164}+E_{2}t^{5/41}\sum_{k=1}^{K}a_{k}^{-5/246}+E_{3}K.\end{split} (3.27)

Since

hkt2π1akhkt2πh^{-k}\sqrt{\frac{t}{2\pi}}-1\leq a_{k}\leq h^{-k}\sqrt{\frac{t}{2\pi}}

we have, for any α>0\alpha>0 and t0tt1t_{0}\leq t\leq t_{1},

k=1Kakαk=1K(hkt2π)α=(t2π)α/2k=1K(hα)k=μ1(α)tα/2\sum_{k=1}^{K}a_{k}^{\alpha}\leq\sum_{k=1}^{K}\left(h^{-k}\sqrt{\frac{t}{2\pi}}\right)^{\alpha}=\left(\frac{t}{2\pi}\right)^{\alpha/2}\sum_{k=1}^{K}(h^{-\alpha})^{k}=\mu_{1}(\alpha)t^{\alpha/2} (3.28)

and, again for α>0\alpha>0 and t0tt1t_{0}\leq t\leq t_{1},

k=1Kakα\displaystyle\sum_{k=1}^{K}a_{k}^{-\alpha} k=1K(hkt2π1)α=(1hk2πt)αk=1K(hkt2π)α\displaystyle\leq\sum_{k=1}^{K}\left(h^{-k}\sqrt{\frac{t}{2\pi}}-1\right)^{-\alpha}=\left(1-h^{k}\sqrt{\frac{2\pi}{t}}\right)^{-\alpha}\sum_{k=1}^{K}\left(h^{-k}\sqrt{\frac{t}{2\pi}}\right)^{-\alpha}
<(1hθ2t07/17)α(t2π)α/2hαK11hα=μ2(α)hαK(t1)tα/2.\displaystyle<\left(1-\frac{h}{\theta_{2}t_{0}^{7/17}}\right)^{-\alpha}\left({\frac{t}{2\pi}}\right)^{-\alpha/2}\frac{h^{\alpha K}-1}{1-h^{-\alpha}}=\mu_{2}(\alpha)h^{\alpha K(t_{1})}t^{-\alpha/2}. (3.29)

Substituting these into (3.27), we obtain the estimate

|S3|\displaystyle|S_{3}| C1μ1(582)t27/164+C2μ2(17328)h17K(t1)/328t105/656\displaystyle\leq C_{1}\mu_{1}\left(\frac{5}{82}\right)t^{27/164}+C_{2}\mu_{2}\left(\frac{17}{328}\right)h^{17K(t_{1})/328}t^{105/656}
+E1μ1(87164)t27/328+E2μ2(5246)h5K(t1)/246t55/492+E3K(t1),\displaystyle\qquad\qquad+E_{1}\mu_{1}\left(\frac{87}{164}\right)t^{27/328}+E_{2}\mu_{2}\left(\frac{5}{246}\right)h^{5K(t_{1})/246}t^{55/492}+E_{3}K(t_{1}),

which gives (3.23) from tt0t\geq t_{0}, and forms the main bound for S3S_{3} for tt in finite intervals [t0,t1][t_{0},t_{1}]. To obtain a bound holding for all [t0,)[t_{0},\infty), we use

hK<h(334logtlog(θ22π))/logh+1=hθ22πt3/34h^{K}<h^{\left(\frac{3}{34}\log t-\log(\theta_{2}\sqrt{2\pi})\right)/\log h+1}=\frac{h}{\theta_{2}\sqrt{2\pi}}t^{3/34}

to continue the argument from (3.28) and (3.29) to obtain, for tt0t\geq t_{0},

k=1Kakα<μ3(α),\sum_{k=1}^{K}a_{k}^{\alpha}<\mu_{3}(\alpha),
k=1Kakα<(1hθ2t07/17)α(h/θ2)α2πt03/341hαt7α/17=μ4(α)t7α/17.\sum_{k=1}^{K}a_{k}^{-\alpha}<\left(1-\frac{h}{\theta_{2}t_{0}^{7/17}}\right)^{-\alpha}\frac{\left(h/\theta_{2}\right)^{\alpha}-\sqrt{2\pi}t_{0}^{-3/34}}{1-h^{-\alpha}}t^{-7\alpha/17}=\mu_{4}(\alpha)t^{-7\alpha/17}.

Equation (3.25) then follows from substituting these estimates into (3.27) and using tt0t\geq t_{0}. ∎

3.1. Computations

For each row (logt0,logt1,h1,h2,η1,η2,θ1,θ2,θ3,A)(\log t_{0},\log t_{1},h_{1},h_{2},\eta_{1},\eta_{2},\theta_{1},\theta_{2},\theta_{3},A) of Table LABEL:coefficientstable, we substitute the relevant parameter values into Lemma 3.2, 3.3 and 3.5 to verify, in each case, that

|ζ(1/2+it)|At27/164,t0tt1.|\zeta(1/2+it)|\leq At^{27/164},\qquad t_{0}\leq t\leq t_{1}.

Upon inspection, we have A66.7A\leq 66.7 in each case, which proves Theorem 1.1 for exp(60)texp(875)\exp(60)\leq t\leq\exp(875). These parameters are found via a stochastic optimisation routine so are not necessarily globally optimal, however they suffice for justifying an upper bound on the constant factor in Theorem 1.1.

In addition, by taking t0=exp(875)t_{0}=\exp(875), θ1=1.14283\theta_{1}=1.14283, θ2=261658\theta_{2}=261658, θ3=2.530871011\theta_{3}=2.53087\cdot 10^{-11}, h1=1.01563h_{1}=1.01563, h2=1.00270h_{2}=1.00270, η1=1.59875\eta_{1}=1.59875 and η2=0.828895\eta_{2}=0.828895 in Lemma 3.2, 3.3 and (3.25), we obtain

|ζ(1/2+it)|66.7t27/164,texp(875).|\zeta(1/2+it)|\leq 66.7t^{27/164},\qquad t\geq\exp(875).

Note that in the application of Lemma 3.3, we take the limit as t1t_{1}\to\infty. This implies Theorem 1.1 for texp(875)t\geq\exp(875).

For small values of tt, we use the following bound

|ζ(1/2+it)|0.478013t1/6logt+3.853165t1/62.914229,t1012,|\zeta(1/2+it)|\leq 0.478013t^{1/6}\log t+3.853165t^{1/6}-2.914229,\qquad t\geq 10^{12}, (3.30)

proved in §3.4 of [HPY22]. This estimate covers the range 1012t<exp(60)10^{12}\leq t<\exp(60). Finally, for 3t<10123\leq t<10^{12}, we use the classical van der Corput estimate (1.1). This completes the proof of Theorem 1.1. Lastly, we note that the bounds in Table LABEL:coefficientstable improve on both (3.30) and (1.2) for all texp(60.6)t\geq\exp(60.6), and is thus the sharpest known bound on ζ(1/2+it)\zeta(1/2+it) in this range.

4. Conclusion and future work

Theorem 1.1 represents the first of many successively sharper sub-Weyl bounds of the form ζ(1/2+it)ϵtθ+ϵ\zeta(1/2+it)\ll_{\epsilon}t^{\theta+\epsilon} obtainable from van der Corput’s method. The next few values of θ\theta, due to [Phi33], [Tit42], [Min49], [Han63] and [Kol82] respectively, are

2291392,19116,1592,637,35216.\frac{229}{1392},\quad\frac{19}{116},\quad\frac{15}{92},\quad\frac{6}{37},\quad\frac{35}{216}.

The first result, θ=229/1392\theta=229/1392, can be obtained via the exponent pair

ABA3BA2BA2B(0,1)=(97696,2029)ABA^{3}BA^{2}BA^{2}B(0,1)=\left(\frac{97}{696},\frac{20}{29}\right)

and can thus be made explicit using a similar but longer version of the arguments presented in this paper. Exponents starting from θ=19/116\theta=19/116, however, rely on estimates of higher-dimensional exponential sums. For example, in the two-dimensional case, the function gr(x)=f(x+r)f(x)g_{r}(x)=f(x+r)-f(x) encountered in the AA process (Lemma 1.2) can be treated as a function of two variables, rr and xx. Such a sum can be estimated using two-dimensional analogs of the AA and BB processes.

The main obstacles to computing an explicit version of such results are difficulties with the two-dimensional Poisson summation formula. In the two-dimensional analog of the BB process, the factor |f′′(xν)|1/2|f^{\prime\prime}(x_{\nu})|^{-1/2} appearing in Lemma 2.3 is replaced by the Hessian of ff, defined by

Hf(x,y):=det[xxfxyfyxfyyf].Hf(x,y):=\det\begin{bmatrix}\partial_{xx}f&\partial_{xy}f\\ \partial_{yx}f&\partial_{yy}f\end{bmatrix}.

However, if HfHf vanishes within the rectangle of summation, as is the case when bounding ζ(1/2+it)\zeta(1/2+it), it can be difficult to control the transformed sum. Successful implementations [Tit35, Min49] of two-dimensional exponent pairs rely on elaborate arguments to isolate problematic regions within the summation rectangle, and applying the trivial bound in those regions instead. Explicit versions of higher-dimensional Poisson summation formulae will be investigated in a future article.

Acknowledgements

We would like to thank Timothy S. Trudgian and Ghaith A. Hiary for their continuous support and helpful suggestions throughout the writing of this paper.

Table 1. Parameter values used in the proof of Theorem 1.1.
logt0\log t_{0} logt1\log t_{1} h1h_{1} h2h_{2} η1\eta_{1} η2\eta_{2} θ1\theta_{1} θ2\theta_{2} θ3\theta_{3} AA
6060 6565 1.029321.02932 1.067261.06726 1.721831.72183 1.022751.02275 0.9574260.957426 0.1800620.180062 0.1729990.172999 37.1037.10
6565 7070 1.027391.02739 1.062271.06227 1.653561.65356 1.085761.08576 0.9383320.938332 0.1899950.189995 0.1216810.121681 38.0938.09
7070 7575 1.025611.02561 1.059611.05961 1.767191.76719 1.033041.03304 0.9269440.926944 0.1949640.194964 0.08111190.0811119 39.0539.05
7575 8080 1.02311.0231 1.056171.05617 1.947471.94747 1.040711.04071 0.9274160.927416 0.205890.20589 0.05492850.0549285 39.9839.98
8080 8585 1.023021.02302 1.054291.05429 2.209762.20976 1.032941.03294 0.9158280.915828 0.2234220.223422 0.03831060.0383106 40.8840.88
8585 9090 1.022481.02248 1.051741.05174 1.980741.98074 1.007631.00763 0.9171690.917169 0.2300510.230051 0.02654950.0265495 41.7541.75
9090 9595 1.022211.02221 1.048031.04803 1.945851.94585 1.022661.02266 0.9088870.908887 0.2546510.254651 0.02034070.0203407 42.6042.60
9595 100100 1.022111.02211 1.047831.04783 2.123212.12321 1.040791.04079 0.936650.93665 0.2903340.290334 0.01374630.0137463 43.4143.41
100100 105105 1.021651.02165 1.045981.04598 1.936551.93655 1.061021.06102 0.9061360.906136 0.3056240.305624 0.008651440.00865144 44.1944.19
105105 110110 1.021911.02191 1.04381.0438 2.031932.03193 0.9489770.948977 0.9205710.920571 0.3204440.320444 0.00761110.0076111 44.9644.96
110110 115115 1.021421.02142 1.045321.04532 1.983431.98343 1.019291.01929 0.9318880.931888 0.3649370.364937 0.005670120.00567012 45.7045.70
115115 120120 1.020141.02014 1.043721.04372 2.084792.08479 0.9880210.988021 0.9319260.931926 0.3918140.391814 0.004267770.00426777 46.4146.41
120120 125125 1.021551.02155 1.039871.03987 2.026322.02632 0.9726390.972639 0.9320560.932056 0.4270620.427062 0.003081270.00308127 47.1047.10
125125 130130 1.021241.02124 1.04221.0422 1.908761.90876 1.023841.02384 0.9191590.919159 0.449830.44983 0.001468270.00146827 47.7647.76
130130 135135 1.020961.02096 1.039651.03965 1.939581.93958 1.01081.0108 0.9263990.926399 0.5027110.502711 0.001969360.00196936 48.4248.42
135135 140140 1.021331.02133 1.037361.03736 2.04252.0425 0.97050.9705 0.9353290.935329 0.5497660.549766 0.001296950.00129695 49.0549.05
140140 145145 1.021871.02187 1.038161.03816 1.908041.90804 1.004321.00432 0.9318490.931849 0.5923990.592399 0.0009245860.000924586 49.6649.66
145145 150150 1.021831.02183 1.037171.03717 1.999311.99931 0.9684810.968481 0.9341590.934159 0.6529890.652989 0.001048450.00104845 50.2650.26
150150 155155 1.021831.02183 1.038261.03826 1.889291.88929 0.9503070.950307 0.9438860.943886 0.7186180.718618 0.0008535610.000853561 50.8450.84
155155 160160 1.020481.02048 1.036171.03617 1.931211.93121 0.982370.98237 0.9382950.938295 0.7381580.738158 0.0006197650.000619765 51.3951.39
160160 165165 1.021381.02138 1.034531.03453 1.961891.96189 0.9778650.977865 0.9356310.935631 0.8575810.857581 0.000648690.00064869 51.9451.94
165165 170170 1.020941.02094 1.032511.03251 1.898431.89843 0.9884540.988454 0.9402280.940228 0.9095670.909567 0.0005211710.000521171 52.4652.46
170170 175175 1.021581.02158 1.035441.03544 1.892171.89217 0.988710.98871 0.9505080.950508 1.004771.00477 0.0004141710.000414171 52.9752.97
175175 180180 1.02141.0214 1.031581.03158 1.934521.93452 1.045481.04548 0.9394190.939419 1.037251.03725 0.0003144260.000314426 53.4753.47
180180 185185 1.020391.02039 1.031791.03179 2.037172.03717 0.9727550.972755 0.955160.95516 1.183221.18322 0.0005179730.000517973 53.9753.97
185185 190190 1.020961.02096 1.034311.03431 1.913941.91394 0.9822960.982296 0.9427590.942759 1.284551.28455 0.0003223860.000322386 54.4354.43
190190 195195 1.021081.02108 1.029991.02999 1.925471.92547 0.970850.97085 0.9543050.954305 1.360941.36094 0.0004757540.000475754 54.9054.90
195195 200200 1.021211.02121 1.032051.03205 1.98241.9824 0.9497680.949768 0.9446750.944675 1.519191.51919 0.0003853050.000385305 55.3355.33
200200 205205 1.021251.02125 1.026821.02682 1.957011.95701 0.9824480.982448 0.9475910.947591 1.639421.63942 0.0002291650.000229165 55.7555.75
205205 210210 1.02121.0212 1.028691.02869 1.893771.89377 0.9532810.953281 0.9527980.952798 1.702811.70281 0.0003135790.000313579 56.1856.18
210210 215215 1.02091.0209 1.030721.03072 1.996791.99679 0.9793030.979303 0.9535460.953546 1.920241.92024 0.0002286680.000228668 56.5856.58
215215 220220 1.020961.02096 1.026561.02656 1.956511.95651 0.9289270.928927 0.9671070.967107 2.091682.09168 0.0003361180.000336118 56.9856.98
220220 225225 1.020941.02094 1.028781.02878 1.893191.89319 0.9395510.939551 0.9543510.954351 2.331682.33168 0.0002842620.000284262 57.3657.36
225225 230230 1.021051.02105 1.028061.02806 2.060862.06086 0.9653980.965398 0.9541940.954194 2.56122.5612 0.0003980310.000398031 57.7457.74
230230 235235 1.019541.01954 1.025471.02547 2.040082.04008 0.9290680.929068 0.9548430.954843 2.675582.67558 0.0002565280.000256528 58.0958.09
235235 240240 1.020381.02038 1.026331.02633 1.83131.8313 0.9413950.941395 0.9636880.963688 3.040593.04059 0.0002095080.000209508 58.4358.43
240240 245245 1.020261.02026 1.022931.02293 1.920621.92062 0.9396020.939602 0.9677210.967721 3.188473.18847 0.0002024810.000202481 58.7758.77
245245 250250 1.020151.02015 1.025671.02567 1.911831.91183 0.9082050.908205 0.9738840.973884 3.499433.49943 0.0003356790.000335679 59.1159.11
250250 255255 1.021671.02167 1.021941.02194 1.822341.82234 0.9264530.926453 0.9613160.961316 3.679183.67918 0.0003996620.000399662 59.4459.44
255255 260260 1.02071.0207 1.025461.02546 1.857311.85731 0.9816730.981673 0.9726050.972605 4.172924.17292 0.0002407770.000240777 59.7359.73
260260 265265 1.020111.02011 1.023881.02388 2.094852.09485 0.9690260.969026 0.9656870.965687 4.650964.65096 0.0001920860.000192086 60.0260.02
265265 270270 1.020661.02066 1.023591.02359 1.960561.96056 0.8934370.893437 0.9692030.969203 4.833744.83374 0.0002512740.000251274 60.3260.32
270270 275275 1.02011.0201 1.022171.02217 1.831131.83113 0.9870980.987098 0.9645690.964569 5.252235.25223 0.0002389560.000238956 60.6060.60
275275 280280 1.020041.02004 1.021471.02147 1.88591.8859 0.9580110.958011 0.9821080.982108 5.739065.73906 0.0002618190.000261819 60.8760.87
280280 285285 1.020171.02017 1.020281.02028 1.821591.82159 0.9762560.976256 0.965970.96597 5.916785.91678 0.0002239480.000223948 61.1361.13
285285 290290 1.020291.02029 1.020191.02019 1.861611.86161 0.9302870.930287 0.9770820.977082 6.754226.75422 0.0002704090.000270409 61.3961.39
290290 295295 1.020251.02025 1.02151.0215 1.86541.8654 0.938160.93816 0.9767250.976725 7.473057.47305 0.0002304130.000230413 61.6361.63
295295 300300 1.020041.02004 1.020121.02012 1.803431.80343 0.900560.90056 0.9814920.981492 7.997167.99716 0.0001376210.000137621 61.8661.86
300300 305305 1.019581.01958 1.021581.02158 1.79381.7938 0.9174430.917443 0.9804410.980441 9.156259.15625 0.0001946880.000194688 62.1062.10
305305 310310 1.020091.02009 1.019061.01906 1.820091.82009 0.9624340.962434 0.9813210.981321 9.663259.66325 0.0002217320.000221732 62.3262.32
310310 315315 1.020481.02048 1.020471.02047 1.805861.80586 0.9253250.925325 0.9845640.984564 10.382410.3824 0.0001708120.000170812 62.5362.53
315315 320320 1.01981.0198 1.020511.02051 2.014242.01424 0.9122110.912211 0.9871930.987193 11.947311.9473 0.0003221560.000322156 62.7662.76
320320 325325 1.020491.02049 1.019031.01903 1.895471.89547 0.9355730.935573 0.9832110.983211 12.428312.4283 0.0002435740.000243574 62.9562.95
325325 330330 1.020151.02015 1.018671.01867 1.969361.96936 0.9207170.920717 0.9853540.985354 13.159913.1599 0.0002431770.000243177 63.1463.14
330330 335335 1.019981.01998 1.018391.01839 1.757771.75777 0.9238550.923855 0.9899220.989922 14.355714.3557 0.0003376390.000337639 63.3463.34
335335 340340 1.01981.0198 1.016681.01668 1.952991.95299 0.9225680.922568 0.9975150.997515 16.576116.5761 0.0001329650.000132965 63.4963.49
340340 345345 1.02021.0202 1.017161.01716 1.817341.81734 0.940910.94091 0.9983420.998342 17.969217.9692 0.0002559420.000255942 63.6863.68
345345 350350 1.019611.01961 1.015421.01542 1.792641.79264 0.9640490.964049 0.9929960.992996 19.8519.85 0.000229360.00022936 63.8463.84
350350 355355 1.019631.01963 1.01651.0165 1.869021.86902 0.9284830.928483 0.9968670.996867 20.278520.2785 0.0002259680.000225968 64.0064.00
355355 360360 1.020341.02034 1.015791.01579 1.913291.91329 0.9351970.935197 0.9991890.999189 23.426623.4266 0.0001606690.000160669 64.1564.15
360360 365365 1.019091.01909 1.015851.01585 1.820831.82083 0.8903850.890385 1.001331.00133 24.865524.8655 0.000209170.00020917 64.3064.30
365365 370370 1.019711.01971 1.016761.01676 1.775051.77505 0.9369470.936947 1.008861.00886 27.985327.9853 0.0002735060.000273506 64.4564.45
370370 375375 1.020081.02008 1.015411.01541 1.809611.80961 0.8980.898 1.014331.01433 30.750830.7508 0.0002477060.000247706 64.5964.59
375375 380380 1.01941.0194 1.015541.01554 1.963581.96358 0.8954260.895426 1.01331.0133 31.26531.265 0.0002482720.000248272 64.7264.72
380380 385385 1.019831.01983 1.014181.01418 1.793291.79329 0.9326970.932697 1.008311.00831 34.877734.8777 0.0002733130.000273313 64.8564.85
385385 390390 1.019771.01977 1.015891.01589 1.847361.84736 0.912370.91237 1.018511.01851 38.585138.5851 0.0002424060.000242406 64.9664.96
390390 395395 1.020131.02013 1.014061.01406 1.776641.77664 0.9340460.934046 1.004211.00421 42.76342.763 0.0001943320.000194332 65.0765.07
395395 400400 1.019391.01939 1.014071.01407 1.824451.82445 0.9032970.903297 1.010281.01028 46.608446.6084 0.0003187850.000318785 65.2065.20
400400 405405 1.019041.01904 1.013051.01305 1.8251.825 0.8996070.899607 1.013561.01356 52.141752.1417 0.0002208170.000220817 65.2965.29
405405 410410 1.01891.0189 1.012011.01201 1.882381.88238 0.9120050.912005 1.019411.01941 53.166353.1663 0.0002112650.000211265 65.3965.39
410410 415415 1.018781.01878 1.012421.01242 1.845231.84523 0.9345990.934599 1.013151.01315 61.346361.3463 0.0002318030.000231803 65.4965.49
415415 420420 1.018991.01899 1.013421.01342 1.796991.79699 0.8988580.898858 1.022721.02272 62.772662.7726 0.0002436970.000243697 65.5965.59
420420 425425 1.018851.01885 1.012421.01242 1.755121.75512 0.9002570.900257 1.028091.02809 70.448370.4483 0.0001824610.000182461 65.6665.66
425425 430430 1.019241.01924 1.012341.01234 1.78111.7811 0.9405220.940522 1.016041.01604 73.613673.6136 0.0002047450.000204745 65.7565.75
430430 435435 1.019421.01942 1.011631.01163 1.759871.75987 0.8875570.887557 1.016771.01677 85.415485.4154 0.0002006870.000200687 65.8365.83
435435 440440 1.019181.01918 1.011771.01177 1.776521.77652 0.858010.85801 1.032221.03222 94.033994.0339 0.0001371520.000137152 65.8965.89
440440 445445 1.019311.01931 1.011461.01146 1.809581.80958 0.8774760.877476 1.02331.0233 99.668999.6689 0.0001454030.000145403 65.9765.97
445445 450450 1.01891.0189 1.010391.01039 1.827571.82757 0.844050.84405 1.023661.02366 111.324111.324 0.0001872340.000187234 66.0466.04
450450 455455 1.018141.01814 1.012261.01226 1.66861.6686 0.9398480.939848 1.032891.03289 116.834116.834 0.00019050.0001905 66.1066.10
455455 460460 1.019581.01958 1.013291.01329 1.75251.7525 0.8507120.850712 1.030581.03058 130.957130.957 0.0002696020.000269602 66.1766.17
460460 465465 1.018521.01852 1.01091.0109 1.7961.796 0.9038050.903805 1.028781.02878 139.055139.055 0.0002085270.000208527 66.2266.22
465465 470470 1.018931.01893 1.01081.0108 1.758591.75859 0.8940580.894058 1.034241.03424 151.974151.974 0.0004753890.000475389 66.3066.30
470470 475475 1.019121.01912 1.011251.01125 1.711251.71125 0.8533180.853318 1.041611.04161 164.259164.259 0.0002827630.000282763 66.3366.33
475475 480480 1.019161.01916 1.009681.00968 1.779091.77909 0.890250.89025 1.040031.04003 187.133187.133 0.000296130.00029613 66.3866.38
480480 485485 1.01781.0178 1.010751.01075 1.806471.80647 0.8985480.898548 1.040881.04088 210.376210.376 0.000165920.00016592 66.4066.40
485485 490490 1.018261.01826 1.009391.00939 1.748441.74844 0.9009940.900994 1.047061.04706 217.358217.358 0.0002888720.000288872 66.4666.46
490490 495495 1.018021.01802 1.00881.0088 1.77871.7787 0.873620.87362 1.051881.05188 243.335243.335 0.0002075850.000207585 66.4866.48
495495 500500 1.018341.01834 1.009751.00975 1.798531.79853 0.9304670.930467 1.04861.0486 277.44277.44 0.0001510620.000151062 66.5166.51
500500 505505 1.018671.01867 1.010991.01099 1.822231.82223 0.8926510.892651 1.055821.05582 277.559277.559 0.0002761150.000276115 66.5566.55
505505 510510 1.01871.0187 1.009941.00994 1.802851.80285 0.8999010.899901 1.048051.04805 309.723309.723 0.0002061190.000206119 66.5766.57
510510 515515 1.018511.01851 1.008571.00857 1.769581.76958 0.8973810.897381 1.050711.05071 336.08336.08 0.0002163350.000216335 66.5966.59
515515 520520 1.018411.01841 1.009721.00972 1.745061.74506 0.8676810.867681 1.044491.04449 358.983358.983 0.0001294390.000129439 66.6066.60
520520 525525 1.018081.01808 1.009091.00909 1.698621.69862 0.912920.91292 1.045741.04574 395.643395.643 0.000146660.00014666 66.6266.62
525525 530530 1.017751.01775 1.008111.00811 1.831591.83159 0.8811660.881166 1.055961.05596 472.358472.358 0.0002285910.000228591 66.6566.65
530530 535535 1.017751.01775 1.007611.00761 1.789341.78934 0.8995160.899516 1.059531.05953 462.286462.286 0.0002969560.000296956 66.6766.67
535535 540540 1.018041.01804 1.007991.00799 1.754461.75446 0.8644780.864478 1.051821.05182 531.88531.88 0.0002723010.000272301 66.6866.68
540540 545545 1.017971.01797 1.007781.00778 1.710411.71041 0.9690140.969014 1.059861.05986 533.438533.438 0.0003236170.000323617 66.7066.70
545545 550550 1.018141.01814 1.008691.00869 1.712091.71209 0.8678720.867872 1.059771.05977 612.157612.157 0.0001723340.000172334 66.6866.68
550550 555555 1.017981.01798 1.00771.0077 1.792511.79251 0.9311420.931142 1.056951.05695 700.06700.06 0.0001885670.000188567 66.6966.69
555555 560560 1.018091.01809 1.009411.00941 1.691381.69138 0.9197230.919723 1.064041.06404 731.948731.948 0.0001806170.000180617 66.6966.69
560560 565565 1.017971.01797 1.009111.00911 1.686621.68662 0.8648850.864885 1.063031.06303 884.433884.433 0.0002610750.000261075 66.7066.70
565565 570570 1.018051.01805 1.006751.00675 1.696311.69631 0.8748950.874895 1.072431.07243 977.767977.767 0.0001892680.000189268 66.6866.68
570570 575575 1.017911.01791 1.007031.00703 1.610881.61088 0.9036480.903648 1.069531.06953 1008.61008.6 0.0002605230.000260523 66.6966.69
575575 580580 1.017171.01717 1.006811.00681 1.717891.71789 0.846380.84638 1.079151.07915 1090.481090.48 0.0002148810.000214881 66.6866.68
580580 585585 1.017891.01789 1.006271.00627 1.755291.75529 0.8625060.862506 1.071991.07199 1161.281161.28 0.0001376290.000137629 66.6566.65
585585 590590 1.017691.01769 1.008511.00851 1.724911.72491 0.815160.81516 1.075991.07599 1243.561243.56 0.0002372940.000237294 66.6666.66
590590 595595 1.017371.01737 1.006371.00637 1.673991.67399 0.872910.87291 1.077891.07789 1496.721496.72 0.0002441040.000244104 66.6466.64
595595 600600 1.017781.01778 1.006341.00634 1.69051.6905 0.8927960.892796 1.072441.07244 1480.771480.77 0.0002679850.000267985 66.6366.63
600600 605605 1.017371.01737 1.006571.00657 1.676951.67695 0.9094030.909403 1.081821.08182 1757.681757.68 0.0002428040.000242804 66.6166.61
605605 610610 1.017191.01719 1.005731.00573 1.744531.74453 0.8843530.884353 1.082451.08245 1852.21852.2 0.0003138670.000313867 66.6066.60
610610 615615 1.017871.01787 1.006281.00628 1.678171.67817 0.9242630.924263 1.094031.09403 2201.22201.2 0.0002251380.000225138 66.5766.57
615615 620620 1.017791.01779 1.005291.00529 1.719891.71989 0.895410.89541 1.107341.10734 2358.512358.51 0.0002698840.000269884 66.5666.56
620620 625625 1.017661.01766 1.005911.00591 1.682011.68201 0.8984510.898451 1.092111.09211 2557.472557.47 0.000233440.00023344 66.5366.53
625625 630630 1.017391.01739 1.006791.00679 1.637931.63793 0.9532770.953277 1.086541.08654 2762.172762.17 0.0002429960.000242996 66.5166.51
630630 635635 1.017211.01721 1.006831.00683 1.653371.65337 0.8709980.870998 1.09221.0922 2875.572875.57 0.0003384190.000338419 66.4966.49
635635 640640 1.017261.01726 1.004891.00489 1.699491.69949 0.8446950.844695 1.097231.09723 3334.13334.1 0.0002220660.000222066 66.4566.45
640640 645645 1.01691.0169 1.00521.0052 1.725671.72567 0.8437830.843783 1.081351.08135 3258.73258.7 0.0001659150.000165915 66.4166.41
645645 650650 1.017641.01764 1.005391.00539 1.700711.70071 0.9169060.916906 1.097231.09723 3603.313603.31 0.0001772510.000177251 66.3866.38
650650 655655 1.017391.01739 1.00431.0043 1.569531.56953 0.9514410.951441 1.091171.09117 4037.064037.06 0.0001499610.000149961 66.3566.35
655655 660660 1.017481.01748 1.004011.00401 1.632691.63269 0.8864150.886415 1.092951.09295 4648.064648.06 0.0001860470.000186047 66.3266.32
660660 665665 1.016491.01649 1.00491.0049 1.724181.72418 0.8869850.886985 1.095071.09507 4673.864673.86 0.000174140.00017414 66.2966.29
665665 670670 1.016741.01674 1.005991.00599 1.679761.67976 0.8693460.869346 1.100911.10091 5572.255572.25 0.0001771060.000177106 66.2566.25
670670 675675 1.016631.01663 1.00461.0046 1.619371.61937 0.833820.83382 1.10061.1006 5675.145675.14 0.0002456650.000245665 66.2266.22
675675 680680 1.016941.01694 1.004281.00428 1.652151.65215 0.8724360.872436 1.111711.11171 6423.046423.04 0.000117670.00011767 66.1666.16
680680 685685 1.017091.01709 1.004421.00442 1.667151.66715 0.8669250.866925 1.118751.11875 7423.577423.57 0.0001426910.000142691 66.1366.13
685685 690690 1.016381.01638 1.005291.00529 1.583431.58343 0.8631250.863125 1.118271.11827 8229.438229.43 0.0002428830.000242883 66.1166.11
690690 695695 1.016161.01616 1.00521.0052 1.630371.63037 0.855350.85535 1.10791.1079 8876.138876.13 0.000183260.00018326 66.0666.06
695695 700700 1.016781.01678 1.003771.00377 1.606851.60685 0.8476760.847676 1.12221.1222 9005.879005.87 0.0003605690.000360569 66.0466.04
700700 705705 1.016631.01663 1.004341.00434 1.64781.6478 0.8325420.832542 1.106781.10678 11011.911011.9 0.0002594320.000259432 65.9865.98
705705 710710 1.016261.01626 1.004271.00427 1.67481.6748 0.8580140.858014 1.130751.13075 11374.611374.6 0.0001619210.000161921 65.9265.92
710710 715715 1.017021.01702 1.003881.00388 1.668231.66823 0.9045010.904501 1.122821.12282 12579.112579.1 0.0002533550.000253355 65.8965.89
715715 720720 1.016541.01654 1.00521.0052 1.570251.57025 0.910450.91045 1.127991.12799 13030.713030.7 0.0001648920.000164892 65.8365.83
720720 725725 1.015541.01554 1.003951.00395 1.617511.61751 0.8757350.875735 1.120811.12081 14543.914543.9 0.0001630320.000163032 65.7965.79
725725 730730 1.016161.01616 1.00481.0048 1.616181.61618 0.8949920.894992 1.138611.13861 16398.816398.8 0.0001643280.000164328 65.7465.74
730730 735735 1.016161.01616 1.00521.0052 1.581481.58148 0.8818930.881893 1.132361.13236 18388.718388.7 0.0002505310.000250531 65.7065.70
735735 740740 1.016331.01633 1.004041.00404 1.582241.58224 0.8843350.884335 1.129851.12985 21073.121073.1 0.0002404230.000240423 65.6565.65
740740 745745 1.01581.0158 1.003471.00347 1.626621.62662 0.8233660.823366 1.120911.12091 22637.422637.4 0.000194360.00019436 65.5965.59
745745 750750 1.017261.01726 1.003191.00319 1.556161.55616 0.8377960.837796 1.136741.13674 2259122591 0.0002746380.000274638 65.5665.56
750750 755755 1.016041.01604 1.004241.00424 1.660541.66054 0.8868990.886899 1.137391.13739 26085.926085.9 0.0001768090.000176809 65.4965.49
755755 760760 1.016061.01606 1.003971.00397 1.634811.63481 0.8666790.866679 1.126321.12632 29306.629306.6 0.0001715310.000171531 65.4465.44
760760 765765 1.01651.0165 1.003461.00346 1.670971.67097 0.8476910.847691 1.132331.13233 2941929419 0.000197250.00019725 65.3965.39
765765 770770 1.015911.01591 1.003811.00381 1.472131.47213 0.9008120.900812 1.140821.14082 34118.834118.8 0.0001858180.000185818 65.3365.33
770770 775775 1.016031.01603 1.004141.00414 1.592681.59268 0.9289570.928957 1.158791.15879 38353.438353.4 0.0001569280.000156928 65.2765.27
775775 780780 1.016181.01618 1.002781.00278 1.492281.49228 0.89670.8967 1.149471.14947 38574.238574.2 0.0002266310.000226631 65.2365.23
780780 785785 1.016111.01611 1.002681.00268 1.564061.56406 0.8776080.877608 1.148361.14836 47867.947867.9 0.0002076540.000207654 65.1765.17
785785 790790 1.01641.0164 1.003121.00312 1.511671.51167 0.8582720.858272 1.160381.16038 50635.350635.3 0.000283850.00028385 65.1265.12
790790 795795 1.015371.01537 1.003931.00393 1.646871.64687 0.8619950.861995 1.151511.15151 55750.355750.3 0.0002002080.000200208 65.0665.06
795795 800800 1.01531.0153 1.00291.0029 1.472891.47289 0.8878740.887874 1.163421.16342 60283.260283.2 0.0001543510.000154351 64.9964.99
800800 805805 1.015271.01527 1.004011.00401 1.551741.55174 0.8653620.865362 1.15371.1537 66111.466111.4 0.0001955080.000195508 64.9464.94
805805 810810 1.015741.01574 1.00291.0029 1.51661.5166 0.9022230.902223 1.170731.17073 74262.874262.8 0.0002258130.000225813 64.8964.89
810810 815815 1.015221.01522 1.003391.00339 1.600731.60073 0.8763690.876369 1.157921.15792 77118.377118.3 0.0002662090.000266209 64.8364.83
815815 820820 1.016011.01601 1.002381.00238 1.663651.66365 0.9066450.906645 1.151211.15121 84767.184767.1 0.0001618230.000161823 64.7664.76
820820 825825 1.015831.01583 1.002711.00271 1.62351.6235 0.9287930.928793 1.162441.16244 107264107264 0.0002342460.000234246 64.7164.71
825825 830830 1.015631.01563 1.003151.00315 1.56851.5685 0.8590890.859089 1.159911.15991 106225106225 0.0001877070.000187707 64.6464.64
830830 835835 1.015361.01536 1.003831.00383 1.535321.53532 0.8680980.868098 1.168561.16856 112590112590 0.0001321110.000132111 64.5764.57
835835 840840 1.015561.01556 1.00381.0038 1.564551.56455 0.9266230.926623 1.170231.17023 134713134713 0.0002355560.000235556 64.5364.53
840840 845845 1.015021.01502 1.002461.00246 1.510631.51063 0.8749390.874939 1.16391.1639 132092132092 0.0002078510.000207851 64.4764.47
845845 850850 1.015631.01563 1.002061.00206 1.538221.53822 0.868110.86811 1.175491.17549 152832152832 0.0001788140.000178814 64.4064.40
850850 855855 1.014981.01498 1.002831.00283 1.635441.63544 0.8453470.845347 1.167671.16767 148866148866 0.0001581650.000158165 64.3464.34
855855 860860 1.01541.0154 1.002941.00294 1.525871.52587 0.8956860.895686 1.163111.16311 186060186060 0.0001411160.000141116 64.2764.27
860860 865865 1.015061.01506 1.002211.00221 1.597091.59709 0.8501720.850172 1.17661.1766 192984192984 0.0002383580.000238358 64.2264.22
865865 870870 1.015191.01519 1.001931.00193 1.542441.54244 0.880040.88004 1.173851.17385 222438222438 0.0001868940.000186894 64.1564.15
870870 875875 1.015421.01542 1.002251.00225 1.524971.52497 0.8516480.851648 1.185631.18563 242664242664 0.000289230.00028923 64.1064.10

References

  • [AS13] “Handbook of mathematical functions: with formulas, graphs, and mathematical tables”, Dover books on mathematics New York, NY: Dover Publ, 2013
  • [Bou16] J. Bourgain “Decoupling, exponential sums and the Riemann zeta function” In Journal of the American Mathematical Society 30.1, 2016, pp. 205–224
  • [Bro+21] S. Broadbent, H. Kadiri, A. Lumley, N. Ng and K. Wilk “Sharper bounds for the Chebyshev function θ(x)\theta(x) In Math. Comp. 90.331, 2021, pp. 2281–2315
  • [CG04] Yuanyou F. Cheng and Sidney W. Graham “Explicit Estimates for the Riemann Zeta Function” In Rocky Mountain Journal of Mathematics 34.4, 2004, pp. 1261–1280
  • [Cor21] J. G. Corput “Zahlentheoretische Abschätzungen” In Mathematische Annalen 84.1-2, 1921, pp. 53–79
  • [CHJ22] M. Cully-Hugill and D. R. Johnston “On the error term in the explicit formula of Riemann–von Mangoldt” Preprint available at arXiv:2111.10001, 2022
  • [CH21] Michaela Cully-Hugill “Primes between consecutive powers” Preprint available at arXiv:2107.14468 arXiv, 2021
  • [CHL22] Michaela Cully-Hugill and Ethan Lee “Explicit interval estimates for prime numbers” In Mathematics of Computation 91.336, 2022, pp. 1955–1970
  • [FKS22] A. Fiori, H. Kadiri and J. Swidinsky “Density results for the zeros of zeta applied to the error term in the prime number theorem” Preprint available at arXiv:2204.02588, 2022
  • [FKS22a] Andrew Fiori, Habiba Kadiri and Joshua Swindisky “Sharper bounds for the error term in the Prime Number Theorem” Preprint available at arXiv:2206.12557, 2022
  • [For02] K. Ford “Zero-free regions for the Riemann zeta function” In Number theory for the millennium, II (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 25–56
  • [Gab79] Wolfgang Gabcke “Neue Herleitung und explizite Restabschätzung der Riemann-Siegel-Formel”, 1979
  • [GK91] S. W. Graham and Grigori Kolesnik “Van der Corput’s Method of Exponential Sums”, London Mathematical Society Lecture Note Series Cambridge University Press, 1991
  • [Han63] W. Haneke “Verschärfung der Abschätzung von ζ(1/2+it)\zeta(1/2+it) In Acta Arithmetica 8.4, 1963, pp. 357–430
  • [HSW21] Elchin Hasanalizade, Quanli Shen and Peng-Jie Wong “Counting zeros of the Riemann zeta function” In Journal of Number Theory 235, 2021, pp. 219–241
  • [HB83] D.R. Heath-Brown “The Pjateckiĭ-Sǎpiro prime number theorem” In Journal of Number Theory 16.2, 1983, pp. 242–266
  • [Hia16] Ghaith A. Hiary “An explicit van der Corput estimate for ζ(1/2+it)\zeta(1/2+it) In Indagationes Mathematicae 27.2, 2016, pp. 524–533
  • [HPY22] Ghaith A. Hiary, Dhir Patel and Andrew Yang “An improved explicit estimate for ζ(1/2+it)\zeta(1/2+it)” Preprint available at arXiv:2207.02366, 2022
  • [JY22] Daniel R. Johnston and Andrew Yang “Some explicit estimates for the error term in the prime number theorem” Preprint available at arXiv:2204.01980 arXiv, 2022
  • [KL14] Habiba Kadiri and Allysa Lumley “Short Effective Intervals Containing Primes” In Integers 14, 2014, pp. A61
  • [KLN18] Habiba Kadiri, Allysa Lumley and Nathan Ng “Explicit zero density for the Riemann zeta function” In Journal of Mathematical Analysis and Applications 465.1, 2018, pp. 22–46
  • [KK07] A A Karatsuba and M A Korolev “A theorem on the approximation of a trigonometric sum by a shorter one” In Izvestiya: Mathematics 71.2, 2007, pp. 341–370
  • [Ker35] Richard Kershner “Determination of a Van Der Corput-Landau Absolute Constant” In American Journal of Mathematics 57.4, 1935, pp. 840 DOI: 10.2307/2371020
  • [Ker38] Richard Kershner “Determination of a Van Der Corput Absolute Constant” In American Journal of Mathematics 60.3, 1938, pp. 549
  • [Kol82] G. Kolesnik “On the order of ζ(12+it)\zeta({1\over 2}+it) and Δ(R)\Delta(R).” In Pacific Journal of Mathematics 98.1 Pacific Journal of Mathematics, A Non-profit Corporation, 1982, pp. 107–122
  • [Min49] Szu-Hoa Min “On the order of ζ(1/2+it)\zeta(1/2+it) In Transactions of the American Mathematical Society 65.3, 1949, pp. 448
  • [MV73] H. L. Montgomery and R. C. Vaughan “The large sieve” In Mathematika 20.2, 1973, pp. 119–134
  • [MTY22] Mike J. Mossinghoff, Timothy S. Trudgian and Andrew Yang “Explicit zero-free regions for the Riemann zeta-function” Preprint available at arXiv:2212.06867, 2022
  • [Pat21] Dhir Patel “Explicit sub-Weyl bound for the Riemann Zeta function”, 2021
  • [Phi33] Eric Phillips “The zeta-function of Riemann; further developments of van der Corput’s method” In The Quarterly Journal of Mathematics os-4.1, 1933, pp. 209–225
  • [PT15] D. J. Platt and T. S. Trudgian “An improved explicit bound on |ζ(1/2+it)||\zeta(1/2+it)| In Journal of Number Theory 147, 2015, pp. 842–851
  • [PT21] D. J. Platt and T. S. Trudgian “The Riemann hypothesis is true up to 310123\cdot 10^{12} In Bull. Lond. Math. Soc. 53.3, 2021, pp. 792–797
  • [Rog05] Keith Rogers “Sharp van der Corput estimates and minimal divided differences” In Proceedings of the American Mathematical Society 133.12, 2005, pp. 3543–3550
  • [Tit35] E. C. Titchmarsh “The Lattice-Points in a Circle” In Proceedings of the London Mathematical Society s2-38.1, 1935, pp. 96–115
  • [Tit42] E. C. Titchmarsh “On the order of ζ(1/2+it)\zeta(1/2+it) In The Quarterly Journal of Mathematics os-13.1, 1942, pp. 11–17
  • [Tit86] E. C. Titchmarsh “The Theory of the Riemann Zeta-function” Oxford: Oxford Science Publications, 1986
  • [Tru15] Tim S. Trudgian “Explicit bounds on the logarithmic derivative and the reciprocal of the Riemann zeta-function” In Functiones et Approximatio Commentarii Mathematici 52.2, 2015, pp. 253–261
  • [Tru16] Tim S. Trudgian “Improvements to Turing’s method II” In Rocky Mountain Journal of Mathematics 46.1, 2016, pp. 325–332
  • [Tru11] Timothy S. Trudgian “Improvements to Turing’s method” In Mathematics of Computation 80.276, 2011, pp. 2259–2279
  • [Tru14] Timothy S. Trudgian “An improved upper bound for the argument of the Riemann zeta-function on the critical line II” In Journal of Number Theory 134, 2014, pp. 280–292
  • [Yan23] Andrew Yang “Explicit bounds on ζ(s)\zeta(s) in the critical strip and a zero-free region” Preprint available at arXiv:2301.03165 arXiv, 2023